
TUGboat, Volume 10 (1989), No. 2 245

The doc-Option*

Frank ~i t te lbacht
Gutenberg Universitat Mainz

Abstract

This style option contains the definitions that are necessary to format the documenta-
tion of style files. The style file was developed in Mainz in cooperation with the Royal
Military College of Science.

Contents

Introduction 245
1.1

The
2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10

2.11

Using the doc style option 246

User Interface 246
General conventions . . . 246

Describing the usage of
new macros 247

Describing the definition
of new macros 247

Formatting the margins . 247

Using a special escape
character 248

Cross-referencing all macros
used
Producing the actual in-
dex entries
Setting the index entries .
Changing the default val-
ues of style parameters . .
Additional bells and whis-
tles
Acknowledgements

Introduction

3 The
3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

Description of Macros 251
Macros surrounding the

. $definition parts' 251

Macros for the 'documen-
. tation parts' 253

Formatting the margin . . 257

Creating index entries by
. . . scanning 'macrocode' 257

Macros for scanning macro
. names 259

The index exclude list . . 262

Macros for generating in-
. dex entries 264

Redefining the index envi-
. ronment 266

Dealing with the change
. history 268

. Bells and whistles 269

Layout parameters for doc-
. . . . umenting style files 270

Changing the \cat code of
% 271

The rn macros which are described
here allow definitions and documentation
to be held in one and the same file. This
has the advantage that normally very
complicated instructions are made sim-
pler to understand by comments inside
the definition. In addition to this, u p
dates are easier and only one source file
needs to be changed. On the other hand,
because of this, the style files are consid-

* This file has version number v1.5j dated 89/06/07. The documentation was last
revised on 89/06/09.

t Further commentary added at Royal Military College of Science by B. HAMILTON
KELLY; English translation of parts of the original German commentary provided by
Andrew Mills.

erably longer: thus rn takes longer to
load them. If this is a problem, there is
an easy remedy: one needs only to write
a small Pascal program that removes all
lines that begin with a % sign.

The idea of integrated documentation
was born with the development of the
'I)$ program; it was crystallized in Pas-
cal with the WEB system. The ad-
vantages of this method are plain to

TUGboat, Volume 10 (1989), No. 2

macrocode

see (it's easy to make comparisons [2]).
Since this development, systems similar
to WEB have been developed for other
programming languages. But for one
of the most complicated programming
languages (m) the documentation has
however been neglected. The TEX world
seems to be divided between:-

a couple of "wizards", who produce
many lines of completely unreadable
code "off the cuff", and

many users who are amazed that it
works just how they want it to do.
Or rather, who despair that certain
macros refuse to do what is expected
of them.

I do not think that the WEB system is
the reference work; on the contrary, it is a
prototype which suffices for the develop
ment of programs within the TEX world.
It is sufficient, but not totally suRb5ent.l
As a result of WEB, new programming
perspectives have been demonstrated;
unfortunately, though, they haven't been
developed further for other programming
languages.

The method of documentation of
macros which I have introduced here

should also only be taken as a first sketch.
It is designed explicitly to run under
U r n alone. Not because I was of the
opinion that this was the best starting
point, but because from this starting
point it was the quickest to develop.' As
a result of this design decision, I had to
move away from the concept of modular-
ization; this was certainly a step back-
ward.

I would be happy if this article could
spark off discussion over rn documen-
tation. I can only advise anyone who
thinks that they can cope without doc-
umentation to "Stop Time" until he or
she completely understands the AMS-
m source code.

1.1 Using t h e doc style option

Just like any other option, invoke it by
including it amongst the style options
in the optional parameter list for the
\document style command.

N.B. Because this style option makes the
% character ignorable, which may inter-
fere with the reading of other style op-
tions, doc should be the last style option
invoked.

2 T h e User Interface

2.1 General conventions

A file prepared to be used with the 'doc' style option consists of 'documentation
parts' intermixed with 'definition parts'.

Every line of a 'documentation part' starts with a percent sign (%) in column one. It
may contain arbitrary rn or UQX commands except that the character '%' cannot
be used as a comment character. To allow user comments, the - -A character is defined
as a comment character later on.

All other parts of the file are called 'definition parts'. They contain fractions of the
macros described in the 'documentation parts'.

If the file is used to define new macros (e.g. as a style file in the \documentstyle
macro), the 'documentation parts' are bypassed at high speed and the macro defini-
tions are pasted together, even if they are split into several 'definition parts'.

On the other hand, if the documentation of these macros is to be produced, the 'defi-
nition parts' should be typeset verbatim. To achieve this, these parts are surrounded
by the macrocode environment. More exactly: before a 'definition part' there should
be a line containing

I know that this will be seen differently by a few people, but this product should
not be seen as the finished product, at least as far as applications concerning 'l&X are
concerned. The long-standing debate over 'multiple change files' shows this well.

This argument is a bad one; however, it is all too often trotted out.

TUGboat, Volume 10 (1989), No. 2

macrocode*

\DescribeEnv

verbatim

verbatim*

macro

%uuuu\begin~macrocode3
and after this part a line

%uuuu\end~macrocode3
There must be exactly four spaces between the % and \endCmacrocode3 - is
looking for this string and not for the macro while processing a 'definition part'.

Inside a 'definition part' all T ' commands are allowed; even the percent sign could
be used to suppress unwanted spaces etc.

Instead of the macrocode environment one can also use the macrocode* environment
which produces the same results except that spaces are printed as , characters.

2.2 Describing the usage of new macros

When you describe a new macro you may use \DescribeMacro to indicate that at
this point the usage of a specific macro is explained. It takes one argument which
will be printed in the margin and also produces a special index entry. For example,
I used \DescribeMacro(\DescribeMacro~ to make clear that this is the point where
the usage of \DescribeMacro is explained.

An analogous macro \DescribeEnv should be used to indicate that a IPm environ-
ment is explained. It will produce a somewhat different index entry. Below I used
\DescribeEnv(verbat im).

It is often a good idea to include examples of the usage of new macros in the text.
Because of the % sign in the first column of every row, the verbatim environment is
slightly altered to suppress those character^.^ The verbatim* environment is changed
in the same way.

2.3 Describing the definition of new macros

To describe the definition of a new macro we use the macro environment. It has one
argument: the name of the new mac~-o .~ This argument is also used to print the name
in the margin and to produce an index entry. Actually the index entries for usage and
definition are different to allow an easy reference. This environment might be nested.
In this case the labels in the margin are placed under each other.

There also exist four style parameters: \MacrocodeTopsep and \MacroTopsep are
used to control the vertical spacing above and below the macrocode and the macro
environment, \MacroIndent is used to indent the lines of code and \MacroFont holds
the font and a possible size change command for the code lines. If you want to
change their default values in a style file (like l tugbot . s ty) use the \DocstyleParms
command described below.

2.4 Formatting the margins

As mentioned earlier, some macros and the macro environment print their arguments
in the margin. This is actually done by three macros which are user definable.5 They
are named \PrintDescribeMacro, \PrintDescribeEnv and \PrintMacroName (called
by the macro environment).

These macros were written by Rainer Schopf. He also provided a new verbatim
environment which can be used inside of other macros. This will be documented
elsewhere.

This is a change to the style design I described in TUGboat 10#1 (Jan. 89). We
finally decided that it would be better to use the macro name with the backslash as

an argument.
You may place the changed definitions in a separate style file or at the beginning

of the documentation file. For example, if you don't like any names in the margin but
want a fine index you can simply \ l e t these macros equal \@gobble. The doc style
option won't redefine any existing definition of these macros.

TUGboat, Volume 10 (1989), No. 2

2.5 Using a special escape character

If one defines complicated macros it is sometimes necessary to introduce a new es-
cape character because the '\' has got a special \catcode. In this case one can use
\SpecialEscapechar to indicate which character is actually used to play the r61e
of the '\'. A scheme like this is needed because the macrocode environment and its
counterpart macrocode* produce an index entry for every occurrence of a macro name.
They would be very confused if you didn't tell them that you'd changed \catcode s.
The argument to \SpecialEscapechar is a single-letter control sequence, that is,
one has to use \ I for example to denote that ' I ' is used as an escape character.
\SpecialEscapechar only changes the behavior of the next macrocode or macrocode*
environment.

