
. . . to Don Knuth, that premier computer scientist . . . ,
we are indebted for v, which deserves simultaneous
recognition as the text formatter of choice and the most
idiosyncratic programming language known to us.

Stephen A. Ward and
Robert H. Halstead, Jr.

Computation Structures (1990)

COMMUNICATIONS OF THE 'l&X USERS GROUP

EDITOR BARBARA BEETON

VOLUME 11, NUMBER 2 JUNE 1990

PROVIDENCE RHODE ISLAND U.S.A.

TUGboat TUGboat Editorial Committee

During 1990, the communications of the TEX Users
Group will be published in four issues. One issue
will consist primarily of the Proceedings of the
Annual Meeting.

TUGboat is distributed as a benefit of mem-
bership to all members.

Submissions to TUGboat are for the most part
reproduced with minimal editing, and any questions
regarding content or accuracy should be directed
to the authors, with an information copy to the
Editor.

Submitting Items for Publication

The deadline for submitting items for Vol. 11, No. 4,
is September 11, 1990; the issue will be mailed in
October. (Deadlines for future issues are listed in
the Calendar, page 308.)

Manuscripts should be submitted to a member
of the TUGboat Editorial Committee. Articles of
general interest, those not covered by any of the
editorial departments listed, and all items submitted
on magnetic media or as camera-ready copy should
be addressed to the Editor, in care of the TUG
office.

Contributions in electronic form are encour-
aged, via electronic mail, on magnetic tape or
diskette, or transferred directly to the American
Mathematical Society's computer; contributions in
the form of camera copy are also accepted. The
TUGboat "style files", for use with either p l a i n

TEX or U r n , will be sent on request; please specify
which is preferred. For instructions, write or call
Karen Butler at the TUG office.

An address has been set up on the AMS com-
puter for receipt of contributions sent via electronic
mail: TUGboatQMath . AMS . corn on the Internet.

TUGboat Advertising and Mailing Lists

For infornlation about advertising rates, publication
schedules or the purchase of TUG mailing lists, write
or call Karen Butler at the TUG office.

Barbara Beeton, Editor
Ron Whitney, Production Assistant
Helmut Jiirgensen, Associate Editor, Software
Georgia K.M. Tobin, Associate Editor, Font Forum
Don Hosek, Associate Editor, Output Devices
Jackie Darnrau, Associate Editor, Bl&Y
Alan Hoenig and Mitch Pfeffer, Associate Editors,

Typesetting on Personal Computers

See page 151 for addresses.

Other TUG Publications

TUG publishes the series Wniques , in which have
appeared user manuals for macro packages and
QX-related software, as well as the Proceedings
of the 1987 and 1988 Annual Meetings. Other

publications on m n i c a l subjects also appear from
time to time.

TUG is interested in considering additional
manuscripts for publication. These might include
manuals, instructional materials, documentation, or
works on any other topic that might be useful to
the rn community in general. Provision can be
made for including macro packages or software in
computer-readable form. If you have any such
items or know of any that you would like considered
for publication, contact Karen Butler at the TUG
office.

Trademarks

Many trademarked names appear in the pages of
TUGboat. If there is any question about whether
a name is or is not a trademark, prudence dictates
that it should be treated as if it is. The following
list of trademarks which appear in this issue may
not be complete.
APS p5 is a trademark of Autologic, Inc.
DOS and MS/DOS are trademarks of Microsoft

Corporation
LaserJet, PCL. and DeskJet are trademarks of

Hewlett-Packard, Inc.
METAFONT is a trademark of Addison-Wesley Inc.

PC TfjX is a registered trademark of Personal m ,
Inc.

Postscript is a trademark of Adobe Systems, Inc.
TQX and AMS-TQX are trademarks of the American

Mathematical Society.
UNIX is a trademark of AT&T Bell Laboratories.

TUGboat, Volume 11 (1990), No. 2

Addresses

Note: Unless otherwise specified,

network addresses (shown in

typewri ter font) are on the Internet.

'lkX Users Group Office
Karen Butler
Charlotte Laurendeau

P. 0. Box 9506
Providence, RI 02940-9506

or

653 North Main Street

Providence, RI 02904
401-751-7760

Fax: 401-751-1071
TUGQMath.AMS.com

Elizabeth Barnhart
National EDP Dept

T V Guide

#4 Radnor Corporate Center

Radnor, PA 19088

215-293-8890

Nelson H. F. Beebe
Center for Scientific Computing and

Department of Mathematics

South Physics Building

University of Utah

Salt Lake City, UT 84112
801-581-5254
beebeQscience.utah.edu

Barbara Beeton
American Mathematical Society

P. 0 . Box 6248
Providence, RI 02940

401-455-4014
bnbQMath.AMS.com

TUGboatQMath.AMS.com

Gerhard Berendt
Institut fur Mathematik I

Freie Universitat Berlin

Arnimallee 2-6

1000 Berlin 33

Germany

berendtQfubinf.uucp

Janusz S. Biefi
Institute of Informatics

Warsaw University

PKiN p.850

00-901 Warszawa, Poland

Karen Butler
'-&X Users Group

P. 0. Box 9506
Providence, R I 02940-9506

401-751-7760
TUGQMath.AMS.com

Lance Carnes
Personal

12 Madrona Avenue

Mill Valley, CA 94941

415-388-8853

S. Bart Childs
Dept of Computer Science

Texas A & M University

College Station, T X 77843-3112
409-845-5470
bartQcssun.tamu.edu

Bitnet: BartQTAMLSR

Malcolm Clark
Imperial College Computer Centre

Exhibition Road

London SW7 2BP, England

Janet: texlineQuk.ac.ic.cc.vaxa

John M. Crawford
Computing Services Center

College of Business

Ohio State University

Columbus, OH 43210
614-292-1741
crawford-jQosu-20.ircc.ohio-state.edu

Bitnet: CRAW4DQOHSTVMA

Jackie Damrau
Superconducting Supercollider

Laboratory

Stoneridge Office Park, Suite 260

250 Beckleymeade Avenue

Dallas, TX 75237

214-708-6048
damrauQsscvxl.ssc.gov

Bitnet: damrauQsscvx1

Georg Denk
Mathematisches Institut

Technische Universitat Miinchen

ArcisstraBe 21
D-8000 Munchen 2
Bitnet: TllllAAQDMOLRZOl

Luzia Dietsche
Rechenzentrum der Univ. Heidelberg

Im Neuenheimer Feld 293

D-6900 Heidelberg 1
Federal Republic of Germany

Bitnet: X68QDHDUFtZ1

Allen R. Dyer
13340 Hunt Ridge

Ellicott City, MD 21043
301-531-3965

Victor Eijkhout
Department of Mathematics

University of Nijmegen

Toernooiveld 5
6525 ED Nijmegen

The Netherlands

080-613169
Bitnet: U641001QHNYKUNll

David Fuchs
1775 Newel1

Palo Alto, CA 94303

415-323-9436

Richard Furuta
Department of Computer Science

University of Maryland

College Park, MD 20742

301-4541461

Bernard Gaulle
91403 Orsay Cedex, France

Bitnet: UCIR001(OFRORS31

Regina Girouard
American Mathematical Society

P. 0 . Box 6248
Providence, RI 02940

401-455-4000
RMGQMath.AMS.com

Raymond E. Goucher

'J&X Users Group

P. 0 . Box 9506

Providence, RI 02940-9506

401-751-7760
REGQMath.AMS.com

Roswitha Graham
K.T.H. Royal Institute of Technology

DAB

100 44 Stockholm, Sweden

46 (08) 7906525

uucp: roswithaQadmin.kth.se

Dean Guenther

Computing Service Center

Washington State University

Pullman, WA 99164-1220

509-335-0411
Bitnet: GuentherQWSWMl

Khanh Ha
14912 Village Gate Drive

Silver Spring,MD 20906

Hope Hamilton
National Center for

Atmospheric Research

P. 0 . Box 3000

Boulder, CO 80307
303-497-8915
HamiltonQMMM.UCAR.Edu

Doug Henderson
Blue Sky Research

534 SW Third Ave

Portland, OR 97204

800-622-8398; 503-222-9571;
TLX 9102900911

Alan Hoenig
17 Bay Avenue

Huntington, NY 11743

516-385-0736

TUGboat, Volume 11 (1990), No. 2

Don Hosek
Platt Campus Center

Harvey Mudd College
Claremont, CA 91711
DEIosek@HMCVAX.Claremont.Edu

Patrick D. Ion
Mathematical Reviews
416 Fourth Street

P. 0 . Box 8604
Ann Arbor, MI 48107

313-996-5273
ion@Math.AMS.com

Calvin W. Jackson, Jr.
1749 Micheltorena St.

Los Angeles, CA 90026
818-356-6245
CALVIN@CSVAX.Caltech.Edu

Alan Jeffrey
Programming Research Group

Oxford University
11 Keble Road

Oxford OX1 3QD
A1an.JeffreyQuk.ac.oxford.prg

Helmut Jiirgensen
Deparment of Computer Science
University of Western Ontario

London N6A 5B7, Ontario, Canada

519-661-3560
Bitnet: helmut@uwovax
uucp: helmutQ ju l i an

David Kellerman
Northlake Software
812 SW Washington

Portland, OR 97205

503-228-3383
Fax: 503-228-5662
uucp: uunet ! n l s ! davek

Donald E. Knuth
Department of Computer Science

Stanford University
Stanford, CA 94305

David H. Kratzer
Los Alamos National Laboratory

P. 0 . Box 1663, C-10 MS B296
Los Alamos, NM 87545

505-667-2864
dhk@lanl.gov

C.G. van der Laan
Rekencentrum
Universiteit Groningen

WSN-gebouw Postbus 800

9700 AV Groningen
The Netherlands

Bitnet: CGLQHGRRUG5

Joachim Lammarsch
Research Center
Universitat Heidelberg

Im Neuenheimer Feld 293

6900 Heidelberg
Federal Republic of Germany

Bitnet: X92QDHDURZl

Charlotte Laurendeau
w Users Group
P. 0. Box 9506

Providence, RI 02940-9506
401-751-7760
TUG@Math.AMS.com

Pierre A. MacKay
Northwest Computer Support Group
University of Washington

Mail Stop DR-10
Seattle, WA 98195
206-543-6259; 206-545-2386

MacKay@June.CS.Washington.edu

Frank Mittelbach
Electronic Data Systems
(Deutschland) GmbH

Eisenstraae 56
D-6090 Riisselsheim

Federal Republic of Germany
Bitnet: pzf 5hzQdrueds2

David Ness
803 Mill Creek Road

Gladwyne, PA 19035
215-649-3474

Ted Nieland
Control Data Corporation
Suite 200
2970 Presidential Drive

Fairborn, OH 45324
TNIELANDQAAMRL.AF.MIL

Mitch Pfeffer
Suite 90
148 Harbor View South

Lawrence, NY 11559
516-239-4110

Lee S. Pickrell
Wynne-Manley Software, Inc.
1094 Big Rock Loop

Los Alamos, NM 87544
pickrell%lsn.mfenet@ccc.nmfecc.gov

Craig Platt
Department of Math & Astronomy

Machray Hall
University of Manitoba

Winnipeg R3T 2N2, Manitoba, Canada
204-474-9832
platt@ccm.UManitoba.CA

Bitnet: platt@uofmcc

David Salomon
Computer Science Department
School of Engineering and Computer

Science

California State University
18111 Nordhoff Street

Northridge, CA 91330

818-885-3398
bccscdxsQcsunb.csun.edu

Rainer Schopf
Institut fiir Theoretische Physik der
Universitat Heidelberg

Philosophenweg 16
D-6900 Heidelberg
Federal Republic of Germany

Bitnet: BK4QDHDURZ1

Len Schwer
APTEK, Inc.

4320 Stevens Creek Blvd.
Suite 195

San Jose, CA 95129
micro2.schwer@sri.com

Philip Taylor
The Computer Centre
Royal Holloway and Bedford New

College

University of London
Egham, Surrey TW20 OEX, England
P.TaylorQVax.Rhbnc.Ac.Uk

Christina Thiele
Journal Production Centre, DT1711
Carleton University

Ottawa K1S 5B6, Ontario Canada

613-788-2340
Bitnet: WSSCAT@Carleton.CA

Georgia K.M. Tobin
The Metafoundry

OCLC Inc., MC 485
6565 Frantz Road
Dublin, OH 43017

614-764-6087

Ron Whitney
T@ Users Group
P. 0. Box 9506
Providence, RI 02940-9506

TUGboatQMath.AMS.com

Ken Yap
Department of Computer Science

University of Rochester
kenQcs.rochester.edu

Hermann Zapf
Seitersweg 35

D-6100 Darmstadt
Federal Republic of Germany

TUGboat, Volume 11 (1990), No. 2

General Delivery

Editorial Comments

Barbara Beeton

Comings and goings

The TUG Board of Directors has recently received
the following message from Jim Fox, erstwhile Site
Coordinator for CDC Cyber:

As I no longer have a CDC Cyber with which
to work, and have not had any requests for
Cyber 7&X in a couple of years, I feel that I
can no longer be considered the CDC Cyber
site coordinator for TUG.

In the same message, Jim resigned from the Board
as well. I'd just like to thank him publicly for his
efforts in TUG'S behalf during his tenure.

Shawn Farrell has also resigned from the Board,
explaining that he had left McGill for a new
job. Shawn was largely responsible for the local
arrangements for the Montreal meeting in 1988, a
most enjoyable event. Thanks to you too. Shawn,
and best wishes for success in your new job.

Challenges

I find several thought-provoking comments on weak-
nesses in the support structure for l&X in Liz Barn-
hart's summary of responses to a questionnaire on
the experiences of TJ$ users in production envi-
ronments (see below; the questionnaire appeared in
TUGboat 9, no. 2).

It appears that users feel largely on their own
when it comes to learning l&X, solving problems
and searching for support. This is the down side of
W'S status as public domain software. Everyone
expects to pay, sometimes quite large sums, for
proprietary software, and for associated training
and support. But for "free" software, no matter
how complicated or how high the quality, it is
somehow expected that the price of training and
support will be likewise very low in price. In fact,
there should be room for both options: low-cost but
time-intensive, and ready-made but for a price.

Opportunities for volunteers. A middle ground
exists because volunteers are willing to help out.
While access to volunteers is relatively available

over the electronic networks, many TEX users aren't
fortunate enough to have network access. And, as
the number of good personal computer implemen-
tations of l&X increases, the number of "isolated"
users is likely to increase as well. Liz has mentioned
a local group that she helped to organize, and that
is a useful approach. (The TUG office may be able
to help; get in touch with Ray Goucher or Charlotte
Laurendeau.)

A place for consultants. But volunteer activity
doesn't really solve the problem of how to develop
major new applications. Although the number of
self-help guides and similar publications is increas-
ing, tackling such a project means that you must
either master 7Q-X yourself, or find help. If the
project schedule doesn't permit time for your edu-
cation, an inquiry to the usual sources (7Q-Xhax et
al.) doesn't yield any leads, and there isn't a good
local source of l&X talent, then it may be advisable
to obtain the services of a consultant. This will cost
money, of course, but for any project of substantial
size, it may cost less and will almost certainly take
less time than trial and error. If you are prepared
with a complete and precise statement of the specs
for the job, a firm schedule, and a determination
to make as few changes as possible after work has
started, you will not only minimize the cost, but
gain the consultant's respect, and willingness to
work with you again. And, if you require as part of
the initial specs that the macro package written for
your project include thorough documentation, then
you also have the opportunity of furthering your
education by studying it. The TUG office keeps a
list of consultants who can be called on when an
inquiry involves more than a quick answer; the list
is also published with every edition or supplement
of the membership list, and qualified additions are
always welcome.

Help for beginners- a plea. For those users
who are just starting out, and really want to
learn l&X well, the legitimate criticism has been
made that TUGboat contains very little material
intended for beginners. To this criticism I respond
that TUGboat can only publish what is submitted,
and there seem to be few aspiring authors who are
writing for this audience. If you happen to be such
a person, please prove me wrong, and send in your
contribution.

TUGboat, Volume 11 (1990), No. 2

in the Production Environment -
Questionnaire Responses

Elizabeth M. Barnhart

Why the Questionnaire?

Over a year ago I put a questionnaire in TUGboat 9,
no. 2 asking non-academic users about their dealings
with QX and many related aspects. I was interested
in finding out what problems other rn users
operating in a production environment had, and
how they solved those problems.

First I have to start by thanking the people
who took the time to return the questionnaire.
The responses came from all over the world-
17 states as well as Australia, Canada, Denmark,
France, Finland, Great Britain, Israel, the Nether-
lands, Singapore, Spain, Switzerland, and West
Germany - and gave quite a variety of "flavors" of
QX use, and problems.

Response was better than expected, with a
total of 60 people returning questionnaires. Some
people are so much into what they can do with
QX that a number of them even sent samples of
output. Of course there were people who set up
their responses in m, even using the "check mark"
from the math font to mark their responses.

Responses went from intense hatred to com-
plete infatuation with Q X . As you read the
responses, you will find that some of the feed-
back contradicts other answers ("One man's meat
is another man's poison"), and other answers were
obviously made because the user was unaware of
tools that have been introduced on the l&X market
in recent times.

I really enjoyed reading each questionnaire as
it turned out to be sort of a therapy session for me.
"I've been there!" Some of the good-hearted humor
was appreciated, for example

Question: "What sources of support did you use?"
Response: "Sweat" and "Hours of Trial and Error"

or -

Question: "What do you think are QX' s weak
points?"

Response: " I won't live long enough to master it."

The Responses

The percentages represented under a number of
topics will not always add up to 100%. Several
questions allowed for multiple responses, so the
percentages represent a value in relation to the 60
respondents.

Please note: The "bulleted" i tems represent direct
quotes taken from the questionnaire responses. Al-
though some of the statements are inaccurate, the
wording of the text taken from the responses has no t
been changed.

Regarding the content of the responses, please
note that, although I have had many similar expe-
riences, "the opinions expressed here do not nec-
essarily reflect those of the management." I have

tried to give a sample of all types of responses so
this will present both positive and negative aspects
of working with QX in a production environment.

The questions can be categorized roughly as
follows:

Areas of interest and use
Hardware environment
Training, expertise
Macro packages
Fonts
Problems, weaknesses
Initial encounters
Strengths
Resources
Future involvement

Here goes . . .

1. What typeset product is the main
output of your organization?

The most popular type of page output being pro-
duced by the people responding to the questionnaire
was for technical books and journals, taking advan-
tage of QX ' s ability to produce high quality math.

Technical Books
Journal
Internal Documents
Magazine
General Topic Books
Forms
Directories
Newspaper
Labels
Other

Of those who responded "other," the most
common work was Training Materials and User
Manuals as well as Technical and Software Manu-
als. In addition, the participants indicated using
QX to produce the following other types of out-
put: Articles, Dictionaries, Documentation, Legal
documents, Letters, Mathematics, Preprints, Pro-
posals, Reports, Technical papers, and Theses and
Dissertations.

TUGboat, Volume 11 (1990), No. 2

2. Are you using now for output of
any typeset pages?

Ninety percent of those answering said that they
are using for at least a portion of their typeset
pages; ten percent said they did not use it in
production.

Of those who answered yes, the survey broke
down to the following percentages of total pages
produced in their environment:

under 25% of pages 16%
25 to 50% of pages 10%
50 to 75% of pages 8%
75 to 100% of pages 66%

Of those who said they are not using it in
production now, 60% said they are experimenting
with it for possible future use, and 40% said that
they had decided to not use it in production.

3. In what environment are you using
- mainframe or micro?

About 34% of the users said that they were oper-
ating in a mainframe environment, 67% said that
they were using some form of micro.
Note: S o m e respondents classified the S U N equip-
m e n t as a mini or super-micro computer, others
classified it as a mainframe. I have left the responses
as is so S U N will appear i n both breakdowns.

VAX (running VMS) was the most popular
mainframe in use, with 25% of the survey, followed
by 5% each for IBM, Hewlett-Packard, and SUN
equipment. Other machines in use were: Amdahl
OS/MVS/XA, DEC 2065 (TOPS-20), DG (AOS),
NAS AS/9160, Pyramid 90X OSX, and VAX (VMS
and UNIX).

In the micro-class machine, the largest share
went to IBM PCs (XT, AT, 286, etc.) and clones
(46%), followed by 15% using a Macintosh and 11%
using SUN workstations. Other micros used by peo-
ple in the survey were: Apollo DN 3000/4000/330,
AT&T 6300, COMPAQ 286, DEC Unity 68 (UNIX),
Cromemco CS420, 68020, IBM RT Workstation, In-
tegrated Solutions 68010, Leading Edge Model D,
Tandy 3000HL, Olivetti M24, Wyse PC286.

4. On what type(s) of device(s) are you
producing output?

Many of the surveys indicated that T ' was being
run on more than one type of output device. Quite
often a laser printer was used for proofing and a
typesetter was used for final camera copy, or several
types of laser printers existed in their production
environment.

Apple Laserwriters
Cordata Corona
DEC LN03
HP Laser Printer
IBM 3820 or Pageprinter
Imagen 81300 or other
Talaris

QMS (PSI
Varityper VT 600

Other laser or impact printers indicated by
individuals were:

AST ResearchIPostScript
Canon LBP A1
LNOl
QMS Kiss
Panasonic Laser KX-P4450
ScripTen

For those using typesetters, the most common
equipment used was Linotron. The percentages for
this and other typesetters represented in the survey
are shown below:

APS micro-5 (Autologic) 6%
Compugraphic 8600 1 %
Linotron 8%
Monotype Lasercomp 2%
VC570 1%
Varityper 4300P 1 %

Only 2 respondents were using outside service
bureaus to produce pages. The bureaus used were:
Stiirtz AG (Wiirzburg) and ArborText.

4A. Is your proofing output produced on a
different device than camera copy? If
yes, have you had problems with font
compatibility, and how have you solved
them?

Those surveyed said that 46% were producing final
pages on a different device than the one used for
proofing. The majority (54%) said that the same
machine was used for both proof and final copies.

When indicating problems that had arisen with
sending the same file to two devices, the following
types of comments were given:

General

0 No problems, we only use CM fonts
0 Occasionally, but no problems
0 Minor compatibility problems
0 We're using Textures on the Mac
0 Using another device for testing (with Mono-

type fonts)

TUGboat, Volume 11 (1990), No. 2 157

First Grade by Arthur Samuel (available
through the rn Users Group)
A Gentle Introduction to T$JY by Michael Doob
(available through the rn Users Group or on
many electronic bulletin boards)
Another Look at by Stephan Bechtolsheim
(Due to be published in March of 1990,
Springer-Verlag, also available in manuscript
form from the author)
A number of I P m books that have been
produced in the last few years.

Do your keyboarders really have to
know TEX, or is it "hidden" from them?
(Please explain.)

The majority said that their keyboarders had to
know m to produce their pages (54%), but nearly
as many said that they kept the inner secrets of
rn from the production personnel (46%).

For those that indicated it was necessary to
"know" r n , the following comments are represen-
tative:

0 They do now but we are working on a data
entry system to limit this
They don't have to but they like to
They only have to know basic rules

0 They like to know as much as possible
0 They have to know rn to debug errors
0 Yes, they have to know it to format our files
0 Have to know (used by software engineers, not

secretaries)
0 They know it to some degree, they don't code

from scratch
Only a very little for immediate needs

0 For now, as others are added they will only be
taught what they need

0 They must know p l a i n basics and A M S - ~
0 They understand the majority of the m

functions

Those who keep rn hidden gave the following
remarks to clarify why:

0 Some writers do, most know our macro package.
0 Most are unfamiliar with p l a i n

We use AMS-7&X
They know I P W macros
We teach them only our macro names

0 Only technical people know

7. Who creates the code for output
routines, etc., in your environment?
(Explain)

The most common response was that an in-house
guru (W p e r t) was needed to keep rn running

smoothly (60%). Some started with consultants and
switched over to in-house support (12%). Others
have all style files done by their production person-
nel (18%) and the remainder purchase packages or
avoid changing too many things (10%).

In-house m p e r t

0 Used to change style sheets
0 In-house experts adjust style files and fonts
0 Done by our programmers

Consultant

0 Started with a consultant but now doing it
in-house

0 ArborText wrote our original macros

Production personnel

0 We use only I P W with minor adjustments

Other

0 In-house macros and I P W
Barb Beeton did most of the work originally
for the output routines

0 We don't use custom output routines
Purchased package

0 P C m package

8. Do you use Plain T@X or a "standard"
macro package? Which package(s)?

The vast majority of users (71%) indicate a pref-
erence for p l a i n rn for, as one user put it, "it's
sheer power". The next most popular package was

(40%). A smaller number use AMS-TEX
(13%) and 16% indicated another package. Of the
"others", 75% indicated that they had to develop
their own in-house macro package to meet their
production needs.

9. Where and how do you get fonts not
delivered with the standard T@X release?

Almost all the respondents indicated some use of
the "standard" fonts distributed with W .

Sixteen percent indicated that they used only
the standard fonts.

In the "Beg, Borrow, and Steal" category, 6%
indicated that they either "scanned and produced
PK files with our own software, and created some
special fonts ourselves" or got them from "various
archive sites via network".

The majority (80%) indicated that it was
necessary to go to other font sources to meet their
production needs. The majority use one of the
following 4 sources:

Adobe (Postscript) 19%

TUGboat, Volume 11 (1990), No. 2

ArborText . t f ms
with typesetter's fonts 8%

group the comments to similar problems and show a
representative sampling of the comments submitted.

Bitstream 16%
Talaris Systems, Inc. 8% ASCII us. EBCDIC - 3%

0 IBM mainframe not suited for data entry
Other small percentages indicated other font

0 We are EBCDIC oriented and have to learn set
sources:

AMS fonts
Autologic TR fonts from W S o u r c e
Autologic fonts using ArborText software
Berkeley font library
Compugraphic (tfms designed in-house)
Danish Linotype agent
From DECUS for Digital LN03
Folio
Using FTP
Met afoundry
Postscript fonts and METAFONT

University of Manitoba

10. Have you used METRFONT at all in your
installation? Explain.

The majority (55%) indicated that they had not
used METAFONT; the rest (45%) said they had, but
most of them had used it only for small applications.

Comments from those who have not used
METAFONT

0 Haven't had the time
0 No we're not typeface designers

Installed but untried
0 Received but not working yet

Comments from those who used METAFONT

0 Only with standard METAFONT files
0 To build simulation fonts

To make logos
0 To develop special math and foreign language

symbols
Experimental only

0 Not to a great extent
0 To initialize fonts
0 To make some new mag steps for fonts
0 Translate fonts from old MF format to new
0 To develop new fonts
0 Tuning fonts

11. What have been some of the problems
you have encountered trying to develop
the use of in your environment?

There was a variety of responses here. They ranged
from taking too much time to train personnel to
frustrations about trying to get support (even if
they were willing to pay for it). I have tried to

up for ASCII

Documentation - 11%

0 No Documentation for beginners
0 Difficulty in understanding The w b o o k
0 Hard to look up answers to problems in the

m b o o k (you have to look in 3 or 4 places to
find out how one command works).

0 The W b o o k does not explain the interaction
between basic commands and you have to
experiment to find out what will happen

Error Messages / Debugging - 3%

0 Error messages are useless to a novice
0 We have not found a source for many error

messages encountered

Fonts - 18%

0 Implementing Scandinavian hyphenation pat-
terns
Lack of compatible fonts for our typesetters

0 Font development and maintenance
0 Translate fonts from old METAFONT format to

new
0 Getting some of the Bitstream Fonts to work

with CM fonts

Foreign languages - 3%

0 Getting foreign language characters
0 Foreign language hyphenation

Getting users to accept system -6%

0 Hostility from users of a previously used system
0 Users don't appreciate the quality
0 Most casual users don't appreciate the quality

difference so they don't want to put in the time
to learn

Graphics - 3%

0 Integration of graphics with output

Macros / Output routines - 23%

0 Updating macros
0 Incompatibility with other DOS applications
0 Time consuming to write macros for 'I$$
0 New formats are a struggle
0 Output routines are a misery ,to debug
0 Output routines are the hardest
0 Multi-column output and page balancing

TUGboat, Volume 11 (1990), No. 2

0 Macros written before I started here, hard to
change

Output devices/drivers - 10%

0 Getting the right output devices, good output
devices

0 VAX C bugs while developing a double sided
DVITOLN3 program.

0 Rounding errors on device drivers
0 Problems with some current . d v i drivers

Production problems - 6%

Slowness of proofing documents
0 Implementing changes without disrupting pub-

lications in progress
0 Preprocessor needed to facilitate typing

Setting narrow columns

Support - 6%

Unable to purchase rn with support contracts
for our system.
Cannot purchase a service contract even if you
are willing to pay for it.
Assistance with problems
Support during set up

System initialization - 3%

Understanding w, C m , etc.
0 Trying to decide between m and I4m

System requirements - 3%

0 CPU intensity takes too many computer dollars
for a lot of users
Running out of memory

l&X algorithms and design - 10%

0 Page Breaking problems
0 Runarounds (parshapes)

Problems with inserts

Training time/Learning curve - 20%

Takes too much time for busy people to learn
it
Initial learning curve/training

0 Hard to teach to people who don't have type-
setting background

12. How did you find out about w?
Responses here were varied. The largest group
(19%) indicated that they had found out about ?$jX
through their jobs (several said "I inherited lQX
from my predecessor") . The next largest percentage
(17%) indicated that they had found out from the
source, Knuth at Stanford (and his papers) or

The m b o o k and The METRFONTbook; an equal
number from contacts at a university. Word of

mouth from other users was the source for 13%.
Five percent or less found out from a consultant,
the physics community, or AMS and Mathematical
Reviews.

Other minor sources were as listed: Decus,
Friend at the Federal Reserve, McGraw-Hill recom-
mended it, Scientific/Technical Institutes, reading,
tried to turn it into a product, from customers,
Trade Magazine (Mac User), reading about the
SAIL version, through a typesetter, and classes in

m.
13. What do you feel are m ' s strong

points?

By a clear margin, users indicated m ' s design
(81%) and flexibility (53%) as the strong points of
the 7&X language. Portability is also important
in production environments. If the language can
be moved to another system, there is no need for
re-training "because the old composition system
doesn't work on the new mainframe." A sampling

of comments on these and other features are:

Batch orientation - 2%

0 Batch oriented so it can be linked with pre-
and post-processors

Design points -81%

Conditionals
Control over look of output
Dynamic control of vertical spacing
Ease of Macro construction
Capabilities you can get with macros
File handling, ability to import files
Error reporting
High quality output/Typographic quality
Hyphenation algorithms
Line-breaking and hyphenation algorithms
Nice displays and easy setting of page compo-
sition

I Page bottoming
0 Powerful in designing format but painful to

write it
0 Widow control
0 Ability to build indices and glossaries

The ability to use the same file to create
different page shapes

0 It understands many typographers conventions
which other systems have to be taught
Tables
Kerning

0 Richness of the language

160 TUGboat, Volume 11 (1990)' No. 2

0 Its essentially a programming language, you
get lots of power with it
Calculation capabilities
Ability to handle low-level formatting
Paragraph building algorithm
Automatic pagination
Speed

Flexibility - 53%

0 Ability to program what you want
Flexibility, not limited like other packages
Precision and reliability
Programmable
Primitiveness, which allows control

Mathematics - 25%

Mathematics/equation typesetting
Sophisticated mathematics

Portability - 13%

Portability
Availability on PCs
Device independent output
Portability of T)$ documents if you limit your
macro use

0 The possibility of linking other programs to

TIP
System independence

Price - 5%

0 Affordable
0 Public domain

14. What do you feel are W ' s weak points?

The major complaint of the respondents was the
lengthy "learning curve" and training time involved
to get T)$ up and producing pages in a profitable
manner (37%). Next were 7&X design points that
had caused production problems (35%). The next
highest indicated problem was the lack of standard
graphics support (18%) as part of W ' s design.

In addition, they submitted comments on these
and other areas that they felt were weak points of

w.
Batch - 10%

Batch process
0 Runaway errors in batch process
0 Lack of interaction

Documentation - 5%

0 Hard to find novice documentation

0 Lack of a complete reference document
0 Lack of beginning level documentation

Errors/Debugging - 5%

0 Lack of error diagnostics, hard to understand
error messages

0 Lack of decent debugging support for macro
programming

Fonts - 5%

0 FontsJfont management
0 Changing font sizes

Foreign language support - 5%

0 Foreign languages, fonts and hyphenation

Graphics - 18%

0 Chemistry
a Use of marks
0 Lack of standard graphics handling
0 Graphics (figure) support is poor

Macro files/Output routines - 13%

0 A lot of set up work to create style files
0 Non-trivial layout is almost impossible

Difficulty of setting multi-column output
Hyphenation and overfull boxes

0 Inserts of more than 1 column

0 No immediate previewing
0 No WYSIWYG

Production problems - 5%

0 Landscape tables
0 Hard to write macros
0 Not user friendly

Support - 8%

0 Not supported by major computer vendors
0 Need of a guru for support

System considerations - 8%

0 Requires a lot of computer resource
0 Slow in PASCAL
0 Running out of memory
0 Uses a lot of room

Unavailability of front-end processors

Training/Learning curve - 36%

0 Not great for beginners
0 Hard to learn

Amount of knowledge it requires
0 Its not that you can't do things, it's that it is

very time consuming to figure out how
0 Not easy to use, especially if you're in a hurry
0 Not easy to learn

TUGboat, Volume 11 (1990), No. 2

0 Extremely complex, I won't live long enough
to master it
Complexity
Documentation

0 Finding information from the T ~ x B o o k can be
difficult

0 Lengthy learning curve
You really have to know what you are doing,
its for gurus
Hard to learn without help

QjX design -40%

Pagebreaking algorithms
Lack of totally integrated system
Many modes and their idiosyncracies
No \everyl ine command
Primitiveness which requires complete specifi-
cations for everything
Setting Tables
Inability to control letterspacing and kerning
in a global environment
You can never be confident that even proven
techniques and macros will work like you think
Not enough idioms, macro packages tend to be
limiting without intimate understanding
Pagination/Page breaking (ignores my
\goodbreaks)
Adjusting page breaks in a long document.
Handling final pagination of output
No hooks to other languages or system com-
mands
Difficult user interface

What would you change about if
you could?

Of course hindsight is always 20120, but some
suggestions were realistic in the aid that they could
provide to users with large page output needs.

A small percentage of people said "nothing"
or "too soon to say," but most respondents were
quite vocal about what they would change in the
design of TEX if they could. Many of the problems
listed here have been taken care of by products or
macro packages written in the last calendar year so
we can see progress being made towards smoother
production control.

Batch processing vs. Interactive - 6%

0 Better batch processing
Interactive paging

0 Provide a page by page operation (set, correct,
move to next page)

Documentation - 10%

0 User friendly manual

Better or more manuals
Better documentation
More intermediate documentation needed
Write a comprehensive guide organized by
command
Make a separate tutorial for tables and equa-
tions

Errors and debugging - 6%

0 Make it more user friendly and easy to debug
from error messages.

0 It would be nice if a programmer could gain
access to over- and under-full box information
during processing

0 True debugging capablities

Fonts - 5%

0 Make it easier to change fonts and sizes
If you could use all 256 characters in a standard
font

0 Font management

Foreign languages - 2%

0 Add multi-language supports

Graphics - 10%

0 Better standardized graphics support
0 Include Postscript graphics as standard
0 Include chemical structure manipulation

Installation/System setup - 4%

0 Add more READ.ME files with distribution to
help installation

Macros/Output routines - 6%

0 More macro packages
Set up of output routines

0 Flexible macro package with a collection of well
documented parameters
More standardization of macros so that several

packages can work together

Previewing - 10%

0 More of a WYSIWYG tool

0 Make preview interactive
0 Preview of non CM fonts

System requirements - 2%

0 Change the hard disk requirements for its fonts

Training - 8%

0 Cheaper courses
0 Once you start to do anything complex you are

basically programming

162

QjX design - 25%

Add a rotate box
The ability to run a single page in a large
document
The definition of sp to a larger value
More "mark" capabilities
Have the concept of a "spread" in QX

Would like to be able to mask output selectively
(for color)
Add the ability to delay execution of commands
until later pages
Consistent syntax
Make verbatim environments easier
Make arbitrary placement of text on the page
easier.
Would be nice to be able to turn off m ' s
paragraph composition mechanisms and use a
line-by-line approach when needed.
Palettes for esoteric math symbols
Give user more control of line and page-
breaking if needed
Part of .dvi values (x,y positions) should be
accessible in TEX
A command like \unhbox should give the text
and not just char boxes

QjX and other languages - 3%

0 Hooks to other languages
0 Pagebreaking algorithms

User interface - 10%

0 Make the help function more helpful
0 Mouse driven interface
0 Write conversion programs for popular word-

processing packages
0 Previewers needed for more devices

Add a pre-processor
0 Would be nice to have a version of QX which

did not expect user interaction, not really
suited for high-volume work

16. What sources have you used to help with
'I)-jX problems? (Please explain)

The vast majority (88%) used The W b o o k as at
least one of their sources for support, followed by
65% of users who get information from TUGboat.
The rest of the list is shown below:

Knuth's T h e W b o o k 88%
Copies of TUGboat 65%
Courses offered in 31%
w h a x 28%

Users Group 16%
AMS office 8%

w m a g 8%

TUGboat, Volume 11 (1990), No. 2

Local QX group meetings 5%
Other 38%

Those indicating "other" sources of problem-
solving had these remarks:

In-house courses
Experimentation (Hours of)
Sweat!
Looking at macros other people had written
other experienced users with similar interests
Network news group
Friends who know QX

U K W
W l i n e

0 S. Bechtolsheim's Another Look at QjX

QX Users Group Advanced QX and Macro
Writing courses
QX Users Group used to be good for phone
support but now directs me to other local QX

Users Group members for help
Addison- Wesley
Arbortext
I4QX book
Personal QX
Mike Spivak

JOY of w
0 German books from gurus

16A. If you have contacted the TEX Users
Group, were they able to answer your
question or solve your problem for
you?

Sixty percent of the callers were able to get help
from the QX Users Group headquarters, 40 percent
were not.

Of those who have contacted the Users
Group, they say:

Helpful, especially since they hired the support
person
Barbara Beeton is extremely helpful

0 Missed an issue of TUGboat
Signed up for QX Users Group courses

Those who did not get help responded:
0 Have never contacted, do they do debugging?
0 When I called I was told they were working on

acquiring support staff
0 Asked for info if it ran on a 386 micro, they

didn't know
0 They didn't have the information but it later

appeared in TUGboat
0 Asked a question and they directed me to a

consultant

TUGboat, Volume 11 (1990). No. 2 163

17. Can you think of any areas where the
l'@ Users Group could be of help to
you?

Although some surveys indicated that the rn
Users Group is "doing a great job now" they had
suggestions for future improvements or ways that
TUG could use their influence to help make their
TEX lives easier.

Fonts

0 Commissioning sources for new fonts
0 Help with font compatibility

Local Support

Start a local chapter in New Jersey
I and a gentleman by the name of Bob Jantzen

of Villanova University started our own local T@
users group (which we call the Delaware Valley
TEX User's Group). We started by contacting Ray
and Karen to get a copy of the mailing list for all
registered users in our zip-code territory. We started
with an original mailing, and have updated the list
based on interest in our area. We have meetings 6

times a year, and take turns making presentations
of different macros and output routines that we
have developed. We usually share paper or soft
copies.

Macros

0 Push for standardization of macro packages.
0 Development of macro packages

Product information

New products developed in rn environment
Keep an updated database of TEX products
and sources

0 More addresses for Q X products

T&X design

0 Push for improvements in rn where needed

0 More PR to heighten awareness of m , perhaps
an article in widely read engineering magazines

Training

The price of training was out of reach for
many smaller operations by the time you took into
account airfare, hotels, meals and tuition. Some
people suggested the development of a beginning
level correspondence course that the user could walk
through and maybe contact TUG when problems
arose.

0 Development of a beginning level correspon-
dence course for poorer 'QX users

0 Reduce the price on their course offerings
Some low-cost training

0 Sponsoring scholarships to courses
0 Sponsoring the writing of more rn support

books
0 Maybe some videotape training on m and

u w
More classes

0 Provide more documentation
0 Would like to see a practical "how to" User's

guide to PLAIN l&X published (the m b o o k
is more academically oriented)

TUGboat

A number of users felt that the articles in
TUGboat were beyond their level of comprehension
and were looking for more support in less tricky
solutions to everyday publishing problems. Several
suggested including a few beginner's articles each
month.

0 More information on what other commercial
publishers are doing

0 Issue TUGboat more frequently
0 Circulate more information and advice to

novicelintermediate users
Could cater to the mid-range TJ$ users more,
most TUGboat articles are too advanced for
me.
Focus more articles in TUGboat on real type-
setting problems rather than esoteric concepts

0 More articles for beginners

Support

People who have deadlines are frustrated when
they are trying to figure out some of m ' s more
obscure bugs when creating macros or using primi-
tives for the first time. They are willing to pay for
support, but often cannot easily get it.

0 More technical people at site to answer ques-
tions

0 Make TE,X Users Group members aware of
where they can get technical support

0 E-mail address for asking questions and getting
responses

0 Have phone support available for hard to find
bugs

0 Organize a periodic printout of W h a x for
those of us not on a network

0 Give me support and charge
m Users Group notifying users by electronic
mail of TEX source updates

0 Provide sources for updating TEX '82

164 TUGboat, Volume 11 (1990), No. 2

18. What do you anticipate will be your
future involvement with m?

The majority of surveys (74%) indicated that they
would be continuing use of T@ for some or all of
their typesetting output. About 18% indicated that
they felt their use would decline in the upcoming
months for a variety of reasons. Eight percent felt
that their involvement would be in developing tools
to use with 'JJjX.

Continuing with QjZ typesetting

0 More involvement in formatting documents,
style sheets.

0 Ongoing use of m on Novel1 Network of PCs
0 More use of probably with Postscript
0 More active because of use by Physics commu-

nity
0 Working with The Publisher from ArborText

Typesetting college level texts
More use of T@ because of page preview
capabilities
Continued use at work and at home

Develop production standards for our courses
0 Continued work with it at my job
0 Would like to attend annual meeting and Wiz-

ard class
0 Local m guru, member of rn Users Group

Continue production of company documents
with T)$
1'11 keep using it, cursing periodically.

