
Introduction to METRFONT

Blue Sky Research

534 SW Third Avenue

Portland, Oregon 97204

ABSTRACT

The purpose of this "Introduction to METRFONT" talk is to give a small amount of

historical background on what METRFONT is, to introduce a few key concepts and METR-

FONT commands, and to go over a few more complicated examples and commands. It is

beyond the scope of this twenty-minute talk t o explain how METRFONT works in detail,

but I hope you find METRFONT as interesting as I do, and I hope that I do not verbally

wander off on you - at least, not too far.

1. What is METRFONT?
METRFONT is a very powerful tool for producing fonts. Created in 1081 by Prof. Donald E. Knuth,

it has undergone quite a few changes to bring it to its current state. Prof. Knuth needed to create

the typesetting program/language to be able to create the beautiful math which he was familiar

with in his Art of Computer Programmzng books, and METRFONT is the companion program which

creates typefaces for 5 Y to use. -Y can be labeled a markup language, since one embeds control

sequences in a document, and processes the file accordingly. METRFONT is similar in that it too

has an extremely powerful language, but with METAFONT, the user specifies commands which direct

METRFONT to place strokes of an electronic pen on a "digital canvas". We will be exploring some of

the basic METRFONT commands to get a better understanding of these concepts.

2. Coordinate System
METRFONT works in the ca r tes ian coord ina te sys tem. This means that positive coordinates are

found above and to the right of the 0,O point, which is known as the origin. Fig. 1 shows a rep-

resentation of METRFONT1s cartesian coordinate system. Most METRFONT characters are drawn in

the top right quadrant (A, where x and y are positive), but characters such as a lowercase g, j, or y

have descenders , which extend below the baseline. B represents the baseline of a Font Metrics

or t f m box. For TEX to be able to use characters that METRFONT creates, it needs to know certain

things, such as how wide, high and deep characters are, in order to place one character box next to

another. This information is kept in the t f m file.

Let's look a t a few characters and their t f m boxes, to see how they fit in METFIFONT'S coordinate

system. Fig. 2 shows the uppercase letter W: (w) indicates the w i d t h of the t f m box, (11) is the

height, and (d) is the d e p t h of the box. Fig. 3 shows another character, the lowercase letter g, which

has a non-zero depth value, and we see that i t has a descender, which goes below the baseline. We can

also see some labels inside the character; these are called con t ro l po in t s .

2.1 C o n t r o l P o i n t s

Control points tell METRFONT where to draw, or, more accurately, where to have the digital pen pass

through, leaving a wake of ink. Here is one way t o assign a value to control point 1:l

Semicolons are used to separate M E T R FONT statements.

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

Figure 1: The Cartesian Coordinate System

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

Figure 2: The capital letter W

TUGboat, Volume 10 (1989), No. 4 - 1989 Conference Proceedings

Figure 3: The lowercase letter g

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

We can also assign the same values to the same control point with a single statement like this:

(xl,y1)=(10,25);

or alternately, a pair of variables can be assigned with a z-point notation where z represents an z-y

pair. It is sort of a shorthand method for describing a coordinate pair. It looks like this:

zi=(10,25);

All three statements just shown are equivalent.

Now let's define some more control points and see what happens when we try to draw something

with the draw command. Here is one way to define some control points:

y1=25;

22= (75,50) ;

x3=100; xi=y3=y5=10;

24=(120,-20);

x5=150;

Notice that the x i , y3 and y5 values have all been assigned in one statement as being 10, and that the

22 and 24 control points were assigned in a single statement. By combining the x-y assignment and

the z assignment methods, we can save quite a bit of typing and also make it clear to METAFONT the

relationship between our control points at the same time.