The actual index entries created will all be printed with \ rather than I , but this
probably reflects their usage, if not their definition, and anyway must be preferable
to not having any entry at all. The entries could be formatted appropriately, but the
effort is hardly worth it, and the resulting index might be more confusing (it would
certainly be longer!).

2.6 Cross-referencing all macros used

As already mentioned, every new macro name used within a macrocode or macrocode*
environment will produce an index entry. In this way one can easily find out where a
specific macro is used. Since QX is considerably slower when it has to produce such
a bulk of index entries one can turn off this feature by using \Disablecrossref s in
the driver file. To turn it on again just use \&ablecrossref s . ~

But also finer control is provided. The \DoNotIndex macro takes a list of macro
names separated by commas. Those names won't show up in the index. You might
use several \DoNotIndex commands: their lists will be concatenated. In this article I
used \DoNotIndex for all7 macros which are already defined in U r n .

All three declarations are local to the current group.

2.7 Producing the actual index entries

Several of the aforementioned macros will produce some sort of index entries. These
entries have to be sorted by an external program-the current implementation assumes
that the makeindex program by Chen [4] is used.

But this isn't built in: one has only to redefine some of the following macros to be
able to use any other index program. Since the doc style option has to be the last
option in the \documentstyle macro, all macros which are installation dependent are
defined in such a way that they won't overwrite a previous definition. Therefore it is
safe to put the changed versions in a style file which might be read in before the doc
style option.

To allow the user to change the specific characters recognized by his or her index
program all characters which have special meaning in the makeindex program are
given symbolic name^.^ However, all characters used should be of \catcode other
than 'letter7 (11).

The \actualchar is used to separate the 'key' and the actual index entry. The
\quotechar is used before a special index program character to suppress its special
meaning. The \encapchar separates the indexing information from a letter string

Actually, \Enablecrossref s changes things more drastically; any following
\Disablecrossref s which might be present in the source will be ignored.

In this implementation there is one exception: you can't use \par in the argument
of \DoNotIndex. This will be fixed in a later version.

1 don't know if there exists a program which needs more command characters,
but I hope not.

TUGboat, Volume 10 (1989), No. 2 249

\verbat irnchar

theindex

\IndexMin

which makeindex uses as a command to format the page number associated with
a special entry. It is used in this style to apply the \main and the \usage commands.
Additionally \levelchar is used to separate 'item', 'subitem' and 'subsubitem' entries.

It is a good idea to stick to these symbolic names even if you know which index
program is used. In this way your files will be portable.

To produce a main index entry for a macro the \SpecialMainIndex macrog may be
used. It is called 'special7 because it has to print its argument verbatim. If you want a
normal index entry for a macro name \SpecialIndex might be used.1° To index the
usage of a macro or an environment \SpecialUsageIndex and \SpecialEnvIndex
may be used. Additionally a \SortIndex command is provided. It takes two
arguments-the sort key and the actual index entry.

All these macros are normally used by other macros; you will need them only in an
emergency.

But there is one characteristic worth mentioning: all macro names in the index are
typeset with the \verb* command. Therefore one special character is needed to act as
a delimiter for this command. To allow a change in this respect, again this character
is referenced indirectly, by the macro \verbatimchar. It expands by default to + but
if your code lines contain macros with '+' characters in their names (e.g. when you use
\+) you will end up with an index entry containing \verb+\++ which will be typeset
as '\+' and not as '\+'. In this case you should redefine \verbatimchar globally or
locally to overcome this problem.

We also provide a * macro. This is intended to be used for index entries like

index entries
Special macros for -

Such an entry might be produced with the line:

\index<index entries\levelchar Special macros for *)

2.8 Setting the index entries

Contrary to standard I s \ ' , the index is typeset in three columns by default. This is
controlled by the Is\m counter 'IndexColumns7 and can therefore be changed with a
\setcounter declaration. Additionally one doesn't want to start a new page unnec-
essarily. Therefore the theindex environment is redefined. When the theindex environ-
ment starts it will measure how much space is left on the current page. If this is more
than \IndexMin then the index will start on this page. Otherwise \newpage is called.

Then a short introduction about the meaning of several index entries is typeset (still in
onecolumn mode). Afterwards the actual index entries follow in multi-column mode.
YOU can change this prologue with the help of the \IndexPrologue macro. Actually
the section heading is also produced in this way, so you'd better write something like:

\IndexPrologue<\section*CIndexl The index entries underlined . . . I

When the theindex environment is finished the last page will be reformatted to produce
balanced columns. This improves the layout and allows the next art.icle to start on
the same page. Formatting of the index columns (values for \columnssep etc.) is
controlled by the \IndexParms macro. It assigns the following values:

\parindent = O.Opt \columnsep = 15.0pt

\parskip = O.Opt plus l.Opt \rightskip = 15.0pt

\mathsurround = O.Opt \parf illskip = -15.0pt

Additionally it defines \@idxitern (which will be used when an \item command is

This macro is called by the macro environment.
lo This macro is called within the macrocode environment when encountering a macro

name.

TUGboat, Volume 10 (1989), No. 2

encountered) and selects \small size. If you want to change any of these values you
have to define them all.

The page numbers for main index entries are encapsulated by the \main macro (un-
derlining its argument) and the numbers denoting the description are encapsulated
by the \usage macro (which produces italics). As usual these commands are user
definable.

2.9 Changing t h e default values of style parameters

If you want to overwrite some default settings made by the doc style, you can either
put your declarations in the driver file (that is after doc.sty is read in) or use a
separate style file for doing this work. In the latter case you have to define the macro
\DocstyleParms which should contain all assignments. This indirect approach is
necessary because your style file will be read before the doc.sty, thus some of the
registers are not then allocated. If you don't define this macro its default definition
will be used which just starts the index process by calling \makeindex.

The doc style option currently assigns values to the following registers:

\IndexMin = 80.0pt \MacroTopsep = 7.0pt plus 2.0pt minus 2.0pt
\marginparwidth = 96.0pt \MacroIndent = 10.0pt
\marginparpush = O.Opt \MacrocodeTopsep = 3.0pt plus 1.2pt minus l.Opt
\tolerance = 1000

2.10 Additional bells a n d whistles

We provide macros for logos such as WEB, AMSTEX, BIB^, SLI'QJ and
PLAIN 7&X. Just type \Web, \AmSTeX, \BibTeX, \SliTeX or \PlainTeX, respectively.
Urn and Q X are already defined in la tex . tex.

Another useful macro is \meta which has one argument and produces something like
(d imen parameter).

You can use the \OnlyDescription declaration in the driver file to suppress the
last part of your document. To make this work you have to place the command
\StopEventually at a suitable point in your file. This macro has one argument in
which you put all information you want to see printed if your document ends at this
point (for example a bibliography which is normally printed at the very end). When
the \OnlyDescription declaration is missing the \StopEventually macro saves its
argument in a macro called \Finale which can afterwards be used to get things back
(usually at the very end). Such a scheme makes changes in two places unnecessary.

Thus you can use this feature to produce a local guide for the T@ users which describes
only the usage of macros (most of them won't be interested in your definitions anyway).
For the same reason the \maketitle command is slightly changed to allow multiple
titles in one document. So you can make one driver file reading in several articles at
once.

Last but not least I defined an \IndexListing macro which takes a file name as an
argument and produces a verbatim listing of the file, indexing every command as it
goes along. This might be handy, if you want to learn something about macros without
enough documentation. I used this feature to cross-reference 1atex.tex getting a
verbatim copy with about 15 pages index.ll

To maintain a change history within the file, the \changes command may be placed
amongst the description part of the changed code. It takes three arguments, thus:

\changesC(version)3((date))C(tezt)3

l1 It took quite a long time and the resulting . idx file was longer than the .dvi
file. Actually too long to be handled by the makeindex program directly (on our
MicroVAX), but the final result was worth the trouble.

TUGboat, Volume 10 (1989), No. 2 251

\f ileversion

\f iledate

\docdate

\macrocode

\macro@code

The changes may be used to produce an auxiliary file (U r n ' s \glossary mechanism
is used for this) which may be printed after suitable formatting. The \changes macro
encloses the (date) in parentheses and appends the (tex t) to form the printed entry
in such a change history; because the makeindex program limits such fields to 64
characters, care should be taken not to exceed this limit when describing the change.