0 Lots of multi-column work
Continued use for Journal work

Continued production of books
0 It handles math so well we will continue to use

it
We will continue to use it and refine our own

macro package
Work my way to T@pert
Expanded use for technical books and articles
Graphics user interface
Investigate using other fonts through a
Postscript driver to produce engineering books

0 More, hope to also learn METRFONT

0 Intend to use it as our primary publishing
vehicle indefinitely.
Introducing more fonts to use with T@
Offering total manuscript production via
Continued involvement
Continued involvement for math work

0 We will probably be replacing with other tools
such as Ventura Publisher

0 Unfortunately when I leave here, TEX will be
replaced with a word-processing package

0 Unless future versions of are screen ori-
ented and "friendly" we will go to scientific
word processors as they become available.

0 If I can predict, I would not be doing TFJ in
the future

0 We expect to be typesetting our entire news-
paper in the future, but expect it to disappear
when we go to electronic full page makeup

0 Uncertain
0 Will use for some things, but are looking for

another system for some publications

Driver and other tool development

0 Continue to use it but look for better integrated
environments to run TEX
Developing new printer drivers

0 Parsing SGML to rn
Working on a better previewer for us

Some Conclusions

This survey produced a lot of useful information
that could help in sparking some ideas and activity
from people involved with 'JJjX from a number of
different levels. There are some ideas for the TJ$
Users Group to use in their future support of the
rn community. For the advertisers, make your
products better known, or start to develop in areas
that are of concern to production typesetters. To
rn support personnel, let us know where you are,
and be willing to provide service and support (for a
fee) to people who are driven by tough production
deadlines.

If anyone has any other ideas that would be
for the common good, maybe we could start a 7&X
"Publisher's Corner" providing tips in future copies
of the TUGboat. Any volunteers to get us started?

o Elizabeth M. Barnhart
National EDP Department
TV Guide
#4 Radnor Corporate Center
Radnor, PA 19088

Declining use

Looking for a completely integrated documen-
tation package

TUGboat, Volume 11 (1990;, No. 2

Software

Exercises for QX: The Program

Donald E. Knuth

During the spring of 1987 I taught a course for

which Volume B of Computers & Typesetting was

the textbook. Since that book was meant to serve

primarily as a reference, not as a text, I needed to
supplement it with homework exercises and exam

problems.

The problems turned out to rather interesting,

and they might be useful for self-study if anybody

wants to learn m: The Program without taking a

college course. Therefore I've collected them here

and given what I think are the correct answers.

The final problem, which deals with the type-

setting of languages that have large character sets, is
especially noteworthy since it presents an extension

of m that might prove to be useful in Asia.

Some of the problems suggested changes in

the text. I've changed my original wording of the

problem statements so that they will make sense

when the next printing of the book comes out;

people who have the first edition should check the

published errata before looking too closely at the

questions below. But some problems (e.g. 25, 26,

and 32) assume the old 7-bit version of m.

Editor's note: The answers to the following ex-
ercises will appear in the November 1990 issue of

TUGboat.

The Problems

Here, then, are the exercises in the order I gave
them. Although they begin with a rather "gentle

introduction," I recommend that the first ones not

be skipped, even if they may appear too easy; there
often is a slightly subtle point involved. Conversely,

some of the problems are real stumpers, but they

are intended to teach important lessons. A serious

attempt should be made to solve each one before

turning to the answer, if the maximum benefit is to

be achieved.

1. (An exercise about reading a WEB.) In the Pascal

program defined by the book, what immediately

precedes 'PROCEDURE INITIALIZE'? (Of course it's

a semicolon, but you should also figure out a

few things that occur immediately before that
semicolon.)

2. Find an unnecessary macro in $15.

3. Suppose that you want to make work in

an environment where the input file can contain

two-character sequences of the form 'esc x', where

esc is ASCII character number '33 and where

x is an ASCII character between -9- and --'

inclusive. The result should be essentially equivalent

to what would have happened if the single (possibly
nonprinting) ASCII character chr (ord(x) - '100)

had been input instead. If esc appears without

being followed by an x in the desired range, you

should treat it as if the esc were ASCII character
number '1 77.

For example, the line 'A esc A esc a eoln'

should put four codes into the buffer: '101, '001,
'177, '141.

What system-dependent changes will handle

this interface requirement?

4. Suppose that the string at the beginning of the

print-roman-int procedure were "m2d5c212q5v5in

instead of "m2d5c215x2v5iU. What would be

printed from the input 69? From the input 9999?

5. Why does error-count have a lower bound

of - l?

6. What is printed on the user's terminal after 'q'

is typed in response to an error prompt? Why?

7. Give examples of how m might fail in the

following circumstances:

a) If the test ' t < 7230584' were eliminated from

$108.
b) If the test ' s 2 1663497' were eliminated from

$108.
c) If the test 'r > p + I ' were changed to 'r > p'

in $127.

d) If the test 'rlink(p) # p' were eliminated from

$127.

e) If the test 'lo-mem-maz + 2 5 mem-bot +
max-halfword' were eliminated from $125.

8. The purpose of this problem is to figure out

what data in mem could have generated the follow-

ing output of show-node-list:

TUGboat, Volume 11 (1990), No. 2

\hbox(10.0+0.0)x100.0, glue set 1O.Ofill loo

.\discretionary replacing 1 200

..\kern 10.0 300

. I \large U 1oooo

.I\large ^-K (ligature ff) 4oo,~ooo1,1ooo2

. \large ! 10003

.\penalty 5000 500

.\glue 0.0 plus 1.OfiU 600

.\vbox(5.0x0.5)x10.0, shifted -5.0 700

Assume that \large is font number 1 and that

\small is font number 2. Also assume that the
nodes used in the lower (variable-size) part of mem

start in locations 100, 200, etc., as shown; the nodes
used in the upper (one-word) part of mem should

appear in locations 10000, 10001, etc. Make a

diagram that illustrates the exact numeric contents

of every relevant mem word.

9. What will short-display print, when given the

horizontal list inside the larger \hbox in the previ-
ous problem, assuming that font-in-short-display is

initially zero?

10. Suppose the following commands are executed
immediately after rn has initialized itself:

incr (prev-depth);

decr(mode-line);
incr (prev-graf);
show-activities .

What will be shown?

11. What will 'show-eqtb (int-base + 17)' show, after

Tf$ has initialized itself?

12. Suppose rn has been given the following
definitions:

\def\aC\advance\day by l\relax)

\def \gC\global\a)

The effect of this inside rn will be that an

appearance of \a calls

eq-word-define (p, eqtb [p].int + I) ,

and an appearance of \g calls

geq-word-define (p, eqtb [p] .int + 1)

where p = int-base + day-code. Consider now the
following commands:

Each 'C ' calls new-save-level(simp1e-group), and

each '1' calls unsave.

Explain what gets pushed onto and popped

off of the save-stack, and what gets stored in

eqtblp] and xeq-level[p], as the above commands are
executed. What is the final value of \day? (See

The W b o o k . exercise 15.9 and page 301.)

13. Use the notation at the bottom of page 122 in

m: The Program to describe the contents of the

token list corresponding to \ ! after the definition

\def\! !l#2! [{!#I#! ! 2)

has been given, assuming that [, I , and ! have the

respective catcodes 1, 2, and 6, just as C, 1, and #

do. (See exercise 20.7 in The ?&$book.)

14. What is the absolute maximum number of char-

acters that will printed by show-eqtb(every-par-loc),
if the current value of \everypar does not contain

any control sequences? (Hint: The answer ex-

ceeds 40. You may wish to verify this by running

TEX. defining an appropriate worst-case example,

and saying

\tracingrestores=l

\tracingonline=l

C\everyparC))

since this will invoke show-eqtb when \everypar is

restored.)

15. What does INITEX do with the following input

line? (Look closely.)

\catcode"=7 \ " ' (") " ' !

16. Explain the error message you get if you say

\endlinechar='! \error

in plain TEX.

TUGboat, Volume 11 (1990), No. 2 167

17. Fill in the missing macro definition so that the

program

\catcodeC?=\act ive

\def\answerC. . .)
\answer

will produce precisely the following error message

when run with plain TEX:

! Undefined control sequence.

<recently read> How d id t h i s happen?

(This problem is much harder than the others above,
but there are at least three wags to solve it!)

18. Consider what rn will do when it processes
the following text:

{\def\t{\gdef\a##)\catcodeCd=12\tld#2#3{#2)}

\hfuzz=100P\ifdiml2pt=lP\expandafter\a

\expandafter\else\romannumera1888\relax\fi

\showthe\hfuzz \showlists

(Assume that the category codes of plain TJ$ are

being used.)

Determine when the subroutines scan-keyword.

scan-int, and scan-dimen are called as this text

is being read, and explain in general terms what

results those subroutines produce.

19. What is the difference in interpretation, if any,

between the following two TEX commands?

\thickmuskip=-\thickmuskip

\thickmuskip=-\the\thickmuskip

(Assume that plain TFJ is being used.) Explain

why there is or isn't a difference.

20. In what way would TJ~X'S behavior change if

the assignment at the end of 5508 were changed to

'b +- (p = null)'?

21. The initial implementation of w 8 2 had a

much simpler procedure in place of the one now in

5601:

procedure dvi-pop ;

begin if dvi-ptr > 0 then

if dvi-buf [dm-ptr - 11 = push then decr(dvz-ptr)

else dvi-out (pop)

else dvi-out (pop);

end;

(No parameter 1 was necessary.) Why did the

author hang his head in shame one day and change

it to the form it now has?

22. Assign subscripts d, y, and z to the sequence

of integers

2 7 1 8 2 8 1 8 2 8 4 5 9 0 4 5

using the procedure sketched in $604. (This is easy.)

23. Find a short program that will cause the

print-mode subroutine to print 'no mode'. (Do not

assume that the category codes or macros of plain

TEX have been preloaded.) Extra credit will be

given to the person who has the shortest program,

i.e., the fewest tokens, among all correct solutions

submitted.

24. The textbook says in 578 that error might be

called within error within a call of error. but the

recursion cannot go any deeper than this.
Construct a scenario in which error is entered

three times before it has been completed.

25. (The following question was the main problem

on the midterm exam.) Suppose WEB'S conventions

have been changed so that strings are not identified
by their number but rather by their starting position

in the str-pool array. The str-start array is therefore

eliminated.

Strings of length 1 are still represented by their

ASCII code values; all other strings have values

2 128. and they appear in the pool-file just as

before, in increasing order of starting position. The

special code '128' is assumed to terminate each

string.
Thus, for example, if such a WEB program uses

just the three strings "ab", "", and "cd" (in this

order), they will be represented in the corresponding
Pascal code by the respective integers 128, 131.

and 132. The program in this case is expected to

initialize str-pool locations 128-134 to the successive

code values 97, 98, 128, 128, 99. 100, 128.
Such a modification requires lots of changes to

rn. Your job in this problem is to indicate what
those changes should be. However. you needn't

specify a complete change file; just say how you

would modify $38-548, 559, $259, $407, 5464, and
5602 (if these sections need to change at all). The

other places where str-start appears can be changed

in similar ways, and you needn't deal with those.

Some of the specified sections will require new

code; you should supply that code. Other sections

may change only a little bit or not at all; you should

just give the grader sufficient explanation of what
should happen there.

TUGboat, Volume 11 (1990), No. 2

26. Continuing problem 25, discuss briefly whether

or not it would be preferable (a) to store the length
of each string just before the first character, instead

of using '128' just after the last character; or (b) to
eliminate the extra '128' entirely and to save space

by adding 128 to the final character.

27. J . H. Quick (a student) thought he spotted a

bug in $671 and he was all set to collect $40.96

because of programs like this:

\vbox{\moveright lpt\hbox to 2pt{}

\xleaders\lastbox\vskip 3ptl

(He noticed that TEX would give this vbox a width

of 2pt , and he thought that the correct width was

3pt.) However, when he typed \showlists he saw

that the leaders were simply

\xleaders 3.0

.\hbox(0.0+0.0)x2.0

and he noticed with regret the statement

shift-amount (cur-box) +- 0

in $1081.

Explain how $671 would have to be corrected,
if the shzfi-amount of a leader box could be nonzero.

28. When your instructor made up this problem, he said
'\hbadness=-1' so that rn would print out the way each

line of this paragraph was broken. (He sometimes wants to

check line breaks without looking at actual output, when

he's using a terminal that has no display capabilities.) It
turned out that rn typed this:

Loose \hbox (badness 0) in paragraph at lines 11-16

[]\tenrm When your instructor made up this problem, he said

Tight \hbox (badness 3) in paragraph at lines 11-16

\tenrm '\tentt \hbadness=-l\tenrm ' so that T [l X would print out the way each

Tight \hbox (badness 20) in paragraph at lines 11-16

\tenrm line of this paragraph was broken. (He sometimes wants to

Loose \hbox (badness 1) in paragraph at lines 11--16

\tern check line breaks without looking at actual output, when

Loose \hbox (badness 1) in paragraph at lines 11-16

\tenrm he's using a terminal that has no display capabilities.) It

Why wasn't anything shown for the last line of the paragraph?

29. How would the output of TEX look different

if the rebox procedure were changed by delet-

ing the statement 'if type(b) = vlist-node then
b + hpack (b, natural)'? How would the output

look different if the next conditional statement, 'if

(is-char-node (p)) . . . ' were deleted? (Note that

box b might have been formed by char-box .)

30. What spacing does TEX insert between the

characters when it typesets the formulas $x== I$,

$x++I$, and $x, ,I$? Find the places in the

program where these spacing decisions are made.

31. When your instructor made up this problem, he
said '\tracingparagraphs=I1 so that his transcript

file would explain why TEX has broken the para-

graph into lines in a particular way. He also said

'\pretolerance=-1' so that hyphenation would be

tried immediately. The output is shown on the next

page; use it to determine what line breaks would

have been found by a simpler algorithm that breaks

one line at a time. (The simpler algorithm finds the
breakpoint that yields fewest demerits on the first

line, then chooses it and starts over again.)

32. Play through the algorithms in parts 42 and
43, to figure out the contents of trie-op, trie-char,

trie-link , hyf-distance , hyf-num, and hyf-next after

the statement

\patterns{albc 2bcd3 ablcd}

has been processed. Then execute the algorithm

of $923, to see how TEX uses this efficient trie

structure to set the values of hyf when the word

aabcd is hyphenated. [The value of hn will be 5,
and the values of hc[l . .5] will be (96,96,97,98,99),

respectively, when $923 begins.]

TUGboat, Volume 11 (1990), No. 2

% This is the paragraph-trace output referred to in Problem 31:
Cl\tenrm When your in-struc-tor made up this prob-lem, he

@ via @@O b=O p=O d=100

@@I: line 1.2 t=lOO -> @@O
said '\tentt \tracingparagraphs=l\tenrm ' so that his tran-script
@ via @@I b=4 p=O d=196

@@2: line 2.2 t=296 -> @@I
file would ex-plain why T U X has bro-ken the para-
@\discretionary via @@2 b=175 p=50 d=46725

@@3: line 3.0- t=47021 -> @@2

graph
@ via @@2 b=25 p=O d=1225

@@4: line 3.3 t=1521 -> @@2
into lines in a par-tic-u-lar way. He also said

@ via @@3 b=69 p=O d=6241

@@5: line 4.1 t=53262 -> @@3
'\tentt \pretolerance=-l\tenrm ' so that hy-phen-ation would be
@ via @@5 b=43 p=O d=2809

@@6: line 5.1 t=56071 -> @@5
tried im-me-di-ately. The out-put is shown on the next

@ via @@6 b=O p=O d=100

@@7: line 6.2 t=56171 -> @@6
page; use it to de-ter-mine what line breaks would

@ via @@7 b=153 p=O d=36569

@@8: line 7.0 t=92740 -> @@7
have - -

@ via @@7 b=34 p=O d=1936

@@9: line 7.3 t=58107 -> @@7
been found by a sim-pler al-go-rithm that breaks

@ via @@8 b=l p=O d=10121

@@lo: line 8.2 t=102861 -> @@8
one

@ via @@9 b=15 p=O d=10625

@@11: line 8.1 t=68732 -> 0629
line at a time. (The sim-pler al-go-rithm finds

@ via @@I0 b=164 p=O d=40276

@@12: line 9.0 t=143137 -> @@I0
the

@ via @@I0 b=O p=O d=100

@ via @@I1 b=192 p=O d=40804

@@13: line 9.0 t=109536 -> @@I1
@@14: line 9.2 t=102961 -> @@I0
break-point that yields fewest de-mer-its on the

@ via @@I2 b=174 p=O d=33856

@@15: line 10.0 t=176993 -> @@I2

first

@ via @@I2 b=41 p=O d=12601

@ via @@I3 b=75 p=O d=7225

@ via @@I4 b=75 p=O d=7225

@@16: line 10.1 t=110186 -> @@I4

line, then chooses it and starts over again.)

@\par via @@I5 b=O p=-10000 d=10100

@\par via @@I6 b=O p=-10000 d-100

@@17: line 11.2- t=110286 -> @@I6

TUGboat, Volume 11 (1990), No. 2

33. The save-stack is normally empty when a rn
program stops. But if, say, the user's input has

an extra '{' (or a missing ' I1) , rn will print the

warning message

(\end occurred in s ide a group a t l e v e l I)

(see $1335).

Explain in detail how to change rn so that

such warning messages will be more explicit. For

example, if the source program has an unmatched

'(' on line 6 and an unmatched '\begingroup'

on line 25, your modified 7&X should give two
warnings:

(\end occurred when \begingroup

on l i n e 25 was incomplete)
(\end occurred when { on l i n e 6

was incomplete)

You may assume that simple-group and

semi~simple~group are the only group codes present

on save-stack when 51335 is encountered; if other

group codes are present, your program should call
confusion.

34. (The following question is the most difficult yet

most important of the entire collection. It was the

main problem on the take-home final exam.)

The purpose of this problem is to extend rn
so that it will sell better in China and Japan.

The extended program, called m , allows each

font to contain up to 65536 characters. Each

extended character is represented by two values, its

'extension' x and its 'code' c, where both x and c
lie between 0 and 255 inclusive. Characters with

the same 'c' but different 'x' correspond to different

graphics; but they have the same width, height.

depth, and italic correction.

is identical to rn except that it has one
new primitive command: \xchar. If \xchar occurs

in vertical mode, it begins a new paragraph; i.e.,

it's a (horizontal command) as on p. 283 of The

T~Xbook. If \xchar occurs in horizontal mode it
should be followed by a (number) between 0 and

65535; this number can be converted to the form

2562 + c, where 0 5 x, c < 256. The corresponding
extended character from the current font will be

appended to the current horizontal list, and the

space factor will be set to 1000. (If x = 0, the effect

of \xchar is something like the effect of \char,

except that \xchar disables ligatures and kerns and

it doesn't do anything special to the space factor.

Moreover, no penalty is inserted after an \xchar

that happens to be the \hyphenchar of the current
font.) A word containing an extended character will

not be hyphenated. The \xchar command should

not occur in math mode.

Inside m, an extended character (x, c) in

font f is represented by two consecutive char-node
items p and q, where we have font(p) = null-font,

character (p) = qi (x), link (p) = q , font (q) = f , and

character(q) = qi(c). This two-word representation

is used even when x = 0.
rn typesets an extended character by spec-

ifying character number 2562 + c in the D V I file.

(See the set2 command in $585.)
If m is run with the macros of plain rn.

and if the user types ' \ t r ac inga l l \xchar600
\showlists ' . the output of 7)QX will include

{\xchar)
{horizontal mode: \xchar)

(\showlists)

hor izonta l mode entered a t l i n e 0

\hbox(0.0+0.0)x20.0
\tenrm \xchar1'258

spacef ac tor 1000

(since 600 is "258 in hexadecimal notation).

Your job is to explain in detail all changes to

that are necessary to convert it to rn.
[Note: A properly designed extension would

also include the primitive operator \xchardef,

analogous to \chardef and \mathdef, because
a language should be 'orthogonally complete'. How-

ever. this additional extension has not been included

as part of problem 34, because it presents no spe-

cial difficulties. Anybody who can figure out how

to implement \xchar can certainly also handle

\xchardef .]

35. The first edition of m: The Program sug-

gested that extended characters could be repre-

sented with the following convention: The first of

two consecutive char-node items was to contain

the font code and a character code from which
the dimensions could be computed as usual: the

second char-node was a halfword giving the actual
character number to be typeset. Fonts were di-

vided into two types, based on characteristics of

their TFM headers; 'oriental' fonts always used this
two-word representation, other fonts always used

the one-word representation.

Explain why the method suggested in problem

34 is better than this. (There are at least two

reasons.)

0 Donald E. Knuth
Department of Computer Science
Stanford University
Stanford, CA 94305

TUGboat, Volume 11 (1990), No. 2 171

Philology

Character Set Encoding

Nelson H.F. Beebe

Introduction

The article by Janusz S. Bieri [3] which follows this

paper complements an earlier one by Yannis Hara-
lambous [5] on the subject of support for larger char-

acter sets.

Because this is an area of international interest
in the computing community, it seemed worthwhile

to review some of the issues. in order to provide

background for those readers who are not actively
following the subject.

There are currently at least two IS0 groups that
are actively engaged in the standardization of char-

acter set encoding. They are identified here by the

reference numbers of the standards on which they

are working, IS0 8859 and IS0 10646.

The IS0 8859 group deals with ASCII and
EBCDIC character set issues and with standardiza-

tion of 8-bit character sets. The IS0 10646 group

deals with multi-byte character set issues.

I have been following the IS0 8859 work for

more than two years, and recently joined the IS0

10646 discussions. Based on that experience, it
seems clear that the problem is much more difficult

than most people realize.
Both groups have active electronic mailing lists;

the end of this article has information on how to

subscribe to them.

256 Does Not Suffice

There is a need for more than 256 characters to sup-

port even just those languages written in the Latin
alphabet. As long as people (and computers) in-

sist on using 8-bit characters, this gives rise to the
problem of multiple 'code pages'.

Text encoded according to one code page must

be accompanied by separate information stating
what code page is to be used. This is difficult

in attribute-free file systems such as WNIX and PC

DOS, since there is no guaranteed way to keep that

information with a text file. Embedding of attribute

headers in the file itself is unacceptable.

Few electronic mail systems support the spec-

ification of a code page in the message header, al-
though the Internet mail headers are sufficiently ex-

tensible that such support could be easily added.

Electronic mail is subject to character set trans-

lations, and these are often inconsistent, particularly

if the mail has passed through Bitnet nodes or IBM

mainframes; multiple code pages increase the likeli-

hood of such corruption.

Switching Between Character Sets

Should it become necessary to switch code pages

in the middle of a document (e.g. for a business in

Sweden to address a letter to a customer in Turkey),
some mechanism must be provided to do so. The

IS0 8859 encodings of &bit characters define escape

sequences that permit changing code pages.
For multi-byte character sets, the situation is

more complex. JISCII 17, 81, the Japanese Industrial

Standard Code for Information Interchange, is a 14-

bit character set defined on a 94 x 94 grid addressed
by two 7-bit characters, using characters in the range

33.. .126, but biased downward by 32 so that the
rows and columns are numbered from 1 to 94. The

Chinese GB-2312 and Korean KS C 5601 standards

also use a 94 x 94 grid.
The JISCII character set includes special sym-

bols and punctuation, the printable ISO/ASCII
character set, Cyrillic, Greek, the Japanese syl-

labic alphabets (hiragana and katakana), followed

by Level 1 kanji (2965 Chinese characters commonly

used in Japanese), and Level 2 kanji (3388 lesser-
used Chinese characters). JISCII does not include

the ISO/ASCII control characters or European al-

phabetic extensions, nor does the ISO/ASCII subset
occupy consecutive positions.

There are at least three ways of encoding doc-

uments in JISCII:

0 16-bit characters as &bit byte pairs;

0 7-bit ISO/ASCII with shift-in and shift-out es-
cape sequences to enter and leave 16-bit char-

acter sections;

7-bit ISO/ASCII where character pairs whose
first member has the high-order (8th) bit set

are taken to be JISCII.

The last two are more compact than the first, but

suffer from what may be called the substring prob-

lem.
Because these two involve a mixture of 8-bit

and 16-bit characters, extraction of a valid substring

requires examination of surrounding context. In the

second method, it may be necessary to scan back to

the start to determine whether there is a preceding
escape sequence. In the third method, if the first

character in the substring does not have its high
bit set, one need only examine a single preceding

TUGboat, Volume 11 (1990), No. 2

character to find out whether the first character is
a normal one, or the second half of a pair.

Since string searching and substring extraction
are among the commonest operations performed on
text by a computer, these are very serious draw-
backs.

There is also the problem of determining string
lengths: is the length the number of characters, or
the number of memory cells used to hold the string?
Which one is needed depends on the application.

Use of a 16-bit representation eliminates these
problems for JISCII, and could as well for a character
set that supported all those derived from the Latin
alphabet.

However, when Chinese is included, about
50,000 more characters are needed [4]. There are
also differences in characters used in the People's
Republic of China (due to simplifications instituted
after 1949) and those in the Republic of China
(Province of Taiwan).

When the 2800 syllabic characters of Korean
Hangul are thrown in [4], plus the 900 or so letter
variants of classical Arabic [9, 10,2], and the dozens
of writing systems used in India, it seems that even
a 16-bit set of up to 65536 characters may be insuffi-
cient to cover the world's major languages. Because
speakers of Chinese, Indian languages, and Arabic
account for more than half of the world's population,
these languages cannot be ignored.

Overlapping with the work on IS0 10646 is an
effort to develop a comprehensive 16-bit character
set called Unicode; some Unicode traffic was origi-
nally broadcast to the IS0 10646 list, but that prac-
tice was discontinued while this article was in prepa-
ration. Subscription details are given in the last sec-
tion below.

The IS0 10646 list review contains the following
paragraph:

As of March, 1990, two coding schemes have
emerged. The International Organization
for Standardization (ISO) Subcommittee 2,
Working Group 2 (SC2/WG2) has developed
the IS0 10646 Multi-Octet Code. It is now
a "draft proposed" standard (two levels re-
moved from being an international standard).
The IS0 working group has been working on
this project for the last 6 years and it has
been subject to unusually wide review for a
proposed standard. The other draft stan-
dard is the result of the work of a consor-
tium of U.S. companies, mostly from the west
coast. It is called Unicode. Both of these
draft standards enable the world's communi-
cation (newspapers and magazines) and busi-

ness characters, ideographs, and symbols to
be encoded for storage and communication
between computers. However, each uses a
different approach to making the inevitable
tradeoffs.

In my view, Unicode seems short-sighted, and too
small. An 18-bit set would probably suffice, so
maybe 36-bit machines like our venerable DEC-20,
and the UNIVAC 1100 series, will someday be rein-
carnated! What is more likely, though, is that falling
memory prices will make 32-bit characters practica-
ble.

Inadequate Display Support

There is a serious problem of character display. How
is a person to read a document that requires charac-
ters unavailable on the terminal or printing device?
This becomes particularly relevant as we enter an
era of international electronic mail and document
exchange.

While personal computers and workstations are
increasingly offering support for multiple character
sets, much remains to be done before the display
problem can be eliminated.

Impact on Programming Languages

If character sets are enlarged, computer program-
ming languages must be modified.
rn 3.0 added only one bit to the character set

encoding, and is riddled with assumptions that 256
is the size of the character set. These assumptions
are of course introduced in the interests of compact-
ness, so that T@ can run on small machines. With
effort, some of these could be eliminated, but prob-
ably not all of them; doing so would introduce in-
compatibilities, and thus lose the right to the name

rn.
With the exception of the ANSI C standard [I],

adopted in December 1989, existing programming
languages (or at least their compilers) assume 7-bit
or 8-bit characters; the last machines using only 6-
bit characters were retired in the early 1980s.

ANSI C provides support for 'wide' characters;
wide strings take the form L" . . . I t and wide charac-
ter constants are written as L ' . . '. Hexadecimal es-
cape sequences, \xhhh. . . are introduced; they may
have any number of hexadecimal digits. The under-
lying representation of wide character strings may
use one or more bytes per character, allowing room
for future expansion. Shift-in and shift-out repre-
sentations are permitted. However, ANSI C states
that a byte with all bits zero shall be interpreted
as a null character (and therefore, a C string ter-
minator), independent of the shift state, and a byte

TUGboat, Volume 11 (1990), No. 2 173

with all bits zero may not occur in the second or
subsequent bytes of a multibyte character. Also, a
comment, string literal, or character constant shall
begin and end in the initial shift state, and shall
consist of a sequence of valid multibyte characters.

Impact on Collating Sequences

Any assignment of characters to a numerical code
introduces collating sequence problems.

For example, the Danish and Norwegian alpha-
bets are A . . . Z, ffi, 0, A, while Swedish reverses the
order of the last three and uses umlauts: f i , 0, A.

Note that these Scandinavian accented letters
are considered separate letters; this differs from
French and German, which alphabetize such letters
without regard to accents. Danish, Norwegian, and
Swedish also occasionally use acute accents on the
letters 'e' and 'o', for disambiguation of homonyms,
and for a few foreign words; these accents are ig-
nored in alphabetization.

With the orthography reform of 1948, Denmark
ceased to capitalize nouns, introduced the new letter
A in place of the old Aa, and moved it from the front
of the alphabet to the end. Under the reform, Aa is
collated as if it were spelled A, so some people moved
from the front of the telephone book to the back.
When Aa occurred in proper names, the owners were
permitted to retain the old form, so both continue
to exist: Aarhus University is in Wrhus, Denmark,
and both the University and city listings are found
at the end of the telephone book.

In German, 8 ('scharfes s' or 'es-zet') capitalizes
to SS (or rarely, SZ), does not occur as an initial
letter, and is alphabetized as 'ss'.

In Spanish, 'ch' is treated as a single letter
falling between c and d , '11' is treated as a letter be-
tween 1 and m, and fi is treated as a letter between
n and o.

Although several languages in Eastern Europe
and the Soviet Union employ the Cyrillic alphabet,
there are variations between countries in both order,
and the exact letters used. The reforms introduced
after the Russian revolution in 1917 removed some
letters from the alphabet, but scholars of pre-1917
literature still require them. A good treatment was
given by David Birnbaum in a posting of 30-Nov-
1989 to the IS0 8859 list.

The New York Stock Exchange listings are al-
ways by corporate abbreviations, yet collation is
according to company name; IBM is listed as if
it were spelled 'International Business Machines'.
Telephone books in some areas move the Macdon-
alds and the McKays in front of other names begin-
ning with M.

In Japanese and Chinese, the order of ideo-
graphic characters is determined by the authors of
each dictionary. Many dictionaries base the order on
the 214 fundamental 'radicals' (character part build-
ing blocks); the dictionary is ordered by groups of
characters having the same radical, and within each
group, by increasing numbers of strokes, and by pro-
nunciation. However, some characters have more
than one radical, many have the same pronuncia-
tion (in Japanese, 5500 kanji have only 336 different
sounds [6]), and pronunciations may vary with di-
alects (Chinese has dozens of dialects that are mutu-
ally incomprehensible, but share a common writing
system). Dictionaries from the People's Republic
of China can also be found with ordering according
to the Pinyin representation in the Latin alphabet,
that is, according to Mandarin pronunciation.

JISCII has yet another assignment of Chinese
(kanji) characters into two levels according to fre-
quency of use. In the JIS Level 1 kanji, order is ac-
cording to dictionary and pronunciation order [ll,
p. 68); subgroupings are mostly according to stroke
count. with exceptions. In JIS Level 2 kanji, or-
der is according to radical and stroke count. These
difficulties have traditionally discouraged the use of
indexes in Japanese books, and also seriously impact
filing of information in computers and offices.

For a readable account, see the chapter Practi-
cal Consequences of a Large Character Set in J . Mar-
shall Unger's book [l l] .

Thus, in many languages, and even in English,
sorting according to a collating sequence is a dif-
ficult problem, and capitalization cannot easily be
changed by a computer program. This has impor-
tant ramifications for BIB^, Ibw, and MakeIn-
dex. In some BIB^ styles, article titles are lower-
cased, and some I4m styles convert titles to upper-
case letters; in both, the result is a disaster if the
language happens to be German.

Internationalization of Software

The chapters on Native Language Support and Reg-
ular Expressions in [12] describe the changes that
must be made to the C run-time libraries, and to
many UNIX utilities, when extended character sets
are used.

For example, international software cannot con-
tain embedded character strings; these must be
moved into separate external files that can be cus-
tomized for each language. In addition, output for-
mat strings must be extended syntactically to per-
mit reordering of output tokens (cf. English "The
White House" and French "La Maison Blanche").

TUGboat, Volume 11 (1990), No. 2

Summary and Conclusions

Character coding is a very complex issue, and de-

spite the vigorous discussions on the IS0 8859 list,

I do not see a solution on the horizon. Because it

uses a different character set (EBCDIC) than every-
one else, IBM will be affected more by character set

issues than other vendors; its conservatism, and his-

torical slowness to respond to the demands of the

market and its users, also suggests that solutions

will not soon be forthcoming.

In my view, the advent of support for 8-bit char-

acters in TJ$ 3.0 will for some time hinder, rather

than help, document portability. There is a conflict

between the desire for ease of use and readability

of the input file on the part of the author or typist

who enters it by, say, striking the 0 key on a Danish
keyboard, and the co-author in Britain who cannot

display the 0 on the screen, and may have no idea

what character was intended.

Authors who stick to the 7-bit ISO/ASCII char-
acter set and with some labor. enter \OC) instead of

using the 0 key, will promote document portability.

Alternatively, translation filters will be needed,

but it may not be possible to base them entirely on
simple text substitutions, at least in the 7-bit to 8-

bit direction, since \O cannot be substituted if it is

the initial part of another control sequence. Also.
in TEX 3.0, hyphenation opportunities will be lost

if accented characters encoded as single &bit values

are replaced by control sequences.

~IBTEX, I P ' , and MakeIndex will require re-

visions in the future for

support of 8-bit character sets,

more flexible provision for specification of sort-

ing order,

suppression of capitalization changes.

Even itself may need modifications, since
the xchro character translation array is initialized

early in the program to values which depend upon

the local character set, and no provision is made for

switching code pages dynamically.

Joining the Mailing Lists

To subscribe to the IS0 8859 or IS0 10646 mailing

lists, send an e-mail message to the server

LISTSERV@JHWM.BITNET

with the body text (LISTSERV ignores the e-mail Sub-

ject: line)

SUBSCRIBE IS08859 <your-personal-name>

or

SUBSCRIBE IS010646 <your-personal-name>

Letter case is ignored in LISTSERV commands.

Your e-mail return address is automatically ex-

tracted from your mail message. The personal name
is used to annotate the mailing list, which can be

retrieved with a message like REVIEW IS010646, in

case you would like to know your correspondents by
other than cryptic e-mail addresses. The REVIEW

command also provides a summary of the purpose

of the discussions.
All list traffic is archived; a message with the

text INDEX IS010646 will retrieve an index for that

list, and a following message with the text GET
IS010646 f i l e type will fetch a particular file. For

more details on LISTSERV, send a message with the

text INFO GENINTRO.

To get on the Unicode list, send a message re-

questing inclusion to Glenn Wright:

glennw@sun.com

References

American National Stacdards Institute, 1430
Broadway, New York, N. Y., 10018. Amerz-

can Natzonal Standard Programmzng Language
C, ANSI X3-159.1989, December 14 1989.

Joseph D. Becker. Arabic Word Processing.

Communzcatzons of the Assoczatzon for Com-

putzng Machanery, 30(7):600-610, July 1987.

Janusz S. Bien. On Standards for Computer
Modern Font Extensions. TUGboat, 11(2):175-

183. June 1990.

S. Duncan, T. Mukaii, and S. Kuno. A Com-

puter Graphics System for Non-Alphabetic Or-

thographies. Computer Studzes zn the Human-

ztzes, 2(3):113-132, October 1969.

Yannis Haralambous. and Latin Alphabet

Languages. TUGboat, 10(3):342-345, Novem-

ber 1989.

A. V. Hershey. Calligraphy for Computers.
Technical Report TR-2101, U. S. Naval Weap-

ons Laboratory, Dahlgren, Virginia 22448, Au-

gust 1967.

Japanese Standards Association, 1-24, Akasaka

4 Chome, Minato-ku, Tokyo, 107 Japan.
Japanese Industrzal Standard JIS C 6626-1978

Code of the Japanese Graphzcs Character Set

for Informatzon Interchange, 1978.

Japanese Standards Association, 1-24, Akasaka

4 Chome, Minato-ku, Tokyo, 107 Japan.

Japanese Industrzal Standard JIS C 6234-1983

24-dots Matrzx Character Patterns for Dot

Prznters, 1983.

TUGboat, Volume 11 (1990), No. 2

G.A. Kubba. The Impact of Computers on Ara-
bic Writing, Character Processing, and Teach-
ing. Information Processing, 80:961-965, 1980.

Pierre Mackay. Typesetting Problem Scripts.
Byte, 11(2):201-218, February 1986.

J. Marshall Unger. The Fiflh Generation
Fallacy- Why Japan is Betting its Future on
Artificial Intelligence. Oxford University Press,
1987.

X/Open Company, Ltd. X/Open Portability
Guide, Supplementary Definitions, volume 3.
Prentice-Hall. 1989.

o Nelson H.F. Beebe
Center for Scientific Computing

and Department of
Mathematics

South Physics Building
University of Utah
Salt Lake City, U T 84112
USA
Tel: (801) 581-5254
Internet: BeebeQscience .utah.edu

-

On Standards
for Computer Modern Font Extensions

Janusz S. Bien

Abstract

Haralambous' proposal to standardize the unused
part of Computer Modern fonts is discussed, and
some modifications and extensions suggested. The
idea is pursued by designing the extended CM font
layout, and an example is given for one of its possible
uses.

1 Introduction

In my note [4] I advocated an old (115, p. 461, 16,
p. 451) but rarely used idea to place national letters
(actually, the Polish ones, but the generalization is
obvious) in the unused part of Computer Modern
fonts, i.e. as the characters with the codes higher
than 127; this approach allows the handling of na-
tional languages in a way upward compatible with
the standard (American) English TEX. A similar
proposal was made independently by Yannis Hara-
lambous [8], who states also that the use of non-
English letters of latin alphabets should be coordi-
nated, resulting in a single widely used extension

to Computer Modern fonts-I strongly support the
principal idea, and I pursue it in the present paper.
To organize the discussion in a systematic way, I
will use the notions - borrowed from [2] -of text
encoding, typing and rendering.

2 Text encoding

In the context of w, encoding means the character
sets of the fonts in question and their layouts. In
the present section I will focus my attention on the
character sets, as the layouts should be influenced,
among others, by typing considerations.

In an attempt to obtain a general idea about the
use of the latin alphabet worldwide, I looked up the
only relevant reference work I am aware of, namely
Languages Identificatzon Guzde [7] (hereafter LIG).
Apart from the latin scripts used in the Soviet Union
and later replaced by Cyrillic ones, it lists 82 lan-
guages using the latin alphabet with additional let-
ters (I preserve the original spelling):

Albanian, Aymara, Basque. Breton, Bui,
Catalan, Choctaw, Chuana, Cree, Czech,
Danish, Delaware, Dutch, Eskimo, Espe-
ranto, Estonian, Ewe, Faroese (also spelled
Faroeish), Fiji, Finnish, French, Frisian,
Fulbe, German, Guarani, Hausa, Hun-
garian, Icelandic, Irish, Italian, Javanese,
Juang, Kasubian, Kurdish, Lahu, Lahuli,
Latin, Lettish, Lingala, Lithuanian, Lisu,
Luba, Madura. Miao, Malagash, Malay,
Mandingo, Minankabaw, Mohawk, Mossi,
Navaho, Norwegian, Occidental, Ojibway
(also spelled Ojibwe), Polish, Portuguese,
Quechua, Rhaeto-Romanic (Ladin, Ro-
mansh), Rumanian, Samoan, Seneca, Serbo-
Croatian. Sioux, Slovak, Slovene, Spanish,
Suto, Sundanese, Swahili. Swedish, Tagalog,
Turkish, Uolio, Vietnamese, Volapiik, Welsh,
Wolof, Y, Yoruba, Zulu.

This list includes some languages and dialects
with no script at all, for which the information sup-
plied concerns more or less standard transcription.
For most of them this fact is noted explicitly, but
the exception of Kasubian (usually recognized as a
dialect of Polish) suggests that this is not always
the case. I noticed some inconsistencies in the nu-
merous indexes to the book, but only one omission
(described later) in the proper text. Of course, it is
difficult for me to judge the reliability of the work
as a whole.

The number of additional letters in the latin
alphabets listed in LIG - including some variants
of shape but excluding upper case letters - is 176.

176 TUGboat, Volume 11 (1990), No. 2

Hence the total number of lower and upper case let-
ters is definitely over 300. The possible errors and
omissions cannot change this estimate significantly,
so in general we have to cope with the number of ad-
ditional letters substantially exceeding the number
of fkee slots in the Computer Modern fonts.

My solution to this problem is to postulate two
levels of standards:

Extended Computer M o d e r n fonts, with a
small number of slots unassigned.

Full Extended Compute r Modern fonts, i.e.
national or regional fonts compatible with Ex-
tended CM fonts, but having some additional
characters assigned.

Of course, both of them will include all the charac-
ters of the original CM fonts in their proper places;
although teletypewriter layout fonts are much less
used, our standards should take them into account,
too.

It should be noted now that there are numerous
national and international standards for text encod-
ing. The most relevant for us is the IS0 6937 inter-
national standard ([12], [13], [l4]), described thor-
oughly in [25] and discussed in [24]. Annex D to
the standard 1131 is entitled Use of Latin alphabetic
characters; formally it is not part of the standard,
but its goal is to provide

justification for the composition of the alpha-
betic part of the graphic character repertoire.
It does not attempt to define which charac-
ters should, and which ones should not. be
used in any language.

The annex contains a table (quoted in [25]) listing
the following languages (I again preserve the original
spelling):

Albanian, Basque, Breton, Catalan, Croat,
Czech, Danish, Dutch, English, Estonian,
Faroese, Finnish, French, Frisian, Galician,
German, Greenlandic, Hungarian, Icelandic,
Irish, Italian, Lapp, Latvian, Lithuanian,
Maltese, Norwegian, Occitan, Polish, Por-
tuguese, Rhaeto-Romanic, Romanian, Scots
Gaelic, Slovak, Slovene, Sorbian, Spanish,
Swedish, Turkish. Welsh, Afrikaans, Es-
peranto.

