
182 TUGboat. Volume 8 (1987), No. 2

Update: Real Typesetting

from Your Personal Computer

Alan Hoenig and Mitch Pfeffer

In Vol. 7. No. 3, we listed some sources of typesetting

services for TEX users who need output from real

typesetting machines. Some new information has

turned up, and we are listing these new facts and

figures according to the same rules applied in the

original article: no favorites. And we ask the

same consideration from readers - if anyone knows

of other organizations that offer TEX typesetting

services. please get in touch.

American Mathematical Society, P 0 Box

6248, Providence, RI 02940; (401) 272-9500

The -4MS is now using an Autologic .4PS Micro-5

for its typesetting. At the present time the Society

has -4M. CM and Times Roman fonts available
and within the next few months it expects to have

many more typefaces from the Autologic library.

Turnaround time varies depending on the size of

the job but should be no more than a week for up

to a 500 page job.

The AMS has also simplified its pricing struc-

ture. The charge for producing typeset output from

your DVI file is $5 per page for the first 100 pages.

$2.50 per page for all additional pages. The mini-

mum charge for any job is $30. Files can be sent

on VAXJVMS tapes or on IBhI PC or Macintosh

diskettes (although no Postscript extensions can be

handled).

For scheduling purposes. the AMS asks that

you contact them before submitting any jobs; talk
to Regina Girouard.

Macros

Macros with Keyword Parameters

Wolfgang Appelt

Gesellschaft fiir Mathematik und
Datenverarbeitung. Sankt Augustin

TEX uses positional parameters for passing argu-

ments to a macro. This has. as it is usually the
case with positional parameters, two consequences:

When calling a macro. which was defined to have

parameters (#I, #2. . . .),

1. the order of the arguments is important, i. e.

it usually gives different results. if you write

\a{bHc) or \a{c)ib). and
2. the number of the arguments must match the

number of parameters in the definition of the

macro.

There are. however, sometimes situations where the

concept of keyword parameters is more adequate.

Consider, for example, a Setstyle macro which

may be used for modifying the formatting environ-

ment. The arguments, that can be passed to the

macro, can be selected from a set of predefined

keywords, say {RAGGEDRIGHT, BOLD, ITALIC. NOIN-

DENT. . . .). The order of the arguments shall be

unimportant and the number of the arguments shall

be variable, i. e. the macro may be used as

\SetStyle(ITALIC) or
\SetStyle(NOINDENT;ITALIC;RAGGEDRIGHT)

(If several arguments are present. they must be

separated by a delimiter, for example by a ";".)
The following macros solve the problem (expla-

nations afterwards) :

\newif\if@more@keywords

\newif\if@keyword@matched

\def\next@style@keyword #1;#2\end{%

\def\nextC#2)%

\ifx\next\empty\@more@keywordsfalse

\else\def\arguments{#2\end)\fi

\@keyword@matchedfalse

\compare@with@keyword #lcBOLDX\bf>%

\if@keyword@matched

\else\compare@with@keyword #1%

<RAGGEDRIGHT><\raggedright>\fi

\if@keyword@matched

\else\compare@with@keyword #1%

<ITALIC><\it>\fi

\if@keyword@matched

\else\compare@with@keyword #1%

<NOINDENT><\parindent=Opt>\fi

\if@keyword@matched\else

\message{Unknown keyword #l!)\fi)

TUGboat, Volume 8 (1987), No. 2

First we define two switches (\ i f QmoreQkeywords

and \ifQkeywordQmatched) which are used within

the macros. The \Se t s ty l e macro has one pa-

rameter which is a keyword or a list of keywords,

separated by a ";". The argument passed to the
macro is saved in the macro \argument with a

";\end" added at the end. This will later on be

used to detect the end of the argument. Then the
macro starts calling \nextQstyle@keyword within

a loop as long as the switch \Qmore@keywords is

t r ue . The argument to \nextQstyle@keyword is

expanded before the macro is actually called. i. e.

what the macro '.sees" is something like

NOINDENT;ITALIC;RAGGEDRIGHT;\end

The macro \next@style@keyword splits the list of

keywords into the first keyword. which is anything
up to the first ";", and into the rest, which is

anything up to the final \end. If the rest is empty.

the switch \QmoreQkeywords is set to f a l s e . so the

loop in \Se t s ty l e will stop. Otherwise the macro
\arguments is redefined to contain the rest of the

keywords with the "\end" added a t the end again.

Then we start comparing the current keyword

#1 with the list of predefined keywords. This is
done by calling the macro \compareQwlthQkeyword

several times. each time with a different specific
keyword which is regarded a valid argument to

\Se ts ty le . To avoid unnecessary calls of this macro

when the current keyword was already found, we

use the switch \QkeywordQmatched. If the current

keyword was not recognized at all. when the list of

the specific keywords is exhausted. an error message

is written. The macro \compare@withQkeyword

is called with three arguments: the current key-
word. a specific keyword and (usually) an action.

that is to be performed, when the current key-

word matches the specific one. The definition of

\compareQwithQkeyword is simple: The first two

parameters are compared. If they are identical.
the switch \Qmore@keywords is set to t r u e and the
third parameter is '*executed".

Expanding the set of valid keywords for the

\Se t s ty l e macro is trivial: It is only necessary
to add furthers calls of \compareQwithQkeyword,

each time with a new specific keyword. within the

definition of \nextQstyleQkeyword. There is no

restriction on the number of keywords, that can be

used, i. e. the restriction, that a macro must

not have more than nine (positional) parameters,

does not hold for keyword parameters.