2.11 Acknowledgements

I would like to thank all folks at Mainz and at the Royal Military College of Science
for their help in this project. Especially Brian and Rainer who pushed everything
with their suggestions, bug fixes, etc.

3 The Description of Macros

As always, we begin by identifying the latest version of this file on the VDU and in
the transcript file. But only if the macros are unkown to the system.

\@ifundefined{macro@cnt){){\endinput)

\typeout{Style-Option: 'doc \f ileversion\space <\f iledate> (FMI))

\typeout{English Documentation \@spaces <\docdate> (RMCS and FMI))

This time we also add a warning for the user.

\typeout{\@spaces Warning: This style option should be used as last option)

\typeout{\@spaces Warning: in the \protect\documentstyle\space command !)

As you can see I used macros like \f i l evers ion to denote the version number and the
date. They are defined at the very beginning of the style file (without a surrounding
macrocode environment), so I don't have to search for this place here when I change
the version number. You can see their actual outcome in a footnote to the title.

The first thing that we do next is to get ourselves a new comment sign. Because
all sensible signs are already occupied, we will choose one that can only be entered
indirectly:

3.1 Macros surrounding the 'definition parts'

Parts of the macro definition will be surrounded by the environment macrocode. Put
more precisely, they will be enclosed by a macro whose argument (the text to be set
'verbatim') is terminated by the string %uuuu\end{macrocode). Carefully note the
number of spaces. \macrocode is defined completely analogously to \verbatim, but
because a few small changes were carried out, almost all internal macros have got new
names. We start by calling the macro \macro@code, the macro which bears the brunt
of most of the work, such as \catcode reassignments, etc.

Then we take care that all spaces have the same width, and that they are not discarded.

\f renchspacing \@vobeyspaces

Before closing, we need to call \xmacro@code. It is this macro that expects an ar-
gument which is terminated by the above string. This way it is possible to keep the
\catcode changes local.

We will now begin with the macro that does the actual work:

\def\macro@code{%

In theory it should consist of a trivlist environment, but the empty space before and
after the environment should not be too large.

TUGboat, Volume 10 (1989), No. 2

The next parameter we set is \(Obeginparpenalty, in order to prevent a page break
before such an environment.

We then start a \ t r i v l i s t , set \parskip back to zero and start an empty \item.

\triplist \parskip \z@ \item[]%

Additionally, everything should be set in typewriter font. Some people might prefer
it somewhat differently; because of this the font choice is macro-driven.12

Because \item sets various parameters, we have found it necessary to alter some of
these retrospectively.

\lef tskip\Qtotallef tmargin \advance\lef tskip\MacroIndent

\rightskip\z@ \parindent\z@ \parfillskip\@flushglue

The next line consists of the IPm definition of \par used in \verbatim and should
result in blank lines being shown as blank lines.

What use is this definition of \par? We use the macro \obeylines of [3] which
changes ^^M to \par so that each line can control its own indentation. Next we must
also ensure that all special signs are normalized; that is, they must be given \catcode
12.

We also initialize the cross-referencing feature by calling \ ini tQcrossref . This will
start the scanning mechanism when encountering an escape character.

\ifblank@line \ifblank(Oline is the switch used in the definition above. In the original verbatim
\blank@linetrue environment the \ i f (Otempswa switch is used. This is dangerous because its value may
\blank@linef alse change while processing lines in the macrocode environment.

\endmacrocode Because we have begun a trivlist environment in the macrocode environment, we must
also end it. This is easily done using the following line of code:

Additionally \closeQcrossref is used to do anything needed to end the cross-
referencing mechanism.

\MacrocodeTopsep In the code above, we have used two registers. Therefore we have to allocate them.
\MacroIndent The default values might be overwritten with the help of the \DocstyleParms macro.

\newskip\MacrocodeTopsep \MacrocodeTopsep = 3pt plus 1.2pt minus Ipt
\newdimen\MacroIndent \MacroIndent = lOpt

\MacroFont Here is the default definition for this macro:

l2 The font change has to be placed after the \item. Otherwise a change to
\baselineskip will affect the paragraph above.

TUGboat, Volume 10 (1989), No. 2 253

\macrocode* Just as with the verbatim environment, there is also a 'star' variant of the macrocode
\endmacrocode* environment in which a space is shown by the symbol ,. Until this moment, I have not

yet used it (it will be used in the description of the definition of \xmacroQcode below)
but it's exactly on this one occasion here that you can't use it (cf. Miinchhausen's
Marsh problem)13 directly. Because of this, on this one occasion we'll cheat around the
problem with an additional comment character. But now back to \macrocode*. We
start with the macro \macroQcode which prepares everything and then call the macro
\sxmacroQcode whose argument is terminated by the string %,,,,\endCmacroc ode*).

As we know, \sxmacroQcode and then \endCmacrocode*) (the macro, not the string),
will be executed, so that for a happy ending we still need to define the macro
\endmacrocode*.

\xmacro@code AS already mentioned, the macro \xmacroQcode expects an argument delimited by
the string %,,,,\endImacrocode). At the moment that this macro is called, the
\catcode of m ' s special characters are 12 ('other') or 13 ('active'). Because of this
we need to utilize a different escape character during the definition. This happens
locally.

Additionally, we need to ensure that the symbols in the above string contain the
\catcode s which are available within the macrocode environment.

Next follows the actual definition of \macroQcode; notice the use of the new
escape character. We manage to get the argument surrounded by the string
\endCmacrocode), but at the end however, in spite of the actual characters used
during the definition of this macro, \end with the argument Imacrocode) will be
executed, to ensure a balanced environment.

I gdef 1 xmacro@code#l%uuuu\end{macrocode~ [#l I end[macrocode] 1

\e~anacro@code The definition of \swacroQcode is completely analogous, only here a slightly different
terminating string will be used. Note that the space is not active in this environment.

Because the \catcode changes have been made local by commencing a new group,
there now follows the matching \endgroup in a rather unusual style of writing.

l endgroup

3.2 Macros for the 'documentation parts'

\DescribeMacro The \DescribeMacro and \Des cribeEnv macros should print their arguments in the
\DescribeEnv margin and produce an index entry. We simply use \marginpar to get the desired

result. This is however not the best solution because the labels might be slightly
misplaced. One also might get a lot of 'marginpar moved' messages which are hard-
wired into the IPQX output routine.14 First we change to horizontal mode if necessary.

l3 Karl Fkiedrich Hieronymus Frhr. v. Miinchhausen (*1720, t1797). Several books
were written about fantastic adventures supposedly told by him (see [5] or 111). In one
story he escaped from the marsh by pulling himself out by his hair.

141t might be better to change these macros into environments like the macro
environment.

TUGboat, Volume 10 (1989), No. 2

The IPW macros \@bsphack and \Qesphack are used to make those commands
invisible (i.e. to normalize the surrounding space and to make the \spacefactor

transparent).

Note the use of \raggedleft to place the output flushed right. Finally we call a macro
which produces the actual index entry and finish with \Qesphack to leave no trace.15

The \Des cribeEnv macro is completely analogous.

To put the labels in the left margin we have to use the \reversemarginpar declaration.
(This means that the doc. s t y can't be used with all style options.) We also make the
\marginparpush zero and \marginparwidth suitably wide.

\bslash From time to time, it is necessary to print a \ without being able to use the \verb

command because the \catcode s of the symbols are already firmly established. In this
instance we can use the command \bslash presupposing, of course, that the actual
font in use at this point contains a 'backslash' as a symbol. Note that this definition
of \bslash is expandable; it inserts a \lz. This means that you have to \protect it
if it is used in 'moving arguments'.

We start a new group in which to hide the alteration of \catcodes, and make I
introduce commands, whilst \ becomes an 'other' character.

{\catcode'\ I =\z@ \catcode'\\=l2

Now we are able to define \bslash (globally) to generate a backslash of \catcode

'other'. We then close this group, restoring original \catcode s.

l gdef I bslash{\))

\verbatim The verbatim environment holds no secrets; it consists of the normal IPm envi-
ronment. We also set the \@beginparpenalty and change to the font given by
\MacroFont .