With the exception of the last 2 languages, the
list contains 39 living European languages. How-
ever, despite the quoted reservation, it seems rather
strange that, according to the table, English uses
28 additional letters (namely B A, B A, EE E , q C,
6 ~ , k ~ , G ~ , G ~ , i i , i 1 , f i ~ , 6 0 , 6 0 , c e a) .
The standard associates with all the characters their

unique identifications (explained in Annex A to the
standard [13]) and names; I will use these names in
the sequel when appropriate.

The IS0 6937 character set includes 87 addi-
tional letters which exist in both lower and upper
case form, 6 letters which have only lower case form
and 2 letters which have only upper case form. Ad-
ditionally, 3 lower case letters and 1 upper case let-
ter have shape variants (I refer here to the shapes
of the letters, not to their function in specific lan-
guages; although e.g. in Lapp and Latvian G is the
upper case equivalent of g, I count them as having
no case counterparts). This gives us the total of 186
additional letters. Although 10 of them are already
included in the original CM fonts (namely EE I E , 1,

1 L, ce a, 0 0, fi), again the number of additional
characters exceeds the number of free slots. More-
over, we should not forget the problem of the missing
punctuation marks. The most demanded ones seem
to be the angle quotation marks (<,>>) used also e.g.
in French, German and Polish, the "continental" left
quotation mark (,,) used e.g. in German and Polish,
and perhaps the German right quotation mark (");
cf. [6], [21], [18].

Let us have now a closer look at the character
set proposed by Haralambous. To understand fully
its implications, let us discuss first the language list
contained in [8]. The IS0 standard and LIG confirm
consistently only 8 items:

Croa t (spelled Croatian in [8] and [7]): C C, E C,
d D, s S , i Z.

Hungar ian: B A, 6 E, i i , 6 0 , 6 0, i5 0, 6 U, ii~,
ii U.

Polish (in addition, I vouch for its correctness per-
sonally): a, 4, C C, ? Q , 1 L, ri N, 6 0; 6 S, i Z,
i Z.

Romanian (spelled Rumanian in 171): B A, & A,
i 1, 9 8, I! T.

Slovene (spelled Slovenian in [7] and [8]): E C, S S,
i Z.

Spanish: B A, 6 E, i f , ii fi, 6 0, 6 U, u U.

Turkish: & A , ~ ~ , ~ G , ~ I , ~ I , ~ ~ , ~ O , ~ ~ , C U ,
ii u.
In the case of 7 languages my sources consis-

tently disagree with Haralambous' list:

Albanian. There is c with cedilla (C C) instead of
c with caron (E c).

Catalan. There is the additional letter i with di-
aeresis (i'); according to IS0 6937, there is an
additional letter 1 with middle dot, while LIG
states

TUGboat, Volume 11 (1990), No. 2

Two successive letters 1 which do not de-
note one sound are separated by a point
1.1 (or 1.1).

Czech. The letter d' is treated as variant of d; both
of them are called in IS0 6937 small d with
caron; the same holds respectively for t'. LIG
distinguishes also a variant of d differing in the
placement of the caron. For upper case letters
both sources list only D aild T (neither D' nor
T').

Faroese (in [7] often spelled Faroeish). Instead
of small d with stroke and small thorn there
should be small eth (a) ' and capital D with
stroke (i.e. the capital eth D).

Icelandic. Instead of small d with stroke there
should be capital thorn (P) .

Irish. Besides its own alphabet, the language uses
the latin script with the following additional let-
ters: A A, 6 E, i f , 6 0, 6 U.

Lithuanian. It uses ogonek instead of cedilla, so
there is e.g. a, and e instead of Q and q , etc.

For the remaining 28 languages, 9 languages are
not accounted for in the IS0 6937 standard (Corsi-
can, Creole, Gaelic, Guarani, Indonesian, Kurdish,
Latin, Qheshwa, Vietnamese) and 7 languages are
not listed in LIG (Corsican, Creole, Gaelic, Gali-
cian, Maltese, Occitan, Qheshwa); however, some
languages may be called by different names (I hap-
pen to know that Latvian is Lettish, but is Scots
Gaelic different from Gaelic, is Qheshwa different
from Quechua?). For the rest of them both my
sources more or less disagree. Fortunately, with the
exception of Slovak and Vietnamese, the differences
concern the use of accented letters by specific lan-
guages and do not affect the character set itself.

For Slovak (spelled Slovakian by Haralambous),
the problem concerns the letter 1 with acute accent
included in the IS0 standard but not listed at all
in LIG, and the letter 1 with caron, listed in LIG
(and by Haralambous) only in its variant shape (1').
I consulted an original Slovak grammar [22], which

confirms the existence of i and L and lists 1 with
caron only in the form 1' L'.

As for Vietnamese, LIG (and also some books
published in Poland) uses o' and u' instead of cr

and w (o and u "with beard"), listed not only by
Haralambous but also in [26]; on the other hand,
there is no doubt about the correct shape of the
accent called question mark in [26], which is given

' The editors thank Jorgen Pind for supplying
his METAFONT sources (see also [23]) to create the
eths and thorns in this article.

by Haralambous in a simplified form. I intend to
consult an expert on this matter (I suspect differ-
ent usage in North and South Vietnam), but his
answer is not relevant for our further discussion-
anyway, the Vietnamese letters and accents should
be included in a specific Full Extended CM font, not
in the Extended CM font.

In my opinion, the Extended CM fonts should
contain the following additional letters:

small and capital a with acute (A A), grave
(B A) and circumflex (5 A) accent, with diaere-
sis (ii A), tilde (5 A), ring (B A) and ogonek

(a, 41,
small and capital c with acute (6 C) accent,
with cedilla (q C) and with caron (i: c),
small and capital d with caron (d D) and with
stroke (d, D),

small eth (a), small and capital thorn (b P),

small and capital e with acute (6 E), grave (6 E)
and circumflex (6 E) accent, with diaeresis (6 E)
and ogonek (9 I$),

small and capital g with breve (g G),

small and capital i with acute (i f) , grave (i i)
and circumflex (i i) accent, with diaeresis (i' I)
and caron (i f) , and capital I with dot above

(11,
small and capital 1 with acute accent (i L), with
caron (i L) and with stroke (1 L) ,

small and capital n with acute accent (ri N),
with tilde (fi N) and caron (ii N),

0 small and capital o with acute (6 0), grave
(b 0) and circumflex (6 0) accent, with diaere-
sis (6 0) and caron (6 o), and with double acute
accent (6 0),

0 small and capital r with caron (f R),

0 small and capital s with acute (6 S) accent, with
cedilla (q 3) and with caron (5 s) ,

0 small and capital t with cedilla ($ T) and with
caron (t T),

0 small and capital u with acute (6 u), grave
(i ~ U) and circumflex (h U) accent, with diaere-
sis (ii u), ring (6 U) and with double acute
accent (ii u),

0 small and capital y with acute (9 Y) accent and
with diaeresis (j ; Y) ,

0 small and capital z with acute (i Z) accent, with
caron (5 Z) and with dot above (i z).

and the following additional punctuation marks:

0 the left and right angle quotation marks (a >>),

0 the "continental" left quotation mark (,,),

0 the German right quotation mark (").

178 TUGboat, Volume 11 (1990), No. 2

The proposed character set thus contains 112
additional letters and 4 additional punctuation
marks. It includes the Polish letters 1 L, already
present in some CM fonts, because they are needed
also in the fonts with the teletypewriter layout (I
follow Haralambous in this respect).

The Extended Computer Modern font leaves 12
slots to be assigned in the regional or national Full
Extended CM fonts (in particular, for Vietnamese).

3 Text typing

In my note [4] I advocated a novel idea (at least
at that time-now cf. [27, p. 3351) to use several
t f m files to access the same font for different pur-
poses - a Polish font with the layout upward com-
patible with the original CM font can be accessed by
the original t f m for standard work, and by a special
t f m file for typesetting Polish texts. In my opinion.
this approach should be applied to the multilingual
fonts discussed here - they should be offered with
many t f m files tailored for specific regions, nations
and languages. Therefore in the sequel I will limit
my attention to the default t f m files for Extended
CM fonts.

In general, the typing considerations have two
aspects

echo problem,

sorting problem.

By the echo problem I mean the typing feedback-
can the user pressing a key on the keyboard see the
proper character shape on the screen without resort-
ing to the graphic mode? As for the sorting prob-
lem, many people are not aware that the alphabetic
ordering is language dependent, and that it can dif-
fer substantially from one language to another. Of
course, = users are first of all interested in sorting
by various TEX utilities, such as BIB^ or MakeIn-
dex. I hope that the re-implementation of IPW
proposed in [20] will be accompanied by the univer-
sal versions of these programs, allowing the sorting
algorithm to be controlled by appropriate parame-
ters.

Unfortunately, the echo problem is not an inter-
nal affair of the = community, but a general prob-
lem heavily dependent on hardware and operating
systems. As mentioned in [9], over half of T)$ users
work on IBM compatible computers, so it would not
be wise to ignore what IBM intends to do in this do-
main. Therefore I have done my best to collect the
tables of the so called code pages designed by IBM
(or with its approval).

In [19] I found the following tables:

1. Code page 437-United States,

2. Code page 850 -Multilingual,

3. Code page 860 -Portuguese,

4. Code page 863 - French-Canadian,

5. Code page 865-Nordic.

Surprisingly enough, there were mistakes in the ta-
bles; I managed to correct them by consulting other
sources.

In [lo] I found, apart from Cyrillic, the follow-
ing page

1. Code page 852 - Multilingual Group 2.

In [ll] I found, apart from Cyrillic and 22
EBCDIC-based pages, the following code pages (for
the curious reader I include also non-latin scripts):

1. Code page 838-Latin #5, Thailand,

2. Code page 850 -Multinational,

3. Code page 851 - Greece,

4. Code page 857-Latin #5, Turkey,

5. Code page 860 -Portugal,

6. Code page 861 -Iceland,

7. Code page 862 -Israel,

8. Code page 863 - Canadian French,

9. Code page 864 -Arabic,

10. Code page 865 -Nordic,

11. Code page 891 -Korea,

12. Code page 897 -Japan #1,

13. Code page 903-Peoples Republic of China

(PRC),
14. Code page 904-Republic of China (ROC).

As you can see, the page names differ slightly in
various documents.

My goal was to design the layout of Extended
CM fonts in a way as compatible as possible with the
above listed code pages. I think that seeing on the
screen- instead of a letter - a non-letter character
is less confusing than seeing a wrong letter; therefore
I looked first of all for those letters which appear in
at least two code pages and which conflict only with
some non-letter characters. I found 8 such letters,
and I included them in the font on the positions
identified by their codes in the code pages (the octal
values are given in parentheses):

small A with circumflex accent (8) 131 ('203),
small c with cedilla (q) 135 ('207),
capital C with cedilla (C) 128 ('200),
small e with acute accent (6) 130 ('202),
small o with acute accent (6) 162 ('242),
small o with circumflex accent (6) 147 ('223),
small u with diaeresis (ii) 129 ('201) ,
capital U with diaeresis (u) 154 ('232).

I decided also to prefer those code pages which
are provided now with MS-DOS and PC-DOS,

TUGboat, Volume 11 (1990), No. 2 179

namely the pages 437 and 850. So the second step

was to include those letters which occur in both of
them, and those which occur in page 850 and are in

conflict only with non-letter characters in page 437.

It resulted in the following 49 assignments.

small a with acute accent (A) 160 ('24O),

capital A with acute accent (A) 181 ('265),

small a with grave accent (8) 133 ('205))

capital A with grave accent (A) 183 ('267),

capital A with circumflex accent (A) 182

('266 1,
small a with diaeresis (a) 132 ('204),
capital A with diaeresis (A) 142 ('216),

small a with tilde (5) 198 ('306),

capital A with tilde (A) 199 ('307))

small a with ring (8) 134 ('206),
capital A with ring (A) 143 ('21 7) ,

small eth (a) 208 ('320),

capital D with stroke (D) 209 ('321),
small thorn (p) 232 ('350))

capital thorn (P) 231 ('34 7) ,

capital E with acute accent (E) 144 ('220),

small e with grave accent (6) 138 ('212),

capital E with grave accent (E) 212 ('324),

small e with circumflex accent (6) 136 ('210),

capital E with circumflex accent (E) 210 ('322).

small e with diaeresis (e) 137 ('21 1),
capital E with diaeresis (E) 211 ('323),

small i with acute accent (i) 161 ('24l) ,

capital I with acute accent (f) 214 ('326).

small i with grave accent (i) 141 ('21 5) ,
capital I with grave accent (1) 222 ('336).

small i with circumff ex accent (i) 140 ('214),

capital 1 with circumflex accent (f) 215 ('327),
small i with diaeresis (i') 139 ('213),

capital I with diaeresis (I) 216 ('33O),

small n with tilde (ii) 164 ('244),

capital N with tilde (N) 165 ('245))

capital 0 with acute accent (6) 224 ('34O),
small o with grave accent (6) 149 ('225),

capital 0 with grave accent (0) 227 ('343),

capital 0 with circumflex accent (0) 226

('34211
small o with diaeresis (0) 148 ('224),
capital 0 with diaeresis (0) 153 ('231),

small o with caron (6) 228 ('344),

capital 0 with caron (0) 229 ('345),

small u with acute accent (6) 163 ('243),

capital U with acute accent (u) 233 ('351),
small u with grave accent (C) 151 ('227))

capital U with grave accent (u) 235 ('353))

small u with circumflex accent (13) 150 ('226),

capital U with circumflex accent (u) 234

('352) ,

small y with acute accent (9) 236 ('354),

capital Y with acute accent (Y) 237 ('355),

small y with diaeresis (y) 152 ('230).

This rule applies also to the punctuation marks:

left angle quotation mark (<<) 174 ('256),

right angle quotation mark (>>) 175 ('257).

The next step was to transfer to our font the let-

ters included only in the second multinational page,

namely 852, and not in conflict with some letter in

other pages, i.e. the following letters:

capital N with caron (N) 213 ('325))

small r with caron (f) 253 ('375),

capital R with caron (R) 252 ('374),

capital S with cedilla (3) 184 ('270),

capital S with caron (s) 230 ('346),

small t with cedilla (3) 238 ('356),

capital T with cedilla (T) 221 ('335))
small t with caron (i) 156 ('234),

small u with double acute accent (ii) 251

('373),
small z with acute accent (5) 171 ('253),

small z with dot above (i) 190 ('276),

capital Z with dot above (z) 189 ('275).

By this time we have filled in 71 slots in the

font; 12 slots are to be left free and 45 characters

are still to be assigned. It is the right moment to
concentrate on the free slots. I decided to leave free

the positions 145 ('221), 146 ('222), 155 ('233) and

157 ('235), because in the most used page, 437, they

contained the characters E h? 0 0, which can be

useful for many users. For similar reasons I left

free the position 225 ('341). which in the two pop-

ular pages 850 and 852 (and also 857) contain the
character IJ. I decided also to leave free the positions

159 ('237)) 166 ('246), 167 ('247), 168 ('250), 169
('251), 172 ('254) and 173 ('255), because I see no

simple criterion for solving the letter conflicts among

the code pages. There are also serious conflicts on

the positions 158 and 170, so I decided to devote
them to the punctuation marks:

the "continental" left quotation mark (,,) 158

('236 1,
the German right quotation mark (") 170

('252).

The remaining 43 characters have been assigned

in an arbitrary way:

small a with ogonek (3) 176 ('260),
capital A with ogonek (A) 177 ('261),
small a with breve (5) 178 ('262),

capital A with breve (A) 179 ('263),

small c with acute accent (6) 180 ('264))
capital C with acute accent (c) 185 ('271),

TUGboat, Volume 11 (1990), No. 2

small c with caron (E) 186 ('272),
capital C with caron (c) 187 ('273),
small d with caron (d) 188 ('274),
capital D with caron (D) 191 ('277),
small d with stroke (d) 192 ('300),
small e with ogonek (q) 193 ('301),
capital E with ogonek (5) 194 ('302),
small e with caron (6) 195 ('303),
capital E with caron (E) 196 ('304),
small g with caron (g) 197 ('305),
capital G with caron (G) 200 ('310),
small i with caron (i) 201 ('31 1)
capital I with caron (1) 202 ('312),
capital I with dot above (I) 203 ('313),
small 1 with caron (i) 204 ('314),
capital L with caron (L) 205 ('315),

small 1 with acute accent (i) 206 ('31 6),
capital L with acute accent (L) 207 ('31 7),
small 1 with stroke (I) 217 ('331),
capital L with stroke (L) 218 ('332),
small n with acute accent (6) 219 ('333),
capital N with acute accent (N) 220 ('334),
small n with caron (ii) 223 ('337),
small o with double acute accent (6) 239 ('357),
capital 0 with double acute accent (0) 240

('360),
small s with acute accent (9) 241 ('361),
capital S with acute accent (s) 242 ('362),
small s with cedilla (8) 243 ('363),
small s with caron (3) 244 ('364),
capital T with caron (T) 245 ('365),
small u with ring (II) 246 ('366),
capital U with ring (u) 247 ('367),
capital U with double acute accent (u) 248

('370 1,
capital Y with diaeresis (Y) 249 ('371),
capital Z with acute accent (z) 250 ('372),
small z with caron (2) 254 ('376),
capital Z with caron (z) 255 ('377).

Editor's note: The encoding scheme above is pre-
sented in a font layout on p. 183.

The default tfm files for Extended CM fonts for
use with 8-bit TEX should not contain any ligatures
except those needed for kerning or inherited from the
original CM fonts. However, for 7-bit TEX another
default tfm scheme is to be designed, because in it,
ligatures are the only way to access the second half
of the fonts without disturbing the hyphenation. I
would like to advocate here another idea from my
note [4], consisting in using the character with the
code 32 (the stroke for the Polish 1) as a part of the
ligatures accessing the national letters. The idea is
further developed here in two respects:

The ligatures in question should consist of a let-
ter followed by the character 32. The reason is
that such representation of national letters af-
fects the alphabetic ordering in a less substan-
tial way and, under some additional conditions,
can even preserve the ordering for some lan-
guages.
There should be a general rule saying that the
ligature composed of a character with the code
x followed by the character with the code 32
accesses the character with the code x + 128.
The rule can be called a 7-bit equivalent of the
double circumflex notation [16, p. 3251.

Of course, the character 32 is not directly acces-
sible, because it coincides with the space character
in the ASCII code. However, it can be easily as-
signed to any active character. On the other hand,
to preserve the compatibility in case of the teletype
layout fonts, the macro for the visible space has to
be changed.

I think that the language specific tfm files are
especially useful for 7-bit TEX. My experience with
typesetting Russian texts using the AMS Cyrillic
fonts showed that sophisticated multipurpose liga-
ture tables are more a nuisance than a real help.
In consequence, Haralambous' ligatures can be ac-
cepted only as one of several alternative tfm files,
and not as a general standard.

4 Text rendering

In the context of Q X , rendering means the actual
fonts used by the device drivers. Again, in my opin-
ion, there should be a default METAFONT definition,
not the standard one. First, I am not sure that
e.g. French capital A with acute accent looks the
same as the Hungarian one (my impression-maybe
wrong - is that they differ substantially). Secondly,
I do not know whether such problems as the ac-
tual shape of e.g. Czech d with caron can be solved
definitively; perhaps both versions are to be used
depending on the situation.

Last but not least, it should be remembered
that some letters use up the font space only for hy-
phenation purposes -even in TEX 3.0 an accented
letter (i.e. constructed by the \accent command)
disables hyphenation until the next glue. Sooner or
later a standard for virtual fonts-i.e. for creating
new characters from the elements already present
in the fonts-will emerge as a part of the stan-
darization of the device drivers. One of the first
virtual font mechanisms was mentioned in the Edi-
tor's comment to Haralambous' paper ([8, p. 342]),
but the idea of "fooling" the 'TEX program can be
traced down at least to Appelt [I]. Incidentally, the

TUGboat, Volume 11 (1990), No. 2

term virtual fonts is used in the context of Beebe's

drivers in a totally different sense-cf. the 'a' pa-

rameter ([3, p. 31); I hope this confusing use will

soon be abandoned.

5 An example

Let us imagine an IBM PC computer equipped with

the code page 852 character set (supported by IBM

on the Polish market and accepted by some state-

owned manufacturers), used to typeset Polish texts

with &bit 'IkX and the proposed Extended CM

fonts. There are 18 Polish national letters, and only

for 4 of them their codes coincide in the code page

and the proposed layout. In consequence, some kind

of translation is needed for the remaining 14 letters
(such a compromise seems necessary to make the

proposal acceptable by the users of other languages).

Assuming that the fonts have been set up cor-
rectly (by assigning to their characters the proper

values of \catcode, \kcode, \uccode. \sf code,

\mathcode and \delcode), the following definitions

are sufficient for the compatibility of the echo (when
working with a standard 8-bit editor) with the font

layout.

% 165 small a with ogonek
\catcode--a5=\active\chardef--a5=176

% 164 capital A with ogonek
\catcode^~a4=\active\chardef~~a4=177

% 134 small c with acute accent
\catcode--86=\active\chardef--86=180

% 143 capital C with acute accent
 cat code--8f =\active\chardef --8f =I85
% 169 small e with ogonek
\catcode^-a9=\active\chardefA-a9=193

% 168 capital E with ogonek
\catcode--a8=\active\chardef--a8=194

% 136 small 1 with stroke
\catcode^-88=\active\chardefA^88=217

% 157 capital L with stroke
\catcode--9d=\active\chardef--9d=218

% 228 small n with acute accent
\catcode--e4=\active\chardef--e4=219

% 227 capital N with acute accent
\catcode--e3=\active\chardef--e3=220

% 224 capital 0 with acute accent
\catcode~~eO=\active\chardef~~e0=224

% 152 small s with acute accent
\catcode-^98=\active\chardef--98=241

% 151 capital S with acute accent
\catcode-^97=\active\chardefA-97=242

% 141 capital Z with acute accent
\catcode--8d=\active\chardef--8d=250

% no translation needed for
% 162 small o with acute accent

% 171 small z with acute accent
% 190 small z with dot above
% 189 capital z with dot above

After changing the representation of Polish letters

in the hyphenation patterns [17], the Polish hyphen-

ation algorithm will operate with no problems.

As for 7-bit m, using directly the default 7-bit

tfm would make the input text completely unintel-

ligible. However, it is not difficult to create a conve-

nient interface, either by means of macro definitions

similar to those quoted in 118, p. 51 and [5], or by in-

troducing a special Polish tfm file with appropriate

ligatures.

In both cases the explicit use of national letters

(i.e. echoed on the screen in a reasonable way) in

control sequences is severely limited. Unfortunately,
we have to live with it till the next change in QX.

6 Concluding remarks

For a standard to be widely accepted, it has to be

fully adequate to actual needs - neither too gen-

eral nor too specific. I hope that my modifications
and extensions of Haralambous' proposal achieve

the proper balance.

It should be also noted that a substantial part of

actual and potential TEX users who will be affected

by the standards are not yet organized into users

groups; moreover, most of them have no access to
electronic mail. If the standard is to be developed-

as proposed by Haralambous - in a democratic way,

then the traditional forms of communication should

be the primary medium.

References

Wolfgang Appelt. The Hyphenation of Non-

English Words with QX. In Dario Lucar-
ella, editor, Proceedings of the First European

Conference on for Scientific Docurnenta-

tion, Addison-Wesley, Reading, Massachusetts,

1985, pp. 61-65.

Joseph D. Becker. Multilingual Word Process-

ing. Scientific American Vol. 251 No. 1 (July

1984), pp. 82-93.

[Nelson H. F. Beebe]. DVIxxx- Display m
DVI Files on Assorted Output Devices. Beebe's

driver distribution version 2.10.

Janusz S. Bien. Polish Language and m .

W l i n e 8 (January 1989), p. 2.

Janusz S. Bien. Co to jest m? [What is m ?

In Polish]. Wiadornos'ci Matematyczne Vol. 29

No. 1 (to appear).

Jacques DCsarmBnien. The Use of TJ$ in

French: Hyphenation and Typography. In

TUGboat, Volume 11 (1990), No. 2

Dario Lucarella, editor, Proceedings of the
First European Conference on for Sci-
entific Documentation, Addison-Wesley, Read-
ing, Massachusetts, 1985, pp. 41-59.

R. S. Gilyare and V. S. Grivnin. Languages
Identification Guide. "NAUKA" Publishing
House, Central Department of Oriental Liter-
ature, Moscow 1970.

Yannis Haralambous. TJ$ and latin alphabet
languages. TUGboat Vol. 10 No. 3 (November
1989), pp. 342-345.

Don Hosek. Guidelines for creating portable
METAFONT code. TUGboat Vol. 10 No. 2 (July
1989), pp. 173-176.

IBM Corporation. Personal System/2 Natural
Language Supplement. First edition (February
1988) 07F3226.

IBM Corporation. Application S,ystem/400
I -.

Natural Language Support: User's Guide. First
edition (September 1989) GC21-9877-0.

21 International Organization for Standardization.
Tnformation processing. Coded character sets
for text communication -Part 1: General In-
troduction. First edition 1983-11-01. Ref. No.
IS0 693711-1983(E).

[13] International Organization for Standardization.
Information processing. Coded character sets
for text communication-Part 2: Latin alpha-
betic and non-alphabetic graphic characters.
First edition 1983-12-15. Ref. No. IS0 693712-
1983(E).

[14] International Organization for Standardization.
Information processing. Coded character sets
for text communication -Part 2: Latin alpha-
betic and non-alphabetic graphic characters.
Addendum 1, 1989-05-01. Ref. No. IS0 6937-
2-1983/Add1:1989(E).

[15] Donald E. Knuth. The W b o o k . Addison-
Wesley, Reading, Massachusetts, 1984.

[16] Donald E. Knuth. The new versions of TEX and
METAFONT. TUGboat Vol. 10 No. 3 (Novem-
ber 1989), pp. 325-328.

[17] Hanna Kolodziejska. Dzielenie wyraz6w pols-
kich w systemie 'I)$ [Polish hyphenation pat-
terns for 7&X; in Polish]. IInf UW Report
165, Institute of Informatics, Warsaw Univer-
sity, 1987.

[18] Hanna Kolodziejska. Le traitement des textes
polonais avec le logiciel m. Cahiers GUTen-
berg Num6ro z6ro (Avril 1988), pp. 3-10.

[19] Microsoft Corporation. MS-DOS User's Guide
and User's Reference [Version 3.31. Doc. No.
M5123-8806B.

[20] Frank Mittelbach and Rainer Schopf. With
IPm into the Nineties. TUGboat Vol. 10 No. 4
(December 1989), pp. 681-690.

[21] Hubert Partl. German m. TUGboat Vol. 9
No. 1 (April 1988), pp. 70-72.

1221 Eugen Pauliny. Krritka gramatika slovenskri.
Slovenskk Pedagogick6 Nakladatel'stvo, Brati-
slava 1963.

[23] Jorgen L. Pind. Lexicography with m. TUG-
boat Vol. 10 No. 4 (December 1989), pp. 655-
665.

[24] S taffan Romberger and Yngve Sundblad.
Adapting TJ$ to languages that use Latin al-
phabetic characters. In Dario Lucarella, editor,
Proceedings of the First European Conference
on for Scientific Documentation, Addison-
Wesley, Reading, Massachusetts, 1985. pp. 27-
40. --

[25] Joan M. Smith. Transmitting Text: A Standard
Way of Communicated Characters (Part 1). As-
sociation for Literary and Linguistic Comput-
ing Bulletin Vol. 12 (1983) No. 2, pp. 11-38.

[26] Eric Vogel. Printing Vietnamese characters by
adding diacritical marks via w. TUGboat
Vol. 10 No. 2 (July 1989), pp. 217-221.

[27] Dimitri Vulis. Notes on Russian w. TUGboat
Vol. 10 No. 3 (November 1989), pp. 332-336.

o Janusz S. Bien

Institute of Informatics
Warsaw University
PKiN p.850

00-901 Warszawa, Poland

TUGboat, Volume 11 (1990). No. 2

Janusz S. Bien

The layout
of the proposed CM font extensions

Fonts

Circular Reasoning: Typesetting on a Circle,
*

and Related Issues
l%

Alan Hoenig

Owing to the generality of both 7&X and META-
FONT, it's easy to typeset in and on circles. Here's

how.

The METAFONT Part

7&X can't actually turn characters on their side; we

ask METRFONT to create special fonts where each

character in the font is rotated around its reference

point (the lower left corner of the bounding box

of any character). Then 'l&X properly positions
characters from the rotated fonts to achieve the

illusion of circular typesetting. We need one rotated

font for each position on the circle.

What does it mean to typeset characters around
the circumference of a circle? I imagined a regular Figure 1. What this article is about.

184 TUGboat, Volume 11 (1990), No. 2

polygon inscribed in the circle. The vertices of

the polygon touch the circle from the inside, and

the faces of the polygon form bases on which each

character sits. Since each base is the same length

as any other, I abandoned the concept of variable

width typesetting on the circle; this accounts for
the visually unsettling appearance of some circular

typesetting. Later we will center each character on

its base.
Let the bases be numbered from 0 to n - 1;

there are a total of n sides to this polygon. (It's

more convenient to label the faces starting with 0
rather than 1.) Figure 2 shows a portion of such

a circle with the first few faces. Notice that the

zero-th face is at the "nine o'clock" position on the
circle; that's because we read from left to right.

Figure 2. The inscribed
imagine placing rotated
bisects its face.

n-gon on which we
letters. The point B

For this article, I generated a sequence of

rotated cmbxl2 fonts. and if we let b = 12pt , and

imagine there to be room for 32 characters on the
circumference of the circle, then the circle's radius

must be 61.21 pt.

This follows from Figure 2 since

b/2 = r sin(AO/2) .

If n is the number of faces in the inscribed polygon,
then A8 = 27rJn or A8/2 = r / n . Given n = 32
(then A0 = 11.25') and b = 1 2 pt, we must have
r % 61.21 pt.

Recall the way METAFONT files are organized.

Parameter files (such as cmbxl2.mf) call driver

files (such as roman.mf), which contain further

details about the organization of the particular

font. Finally, this driver calls several program

files containing the instructions for generating the

actual characters in the font. We will need to

make changes to the parameter and driver files; the

program files remain untouched.

I took the file cmbxl2.mf and made 32 copies

of it, named cmbx1200 through cmbx1231. The
idea is that file cmbxl2nn.mf generates the font

whose letters are rotated to stand on face n n of our

inscribed polygon. Make a copy of roman .mf, and

call it roroman .mf (a rotated Roman font driver).

The changes to these files are essentially those
which control the rotation of the font. The proper

positioning of these characters involves knowledge

of the trigonometric functions (sines and cosines) of

certain angles. METAFONT does trig calculations

very well. whereas l)?J does them not a t all.

Therefore, we also need to pass the necessary
trigonometric information to TJ$ for its use. We

do this using the f ontdimen mechanism.

Any font has several global characteristics that are
helpful in typesetting. In a non-math font, these
include things such as the width of a quad, the
amount of stretchability of an interword space, and
so on. These necessary quantities typically occupy
positions f ontdimenl through f ontdimen7, but it's
possible to create as many fontdimen parameters
as needed. Note, for example, that if METAFONT
stores a value of 1 (say) in f ontdimenl0, then 'l'@
will read \f ontdimenlo for that font as 1 pt. T)jx
appends units of points to METAFONT's numerical
fontdimen values.

Changes to Files C M B X 1 2 n n . M F

The parameter files need few changes. At the

beginning of each file, modify the comments to

remind yourself of the changes you will have made.

I also adjusted the value of the parameter ligs = 0

to suppress ligatures. The last line of the file should
be generate roman; change that to read

generate roroman.

The remaining changes are new lines which imme-
diately precede this line, and they should look like

this:

numeric wedge-angle;

wedge_angle=360/32;

numeric face; face=O;

numeric rotation-angle;

rot at ion-angle=

90- (face+. 5) *wedge-angle ;

fontdimeng: face, rotation-angle;

f ontdimenl I :

sind wedge-angle, cosd wedge-angle;

fontdimenl3: % for r=61.21pt
sind(rotation-angle),

cosd(rotation-angle) ;

fontdimenl5: % for r=30.61pt
sind(90-2 (f ace+ .5) *wedge-angle) ,
cosd(90-2 (f ace+ .5) *wedge-angle) ;

fontdimenl7: % for r=15.30pt
sind(90-4 (f ace+ .5) *wedge-angle) ,
cosd(90-4 (f ace+ .5)*wedge_angle) ;

TUGboat, Volume 11 (1990), No. 2 185

This puts various parameters in fontdimens nine
through seventeen. The rotation angle is the angle
by which we need to rotate a letter from the vertical
so it will sit on its proper face on the underlying
n-gon. The rotation is done in a counter-clockwise
direction, as per the usual METAFONT convention. -
In figure 2, angle AOB is the rotation angle for the
letter that will sit on face 1. Notice that line OB
bisects the wedge angle and is perpendicular to the
face, which it bisects.

These lines should be the same in all of the rotated
font parameter files, except for the line defining the

value of face. In file cmbxl2nn, the appropriate

definition should be f ace=nn.

Changes to roroman.mf

METAFONT can rotate the elements it draws as a
matter of course, so we need only the following few

alterations to roroman .mf.

currenttransform:=currenttransform

ro t a t ed ro ta t ion-angle ;
def t-=transformed

current t ransform enddef;

These statements should appear immediately fol-

lowing the line

mode-setup; font-setup;

and in any case before the sequence of input

statements that follows.

METAFONT's currenttransf orm applies a trans-
form to all the pictures it generates. We simply
define this transform to include a rotation by the
current value of the rotation angle, and META-
FONT does the rest.

Thirty-Two New Fonts

Now, generate 32 new fonts. The METAFONT
command line you need is

mf \&cm \mode=corona; input cmbxl200

and so on for the remaining 31 fonts. Minor
variations will be necessary depending on your

particular system. For example, you will need to

select the proper mode name. In PCMETAFONT, for

example, you conclude the line with the switches

/a=99/t. Don't forget to change input cmbx1200

to input cmbxl201, and so on. After creating

each METAFONT font file, you need to transform
the generic font file to a pk file via the utility

gftopk; typically the command line to do that
looks something like

gf topk cmbx1200.300 cmbx1200.pk

Finally, move the tfm file to wherever all your
other tfm files are (probably in a directory named

something like \tex\textfms) and move the pk

files to their proper directory, something like

tex\pixel\dpi300 for laser printer fonts; change
the '300' to the resolution of your printer. (If your

pixel files are organized according to the older con-

vention involving numbers like 1500 and so on, the

determination of where to place these fonts is less

straightforward. In general. though, these font files

should reside in the same region of your hard disk

as do the fonts you use for normal 10 pt, \magstep0
typesetting.)

I confess I only generated the uppercase letters

to these rotated fonts to save my time and disk

space. If you elect to follow suit, you'll have some

minor additional changes to make to roroman-
namely, comment out all but the first input state-

ment in that file. You'll probably want to create

batch files to generate your fonts, convert them to
pk form, and move them to the proper directories.

A 'I&jX Digression

8

9
we can do something

simpler than circular

typesetting. We will first

typeset on an angle. To type-

set up a 45-degree incline, we
need a special font which I named

zcmrl0. I deviated from my naming

scheme because no face is inclined a t

the proper angle when there are 32 faces in

the polygon. In zcmrlO.mf, let the rotation

angle be 45 (degrees). Most of the l)$ macros

that are responsible for placing the letters properly

appear somewhere in The W b o o k ; as is so often

the case, doing something interesting with l$J is a

matter of the artful extraction of the relevant bits

and pieces from The W b o o k .
The macros depend on a \ge t fac tor macro.

It takes a single argument, namely a particular

fontdimen for a certain font, and returns the value

of that fontdimen stripped of the units of points.

This macro is largely adapted from an example in

Appendix D (page 375). Watch closely.

186 TUGboat, Volume 11 (1990), No. 2

(\catcode1p=12 \catcode't=12

\gdef \\#lptC#l))

\let\getf actor=\\

Thus, if \the\f ontdimenl\t enit is '0.25pt', then

\getfactor\the\fontdimenl\tenit

will yield 0.25 in some context where 0.25 makes
sense.

We have to sidestep m ' s typesetting mech-

anism, since we are not setting characters on a

common baseline, and we appropriate part of the

solution to exercise 11.5, in which we learn how to

seize individual tokens in a list. Here's the relevant
code.

\def\dolistC\afterassignment

\dodolist\let\next= 1

\def\\(% next char letter or space?

\expandafter\if\space\next\addspace

\else\point\next\fi)

Macro \addspace (see below) is responsible for

leaving spaces in the angle copy. The macro \point,

drawn from Appendix Dl is used to position the

current character. In order to use these macros, we

need to initialize certain registers and fonts.

\newdimen\x \newdimen\y

\def\initialize(\global\x=Opt

\global\y=Opt 1

We will depend on \newcoords to compute

the coordinates for the reference point of the next

character. We use analytic geometry to determine

Ax = - sin B \wdO

Ay = cosB \wdO

where 6 is the angle of inclination of the type from

the vertical (here 6 = 45") and \wdO is the width

of the current character or space which is in \boxO.
Then, x c x + Ax and y t y + Ay.

\font\anglefont=zcmr10 % rotated font
\newdimen\DeltaX \newdimen\DeltaY

\def\newcoordsC%

\DeltaX=\expandaf ter\getf actor

\the\f ontdimenl4\anglef ont \wdO

\DeltaY=\expandafter\getf actor

\the\fontdimenl3\anglefont \wdO

\global\advance\x by-\DeltaX

\global\advance\y by\DeltaY)

\getfactor strips the 'pt' from fontdimens 13

and 14 and uses the resulting numbers -values of
sine and cosine for an angle - as coefficients of the

width of the box containing a space.

Here is the TEX code for \addspace, which
determines how much space to leave between words.

\newbox\spacebox

\setbox\spacebox=\hbox~\)

\def\addspaceC\setboxO=

\copy\spacebox \newcoords)

The \point macro that I use is slightly different

from the one Donald Knuth provides in Appendix D.
Here is its code.

\def\point#l(%

\setboxO=\hboxC\anglefont #I)%

% used by \newcoords
\setbox2=\hbox(\anglefont #l)%

% used for typesetting
\wd2=0pt \ht2=Opt \dp2=0pt

\rlapC\kern\x \raise\y \box2)%

\newcoords)

Finally, the \angletype macro puts all the
pieces together.

\def\angletype#l(\initialize

\leavevmode\setboxO=

\hbox~\dolist#l\endlist)%

\box0)

The instruction \angletypeCAngle of Repose) was

sufficient to typeset the subject of Figure 3.

Figure 3. Typesetting at an angle.

Angle typesetting might be useful when you

prepare advertising copy, and when you need to

typeset column headings on tables with very narrow

columns, as in Figure 4.

Typesetting on Circles

Once the angle-setting macros are in place, we

need to alter details to accomplish typesetting on a

circular path. On a circle, things change as we move
along the circumference - we have to keep track of

our position along the circumference, and at each

new face we have to select the appropriate font.
The macros \getf actor, \dolist, \dodolist,

and \ \ remain the same. (In \\, we rename

TUGboat, Volume 11 (1990)' No. 2

Figure 4. A portion of a table with narrow
columns. This is a portion of a table showing
quality of recent vintages. The numbers give
quality in a scale of 1 through 7; 0 means the
wine is unrated.

\addspace to \newcoords.) The first new macro

will determine the coordinates to the next vertex

of the underlying polygon on which we place each

type. We identify these coordinates as x, and
yi. First we initialize the coordinates. The initial

vertex (xo, yo) has coordinates (-T, 0). \f aceno is a
numeric register containing the current face number

(recall that we draw a correspondence between
position along the circumference and a particular

face of the inscribed 32-gon). Various radius-like

quantities will later enable us to typeset around
circles of varying radius.

Given vertex (xnryn) , we can get the next vertex
(travelling clockwise) via

x,+l = x, cos A0 + yn sin A0

yn+l = -xn sin A0 + yn cos A6

(see, e.g., David Salomon's article in TUGboat 10,

no. 2 , p. 213, July, 1989). We calculate these
quantities using registers \dimeno. \dimenl, and

\dimen2.

\dimeno=-\expandaf ter\getf actor

\the\fontdimenll\anglefont \x

\dimen2=\expandafter\getfactor

\the\fontdimenl2\anglefont \y

\advance\dimenO by\dimen2

\global\x=\dimenl \global\y=\dimenO)

\def\nextpoint{\nextpointt

\preparefornextface)

\let\newcoords=\nextpoint

\newcount\lastface \lastface=31

\def\preparefornextface(%

\global\advance\faceno by 1

\ifnum\f aceno>\lastf ace

\global\f aceno=O

\message{There may be too many

letters in your circular message!)%

\else \ifnum\faceno<lO

\font\anglefont=cmbxl20\the\faceno

\else \font\anglefont=cmbxl2\the\faceno

\f i \f i)

Macro \preparef ornextf ace changes fonts for the

next face of the underlying polygon, and uses a
numerical register \f aceno for that purpose.

We won't use the coordinates (x,, y,) for type-
setting, because that would put the reference point

of the type at the vertex of our underlying, imagi-

nary 32-gon. It is much better to center the type on
its base. The centering macro \setonbase assumes

that \box2 contains the current character and the

corrected coordinates are (xi, yi)

If w is the width of the type and b is the length of

the base. then the vector Ar

b - w
A T = -

2
(cos 0, sin 0)

provides the correction to r = (x,, y,) so that if we

place the reference point of the type at the point

r' = r + A r , then it will be centered on that base.
0 is the rotation angle.

We can easily get A r from r since the two

vectors are perpendicular to each other. Given that
r = T (- sins, coso), then either of &(cos 0, sine)

are perpendicular to it. Since A r represents an

offset in the clockwise direction, we choose the +
sign.

\newdimen\xprime \newdimen\yprime

\def\setonbase(% curr char in \box2

\xprime=\x \yprime=\y

\baseof f set=. 5\base

\advance\baseof f set by-. 5\wd2

\dimenO=\expandafter\getfactor

\the\fontdimenl4\anglefont \baseoffset

\dimen2=\expandafter\getfactor

188 TUGboat, Volume 11 (1990), No. 2

\the\fontdimenl3\anglefont \ b a s e o f f s e t additional trigonometric values in cmbxl2nn.MF

\advance\xprime by\dimenO so that an enhanced version of \setonbase cali

\advance\yprime by\dimen2 3 compute Ar properly. That's why we included

Finally, we need a altered \point information for fontdimens 15 through 18 in the

macro, and \circumt ype puts everything together. METAFONT parameter

\def\circumtype#l(%

\ i n i t i a l i z e

\setboxO=\hbox(\dolist#l\endlist~%

\ l eavemode \box0 3

Figure 5 shows the alphabet around a circle.