Here is a simple draw statement to help us see the path we have defined (after we have started up

the demo on the Macintosh, that is):

virmf2 &cm \mode=proof; screenstrokes; input tugcon

draw zi..z2..~3..~4..~5;

Figure 4 illustrates the path that results after executing the draw statement. So we can get a

better feel for what METAFONT is doing, let's look at the individual control points along the curve we

just drew (Fig. 5):

lose-control(l,2,3,4,5)

This macro was one that I created for this conference so it would punch holes in the path of the

previous draw command, and we could better see how control points are used.

Of course, we don't need to say draw zi . .z2. .z3. .z4. .z5; with the control points ordered

sequentially from 1 to 5; we can also draw starting and ending at any defined control point. For

instance, if we said:

clearit ;

draw zi..z3..~4..~5..~2;

instead of our previous order, we would get the shape shown in (Fig. 6)

After we expose the control points, Fig. 7 shows the results of:

We can see by the control points inside our drawn path that the curve starts at point 1, proceeds

down to 3, then curves nicely around to 4 and 5, and ends up at point number 2. METAFONT draws

nice curves through these points, and in order to continue smoothly to the next point, it needs to swing

out a little ways after passing through a control point. The way that METAFONT makes these pleasing

curves is internal; all you need to do is specify the control points to draw through and it does the rest

for you. You can change how METAFONT draws curves with special curve modifying commands and

we might explore a few of these later. For now, let's look at how METRFONT draws curves.

2.2 Curves

When METRFONT draws a curve, it uses something we can simply call "the four-point method". If we

have four control points (Fig. 8):

inimf is h o w as the initialization version of METRFONT, virmf is the production version.

The c lear i t ; statement is one which we use to erase the previous picture that METFI FONT was saving for US SO we

can draw again.

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings 471

Figure 4: Curve 1 2 3 4 5 with default pen

Figure 6: Curve 1 3 4 5 2 with default pen

Figure 5: Curve 1 2 3 4 5 with exposed control points

Figure 7: Curve 1 3 4 5 2 with exposed control points

Figs. 4-7: Curves and Control Points

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

z1=(35,100); z2=(60,10); z3=(200,10); z4=(225,75);

the curve that METRFONT would draw is found by repeated mid-point calculations, as in Fig. 9.

A more technical name for the curve defined by METAFONT is a Bdzier cubic. What METAFONT

does for us is take the original control points we supply and add other control points of its own, as we

see in Fig. 10. Then it refines the curve between the "scaffolding", as Knuth calls i t , until the curve

is left on the innermost path between midpoints, which is what we see in Fig. 11. METRFONT then

discards the scaffolding and draws a nice curve which is inside the scaffolding.

These are the basics for drawing curves, using this four-point refinement method. There are also

other commands which affect how the scaffolding is built. For instance, there are commands which

can create more tension in the curve, such as in Fig. 12, or more curling of curves at the endpoints

(Fig. 13).

The degree to which you can manipulate METRFONT curves is really quite astounding. Unfortu-

nately, there is not enough time to go into all the ways to generate different curves with METAFONT.

2.3 P e n s

Another interesting concept is that of a METRFONT pen. A good way to view the sizes and strokes we

use to draw with METAFONT is to think of them as being produced by nibs of different pens (because,

in fact, they are). Until now, we have only used one pen type for our examples and since we didn't

specify, METRFONT provided us with a default pen. Let's look a t some different pen types and how
to use them.

Before you start drawing with a pen, you generally have to pick it up first, and here is how we tell

METRFONT to do just that:

pickup penc i rc le ;

In addition to a circular nibbed pen, there are a few other pen types that METRFONT knows about

(through definition in the plain base file). They are:

pensquare

penspeck

penrazor

penspeck and penrazor are special-purpose in nature; penspeck is used in the drawdot macro, and

penrazor, as the name implies, is a razor-thin pen (one pixel). penci rc le and pensquare perform

mostly as you would expect of pens with such names. Let's look a t how we can specify different pen

nibs via some examples:

% c l e a r drawing board, but not cont ro l po in ts

c l e a r i t ;