\@verbatim Additionally we redefine the \@verbatim macro so that it suppresses % characters at
the beginning of the line. The f i s t lines are copied literally from l a t e x . tex .

\def\@verbatim{\trivlist \item[]\if(Ominipage\else\vskip\parskip\fi

\lef tskip\@totallef tmargin\rightskip\z@

\parindent\z@\parfillskip\@flushglue\parskip\z@

\@tempsvaf alse

\@verbatim sets ^*M, the end of line character, to be equal to \par. This control
sequence is redefined here; \@@par is the paragraph primitive of W.

\def \par{\if @tempsva\hbox{)\f i\@tempswatrue\@@par

l5 The whole mechanism won't work because of the \leavemode in front. As a
temporary change \ignorespaces is added.

TUGboat, Volume 10 (1989), No. 2

We add to the definition of \par a control sequence, \check@percent, whose task it
is to check for a percent character.

\check@percent)%

The rest is again copied literally from la tex . tex.

\obeylines \tt \catcodef\'\active \@noligs \let\do\(Omakeother \dospecials)

Finally we define \check(Opercent. Since this must compare a character with a percent
sign we must first (locally) change percent's \catcode so that it is seen by m. The
definition itself is nearly trivial: grab the following character, check if it is a %, and
insert it again if not. At the end of the verbatim environment this macro will peek at
the next input line. In the case the argument to \checkQpercent might be a \par or
a macro with arguments. Therefore we make the definition \long (\par allowed) and
use the normal \next mechanism to reinsert the argument after the \f i if necessary.

{\catcodeC\%=12

\long\gdef\check@percent#l{\ifx #i%\let\next\@empty \else

\let\next#l\fi \next))

The macro environment is implemented as a trivlist environment, whereby in order
that the macro names can be placed under one another in the margin (corresponding
to the macro's nesting depth), the macro \makelabel must be altered. In order to
store the nesting depth, we use a counter.

The environment takes an argument-the macro name to be described. Since this
name may contain special 'letters' we have to re-\cat code them before scanning the
argument. This is done by the \MakeprivateLettem macro.

\def\macro{\begingroup \MakePrivateLetters \macro@)

After scanning the argument we close the group to get the normal \catcodes back.
Then we assign a special value to \topsep and start a trivlist environment.

\long\def \macro@#ii\endgroup \topsep\MacroTopsep \trivlist

We also save the name being described in \saved@macroname for use in conjunction
with the \changes macro.

Now there follows a variation of \makelabel which is used should the environment
not be nested, or should it lie between two successive \beginCmacro) instructions or
explanatory text. One can recognize this with the switch \ i f (Oinlabel which will be
t rue in the case of successive \item commands.

\def \makelabel##1{\1lap(##l)}%

If (Oinlabel is t rue and if \macroQcnt > 0 then the above definition needs to be
changed, because in this case would otherwise put the labels all on the same
line and this would lead to them being overprinted on top of each other. Because of
this \makelabel needs to be redefined in this case.

\if @inlabel

If \macroQcnt has the value 1, then we redefine \makelabel so that the label will be
positioned in the second line of the margin. As a result of this, two macro names appear
correctly, one under the other. It's important whilst doing this that the generated label
box is not allowed to have more depth than a normal line since otherwise the distance
between the first two text lines of TJ$ will be incorrectly calculated. The definition
should then look like:

TUGboat, Volume 10 (1989), No. 2

Completely analogous to this is the case where labels need to be placed one under the
other. The lines above are only an example typeset with the verbatim environment.
To produce the real definition we save the value of \macro@cnt in \count@ and empty
the temp macro \Qt empa for later use.

\let\@tempa\@empty \countQ\macro@cnt

In the following loop we append for every already typeset label an \hbox{\strut) to
the definition of \Qt empa.

\loop \if num\count@>\z@

\edef\@tempa~\@tempa\hbox~\strut}}\advance\cot@\m@ne \repeat

Now be put the definition of \makelabel together.

\edef\rnakelabel##li\llap(\vtop to\baselineskip

{\@tempa\hbox{##l)\vss)))%

Next we increment the value of the nesting depth counter. This value inside the macro
environment is always at least one after this point, but its toplevel definition is zero.
Provided this environment has been used correctly, \macroQcnt = 0 should not occur
when Qinlabel = true. It is however possible if this environment is used within other
list environments (but this would have little point).

\advance \macro@cnt \Qne

If Qinlabel is false we reset \macroQcnt assuming that there is enough room to print
the macro name without shifting.

\else \macro@cnt\@ne \f i

Now the label will be produced using \item. The following line is only a hack saving
the day until a better solution is implemented. We have to face two problems: the
argument might be a \par which is forbidden in the argument of other macros if they
are not defined as \long, or it is something like \ i f f a l s e or \else, i.e. something
which will be misinterpreted when 7l&X is skipping conditional text. In both cases
\item will bomb, so we protect the argument by using \ s t r ing .

\edef \@tempa~\noexpand\item[\noexpand\PrintMacroNam~\string#1}])\atempa

At this point we also produce an index entry. Because it is not known which index
sorting program will be used, we do not use the command \index, but rather a com-
mand \SpecialMainIndex. This may be redefined by the user in order to generate an
index entry which will be understood by the index program in use (note the definition
of \SpecialMainIndex for our installation).

\SpecialMainIndexi#l)\nobreak

The \nobreak is needed to prevent a page break after the \wri te produced by the
\SpecialMainIndex macro. We exclude the new macro in the cross-referencing fea-
ture, to prevent spurious non-main entry references. Again we have to watch out
for problematic arguments. In case of \par we wait for a new implementation; the
conditionals are uncritical.

\def\@tempa{#l}%

\ifx\@tempa\@defpar \else \DoNotIndex{#l)\fi

Because the space symbol should be ignored between the \beginCrnacro){ . . . I and
the following text we must take care of this with \ignorespaces.

\ignorespaces}

\endmacro At this command nothing special needs to happen. However, the trivlist environment
must still be ended. Because of the \endgroup which is used by \end, the changes to
\macroQcnt stay local to the environment.

TUGboat, Volume 10 (1989), No. 2

\MacroTopsep Here is the default value for the \MacroTopsep parameter used above.

\newskip\MacroTopsep \MacroTopsep = 7pt plus 2pt minus 2pt

3.3 Formatting the margin

The following three macros should be user definable. Therefore we define those macros
only if they have not already been defined.

\PrintMacroName The formatting of the macro name in the left margin is done by these macros. We
\PrintDescribeMacro first set a \strut to get the height and depth of the normal lines. Then we change to

\PrintDescribeEnv the \MacroFont using \string to \catcode the argument to other (assuming that it
is a macro name). Finally we print a space. The font change remains local since this
macro will be called inside an \hbox.

We use the same formatting conventions when describing a macro.

To format the name of a new environment there is no need to use \string.

3.4 Creating index entries by scanning 'macrocode'

When this doc option is used, it automatically invokes \makeindex to cause an . idx
file to be generated. The following macros ensure that index entries are created for
each occurrence of a m - l i k e command (something starting with '\'). With the
default definitions of \SpecialMainIndex, etc., the index file generated is intended to
be processed by Chen's makeindex program [4].

Of course, in this style file itself we've sometimes had to make I take the r61e of T)$'s
escape character to introduce command names at places where \ has to belong to
some other category. Therefore, we may also need to recognize I as the introducer
for a command when setting the text inside the macrocode environment. Other users
may have the need to make similar reassignments for their macros.

\SpecialEscapechar The macro \SpecialEscapechar is used to denote a special escape character for the
\active@escape@char next macrocode environment. It has one argument-the new escape character given as
\special@escape@char a 'single-letter' control sequence. Its main purpose is defining \specialOescapeQchar

to produce the chosen escape character \catcode d to 12 and \activeQescapeQchar
to produce the same character but with \catcode 13.

The macro \specialQescapeQchar is used to print the escape character while
\activeQescapeQchar is needed in the definition of \initQcrossref to start the
scanning mechanism.

In the definition of \SpecialEscapechar we need an arbitrary character with
\catcode 13. We use '-' and ensure that it is active. The \begingroup is used
to make a possible change local to the expansion of \SpecialEscapechar.

\def \SpecialEscapechar#li%

\begingroup \cat code '\'\active

Now we are ready for the definition of \activeQescapeQchar. It's a little tricky: we
first define locally the uppercase code of '-' to be the new escape character.