If the irregular rhythm of the type due to placing

variable width type at equal intervals bothers you,

you might want to consider using a monospaced

font like cmt t l0 instead of the cmbxl2 that I used.

Figure 5. Circular typesetting.

Actually, the changes to \setonbase are extensive
and I have not done them at this time. If you
decide you want to, here are some things to keep
in mind. When we shrink the radius, we need
to increase the wedge angle. Halving the radius
requires doubling the wedge angle (provided the
length of the base remains constant), and so on.
At a half radius, for example, we skip every other
vertex of the original 32-gon. In Figure 6, we set
a letter on faces AB and (closer to the center
of the circle, though) while skipping faces BC and -
DE. However, we need fontdimen information
from the skipped fonts to get information about
the vectors Ar. In Figure 6, OB is perpendicular
to AC. We need to invoke and save information
from that skipped font.

Figure 6. Typesetting when we change the
radius.

However, it's easy to do "poor man's" typesetting

around smaller circles if we adopt a "dummy"

version of the \se tonbase macro. Here's all we

need do.

\r=\Radius

\def\newcoords{\nextpoint

\nex tpo in t)

\def\setonbase{% dummy d e f ' n

\xprime=\x \yprime=\y}

To typeset around the smallest circle, simply set

and

Smaller Circles \def\newcoords(\nextpoint \nextpoint

Because 32 is divisible by four, it is easy to typeset
\nextpoint \nextpoint 3

on circles that are one-half and onequarter the Because of the do-nothing version of \setonbase,

radius of the original circle. Such cartouches would the reference point of each letter coincides with the

accommodate 16 and 8 characters around their

circumferences. To do this right, we would need

TUGboat, Volume 11 (1990), No. 2

Figure 7. Typesetting around small circles.

vertices of the underlying 16-gon or octagon. Some-
how, though, at smaller radii, this is less visually

unsettling than we would expect (see Figure 7).

On the Inside of a Circle

Suppose we wanted to typeset around the inside of

a circle. In light of the foregoing, one approach
is to simply "METAFONT up" a new set of 32

fonts using a slightly different expression for the

rotation angle, but it is possible to use the fonts we

already have. For example, on face 1, we use font
cmbxl201 to determine type placement information,

but we typeset the letter using the font that would
normally appear diametrically opposite it (in this

case, face 17). Given a face n, its opposite face no,,
must satisfy

In - noppl = N/2
where N is the total number of faces and both n
and nOpp must be non-negative integers less than

N. (Remember, N = 32 for our largest circle.)

When we use the font that belongs at the opposite
face, we need to keep two points in mind. First of

all, the reference point of the opposite font lies not

at vertex n, but at vertex N + 1, the next clockwise

vertex (think about it). We can take this into

account in our initialization macro. When using
opposing fonts, the initial position of the type on

face 0 is not at (- T , 0) but at (- T cos A0, r sin A@).
Because of the displacement of the reference

point, the vector AT that the \setonbase macro

uses must point in the counterclockwise direction.

These changes dictate the following new macros

which contribute to the construction of macro
\circintype.

\the\fontdimenl3\anglefont\baseoffset

\advance\xprime by-\dimen0

\advance\yprime by-\dimen2

\oppface=\faceno \advance\oppface by0

\ifnum\faceno<l6

\advance\oppf ace by16

\else \advance\oppface by-16

\f i

\ifnum \oppface<lO

\font\oppfont=cmbxl2O\the\oppface

\else

\font\oppfont=cmbxl2\the\oppface

\f i \setbox2=

\hbox{\oppfont \the\currchar))

\def\ininitializeC\font\anglefont=

cmbx1200 \global\faceno=O

\x=-\expandafter\getf actor

\the\fontdimenl2\anglefont \r

\y= \expandafter\getf actor

\the\fontdimenll\anglefont \r)

\def \circintype#l(\bgroup

\let\setonbase=\setinbase

\let\initialize=\ininitialize

\initialize

\setboxO=\hbox~\dolist#l\endlist)%

\leavevmode\boxO \egroup)

Figure 8 shows what to expect from inscribed
circular typesetting.

Figure 8. Typesetting inside a circle.

Incidentally, here are the commands I used to
generate the top of Figure 1.

\circumtype(%
THIS IS CIRCULAR----------------

3%
\circintype{% -------------------

YHPARGOPYT-"'1%

TUGboat, Volume 11 (1990), No. 2

I suffered plenty of setbacks en route to a
working set of circular macros. Sometimes the

results of faulty macros were interesting in their

own right. Take a look at the best such mistake in

Figure 9.

Figure 9. Mistake.

If you try this stuff yourself, note that circular

typesetting may throw your previewer and device

driver for a loop (apt?). You have been warned.

o Alan Hoenig
17 Bay Avenue
Huntington, NY 11743

(516) 385-0736

Graphics

On the Implementation of Graphics
into TEX

Gerhard Berendt

1 Abstract

The problem of implementing more complex pic-

tures than are provided by the IPm p i c t u r e en-

vironment into a typical PC version of W is dis-

cussed. In the first part of the article (Sections 2

and 3) a solution is presented which circumvents the

usual limitation of the restricted main memory of

rn and respects the moderate hash size of the PC

versions of W. This solution remains, however. to-

tally within the frame of m. In the second part
(Sections 4 to 7) a solution to the problem is given

which makes use of Postscript within the W envi-

ronment.

2 Introduction

While 7&X is a very powerful tool for producing

mathematical and technical texts, it has its well-

known deficiencies as far as the implementation of

graphics is concerned. The problem is twofold:

- The hash size of about 3000 for a typical PC

version of TEX limits the complexity of macro

packages which implement graphics. It is,
e.g.. impossible to add the rather comfortable

F'ICTEX macro1 package to IPl$X because of

an overflow of the hash size. In order not to
surpass the given hash size, it is therefore nec-

essary to use a more moderate graphics macro

package. if the I4W environment is obligatory.
Our solution to this problem will be presented

in the next section.

- Another more subtle problem results from the

fact that even a picture of only moderate com-

plexity -if it is not produced by characters of
special fonts (as is the philosophy in L A W) -
might overflow the main memory of W. It is

then impossible to compile a page which con-

tains this picture. The only way out of this

difficulty is to compile text and picture sepa-

rately and either to combine the two dvi files

afterwards or to print text and picture in two
runs.

In the first part of this article, we present a

compromise solution to both problems which:

enables the user to produce texts plus included

pictures of moderate complexity; and

needs nothing but I4W running on a P C to-
gether with a small graphics macro package, a

parameter file extraction program and (option-
ally) another utility program which automates

the creation of the picture input.

Our solution relies neither on special output de-

vices or files (e.g. laser printers or Postscript files)

nor on drawing programs or special picture for-

mats. Instead, the pictures are drawn within the

I4m p ic tu r e environment which is enriched by a

few graphics macros from the extended epic style.

M.J. Wichura, TUGboat 9, no. (2) , p. 193,

1988

TUGboat, Volume 11 (1990), No. 2

3 Graphics via techniques

In the following, we use the rather small Enhanced

Picture Environment package,' which is given by

the epic style format, together with the bezier

style format3 for drawing curves, and finally a few

additional macros for producing gray tones within

certain parts of the picture. As the bezier style and

the epic style are public domain files, we concen-

trate on the additional macros, which are included

in the file neubild. sty.

3.1 The picture input

There are two main macros within this style file,

\varbild and \VARBILD. The macro \varbild has

7 parameters, 3 of which are optional: the complete
macro goes as follows:

#I is optional; its possible values are <1>,

<r>, <c> or <v>, the default being <v>.

The values of #I have the following meanings:

The picture is located at the left margin

of the text, and the text flows around

the picture on its right side.

The picture is located at the right mar-

gin of the text, and the text flows

around the picture on its left side.

The picture is centered, and there is no

text neither at the right nor at the left

of the picture.

<v>=<r> if the pagenumber is odd, else

<v>=<l>.

and #3 denote the width and the
height of the picture in multiples of

\unit length. The default \unit length pro-
vided by neubild. sty is 1 mm.

#4 and #5 are again optional; the defaults

are #4=#5=0. They denote the origin's

translation in the coordinate system of the

I4m picture environment, again as multi-
ples of \unitlength.

#6 denotes the contents of the picture en-

vironment (without the control sequences

Copyright (a) Sunil Podar, Dept. of Com-

puter Science, SUNY at Stony Brook, NY 11794,

U.S.A.

Copyright (0) 1985 by Leslie Lamport
As the macro package was developed in the

context of a German book project, the names of the

macros are given in German, which we hope will not

give rise t o irritations.

\begin{picture) and \end{picture)).

#7 finally is a correction parameter; it de-

notes the number of lines by which w ' s
calculation for the picture depth should be

shortened. #7 can be positive, zero or neg-

ative and does not have any meaning with

the option #l=<c> (but must be set to zero

in this case).

The macro \VARBILD has 8 parameters, 3 of which

are optional. Here, instead of including picture

commands explicitly as with argument #6 above, we

pass filenames so that the picture may be laid out
on a separate run of w . Two filenames are needed

for each picture: one for a I4w 'driver' file which

places the picture in the proper position on a page,
the other for a file containing picture commands.

The complete macro goes as follows:

The parameters #I through #5 have the same

meaning as in the macro \varbild: again,

I , 84 and #5 are optional.

#6 has the same meaning as the parameter

#7 in \varbild.

#7 is a string in DOS-format; it denotes

the name (without extension) of a (&m
drzver) file, which becomes the source file

of the picture in question on a separate run
of Tf?-X (since \VARBILD only provides an

empty frame of the correct picture dimen-

sions within the text file).

88 finally - again a string like #7 - denotes
the name of a (pzcture source) file which will

contain the picture commands called by the

corresponding (D m drzver).

The macro \varbild is used whenever all the

commands of a picture shall be enclosed within the
text file, while the macro \VARBILD creates an empty

frame of the chosen dimensions within the text file

and, in addition. writes to a parameter file the in-

formation needed to build pure picture files, each

of which will be placed at the correct position on

its respective page. If the \VARBILD alternative is

chosen, the text file must start with the line

\immediate\openout\bilder = (parameter file)

and its last line must be

\closeout\bilder

After compilation of the main text file, which
will also generate the parameter file, the picture files

TUGboat, Volume 11 (1990), No. 2

have to be created with the program MAKEPIC via

the command line

MAKEPIC (parameter file)

This program produces for each line of the parame-
ter file (i.e. for each occurrence of \VARBILD in the

source file) a (U W driver) file with the name given

by argument #7 of \VARBILD. This file contains
nothing but the picture environment at the correct

place.5 It can therefore be compiled as usual and

be printed onto the appropriate page separately. If
the placement of the picture is not quite accurate, it

is possible to move the picture by applying the pro-

gram MAKEPIC once more to the parameter file,

this time using the option of moving the coordinate

system in question.

3.2 Picture creation and implementation

While it is rather easy to construct pictures within
the picture environment of IPm as long as there

are only lines, vectors, circles and text involved.

it is very cumbersome to introduce picture input

which contains BCzier functions or other complex

features. Therefore, the MAKEPIC program cre-

ates a IPW file with only the frame of the pic-

ture, while the actual picture input is contained in

an input file, the name of which is given by the pa-

rameter #8 in the \VARBILD macro. The whole pic-
ture input -apart from the \begin(picture) and

\endCpicture) lines - is thus expected as the con-

tents of a (picture source) file. This file may be
created manually or via the additional utility pro-

gram PICTPLUS. This program asks either for a

function x = x(t), y = y(t) or for an area to be shad-
owed, and will in return produce a IPm input file,

which can be inserted into the (@ W driver) file

in place of the line \input (pzcture source) or can

be left within the working directory as the (picture
source) file itself.

Thus, the whole procedure for including a pic-
ture of moderate complexity into a M7QX text file

by help of the \VARBILD goes like this:

1. Insert the line

\immediate\openout\bilder=(parameter file)

at the very beginning, and the line

\closeout\bilder

as the last line into your IPm source file.

2. Introduce the option neubild into your docu-
ment style.

It is, of course, also possible to write the picture
source file by hand, using the information from the
parameter file.

3. Write the source file and insert a \VARBILD

macro at the beginning of each paragraph where

a picture should be placed. Be sure that the

text that will flow around the picture frame

does not contain any \par macro (this does

not apply if the option #l=<c> is chosen). It is

advisable to write the whole paragraph which

surrounds a picture in \sloppy mode, since the
\textwidth is reduced within this paragraph

whenever you produce a picture which does not

cover the whole width of the page.

4. Compile the source file and thereby create the

parameter file automatically because of step 1.

5 . Run the program MAKEPIC on the parameter
file to create the (U r n driver) files for each

occurrence of a \VARBILD.

6. Create the (picture source) files for each of the

(U W driver) files either manually or via the
program PICTPLUS. Insert these files into the

(U r n driver) files in exchange for the line
\input (picture source) or put these \input
files into your working directory.

7. Compile the (D m driver) files separately.

8. Print the main dvi file first and then the (P W
driver) dvi files separately onto those printer

output pages where the corresponding empty

frames of the pictures have been produced. If

for a certain picture there are slight devia-
tions from the correct placement, compile the

(U r n driver) file in question once again, this

time using the option of moving the coordi-

nate system appropriately, or use the facilities

of the MAKEPIC program to shift the picture
slightly.

While the whole procedure might look a little

bit complex, one should bear in mind that -apart
from the two auxiliary programs MAKEPIC and

PICTPLUS - there are no requirements necessary

in addition to the pure TEX mechanism. In the sec-
ond part of this paper a more elegant solution to the

problem, using PostScript files, will be presented.

4 Implementation of graphics via
PostScript

With the advent of software driven PostScript in-

terpreters like FREEDOM OF PRESS it has become

reasonable to print 7QX files via PostScript on a

multitude of cheap printers. Of course, printing

time is much longer in PostScript than it is with

a driver like PCDOT or PTIJET. It is there-

fore worthwhile to switch to the PostScript scheme

only if the results are inconvenient or insufficient
otherwise. This is the case if even only moderately

TUGboat, Volume 11 (1990), No. 2 193

complex pictures are to be included into QX or

L4QX text files, because on the one hand there ex-

ists only a very limited variety of picture elements

within TJ$ or U r n , and-which is much worse -

on the other hand the compilation of the source file

may fail due to memory restrictions of 7Q?J.6 There-
fore, if time is not an important factor it might be

convenient to create a dvi file from the source text

together with a PostScript file for each of the pic-

tures to be included and then to combine these files

into one PostScript file, for instance, via the PTIPS

driver. PTIPS enables the user to insert any ordinary

PostScript file at an arbitrary position into the main

file by help of the TpX \special command. In the

following, a scheme is developed to use this feature
in LPm files which contain pictures of moderate

complexity.

5 Preparation of the main text file

In order to prepare the main text file for the inclu-

sion of pictures, a method similar to the one given in

the first part of this paper is used. Again, the option

neubild has to be added to the documentstyle of the
main file, and a parameter file has to be opened by

the line

\immediate\openout\bilder=(parameter file)

and closed by the line

\closeout\bilder.

The file neubild . sty contains, in addition to the

macros already mentioned, the macro \varpsbild

which writes an entry into the parameter file and

sets an empty frame of the desired size and position
within the main file. In addition to this, \varpsbild

puts a mark equivalent to the line

\special{ps:bildname.ps)

at the correct position in the main text dvi file after

compilation. This mark enables the PTIPS driver to
insert the PostScript file bi1dname.p~ at this po-

sition as it creates the PostScript file of the main

text.
The macro \varpsbild is given as

\varpsbild[#l] (#2 ,#3) (#4, #5) #6#7

where the parameters #1 to #5 have the same mean-

ing as the corresponding parameters within the

macro \VARBILD, while the parameters #6 and #7

have the following meaning:

#6 is mandatory; it is the name of the PostScript

#7 is mandatory; it has the same meaning as in

the macro \varbild (it denotes the number of

baselines by which TEX must underestimate the

surrounding text to place the picture properly).

6 Preparation of pictures to be included

In principle, any PostScript picture file can be cre-

ated manually by help of any appropriate editor us-

ing the PostScript language. Anybody who has a

fluent knowledge of the PostScript language will cer-

tainly prefer this way to other possibilities. Since.

however, many users of TJ$ are not so experienced

in PostScript, we developed a small PASCAL pro-

gram which can be used interactively to input the
most common elements of the I 4 W picture en-

vironment and output a complete PostScript file

ready for insertion into the main text PostScript

file. This program. TEX2PS, is menu-driven and al-

lows construction of objects (line), (vector), (curve),
(ellipse) and (text) in any desired combination, solid

or dashed, with or without shading. Moreover, mul-

tiple constructs of those objects can be performed
in any order and PostScript program lines can be

added at will manually. Thus, the elements of any

picture which can be created within a slightly ex-

tended picture environment of IPQX (as, e.g., in

the epic style) can be input to TEX2PS and be
transferred to the corresponding PostScript descrip-

tion. By means of the procedure described above it

is then possible to produce a PostScript file which

combines the main text with any number of pictures

of that sort. The combined file can be printed either

directly by a PostScript printer or via a software in-
terpreter like FREEDOM OF PRESS or similar program

on many non-Postscript printers.

A few remarks should be made concerning the

program TEX2PS. Though it is meant to be used

without referring to the PostScript language, a slight
knowledge of the PostScript graphic elements is rec-

ommended (of course, you might get the scheme

by trial and error after a while). The assignments

'Draw' (='stroke7), 'Fill7 and 'Eofill' have their

origin in the PostScript language and do exactly

what they would do in a PostScript setting7; how-

ever, they are enclosed between 'gsaue' and 'gre-

store ' lines. I t is therefore possible to shade an area

first and then to draw its border lines without re-

peating the whole pattern. The option 'Link' is not

a PostScri~t o~era tor : it is used to construct a con- . L

file which contains the picture elements to be tinuous path of equal' or different elements (for in-
put into the empty frame. stance to be shaded afterwards).

Section 1. e.g. The PostScript Language Reference Man-

ual by Adobe Systems Inc., Addison-Wesley, 1985

TUGboat, Volume 11 (1990), NO. 2

Finally, it should once more be emphasized

that -if you have a good knowledge of the Post-

Script language - it is generally much more efficient
to create the picture PostScript file by directly edit-

ing the picture rather than using the automated but

necessarily clumsy version which is provided by the

program TEX2PS.

7 The picture implementation

The method described above yields the following

steps of procedure:

1. Start your main text file with the line

\immediate\openout\bilder=(name of

parameter file)

and close it by the line

\closeout\bilder.

2. Introduce the option neubild into your docu-

ment style.

3. Write your text file and introduce the line

\varpsbild . . .
with the appropriate parameters as explained

above at any place where you want to insert a
picture.

4. Compile the text file to the corresponding dvi

file. This also produces the parameter file.

5 . Create all the pictures in a PostScript set-

ting either manually or by help of the program

TEX2PS, taking into account the correct size

and name of every picture (the parameter file
contains these parameters for each picture in-

volved).

6. Convert the main dvi file by help of the PTIPS

driver, using all of the PostScript picture files,

to the final PostScript file.

7. Print the final PostScript file either on a Post-

Script printer or via a soft interpreter like

FREEDOM OF PRESS.

8 Conclusion

The two procedures described above are certainly

not the most elegant ones for implementing graph-

ics in TEX. As has been shown, the first method,

however, has the advantage of not using any graph-

ics input apart from that which is admissible in the

L4W picture environment. and it is completely
driver-independent. A somewhat similar approach

to this problem is, for instance, given by M. Ballan-

tyne and collaborators8; their method, however, is

M. Ballantyne et al., TUGboat 10, no. 2,

p. 164, 1989

at the moment not applicable within a I4m envi-

ronment and. moreover, does not seem to work very

well if the pictures are to be surrounded by text pas-

sages. On the other hand, that method can also be
used to include complex tables into a 7QX file.

We have not discussed the various methods

which use graphics input from different drawing pro-
grams to be included into TEX source files. These

methods depend heavily on the output format of

the drawing programs (e.g. whether or not they are

pixel oriented) as well as the ability of TEX drivers
to implement the different graphic formats (usually

by means of \special commands).

The second procedure allows the insertion of

much more complex pictures into LAW text files at

the price of using part of the PostScript machinery.

We feel that it might be a good compromise if the
time factor does not have first priority and the pic-

tures to be inserted into the text are of moderate

complexity.

A diskette containing the files used in these

approaches can be ordered from the author.

Please, enclose an empty diskette and DM 5,-

for postage.

o Gerhard Berendt
Institut fiir Mathematik I
Freie Universitat Berlin
Arnimallee 2-6
1000 Berlin 33
Germany
berendtQfubinf.uucp

Including Macintosh Graphics
in Documents

Len Schwer

Abstract

The basics of including Macintosh graphics in I4m
documents are discussed for the person who is inex-

perienced at doing so. Because there is no universal

way to incorporate such graphics, other than with

scissors and glue, this article tries to be as general as

possible, but ultimately references specific software

and hardware, e.g. ArborText's DVIPS, Trevor Dar-

rell's psf ig macros, and an Apple Laserwriter+.

The reader is assumed to have some knowledge of

TUGboat, Volume 11 (1990), No. 2 195

the Macintosh interface, PostScript programming,

and W'Q$ document preparation.

1 Background

The method of including Macintosh graphics in

U'Q$ documents is very simple:

0 create the graphic with the user's favorite Mac-

intosh application;

convert the graphic into its PostScript repre-
sentation;

0 transfer the PostScript file to the I4m host

machine;

0 include the PostScript file in the Ml&X docu-

ment via the DVI-Postscript driver's \ spec ia l

command.

While this sounds like a relatively straightforward

procedure, it gets complicated. sometimes very com-

plicated. The complications arise from three ele-

ments:

1. There are several DVI-Postscript drivers avail-

able and they all treat the \ spec ia l command
differently. Many of the differences are sim-

ply syntactical, but some are more subtle and

involve differences in the PostScript prologue
which precedes the material from the I4m
document. The good news here is that there

is an organized movement within the l&X com-

munity to develop standards for DVI drivers [l]
and someday users may benefit from these stan-

dardization efforts.

2. Not all Postscript devices are the same. Macin-

tosh QuickDraw, a PostScript language short-

hand: in combination with various PostScript

implementations of DVI drivers produces differ-

ent results on different PostScript devices. For
example, the ArborText DVI driver, DVIPS.

and Laserwriter+ apparently cannot be coaxed

into including Macintosh figures according

to ArborText's instructions, while the same

DVIPS generated file works flawlessly with an

NEC PostScript printer.

3. Lastly, but of equal importance, the individuals

who decide to dabble in this topic need a work-

ing knowledge of the Macintosh interface, Post-

Script programming, and m or I4l&X docu-

ment preparation.

The original TUGboat article on this topic by

Hal Varian and Jim Sterken [2] appeared in March

1986. Since that time, there has been a dramatic in-
crease in the number1 of users of both and the

Macintosh. New and 'old' I4W users are becoming

The growing number of these users is evident
to those who monitor electronic information groups

Macintosh users for many reasons, not the least of

which is the ability to easily produce high quality

graphics for inclusion in their high quality typeset

documents. Many of these new users are seeking

ways to include Macintosh graphics in I4QX docu-

ments by means other than scissors and glue.
This article updates the information presented

in the original TUGboat article and complements
the information provided in a more recent article by

J.T. Renfrow [3]. The present article is intended to

serve as a general overview for the person who is

new to including Macintosh graphics in I4m doc-

uments. It tries to be general, when possible. by

indicating how things are supposed to work, but in
many places it is very specific. Where appropri-

ate, mention will be made of available public domain

software and possible sources for obtaining it.

There are two major sections in this article:

Macintosh graphics. This section describes cap-
ture or conversion of Macintosh graphics to

an equivalent PostScript representation and

changes needed for the Laserprep file.

Using B B F I G and p s f i g t o include graphics.

This section describes a very useful set of
macros that simplify inclusion of Macintosh

graphics in L A W documents.

2 Macintosh Graphics

The Macintosh was designed to be used with an Ap-
ple Laserwriter printer, a PostScript device. Thus

all Macintosh applications need to support Post-

Script if they are to allow printing. We would like

to capture the PostScript representation of a graphic

in a file, transfer the file to the host machine where

I4m is used, and include the PostScript graphic

file in a J3W document. This section describes a
'universal' method for capturing the PostScript rep-

resentation of a graphic in a file.

2.1 Captur ing Macintosh graphics in a
PostScript file

Unfortunately, few Macintosh applications. other
than Cricket Draw and Adobe Illustrator, provide

a menu option for generating a Postscript file. This

is probably due to the existence of a universal tech-

nique for capturing any printer-directed application

output into a PostScript file. The technique is quite

simple:

After completing the graphic, select the Print
option under the File menu. This produces

such as comp.text.tex, comp.lang.postscript,

and comp.sys.mac on Usenet and TeXhax on the
Internet or Bitnet.

TUGboat, Volume 11 (1990), No. 2

the 'Print Dialog Box' which allows the user

to select various options before sending a

graphic to the printer. In the upper right-
hand corner of the 'Print Dialog Box' is an

OK button. Click the mouse down, but do
n o t release, on the OK button. With the
mouse still clicked down. depress and hold

down the F key and then the Command (Ap-

ple or Flower) key (this combined key stroke

is usually refered to as Command-F), then re-

lease the mouse button. A dialog box should
appear stating that a PostScript file is now

being created. Note: In most applications

the Command key need not be depressed.

Recently, a very handy Macintosh applica-

tion named m y p a g e s e t u p by D.G. Gilbert has

appeared2 which activates a previously hidden se-

lection box in the Print Dialog. The activated box

is called Disk File and selecting it will cause the

Laserwriter application to create a Postscript file

rather than sending the file to the printer when

the OK button is clicked. This eliminates the need
for the somewhat clumsy Command-F keystroke se-

quence just described.
The above techniques will cause a file named

'PostScriptO' (or, more generally, 'PostScriptn'
where n is incremented by one for each PostScript

file generated) to be created in one of several places:

the folder where the generating application re-

sides, e.g. where you keep MacDraw;

the folder where the graphic was launched, e.g.

where you have stored the graphic file;

the DeskTop level of your startup disk;

the System folder.

The exact location is application dependent3, but

the Macintosh FINDER may be used to locate

these PostScript files in any case.

Although these files are labeled as PostScript

files, the files generated using the Command-F tech-

nique are not quite PostScript files, but are more

correctly referred to as QuzckDraw files. QuickDraw

This freeware application is available via

anonymous F T P from sumex-aim. stanf ord. edu in

the directory /inf o-mac/util and probably from
many other such Macintosh archives.

An init named LaserFix by David P. Sumner

modifies the print dialog box in the same manner

as myPageSe tup , but invokes a standard file lo-

cation dialog box after the OK button is clicked.
This allows a user to specify a folder name where

all such PostScript files will be created. This init
is also available from sumex-aim. stanf ord . edu in

the directory /inf o-mac/init .

is a special PostScript shorthand created by Ap-

ple C ~ m p u t e r . ~ NOTE: QuickDraw files will not

produce a graphic image when sent to a PostScript

printer unless a special initialization file has previ-

ously been sent to the printer.
The QuickDraw initialization file is commonly

called a LaserPrep file and various versions of it are

known as AppleDict Version #nn, where nn is the

version number, e.g. AppleDict Version 870 (a.k.a.

LaserPrep 70). The LaserPrep is a dictionary that

translates QuickDraw into PostScript. The resulting

translation does produce a printable graphic image
on PostScript printers. Usually the LaserPrep file is

downloaded only once to a PostScript printer con-

nected to a Macintosh. This PostScript dictionary,
called 'md' (for Macintosh Dictionary?), remains

resident in the printer's volatile memory until the

printer is powered down. A copy of the Macintosh's

current LaserPrep file may be generated by follow-

ing the Command-F procedure described above, but

substituting Command-K before releasing the mouse

clicked down on the OK button in the 'Print Dialog
Box'. Using the Command-K key sequence gener-

ates a file named 'PostScriptn' that contains both

the LaserPrep file and the contents generated by the

Command-F key sequence; z. e. the LaserPrep file is

inserted as a prologue to the QuickDraw file. The
boundary between the LaserPrep and QuickDraw is

located at the first occurrence of the string %%EOF,

which is the last line of the LaserPrep file.
One more note about the LaserPrep file: near

the bottom of the LaserPrep file are lines of hexadec-

imal numbers followed by several lines of zeros. The
lines of hexadecimal numbers are very long and will

break most file transfer programs. These lines may

be shortened by inserting carriage returns at appro-

priate distances along the string. Alternatively, for

the less faint-of-heart, these lines may be deleted

from the LaserPrep file. More specifically, the lines

between and including:

currentfile ok userdict/ . . .
. . .
cleartomark

may be deleted. According to Bill Woodruff [4]

The dictionary [LaserPrep] includes some

special encrypted assembly-language proce-
dures that are proprietary to Apple Com-

puter. If you check the "Faster BitMap Print-

ing" option in the generic Macintosh Page

Setup dialog, for example, you activate an

Apple bitmap smoothing routine that will

Some very interesting comments on the devel-

opment of QuickDraw are provided in a brief article
by Bill Woodruff [4].

TUGboat, Volume 11 (1990)' No. 2 197

not work if the installation of 'md' recognizes

the printer is not from Apple.

2.2 Modifying the LaserPrep File

Woodruff [4] also comments:

LaserPrep was patched and fixed and ex-

tended and patched and fixed until it has

reached its current state where even within

Apple it is considered an embarrassing

morass. Yet, it remains the world's most
used PostScript program and the fundamen-

tal bottleneck through which almost all Mac-

intosh printing is done. But to change it.

even slightly, is to move a gigantic tectonic
plate on which the entire superstructure of

civilized Macintosh printing hangs in fragile

balance.

In order to include Macintosh PostScript files

generated with the Command-F technique described

above with any DVI to PostScript driver, the Laser-

Prep file must be modified. There are two major

types of changes:

1. Changes to keep the LaserPrep from altering

the printer's status, i.e. changes to s t a t u s d i c t .

2. A change to prevent the included PostScript

file from issuing a showpage or copypage com-
mand.

Listings of the modified Macintosh LaserPrep

files, even 'differences' listings, are too lengthy for

this article. Suitably modified versions of Macin-

tosh LaserPrep #65 and #68 files5 are available via
anonymous FTP from ymir . claremont . edu. The
modified version of LaserPrep #65 is derived mostly

from the instructions issued by ArborText for their

DVIPS driver.
The modified version of LaserPrep #68 was

created by Trevor Darrell who claims that it

should be compatible with Tony Li's public do-

main PostScript device driver DVI2PS when used

with the appropriate TEX prologue. DVI2PS, the
TEX prologue file, modified LaserPrep #68 file,
and associated information are available via anony-

mous FTP from l i n c . c i s .upem. edu [130.91.6.8]
in files dvi2ps. t ar . Z and lprep68. t a r of the sub-

directory d i s t / p s f ig . These files are in Unix TAR

format and, in the case of the dvi2ps . t a r . Z file,

Unix TAR and compressed binary format. How-
ever, after uncompressing the dvi2ps. t a r . Z file and

extracting the files (unTARing), you will find it
also contains modifications for implementation on

VMS systems; the unTARed lprep68. t a r file con-

The hexadecimal strings at the bottom of the

LaserPrep files have been deleted.

tains plain text files. Another source for these files

is the recent Digital Equipment Corporation Users

Society (DECUS) WII4W tape collection, pre-
pared by Ted Nieland; for availability call DECUS

at (505)480-3418 or contact your Local User's Group

(LUG).
The modified LaserPrep file should be given an

appropriate name, e.g. LaserPrep68. ps, and placed

in a directory where DVIPS or DVI2PS can find

it to include in DVI files. A suggested directory

location is one of the directories searched by the
logical TeX$Inputs. Also, the modified LaserPrep

file must be included in I P ' documents before

the occurrence of the first Macintosh PostScript file.

The LaserPrep file is usually included prior to the

\begin{document) statement e.g. by using Arbor-

Text's \ spec i a l command.

\special(ps: plotfile LaserPrep68.p~ global)

It is important to use the modified version of

the LaserPrep file that corresponds to the Laser-

Prep used to generate the Macintosh graphic with
the Command-F procedure. To determine which

version is appropriate, search for a line like the fol-
lowing near the top of the file:

%%IncludeProcSet : " (AppleDict md-f igure)" 68 0

The number 68 in this example indicates that

modified LaserPrep #68 should be used.
To determine the current version number of the

LaserPrep file on your Macintosh, either (1) select

the LaserPrep icon in the System folder and use Get
Info under the File menu. or (2) when attempting

to print a document from the Macintosh, look just

to the left of the 'OK' button in the Print Dialog
Box. In either case the number should be 4.0 or 5.2.

4.0 is equivalent to LaserPrep #65 and 5.2 is equiv-

alent to LaserPrep #68. Basically, Macintosh sys-

tem software 5.x' LaserPrep Version 4.0, and 'md'

Version 65 all go together, as do Macintosh system

software 6.x, LaserPrep Version 5.x, and 'md' Ver-

sion 68. Simple. huh? This means that, technically,

LaserPrep files such as LaserPrep #68 are referring

to the version of the Apple dictionary and not the

actual LaserPrep version number. Hopefully, some-

day soon. Apple will get all these numbers in sync.
The most recent version of the Macintosh Laser-

Prep file is #70, which is associated with Laserwriter

version 6.0 and accompanies the latest release of the

Macintosh operating system. LaserPrep #70 is con-

siderably different from previous versions in that it
contains information for Apple's implementation of

Color QuickDraw. Requests to various electronic

forums, and Trevor Darrell, for a suitably modified

LaserPrep #70 indicate that knowledgeable Laser-
Prep hackers have not modified version #70. An ef-

198 TUGboat, Volume 11 (1990), No. 2

fective work-around is to install LaserPrep #68, viz.

LaserWriter 5.2, on your Macintosh and rename it,

for example to LaserWriter68. This version of the

LaserWriter can then be selected via the Chooser
before creating PostScript files.

3 Using BBFIG and p s f i g to Include
Macintosh Graphics

Acknowledgement: BBFIG was authored by Ned

Batchelder. psf i g was developed and placed in the

public domain6 by Trevor J. Darrell. This subsec-

tion borrows quite liberally from Mr. Darrell's very
nice documentation, Incorporating PostScript and

Macintosh Figures in T&$i. Current versions of the

software and documentation are available via anony-

mous FTP from l i n c . c i s .upem. edu [130.91.6.8]
in the sub-directory d is t /psf ig. This author, and

undoubtly many other psf i g users, are indebted to

Mr. Darrell for his outstanding programming skills

and his unselfish willingness to share this software

and knowledge with others. The author hopes that
this document continues Mr. Darrell's spirit of freely

sharing knowledge.

psf i g is a m macro package that facili-
tates the inclusion of arbitrary PostScript figures

in I4m documents. The real advantage of us-

ing the psf i g macros is that they work within the

Adobe constructs for Encapsulated PostScript Files

(EPSF) [5] . For the psf i g user, that means that
graphics can both be easily placed within a L A W
document and be printed on their own directly to a

PostScript device; other systems for including Post-

Script graphics require a currentpoint to be set
and the showpage to be explicitly disabled, thus dis-

abling direct printing of the file.

To properly locate a PostScript figure, the DVI
driver must know the size of the figure and its rela-

tive position on the printed page. This information

is implicitly available within the various graphic con-

structs used in the PostScript file. The information
should also be available explicitly in the Bounding-

Box comment [6] of the PostScript file's prologue.

The bounding box encloses all the marks made
on a page as a result of executing (printing) a Post-

Script program. The BoundingBox comment has

four parameters:

%%BoundingBox: 11, lly ur, urg

The four integer parameters, in units of points, rep-

resent the coordinates of the lower left (ll,,lly) and

upper right (ur,,ury) corners of the bounding box

in the default user (creator) coordinate system.

Although good PostScript programming prac-

tice dictates that the BoundingBox comment be pro-
vided in Postscript files, few Macintosh programs

provide this information. Either the BoundingBox

parameters are not specified, e.g. as with

%%BoundingBox: ? ? ? ?

which is the case for all Command-F generated Post-

Script files, or an entire 8.5 x 11 page is specified,
e.g. with

%%BoundingBox: 0 0 612 792

To supply the proper bounding box informa-

tion. one can measure the required dimensions or

use the PostScript utility BBFIG. which calculates

the bounding box parameters from the graphic infor-

mation implicit in the Postscript file. The BBFIG

PostScript file is prepended to the PostScript file7

for which the bounding box is to be determined, 2nd
the combined file is sent to a printer. The result is

a printed image of the PostScript graphic with the

bounding box drawn around the graphic and bound-

ing box parameters listed below the bounding box;
the bounding box parameters are also returned via

the print job's log file, if the log file feature is im-

plemented for the host machine's print queue.
The accuracy of BBFIG in determining the

bounding box information is not as good as may be

needed in some circumstances. If you notice your
figures missing parts or wandering around the page,

check the bounding box information. Of course, the

exact bounding box information can be obtained by

simply printing the figure and using a ruler, in points

if possible, to measure the four coordinates. Mea-

suring the bounding box coordinates is also neces-

sary for graphics from some Macintosh applications

such as Cricket Software's Cricket Graph. For some

unknown reason, Cricket Graph figures contain an

invisible (un-stroked) path around the entire edge of

Copyright notice from the psf i g source: "All the paper.

software, documentation, and related files in this Once the proper bounding box information has

distribution of psfigltex are Copyright (0) 1987 been added to the BoundingBox comment of a Post-

Trevor J. Darrell. Permission is granted for use and Script file, the file may easily be included in a L A W

non-profit distribution of psfig/tex providing that document by using the macro \&)sf ig . Simply

this notice be clearly maintained, but the right to
If the PostScript file was generated using

distribute any portion of psfigltex for profit or as
Command-F (QuickDraw), then a non-modified

part of any commercial product is specifically re-
LaserPrep must also be prepended to the Quick-

served for the author."
Draw file.

TUGboat: Volume 11 (1990), No. 2 199

load the psf ig macros at the beginning of your doc-
ument with

\inputfpsf ig)

then invoke the macro

where input is the name of a PostScript file. psfig

will automatically position the figure at the current

place on the page, and reserve the proper amount of

space in I4m so that it does not conflict with any

other objects.

For example, if we have a file called
piechart .ps that contains the PostScript code to

draw a pie chart, we would use the command

Since no mention of size is made in the above ex-

ample, psfig would draw the figure at its natural
size (as if it were printed directly by a PostScript

printer.) If the pie's natural size is several inches

across, which is a little large, the pie could be re-

duced with:

\centerline{%

\psfig{figure=piechart.ps,height=1.5in))

The height option specifies how tall the figure

should be on the page. Since no width is specified.

the figure would be scaled equally in both dimen-

sions. By specifying both a height and a width,

figures can be scaled disproportionately. with inter-

esting results.

There are a few caveats associated with using
psf ig:

For psf ig to find the natural size of a figure, the

figure must have a proper bounding box com-

ment; see previous bounding box discussion.

Some versions of I.4m will fail to center a lone
figure properly in a center environment; a good

work-around is to precede the figure with a hard

space, e.g.

\begin{center)

\ \psfig{figure= . . .)
\endCcenterl

On very large documents with many figures, the

printer memory allocated to DVIPS may have

to be limited; refer to ArborText documenta-

tion for setting Laserwriter memory.

The \psfig macro will be confused by extra

white space or new lines in its argument. e.g.

\psfig(figure=piechart.ps, height=1.5in)

causes psf ig's parsing routine to termi-

nate at the space; LPm will interpret the
height=l .5in as text. Long psf ig command

lines may be split using % line terminators, e.g.

\centerline\psfigCfigure=piechart.ps,%

height=l.5in,width=2.3in,clip=)}

Certain PostScript figures (such as large bitmap

images being transmitted at 9600 baud) can tie up

a slower Postscript device such as an Apple Laser-

Writer for quite some time. To circumvent this, a

figure may be printed in draft mode, which will re-

serve the same space on the page, but will print

just the name of the files from which the figure

is derived and not actually include it. The macro

\psdraf t will switch into draft mode, and all subse-

quent psf ig macros will produce draft figures. The
macro \psfull will switch out of draft mode.

The preceding discussion of psf ig is appro-

priate for PostScript graphics generated by Cricket
Draw and any other type of EPS file. The only ex-

ception to this broad statement is a QuickDraw file
generated by the Command-F option. QuickDraw

files require a suitably modified LaserPrep file to be

prepended to the QuickDraw file. psf ig provides

an easy mechanism for including the LaserPrep file

as described below.

There is a psf ig macro prolog option for spec-

ifying a file that should be prepended to the figure.

The name of the prolog is, of course. site dependent:

we have used lprep68. pro. For example, if you had
a file frog.mac that contained the QuickDraw to

draw Kermit (The Frog). he could be included with:

\psf ig{f igure=frog.mac ,prolog=lprep68 .pro}

If there are many such figures, it is probable that
the repeated inclusion of the prolog file will cause

a significant increase in the size of the print file and

its transmission time. An alternative method is to

load the prolog file once globally, so that it will be

available throughout the rest of the document. Use

\psglobal{lprep68.pro)

at the beginning of your document to achieve this

effect. For this to work properly, the \psglobal

must appear before any Macintosh figures, and the
final output must not be page r e ~ e r s e d . ~

Recent experience has shown that the use of

\psglobal with the ArborText DVIPS driver con-

flicts with Macintosh graphics included inside a fig-

s The current implementation of psf ig does not

support underscores (-) in file names for draft mode.

Since psfig places the file name on the page using
m commands, reserved I4m characters cannot

be used in the file name.
A page reversed document prints the last

page first and first page last. It is possible to use

\psglobal in a page reversed document; place it

just before the last figure in your document. This is

living dangerously, and you do so at your own risk.

TUGboat, Volume 11 (1990), No. 2

ure environment; i.e. the figure prints by itself on
a page separate from the BTEX document. Two

solutions are: always include a prolog along with

each Macintosh graphics (brute force) or include the

\psglobal inside the first figure environment (lucky

hacque) .