In some applications a slightly different kind

of keyword parameters is necessary. Consider, for

example, a \SetDimensions macro, which shall be

used for modifying some parameters controlling the

size and positioning of a page. The macro may, for

example, be used as

\SetDimensions(VSIZE=1.5\char92hsize) or

\SetDimensions(HSIZE=20pc;HOFFSET=1Opt)

Now each keyword has an associated value, which

shall be passed to some "attribute", denoted by the

keyword. This case can be handled by the following

macros:
\def\SetDimensions (#l){%

\def \arguments(#l ;\end)%

\@more@keywordstrue

\loop\expandafter\next@setdim@keyword

\arguments

\if@more@keywords\repeat)

\def\next@setdim@keyword #1;#2\end{%

\def\nextC#2)%

\ifx\next\empty\@more@keywordsfalse

\else\def\arguments{#2\end)\fi

\@keyword@matchedfalse
\compare@with@attribute #1%

<HSIZE><\hsize=\value>%

\if@keyword@matched

\else\compareQwith@attribute #I%
<VSIZE><\vsize=\value>\fi

\if@keyword@matched

\else\compareQwith@attribute #1%

<HOFFSET><\hoffset=\value>\fi

\if@keyword@matched

\else\compareQwithQattribute #1%

<VOFFSET><\voffset=\value>\fi

\ifQkeyword@matched\else

\message{Unknown keyword # l !)\f i)

The macros are rather similar to the previous
ones. The main difference to the example above is

the macro \compareQwith@attribute which is used

instead of the former \compare@with@keyword. The

macro is called with three arguments as in the

previous example. but it has four parameters in its

definition. the first two being separated by a "=".

This serves for splitting the first argument, which

might. for example. be

VSIZE=l.5\hsize

into the "attribute name" and the "attribute value".

If the attribute name matches the third parameter
(or - looking at the call of the macro - the second

argument). the switch \Qkeyword@matched is set to

TUGboat, Volume 8 (1987), No. 2

true and the meaning of \value is defined as the

attribute value.

Notice the macro \value: When it is passed
as an argument to \compareQwithQattribute it is

still undefined. In other words, we have the funny

case of a macro which- to some extent -defines

the arguments, that it receives, itself.

The two examples above show rather simple

applications of keyword parameters without great

practical value. They should primarily be regarded

as an explanation of the basic ideas how such macros

can be written. In practice further extensions may

be necessary. One extension may be the mixture
of positional and keyword parameters, another one

the definition of macros, where the keywords in the

argument list may have to be reordered before they

get interpreted.

The discussion on positional versus keyword
parameters has a long tradition in computer science

and common understanding is probably, that key-

word parameters are preferable to positional ones

in many cases. Also several document processing

systems, e. g. Reid's SCRIBE system (B. K. Reid:

SCRIBE -Introductory User's Manual, Unilogic

Ltd., Pittsburgh, 1980), make use of keyword pa-

rameters to some extent. (There are even a few
features in I4m which look like keyword parame-

ters though Lamport does not use this terminology.
See, for example, the options that can be given with

a \document style command.)

Using the concept of keywords parameters
can probably lead to macro packages with user

interfaces, which look quite different from existing

ones and might be preferred by many users. Maybe

even the writing of "bridgeware" macro packages

to other formatting languages. for example a macro

package that makes (at least certain classes of)

SCRIBE documents processable by 'QX, might
become easier.

When I first thought about keyword parameters

I was surprised, that it took only a few hours to write

down some macros that solved the problem. So,
if after all the examples above may show nothing,

they at least prove once again

power of W ' s macro language.
the flexibility and

\expandafter vs. \let and \def in Conditionals

and a Generalization of PLAIN's \loop

Alois Kabelschacht

Max-Planck-Institut fiir Physik

Conditionals with \expandafter

Sometimes the replacement text for a 7&X macro

should end with one or another macro call, depend-

ing on a condition. The trivial solution

. . . \if \aa \else . . . \bb \fi
works only if neither \aa nor \bb needs an argument.

Otherwise a more complicated construction such as

the following example from plain. tex is needed:

\def\ph@nt{\ifrnmode

\def\next{\mathpalette\mathphQnt3%

\else\let\next\makephQnt\fi\next)

There is the alternative:
\def\ph@nt{\ifmmode

\expandafter\mathpalett e

\expandafter\mathph@nt

\else\expandafter\makephQnt\fi)

which uses the fact that the expansion of both

\else . . . \fi and \f i is empty. This alternative

is definitely shorter (by 4 tokens) and as far as I can
see not slower. It has the further advantage that it

also works if expandable tokens are expanded but

no commands are digested (e.g. in the replacement

text for \edef). The alternative construction is

clearly even more economical in such cases where
one of the branches would otherwise contain a

'\let\next\relax'.

A generalization of PLAIN's \loop macro

Using the above idea one could e.g. replace PLAIN's

definition of \iterate (used in conjunction with
\loop):

\def\loop#l\repeat{\def\body{#l}\iterate}

\def \iterate{\body \let\next\iterate

\else\let\next\relax\fi \next}

\let\repeat=\f i % this makes
% \loop . . . \if . . . \repeat skippable

by
\def\iterate<\body

\expandafter\iterate\else\fi)

Finally, omitting the \else and rearranging things

a bit one obtains
\def\loop#l\repeat{\def\iterate

<#l\expandafter\iterate\fi)%

\iterate \let\iterate\relax]