\uccode'\"#l%

TUGboat, Volume 10 (1989), No. 2

Around the definition of \activeQescapeQchar we place an \uppercase command.
Recall that the expansion of \uppercase changes characters according to their
\uccode, but leaves their \catcode s untouched (cf. W b o o k page 41).

The definition of \specialQescapeOchar is easier; we use \ s t r i n g to \catcode the
argument of \SpecialEscapechar to 12 and suppress the preceding \escapechar.

Now we close the group and end the definition: the value of \escapechar as well as
the \uccode and \catcode of '-' will be restored.

\init@crossref The replacement text of \ in i t@crossref should fulfil the following tasks:

1) \catcode all characters used in macro names to 11 (i.e. 'letter').

2) \catcode the '\' character to 13 (i.e. 'active').

3a) \ l e t the '\' equal \scan@macro (i.e. start the macro scanning mechanism) if there
is no special escape character (i.e. the \specialQescapeQchar is '\').

3b) Otherwise \ l e t it equal \bslash, i.e, produce a printable \.

4) Make the (special escape character) active.

5) \ l e t the active version of the special escape character (i.e. the expansion of
\activeQescapeQchar) equal \scan@macro.

The reader might ask why we bother to \catcode the '\' first to 12 (at the end of
\macro@code) then re-\catcode it to 13 in order to produce a \12 in case 3b) above.
This is done because we have to ensure that '\' has \catcode 13 within the macrocode
environment. Otherwise the delimiter for the argument of \xmacroQcode would not
be found (parameter matching depends on \catcode s).

Therefore we first re-\cat code some characters.

We carry out tasks 2) and 3b) first.

Igdeflinit0crossref~catcode'l\lactive Ilet\lbslash

Because of the popularity of the '0' character as a 'letter' in macros, we normally have
to change its \ca t code here, and thus fulfil task 1). But the macro designer might
use other characters as private letters as well, so we use a macro to do the \catcode
switching.

Now we \catcode the special escape character to 13 and \ l e t it equal \scanQmacro,
i.e. fulfil tasks 4) and 5). Note the use of \expandafter to insert the chosen escape
character saved in \specialQescapeOchar and \active0escape@char.

~catcode~expandafter'~special0escapeQchar~active

I expandaf ter I let I activeBescapeQchar I scadmacro)
l endgroup

If there is no special escape character, i.e. if \SpecialEscapechar is \\, the second
last line will overwrite the previous definition of \i3. In this way all tasks are fulfilled.

For happy documenting we give default values to \specialQescapeQchar and
\activeQescapeQchar with the following line:

TUGboat, Volume 10 (1989), No. 2 259

\ifscanQallowed

\scanQallowedtrue

\scanQallowedf alse

Here is the default definition of this command, which makes just the Q into a letter.
The user may change it if he/she needs more or other characters masquerading as
letters.

At the end of a cross-referencing part we prepare ourselves for the next one by setting
the escape character to '\'.

\def\close@crossref{\SpecialEscapechar\\}

3.5 Macros for scanning macro names

The \initOcrossref will have made \active our \specialQescapeQchar, so that
each \activeQescapeQchar will invoke \scan@macro when within the macrocode en-
vironment. By this means, we can automatically add index entries for every TQX-like
command which is met whilst setting (in verbatim) the contents of macrocode envi-
ronments.

First we output the character which triggered this macro. Its version \catcode d to
12 is saved in \specialQescapeQchar.

If the macrocode environment contains, for example, the command \\, the second
\ should not start the scanning mechanism. Therefore we use a switch to decide if
scanning of macro names is allowed.

The macro assembles the letters forming a TEX command in \macroQnamepart so this
is initially cleared; we then set \next to the first character following the \ and call
\macroQswitch to determine whether that character is a letter or not.

As you recognize, we actually did something else, because we have to defer the
\futurelet call until after the final \f i. If, on the other hand, the scanning is
disabled we simply \let \next equal 'empty'.

Now we invoke \next to carry out what's needed.

\if scanOallowed is the switch used above to determine if the \activeQescapeQchar
should start the macro scanning mechanism.

At this point we might define two macros which allow the user to disable or enable
the cross-referencing mechanism. Processing of files will be faster if only main index
entries are generated (i.e., if \Disablecrossrefs is in force).

The macro \EnableCrossref s will also disable any \Disablecrossref s command
encountered afterwards.

260 TUGboat, Volume 10 (1989), No. 2

\macro@switch Now that we have the character which follows the escape character (in \next), we can
determine whether it's a 'letter' (which category probably includes 9).

If it is, we let \next invoke a macro which assembles the full command name.

Otherwise, we have a 'single-character' command name. For all such single-character
names, we use \shortQmacro to process them into suitable index entries.

Now that we know what macro to use to process the macro name, we invoke it . .
\next)

\ehort@macro This macro will be invoked (with a single character as parameter) when a single-
character macro name has been spotted whilst scanning within the macrocode envi-
ronment.

First we take a look at the \index9excludelist to see whether this macro name
should produce an index entry. This is done by the \ifnotQexlcuded macro which
assumes that the macro name is saved in \macro@namepart. Since the argument might
be an active character, \ s t r i n g is used to normalize it.

If necessary the index entry is produced by the macro \produce@index. Depending
on the actual character seen, this macro has to do different things, so we pass the
character as an argument.

Then we disable the cross-referencing mechanism with \scanQallowedf a l s e and print
the actual character. The index entry was generated first to ensure that no page break
intervenes (recall that a ^^M will start a new line).

\scan@allowedfalse#l~

After typesetting the character we can safely enable the cross-referencing feature again.
Note that this macro won't be called (since \macroQswitch won't be called) if cross-
referencing is globally disabled.

\produce@index This macro is supposed to generate a suitable \SortIndex command for a given single-
character control sequence. We test first for the cases which involve active characters
(i.e. the backslash, the special escape character (if any), the space and the -7). Using
the \ i f test (testing for character codes), we have to ensure that the argument isn't
expanded.

If the character is the special escape character (or the '\' in case there was none) the
\ i t Q i s @ a macro is used to produce the actual \SortIndex call.

Next comes the test for a '\ ' which must be the \13 expanding to \bslash.

Another possibility is u13. Recall that \space produces a "10.

\ i f \noexpand#l\space \it@is@a\space \else

TUGboat, Volume 10 (1989), No. 2 261

The l a d 6 possibility of an active character is - 3 . In this case we don't test for
character codes, since it is easier to look if the character is equal to \par. (We are
inside the macrocode environment.)

\if x#l\par

If we end up here we have just scanned a \ ^ ^ M or something similar. Since this will
be treated like \, by we produce a corresponding index entry.

\it@is@a\space \else

The next three branches are needed because of bugs in our makeindex program. You
can't produce unbalanced index entries17 and you have to double a percent character.
To get around these restrictions we use special macros to produce the \index calls.''

\if \noexpand#l\bgroup \Lef tBraceIndex \else

\if \noexpand#l\egroup \RightBraceIndex \else

\if\noexpand#l\percentchar \PercentIndex \else

All remaining characters are used directly to produce their index entries. This is
possible even for the characters which have special meanings in the index program,
provided we quote the characters. (This is correctly done in \it@isOa.)

\it@is@a{\string#l)%

We now need a whole pile of \f i s to match up with the \ i f s.

\fi \fi \fi \fi \fi \fi \fi)

We now come to the macro which assembles command names which consist of one
or more 'letters' (which might well include (Q symbols, or anything else which has a
\catcode of 11).

To do this we add the letter to the existing definition of \macro@namepart (which you
will recall was originally set to \@empty).

Then we grab hold of the next single character and let \more@macroname determine
whether it belongs to the letter string forming the command name or is a non-letter.

This causes another call of \macroQname to add in the next character, if it is indeed
a letter.

Otherwise, it finishes off the index entry by invoking \macro@f in ish .

Here's where we invoke whatever macro was \ l e t equal to \next.

\next 1

l6 Well, it isn't the last active character after all. I added \@noligs some days ago
and now ' too is active. So we have to make sure that such characters don't get
expanded in the index.