% pickup a pen t o draw with

pickup penc i rc le ;

% and draw !

draw z l . . z 2 . . z 3 . . ~ 4 . . ~ 5 ;

As we see, this is the pen we used before (the default pen). Let's look at a few ways t o "build"

some pens for METRFONT to use. One way to change our pen is by scaling it to the size desired. There

are three scaling commands: scaled, xscaled, and yscaled. Here is a command which scales a pen

to nearly one tenth point size:

c l e a r i t ;

pickup penc i rc le sca led . l p t ;

draw z I . . z 2 . . ~ 3 . . z 4 . . ~ 5 ;

Notice the size difference from the last pen we used. This pen (Fig. 14a) is much smaller than our

default in Fig. 4, which was approximately .4pt.

TUGboat, Volume 10 (1989), No. 4 - 1989 Conference Proceedings

Figure 8: Four-point method 1 2 3 4 draw

Figure 10: Four-point method 123 1234 234 draw

Figure 12: Four-point method 1 tension 2 1234

tension 2 4 draw

Figure 9: Four-point method 12 23 34 draw

Figure 11: Four-point method 1 1234 4 draw

Figure 13: Four-point method 1 curl infinity

1234 curl infinity 4 draw

Figs. 8-13: Four Point Method

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

*

Figure 14a: Pen = .1pt Figure 15a: Pen = xcale=.€pt, yscale=.2pt

Figure 14b: Curve with pen = . lp t

Figure 16a: Pen = xscale.2pt, yscale.6pt

Figure 15b: Curve with pen = xscale=.6pt, yscale=.2pt

Figure 17a: Pen = xscale.2pt, yscale.6pt,

rotate 32 degrees

Figure 16b: Curve with pen = xscale=.2pt, yscale=.€pt Figure 17b: Curve with pen = xscale.2pt, yscale.6pt,

rotate 32 degrees

Figs. 14-17: Pen Building

TUGboat. Volume LO (1989), No. 4- 1989 Conference Proceedings

The following command introduces the x and y scaling operation?

c l e a r i t ;

pickup p e n c i r c l e xscaled . 6 p t yscaled . 2 p t ;

drawem;

In Fig. 15a, we can see the pen nib is wide and short, since the xscaling is greater than the yscaling.

If we switch the x and y scaling, like this:

c l e a r i t ;

p ickup p e n c i r c l e xsca led .2p t yscaled . 6 p t ;

drawem;

we get the results shown in Fig. lGa, where the nib is thin and tall, since the yscaling is greater than

the xscaling.

Another parameter of control that one has for pen manipulation, aside from scaling, is rotation.

Here is a sample (Fig. 17a) that has the pen rotated 32 degrees with the same xscaling and yscaling

as the previous example (x= . 2 ; y=. 6):

c l e a r i t ;

pickup p e n c i r c l e xscaled . 2 p t yscaled .6pt r o t a t e d 32;

drawem;

This last pen seems to emulate a calligraphic pen, with the rotation acting as the angle of a pen

being held by a hand.

This concludes the section on METAFONT commands. Now I will attempt to give a brief history

of METAFONT, and then show a little of the power behind METRFONT.

3. METRFONT - Evolution of a Program
Originally, METAFONT had only 28 parameters which described the small pieces which make up a

complete character. After working with Hermann Zapf, Mathew Carter, Charles Bigelow and Kris

Holrnes (receiving much feedback from them all in 1981), ICnuth worked very hard at bettering his

original typefaces. Then, in April 1982, Richard Southall came to Stanford and helped make extensive

changes t o the Computer Modern programs (especially the sans serif letters). This resulted in the

refinement of the METAFONT language and brought the number of parameters to 45. Although small

refinements occasionally surface in the Computer Modern typefaces, they remain today steady and

stable with the total number of parameters at 62 as there have been since 1985 (see Appendix A for a

list of the parameters for cmrio).