4 Conclusion

The combination of a Macintosh for producing high

quality graphics and IPW for producing high qual-

ity typeset documents is becoming very popular as a

'total' document preparation system in many work-

ing environments. The development of tools, such

as the psf i g macros, that make integrating Macin-

tosh graphics in IPW documents easier, will un-
doubtedly grow in popularity. It is hoped that the

information collected in this article helps more users

produce better documents.

References

Hosek, D., Report from the DVI Driver Standards
Committee, TUGboat, Vol. 10, No. 1, p. 56,

April 1989.

Varian, H. and J. Sterkin, MacDraw Pictures
in Qj$i Documents, TUGboat, Vol. 7, No. 1,

pp. 37-40, March 1986.

Renfrow, J.T., Methodologies for Preparing
and Integrating PostScript Graphics, TUGboat,

Vol. 10, No. 4 - 1989 Conference Proceedings,

pp. 607-626, December 1989.

Woodruff, B.. PostScript and the Macintosh: A
History, MacTech Quarter ly, Volume 1, Num-

ber 2, Summer 1989, pp. 119-120.

Encapsulated PostScript Files Specification Ver-
sion 2.0, Adobe Systems Inc., 1585 Charleston

Road, P.O. Box 7900, Mountain View, CA

94039-7900, (415)961-4400, 16 January 1989.

PostScript Language Reference Manual. Ap-
pendix C: Structuring Conventions, Adobe Sys-

tem Inc., Addison- Wesley Publishing Co., Inc.,

1985, p. 268.

o Len Schwer
APTEK, Inc.
4320 Stevens Creek Blvd.
Suite 195
San Jose, CA 95129
micro2.schwer0sri.com

Combining Graphics wi th o n P C

Sys tems wi th Laser Pr in te rs , Part I1

Lee S. Pickrell

Abs t rac t

In this article we will extend our premise that TEX
affords an excellent mechanism for combining graph-
ics in 'I'EX documents. We propose a method for in-

cluding graphics that brings to bear the full power

and versatility of for positioning the graphics

as well as the text. The technology for implement-

ing this feature will be discussed, including certain

limitations. We will also consider possible benefits

of file conversion utilities, particularly the potential

advantage of converting graphics to the PK/TFM

file format of TEX fonts. One application of this fea-

ture is that the captured graphics can be used with
PostScript drivers. This technique can significantly

increase the number of graphics sources available to

Postscript-based by accessing applications that

support the LaserJet PCL language. Finally screen

capture will be examined as an adjunct to printer
capture in the case that printer capture is not prac-

tical.

1 In t roduc t ion and review

In our first article [I] we made several assertions, in

particular, that TEX provided a natural platform for
mixing graphics with typeset text. Several graphic
plots were included that were obtained from differ-

ent application programs (several more will be in-

cluded in this article), which we hope substantiated

our

0

0

0

assertions:

TEX provides a natural platform for graphics in-

sertion, certainly comparable to any other word

processing system.

has suffered from a perception that it does

not handle graphics well, probably grounded

more in psychology than technical reality, and

possibly due to the broad spectrum of comput-

ing systems and distinct device driver programs

over which is implemented.

The IBM PC and LaserJet printer are the logi-

cal starting place for demonstrating the graph-
ics capabilities of TEX because graphics appli-

cations for the PC/LaserJet combination have

become ubiquitous.

Printer output capture is the best method for

obtaining graphics images because the available

resolution is much higher than screen capture

and the number of graphics sources is much

larger than file conversion.

TUGboat, Volume 11 (1990), No. 2 201

2 Graphics positioning, bringing the full
power of TEX to bear

The thesis of this article and the
premise of the CAPTURE design is that

graphics images should be manipu-
lated by TEX with the same facility

that typeset text is positioned. This

assertion is both practical and con-
\ \

sistent with the TEX design philos-

ophy. ?IEX is considered a "document preparation
system" [2, 31, therefore it should have control over
all the contents of the typeset page. Moreover, if

graphics are included in a typeset document, the
graphics and text should be combined in some har-

monious fashion, or the document will be neither

aesthetic nor readable.
It is quite possible to regard a graphics image

in as the functional equivalent of a font of type.

As an example, the graphic at the beginning of the

preceding paragraph was captured using CAPTURE

and inserted using the code segment:

\drop(\insertplot{logo . pcl)Cl)(i. 12))

The \drop macro is defined in the drop. sty file

which is available in the public domain [4]. It was

designed to start a paragraph with a dropped, large

letter of type, as is done with early Bibles and such.
The \drop macro manipulated the graphic image

just as it would any other font of type. The purpose

of this illustration is to demonstrate that a properly

processed graphics image can be treated identically
to a font of type; indeed, text and graphics can be

indistinguishable for 'I@ operation.

An ancillary benefit of this approach is that
the artificial distinction between and the device

driver programs is reduced. Perhaps the perception

that TEX does not handle graphics well stems from

the somewhat artificial separation of TEX from the
device driver programs [I]. Although graphics must

be included on the device driver level, the distinc-

tion is less severe if controls the location and

space for the graphics.

2.1 File processing and macro definitions

TEX will be able to manipulate a graphics element

if it is operationally equivalent to a "box". A box in

TEX is a typographic unit, which on the most fun-

damental level is an indivisible character of type [3].

Two requirements must be satisfied to establish a
graphics image as the equivalent of a TEX box:

a The space required for the graphics must be de-
fined as an \hbox (\mbox in IPW), with the

same dimensions (height and width) as the ac-

tual graphics.

a The graphics must be positioned inside of the

box.

A box with the proper horizontal and verti-

cal dimensions can be created with a simple T@
macro. Once defined, i t can be manipulated like

any other box in TEX. A typical definition for the

\insertplot command used in CAPTURE [5] is:

\def\insertplot#i#2#3{%

\vbox to #2 true in(

\vf ill

\hbox to #3 true in

{\specialCpcl:#i) \hfill>

3% End of vbox
) %End of Definition

The \insertplot command is functionally

equivalent to an \hbox in 'TEX (an equivalent form

makes an \mbox in BW). It creates a box with the
exact height and width of the graphics, specified by

the 2nd and 3rd parameters, which are obtained from
F I X P I C after processing the captured graphics file.

For example, the plot in Figure 1 was created using

the following code segment:

\begin(f igure) [htbl

\begin(center)

\fbox(\kern ipt \fbox<%

\insertplot(surf.pcl)(i.64)(2.13)))

\caption{This is output . . . 3
\label(surf.pcl)

\end(center)

\end(figure>

GRAVITY DATA (CONTWR IKTERVAL - 8.761

Figure 1: This is output from the demonstration

diskette of the SURFER scientific data plotter by

Golden Software, Inc. A frame has been drawn

around the plot to show the "box" which ma-

nipulates. When the graphics file has been properly
processed, the box defines the location of the graph-

ics, and the image is surrounded by the frame.

This macro is essentially the definition for the

\pfig command contained in the plot.sty file

202 TUGboat, Volume 11 (1990), No. 2

which is part of CAPTURE. I t differs by the use of the

\fbox command. \fbox is a I P ' macro which
creates a box around the the text parameter and

surrounds it with a frame [2]. In this instance, the

\ insertplot box is substituted for the parameter

and a frame is drawn around it. The use of the frame
command again emphasizes that the \ insertplot

command is functionally identical to an \hbox in

w. The \fbox command drew a frame around
the graphic just as it would around any text block.

This construct also conveniently highlights the posi-

tion where TEX thinks the graphics plot is located.

It is immediately apparent viewing Figure 1
and the macro defined above, that the graphics im-

age is relocatable and has been positioned by m.
The insertion macro uses the \begin<center) . . .
\end(center) environment to center the plot in the

current l&X context. Because TUGboat is typeset

in a two column format, the image is centered in a
column, as it should be. However, if this same arti-

cle were typeset in a single column format, the plot
would be automatically centered in a page.

The \ insertp lot command also contains the

\ spec ia l command which instructs the device
driver to load and print the graphics file at the

present cursor location. In order for the graphic

to be positioned properly inside the \hbox (inside

the frame), the location of the graphic must be well

defined with respect to the \ spec ia l command and
the \ spec ia l command must have a well defined

location inside the box. Fortunately, the definition

of the \ spec ia l command from Knuth [6] specifies

that it will have a unique, well defined location on

the page: "Therefore it is implicitly associated with
a particular position on the page, namely the refer-

ence point that would have been present if a box of

height, depth, and width zero had appeared in place

of the whatsit" [6]. If the position of the graphic is

linked to the location of the \ spec ia l command, it

will also have a well defined location that can be
placed inside the \hbox.

The technology for connecting the graphics to

the \ spec ia l command is based on the LaserJet

command structure. The LaserJet PCL language

contains a control code which says in effect: "start

the graphic at the present cursor location" [7]. If

the graphics file contains this control code, then

the image will be inserted starting at the location
of the \ spec ia l command, which is well defined,

and will be centered inside the \hbox defined by the

\ insertp lot command. This is the technique used

by CAPTURE to allow to manipulate graphics in
the same way as text.

An important requirement however, is that the
graphics file contain only this relative positioning

command (start the graphic at the present cur-

sor location) and n o other positioning commands .

The reason is that other positioning commands will

either override the relative position command, or

change the cursor location so that it no longer is

coincident with the location of the \ spec ia l com-
mand. As an example, the graphic in Figure 2 was

inserted using the identical commands as Figure 1.
However, the file in Figure 2 was not processed to

remove the additional positioning commands. The

result is that rn still thinks there is an \hbox con-
taining the graphic, and even draws a frame around

it. However, the graphics image is offset relative

to the \ spec ia l command so the image does not

appear inside the frame. For this reason CAPTURE

contains the F I X P I C utility which is run automati-
cally after every graphics capture. FIXPIC removes

all of the positioning control sequences except the

relative position command, which it may insert if

necessary.

I I GRAVITY DATA c coNT- INTER^^ = 6.76)

Figure 2: This figure is the same as Figure 3, ex-

cept that the positioning commands have not been

removed from the image file. The frame has again

been drawn where th inks the graphic is located.
However, because the graphics file was not properly

processed, additional positioning commands remain,

and the image is offset.

The example shown in Figure 2 is relatively be-

nign. The positioning sequences in the graphics file

specified a relative position, so the image is offset

somewhat from the position of the \ spec ia l com-

mand. However, it is more common to find abso-

lute positioning commands in graphics files. These

commands simply place the graphic image at some

fixed location on the page, and ignore entirely the

present cursor position [7]. Therefore there would
be no correlation at all between the actual location

TUGboat, Volume 11 (1990), No. 2

of the graphics and where TEX thinks the graphics
are located.

All of the application programs we have tested,
which provide LaserJet graphics, have used absolute

positioning commands. This choice is logical. An

application program has no way of knowing a pri-

ori the location of the LaserJet cursor. Attempting

to write the graphics at the present cursor location
would be dangerous, because the graphics could ap-

pear anywhere on the page. Conversely, the devel-

opers of these programs probably want the graphics

to be somewhat centered, and they can control the

graphics position unambiguously with absolute co-
ordinates.

The problem of converting these captured

graphics files into a m-compat ib le format is com-

plicated because there are several different LaserJet

positioning codes. There are 2 codes for specifying
either graphics start at the cursor or at the left hand
side of the page, 6 relative positioning codes (rela-

tive to the old cursor position) and 6 code sequences

which place the cursor at an absolute location on

the printed page. All must be removed from the

graphics file (except the relative positioning com-
mand code) without disturbing any of the graphics

data.

Another problem is the use of additional ver-

tical white space by some graphics applications.

White space is simply a series of null data trans-
fers before or after the graphical image. Most of

the application programs we tested added some ex-

tra white space around the image. These programs

make no assumptions that the images produced

might eventually be included in TEX documents, so
the additional white space may have been included

for convenience. In some extreme cases, white space

was used to position the graphics on the page as

an alternative to the position commands. If it is

not removed, the additional space will distort the
page layout and aesthetic appeal of the document,

pushing the rest of the text and graphics far from

a particular plot. In extreme cases it can force a

premature page eject. Another function of FIXPIC

is to remove all leading and trailing white space in

a graphics file. Spacing between the graphics and
the text can then be determined to satisfy aesthetic

appeal, and is controlled by TEX.

2.2 Absolu te coordinates: the except ion t o

TEX posi t ioning

Unfortunately, some graphics files cannot be pro-

cessed so as to be relocatable. There are appli-

cations which use absolute positioning commands

beginning. The reason is that absolute positioning

commands can considerably reduce the size of the
file and the concomitant time to print. This issue is

important for LaserJet printers without additional

memory space. Most applications which we have

tested do not use this method; rather, white space

is used to position the LaserJet cursor. This method

requires a larger file and more time to print, but the
entire image can be moved by changing the position

of the cursor at the start of printing.
When absolute position commands are embed-

ded throughout the file (as opposed to being placed

at the beginning only), the CAPTUREd file cannot be
positioned by m. The graphics can be captured

and included in a TJ$ document, but the position

will be determined by the application program. If

an attempt is made to force relocation, the image

will be distorted because parts of the image will be

placed at different locations. CAPTURE has an option
which enables absolutely positioned graphics to be

included in TEX without distortion; however, T@
cannot control the position of the graphics. The ap-

plication program must specify the plot location to

be the proper position for the TEX document.
This problem is not entirely intractable. Most

programs which use absolute position coordinates

do so for only the horizontal coordinate. The verti-

cal position is specified only once at the beginning

of the file, and will be removed by FIXPIC. If the

desired horizontal position of the graphics can be

easily defined (centered for example), then the ap-

plication program can generally achieve the proper

position. The plot will appear at the same location

in m, and will have a vertical position depending
on its location in the file.

We hope to address this problem further in a fu-

ture release, by translating an absolutely positioned

file to a relatively positioned one.

3 The P K / T F M format

The logic that graphics should be

functionally equivalent to text can be

extended by converting a graphic im-

age file from the LaserJet PCL lan-

guage to the PK and TFM formats

which are specific to [8, 91. A
graphic image in the combined PK/

TFM format isn't equivalent to a font of type, by def-

inition it is a font of type. For example, the graphic
at the beginning of this paragraph was generated by
converting the graphic seen earlier from the PCL for-

mat to the PK/TFM format using the CONVERT util-

ity in CAPTURE. It was inserted using the same \drop

throughout the graphics file instead of just at the macro described earlier and the code sequence:

204 TUGboat, Volume 11 (1990), No. 2

\f ont\largef ont=logo

\drop{a) The l o g i c t h a t . . .
The immediate benefit of this approach may not

be clear. Operationally, there seems to be little dif-
ference between using the \ i n se r tp lo t command

and the PK/TFM format, except that the PK/TFM

format may be less convenient: two files are created
instead of one. However, the advantages of using
a PK/TFM version of a graphics file accrue from
its device independent nature. For example, none

of the commercial 'l&X page previewers will display

graphic images included with the \ spec ia l com-

mand. However, graphics in the PK/TFM format

can be viewed, although some previewers we have

tested have memory limitations for large images.
Another benefit is that CAPTURE can be used

to supplement the graphics for other systems (non-

LaserJet). We have argued that a graphics capture
utility is unnecessary for Postscript-based systems,

because the PostScript language describes both text
and graphics and the two can be mixed easily. How-

ever, the graphics sources are limited because there

are relatively few applications on PCs which sup-

port PostScript, due t o the high cost, and these

tend to be concentrated in the desk-top publishing
area. Fortunately, many of the PostScript drivers

for PC based systems use the same PK/TFM font
files as the LaserJet drivers [lo]. Therefore, cap-

tured graphics files which are converted to the PK/

TFM format can be used with PostScript drivers for

w. The domain of graphics sources for inclusion

in Postscript is increased considerably because far

more applications support the LaserJet PCL lan-

guage than support PostScript.
This idea can be generalized by realizing that

the PK/TFM format provides a level of device in-
dependence, one of the hallmarks of the de-

sign [3]. Once a PK/TFM file pair has been cre-

ated, the graphics should be usable on any system

that uses the same resolution (300 dots per inch).

This set includes the LaserJet systems for which

CAPTURE was originally targeted, screen previewers,
and PostScript systems. We have yet to fully test

this idea on other 300 dpi drivers, say for the HP
DeskJet, but the idea is intriguing and has been

tested on PostScript drivers [lo].

This approach also suggests a general design
path for future extensions. We have argued that

separate CAPTURE-like programs may be necessary

for each computer/printer combination. However,

the PK/TFM standard provides a level of device in-

dependence such that a CAPTURE-like program may

be needed only for each computer/resolution combi-
nation.

3.1 Na tu ra l conversions for a graphics

sys tem

The benefits of a PK/TFM conversion utility also

suggest other areas where file format conversion may
be useful. File conversion generally does not offer
a new source of graphics because it is somewhat
redundant with printer or screen capture. How-

ever, converting from the LaserJet PCL language
to the formats of graphical drawing or paint pro-

grams would be useful. The application program

would still generate the graphic image, saving the
user a considerable amount of work, but the cap-

tured graphics could be edited into a final form

before inclusion in a document. As a test of this

idea, the CAPTURE CONVERT utility will convert t o
the PC Paintbrush PCX format [5].

4 The case fo r l imited screen c a p t u r e

We maintain that the best method for obtaining
graphics is printer capture because of the large
source of graphics at high resolution. File format

conversion generally offers few additional graphics
sources, and screen capture generally provides low

resolution. However, there are two cases which we

have identified in which printer capture is not prac-

tical. Both are apparently quite unusual. The first

case is an application program which mixes text and

graphics in the printer output. An example is the

scientific program MathCAD, by Mathsoft, Inc.
Printer capture is not practical with MathCAD

because it mixes text characters with the graphics

output. Although the output can be captured, the

resulting file cannot be inserted into a 'I)$ docu-

ment and retain the original likeness. The solution
in this instance is to use the screen capture util-
ity, CPTS, included with CAPTURE. CPTS captures

the screen image and writes it to a file that can be
included in a document [5]. Screen capture ef-
fectively converts the text characters into a graphic

representation because they are displayed in graph-

ics mode and can be resolved into individual pixels.

Moreover, there is no loss of resolution. The Math-

CAD printer output is a direct image of the screen

display. An example of screen capture from Math-

CAD is shown in Figure 3.
Other examples are programs which use instal-

lable device drivers in the DOS conf i g . sys file.

Fortunately, this construct is rare, because device
drivers for a specific application remain in mem-

ory, attached to the operating system regardless of

whether the particular application is being used.

Valuable memory is wasted and the operating sys-
tem is cluttered. However, some applications use

TUGboat, Volume 11 (1990), No. 2

Total

.i

Figure 3: This plot is a screen capture from the
program MathCAD, by MathSoft, Inc. The orig-
inal screen was CAPTURE^, converted to the PCX
format by CONVERT, edited on PC Paintbrush, and
converted back to the PCL format. It was then mod-

ified by FIXPIC to have a resolution of 150 dots per

inch, producing a plot with reasonable resolution

which fits nicely inside the columns of TUGboat.

this approach because it provides a uniform interface

to all display monitors and hard copy devices. An
example is the lens design program, OPTEC-11/87

by SCIOPT Enterprises. The CAPTURE printer util-
ity is unable to capture the printer output because

OPTEC bypasses both DOS and the BIOS for the

printer output. However, the screen capture utility

works fine and there is no loss of resolution. Be-
cause the OPTEC interface uses a common set of
device drivers, a single raster image is maintained

in the program. The output to the printer is de-

rived from the same raster image as the output to

the screen; the only difference is which device driver
is invoked. Therefore, the screen capture acquires
the same image as the printer output. An example

of an OPTEC-11/87 image is shown in Figure 4.

The intent of this discussion is to acknowledge

that screen capture is a necessary utility for a gen-
eral graphics capture system. Although it is not the

best method in most cases, there are instances when
it is the only method that will work.

4.1 M e m o r y managemen t a n d t h e

t e rmina t e a n d s t ay resident op t ion

The last issue to be considered is the general archi-

tecture of a graphics capture utility in the MS-DOS

environment. This issue is not applicable to the

general TEX graphics problem, but is entirely spe-

cific to the IBM/DOS implementation. A distinct
limitation of DOS is the 640k memory limit, which

F igu re 4: This is a plot of a high numeric aperture

wide field of view lens. The plot was obtained from

the lens design program: OPTEC-11/87 by SCIOPT

Enterprises.

has been a particular nemesis for large, complicated,
programs. A premise of the CAPTURE design was that
it could be used with large application programs,

and that both CAPTURE and an application program

would occupy memory simultaneously. Therefore,

memory size became an important issue.

These considerations lead to a design for

CAPTURE which minimizes the use of memory while

the application program is running. For example,
the postprocessing phase is explicitly removed from

the image capture routine, the printer and screen

capture routines are kept to the minimum size pos-
sible, and as many features as possible are incor-

porated into the postprocessing program. Also, the

postprocessor is spawned by the image capture rou-

tines only after the application program has exited.
Finally, CAPTURE does not use a terminate-and-stay-

resident (TSR) design. Although a TSR will take
no more memory than a normal program, a TSR

must be explicitly removed from memory before the

storage is released. If any programs are loaded after

the TSR, memory can be fractured and the released
storage is not contiguous with remaining memory.

Instead, the sequence of operation for CAPTURE

runs as follows. The image capture routines mod-

ify the operating system in order to capture graph-

ics output and then spawn the application program.

The application program runs and presumably at-
tempts to output graphics to the printer. Once the
application program exits, CAPTURE loads the post-

processor program, FIXPIC. When all processing is

complete, CAPTURE meticulously returns the operat-

ing system to its original state, releases all its mem-

ory, and exits. The memory used is a minimum and

is never fractured.

5 Conclusions

We have tried to extend our initial thesis that
provides an excellent medium for including graphics

TUGboat, Volume 11 (1990), NO. 2

with text. In the case of the PC/DOS implemen-

tation in particular, graphics applications are ubiq-
uitous so there is a wide array of graphics sources.

Moreover, we have suggested a method for includ-

ing graphics with 'l$J that allows T# the same

control over graphics images as fonts of type. This

approach affords a seamless blend of graphics and

text in the same document. The distinction between
device driver and w is softened. Although the

graphics insertion occurs at the device driver level,

the control is retained in w.
This idea has been extended to include the n u

tion of converting graphics files to the PK/TFM for-
mat of m. The primary benefit of this approach

is expanding graphics capture to implementa-

tions which do not use the LaserJet printer. In par-

ticular, CAPTURE can support Postscript drivers for

TEX that use the same computer modern fonts in the
PK/TFM format as the LaserJet drivers. The range

of graphics sources available to Postscript users is
considerably increased over the range of applications

which presently support Postscript. Other exten-

sions may also be possible.

We have consistently emphasized that CAPTURE
serves as an example and proof-of-principle that
the graphics capability of m is considerable. We

would like to propose (hopefully without being

presumptuous) that other graphics implementation

programs adopt some of the ideas discussed here.
For example:

should be able to manipulate graphics im-
ages equivalently to fonts of type.

A graphics program for should support the
PK/TFM format to maintain the greatest pos-

sible device independence.

In this way, the distinction between graphics and

text in w should be diminished and a connection

between the various implementations of m can be

maintained by the device independent nature of the
standard formats.

References

Lee S. Pickrell. "Combining Graphics with w
on IBM PC-Compatible Systems with LaserJet

Printers." TUGboat, 11(1):26 - 31, 1990.

Leslie Lamport. fim, A Document Prepara-

tion System, Users Guide 63 Reference Manual.

Addison-Wesley Publishing Company, Read-
ing, Mass., 1986. ISBN 0-201-15790-X.

Donald E. Knuth. The m b o o k . Addison-

Wesley Publishing Company, 1986. ISBN O-

2-1-1344g9.

David G. Cantor. "DROP. STY." Published in

W h a x , number 16, 1988. Available on the
Clarkson Archive Server (public domain).

CAPTURE, A Program for Including Graph-
ics in 7&Y. Wynne-Manley Software, Inc., 1094

Big Rock Loop, Los Alamos, NM 87544, March

1990.

Donald E. Knuth. The m b o o k , pages 228-

229. Addison-Wesley Publishing Company,

1986. ISBN 0-2-1-13448-9.

LaserJet series II User's Manual. Hewlett

Packard Corporation, Boise Division, P.O. Box
15, Boise, Idaho 83707, December 1986. Part

NO. 33440-90901.

[8] David Fuchs. "m Font Metric Files." TUG-
boat, 2(1):12- 17, 1981.

[9] Tomas Rokicki. "Packed PK Font File Format."

TUGboat, 6(3):115- 120, 1985.

[lo] w P R I N T / P S User Guide. Oregon House

Software, Inc., 12894 Rices Crossing Road, Ore-

gon House, CA 95962, 1988.

o Lee S. Pickrell
Wynne-Manley Software, Inc.
C/o Micro Programs, Inc.
251 Jackson Ave.
Syosset, NY 11791

(516) 921-1351

Resources

Data General Site Report

Bart Childs

The distribution with the new versions of l&X and

METAFONT is nearly finished. We are also rewriting

the drivers for the DG, QMS, and LaserJet printers

in Silvio Levy's CWEB. We have decided to use Tom

Rokicki's PostScript drivers.

o Bart Childs
Dept. of Computer Science
Texas A&M University
College Station, TX 77843-3112
bartQcssun.tamu.edu

TUGboat, Volume 11 (1990), No. 2

VM/CMS Site Report

Joachim Lammarsch

My first report as new VMICMS site coordinator

starts with bad news. I have heard that it is pos-

sible to install a virus into IBM DCF or Waterloo

Script input using the command . sy . This is the

vehicle to send commands to CMS. Within the reg-

ular VMICMS version of TEX it's possible to use the

command \cms to do the same. Therefore the warn-

ing: Be careful texing strange input; first look for
the command \cms! I haven't heard anything about

viruses in rn input yet, but nevertheless I'll try to

find a method to make this kind of virus impossible.

Now the good news: Peter Breitenlohner has

finished his work and sent the new 3.0 to me. It

contains not only rn 3.0, but also METAFONT 2.0,

VPTOVF, VFTOVP and last, but not least, a B i g w
3.0 containing two times more memory words than

the normal version. Many thanks, Peter!!

Ferdinand Hommes from GMD. Gesellschaft fiir

Mathematik und Datenverarbeitung Bonn, has sent
me new public domain drivers for IBM laserprint-

ers supported by PSF and for IBM4250; for Post-

Script printers; QMS Lasergrafix model 800, 1200,

and 2400; and for IBM display stations supported
by GDDM. Unfortunately, there are only text files.

Dean Guenther has sent me DVIALW, a driver

ported to VMICMS by S. Sathaye from Nelson
Beebe's public domain dvialw driver.

I plan to bring the new distribution tape with

me when I come to TUGSO. It should be available

from Maria Code in July.
I have created a new discussion list named m-

IBM to discuss problems concerning the implemen-

tation of TEX and his children under VMICMS. All

IBM MVS users are invited to join this list. too. To

subscribe to the list, send the command

SUB TEX-IBM firs tname familyname

to your nearest listserv.

o Joachim Lammarsch
Computing Center
University of Heidelberg
Im Neuenheimer Feld 293
6900 Heidelberg 1

West-Germany
Bitnet: X92QDHDURZl

Resources Available to '&jX Users

Barbara Beeton and Ron Whitney

In this installment we have a few updates to the

inaugural column in TUGboat 11, no. 1.

Archives with network connections

We have received several lists of network hosts

with a summary of items that can be found
at each. Unfortunately, time has prevented our

checking the data (it is clearly out of date, as

Score. Stanford. edu appears in every list). So,
rather than spread erroneous information, we will

spend some time over the summer checking it and
provide an accurate list in the fall. Anyone who

would like to assist with this research, or knows of
any interesting repositories, please get in touch.

Sources of software and macros for PC and
Macintosh

The following information was posted recently to

U K W (issue 14) by Sebastian Rahtz:

The Aston archive has a new version
of Q X for MS-DOS and OS/2. contributed by

Eberhard Mattes from Stuttgart. This release

comprises all of m, METAFONT, support programs
 BIB^, Makeindex, webware, etc.), dvi drivers,

previewer, and drawing package for I4W pictures

(texcad).

On the good side:

- there are separate binaries for normal MS-DOS.

for 2861386 processors (which make things go
a little faster), and for OSl2 protected mode

- the release has a full METAFONT

- expanded memory is used if present
- there are 'big' versions of TEX and METAFONT;

the former is a boon for I P w users who load

lots of extra macros (such as F'ICI&X)
- the is as fast as, if not faster than, s b m

- the printer driver family and screen preview

share a common interface, and a common set

of \ spec ia l commands for graphics (used in

the texcad package); the previewer can use

the same 300 dpi fonts as a laserprinter. An

interesting development is the use of optional

'libraries' of fonts, a convenient way of combin-

ing together those huge directory hierarchies.

On the down side:

- the documentation is all in German. And why

not, you may ask? It only matters to the

TUGboat, Volume 11 (1990), No. 2

uneducated among us! [Editor's note: but

see below.]

the printer drivers are for dot matrix and laser

printers, but not for Postscript
3.0 isn't available yet (but promised soon)

the huge IIjEX is rather slow

If any or all of these apply to you:

- you have a reading knowledge of German

- you want w for OS/2

- you need a big IIjEX

- you need a fast free PC METAFONT

then you should check out emIIjEX. Users who just

want a good, fast IIjEX may be better off getting

Wayne Sullivan's excellent s b w , now in w
version 3.0, as it does nearly all you want and is a
little simpler to set up. But e m m is an excellent

way to set up a complete w on your PC.

The files are a set of BOO-encoded . z ip archives
in

at Aston University.

Editor's note: A later issue of U K m has an-

nounced that most of the documentation has now

been translated into English, and is also available

from the Aston archive. Instructions for obtaining

information and files from Aston have appeared

most recently in TUGboat 10, no. 2, pages 194-195,

and can also be found at the end of every issue of

U K W .
We have also learned that e m m is available

for anonymous ftp from

in the directory soft/text-mgmt/emtex.

Electronic discourse

TEX-D-L. The last issue contained two errors with

respect to this list -in the name and in the node.
The correct form of the name is shown here, with

two hyphens and no underscores. To subscribe, send

a message to LISTSERVQDEARN . B i t net containing

the request

SUBS TEX-D-L (your name)

This list is conducted in German.

TEX-D-PC. A second list in German has been es-

tablished for those interested in matters concerning

IIjEX on PCs. Send the command

SUBS TEX-D-PC (your name)

to LISTSERVQDHDURZI . Bitnet .

A Proto-TUG Bibliography:
Installment Two

Barbara Beeton

In the last issue, we presented the first installment

of a TUG bibliography, in progress, containing refer-

ences to books and articles about w, U r n , WEB

and related topics, or prepared using one of these

tools. The list that follows continues with references

to additional works that had accumulated in my of-
fice as well as citations sent in by obliging TUGboat

readers. Please send more.
We have not yet created a bibliography style

especially for TUGboat. so some of the elements we
would like to show are hidden. This will be cor-

rected as soon as we find time. (And have received

the newest, "final", version of BIB^, now under
construction.) In the meantime, if you send in in-

formation, please include the following:

0 Author(s), full name(s)

0 Title

0 For books. including proceedings or other col-

lections:

- Publisher, with address

- Year of publication

- ISBN

- Editor (for collections)

- Series name and number, if relevant

- Conference name. location and date (for

proceedings)

For journals prepared completely or substan-
tially in m:
- Year when publication in w began; year

when journal began publication, if not the

same

- Publisher and address

0 For articles in journals:

- Year and month of publication

- Volume, issue and page span

0 For articles in collections:

- Full reference for the collection as a whole:
editor, title, publisher, conference infor-

mation, etc.

- Page span of article

For technical reports:

- Publisher or sponsoring institution, with

address

- Series name and number

- Year and month of publication

TUGboat, Volume 11 (1990), No. 2 209

Indication of extent to which TFJ (or D m ,
AMS-7&X, etc.) was used in preparation

Any other useful information, e.g. translation,
language

Although the present compilation is in BIB^
format, I have been reminded of the existence of an-
other competent bibliographic tool, l ib . (See the
article by James Alexander in TUGboat 8, no. 2.)
The suggestion has been made that the bibliogra-
phy be maintained in parallel in both forms, and we
are seriously considering doing just that, when time
permits.

Once again, please send your suggestions and
candidates for inclusion.

Here is the second installment, in two parts:
publications about m , and publications prepared
with l&X. In both sections, preparation with TEX
is assumed unless stated otherwise.

Publications about rn
Paul W. Abrahams, with Karl Berry, and
Kathryn A. Hargreaves. for the Impatient.
Addison-Wesley, Reading, MA, 1990.

Wolfgang Appelt. 7)$i fur Fortgeschrittene. Ad-
dison-Wesley Verlag, Bonn, 1988.

Malcolm Clark (editor). 7&X: Applicatzons, Uses,
Methods. Proceedings, Third European Q$ Con-
ference, 33x88, Exeter, August 1988. Ellis Hor-
wood, Chichester, 1990.

rn Jost Krieger and Norbert Schwarz. Introduction to
Q X . Addison-Wesley Europe. Amsterdam, 1990.
Translation of Einfuhrung in w.
Norbert Schwarz. Einfuhrung in w. Addison-
Wesley Verlag, Bonn, l988(?).

Norbert Schwarz. Inleiding T&X. Addison-Wes-
ley Europe, Amsterdam, 1990. Translation of
Einfuhrung in m.

for the Study of Language and Information Notes.
U . Chicago Press, 5801 Ellis Ave., Chicago, IL
60637, 1987. This book was prepared automati-
cally from a database and set with 7&X. The in-
tent is to keep it updated.

rn R. L. Graham, D. E. Knuth, and 0 . Patashnik.
Concrete Mathematics. Addison-Wesley, Reading,
MA, 1989.

rn Alan Hoenig. Applied Finite Mathematics.
McGraw-Hill Publishing Company, New York,
1990.

Arthur M. Keller. A First Course in Computer
Programming Using PASCAL. McGraw-Hill Pub-
lishing Company, New York, 1982.

Steven E. Koonin and Dawn C. Meredith. Compu-
tational Physics. Addison-Wesley, Redwood City,
1990.

Tom Lyche and Larry L. Schumaker. Mathemati-
cal Methods in Computer Aided Geometric Design.
Academic Press, Boston, 1989.

Roman M ~ d e r . Programming in Mathematica.
Addison-Wesley, Reading, MA, 1990.

William H. Press et al. Numerical Recipes. Cam-
bridge Univ. Press, Cambridge, 1986. Originally
for FORTRAN and then rewritten for a C ver-
sion, Numerical Recipes in C ; also example books
in Fortran, Pascal and C, making a total of five
books with "Typeset in TEX" on the back of the
title page.

rn Robert Sedgewick. Algorithms. Addison-Wesley,
Reading, 1988.

Robert Sedgewick. Algorithms in C. Addison-
Wesley, Reading, 1990.

rn J. F. Traub, G. Wasilkowski, and H. Woinia-
kowski. Information-Based Complexity. Academic
Press, New York, 1988. This book was prepared
with A M S - ~ .

Publications prepared with rn Stephen A. Ward and Robert H. Halstead, Jr.

Harold Abelson and Andrea A. diSessa. Turtle Ge-
Computation Structures. The MIT electrical en-

ometry. MIT Press, Cambridge, MA, 1981. This
gineering and computer science series. MIT Press,

book was prepared with w 8 0 ; this was described
Cambridge, MA, 1990.

in TUGboat 2, no. 3 in an article by Michael Sari- Stephen Wolfram. Mathematica: A system for

nella. Doing Mathematics b y Computer. Addison-Wes-
. - -. . . .

Ronald N. Bracewell. The Hartley Transform. Ox-
ley, Redwood City, 1988. This book was prepared

ford University Press, 1986.
with m, Dm and Postscript.

Commentationes Mathematicae Universitatis Daniel Zwillinger. Handbook of Dzfferential Equa-

Carolinae. This publication was prepared with tions. Academic Press, Boston, 1989.
- -

An/tS-'l"J&X.

Gerard Gazdar, Alex Franz, Karen Osborne, and
Roger Evans. Natural Language Processing in the
1980s, A Bibliography, volume No. 12 of Center

TUGboat, Volume 11 (1990), No. 2

New Books on T'X

Victor Eijkhout

There is a piece of good news to be reported: two
new books on 7l&X have appeared recently, one for
beginning to intermediate users, and one for inter-
mediate to advanced users. And there's more good
news: 7l&X is so widely spread that both books orig-
inated in Germany, and are written in German. Of
the introductory book, translations into English and
Dutch exist, but the advanced book, in more than
one respect the more interesting of the two, has not
been translated yet.

7l&X books in languages other than English are
a good thing for two reasons. One is that they give
an indication of the widespread use of 7l&X. The
other is that, to quote Norbert Schwarz, author of
Einfiihrung in '@,X [I], such books are 'a bit more
internationally oriented than a book of English or
American origin would probably be'. This is es-
pecially apparent in TJjX fiir Fortgeschrittene [2]
by Wolfgang Appelt, which has a whole chapter on
'Deutschsprachige Text', containing useful remarks
that are relevant to more languages than just Ger-
man.

Introduction to

Introduction to w by Norbert Schwarz assumes
no knowledge of 7l&X whatsoever; indeed the first
chapter 'General information' gives a short list of the
merits of w. This makes for a nice and motivating
introduction for the complete novice.

The same holds for chapter 2, 'Operation', that
contains, after a few pages of braces, backslashes,
and punctuation, a first example of the use of TpJ .
Some thirty commands are used here. Obviously the
author wants to get the reader going: the details will
come later.

Chapter 3 was written in the same vein. In 30

pages a large amount of information about 'Setting
text' is given to the reader, with lots of examples.
However, this chapter had me frowning a number
of times. It is the author's style of writing to use
unusual examples like

C\obeylines\everyparC\hfil) ...)
to introduce the concepts of \everypar and
\parfillskip, but it wouldn't be mine. And I ob-
ject to

\centerlineC\it The current page has

the number \folio)

(because the statement may be untrue due to asyn-
chronous output routine behaviour).

Fortunately, some important concepts are ex-
plained more fully in chapters on macros and 'How
TpJ works' -although I feel that the section on
modes is a bit skimpy. There are two nice chap-
ters on mathematical typesetting, there is a short
chapter on output routines, and I was particularly
pleased with the chapter on 'Tables and alignment'
as it is well-written and contains good examples.

The main part of the appendix to this book is
an 80 page (!) list of all 'I)$ and plain Tl$ com-
mands. The explanations are short, but certainly
not cryptic, and often an illuminating example is
given. Definitely a good idea of the author.

T@ for the advanced

w for the Advanced by Wolfgang Appelt is a very
different book. The subtitle, 'Programming tech-
niques and macro packages' is probably the best in-
dication to its contents. Wolfgang Appelt argues in
the preface the need for high level macro packages,
and then sets out to assist the reader in constructing
such packages. He does this in three ways.

The preface, the introductory chapter, and a
chapter 'Macro packages' give general thoughts on
how macro packages should be structured, and what
their nature should be. He distinguishes between the
logical structure and the layout structure, and, for
both of these, the generic and the specific structure.
It is useful to have such concepts explained in some
detail. and the reader won't hear me arguing the
author's point of view.

Pure theory is treated in chapters on
'Spaces' -such a chapter must be answering many
prayers of desperate TpJers- and 'Macros and pa-
rameters'. The author has a very clear style of expo-
sition, but his explanation of conditionals, sufficient
for most cases, distorts the truth a bit.

Lastly, four chapters can be classified as "case
studies in macro package design." They treat the
subjects of a font selection scheme, text structures
(lists and sectioning), referencing (including table
of contents), and adaptations necessary for the Ger-
man language. These chapters give complete sets of
macros, and they are well explained.

Appelt makes no attempt at being complete.
Mathematical typesetting and alignments are not
treated in this book, and output routines are hardly
touched upon. Given the size of the book this would
not have been possible, and concentrating on a few
selected topics is probably a good idea.

In all, this book is maybe not sufEcient rea-
son to start learning German -which means you'll
never make such delightful discoveries as that ragged

right is Flattersatz (flutter setting) in German-

TUGboat, Volume 11 (1990), No. 2

but if you know a smattering of the language it cer-

tainly won't harm you to pick up this book.
DECUS T ' Collection - Submissions
Wanted

How does it look?

When a book about !QX appears, there is an obvi-

ous question: "Has it been done in T'X?" For both

books reviewed here the answer is yes, but the re-
sults are widely different. The Appelt book is set

in 12 point Computer Modern with non-obtrusive

headings, which gives a surprisingly open and read-

able page. Of the Schwarz book I have only seen
the Dutch and English translations, which are to-

tally unlike each other. The English translation is

set in Computer Modern. photographically reduced
to 10 point. Unfortunately, the book was printed
rather lightly, which makes the page appear some-

what hazy.
The Dutch branch of Addison-Wesley must

have been in an adventurous mood, combining New

Century Schoolbook as a text face with Avant Garde

headings. Choosing Courier as the typewriter font

was not the optimal choice, but the overall result
is rather pleasant -even though there have been a

few accidents in typesetting the examples.

As a conclusion I would state that both books

are an asset to the TEX community. Neither book

is a definite rn bible, but niches certainly exist for

both to fill.

[I] Einfiihrung in w, Norbert Schwarz, Addison-

Wesley Verlag, Bonn 1988(?) ISBN 3-925118-97-7.

Inleiding w, Norbert Schwarz, Addison-Wesley
Europe, Amsterdam 1990, ISBN 90-6789-151-7.

Introduction to m, Jost Krieger and Nor-
bert Schwarz, Addison-Wesley Europe, Amsterdam

1989. ISBN 0-201-51141-X.

[2] fiir Fortgeschrit tene, Wolfgang Appelt, Ad-

dison-Wesley Verlag, Bonn, 1988, ISBN 3-89319-
115-1.

o Victor Eijkhout
Department of Mathematics
University of Nijmegen
Toernooiveld 5
6525 ED Nijmegen, The

Net herlands
Bitnet: u641001C!HNYKUNll

Ted Nieland

DECUS is putting out a Call For Submissions to

the DECUS Collection.
I plan on putting out an update to the DECUS

TEX Collection in August. I am currently looking

for any submissions that would be helpful in the

DEC computing environment (not necessarily on

DEC computers).

Support for the following operating systems

will be available:

- VMS

- Ultrix/Unix

- MS-DOS

- Macintosh

- Amiga-DOS

I am also planning to put out an Ultrix/Unix

version of the tape. It would still have everything

the other tape has, only in Ultrix (instead of VMS)

biased format.
I have a couple of people helping me this time

around, so I hope to be able to do more.