''This is possible for 7QX if you use C12 or Ilz, but makeindex will complain.
l8 Brian HAMILTON KELLY has written fixes for all three bugs. When they've found

their way through all installations, the lines above will be removed. See page 265 if
you already have them.

262 TUGboat, Volume 10 (1989)' No. 2

\macro@f inish When we've assembled the full letter-string which forms the command name, we set
the characters forming the entire command name, and generate an appropriate \index
command (provided the command name is not on the list of exclusions). The '\' is
already typeset; therefore we only have to output all letters saved in \macroQnamepart.

\def\macro@finish{%
\macro@namepart

Then we call \ifnotQexcluded to decide whether we have to produce an index en-
try. The construction with \Qtempa is needed because we want the expansion of
\macroQnamepart in the \index command.lg

3.6 The index exclude list

The internal form of the index exclude list is

\Qelt (macro name) \Belt (macro name) \Qelt (macro name) . . .

where (macro name) is a macro name like \Qtempa. To test if a given macro
name is on the list we only have to assign \@elt a proper meaning and then call
\indexQexcludelist. This is faster than looping through the list and looking for the
last element.

\DoNotIndex This macro is used to suppress macro names in the index. It starts off with a new
group because we have to change the \catcodes of all characters which belong to
'letters' while macros are defined.

Then we call the macro which actually reads the argument given by the user.

\do@not@index We make the \doQnotQindex macro \long since the user might want to exclude the
\par macro.20

\long\def \do@not@index#l{%

Now we have to face the problem that \indexQexcludelist should be changed only lo-
cally (and we are already in a new group). Therefore we pass its contents to \Qgtempa.

\global\let\@gtempa\index@excludelist

Then we define \Qelt to allow expanding \@gtempa without damaging its contents.

\def\@elt{\noexpand\@elt\noexpand}%

The argument to \doQnotQindex is a set of macros separated by commas, so we use
\Qf or to extract individual entries. Since \@for expands its argument, we hide it in
another macro.21

Now we can safely add new entries to \Qgtempa (i.e. \indexQexcludelist).

{\xdef \@gtempa{\@gtempa \expandafter \@elt \@tempb}}%

l9 The \index command will expand its argument in the \output routine. At this
time \macroQnamepart might have a new value.

20 Actually this doesn't work either because the argument is passed to \@forloop
which isn't a \long macro. This will be fixed in a later version.

Instead of using \Qf or one can make the comma active (expanding into \Qelt)
and then simply putting \@gtempa and , #I together. This will probably change.

TUGboat, Volume 10 (1989), No. 2 263

After this we close the group and assign the retained value of \Qgtempa to
\indexQexcludelist.

\indexQexcludelist To get things going we have to initialize \indexQexcludelist and fix a bug in the
\@for V'l$$ \Qf or macro.

\def\index@excludelist()

In the original \Of or macro, \Of ortmp gets its value using \edef. This means that
it bombs if the contents of the second argument (i.e. the list A,B,C,. . .) contains
undefined macros. Since this is possible if we use the doc .sty file to document a
macro package which isn't loaded, we change the definition a little bit. Now it is
tested only if the second argument expands to 'empty' when it is expanded once.22

\def \@f or#l : =#2\do#3C\expandaf ter\def \expandaf ter\@f ortmp\expandafterC#2)%

\if x\@f ortmp\@empty \else

\expandaf ter\@f orloop#2, \@nil, \@nil, \@@#l{#3)\f i}

\ifnotQexcluded Now we take a look at the \indexQexcludelist to see whether a macro name

saved in \macroQnamepart should produce an index entry. This macro is a pseudo
\if; it should expand to \iftrue or \iff alse depending on the contents of
\indexQexcludelist. We use \if Otempswa for this purpose and initialize it with
true.

Then we \let the macro \Qelt equal to a test macro (which is supposed to change the
switch if the \macroQnamepart is on the list) and call \indexQexcludelist. This is all
done in an \hbox so any garbage produced by calling \indexQincludelist will vanish.
The test macro uses \aftergroup to avoid global changes while communicating with
the outside world.

Finally we call \if Otempswa.

Note however that since we have called \ifQtempswa inside this macro, such a con-
struction can't be used inside a conditional at the same expansion level [3, ~2111.

\exclude@test Strictly speaking, \macroQnamepart contains only the name without the backslash.
So we use \expandafter and \csname to produce the actual macro name (arguments
to \if x are not expanded).

\def\exclude@test#l{%

\expandafter \ifx \csname\macroQnamepart\endcsname #I%

The \ifx test will be true if the argument and the constructed macro are the same. In
this case we have to change the switch. We also change the definition of \Qelt because
our goal is reached and we can gobble up the tail of the list. As mentioned above,
switch changing is deferred until after the current group by using \aftergroup.

\aftergroup\@tempswafalse \let\@elt\@gobble \fi}

22 This is exactly the way in which the argument is used in the second part of the
definition (in the actual loop). Therefore I am inclined to call it a bug and not a
feature.

TUGboat, Volume 10 (1989), No. 2

3.7 Macros for generating index entries

Here we provide default definitions for the macros invoked to create index entries; these
are either invoked explicitly, or automatically by \scan@macro. As already mentioned,
the definitions given here presuppose that the . idx file will be processed by Chen's
ma keindex program - they may be redefined for use with the user's favourite such
program.

To assist the reader in locating items in the index, all such entries are sorted alpha-
betically ignoring the initial '\'; this is achieved by issuing an \index command which
contains the 'actual' operator for ma keindex. The default value for the latter operator
is 'Q', but the latter character is so popular in style files that it is necessary to
substitute another character. This is indicated to makeindex by means of an 'index
style file'23; the character selected for this function is =, and therefore this character
too must be specially treated when it is met in a command.

First come the definitions of \actualchar, \quotechar and \levelchar. Note, that
our defaults are not the ones used by the makeindex program without a style file.

\@ifundefined{actualchar){\def\actualchar{=}}{}

\@ifundef ined{quotechar){\def \quotechar{ !I){)
\@ifundefined{levelchar){\def\levelchar{>)){)

The makeindex default for the \encapchar isn't changed.

\@ifundef ined{encapchar){\def \encapchar(I)){)

We also need a special character to be used as a delimiter for the \verb* command
used in the definitions below.

\@ifundefined{verbatimchar)I\def\verbatimchar~+)}{)

The \SpecialIndex command creates index entries for macros. If the argument is
\xyz, the command produces \indexentry(xyz=\verb! *+\xyz+)<n) given the above
defined defaults for \actualchar, \quotechar and \verbatimchar. We first remove
the initial '\' to get a better index.

\def \ S p e c i a l I n d e x # 1 { \ @ b s p h a c k \ i n d e x C \ e x p ~

Then follows the actual entry. A \quotechar is placed before the * to allow its use
as a special makeindex character. Again \Qbsphack and \Qesphack are used to make
the macros invisible.

The \SpecialMainIndex macro is used to cross-reference the names introduced by
the macro environment. The action is as for \SpecialIndex, except that makeindex
is instructed to 'encap'sulate the entry with the string lmain to cause it to generate
a call of the \main macro.

The \SpecialUsageIndex is literally the same-only we use usage instead of main.

23 A file suitable to this task is provided amongst the supporting files for this style
file in gind . ist.

TUGboat, Volume 10 (1989)' No. 2 265

made through a style file, predefining internal quantities.

\PercentIndex

\percent char

Indexing environments is done a little bit differently; we produce two index entries
with the \SpecialEnvIndex macro:

\def\SpecialEnvIndex#l{\@bsphack

First we sort the environment under its own name stating in the actual entry that this
is an environment.

\index{#l\actualchd\tt #1) (environment)\encapchar usage)%

The second entry is sorted as a subitem under the key 'environments:'.

\index<environments : \levelchar{\tt #l)\encapchar usage)\@esphack)

Because both entries corresponds to 'descriptions' of the environment, we encapsulate
the page numbers with the \usage macro.

This macro is used to generate the index entries for any single-character command
that \scan@macro encounters. The first parameter specifies the lexical order for the
character, whilst the second gives the actual characters to be printed in the entry. It
can also be used directly to generate index entries which differ in sort key and actual
entry.

\def\SortIndex#l#2{\index{#l\actualchar#2))

This macro is supposed to produce a correct \SortIndex entry for a given charac-
ter. Since this character might be recognised as a 'command' character by the index
program used, all characters are quoted with the \quotechar.