So one of the key ideas behind a METAFONT is that there are a large number of parameters to

describe what a character looks like. By varying these parameters, we can see how different typefaces

are created. Let's look at some differences in parameters by viewing the result of a test file named

G t e s t , which uses six different sets of parameters to create six variations of the same character.

virmf & \mode=proof; mag=.33; sc reenchars ; inpu t 6 t e s t

As we can see in Fig. 18, there are six different characters that have been generated on the screen.

They are: cmriO or Computer Modern Roman (top left), cmssio or Computer Modern Sans Serif (top

middle), cmt t l0 or Computer Modern Typewriter (top right), cmblO or Computer Modern Roman Bold

(bottom left), cmbxl0 or Computer Modern Roman Bold Extended (bottom middle), and cmtilO or

Computer Modern Test Italic (bottom right).

4. A Word About Computer Modern
The Computer Modern typefaces, 75 in all, comprise the effort put forth by Knuth to create the spirit

of the typeface Monotype Modern 8A, which has traditionally been used to print textbooks of all

sorts, including Knuth's first two volumes of The Art of Computer Programming. If one doesn't like

Computer Modern, I believe it is because one doesn't like Monotype Modern 8A, not because Knuth

made a poor rendition of same.

I was lazy and didn't want to make too many typos in my demo, so I created the macro drawem, which draws from

control points 1 to 2 to 3 to 4 to 5.

476 TUGboat, Volume 10 (1989)' No. 4- 1989 Conference Proceedings

Figure 18: Results of the 6test file

TUGboat, Volume 10 (1989), No. 4 - 1989 Conference Proceedings

An extreme example of this misunderstanding that I have encountered, occurred when someone
waved an Epson dot matrix folio in my face, and exclaimed "this is ugly". Well, looking at i t , I

had to agree. And when this person further claimed that the sad looking characters on the page

didn't look anything like Times Roman (obviously what he expected) I'also had to agree. I think this

misunderstanding is common. People often view Computer Modern and say td themselves "Why didn't

Iinuth typeset his first volumes in Garamond or Palatino?", just wishing that Computer Modern was

actually one of those, or perhaps Times Roman (these fonts happen to be in vogue now). Well, he didn't

and they are not. They should not be compared in this apples-are-better-than-oranges way. Besides,

Garamond and Palatino fonts are proprietary fonts; source files would certainly not be available - as

they are for the CM fonts - for users to modify and alter and re-shape.

The challenge which lies ahead is for brave souls to create new typefaces, or adapt classic typefaces

to satisfy the TUG community. We can all start with some understanding of typography, and the

basics of METRFONT, and go from there.

Any volunteers?

Bibliography

Knuth, Donald, E. The Art of Computer Programmzng, vols. 1-3 Reading Mass.: Addison Wesley,

1968, 1973

Iinuth, Donald, E. The M E T R F O N T ~ O O ~ Computers and Typesettzng, Vol. C. Reading, Mass.: Addi-

son Wesley, 1986.

Iinuth, Donald E. METRFONT: The Program. Computers and Typesettzng, Vol. D. Reading, Mass.:

Addison-Wesley, 1986.

Iinuth, Donald E. Computer Modern Typefaces. Computers and Typesettzng, Vol. E. Reading, Mass.:

Addison-Wesley, 1986.

TUGboat, Volume 10 (1989)' No. 4 - 1989 Conference Proceedings

Appendix A

% This is CMR1O.W in text format, as of Mar 31, 1986.
Computer Hodern Roman 10 point

if unknown cmbase : input cmbase f i

font-identifier :="CNR" ; f ontsize 10pt#;

u#.=20/36pt#;

width-adj#:=Opt#;

seriffit#:=Opt#;

cap-serif3 it#:=5/36pt#,

letter3 it#:=Opt#;

bodyheight#:=270/36pt#;

ascheight# :=XO/36pt#,

capheight* : =246/36pt#;