Also, there will be a number of W-re l a t ed

items on the Spring 1990 L&T SIG tape in the
EPUBS subdirectory. Included will be the latest

XDVI for DECWindows (and it is very nice), the

update to GPLOTIGTEX, an update to DVIOUT,

a document that is an introduction to !QX. rn
examples, and updates to the TI$ help files for

VMS. I am still looking at a few other items that

may make the spring tape, but my major concern

is for the actual TEX tape for the fall.
Anyone with something to offer is invited to

send me a description, preferably by electronic mail.

o Ted Nieland
Control Data Corporation
Suite 200
2970 Presidential Drive
Fairborn, OH 45324
TNIELANDQAAMRL.AF.MIL

TUGboat, Volume 11 (1990), No. 2

JUST PLAIN Q&A: New Column

Alan Hoenig

Look Here for Advice

The Editorial Staff at TUGboat is planning a new

column. If you let us know your m problems and

puzzles, we'll answer them in this column. This
column can't fly without reader response, so please
write!

We hope to provide a service comparable to
that available on the m h a x network. That an
ever increasing proportion of TUG'S members have

no access to this network is an important reason for

starting this column.

Ground Rules. Being naturally optimistic, we
expect to receive many more queries than we can

possibly deal with in this column, so we'll choose

problems whose solution might be particularly in-

structive to the community at large. Note,
though, we solicit only just p l a i n m questions.

Continue to forward I4m problems to Jackie Dam-

rau, and she will continue to ably provide assistance
in that area.

No problem is too trivial or elementary! As

a reliable rule of thumb, assume that if you have

a problem, so do (dozens of) others. If we use
your question, we'll be pleased to include your

name and affiliation in the column (although we

will honor requests for anonymity from the modest

and humble).

Try to keep your questions specific. We're
not enthusiastic about answering questions like how
would you design a complete macro package to
typeset a newsletter?

Write or phone your problems to the under-
signed. (But if you phone, please realize that we
can't and won't provide an answer on the spot.) You

may e-mail your problems directly to TUGboat at
TUGboatQMath . AMS . corn. Please time your inquiries

so we receive them at least four weeks prior to the

current TUGboat submission deadline. (You can
find this calendar inside your current TUGboat.)

Items received after a deadline will be considered
for the next issue.

We hope to hear from you.

o Alan Hoenig
17 Bay Avenue
Huntington, NY 11743

(516) 385-0736

Tutorials

Output Routines: Examples and Techniques.
Part 11: OTR Techniques.

David Salomon

The warnings and disclaimers in Part I* of this
article also apply to this part. The methods and

macros described here are not canned. They should
not be copied and used verbatim. Rather, they

should be carefully studied and adapted to specific

needs.

The following techniques are discussed in this
article, and are applied to practical situations:

Breaking up \box255 in the OTR into individual

lines by means of the \ lastxx commands.

Identifying individual lines or paragraphs to

the OTR by means of \ r ightskip, \parshape,
or the depth of \box255.

Attaching very small amounts of \kern to

certain lines of text, to identify those lines to

the OTR as special.

Placing large negative penalties at certain
points in the document. This has the ef-

fect of invoking the OTR at those points. The

OTR does not have to shipout anything.

Attaching very small vboxes below certain lines,

to identify them to the OTR as special lines

that require special treatment.

Using marks. This is a common OTR technique.

Setting \vsize to a very small value. \box255
consists, in such a case, of just one line of text,

which is then easy to examine.

Using a 2-pass technique where, in the first

pass, certain information is written on a file, to
be read by the second pass. Certain complex

problems may even call for a multi-pass job.

We also remind the reader of the notation used
in Part I: [. . .] alone makes reference to an item or

items in The m b o o k (e.g., [400] refers to page 400

and [Ch. 61 refers to Chapter 6 in The W b o o k) ,
whereas [§. . .] refers to a module or modules in

m: The Program.

* TUGboat 11, no. 1, pp. 69-85.

TUGboat, Volume 11 (1990), No. 2 213

Technique: Special Penalties An empty formula is easy to create by $$ $$

Furthermore,-the large flexible glues surrounding a
Penalties are used in rn to control line breaks and

display are easily eliminated by:
Dane breaks. de~endinn on the current mode. Penal- - u ! A "

ties generated in h-mode are used by the paragraph \ a b O v e d i s ~ l a ~ s k i ~ = l s ~

break algorithm [§831, $8591. To communicate with \ b e l O w d i s ~ l a ~ s k i ~ = l s ~

the OTR by penalties, they therefore have to be \abOvedis~la~shOrtskip=lsp

generated in v-mode. A penalty of 10000 or more \belOwdis~la~shOrtskip=isp

is considered infinite and prevents a page break.

Similarly, a penalty of -10000 or less always causes

a break. The idea is to say \penalty-10001 at any

point that requires the OTR'S attention (W must

be in v-mode at that time), in order to invoke the

OTR at this point. A macro such as

\def\immed(\vadjustC\penalty-10001))

can be used for this purpose. The OTR should

check \outputpenalty and, if it equals -10001, do

something special. It can then shipout \box255 or

return it to the current page.

This is a good method for communicating with

the OTR, and has only one feature that makes it
less than ideal; the special penalty value of -10001

does not invoke the OTR immediately. Instead, it is

initially placed in the recent contributions, together
with the rest of the paragraph, and has to wait

until the page builder is exercised. The problem

is that, when the page builder is exercised and the

OTR invoked. TEX has already read text past the
special penalty.

In a test such as

the OTR would find \dimen0 to have a value of 2pt.
Exercise: Write an OTR that displays the

value of \dimeno, and perform the test above.

The reason for this behaviour is the way

\vadjust is executed. first breaks the entire

paragraph into lines that are placed in the recent

contributions. Only then does it place the \vad ju s t
material at the proper point between two lines [259].

As a result, the OTR is invoked too late.

To solve this problem, a way should be found

to exercise the page builder immediately. The page
builder is exercised (see [117]) at the start and end of

a paragraph; so, if the user wants to invoke the OTR

at the end of a paragraph, a \penalty-10001 is the

ideal technique. The page builder is also exercised

before and after a display formula, which suggests

a way to exercise it inside a paragraph. The user

should place, in the paragraph, a \penalty-10001,

preceded by an empty display formula, at the point

where the OTR should be invoked.

To eliminate any extra interline spaces around

the display, an \openup-\baselineskip is placed in

it. Finally, setting \postdisplaypenalty=-10001

places the special penalty right below the display
formula, to make sure that the OTR is invoked.

The result is made into a new definition of

macro \immed:

\def\immed{$$\postdisplaypenalty=-10001

\openup-\baselineskip$$)

The expansion \immed terminates the current

line (same as \hfi l \break), places an empty,
invisible display formula following the line, and im-
mediately invokes the OTR with \outputpenalty =

-10001. The paragraph is not terminated.
To see the point where the formula is placed,

\immed can be temporarily changed to:

\def\immed($$\postdisplaypenalty=-10001

\openup-\baselineskip+$$)

In a test such as

. . \dimenO=lpt . . . \immed . . . \dimen0=2pt..\par

the OTR would find \dimen0 to have a value of Ip t .

This method is, again, not ideal, since it

terminates the current line.

The \ l as txx Commands

The OTR can examine the contents of \box255 and

also break it up into its components, by means of
the \ las txx commands [§424, $9961. There are

4 of them: \ lastbox, \ l a s t sk ip , \ las tkern and

\ las tpenal ty [271]. To use those commands, the

OTR should first open \box255, by means of an

\unvbox. If the last item in \box255 is a glue, its
value will be reflected in \ las t sk ip . Two things

can be done at this point (1) \skipO=\lastskip;
(2) \ u s k i p . The first saves the glue value for future

use, and the second removes it [280]. Similarly for
\ las tkern and \ las tpenal ty . If the last item is

a box, the command \setboxO=\lastbox will both
set \box0 and remove the last box.

Technique: Breaking Up a Page

The OTR may use the \ las txx commands in a loop,
to identify successive components of \box255. In

such a loop it is, of course, important to check at

TUGboat, Volume 11 (1990), No. 2

each iteration and find out what the next item is,
before copying and removing it. If the next item
is not a glue, \lastskip will have a value of Opt.
Similarly, \lastkern will be Opt, \lastpenalty
will be 0, and \lastbox will be void. A macro
\breakup can thus be defined, consisting of a
\loop. . .\repeat to remove successive elements off
\box255.

\newif\ifAnyleft \newcount\pen

\def\breakup(%

\loop \Anyleftf alse

\ifdim\lastskip=Opt\else \Anylefttrue

\skipO=\lastskip \unskip \f i

\ifdim\lastkern=Opt\else \Anylefttrue

\dimenO=\lastkern \unkern \fi

\ifnum\lastpenalty=O \else\Anylefttrue

\pen=\lastpenalty \unpenalty \f i

\setboxO=\lastbox

\ifvoid0 \else \Anylefttrue \fi

\ifAnyleft \repeat)

Note the use of variable \Anyleft to check if
there is anything left in the box after each repetition
of the loop. The loop repeats until none of the four
items is found. The OTR simply says \unvcopy255
\breakup.

An alternative definition of \breakup, using
nested \ifs, is:

\ifdim\lastskip=Opt \ifdim\lastkern=Opt \ifnum\lastpenalty=O

\setboxO=\lastbox \ifvoid0 % end of breakup loop
\else \Anylefttrue \fi % box encountered
\else \Anylefttrue \unpenalty \fi % penalty encountered
\else \Anylef ttrue \unkern \f i % kern encountered
\else \Anylef ttrue \unskip \f i % glue encountered

Before discussing specific applications of the
breakup technique, let's look at its main problems.
1. We have to test \lastskip for Opt. Unfortu-
nately. T@ does not have an \ifskip or \ifglue
tests. We thus have to use \if dim, which tests a di-
mension, not a glue. The test \ifdim\lastskip.. .
first converts the glue to a dimension. The problem
is that such a conversion discards the stretch and
shrink components of the glue [118]. Thus if the
next glue item has the form Opt plus. . minus. . ,
our macro will consider it zero.

The solution: change the values of certain
common vertical glues that have this form to Isp
plus.. . minus.. . . We thus declare:

\parskip=lsp pluslpt

\def\vfil(\vskiplsp pluslfil)

\def\vfillC\vskiplsp pluslfill)

\abovedisplayshortskip=lsp plus3pt

2. A similar problem exists with penalties. A
math display formula is followed by a \postdis-
playpenalty [189], whose default value is zero. As
a result, any construct using the math display mode,
such as \verbatim or $$\vbox(\halign{ . . .))$$,

suffers from the same problem. The solution is to
set \postdisplaypenalty=l.

There is also an \interlinepenalty parame-
ter, which goes between the lines of a paragraph. It
is usually zero but can be changed to a large value
[406] to discourage a page break inside a paragraph.
We set it to 1.

The above definitions are all consolidated into
a new macro \zeroToSp. which should be used in
conjunction with any page breakup.

\def\zeroToSpI\parskip=lsp pluslpt

\def\vfil~\vskiplsp pluslfil)

\def\vfill~\vskiplsp pluslfill3

\abovedisplayshortskip=lsp plus3pt

\postdisplaypenalty=l

\interlinepenalty=l)

3. When breaking up a box using the \lastxx
commands, it is easy to identify the 4 types: box,
glue, kern and penalty. There seems no way,
however, to identify the other three components
of vertical lists, namely rules, marks and whatsits.
When our breakup loop gets to one of them, it
stops, assuming that this is the end of \box255.

A whatsit (a \special or a \write) can usually
be specified in horizontal mode, which will bury it
inside an \hbox and out of harm. A mark, on the
other hand. tends to migrate outside horizontal lists
[400] and into the top level of \box255. It therefore

TUGboat, Volume 11 (1990), No. 2

causes an incomplete breakup, and its use should
be avoided when this technique is employed.

A similar problem is presented by a rule. An
\hrule at the top level of a \vbox is considered a
box [110]. However, the \lastbox operation cannot
identify it as such, which results in an incomplete
breakup.

A solution: Place the \hrule in its own \vbox,
so it does not appear at the top level of the larger
\vbox.

Partial relief: Such a case, where the breakup
stops prematurely, can be detected by setting a new
box (\brk) to the remains of \box255 after the
breakup. When the breakup stops, \ht\brk should
be zero. An OTR can thus be written which breaks
up a copy of \box255, and checks to see if anything
is left.

\newbox\brk

\output=<

\setbox\brk=\vbox{\unvcopy255 \breakup)

\ifdim\ht\brk>Opt

\message<Incomplete breakup)\fi

\shipout\box255 \advancepageno)

Exercise: Implement the above OTR and use
it to typeset several pages, some containing rules or
marks.

Here are a few simple applications of the
breakup technique.

Duplicating a Page

Macro \breakup can be modified to place broken up
components from \box255 in \box1 in the original
order, creating a copy of the current page.

\if h i m \ l k s t ~ k i ~ = ~ ~ t \if dim\lastkern=Opt \ifnum\lastpenalty=O

\global\setboxO=\lastbox \ifvoid0 % end of breakup loop
\else \Anylefttrue % box present

\global\setboxl=\vboxC\box0 \unvboxl)\fi

\else \Anylefttrue % penalty present
\pen=\lastpenalty

\global\setboxl=\vboxC\penalty\pen\unvboxl>\~penalty\fi

\else \Anylefttrue % kern present
\dimenO=\lastkern

\global\setboxl=\vbox<\kern\dimen0 \unvboxl)\unkern\fi

\else \Anylefttrue % skip present
\skipO=\lastskip

\global\setboxl=\vbox(\vskip\skip0 \unvboxl)\unskip\f i

\if Anyleft \repeat)

A test such as:

\newbox\brk

\output=<

\setbox\brk=\vbox~\unvcopy255 \duplicate)

\ifdim\ht\brk>Opt

\message(Incomplete breakup)\fi

\shipout\box255 \shipout\boxl

\advancepageno)

is particularly interesting. It typesets pairs of pages,
with the same page numbers. Two physical pages
are printed for each logical page generated. The two
pages in a pair are duplicates of each other, but are
they identical?

It turns out that they are not. The main
difference between \box255 and \box1 is their
heights. The heights are different because of the
flexible glues on the page. Normally, \box255
contains some flexible vertical glues. Those glues
are flexed to adjust \ht255 to equal \vsize. When
\box255 is opened, however, the glues return to
their natural size.

This can easily be seen by a test such as:

\newbox\brk

\output=<

\setbox\brk=\vbox<\unvcopy255 \duplicate)

\ifdim\ht\brk>Opt

\message<Incomplete breakup>\fi

\message<[\the\ht255:\the\htl]>

TUGboat, Volume 11 (1990)' No. 2

\parskip=6pt plus6pt minus6pt

\input source

\bye

The \parskip glue is given a lot of flexibility,
and the heights are shown in the log file. Such
a test also shows that the last pair of pages may
differ a lot in their heights. This is because the last
page of a document is normally only partly full, and
has a \vfill glue at the bottom. When \box255
is opened, the \vfill returns to its natural size,
which is Opt.

How can we make sure that the two pages
in a pair have the same heights? The simplest
approach is to flex \box1 in the OTR, just be-
fore it is shipped out, by saying \setboxl=\vbox
to\vsize{\unvboxl). Now the two pages in a pair
have exactly the same height and the same glue set
ratio; they are identical. Our OTR thus becomes:

\newbox\brk

\output={

\setbox\brk=\vbox~\unvcopy255 \breakup}

\ifdim\ht\brk>Opt

\message{Incomplete breakup)\fi

\setboxl=\vbox to\vsize(\unvboxl3

\shipout\box255 \shipout\boxl

\advancepageno)

Two \showbox commands can temporarily be
placed in the OTR to dump \box1 and \box255
onto the log file, and verify that they have identical
components. It is important to (temporarily)
increase the value of \showboxbreadth. Also, to
make the dumps more manageable, \vsize should
be set to a small value, such as lin.

Reversing a Page

It is now trivial to modify the definition of \du-
plicate, so that it breaks up items from \box255
and places them in \box1 in reverse order. This is,
perhaps, a useless operation but, since our aim is to
gain an understanding of OTRS, let's ask ourselves
how \box255 and \box1 differ.

1. They are the reverse of each other, which
means that each glob of \baselineskip glue which
used to be below a line of text, is now above it.
The interline spacing in \box1 is thus all wrong.
This is not very noticeable when the entire page is
typeset with the same font. Mixing different font
sizes, however, results in a funny looking reversed
page. Also, the \parskip glues are misplaced but,
since they are normally zero, this is not noticeable.
Changing \parskip to some non-zero value results
in large spaces following the first line of each
paragraph (which are last lines on the reversed

page).
2. They have different vertical dimensions.

The height of \box255 is \vsize and its depth is
usually the depth of the last line of text. \boxi,

on the other hand, ends with \topskip, which is
glue and thus has no depth, so \dpl=Opt. Also,
\box1 starts with the bottom line of \box255. To
guarantee that \htl+\dpl equals \ht255+\dp255,
we should force \htl to be the sum \ht255+\dp255.

Exercise: Write a macro \reversepage to
reverse \box255 into \boxl.

Counting the Lines

The \breakup macro can now easily be modified
to count the number of lines of text in \box255.
We assume that \box255 does not contain rules,
marks or whatsits, and we break it up, counting
the number of \hboxes found. Items that we don't
want to count should be placed in a \vbox. The
macros are:

\newif\ifAnyleft \newcount\lineCount

\def\countlines{\global\lineCount=O

\loop \Anyleftf alse

\if dim\lastskip=Opt \if dim\lastkern=Opt \if num\lastpenalty=O

\setboxO=\lastbox \ifvoid0

\else \Anylefttrue \ifhboxO \global\advance\lineCount by1 \fi \fi

\else \Anylefttrue \unpenalty \fi

\else \Anylefttrue \unkern \fi

\else \Anylefttrue \unskip \fi

\ifAnyleft \repeat)

TUGboat, Volume 11 (1990), No. 2

\output=C\setbox\brk=\vboxC\unvcopy255 \countlines)

\ifdim\ht\brk>Opt \message(Incomplete breakup) \f i

\message(\the\lineCount)

\shipout\box255 \advancepageno)

Breaking Up a Line of Text

Can we use the same technique to break up individ-
ual lines of \box255? It seems easy to define a macro
\hbreakup that would use \lastxx commands to
break up a line of text. Unfortunately, this does
not work, because a line of text contains individual
characters, which the \lastbox command cannot
recognize as boxes. It is interesting to note that a
character of text is, in general, considered a box [63]
but, evidently, there are differences between a gen-
eral box and a character box. One such difference
is that a character box cannot appear in a vertical
list [110]. Another difference is the one mentioned
above, concerning \lastbox, and this difference is
easy to verify with a test such as

\setboxO=\hbox(ABC)

\unhboxO \setboxl=\lastbox

\showbox1

\bye

which shows \box1 to be void. and typesets 'ABC'.
In contrast, the test:

\setboxO=\hboxCAB\hboxCC))

\unhboxO \setboxl=\lastbox

\showbox1

\bye

shows \box1 to consist of an hbox with the 'C', and
typesets only 'AB'.

This is an unfortunate situation. The ability
to break up a line of text would have meant a full
and complete communication with the OTR. The
user could hide, e.g., a strut with a special depth
in the line, and the OTR could easily find it, and
do something with, or add something to, the line at
that point. The strut could even have been left in
the line.

Technique: Using \right skip

Even though \lastbox cannot be used to break up
a line of text, \lastskip can be used to detect glue
at the right end of such a line. This suggests a way
to identify certain lines to the OTR. How can a glob
of glue be placed at the end of a line? It turns out
that places the \rightskip glue at the end
of every line of text when the paragraph is broken
into lines. The plain format value of \rightskip
is Opt so, setting \rightskip=lsp will not be

visually noticeable and can be used to communicate
with the OTR. Unfortunately "m uses the same
\rightskip value in all lines of a paragraph" 13931.
This method can thus be used to identify certain
paragraphs, but not individual lines, to the OTR.

An application demonstrating this technique is
shown later. It has to do with 'special boxes' in a
textbook. Following are two examples that are not
developed in detail, since they are easier to do in
other ways:

1. Suppose that a vertical rule should be
typeset on the left margin of certain paragraphs.
The OTR can do this by placing a rule, the size
of a strut, on the left of each line that ends with
\rightskip=lsp. However, this is easier to do by
typesetting the paragraph in a \vbox and placing a
rule on the left of the box.

2. If only one or two lines of the paragraph
appear on (the bottom of) the page, we want
to move them to the next page, and to \vfill
up the present one. This can be done by the
OTR checking the rightskip glue of the bottom line
or two. However, it may be easier to do with
\f ilbreak [I l l] .

Technique: Using \parshape

If we want the OTR to do something special with,
say, the second line of a paragraph, we can identify
this line by making it lsp longer or shorter than the
other lines. This can easily be done with \parshape.
Again, there are no practical applications as yet for
this technique .

Technique: Using the Depth of \box255

The following quote, from [400], is relevant to
this technique: "Perhaps the dirtiest trick of all
is to communicate with the OTR via the depth of
\box255." After mastering the techniques described
here, the reader will agree that this is no longer
the dirtiest trick, but is a special case of the
breakup technique. Examples of applications of this
technique are:

1. In certain old religious texts, if a chapter
ends on a certain page, and less than half a page
remains, the next chapter should start on the
following page; otherwise, it should start on the
same page.

TUGboat, Volume 11 (1990), No. 2

2. Business contracts usually consist of clauses.
In certain legal situations it is desirable to break

a page between clauses. If the page must be
broken inside a clause, a special footer should

be typeset, saying Contmued This can be done
by ending each clause with \endclause, a macro

defined as {\unskip\vrule heightopt widthopt

depth3.5002pt). The \unskip backspaces over

any possible space preceding the special strut, thus
making sure that the strut will end up on the same

line as the preceding word.

The OTR simply tests

\ifdim\dp255=3.5002pt \ e l s e

\footline={\hfil\sevenrm Continued . . . 3
\f i

3. Certain lines should not appear at the bot-

tom of the page. A business contract is again a

good example. If a certain line contains the most

important words or money sums in the contract, it

should better not appear at the bottom of the page,

where it is less visib1e.t Again, a special strut can

be used to identify the line and, if the OTR detects

such a line, it should alert the user, who can then

correct the situation by rewording the document, or

by moving things around.

Technique: Communications by Kerns

Small amounts (a few sp worth) of \kern can be

placed between the lines of text, and detected by

the OTR when breaking up \box255. The problem
is that a kern is discardable, so we have to make

sure that our special kern is not discarded. The

general rule is that a page can be broken at a kern
only if the kern is immediately followed by glue.

We, therefore, will have our special kern followed by
another kern. In fact, we will place two consecutive,

identical pieces of special, small kern after the text

line that we want to identify to the OTR. This

is done by \vadjustC\kernlsp\kernlsp3, which
places the kerns immediately below the current

line, i.e., they are placed between the line and the

\basel ineskip that normally follows it. If the

line should be followed by a penalty, the order is:

1 Beware! Certain businessmen do just this.

the line of text, the pair of kerns, the penalty, the

\baselineskip. The places where a page can be

broken have been mentioned earlier.

Practical Examples of OTRS

The techniques described earlier, plus a few others,

are now applied to practical problems.

Example: Start a Chapter On a New Page

The problem*: If a chapter ends on a certain page,
and less than half a page remains, skip the rest of

the page; otherwise. start the new chapter on the
same page.

Solution: Macro \chapter is expanded at the

start of each chapter. It appends a special line to

the end of the preceding chapter (only if there is

a preceding chapter), and invokes the OTR by an
\ e j ec t . The special line consists of just a small

\hbox with a rule of depth i sp , and width and
height zero.

Each time the OTR is invoked, it checks to

see if \dp255=lsp and \ht255<0.5\vsize. If yes,

the OTR returns \box255 to the MVL (it is an

end-of-chapter and more than half a page remains);

otherwise, \box255 is shipped out (either less than

half a page remains or not end-of-chapter).
Actually, the details are a bit more involved. If

\dp255=lsp, then \box255 contains text, followed

by a \ v f i l l , and by the special box. The last two

items have to be removed before \ht255 can be
tested. To do this -

1. \box 255 is opened, the special box at the

bottom is removed by a \ lastbox (see later), and
the \ v f i l l is skipped over by an \ u s k i p . The

result then goes back in \box255. The new \box255

now has just the original text, and its height can be
measured.

2. If \ht255<O. 5\vsize, \box255 is opened,

and a message (unv) goes in the log file. Otherwise,

a new box is shipped, consisting of \box255, a
\ v f i l l , and a footline. The size of the new box is

\vsize+l2pt , and it has to be explicitly specified.

A listing of the macros follows. They are kept,

as usual, simple.

- -

* Proposed by Robert Batzinger.

TUGboat, Volume 11 (1990), No. 2

% if \dp255 = lsp: unvbox255, lastbox (the line with dp = lsp),

% skip over the \vfill by \uskip, and return to MVL.

\output=(\Retf alse

\ifdim\dp255=lsp

\setbox255=\vbox{\unvbox255 \setboxO=\lastbox \unskip)

\ifdim\ht255<\Hvsize \Rettrue \fi \fi

\ifRet \unvbox255 \message{uv)

\else

\shipout\vbox to\Nvsize{\box255\vf ill\line{\the\f ootline>>

\advancepageno \message{ship) \fi

Example: A Religious Hymn

One way of communicating with the OTR, proposed

in [App. Dl, is by the use of special penalty values.

Any penalty value 5 -10000 will cause the OTR to
be invoked. Values < -10000 can therefore be used

to tell the OTR to do something special.
Note that the OTR is not invoked when TEX

first sees the penalty. It is only invoked when

the page builder detects the penalty, while moving
items from the recent contributions to the current

page [§1005].

The OTR should check the value of variable

\outputpenalty. If it is < -10000, it should do

something special and then return \box255 to the

MVL without shipping out anything (a dead cycle).

If, however, \outputpenalty equals -10000, the
OTR should do a normal \shipout.

The example shown here* has to do with

typesetting a religious hymn. A hymn consists of

one chorus and a number of stanzas. The chorus

is usually printed after the first stanza and is sung

* Proposed and solved by Robert Batzinger.

after each stanza. The problem is that a long hymn

may occupy more than one page and, in such a

case, the chorus should be printed on the top of

each successive page.

The solution is to write macros that will typeset

a copy of the chorus if we are still within the same

hymn, but have moved to a new page. The original
text of the chorus is saved in a \toks variable, so it

can be used as often as necessary.
Macro \hymn is expanded at the start of each

hymn. It invokes the OTR with penalty -10001 and
the OTR, in that case, simply saves the current page

number in the count variable \oldpage. Note that

the OTR does not shipout anything, and returns
\box255 to the MVL.

Macro \stanza is expanded at the start of each

stanza. It invokes the OTR with penalty -10002.

The OTR then tests \ifnum\pageno>\oldpage (we

have moved a page or two since the last printing of

the chorus) and sets the boolean variable \prtCorus

to true. The OTR then returns \box255 to the MVL.

Macro \stanza tests \prtCorus and, if it is true,

invokes macro \set chorus to typeset the chorus.

Here are the macros used:

TUGboat, Volume 11 (1990), No. 2

\def\setchorusI\medskip

\moveright.5in\vbox{\noindent

\hbox to Opt{\hss\bf Chorus:\ 3%
\the\toks2\medskip)

\global\prtCorusf alse)

Note that this is just a demonstration of a
principle. The macros presented here are simple
and will not always work. One case where they fail

is when a hymn starts at the end of a page, and

the chorus is typeset on the following page. The

chorus will, in such a case, be typeset twice on that

page. There may be other problems, but the idea
in this article is to keep the macros simple and easy
to read.

Exercise: Generalize the above macros so that
they do not typeset the chorus on an odd-numbered

(right hand) page if it was typeset on the preceding

even-numbered (left hand) page. This way the

chorus would be typeset only once on a pair of

facing pages.

Line Numbers on the Margin
Figure 1

Example: Line Numbering

When writing a draft of a book, a thesis, or a
report that should be reviewed by someone else,

it is useful to number the lines on each page (see

Figure 1). This way the reviewer can easily refer

to, e.g., line 48, page 84. The numbers should be

placed in the margin, so they can be suppressed in
the final version without any changes in the layout

of the document.

The method used here counts the number of

lines of text by counting the boxes that make up

the page. Macro \countlines below assumes that

each box on the page is a line of text and should

be numbered. Alternatively, if certain items on the

page should not be numbered, they can be placed
in vboxes, and \countlines revised to count only

hboxes.

TUGboat, Volume 11 (1990), No. 2

Note that, in an \halip. each line becomes
an \hbox and is, therefore, counted separately. Also

note that a blank line preceding a display equation

becomes an empty paragraph, and is therefore

counted.

The OTR breaks up a copy of the page, removing
the lines of text one by one. At the same time,

a new box, \boxl, is built, from the bottom up,

with the line numbers on the margin. For each line

removed from the page, its height and depth are
measured, and a line with the same size, containing

the appropriate number, is added to the top of
\boxl. Each glue or kern removed from the bottom

of the page is added to the top of \boxl. At the

end. the height and depth of \box1 are set to zero
and it is typeset, superimposed on the original page.

\ifdim\lastskip=Opt \ifdim\lastkern=Opt \ifnum\lastpenalty=O

\global\setboxO=\lastbox \ifvoid0 % end of breakup loop

\else \Anylefttrue \appendline \fi

\else \Anylefttrue \pen=\lastpenalty

\global\setboxl=\vbox(\penalty\pen \unvboxl) \unpenalty \f i

\else \Anylefttrue \dimenO=\lastkern

\global\setboxl=\vbox(\kern\dimen0 \unvboxl) \unkern \fi

\else \Anylefttrue \skipO=\lastskip

\global\setbox1=\vbox(\vskip\skip0 \unvboxl) \unskip \fi

\ifAnyleft \repeat)

\newbox\brk

\output=(\global\lineCount=O

\setbox\brk=\vbox~\unvcopy255 \countlines)

\global\setboxl=\vboxC)

\setbox\brk=\vbox~\unvcopy255 \breakup)

\ifdim\ht\brk>Opt \message~Incomplete breakup) \fi

\htl=Opt \dpl=Opt

\shipout\vboxC\moveleft20pt\box1 \box2551

\advancepageno)

TUGboat, Volume 11 (1990), No. 2

This example illustrates both the power of the
breakup technique, and its main problem. The

problem is the flexible glues in \box255. They
are flexed, by the page builder [§668, $10171, to
adjust \ht255 to \vsize. However, when \box255
is opened, for the breakup, the flexible glues return
to their natural size.

A partial solution is to reduce, or even
eliminate, the flexibility of those glues (mainly

\parskip). This, however, handicaps the page
builder in its most important task, namely, finding
a good point to break a page.

Exercise: Implement an alternative approach
to the line numbering problem. The new approach
should build, in \boxl, a duplicate of \box255 with
the line numbers inserted on the left.

Example: Special Footnote Numbering

Another practical problem* is to number the foot-
notes in a document by the line number on the
page. This problem is solved here several times, us-
ing different approaches. Each approach illustrates

* Proposed by Lothar Meyer-Lerbs.

different OTR techniques, and also involves certain
difficulties.

The following quote, from the Chicago Manual
of Style (see also [125]), is relevant. "Since it is
impossible to foresee how [footnotes] will happen
to come out in the make-up, it is impracticable to
number them from 1 up on each page. The best
way is to number them consecutively throughout
an article or by chapters in a book." The problem
tackled here is much more complicated than the one
proposed in the quote, and demonstrates the power
of OTRs in m.

A Simple, Wrong Approach

The first approach is simple and intuitive. Macro
\Nfootnote uses a penalty of -10001 to invoke the
OTR prematurely. The macro is expanded from
h-mode, and it has to place the penalty at the top
level of \box255, between lines of text. This is done
with \vadjust. The OTR breaks up \copy255 and
counts the number of lines in the page so far. It then
returns \box255 to the MVL. Macro \Nfootnote
again takes over and typesets the footnote with the
number calculated by the OTR.

The macros are very simple:

\def\breakupC%

\global\lineCount=~

\loop \Anyleftfalse

\if dim\lastskip=Opt \if dim\lastkern=Opt \if num\lastpenalty=O

\global\setboxO=\lastbox \ifvoid0

\else \Anylefttrue \ifhboxO \global\advance\lineCount 1 \f i \f i

\else \Anylefttrue \unpenalty \fi

\else \Anylefttrue \unkern \fi

\else \Anylef ttrue \unskip \f i

\ifAnyleft \repeat)

\output=C\ifnum\outputpenalty=-10001

\setbox\brk=\vboxC\unvcopy255 \breakup)

\ifdim\ht\brk>Opt \messageCIncomplete breakup) \fi

\unvbox255

\else \plainoutput \f i

)

TUGboat, Volume 11 (1990), No. 2 223

but they don't work! The serious reader should, by it expands \footnote, the OTR has not yet been
now, know the reason. The \vadjust with the spe- invoked.
cia1 penalty does not invoke the OTR immediately.

Instead, the penalty is placed following the current A 2-pass Method
line. Thus, in the second part of \Nf ootnote, when

The idea in the second approach is to modify the
OTR so that it writes \the\lineCount on a file.
This leads to a 2-pass job, shown below.

\output=C\ifnum\outputpenalty=-I0001

\ifnum\pass=l

\setbox\brk=\vboxC\unvcopy255 \countlines)

\if dim\ht\brk>Opt \message{Incomplete breakup) \f i

\immediate\write\aux(\the\lineCount) \fi

\unvbox255 % return to MVL
\else \plainoutput \fi

3
% shipout with footnotes

In the first pass, macro \Nf ootnote creates the
special penalty and also expands \footnote*{. . .3
to typeset the footnote, so it takes the right amount
of space on the page. In the second pass, the macro
reads the correct number off the file, and invokes
\footnote with that number. This is still simple
and usually works.

It may fail, however, in cases where a footnote
appears close to the bottom of the page. Imagine
a footnote on line 60 of page 4. Because of the

\penalty- 1000 1 following this line, T@ will invoke
the OTR with a 60-line page. The OTR will (1) write
the line count, 60, on the file; (2) return \box255
(with the 60 lines) to the current page, removing
the special penalty. Since the current page is now
large, immediately starts looking for a good
page break. It may decide, since the special penalty
isn't there any more, to break the page after line
59. Line 60 thus becomes line 1 of the next page,

TUGboat, Volume 11 (1990), No. 2

but the number 60 has already been written on the
file.

Another 2-pass Solution

The third approach is similar except that, instead
of being written on a file, the line numbers are

saved-by the OTR-in memory. This makes sense

since there usually aren't many footnotes on any

single page. In the second pass, macro \Nf ootnote
uses this information to expand \footnote with

the correct line numbers. This approach suffers

from the same problem as the previous one, but

it is shown here because it illustrates how to save

the line numbers, each as an \hbox, in a large

\vbox. Extracting them later is easily done with a

\lastbox.

Note that the 2-pass structure is different from

the previous one. Previously, each pass was a

separate job, and the line numbers were saved

on a file between the jobs. In the present method,

however, the line numbers are saved in a box (\sav),
which is stored in memory and thus disappears at

the end of the job. The two passes must, therefore,

be done in the same job. This is faster but requires

the source text to be \input from a separate file.

\def \breakup(%

\global\lineCount=O

\loop \Anyleftf alse

\ifdim\lastskip=Opt \ifdim\lastkern=Opt \ifnum\lastpenalty=O

\global\setboxO=\lastbox \ifvoid0

\else \Anylefttrue \ifhboxO \global\advance\lineCountl \fi \fi

\else \Anylefttrue \unpenalty \fi

\else \Anylefttrue \unkern \fi

\else \Anylefttrue \unskip \fi

\if Anyleft \repeat)

% pass 1

\output=~\ifnum\outputpenalty=-10001

\setbox\brk=\vbox~\unvcopy255 \breakup}

\ifdim\ht\brk>Opt \message(Incomplete breakup) \fi

\global\setbox\sav=\vbox(\hbox(\sevenm\the\lineCo~t}\~vbox\sav~

\unvbox255

\else \plainoutput \fi

1
% The above line should later be changed to:

% \setboxO=\box255 \deadcycles=O,
% since we don't really want to shipout pages in pass 1.

\input source \vfill\eject \pageno=l

% pass 2
\output=C\ifnum\outputpenalty=-10001

\unvbox255

\else \plainoutput \fi

3

TUGboat, Volume 11 (1990), No. 2

\input source

A Complex, 3-pass Approach

Approach 4: A three-pass job. The first pass deter-

mines the line numbers (throughout the document)
of lines with footnotes. Those numbers are saved in

a \vbox called \Asav. The second pass counts the

number of lines on each page. Those numbers are

also saved, in another box, \Bsav. The third pass
uses the numbers from the two boxes to determine

the correct line numbers and to typeset the foot-

notes. This is complex and, perhaps, can be done

in a simpler way. Nevertheless, it has the advantage
of demonstrating several useful OTR techniques.

Before describing the 3 passes in detail, here

is a simple numeric example: Let's assume that

we have three pages, with 50, 30 and 40 lines
respectively. There are footnotes on lines 3, 15,

15 and 44 of the first page, and lines, 25 and 34
of the third page. Pass 1 will save the numbers

3, 15, 15, 44, 105 and 114 in \Asav (note that 15

occurs twice). In pass 2, the line counts 50, 30

and 40, of the 3 pages are saved in \Bsav. Pass 3

starts by extracting the 50 from \Bsav. The first

4 times macro \Nf ootnote is expanded, it extracts
the numbers 3, 15, 15 and 44 from \Asav. Those

numbers are 5 50, so they are used for numbering

the first 4 footnotes. The fifth expansion extracts

105 from \Asav. This is > 50, so the next number,

30, is extracted from \Bsav and added to the 50.

The current footnote number, 105, is still > 80, so

the next number, 40, is extracted from \Bsav and

added to the 80. The current footnote number, 105,

is now 5 120, so 80 is subtracted and the result, 25,

is used. The last number is 114, again 5 120, so

again 80 is subtracted, yielding 34.

The steps in each pass are:

Pass 1. Macro \Nfootnote computes a running

number for each footnote, and creates a \mark with

that number. The footnote itself is not typeset, but

\Nfootnote typesets an asterisk to occupy space
on the line. approximately equal to that taken by

the final footnote number. \vsize is set to a small

value, so the OTR receives a \box255 with just
one line [400], which makes it easy to number the

lines throughout the document. Each time the OTR

is invoked, it checks \firstmark, \botmark and

compares them to \topmark. This way it knows if
there are any footnotes on the line. If there are

any, the line number is saved in box \Asav, once for

each footnote on the line.

l.\newcount\temp \newcount\footno \newcount\lineno \newbox\Asav

2.

3.\def\Nfootn0te#lC\ad~ance\footno I \mark(\the\footno)*) % typeset an *
4.

5.\output={\global\advance\lineno 1

6. \temp=\botmark

7. \advance\temp -\firstmark

8. \advance\temp 1

9. \ifnum\firstmark\botmark \ifnum\topmark\firstmark \temp=O \fi \fi

lo. % \temp is now the number of footnotes on the current page (one line)

11. \ifnum\temp>O

12. \loop

13. \global\setbox\Asav=\vboxC\vskip\lineno sp \null\unvbox\Asav}

14. \advance\temp-1

1s. \ifnum\temp>O \repeat

16. \f i

17. \setboxO=\box255 % get rid of

18. \deadcycles=O

19. }

20.

TUGboat, Volume 11 (1990), No. 2

21. % *** Executable commands ***
22. \messageIPass 1 ;I \vsize=lOpt % small value
23.\footno=O \lineno=O \setbox\Asav=\vboxO

24. \input source \eject

Lines 1-19 are macro definitions, and decla-
rations of variables. Lines 22-24 are the actual
commands executed in pass 1.

\vsize is set, on line 22, to the small value
IOpt. The page in \box255 will, as a result, consist
of just one line of text.

The OTR calculates \temp, on lines 6-8, as
\botmark - \f irstmark + 1. \temp is now the
number of footnotes on the current page (which
consists of just one line of text). However, if

\botmark = \f irstmark = \topmark, there are no
footnotes on the current line, and \temp is set, on
line 9, to 0.

If \temp # 0, the loop, on lines 12-15, saves
variable \lineno on top of \box\Asav as glue (in
units of sp).

Pass 2. Macro \Nfootnote typesets each footnote
with an asterisk. No marks are used. \vsize is set
to its normal value, and the OTR breaks up a copy
of each page, counts the number of lines, and saves
that number, as the top glue item, in box \Bsav.

3.\def\Nfootnote#l(\footnote*{#l}}

4. % typeset the footnote so it occupies the right space on the page
5.

6 \def\countlinesC%

7. \global\lineno=O

8. \loop \Anylef tf alse

9. \ifdim\lastskip=Opt \ifdim\lastkern=Opt \ifnum\lastpenalty=O

lo. \global\setboxO=\lastbox \ifvoid0

11. \else \Anylefttrue

12. \ifhboxO \global\advance\linenol \f i \f i % count \hboxes on the page
13. \else \Anylef ttrue \unpenalty \f i
14. \else \Anylefttrue \unkern \fi

15. \else \Anylefttrue \unskip \f i

16. \if Anylef t \repeat}

i8.\output=~\setbox\brk=\vboxC\unvcopy255 \countlines)

19 \ifdim\ht\brk>Opt \message(Incomplete breakup)

20. \showboxbreadth=1000 \showbox\brk \fi

21. \global\setbox\Bsav=\vboxC\vskip\lineno sp \null\unvbox\Bsav~

22. \plainoutput

23. }

24.