These two macros fix the problems with makeindex. Note the 'hack' with \ i f fa lse>\f i

to satisfy both 'QX and the makeindex program. When this is written to the . idx file
'l&X will see both braces (so we get a balanced text). makeindex will also see balanced
braces but when the actual index entry is again processed by 'l)jX the brace in between
\ i f f a l se \f i will vanish.

\@ifundefined{LeftBraceIndex)C\def\LeftBraceIndex{~

\index~\bgroup\actualchar\string\verb\quotechar*\verbatimchar

\quotechar\bslash{\verbatimchar\string\iffalse)\string\fi)))~~

Here is one solution for the percent bug in makeindex. The macro \percentchar

denotes a %12.

\@ifundefined{PercentIndex){\def\PercentIndexC%

\index{\quotechar\percentchar\actualchar\string\verb

\quotechar*\verbatimchar\quotechar\bslash

\percentchar\percentchar\verbatimchar))){)

{\catcode'\%=12 \gdef \percentchar{%))

If you've got a newer makeindex program which handles the percents correctly you
have to uncornment the next three lines.24 Otherwise you will get \%% entries in your
index.

% \def\PercentIndex{\it@is@a\percentchar)

% \typeout{The doc style option assumes that a \percentchar\space

% will be processed as a \percentchar\space by the index program!)

24 This is the only change which is allowed in this file! All other changes should be

TUGboat, Volume 10 (1989), No. 2

3.8 Redefining the index environment

\endthe index

The index is set in three columns, and will start on the same page as, and underneath,
the last part of the text of the documented style file, if possible. The last page will
be reformatted with balanced columns. We make use of the multicols environment
which is described elsewhere (in an article scheduled to appear in the next issue of
TUGboat).

\input{multicol. sty)

When the index is started we compute the remaining space on the current page; if it is
greater than \IndexMin, the first part of the index will then be placed in the available
space. The number of columns set is controlled by the counter \cQIndexColumns
which can be changed with a \setcounter declaration.

Now we start the multi-column mechanism. We use the \cQIndexColumns WTEX
counter declared above to denote the number of columns and insert the 'index prologue'
text (which might contain a \section call, etc.). See the default definition for an
example.

Then we make a few last minute assignments to read the individual index \items and
finish off by ignoring any initial space.

At the end of the index, we have only to end the multicols environment.

The \Indexprologue macro is used to place a short message into the document above
the index. It is implemented by redefining \indexOprologue, a macro which holds
the default text. We'd better make it a \long macro to allow \par commands in its
argument.

\long\def \IndexPrologue#l{\@bsphack\def \index@prologue{#l)\(Oesphack)

Now we test whether the default is already defined by another style file. If not we
define it.

\@ifundefined{index@prologue)

{\def \index@prologue{\section*{Index)~

\markboth~Index){Index)%

The italic numbers denote the pages where the

corresponding entry is described,

numbers underlined point to the definition,

all others indicate the places where it is used.

3 H 3

These are some last-minute assignments for formatting the index entries. They are
defined in a separate macro so that a user can substitute different definitions. We start
by defining the various parameters controlling leading and the separation between the
two columns. The entire index is set in \small size.

\@ifundefined{IndexParms)

{\def\IndexParms{%

\parindent \z@

\columnsep 15pt

\parskip Opt plus lpt

TUGboat, Volume 10 (1989), No. 2

\@idxitern

\subitem

\subsubitem

\indexspace

\ef ill

\pf ill

\dotf il

\dotf ill

\ *

\main

\usage

\printindex

Index items are formatted with hanging indentation for any items which may require
more than one line.

Any sub-item in the index is formatted with a 15pt indentation under its main heading.

\def\subitem{\@idxitem\hspace*~5pt))%

Whilst subsubitems go in a further 10pt.

The makeindex program generates an \indexspace before each new alphabetic section
commences. After this final definition we end the \@ifundef ined and the definition
of \IndexParms.

\def\indexspace{\par\vspaceClOpt plus 2pt minus 3pt))%

I}C)

This definition of \ e f i l l is intended to be used after index items which have no
following text (for example, "see" entries). It just ensures that the current line is
filled, preventing "Underf u l l \hboxW messages.

\def\efill{\hfill\nopagebreak)%

The following definitions provide the \pf ill command; if this is specified in the index
style file to makeindex as the delimiter to appear after index items, then the intervening
space before the referenced page numbers will be filled with dots, with a little white
space interpolated at each end of the dots. If the line is broken the dots will show up
on both lines.

\def\dotfill{\leaders\hbox to.6em{\hss .\hss)\hskip\z@ plus Ifill}%

\def\dotfil{\leaders\hbox to.bem{\hss .\hss}\hfil}%

\def\pfill{\unskip"\dotfill\penalty500\strut\nobreak

\dotfil'\ignorespaces)%

Here is the definition for the * macro. It isn't used in this set of macros.

\def*{\leavewode\lower.8ex\hbox{$\,\uidetilde{\)\,$)I

The defining entry for a macro name is flagged with the string l main25 in the \index

command; makeindex processes this so that the \main macro will be invoked to un-
derline the page number(s) on which the definition of the macro will be found.

\@ifundefined{main){\def\main#l{\underline{#l}}}{}

The \usage macro is used to indicate entries describing the usage of a macro. The
corresponding page number(s) will be set in italics.

\@ifundefined{usage){\def\usage#l{{\it #1})){)

To read in and print the sorted index, just put the \printindex command as the last
(commented-out, and thus executed during the documentation pass through the file)
command in your style file. Precede it by any bibliography commands necessary for
your citations.

Alternatively, it may be more convenient to put all such calls amongst the arguments
of the \StopEventually macro, in which case a \Finale command should appear at
the end of your file.

\def\printindex{\@input{\jobname.ind))

25 With the current definition of \encapchar substituted for I

TUGboat, Volume 10 (1989), No. 2

3.9 Dealing with the change history26

To provide a change history log, the \changes command has been introduced. This
takes three arguments, respectively, the version number of the file, the date of the

change, and some detail regarding what change has been made. The first of these
arguments is otherwise ignored, but the others are written out and may be used to
generate a history of changes, to be printed at the end of the document. However, note
that Chen's standard makeindex program limits any textual field to just 64 characters;
therefore, is important that the number of characters in the second and third param-
eters should not exceed 61 altogether (to allow for the parentheses placed around the
date.

The output of the \changes command goes into the (Glossary-File) and therefore uses
the normal \indexentry commands. Thus makeindex or a similar program can be used
to process the output into a sorted "glossary". The \changes command commences
by taking the usual measures to hide its spacing, and then redefines \protect for use
within the argument of the generated \indexentry command.

\def \changes#1#2#3{\@bsphack{%

\def \protect##l~\string##l\space)%

We now create the requisite \glossary command, and output it.

The entries are sorted for convenience by the name of the most recently introduced
macroname (i.e., that in the most recent \begin{macro) command). We therefore
provide \saved@macroname to record that argument, and provide a default definition
in case \changes is used outside a macro environment. (This is a wicked hack to get
such entries at the beginning of the sorted list!)

\def\savedQmacroname{' General Changes '1

To cause the changes to be written (to a .glo) file, we define \Recordchanges to
invoke U r n ' s usual \makeglossary command.

The remaining macros are all analogues of those used for the theindex environment.
When the glossary is started we compute the space which remains at the bottom of the
current page; if this is greater than \GlossaryMin then the first part of the glossary
will be placed in the available space. The number of columns set are controlled by the
counter \cQGlossaryColumns which can be changed with a \setcounter declaration.

We start with a few last minute assignments to read the individual glossary \items.
Note the \par at the beginning. If we leave it out, parameter changes done by the
\GlossaryParms macro might affect the paragraph above the glossary.

26 The whole section was proposed by Brian HAMILTON KELLY. He also documented
and debugged the macros & well as many other parts of this style option.

TUGboat, Volume 10 (1989), No. 2

Now we start the multi-column mechanism. We use \cQGlossaryColumns to denote
the number of columns and insert the 'glossary prologue' text which might contain a
\ sec t ion call etc. See the default definition for an example.

\endglossary At the end of the glossary, we've only to end the multicols environment.