f igheight* : =232/36pt# ;

xheight# :=155/36pt#;

math-axis#: =90/36pt#;

barheight#:=87/36pt#;

commadepth#:=70/36pt#;

desc_depth#:=70/36ptX;

crisp#: =Opt#;

tiny#:=8/36pt#;

fine#:=7/36pt#;

thin_join#:=7/36pt#;

hair#:=9/36pt#;

stem#:=25/36pt#;

curve#:=30/36pt#;

ess#:=27/36pt#;

flare#:=33/36pt#;

dot_sizeX:=38/36pt#;

caphair*: =ll/36pt # ;

cap-stem#:=32/36pt#;

cap-curve# : =37/36pt #;

cap-ess# :=35/36pt#;

rule_thickness#:=.4pt#;

dish#:=l/36pt#;

bracket#:=20/36pt#;

jut#:=28/36pt#;

cap-jut#:=37/36pt#;

beakjut# :=iO/36pt# ;

beak#:=70/36pt#;

vair# :=8/36pt#;

notch-cut# : =1Opt#;

bar#:=11/36pt#;

slab#:=11/36pt#;

cap-bar#:=11/36pt#;

cap-band#:=11/36pt#;

capnotch~cut#:=l0pt#;

serif_drop#:=4/36pt#;

stern_corr#:=1/36pt#;

vair_corr#:=1/36pt#;

apex-corr#:=Opt#;

0#:=8/36pt#;

apex-0#:=8/36pt#;

slant : =O ;

fudge :=I;

mathspread :=0;

superness:=l/sqrt2;

superpull:=l/6;

beak-darkness :=11/30;

ligs:=2;

square-dot s :=false ;

hefty : =false ;

serifs :=true;

monospace:=false;

variant%:=false;

low-asterisk:=false;

math3itting:rfalse;

generate roman

% unit width
% width adjustment for certain characters
% extra sidebar near lowercase serifs

% extra sidebar near uppercase serifs
% extra space added to all sidebars

% height of tallest characters
% height of lowercase ascenders
% height of caps
% height of numerals

% height of lowercase without ascenders
% axis of symmetry for math symbols

% height of crossbar in lowercase e
% depth of comma below baseline

% depth of lowercase descenders
% diameter of serif corners

% diameter of rounded corners
% diameter of sharply rounded corners

'& width of extrafine details

% lowercase hairline breadth
% lowercase stem breadth

% lowercase curve breadth
% breadth in middle of lowercase s

% diameter of bulbs or breadth of terminals
% diameter of dots
% uppercase hairline breadth
% uppercase stem breadth

% uppercase curve breadth
% breadth in middle of uppercase s

% thickness of lines in math symbols
% amount erased at top or bottom of serifs

% vertical distance from serif base to tangent
% protrusion of lowercase serifs

% protrusion of uppercase serifs
% horizontal protrusion of beak serifs

% vertical protrusion of beak serifs
% vertical diameter of hairlines

% maximum breadth above or below notches
% lowercase bar thickness

% serif and arm thickness
% uppercase bar thickness

% uppercase thickness above/below lobes
% mar breadth above/below uppercase notches

% vertical drop of sloped serifs
% for small refinements of stem breadth
% for small refinements of hairline height

% extra width at diagonal junctions
% amount of overshoot for curves

% amount of overshoot for diagonal junctions
% tilt ratio (delta x/delta y)

% factor applied to weights of heavy characters
% extra opemess of math symbols

% parameter for superellipses
% extra openness inside bowls

% fraction of triangle inside beak serifs
% level of ligatures to be included

% should dots be square?
% should we try hard not to be overweight?
% should serifs and bulbs be attached?

% should all characters have the same width?
% should an italic-style g be used?

% should the asterisk be centered at the axis?
% should math-mode spacing be used?

% switch to the driver file

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

T)jX Users Group Meeting and Short Course
Stanford University, July 25-30, 1982