25. % *** Executable commands ***
26. \zeroToSp

27. \message(Pass 2 ;) \setbox\Bsav=\vbox()

28. \vsize=2in % or any desired value
29. \input source \vfill\eject \pageno=i

This is a simple pass. It is again divided into the final pages created by pass 3. We end up with
declarations and macro definitions (on lines 1-23), two sets of pages that should be identical, except
and executable commands (on lines 27-29). for the footnote numbers. Because of the problem

Note the \plainoutput on line 22. This causes mentioned later, the pages may not be identical,
pages to be shipped out in pass 2, in addition to and it is therefore important to compare the two

TUGboat, Volume 11 (1990), No. 2 227

sets before they are printed. When the results are pages in the normal way. Each time \Nfootnote
finally printed, the pages created by pass 2 should, is invoked it (1) extracts the next item from \Asav
of course, be suppressed. into \lineno; (2) if \lineno 5 \totalines, the - -

footnote is created with \lineno - \lineshiped;
Pass 3. Count variable \lineshiped is set to

(3) otherwise, \lineshiped is set to \totalines
zero. Count variable \totalines is set to the

and the next number is extracted from \Bsav and
first value of \Bsav (50 in our example). \vsize

added to \totalines. Step (2) is repeated.
remains at its normal value. The OTR ships out

1 \newcount\totalines \newcount\lineshiped

2

3 \def \compare{%

4 \ifnum\lineno>\totalines

5 \global\lineshiped=\totalines

6 \global\setbox\Bsav=

7 \vbox~\unvbox\Bsav \setboxO=\lastbox \global\temp=\lastskip \unskipl%

8 \global\advance\totalines by \temp

9 \expandafter\compare % expand recursively for each page w/o footnotes
lo \fl)

11

12 \def \Nf ootnote#IC%

13 \setbox\Asav=

14 \vbox~\unvbox\Asav \setboxO=\lastbox \global\lineno=\lastskip \unskip)%

15 % extract bottom glue into \lineno
16 \compare

17 \advance\lineno -\llneshiped

18 \footnote{$-\the\lineno$){#l}}

19

20 \output={\plainoutput)

21

22 % *** Executable commands ***
23 \messageCPass 3;) \lineshiped=O

24 \setbox\Bsav=

25 \vbox~\unvbox\Bsav \setboxO=\lastbox \global\totalines=\lastskip \unskip)

26 \input source

27 \bye

Macro \compare, lines 3-10, expands itself
recursively to implement the (pseudo-code) loop

while \lineno>\totalines
\lineshiped: =\totalines

extract \temp from \Bsav
\totalines:=\totalines+\temp

end while;

The \expandafter on line 9 makes sure that
the \fi, on line 10, is gobbled up by before
\compare is recursively expanded. Without the
\expandafter, the \fi would be saved in a stack
and popped out at the end of the recursion. In case
of a deep recursion, that could overflow the stack.

The macros are deliberately kept simple and
readable and, as a result, are not completely general,
and don't work in all cases. One such case is where

there are no footnotes on the first page; there may
be other cases. However, in general, this approach
seems to work, and seems to have just one, small
problem. Passes 1 and 2 typeset an asterisk '*', in
the body of the text, where each footnote should be.
This is done to occupy space on the line, space that,
in pass 3, is taken by the footnote number. Passes
1 and 2 thus end up with the same line breaks
but pass 3 m a y not. The problem is that footnote
numbers, in our case, are one or two digits, and
thus may be slightly wider or narrower than the '*'.
This may, in rare cases, cause different line breaks
in pass 3, leading to wrong footnote numbers.

Exercise: Why is it true that footnote num-
bers, in our case, can be one or two digits, but not
three?

228 TUGboat, Volume 11 (1990), No. 2

Saving Numbers in a vbox. An interesting
point is that our line numbers are saved as glue in a

\vbox. This is done by \vskip\lineno sp \nul l .

The sp is necessary since, otherwise, the value of

\ l ineno would be converted to scaled points. The
\nu l l is an empty \hbox to separate the individual

pieces of glue in the large \vbox. This technique

can only be used if the total number of footnotes in

the document is not too large. For a large number

of footnotes, there may not be enough room in

memory for our boxes, and a file should be used (in

our case, two files).

The actual saving of the count variable \ l ineno
in box \Asav is done by:

Extracting the bottom glue item from \Asav is
done by:

Example: Tables Broken Across Pages

Another practical problem*: In a document with

a lot of tables, many times a table is split over

two pages. In such a case, the OTR should typeset

"continued ..." at the bottom of the page.

Two approaches are shown, one using marks

and the other, special boxes, to communicate with

the OTR.

The first approach: A \mark(Cont inued . . . 3

is inserted at the start of each \ h a l i p (following
the preamble), and a \mark{) is inserted just before

the end of the table.

The output routine simply typesets \botmark

at the bottom of the page, using the right font. The
following macros are used:

\output=I\shipout \vbox{\box255

\smallskip\lineC\sevenrm\hfil\botmark)

\smallskip\line{\the\footline))

\advancepageno)
\def\beginCont{\mark(Continued . . .))
\def\endCont(\markC))

and a typical table looks like:

\ h a l i p (. . . p reamble . . . \ c r \beginCont

. . . lst l i n e . . . \ c r

. . .

. . . l a s t l i n e . . . \endCont\cr}

* Proposed by Mary McClure.

Note that the first mark becomes part of the

first table entry (column 1 row 1). The last mark,

similarly, becomes part of the last table entry (last

column bottom row). This means that, sometimes,
the mark may be locked inside an internal box. For

instance, if the preamble says $#$, then the mark

will be buried in the math box. Generally this

creates no problem but, if the mark is buried too

deeply in \box255, it may not be discovered [259]

during \shipout.

A partial remedy is to use \noalign(\beginCont)

or \noalign(\endCont 3, depending on which mark

is missing during \shipout. This way, the mark

precedes (or follows) the entire table. The ta-

ble, in such a case, should end up with . . .(last
line). . . \cr\endCont). These constructs should be

used only in an emergency, since they also may fail.

A typical example is a table that starts at the top

of a page. Its \mark{Cont inued . . . I may, in such
a case. be the last thing in the preceding page.

An interesting feature of this method is the

even page height. Each page shipped out contains
a line with the \botmark, and this line occupies

the same amount of space on the page. regardless

of the size of the mark. Thus if the line preceding

the mark has a depth of I .94444pt, and the

mark contains the text Continued ..., (which has a

height of 4.78334pt), the \baselineskip glue is

set at 5.27222pt. This separates the baselines by

1.94444 + 5.27222 + 4.78334 = 12pt. However, if the
mark is empty, and the line preceding it has a depth

of 0.8333pt. the \baselineskip glue right above
the mark is set at 11.1667pt, again separating the

baselines by 0.8333 + 11.1667 + 0 = 12pt.

Communicat ion b y Special \vboxes

The second approach uses a \vbox with a special

depth to communicate with the OTR. This looks

promising, especially since the \vboxes on both

sides of a table can be attached to it by means of a

\nobreak (which is essentially a \penaltyl0000).

The implementation is similar to the preceding case.

\def\beginCont{\noaligd\vbox{

\hrule widthopt heightopt depthlsp)

\nobreak))
\def\endCont(\noalig~\nobreak\vbox(

\hrule widthopt heightopt depth2spl3)

Note that the \nobreak in \beginCont follows
the special \vbox, while that in \endCont precedes

it.

TUGboat, Volume 11 (1990), No. 2

\def\breakup{%

\loop \Anylef tf alse

\ifdim\lastskip=Opt \ifdim\lastkern=Opt \ifnum\lastpenalty=O

\setboxO=\lastbox \ifvoid0

\else \Anylefttrue

\if vboxO

\ifdim\dpO=lsp \Anyleftfalse \global\toksO={Continued . . .)
\else\ifdim\dp0=2sp \Anyleftfalse \global\toksO=O\fi \fi

\fi \fi

\else\Anylefttrue \unpenalty \fi

\else \Anylefttrue \unkern \fi

\else \Anylefttrue \unskip \fi

\if Anylef t \repeat)

\newbox\brk

\output=~\setbox\brk=\vboxC\unvcopy255 \breakup)

\ifdim\ht\brk>Opt \message{Incomplete breakup) \fi

\shipout\vbox~\box255\smallskip

\line~\sevenrm\hfil\the\toksO)

\smallskip\line{\the\footline))

This works! Note, however. that macro
\breakup stops when it finds the first special
\vbox. In such a case. there is no point in finishing
the break up of \box255. This method therefore
generates many LLIncomplete breakup" messages.
and the user should make sure that the text and
the tables should not contain any of the things that
normally stop the breakup.

Exercise: A variation of the same problem.
Each table is preceded by a header. If the table is
broken across pages, the header should be typeset
at the top of the second page.

Exercise: Add a parameter to macro \begin-
Cont above. The macro should now create a \vbox
whose depth is the value of the parameter, in scaled
points. Modify macro \breakup such that it will
save different messages in \toksO depending on the
depth of the special boxes found.

Example: Verse Numbers in the Left Margin

The problem*: In the Bible, each chapter is divided
into verses. If a verse starts on a certain line; we
want the verse number typeset on the left margin
of the line. Also, if two or more verses start on the

* Proposed by Robert Batzinger.

same line, a range of verse numbers, such as 23-24

should be typeset on the left margin.
Solution: Each verse starts with an expansion

of macro \verse. The macro computes the verse
number and typesets it in the body of the text. In
addition, it uses a \vadjust to generate a special
\vbox and to attach it, with a \penalty10000,
right below the line of text in \box255. The special
box has a height and width of zero, and a depth
equal to the verse number in scaled points. A
line of text can thus be followed by any number of
such boxes, and no page break can occur in that
area. The verse numbers are stored in the \count
variables \fVerse (final verse) and \sVerse (start
verse).

The OTR expands macro \breakup, which
breaks up \box255 and transfers its components
to \boxl. On identifying a special \vbox, macro
\breakup expands \verseline which (1) converts
the depth of the special box into a count; (2) checks
for another special box and converts its depth into
another count; (3) removes the line of text above
the special boxes, attaches the verse number(s) (via
\Label) as an \llap, and adds the result to \boxl.

After the breakup is complete, the OTR ships
out \boxl.

TUGboat, Volume 11 (1990), No. 2

\newcount\sVerse \newcount\fVerse \newif\iftwo

\def\verseline(%

\fVerse=\dpO \unpenalty

\global\setboxO=\lastbox

\ifvoid0 \message(errorl;)\fi

\twof alse

\ifvboxO \ifdim\dp0<500sp \ifdim\dpO>Osp \twotrue \fi \fi \fi

\if two

\sVerse=\dpO \unpenalty

\def\LabelC\hbox to.4in(\hfil\the\sVerse--\the\fVerse\hfil>>

\global\setboxO=\lastbox

\ifvoid0 \message(error2;)\fi

\else\def\LabelC\hbox to.4in(\hfil\the\fVerse\hfil))\fi

\global\setboxl=\vboxC\lineC\llapC\sevenm\~abel\kern6pt~\boxO~\~vbox1l

)

\def \breakup(%

\loop \Anyleftf alse

\ifdim\lastskip=Opt \ifdim\lastkern=Opt \ifnurn\lastpenalty=O

\global\setboxO=\lastbox \ifvoid0 % end of breakup loop
\else \Anylefttrue \verseBoxfalse

\ifvboxO \ifdim\dp0<500sp \ifdim\dpO>Osp \verseline \verseBoxtrue \fi\fi\fi

\ifverseBox \else \global\setboxl=\vboxC\box0\unvboxl)\fi \fi

\else \Anylefttrue \pen=\lastpenalty

\global\setboxl=\vboxC\penalty\pen\unvboxl) \unpenalty \fi

\else \Anylefttrue \dimenO=\lastkern

\global\setbox1=\vboxC\kern\dimen0\unvbox1) \unkern \fi

\else \Anylefttrue \skipO=\lastskip

\global\setboxl=\vbox(\vskip\skip0\unvbox1) \unskip \fi

\ifAnyleft \repeat)

\newbox\brk

\output=(\setbox\brk=\vboxC\unvbox255 \breakup)

\ifdim\ht\brk>Opt \message(Incomplete breakup) \fi

\setbox1=\vbox to\vsize(\unvbox1)

\shipout\boxl \advancepageno)

\zeroToSp

\input source

\bye

TUGboat, Volume 11 (1990), No. 2

Problems With This Approach

1. To keep our macros simple, they are limited to

at most two verses per line. However, it is easy to
generalize \versel ine to handle up to 3 verses. It

is also possible, although probably not necessary,
to generalize it to handle any number of verses per
line.

Exercise: Disregarding the statement above,
generalize \versel ine to handle any number of

verses per line. This requires recursive calls to

identify and remove any number of consecutive
special \vboxes below a text line.

2. The verse numbers are typeset on the left

margin, centered in an \hbox t o .4in. This is

wide enough for 3-digit verse numbers. For larger

numbers, it may be necessary to enlarge that box.
If no centering is required, then it is enough to say

\def\LabelC\the\sVerse--\the\fVersel.

3. The verse numbers always start from 1. It

is possible to let the user specify a start number by:

\messageCenter s t a r t verse number:)
\ readl6to\ent

\versno=\ent

instead of \versno=O.

4. The macros recognize a special box if its

depth is positive and is less than 500sp. In case
of many verses, the 500 should be changed to a

larger value. The following quote (from [400]) is

reassuring: "A distance of lOOOsp is invisible to the
naked eye."

Example: Verse Numbers, An Alternative
Method

Here is an alternative method that does not trans-

fer components from \box255 to \boxl. It breaks

up a copy of \box255 and, each time a special
box (or several consecutive special boxes) is dis-
covered, the macro measures the height of the

remaining copy, and uses the height to build, in

\boxl, the range of verse numbers in the mar-

gin. When the breakup is completed, \box1 looks

like a skeleton with just the verse number ranges.

The OTR then superimposes the two boxes by:
\shipout\hboxC\llapC\boxll\box255~. (A simi-

lar method is used on [391-3921.)

Here are the steps in detail:

Macro \verse creates a special \vbox whose

depth equals the verse number (in scaled points),

and attaches it, with a \nobreak, below the line
where the verse starts.

The output routine copies \box255 into \box2
and expands \Obreak to break up \box2 and create

the necessary information in \boxl. It then invokes

\reversebox to break up \box1 and build, again
in \box2, the correct skeleton. Both steps are

described below. The final step is to shipout a

superposition of \box2 and \box255.

\output=C\setbox2=\copy255 \Obreak
\ifdim\ht\brk>Opt

\messageCIncomplete breakup)\fi
\reversebox \setbox2=

\vbox to\vsize~\unvbox2\vfi l)
\wd2=0pt

\shipout\hboxC\llap(\box2~\box255)

\advancepageno)

Macro \Obreak expands \breakup to break up

\box2 and, if another verse (another special box) is

found, the height of the remaining \box2 is placed,

as \kern, in \boxl, and \Obreak expands itself

recursively. The process repeats until no more

verses are found on the page.

\setbox\brk=\vbox~\unvbox2 \breakup)

\ i f anotherverse

\global\anotherversefalse

\global\setboxi=

\vbox~\unvboxl\kern\ht\brk)

\setbox2=\box\brk

\expandaf t er\Obreak

\f il

Macro \breakup loops and breaks up items

from \box2 until it reaches the end, or until it

finds an item that is a \vbox with a depth in the

range 0-500sp. If it finds such an item, it expands
\versel ine.

TUGboat, Volume 11 (1990), No. 2

\newif\ifAnyleft

\def\breakupI%

\loop \Anylef tf alse

\ifdim\lastskip=Opt \ifdim\lastkern=Opt \ifnum\lastpenalty=O

\global\setboxO=\lastbox \ifvoid0 % end of breakup loop
\else \Anylefttrue

\if vboxO \if dim\dp0<500sp\if dim\dpO>Osp \verseline \Anylef tf alse \f i\f i\f i

\f i

\else \Anylefttrue \unpenalty \fi

\else \Anylef ttrue \unkern \f i

\else \Anylefttrue \unskip \f i

\if Anylef t \repeat)

Macro \verseline removes the \penalty10000 Next, macro \Label is defined, as an \hbox
that precedes the special box, and checks to see to .4in(\hf il one or two verse numbers \hfil)
if there is another special box right above it. If and is inserted, as an \llap, into the margin of
there is one, the box and the penalty above it are \boxl.

removed, and the boolean variable \iftwo is set to
true.

\def\verseline(%

\fVerse=\dpO \unpenalty

\global\setboxO=\lastbox

\if void0 \message(errorl ;)\f i

\twof alse

\ifvboxO \ifdim\dp0<500sp \ifdim\dpO>Osp \twotrue \fi \fi \fi

\iftwo

\sVerse=\dpO \unpenalty

\def\LabelI\hbox to.4inC\hfil\the\sVerse--\the\fVerse\hfil))

\global\setboxO=\lastbox

\ifvoid0 \message(error2;)\fi

\else \def \Label€\hbox to .4in(\hf il\the\fVerse\hf il)) \f i

\global\setboxl=\vboxI\unvboxl \lineC\llapC\sevenrm\Label\kern6pt3\hf ill}

\global\anotherversetrue)

At the end of the process, the output routine
expands \reversebox to break up items from
\boxl, process them and place them in \box2
in the correct order. To understand this process,
let's imagine a page with three verses at a distance
of 2in, 3in and 6in from the top (Figure 2). The
breakup process starts at the bottom of the page,
measures the height A of verse 3, then B and, finally,
C, creating \box1 as in Figure 3.

However, we want a box that looks like Fig-
ures 4-5, where the \kerns are measured from one
verse to the next, not always from the top. We also
have to make sure that the lines of text do not take

any vertical space, so we add a negative \kern after
each line, to skip back to the top of the line.

\def\reverseboxC\setbox2=\vboxC)

\ifvoid1

\else

\dimenl=Opt \unvboxl

\loop

\dimenO=\lastkern \unkern

\dimen2=\dimenO

\advance\dimenO by-\dimen1

\dimenl=\dimen2

\setboxO=\lastbox

\dimen2=\ht0 \advance\dimen2 by\dpO

TUGboat, Volume 11 (1990), No. 2

Figure 2

Figure 3

Macro \reversebox contains a loop that breaks
up \boxl, calculates the quantities C, B-C, A-B, and
places them in \box2 with the lines of text, each
followed by a negative \kern. When finished, The
OTR appends a \vf il to end up with a height
of \vsize. This way, \box2 has the same height
as \box255, and they can be superimposed and
shipped out together.

To run the whole thing, just say:

\zeroToSp

\anotherversefalse

\input source

\bye

This is, perhaps, not the most elegant solution,
nor is it compact. Each macro, however, has its
own, well defined, task, making it easier to read and
understand the whole thing.

A 'Special Box' OTR

The problem: In many modern science texts, the
main flow of text is interrupted by 'special boxes'.
They can be used to develop certain topics in detail,
to present a historical background of other topics,
or to present the author's opinion or reminiscences.

Figure 4

\kern 2in (=C)

\hbox{\hfil 1 \hfil)

\kern-(size of preceding line)

\kern lin (=B-C)

\hbox{\hfil 2 \hfil)

\kern-(size of preceding line)

\kern 3in (=A-B)

\hbox{\hfil 3 \hfil)

\kern-(size of preceding line)

\vf il

Figure 5

To distinguish such a box from the rest of the text,
it may be surrounded by rules on all sides.

The intuitive approach is to place the special
text in a \vbox and build the rules as in [Ex. 21.31.
This, of course, won't work since the 'special box'
may have to straddle two pages, but a \vbox is
indivisible.

The approach used here identifies the start and
end of the special text by making its lines nar-
rower. Macro \startspbox draws the top \hrule
of the special box and expands \narrower. Macro
\endspbox terminates the effect of \narrower, and
draws the bottom \hrule. Note that the hrules are
placed in boxes, since otherwise they would cause
an incomplete breakup.

The OTR breaks up the page and creates a
duplicate. Each narrow line (a line for which
\rightskip > 0) is surrounded with two short
rules. To make the rules on successive lines touch,
the normal interline glue is suppressed when a
narrow line is found.

234 TUGboat, Volume 11 (1990), No. 2

\newif \if surround

\def\Strut(\vrule height8.5pt depth3.5pt)

\def\checkline(%

\setbox2=\hboxC\unhcopyO

\ifdim\lastskip>Opt \global\surroundtrue

\else\global\surroundfalse\fi~~

\newif\ifAnyleft \newcount\pen

\def\specialboxC%

\loop \Anylef tf alse

\ifdim\lastskip=Opt \ifdim\lastkern=Opt \ifnum\lastpenalty=O

\global\setboxO=\lastbox \ifvoid0 % end of breakup loop
\else \Anylef ttrue

\ifhboxO\checkline \ifsurround\setboxO=\hbox(\Strut\boxO\Strut\fi \fi

\global\setboxl=\vbox(\box0 \unvboxl) \fi

\else \Anylefttrue \pen=\lastpenalty

\global\setboxl=\vboxC\penalty\pen\unvboxl) \unpenalty \fi

\else \Anylefttrue \dimenO=\lastkern

\global\setboxl=\vboxC\kern\dimen0 \unvboxl3 \unkern \fi

\else \Anylefttrue \skipO=\lastskip

\if surround\skipO=Opt \f i % suppress the normal interline glue

\global\setboxl=\vboxC\vskip\skip0 \unvboxI) \unskip \fi

\ifAnyleft \repeat)

\newbox\brk

\output=~\setbox\brk=\vbox(\unvbox255 \specialbox)

\ifdim\ht\brk>Opt \message~Incomplete breakup) \fi

Example: Revision Bars

Certain documents-such as the bylaws of an or-

ganization, or the user's manual for a computer

system - may go through many revisions. Some-
times it is desirable to emphasize (or flag) the

revised parts by placing a vertical bar on the left

margin of revised lines. If the revision is short,

affecting only one line, there is no need for a special

OTR and a \vadjust like the one below, can be

used (see also [Ex. 14.283).

\def\rev(\vadjustC\moveleft6pt\vbox toopt{

\kern-12pt\hrule heightlopt widthlpt\vss3)3

However, if the revision may affect more than

one line, the problem becomes much more complex
and the OTR should be involved.

A Simple Method. We start with a relatively

simple approach,* which is sketched below, but is

not implemented.
1. Macro \beginvbars saves the page-so-far in

a box \partialpage.
2. Macro \endvbars places a bar on the left of

\box255, appends it to \partialpage, and returns

the whole thing to the MVL, so that a good page

break can be found.
The problems with this approach are:

1. The revision may start in mid-paragraph.

In such a case, the first part of the paragraph goes
in box \partialpage, and eventually has to be

seamlessly glued to the rest of the paragraph. A
similar case occurs when the revision ends within a

paragraph.

* Due to Amy Hendrickson.

TUGboat, Volume 11 (1990), No. 2

2. When \box255 is appended to \partial-
page, its \topskip glue should be replaced by the
normal interline skip.

A Better Solution. The approach shown here is
different. The start and end of each revision are
flagged with small, special boxes placed between
the text lines. The OTR breaks up \box255 looking
for the special boxes. The distance of each special
box from the top of the page is measured. The
distances are then used to prepare vertical rules in
a separate box (\box3), which is eventually typeset
on the left of \box255.

Macro \startrev uses \vadjust to place a
special \vbox with a height of lsp below the line
where the revision starts. Macro \endrev places a
similar box, with a height of 2sp, below the last line
of the revised text. Note that, if the revised text

is short, the two special boxes may end up being
placed, one above the other, below the same line.

\def \startrevI\vadjustC%

\nointerlineskip\nobreak\vbox to1spC)))

\def \endrevC\vadjustC%

\nointerlineskip\nobreak\vbox to2spi)))

Macro \Obreak expands \breakup with a copy
of \box255. The breakup loop stops when a
special box, with height = 2sp is found. \Obreak

then measures the height of the remaining page,
stores that height in \box1 as \kern, stores a
flag indicating that a vertical bar should end at
that point, and restarts the loop. When a box with
height = Isp is found, \Obreak does a similar thing,
except that it places a different flag, indicating that
the bar should start at that point. The flags are
special hboxes with a width of either Isp or 2sp.

\ifdim\ht\brk>Opt \messageCIncomplete breakup) \fi

\arrangebox

\setbox3=\vbox to\vsize~\unvbox3\vfil) \wd3=6pt

\shipout\hboxC\llapC\box3)\box255)

\advancepageno)

\newbox\brk

\newif\ifstartbar \startbarfalse \newif\ifendbar \endbarfalse

\def \ObreakC%

\setbox\brk=\vbox~\unvbox2 \breakup)

\if startbar

\global\startbarf alse

\gl~bal\setboxl=\vboxi\unvboxl\kern\ht\brk\hbox tolspi))

\setbox2=\box\brk

\expandafter\Obreak

\f i

\if endbar

\global\endbarf alse

\gl~bal\setboxl=\vbox(\unvboxl\kern\ht\brk\hbox to2sp())

\setbox2=\box\brk

\expandafter\Obreak

\f i

>

TUGboat, Volume 11 (1990), No. 2

\if vboxO

\if dim\htO=lsp

\ifdim\ht0=2sp

\fi \fi

\else \Anylefttrue

\else \Anylefttrue

\else \Anylefttrue

\if Anyleft \repeat)

\global\startbartrue \Anyleftfalse \fi

\global\endbartrue \Anyleftf alse \f i

At the end of the breakup loop, the OTR

expands macro \arrangebox, which reads the kerns

and flags from \boxl, and uses them to generate the
actual vertical bars in \box3. It uses the following

algorithm:

PrevKern:=O;

read Kern,Flag from \box1
if Flag=start

place \kern of size Kern-PrevKern
in \box3

PrevKern:=Kern, PrevFlag:=Flag;

if Flag=end
place a rule of size Kern-PrevKern
in \box3

PrevKern:=Kern, PrevFlag:=Flag;

if \box1 is empty and PrevFlag=start
place a rule of size \vsize-PrevKern
in \box3,

End ;

And here is a listing:

\newif\ifcontin

\def\arrangeboxi

\setbox3=\vboxC) \dimenl=Opt

\loop

\if dim\ht l>Opt

\setbox1=\vbox~\unvboxl

\global\setboxO=\lastbox

\global\skipO=\lastkern \unkern)

\contintrue \dimenO=\wdO

\dimen2=\skipO

\advance\dimen2 by-\dimen1

\dimenl=\skipO

\if dim\dimenO=lsp

\setbox3=\vbox~\unvbox3 \kern\dimen2)

\fi

\ifdim\dimen0=2sp

\setbox3=\vbox~\unvbox3

\hrule height\dimen2 widthlpt)

\f i

\else

\cont inf alse

\ifdim\dimenO=lsp \dimen2=\vsize

\advance\dimen2 by-\dimen1

\setbox3=\vboxC\unvbox3

\hrule height\dimen2 widthlpt}

\fi

\f i

\ifcontin \repeat)

As usual, the macros can be improved. The

user may notice that the size and placement of the

bars is not ideal, and can be improved. This is

especially true for cases where only one line of text

is revised.

Exercise: Generalize the macros so that they

can typeset a revision number, in \sevenrm, on the
left of each bar. The number should be specified by

the user, as a parameter of \startrev.

Summary

The examples and techniques described here, even

though incomplete and simplified, demonstrate how
very powerful 'QX is, compared to other typesetting

systems.
The main concepts behind namely, boxes,

glue, penalties and macros, are different from those
used by other systems, and are more difficult to

master. At the same time, they are more powerful,

and the user who is willing to invest the time and
effort necessary to learn 'QX, is rewarded by high

quality results.
Part I11 will introduce insertions and their use

in OTRS. There will be a general introduction to

insertions, examples of OTRS with insertions, and a

description of the plain format OTR.

o David Salomon
California State University,

Northridge
Computer Science Department
Northridge, CA 91330
dxs@mx.csun.edu

TUGboat, Volume 11 (1990), No. 2

Macros

Lists in m ' s Mouth

Alan Jeffrey

1 Why lists?

Originally, I wanted lists in for a paper I was
writing which contained a lot of facts.

Fact i Cows have four legs.

Fact ii People have two legs.

Fact iii Lots of facts in a row can be dull.

These are generated with commands like

\begin{f act)

\Forward{Fac-yawn)

Lots of facts in a row can be dull.

\end{f act)

I can then refer to these facts by saying

\By[Fac-yawn,Fac-cows,Fac-people]

to get [i, ii, iii]. And as if by magic, the facts come
out sorted, rather than in the jumbled order I typed
them. This is very useful, as I can reorganize my
document to my heart's content, and not have to
worry about getting my facts straight.

Originally I tried programming this sorting rou-
tine in W ' s list macros, from Appendix D of T h e
m b o o k , but I soon ran into trouble. The problem
is that all the Appendix D macros work by assigning
values to macros. For example:

\concatenate\foo=\bar\baz

expands out to

\ta=\expandaf ter{\bar)

\tb=\expandafter{\baz)

\edef \f oo{\the\ta\the\tb)

which assigns the macro \foo the contents of \bar
followed by the contents of \baz. Programming sort-
ing routines (which are usually recursive) in terms
of these lists became rather painful, as I was con-
stantly having to watch out for local variables, wor-
rying about what happened if a local variable had
the same name as a global one, and generally having
a hard time.

Then I had one of those "flash of light" ex-
periences - "You can do lambda-calculus in =,"
I thought, and since you can do lists directly in
lambda calculus, you should be able to do lists
straightforwardly in m. And so you can. Well,
fairly straightforwardly anyway.

So I went and did a bit of mathematics, and de-
rived the w macros you see here. They were for-

mally verified, and worked first time (modulo typing
errors, of which there were two).

2 W ' s mouth and m ' s stomach

W'S programming facilities come in two forms -
there are m ' s macros which are expanded in its
mouth, and some additional assignment operations
like \def which take place in the stomach.
can often spring surprises on you as exactly what
gets evaluated where. For example, in IPm I
can put down a label by saying \label{Here).
Then I can refer back to that label by saying
Section"\ref (Here), which produces Section 2.
Unfortunately, \ref {Here) does not expand out to
2! Instead, it expands out to:

\edef \@tempa{\@nameuse{r@Here))

\expandafter\@car\@tempa\@nil\null

This means that I can't say

\ifnum\ref{Here)<4 Hello\fi

and hope that this will expand out to Hello. Instead
I get an error message. Which is rather a pity, as
m ' s mouth is quite a powerful programming lan-
guage (as powerful as a Turing Machine in fact).

3 Functions

A function is a mathematical object that takes in
an argument (which could well be another function)
and returns some other mathematical object. For
example the function Not takes in a boolean and re-
turns its complement. I'll write function application
without brackets, so Not b is the boolean comple-
ment of b.

Function application binds to the left, so f a b

is (f a) b rather than f (a b). For example, Or a b is
the boolean or of a and b, and Or True is a perfectly
good function that takes in a boolean and returns
True.

The obvious equivalents of functions in are
macros - if I define a function Foo to be:

Foox = True

then it can be translated into as:

\def\Foo#l{\True)

So where Foo is a function that takes in one argu-
ment, \Foo is a macro that takes in one parameter.
Nothing has changed except the jargon and the font.

macros can even be partially applied, for exam-
ple if we defined:

Baz = Or True

then the equivalent would be

\def\Baz{\Or\True)

238 TUGboat, Volume 11 (1990), No. 2

Once \Baz is expanded, it will expect to be given a

parameter, but when we are defining things, we can
go around partially applying them all we like.

Here, I'm using = without formally defining it,

which is rather naughty. If I say x = y, this means

"given enough parameters, x and y will eventually

expand out to the same thing." For example Foo =

Baz, because for any x.

Foo x

= True

= OrTruex

= Bazx

Normally, functions have to respect equality which

means that:

if x = y then f x = f y, and

if x respects equality, then f x respects equality.

However, some rn control sequences don't obey
this. For example, \string\Foo and \string\Baz

are different, even though Foo = Baz. Hence string

doesn't respect equality. Unless otherwise stated, we
won't assume functions respect equality, although

all the functions defined here do.

All of our functions have capital letters, so that

their rn equivalents (\Not, \Or and so on) don't

clash with standard rn or IPw macros.

3.1 Identity

The simplest function is the identity function, called

Identity funnily enough, which is defined:

Identity x = x

This, it must be admitted, is a pretty dull function.

but it's a useful basic combinator. It can be imple-

mented in quite simply.

\def\Identity#l{#l]

The rules around this definition mean that it is ac-

tually part of Lambda. sty and not just another ex-

ample.

3.2 Error

Whereas Identity does nothing in a fairly pleasant

sort of way, Error does nothing in a particularly
brutal and harsh fashion. Mathematically, Error is

the function that destroys everything else in front of

it. It is often written as I.

Error x = Error

In practice, destroying the entire document when we
hit one error is a bit much, so we'll just print out

an error message. The user can carry on past an

error at their own risk, as the code will no longer be

formally verified.

\def\Error

{\errmessage{Abandon verification all

ye who enter here))

Maybe this function ought to return a more useful

error message . . .

3.3 First and Second

Two other basic functions are First and Second,

both of which take in two arguments, and do the

obvious thing. They are defined:

First x y = x

Second x y = y

We could. in fact, define Second in terms of Identity

and First. For any x and y,

First Identity x y

= Identity y

= Y

= Second x y

So First Identity = Second. This means that any-

where in our rn code we have \First\Identity

we could replace it by \Second. This is perhaps not
the most astonishing rn fact known to humanity,

but this sort of proof did enable more complex bits

of rn to be verified before they were run.

The l$jX definitions of \First and \Second are

pretty obvious.

Note that in \First\foo\bar expands out to

\f oo without expanding out \bar. This is very use-

ful, as we can write macros that would take forever
and a day to run if they expanded all their argu-

ments, but which actually terminate quite quickly.

This is called lazy evaluation by the functional pro-

gramming community.

3.4 Compose

Given two functions f and g we would like to be able
to compose them to produce a function that first

applies g then applies f . Normally, this is written

as f o g, but unfortunately doesn't have infix

functions, so we'll have to write it Compose f g.

Compose f g x = f (g x)

From this definition, we can deduce that Compose

is associative:

Compose (Compose f g) h

= Compose f (Compose g h)

TUGboat, Volume 11 (1990), No. 2

and Identity is the left unit of Compose:

Compose Identity f = f

The reader may wonder why Identity is called a
left unit even though it occurs on the right of the
Compose -this is a side-effect of using prefix nota-
tions where infix is more normal. The infix version
of this equation is:

Identity o f = f

so Identity is indeed on the left of the composition.
Compose can be implemented in w as

3.5 Twiddle

Yet another useful little function is Twiddle, which
takes in a function and reverses the order that func-
tion takes its (first two) arguments.

Twiddle f x y = f y x

Again, there aren't many immediate uses for such a
function, but it'll come in handy later on. It satisfies
the properties

Twiddle First = Second

Twiddle Second = First

Compose Twiddle Twiddle = Identity

Its 7QX equivalent is

\def \Twiddle#l#2#3{#1<#3){#2))

This function is called "twiddle" because it is some-
times written f (and - is pronounced "twiddle"). It
also twiddles its arguments around, which is quite
nice if your sense of humour runs to appalling puns.

4 Booleans

As we're trying to program a sorting routine, it
would be nice to be able to define orderings on
things, and to do this we need some representation of
boolean variables. Unfortunately 7&X doesn't have
a type for booleans, so we'll have to invent our own.
We'll implement a boolean as a function b of the
form

x if b is true
b x y =

y otherwise

More formally, a boolean b is a function which re-
spects equality, such that for all f , g and z:

b f g z = b (f z) (g z)
and for all f and g which respect equality,

b (f b) (g b) = b (f First) (g Second)

All the functions in this section satisfy these prop-
erties. Surprisingly enough, so does Error, which is
quite useful, as it allows us to reason about booleans
which "go wrong".

4.1 True, False and Not

Since we are implementing booleans as functions, we
already have the definitions of True, False and Not.

True = First

False = Second

Not = Twiddle

So for free we get the following results:

Not True = False

Not False = True

Compose Not Not = Identity

The 7&X implementation is not exactly difficult:

4.2 And and Or

The definitions of And and Or are:
if a is true

A n d a b =
False otherwise

{ y e if a is true
O r a b =

otherwise

With our definition of what a boolean is, this is just
the same as

And a b = a b False

O r a b = a T r u e b

From these conditions, we can show that And is as-
sociative, and has left unit True and left zeros False
and Error:

And (And a b) c = And a (And b c)

And True b = b

And False b = False

And Error b = Error

Or is associative, has left unit False and left zeros
True and Error:

O r (0 r a b) c

Or False b

Or True b

Or Error b

De Morgan's laws hold:

N o t (A n d a b) =

N o t (0 r a b) =

= O r a (0 r b c)

= b

= True

= Error

Or (Not a) (No t b)

And (Not a) (Not b)

and And and Or left-distribute through one an-
other:

Or a (A n d b c) = And (O r a b) (O r a c)

And a (O r b c) = Or (And a b) (And a c)

240 TUGboat, Volume 11 (1990), No. 2

And and Or are not commutative, though. For ex- Lessthan True False is Err0r.l This is fine as a

ample, mathematical definition, but how will we implement

Or True Error it? If we assume we have a macro \TeXif, which
converts 7&X if-statements into booleans, we could

= True True Error
just define:

= True

but \def\Lessthan#1#2{\TeXif{\ifnum#1<#2))

Or Error True

= Error True True

= Error

This is actually quite useful since there are some
booleans that need to return an error occasionally. If
a is True when b is safe (i.e. doesn't become Error)
and is False otherwise, we can say Or a b and know
we're not going to get an error. This is handy for
things like checking for division by zero, or trying to
get the first element of an empty list.

Similarly, because of the possibility of Error,
And and Or don't right-distribute through each
other, as

Or (And False Error) True

And (Or False Due) (Or Error True)

As errors shouldn't crop up, this needn't worry us
too much.

4.3 Lift

Quite a lot of the time we won't be dealing with
booleans, but with predicates, which are just func-
tions that return a boolean. For example, the predi-
cate Lessthan is defined below so that Lessthan z j is
true whenever i < j . Given a predicate p we would
like to be able to lift it to Lz f tp , defined:

L i f t p f g x = p x f 9 x

For example, Lift (Lessthan 0) f g takes in a number
and applies f to it if it is positive and g to it other-
wise. This is quite useful for defining functions.

4.4 Lessthan and =if

Finally, we would like to be able to use m ' s built-
in booleans as well as our own. For example, we
would like a predicate Lessthan such that:

True i f z < j

Lessthan i j =
Error otherwise

The Error condition happens if we try apply-
ing Lessthan to something that isn't a number-

So the question is just how to define \TeXif. Un-

fortunately, the "obvious" code does not work:

\def\TeXif#l#2#3{#1#2\else#3\fi)

For example. \TeXif \if true\True\True doesn't
expand out to \True. Instead, it expands as:

\TeXif\iftrue\True\True

= \iftrue\True\else\True\fi

= \True\else\True\fi

= \else\fi
- -

Another common m n i q u e is to use a macro \next
to be the expansion text:

\def\TeXif#l#2#3%

{#l\def\next{#2)\else\def\next{#3}\fi

\next)

However, this uses m ' s stomach to do the \def,
and we are trying to do this using only the mouth.
One (slightly tricky) solution is to use pattern-
matching to gobble up the offending \else and/or
\f i.

\def\gobblefalse\else\gobbletrue\fi#l#2%

(\f i#l)

\def\gobbletrue\fi#l#2%

{\f i#2)

\def\TeXif#l%

{#l\gobblefalse\else\gobbletrue\fi)

So if the m if-statement is true, \gobblefalse
gobbles up the false-text, otherwise \gobbletrue
gobbles up the true-text. For example,

\TeXif\iftrue\True\True

= \iftrue\gobblefalse\else

\gobbletrue\fi\True\True

= \gobblefalse\else

\gobbletrue\fi\True\True

= \fi\True

= \True

Phew. And so we have booleans.

Actually, that's a little white lie-trying to
persuade m to do run-time type checking isn't
much fun. So the implementation of this is ac-
tually a refinement where the Error condition has
been replaced by whatever it is T@ does if you try
doing \ifnum x < y when x and y aren't numbers.

TUGboat. Volume 11 (1990)) No. 2

5 Lists

A list is a (possibly infinite) sequence of values. For
example, the list [I, 2,3] contains three numbers, the
list [] contains none, and the list [I, 2,3, . . .] contains
infinitely many. A list is either empty (written [I)
or is comprised of a head x and a tail xs (in which
case it's written x : xs). For example, 1 : 2 : 3 : [] is

[I, 2,31.
In a similar fashion to the implementation of

booleans, a list xs is implemented as a function of
the form

if xs is empty
x S f e = { f e y y s ifxs has head yand tail ys

Again, we are implementing a datatype as a func-
tion, a quite powerful trick, just not one usually seen
in 7$X. We will assume that whenever a list x : xs is
applied to f and el f x respects equality. This allows
us to assume that if xs = ys then x : xs = x : ys,
which is handy.

5.1 Nil, Cons, Stream and Singleton

The simplest list is Nil, the empty list which we have
been writing [1.

Nil = Second

The other possible list is Cons x xs, which has head
x and tail xs.

Consxxsf e = f x x s

Every list can be constructed using these functions.
The list [I, 2,3] is Cons 1 (Cons 2 (Cons 3 Nil)), and
the list [a, a, a, . . .] is Stream a where Stream is de-
fined:

Stream a = Cons a (Stream a)

There's even at least one application for infinite lists,
as we'll see in Section 7.

The singleton list [a] is Szngleton a, defined as:

Szngleton a = Cons a Nzl

These all have straightforward definitions.

\let\Nil=\Second

\def\Cons#1#2#3#4{#3{#1}{#2}~

\ d e f \ S t r e a m # 1 ~ \ C o n s ~ # l) i \ S t r e a m ~ # l ~ ~ ~
\def\Singleton#I{\ConsC#1)\Nil~

5.2 Head and Tail

So, we can construct any list we like, but we still
can't get any information out of it. To begin with,
we'd like to be able to get the head and tail of a list.

Head xs = xs Fzrst Error

Tail xs = xs Second Error

For example, the tail of x : xs is

Tail (Cons x xs)

= Cons x xs Second Error

= Second x xs
- - XS

The tail of [] is, as one would expect,

Tail Nil

= Nil Second Error

= Error

And the head of Stream a is

Head (Stream a)

= Stream a First Error

= Cons a (Stream a) First Error

= First a (Stream a)
- - a

So we can get the head of an infinite list in finite
time. This is fortunate, as otherwise there wouldn't
be much point in allowing infinite objects.

5.3 Foldl and Foldr

Using Head and Tail we can get at the beginning
of any non-empty list, but in general we need more
information than that. Rather than write a whole
bunch of recursive functions on lists, I'll implement
two fairly general functions, with which we can im-
plement (almost) everything else.