\GlossaryPrologue The \GlossaryPrologue macro is used to place a short message above the glossary
\glossary@prologue into the document. It is implemented by redefining \glossaryQprologue, a macro

which holds the default text. We better make it a long macro to allow \par commands
in its argument.

\long\def\GlossaryPrologue#1{\@bsphack

\def\glossary@prologue{#1)%

\@esphack)

Now we test whether the default is already defined by another style file. If not we
define it.

\@ifundefinedCglossary@prologue)

~\def\glossary@prologue~\begingroup\parfillskip=0pt plus ifil

\section*{CChange History))\par

\endgroup

\markboth{CChange History)){{Change History))%

1 1 0

\GlossaryParms Unless the user specifies otherwise, we set the change history using the same parame-
ters as for the index.

\Printchanges To read in and print the sorted change history, just put the \Printchanges command
as the last (commented-out, and thus executed during the documentation pass through
the file) command in your style file. Alternatively, this command may form one of the
arguments of the \StopEventually command, although a change history is probably
not required if only the description is being printed.

The command assumes that makeindex or some other program has processed the . g lo
file to generate a sorted . g l s file.

3.10 Bells and whistles

\StopEventually Here is the default definition for \StopEventually, we simply save its argument in
\Finale the macro \Finale.

\OnlyDescription \long\def \StopEventually#l{\@bsphack\def \Finale{#l)\@esphackI

When the user places an \OnlyDescript ion declaration in the driver file the document
should only be typeset up to \StopEventually. We therefore have to redefine this
macro.

\def \OnlyDescription{\@bsphack\long\def \StopEventually##l{%

In this case the argument of \StopEventually should be set and afterwards W
should stop reading from this file. Therefore we finish this macro with

\meta The \meta macro is very elementary.

TUGboat, Volume 10 (1989), No. 2

\IndexListing This next macro may be used to read in a separate file (possibly a style file that is
not documented by this means) and set it verbatim, whilst scanning for macro names
and indexing the latter. This could be a useful first pass in preparing to generate
documentation for the file read.

We commence by setting up a group, and initializing a \ t r i v l i s t as is normally done
by a \beginCmacrocode) command.

\begingroup \macro@code

We also make spacing behave as in the macrocode environment, because otherwise all
the spaces will be shown explicitly.

\frenchspacing \@vobeyspaces

Then it only remains to read in the specified file, and finish off the \ t r i v l i s t .

\input{#i)\endtrivlist

Of course, we need to finish off the group as well.

\endgroup)

title The macro to generate titles is easily altered in order that it can be used more than
once (an article with many titles). In the original, diverse macros were concealed after
use with \relax. We must cancel anything that may have been put into \@thanks,
etc., otherwise all titles will carry forward any earlier such setting!

If the driver file documents many files, we don't want parts of a title of one to propagate
to the next, so we have to cancel these:

3.11 Layout parameters for documenting style files

\tolerance People documenting style files would probably rather have things "sticking out" in
overfull \hboxes and poorish spacing, because they probably don't want to spend a
lot of time on making all the line breaks perfect!

\tolerance=1000\relax

The following \mathcode definitions allow the characters '\' and 'Q' to appear in \tt
font when invoked in math mode;27 particularly for something like \Qabc = 1.

If an old version of the german style option is in force, then the '"' character is active
and would upset the definition of the (16-bit number) quantities below, therefore we
change the \catcode of " inside a group, and use \global.

{ \catcodef\"=12

\global\math~oda'\\=~~705C \global\mathcodef\@="7040)

27 YOU may wonder why the definitions state that both characters belong to the vari-

able family (i.e. the number 7 in front). The reason is this: Originally the \mathcode
of \ was defined to be "075C, i.e. ordinary character number 92 (hex 5C) in math fam-
ily number 7 which is the typewriter family in standard IPW. But this file should not
depend on this specific setting, so I changed these \mathcode s to work with any family
assignments. For an example see the article about the new font selection scheme.

TUGboat, Volume 10 (1989), No. 2 271

\Makepercent Ignore

\MakePercentComment

This macro can be used, for example, to assign new values to \MacrocodeTopsep and
\MacroIndent and some other internal registers. If it is already defined, the default
definition won't be carried out. Note that it is necessary to assign new values via this
macro if it should be done in a style file (like ltugbot . sty for example) since the
registers are undefined before doc. sty is read in. The default values for the internal
registers are scattered over this file. Here we only execute \makeindex because this
declaration can't be overwritten otherwise.

Now we allow overwriting the values by calling \DocstyleParms.

Here are a few definitions which can usefully be employed when documenting style
files: now we can readily refer to d~Sm, BIB^ and S L ~ , as well as the usual
l&X and U r n .

There's even a PLAIN and a WEB.

3.12 Changing the \catcode of %

And finally the most important bit: we change the \catcode of '%' so that it is ignored
(which is how we are able to produce this document!). We provide two commands to
do the actual switching. Then \Makepercent Ignore is called as the last command in
this file.

References

[I] G. A. B ~ ~ R G E R . Wunderbare Reisen zu Wasser und zu Lande, Feldzuge und lustige
Abenteuer des Freyherrn v. Munchhausen. London, 1786 & 1788.

[2] D. E. KNUTH. Literate Programming. Computer Journal, Vol. 27, pp. 97-111,
May 1984.

[3] D. E. KNUTH. Computers & Typesetting (The m b o o k) . Addison-Wesley, Vol.
A, 1986.

[4] L. LAMPORT. MakeIndex: An Index Processor for Dm. 17 February 1987.
(Taken from the file makeindex. tex provided with the program source code.)

[5] R. E. RASPE (*1737, t1797). Baron Miinchhausens narrative of his marvellous
travels and campaigns in Russia. Oxford, 1785.

TUGboat, Volume 10 (1989), No. 2

Index

The italic numbers denote the pages where the corresponding entry is described, num-

bers underlined point t o the definition, all others indicate the places where i t is used.

Symbols
* 249,267
\@for 262, 263

. \@idxitern

. 249, 266, 267, 268
\@verbatim . . . - 254, 254
^-A 246,251

\endmulticols 269
\endtheglossary . . . 269
\endtheindex - 266
environments:

macrocode* 24 7
macrocode 24 6
macro 24 7
theindex 24 9

verbatim* 24 7
verbatim 24 7

\exclude@test - 263

M
\macro - 255
macro (environment) . 247
\macro@ - 255
\macro@cnt . . . - 255, 256
\macro@code

. 251, 251, 253, 270
\macro@finish 262

\macro@name 260, 261, 261
. . . \macro@namepart

. . . . - 259, 260-263
\macro@switch . 259,260
\macrocode - 251
macrocode (environment)

24 6
\macrocode* - 253
macrocode* (environment)

24 7
\MacrocodeTopsep . .

. 24 7, 250, 251, 252
\MacroFont . . . 247,

252, 252, 254, 257 -
. \MacroIndent

. 247, 250, 252, 252
. \MacroTopsep

. 247, 250, 255, 257
\main 250,267
\make index 250
\Makepercentcomment 271
\MakePercentIgnore . 271
\MakeprivateLettem

. 255, 258, 259, 262
\maketitle . . . 250,270
\marginparpush 250, 254
\marginparwidth 250, 254
\mathsurround 24 9
\meta 250,269
\more@macroname 261, 261
\multicols . . . 266, 269

P
\par 252,

254, 261, 267-270

\parfillskip 24 9
\par indent 24 9
\parskip 24 9
\percentchar . . 261, 265
\PercentIndex . 261, 265
\pfill - 267

. \PlainTeX - 271
\predisplaypenalty .

. 252, 254
. \Printchanges - 269

\PrintDescribeEnv .
. . . . 247,254,257

TUGboat, Volume 10 (1989), No. 2 273

T
\theglossary - 268
\theindex - 266
the index (environment)

. 24 9
\tolerance . . . 250,270

v
\verbatim - 254
verbatim (environment)

. 24 7
verbatim* (environment)

. 24 7
\verbatimchar . 249,

264, 264, 265, 268

o Frank Mittelbach

Fachbereich Mathematik

Universitat Maim

Staudinger Weg 9

D-6500 Maim

Federal Republic of Germany

Bitnet: schoepf Bdmznat51