Foldl and Foldr both take in functions and ap-
ply them recursively to a list. Foldl starts at the
left of the list, and Foldr starts at the right. For

example,

Foldl f e [l , 2,3] = f (f (f e 1) 2) 3

Foldr f e [l ,2,3] = f 1 (f 2 (f 3 e))

These functions will be used a lot later on. Foldl

can be defined:

Foldl f e xs = xs (Foldl' f e) e

Foldl' f e x xs = Foldl f (f e x) xs

So Foldl f e [] is

Foldl f e Nil

= Nil (Foldl'f e) e
- - e

And Foldl f e (x : xs) is

Foldl f e (Cons x xs)

= Cons x xs (Foldl'f e) e

= Foldl' f e x xs

= Foldl f (f e x) xs

242 TUGboat, Volume 11 (1990), No. 2

For example, Foldl f e [1,2,3] is

Foldl f e [1,2,3]

= Foldl f (f e 1) [2,3]

= Foldl f (f (f e 1) 2) [3]
= Foldlf (f (f (f e1)2)3) [1

= f (f (f e1)2)3

as promised. Similarly, we can define Foldr as

Foldr f e xs = xs (Foldr' f e) e

Foldr'f e x xs = f x (Foldr f e xs)

For Foldr f to respect equality, f x should respect
equality.

When we do the unfolding, we discover that

Foldr f e [] = e

Foldr f e (x : xs) = f e (Foldr f e xs)

Foldr tends to be more efficient than Foldl, because
Foldl has to run along the entire list before it can
start applying f , whereas Foldr can apply f straight
away. I f f is a lazy function, this can make quite a
difference. Foldl on infinite lists, anyone?

5.4 Cat

Given two lists, we would like to be able to stick
them together, which is what Cat (short for "con-
catenate") does. For example, Cat [I, 21 [3,4] is
[I, 2,3,4]. It can be defined using Foldr:

Cat xs ys = Foldr Cons ys xs

So

Cat [I, 21 [3,41

= FoldrCons[3,4][1,2]

= Cons 1 (Foldr Cons [3,4] [2])

= Cons 1 (Cons 2 (Foldr Cons [3,4] [I))
= Cons 1 (Cons 2 [3,4])

= [1,2,3,41

The code for \Cat is suspiciously similar to its
mathematical definition.

5.5 Reverse

We can reverse any list with the function Reverse,
defined using Foldl:

Reverse = Foldl (Twiddle Cons) Nil

For example, Reverse [1,2,3] can be calculated:

Reverse [1, 2,3]

= Foldl (Twiddle Cons) Nil [1,2,3]

= Twiddle Cons

(Twiddle Cons (Twiddle Cons Nil 1) 2) 3

= Cons 3 (Cons 2 (Cons 1 Nil))

= [3,2,11

The code for \Reverse doesn't even take in any
parameters.

-- -

5.6 All, Some and Isempty

Given a predicate p, we can find out if all the ele-
ments of a list satisfy p with All p. Similarly we can
find if something in the list satisfies p with Some p.
For example,

A11 (Lessthan 1) [I, 2,3] = False

Some (Lessthan 1) [I, 2,3] = True

These can be defined

All p = Foldr (Compose And p) True

Some p = Foldr (Compose Or p) False

For example, Isempty can be defined

Isempty = A11 (First False)

This is probably not the most efficient check in the
world, but we hardly ever need it - Foldl or Foldr
will normally do the job.

\def \All#i(\FoldrC\Compose\And~#1~~\True~

\def \~ome#l(\Foldr~\Compose\Or{#1))\False}

\def\Isempty(\A11{\First\False~~

5.7 Filter

Filter takes a predicate p and a list xs, and returns a
list containing only those elements of xs that satisfy
p. For example,

Filter (Lessthan 1) [1,2,3] = [2,3]

Filter can be defined as a Foldr:

Filter p = Foldr (Lij? p Cons Second) Nil

Another easy bit of l&X:

TUGboat, Volume 11 (1990), No. 2 243

5.8 Map

Map takes a function f and a list xs and applies f
to every element of xs. For example,

Mapf [1,2,31 = V l , f 2 , f 3 1

This is another job for Foldr.

Map f = Foldr (Compose Cons f) Nil

We shall see Map used later on, to convert from a
list of names such as [Fac-yawn, Fac-cows], to a List
of labels such as [i, iii].

\def\Map#l~\Foldr{\Compose\Cons{#l~~\Nil)

5.9 Insert

The only function we need which isn't easily defined
as a reduction is Insert, which inserts an element
into a sorted list. For example,

Insert Lessthan 3 [I, 2,4,5] = [I, 2,3,4,5]

Insert takes in an ordering as its first parameter,
so we're not stuck with one particular order. It is
defined directly in terms of the definition of lists.

Insert o x xs = xs (Insert' o x) (Singleton x)

Insert' o x y ys = o x y

(Cons x (Cons y y s))

(Cons y (Insert o x ys))

We can then define the function all this has been
leading up to, Insertsort which takes an ordering
and a list, and insert-sorts the list according to the
ordering. For example,

Insertsort Lessthan [2.3,1,2] = [I, 2,2,3]

We can implement this as a fold:

Insertsort o = Foldr (Insert o) Nil

And so we've got sorted lists.

Interestingly, as we have implemented unbounded
lists in l&X's mouth, this means we can implement
a Turing Machine. So, if you believe the Church-
Turing thesis, w ' s mouth is as powerful as any
computer anywhere. Isn't that good to know?

6 Sorting reference lists

So, these are the macros I've got to play with- how
do we apply them to sorting lists of references? Well,
I'm using U r n , which keeps the current reference
in a macro called \@currentlabel , which is 6 at the
moment, as this is Section 6. So I just need to store
the value of \@currentlabel somehow.

Fortunately, I'm only ever going to be making
references to facts earlier on in the document, in
order to make sure I'm not proving any results in
terms of themselves. So I don't need to play around
with auxiliary files, and can just do everything in
terms of macros.

6.1 Number and Label

Each label in the document is given a unique num-
ber, in the order the labels were put down. So the
number of Fac-cows is \Number<Fac-cows), which
expands out to 1, the number of Fac-people is 2,
and so on.

Each number has an associated label with it.
For example, the first label is \Label<I), which is i,
the second label is ii and so on. So to find the label
for Fac-cows, we say \Label{\Number<Fac-cows))
which expands out to i.

These numbers and labels are kept track of in
macros. For example, the number of Fac-cows is
kept in I~umber-~ac-cows I. Similarly, the first label
is kept in -1. As these macros have dashes
in their names, they aren't likely to be used already.

So the code for \Number and \Label is
pretty simple.

6.2 Lastnum and Forward

The number of the most recent label is kept in
\Las t n m .

\newcount\Lastnum

To put down a label Foo, I type \Forward{Foo).
This increments the counter \Las tnu , and \xdefs
I~umber-FOO] to be the value of \Lastnum, which is
now 4. So \Number<Foo) now expands to 4. Sim-
ilarly, it \xdefs -1 to be \@currentlabel ,
which is currently 6.2. So \Label(\NumberCFoo))
now expands to 6.2.

TUGboat, Volume 11 (1990), No. 2

This uses \csnameaf t er \ f ooCbar), which expands

out to \foo\bar.

\def\csnameafter#1#2%

{\expandafter#l\csname#2\endcsname)

6.3 Listize, Unlistize and Show

At the moment, lists have to be built up using \Cons
and \Nil, which is rather annoying. Similarly, we

can't actually do anything with a list once we've

built it. We'd like some way of converting lists in

the form [a,b,c] to and from the form [a, b , c].
This is done with \L i s t i ze and \Unlis t ize. So

\L i s t i ze [a , b , cl expands to

\Cons{a)C\ConsCb){\ConsCc)I\Nil}~~

Similarly, \Unl is t ize takes the list [a, b, c] and ex-
pands out to [a , b , c l . \Unl i s t ize is done with

a Foldr.

The macro \L i s t i ze is just a m hack with pat-

tern matching. It would have been nice to use

\@ifnextchar for this, but that uses \ fu tu re l e t ,

which doesn't expand in the mouth. Oh well.

\def \L i s t i ze [#I] %
(\ L i s t ize@ [#I , \relax1)

\def\List ize@#l,#2]%

(\TeXif{\ifx\relax#2)%

(\Singleton{#l)l%
{\Cons{#l){\Listize@#21))

This only works for nonempty lists - \ L i s t i z e [I
produces the singleton list \Singlet on{). It also

uses \ re lax as its end-of-list character. so lists with

\ re lax in them have to be done by hand. You can't

win them all. So

$\Unlis t ize{\List ize [a , b , c])$

produces [a, b, c]. This is such a common construc-

tion that I've defined a macro \Show such that

\Show\f oo [a, b , cl expands out to

\Unlistize{\foo{\Listize[a,b,c]))

For example, the equation

Filter (Lessthan 1) [I, 2,3] = [2,3]

was generated with

\begin(eqnarray*)

F i l t e r \ , (Lessthan\, I) \ , [I , 2,31
&=& \Show\Filter{\Lessthan 1)[1,2,3]

\end{eqnarray*)

Many of the examples in this article were typeset

this way.

6.4 By

Given these macros, we can now sort any list

erences with Bylist, defined

Bylist xs = Map Label

(Insertsort Lessthan

(Map Number xs))

of ref-

This takes in a list of label names like Fac-yawn,

converts it into a list of numbers with Map Number,
sorts the resulting list with Insertsort Lessthan, and

finally converts all the numbers into labels like iii

with Map Label. For example,

Bylist [Fac-yawn, Fac-cows]

= Map Label (Insertsort Lessthan

(Map Number [Fac-yawn, Fac-cows]))

= Map Label (Insertsort Lessthan [3,1])

= Map Label [I, 31

= [i, iii]

The TEX code for this is

\def\Bylis t#l%

C\Map\Label
{\Insertsort \Lessthan

{\Map\Number{#l})))

So we can now stick all this together, and define the

macro \By that prints out lists of references. It is

\def\By{\Show\Bylist)

So \By [Fac-yawn,Fac-cows] is [i, iii]. Which is

quite nice.

7 Other applications

Is all this worth it? Well, I've managed to get my

lists of facts in order, but that's not the world's most

astonishing application. There are other things that
these lists are useful for, though.

For example, Damian Cugley has a macro pack-

age under development for laying out magazines.

MAGT~X'S output routine needs to be quite smart,

as magazines often have gaps where illustrations or

photographs are going to live. In general, each block

of text needs to be output in a different fashion from

every other block of text. This will be handled by
keeping an infinite list of output routines. Each time

a box is cut off the scroll to be output, the head of

the list is chopped off and is used as the output rou-
tine for that box. That way, quite complex page

shapes can be built up.

TUGboat, Volume 11 (1990), No. 2 245

Mainly, though, these macros were written just

as a challenge. I learned quite a lot about TEX and
needed some w n i q u e s I'd never seen before. It

was also quite pleasing to see that Q X code can
be formally verified, albeit in a rather noddy way.

Without some sort of abstract view of lists, these

T@ macros could not have been written.

8 Acknowledgements

Thanks to Jeremy Gibbons for letting me bounce
ideas off him and spotting the duff ones, to Darnian
Cugley for saying "Do you really think is meant

to do this?", and to the Problem Solving Club for

hearing me out. This work was sponsored by the Sci-
ence and Engineering Research Council and Hewlett

Packard.

o Alan Jeffrey
Programming Research Group
Oxford University
11 Keble Road
Oxford OX1 3QD
A1an.JeffreyQuk.ac.oxford.prg

A Nestable Verbatim Mode

Philip Taylor

A few months ago, Sebastian Rahtz asked me if

I could make some changes to the verbatim code
which he was currently using, and sent me the
source. I found it so opaque that I decided to write

my own, and the following evolved over a period

of a couple of weeks. I would like to acknowledge

my debt to Sebastian, and also to Chris Rowley,
without whose helpful comments and criticism the

code could never have evolved. Of course, the code
is now ten times as opaque as that originally used

by Sebastian, but at least I understand it (on a

good day, when the moon is the seventh house, and

Jupiter \ h a l i p s with Mars).

The idea is as follows: having said

\ input verbatim

at the beginning of one's document, one invokes

verbatim mode by

\verbatim (char)

What follows can then contain any character, with

the single exception of (char), and all such text will

be copied verbatim, with leading spaces retained

but invisible, and all embedded spaces retained

and shewn. If (char) is encountered, 'TQX enters

a new inner group (the verbatim environment is

itself a group), within which the preceding meaning

(i.e. \catcode) of all characters is reinstated. This
new inner group continues typesetting in the normal

(non-verbatim) manner until a further (char) is en-

countered, whereupon it reverts to verbatim mode;

the inner 'normal' mode can itself be interrupted

by a further

\verbatim (char)

where (char) can be the same or a different escape

character. There is no theoretical limit on the level

of nesting, but TEX implementations will invariably
run out of space (usually save-stack space) if too

many levels are attempted.
To end verbatim mode, one enters inner 'nor-

mal' mode through the escape character and then
says \mitabrev. Note that this is not a reserved

string, but simply a macro which expands to {\end-
group \endgroup}; any other name can be chosen

if one finds "\mitabrev" unappealing. Thus, at the

outermost level, the call and end to \verbatim look

like:

\verbatim (char)

(char) \mitabrev

Finally, a mechanism is provided for listing

arbitrary files in verbatim mode. If, while in inner

'normal' mode. one says

\Af terGroup ((any balanced text))

(note the case of \AfterGroup), the (balanced text)
will be re-inserted with its original catcodes imme-

diately after the closing (char) which terminates

inner 'normal' mode. Thus it will not itself be listed

verbatzm. but will be elaborated according to m ' s
normal conventions. Thus if one says

\AfterGroup {\input (filename))

the contents of the file will be listed in verbatim

mode. For example, to list this file itself, one can

say

\verbatim I
I \AfterGroup (\input verbatim.tex1 I
I \mitabrev

There remains an anomaly at present: "\"

cannot form the escape-character as it will au-

tomatically form a (control sequence) with the

following character(s) when called with

\verbatim \

I will endeavour to rectify this deficiency in a future

release.

TUGboat, Volume 11 (1990), No. 2

The source of Verbatim . TeX follows.

we use commercial-at as a letter throughout;

and introduce synonyms for the catco codes for

(letter) and (other);
a loop-counter;

this will hold the character-code of the

escape character;

set (true) if you want to watch the
finite-state automaton at work;

set (true) if you want to see leading spaces

shewn as inverted square cup (explicit);

set (false) if you want to see embedded

spaces shewn as white space (implicit);

if (debugging),
\m@ssage is synonymous with \message

otherwise

it simply throws its parameter away;

the \verbatim macro takes one parameter

and immediately starts a nested group
within which \n@sted is defined

to start a further group within which

\n@sted becomes a synonym for \endgroup

and the environment is restored to that
which obtained two levels of nesting out;

for tidyness, we ignore any (lwsp)

which follows the escape character;
we assume Knuth's font-selectors and

select the 'typewriter' font;
0 0 0

/,/,/, we initialise \Qnvironment
0 0 0 /,A/, to prepare to restore \parindent

0 0 0 / , / ,A and \parskip;

0 0 0 I/,/, and ensure that the value to be assigned to
0 0 0 A / , / , \parskip is properly terminated;
0 8 0 A/ , / , we then set \parindent and
0 * 0 / , L A \parskip to 0 pt;
%%% and initialise \c@unt to 0;
0 0 0 A / , / , this loop checks the \catcode of each
* I I / , A / , character code in the range 0.. . I27
%%'A (or 0.. -255 for TEX V3) and if it

%'I/, is other than (letter) or (other), as
0 0 0 /,/,I! appropriate, saves the current value in
0 0 0 / , A / , \Onvironment for subsequent restoration

%%% within an inner group; it then sets the
0 0 0 A/ , / , \catcode to either (letter) or (other);

TUGboat, Volume 11 (1990), No. 2

\ e l s e \ i f n u \c@unt > ' \z%

\s@ve \catcode \c@unt = \@ther

\ e l s e \ifnum \c@unt > ' \Z%

\ifnum \c@unt < ' \ a%

\s@ve \catcode \c@unt = \@ther

\ e l s e \s@ve \catcode \c@unt = \ l @ t t e r

\f i

\ e l s e \s@ve \catcode \cQunt = \ l a t t e r

\f i

\f i

\f i

\advance \c@unt by 1

\ifnum \c@unt < 128 % or 256 for the V3 sites . . .
\ repeat

\ch@rcode = '#I% 0 0 0 / , A / , we next save the character code of the
0 0 0 /,/,/, character which has been specified as the
0 0 0 / ,A / , escape character in \ch@rcode;

\edef \@nvironment 0 0 0 A / , / , and append code to \@nvironment
(\@nvironment 0 0 0

/,/,/, to make the escape character active;
\catcode \ the \ch@rcode

= \ a c t i ve

\space o e O Id/, (space) separates list items in \@nvironment

3 %
\catcode \ch@rcode 0 0 0 / , / , A the escape character is made active;

= \ a c t i ve

\uccode '\--M = \ch@rcode %%% and the upper-case code of (return) is made
%%% equal to the character-code of the escape
0 0 0 /,/,/, character; this is necessary because only
0 0 0 A / , / , (return) can be guaranteed to be active at
0 0 0 A / , / , this point, and we need an active character
9 0 P /,I,/, to form the primary operand of \def;
0 0 0

/,/,/, the \Qxs below are \expandaftem,
0 1 0

/,/,/, and the effect is to upper-case (return)
0 0 0 / , A / , (yielding the escape character), then \def
0 0 0 A / , / , (an active instance of) this character as
0 0 0 /,/,/, \n@sted, which has been defined above;

%
\@x \uppercase \@x (\@x \def \ r@turn {\n@sted))%

%
\uccode '\^-M = 0 0 0 0 / , / ,A the upper-case code of (return) is then re-

0 0 0 / , / ,A instated (not strictly true; it is set to 0,

%%% which is assumed to be its previous value
0 0 0 / , A / , - could be improved here);
0 0 0 / ,AL (return) is made active;
0 1 0

/,/,/, and so is (space) (to avoid space-elision);
0 0 0 / , A / , finally, the finite-state automaton which
0 0 0 / , / ,A processes space)^ is set to (void);
0 0 0 /,/,/, this ends the definition of \verbatim.

\Qct i vec r

\ac t ivespace

\vQid

1%

0 0 0 /,A/, \s@ve minimises the \catcode restoration
0 0 * A / , / , work of \@nvironment by saving only the
0 0 0 A/ . / , \catcode of characters whose \catcode

%%% is to be changed; it then changes the
0 0 0 /,/,I, \catcode of those characters.

TUGboat, Volume 11 (1990), No. 2

e 0 0 / , / ,A the code which follows implements the finite
%%% state automaton which determines whether
e e I /,/,I! space)^ are ignored, shewn explicitly or
%%% implied, and which ensures that blank
0 0 0 /,LA lines are reproduced correctly.

%
\def \vQid (\futurelet \nQxt \vOidifspace)%

\def \Mad {\lQadingspace \futurelet \nQxt \lQadifspace)%

\def \skQp C\vskip \baselineskip \futurelet \nQxt \lOadifspace)%

\def \embQd C\emb@ddedspace)%

\def \sh@wspace (\char 32\relax)%

\def \hOdespace C\leavevmode \kern \fontdimen 2 \font)%

\def \lQadingspace I\ifshewleadingspaces \shQwspace \else \hQdespace \fi)%

\def \embQddedspace {\if shewembeddedspaces \shQwspace \else \hOdespace \f i)%

\def \vOidifspace {\testnQxt (\afterassignment \vQid))%

\def \lQadifspace C\testnQxt (\afterassignment \skQp))%

%
0 e a / , / ,A \testnQxt provides a common look-ahead for
0 0 @ / , A / , \vQidif space and \lQadif space, and also

\def \testnQxt #I% 0 . 8 /,A/, implements some essential debugging hooks.
{\ifx \nQxt \spQcO

\mQssage {Next character is a space)%

\let \nQxt = \relax

\else \ifx \nQxt \rQtQrn

\mQssage CNext character is a return)%

\def \nQxt C#l\let \nQxt = 1%
\else \massage (Next character is \meaning \nOxt)%

\let \nQxt = \relax

\Ox \let \space = \embad

\fi

\f i

\nQxt

1 %
%
\catcode '\ = \active%

\def \spQcei 3%

e e e /,/,I! We next tamper with the \catcode of (space)
e . e I,/,/, and (return), while defining macros and
e e e / ,A / , synonyms which require them to be active;
e * e I!/,/, the \catcode is then restored to its default
e e e
/,/,/, (not necessarily the previous value -
m e * /,/,/, could be improved). \@ctivespace makes
e e e / ,A / , (space) active, then defines (space) as
e e * / , / ,A \vOid with a synonym \sp@c@. This code is
%%% used by the finite-state automaton.

\def\Qctivespace%

<\catcode1\ =\active\def C\vQid)\let\spOcQ=)\catcode'\ =lO\relax%

%
\catcode '\--M = \active % e e e A/,/ , (return) is made active;
\def \rQturn (^^MI% e e * / , / ,A \r@turn defined as an active (return);
\let \r@tQrn = -^M% e . e / ,A / , \rQt@rn is made a synonym;

TUGboat, Volume 11 (1990), No. 2

\def \Qct ivecr % %%% and \Qctivecr is defined to
{\catcode ' \ ^ ^ M = \ ac t ive % %%% make (return) active, then
\def ^ ^ M % @ I * /,/,/, define (return) to manipulate the

e * 0 I,/,/, finite-state automaton and . . .
{\ox \def \spQce {\lQad3%

\Qx \ l e t \Qx \spQcQ \Qx =\spQce %

\endgraf % * * e / ,A / , insert a \par primitive (for blank lines).

\ fu tu re l e t \nQxt \ lQadifspace %
3%

\ l e t \ rQtQrn = ^ ^ M % * 0 e /,A,! \ rQtQrn is synonymous with active (return)
3%

\catcode ' \ - - M = 5 % * a e / , / ,A finally, the \catcode of (return) is
9 . . /,/,/, restored to its normal value;

%
* * e / , / ,A the \AfterGroup macro is intended for
t e * /,/,I! use within a nested normal environment,
* * * /,/,/, and causes (a concealed macro defined as)
* I I / , / ,A its parameter text to be inserted into
a * * /,A/, W ' s input stream when the nested normal
* * a / ,A / , group terminates.

%
\def \AfterGroup #lC\global \def \af tergroup {#l)\aftergroup \Qftergroup)%

%
\ l e t \Qx = \expandafter 1.1

/,/,/, \Qx is a brief synonym for \expandafter;

%
\catcode ' \ Q = \Qther * e * /,/./, commercial-at is restored to its normal

e e * / ,A / , (other) catcode (not necessarily the
* * .
/,/,/, previous value - could be improved);

%
\def \mitabrev e * * /,/./, and \mitabrev defined as the closure for

{\endgroup \endgroup>% e e e / , / ,A \verbatim; any other name could be used,
%%% as the code performs no look-ahead for
* * e / ,A/, any particular string.

%
* * a I!/,/, Finally we announce to the world that we
* a @ / , / ,A have been loaded, and give some clues as
e e * A/ , / , to the usage.

%
\message {Verbatim environment loaded; 3% -

\message {usage: "\noexpand \verbatim <char> . . . <char> \noexpand \mitabrevn3%

o Philip Taylor
Royal Holloway and Bedford New College
P.TaylorrPVax.Rhbnc.Ac.Uk

TUGboat, Volume 11 (1990), No. 2

Easy Table

Khanh Ha

Introduction

Easy Table (E Z) is an application tabular pack-

age designed to run independently of computer

platforms. Its goals are to meet the most rigid

requirements from trade typesetters when it comes

to tabular work. EZ's refinements include: pre-

cision in row and column, vertical and horizontal

placements; baseline and style control for horizontal

rules; spanner headings; subspanner headings in

four-level nestings; and a table splitting operation.

E Z is a template-controlled program. It requires
that table specifications be filled out once, and more

important, it allows typing multi-line entries natu-

rally anywhere in a table including in the spanner

units. And table rows can be ended gracefully even

with gutter rules but without the need to advance

to the table's last column using &s.

Though a large program with about 200 com-

mands, E Z is easy to learn. set up, and modify.

Above all, it is comprehensive and highly precise.

If you master E Z , setting tables will be a joy,

not a jolt. And when you reread Knuth's line,

"Printers charge extra when you ask them to typeset
tables, . . ." (The m b o o k , p. 231), you might have

a laugh or two.

Table initialization with \ t a b i n i t

Because E Z relies on templates, it requires a proper

table format specification before typesetting. Once

a table format template is constructed, it is stored

and can be reused later on. The \ t a b i n i t command

is used to build a template for a table. This

command specifies the following values:

1. Total columns

2. Table leading

3. Gutter width

4. Preambles

The template's general usage is:

\ t a b i n i t ((total columns))((tab leading))
{(gutter width)3C(preambles))

Consider Table 1:

TABLE 1 Top 10 Newsstand Sellers (000s)

Magazine 1982 1986 %
Change

1. TV Guide 9.732 8,234 -13.2
2. Family Circle 7,234 6,243 -15.4
3. Woman's Day 9,732 6,334 -11.2
4. National Enquirer 5,732 8,897 -23.2
5. The Star 9,732 4,833 -12.3
6. Penthouse 8,436 4,039 -43.4
7. Cosmopolitan 7,795 5,237 -22.5
8. Good Housekeeping 5,345 8,657 -16.7
9. People Weekly 7,322 7,342 -14.3

10. Globe 8,872 8,764 -11.7

80,022 68,580 -14.4

Source: Statements of Ownership. Based on 1986 ranking.

CODES:

\tabinit{4){10pt){12~t}{\og{.5pt} % \og states outside gutter style

\ninepoint

\ttitleCl}{Top 10 Newsstand Sellers (000s))

\toprul

\hgstubC2em)

\tab{\bf Maga.ine&\bf 1982&\bf 1986&\bf \% Change\et)

\tabI\en l.\en TV Guide&9,732&8,234&$-$13.2\et)

\tabI\en 2 . \en Family Circle&7,234&6,243&$-$15.4\et}

\tabC\en 3.\en Woman's Day&9,732&6,334&$-$11.2\et)

\tabC\en 4. \en National Enquirer&5,732&8,897&$-$23.2\et)

TUGboat, Volume 11 (1990), No. 2

\tab{\en 5.\en The Star&9,732&4,833&$-$12.3\et)

\tab{\en 6. \en Penthouse&8,436&4,039&$-$43.4\et)

\tab{\en 7.\en Cosmopolitan&7,795&5,237&$-$22.5\et)

\tab{\en 8. \en Good Housekeeping&5,345&8,657&$-$16.7\et)

\tab{\en 9. \en People Weekly&7,322&7,342&$-$14.3\et)

\tab{lO . \en Globe&8,872&8,764&$-$11.7\et)
\hrul{3pt){0) % hrule clears outside rules
\tab{&\bf 80,022\en&68,580\en&$-$14.4\et)

\hrulC3ptHOl

\tab{\bspan[l-41 % 4-column body span

Source: Statements of Ownership. Based on 1986 ranking.\et}

\hrul{6pt){l) % hrule joins outside rules

Calls to \og are of the form:

\og((dimen)3

The left outside gutter can be either a plain or ruled

gutter. Use \ogCOpt) if plain; if ruled, fill in units
of measure for the rule weights by using one of the

five different rule styles below:

.5pt = half point

l p t = 1 point

2pt = 2 points

3pt = 3 points

99pt = double rules

Calls to \C are of the form:

\CI(col. " sequence))I(col. " width))

((col. " justzficatzon))C(gutter style))

(col. sequence) is the ordinal number of the column,

from left to right. (col. justification) can have one

of three values to determine a column's paragraph

shape: j=justified leftlright, l=flush leftlragged

right, r=flush rightlragged left, and c=ragged
center. (gutter style) is determined with values as

discussed for \og. If the style is Opt, the gutter is
blank; otherwise it has a vrule centered in it.

Set t ing table entries wi th \ tab

E Z builds a table by stacking its entries. It sets one

entry after another with a command called \tab,

ends an entry with another command called \ e t ,
and separates the columns in each tab field by the

conventional &. Thus:

\tab((entry)& . . . &(entry)\et)

The only command worth discussing here is \ e t .

Ending a \ tab en t ry wi th \ e t

The purpose of \ e t is to replace the primitive \ c r

while running EZ. \ e t ensures that all gutter rules
in effect are output regardless of where the \ e t is

keyed. Needless to say, this helps reduce keystrokes

in a multi-column table since stopping short to exit

a row no longer requires &s to advance to the end of

a row. (Even if a table has no gutter rules, \ c r is
still unusable. As long as you rely on the template

\ t a b i n i t you must use \ e t ; bad output will result

if you use \cr.)

T h e tab le hrules

Horizontal rules are vital attributes in tables. Their

role is to accent the main components by creating
demarcations with their style and weight. Before
setting a regular hrule three facts need to be

determined: the rule's weight, leading, and style. A
complete \hru l command has two parameters:

\hrulC(leading)3~(style))

(leading) is the distance to the hrule's baseline

measured from the base of the line above it; (style)
is the way in which the hrule is drawn in relation to

possible outside gutter rules. The value of (style) is

an integer: a "0" will clear the hrule from outside
rules; a "1" will connect the hrule with outside

rules.

Vertical alignment

Tables must cope with three different vertical align-

ments: top, bottom, and center. Alignments may

be changed at any time by stating one of the
commands \al igntop, \alignbot, \aligncen.

Horizontal alignment

Each column style in EZ, justified or ragged, is

determined by the \C command in the \ t a b i n i t

template. Once this style is set, it becomes easier

later on to concentrate on the data being entered.

However, a need for a change in paragraph style
while in a column necessitates a means to control

TUGboat, Volume 11 (1990), No. 2

the paragraph shapes. To change the predeter-
mined paragraph style while in a column one uses:
\RR=ragged right; \RL=ragged left; \RC=ragged
center; \XR=ragged cancelled (justified) within the
appropriate field of a \ tab.

Vruled table

Tables with gutter rules should allow two features:
1) All gutter rules in effect should be drawn even in
cases where rows end short; 2) Select gutter rules
can temporarily be blank for special purposes. Of

these two requirements the first can be solved with
the use of the command \e t .

The \ e t operation. As previously discussed, the
command \ e t is used to end a \ tab row in the
same fashion as the \cr . Fortunately, the \ e t is
much more useful than \ c r in the face of vrules. In
fact, when vrules are present they will be all drawn
automatically no matter where you end your row if
and only if you use \e t .

To learn about the usage of \ e t we have two
illustrations below. First with rows completely filled
with data in Table 2:

\ttitle{l){The use of \et in normal situation)

\t oprul

\tab{\RL\bf Depth\nl

\RR\bf Stat ion&

\bf lOm&\bf 25m&\bf 75m&\bf 100m&\bf 125m&\bf 150m&\bf 200m\et}

\hrul{3pt){l)

\tab{3&0.73&0.76&0.37&0. 08&0.02&0.06&$-$0.58\et)

\tab{4&0.46&0.45&0.55&0.09&0.13&0.56&$-$0.76\et)

\tab{5&0.78&0.43&0.67&0.11&0.21&0.08&$-$0.45\et)

\tab{6&0.89&0.21&0.53&0.42&0.12&0.07&$-$0.15\et)

\hrulCBptHl)

TABLE 2 The use of \et in normal situation

Next with rows ending short in Table 3:

200m

-0.58
-0.76
-0.45
-0.15

Station
Depth

3
4
5
6

TABLE 3 The use of \et in special situation

75m

0.37
0.55
0.67
0.53

10m

0.73
0.46
0.78
0.89

200m

-0.58

lOOm

0.08
0.09
0.11
0.42

25m

0.76
0.45
0.43
0.21

lOOm

0.08
0.09
0.11

Station
Depth

3
4
5
6

125m

0.02
0.13
0.21
0.12

25m

0.76
0.45
0.43
0.21

10m

0.73
0.46
0.78
0.89

150m

0.06
0.56
0.08
0.07

125m

0.02
0.13
0.21

75m

0.37
0.55
0.67
0.53

150m

0.06

0.08

TUGboat, Volume 11 (1990) , No. 2

CODES:

\ninepoint

\aligncen

\restoretab{8) % bringing back the identical template

\ttitle{l){The use of \et in special situation)

\toprul

\tab{\RL\bf Depth\nl

\RR\bf St at ion&

\bf lOm&\bf 25m&\bf 75m&\bf 100m&\bf 125m&\bf 150m&\bf 200m\et}

\hrulC3ptHll

\tab{3&0.73&0.76&0.37&0.08&0.02&0.06&$-$0.58\et)

\tab{4&0.46&0.45&0.55&0.09&0.13\et)

\tab{5&0.78&0.43&0.67&0.11&0.21&0.08\et)

\tab{6&0.89&0.21&0.53\et)

\hrul{3ptHl)

Thus far we have seen the usefulness of \ e t , the ending column: this range includes the gutter

especially in multicolumn vruled tables where one rules to be blank:

can exit a row gracefully, forgetting all the remaining \bgut [(s t a r t co1)-(end col)l
tab alignments one would have needed to advance

where the hyphen (-) stands for possible columns
to reach the end of the current row. That leaves us

in between, and the pair of brackets form the
with a second feature to explore: how to temporarily

command's delimiters. This command can be
empty specific ruled gutters.

stated either before or after the \ t ab starts; its

Gutter rules temporarily blank with \bgut. effect will be limited to only the row it is issued for.

In order to void any gutter rules within a table body Table 4 shows its usage:

one must state a range, i.e., the starting column and

TABLE 4 Blank Gutters

\ninepoint

\toprul

\ttitle{l){Blank Gutters)

\toprul

\tab{\en l&\en 2&\en 3&\en 4&\en 5&\en 6\et)

\hrul{3ptH1)

\bgut [I-31 % stated outside \tab

\tabC\en 7&\en 8&\en 9&10&11&12\et)

\hrulC3ptHl)

\tab{13&14&15&16&17&18\et)

254 TUGboat, Volume 11 (1990), No. 2

\hrulC3ptHl)

\tab(\bgut [4-61 19%20&21%22&23%24\et) % s tated inside \tab

Spanners

Spanners are tough customers. The first type of
spanner is a column spanner, and the second a
row spanner. Column spanners are entries that
straddle a number of columns; they must be able to
wrap around automatically in multi-line paragraph
fashion with no contrived manual line-breaking
operation; they must also be able to justify within
their own territory in terms of raggedness or left
and right justification; they ought to relate in
vertical alignment to their possible counterparts on
the same level in the row; their spanner rules must
be flexible enough to remain within their own width
or extend to join the neighboring gutter-ules in
addition to their rules' vertical adjustability for a
particular leading; and they must be able to nest
other spanners.

The second type of spanner is the row spanner.
This kind is a column which spans vertically a
number of rows and serves as their common heading.

Body spanners with \bspan. In a table body one
might come across an entry that spans a number
of columns. This type of column spanner must be
specified by a range, i.e., the starting column and
the ending column of the spanned columns. EZ's
command for the body column spanner is \bspan,
which is delimited by a pair of brackets:

\bspan [(start co1)-(end co1)l

\bspan must be stated inside the \ tab command.
Once the span is active, data can be poured into
this space and E Z will handle the line-breaking
algorithm in addition to the paragraph shape that
has been specified. This shape is controlled by the
style in the column that starts the body spanner,
which has been specified in the \ t a b i n i t template.
One can always override this style with one of the
following commands: \JUST, \RR, \RL, \RC. Table 5
demonstrates the use of \bspan:

TABLE 5 Body Spanner

1 SUN MON TUES WED THUR FRI SAT

Beat midsummer heat the cool and easy way with delightful,
delicious dairy-fresh ice cream. Dip into the natural goodness of

TUGboat, Volume 11 (1990), No. 2

\t oprul

\ttitle{l)(Body Spanner)

\toprul

\bgut[l-71 % no gutter rules in the column headings

\tab{\bf SUN&\bf MON&\bf TUES&\bf WED&\bf THUR&\bf FRI&\bf SAT\et}

\hrulC6ptlC1)

\tabC\bspan[l-6l\it % ragged right is in effect from template for 2nd col.
Beat midsummer heat the cool and easy way with delightful, delicious

dairy-fresh ice cream. Dip into the natural goodness of America's

favorite treat. Build yourself the sundae of your dreams with your

favorite fruits, nuts and syrups, or with the classic whipped cream

and a cherry.&&&&&& % skip 6 spanned columns

l\et3

\hrulCGptH 1)

\tab{2&3&4&5&6&7&8\et)

\hrulIGptHl)

\tab{9%10&11&12&13&14$15\et)

\hrul{6pt)C1)

\tab{l6&17&18&19&20&21&22\et)

\hrul{6pt)Cl3

\tab{\frac{23)/{30)&\f rac{24}/{31)&25&26&27&28&29\et)

Because a body spanner always straddles a
number of columns, it must collect an equal number
of tab alignments from these spanned columns in
order to move past them to the next column. Thus
the spanner in this example needs six &s for six
skipped columns. The paragraph shape of this
spanner is controlled by the command "1" in the
\ t ab in i t template for the second column which
starts the spanner. Again overriding the text shape
of the spanner is simple, as already discussed.

Head spanners with \spaninit. The main dif-
ference between a body spanner and a head spanner
is that the first acts like a header crossing a number
of designated columns (it has no entries beneath it)
while the second works as a header but also has
entries under it and often has an hrule separating
the header from its spanned entries. Therefore a
head spanner must be treated as one complete unit
that combines the header, the rule, and the spanned
entries. To E Z each unit requires a column for
itself; thus, for example, a 3-column spanner will
occupy o n e single column and within this column
the three spanned entries. EZ's method of setting
a row with column spanners is to set each spanner

unit in a column completely, then move onward to
the next possible column. It does n o t set across line
for line as a typewriter would. Users need not guess
entry depths nor make awkward attempts to break
entries manually before setting the spanners. For
clarity, EZ calls the head spanner spanner head and
its spanned entries spanner cells; the separating rule
between these two components is termed a spanner
rule.

When a table has spanner heads, EZ uses
this principle: the main body's template must be
designed first before that of the spanner heads.
Thus two templates will be present: 1) \ t ab in i t

for the main body, and 2) \spaninit for the column
headings with spanner units.

Spanner units in vruled tables. The design
for spanner units is the same in both table styles,
vruled or plain. Spanner units which are ruled on
all sides normally would incorporate sub-spanner
units because these rules serve as demarcation. In
plain tables the spanner units are single-level.

Now consider Table 6 for the introduction of
spanner units:

TUGboat, Volume 11 (1990), No. 2

TABLE 6 Vruled Spanner: Single Level

\def \dg{-\circ} % degree symbol

Size

24'
34'
44'
54'
64'
74'

\t oprul

\ttitle{l}{Vruled Spanner: Single Level}

\toprul

\tabCSize&Amps&Reserve capacity&

\main{Battery case size, inches}{l} % Style 1: connecting gutter rules
\startmain

\maine{lpc){L} I \maine{ipc}{W} I \maine{lpc){H}
\endmain

&

Catalog Number& Wt . lbs. \et}

--

Amps

500
502
504
506
508
510

This table shows two templates, one for the

main body, another for the column headings with

spanner units. As already mentioned, the main

body's template must be given first; for this table

it prepares 8 columns. Next the template for
the headings is designed for 6 columns because of

the 3-column spanner unit - this unit occupies one

column. We turn now to the method of computing

the total width of the spanner head.

Setting the spanner heads with \main. The

command for spanner head is \main. Its form is:

\main((Spanner Head Text))C (Spanner Rule Style) 3

Reserve
capacity

115
116
117
118
119
120

Battery
case size,

inches
Catalog
Number

28K 4315N
28K 4314N
28K 4313N
28K 4312N
28K 4311N
28K 4319N

Wt.
lbs.

41
42
43
44
45
46

8
8
8
8
8
8

10
20
30
40
50
60

L W H

6
7
8
9
2
3

TUGboat, Volume 11 (1990), No. 2

where the spanner head text in the first argument

can be multi-line data whose line-breaking algorithm

is determined by the paragraph style commands,

i.e., justified or ragged. The spanner rule style in

the second argument controls the length of the rule:

if "I", it will join the adjacent gutter rules; if "On,

it will remain within the true width (the width of

the spanner head).

Setting the spanner cells with \maine. Spanner

cells are grouped together under the main spanner
head. The adjective main is used to distinguish the

first-level spanner head from the second-, third-,

and fourth-level spanner heads. This complication
arises when the column headings incorporate sub

spanner units inside the main one. E Z allows

four levels of spanners, descending from main to
sub to subsub to subsubsub spanners. Regardless

of the possible existence of the sub spanners, all

entities under the main spanner head must start

with \startmain and end with \endmain:

\main((spanner head))((rule style)) .

\startmain
\maine((dimen))C(cell text)) I

Size

. . . \maine((dimen))C(cell text))

\endmain

where \maine is a command for each spanner cell

that looks for two arguments: 1) width of spanner
cell, 2) text of spanner cell. The I will draw a

gutter rule whose default weight is .5pt.

Setting the spanner rules. A spanner rule can
have one of three styles specified by: "On to stay

within the true width of the spanner head; "1" to
extend the rule to join adjacent, but not outside,

gutter rules; "2" to extend rule to intersect all
adjacent, including outside, gutter rules. Besides

this option, the rule leading default (3pts) can be

changed any time by stating

\sprskip((dimen))

where (dimen) is the leading amount for the spanner

rule. The \sprskip command affects the leading

change for the spanner rule only in the current

column; thus changing leading for multiple spanner

rules in different columns requires the \sprskip
command to be restated each time in a new column.
Making two changes to the rule leading and style of

the previous example, we have:

CODES:

Amps

\ninepoint

\restorespani6) % most recent spanner template
\toprul

\tabiSize&Amps%Reserve capacity&

\sprskip(6pt) % rule leading is now 6pt (good for one column only)

\mainCBattery case size, inches3CO) % Style 0: not touching gutter rules
\startmain

\maineClpc)IL) I \maine(lpc)CW) 1 \maine(lpc){H)
\endmain

&

Catalog Number%Wt. lbs.\et)

\hrulC3pt)CO3

Reserve
capacity

Multiple spanners. When a row has more than the spanner heads on a row will be related in their

one spanner unit it must resolve an issue of align- vertical alignment, and so are the spanner cells. Our

ment for the spanner heads and spanner cells. All first look at multiple spanners focuses on Table 7:

Battery
size,

inches

LlWlH

Catalog
Number

Wt.
lbs.

258 TUGboat, Volume 11 (1990), No. 2

TABLE 7 Multiple I

r Months and year

-

lanners

Number of stoppages Workers involved

Beginning
in month
or year

In effect
during
month

D a)

Number
(in

thousands

Beginning
in month
or year

(in
thousands)

idle

Percent of
estimated
working

time

I n effect
during

month (in
thousands

CODES:

\tabinit{7){lOpt){6pt){\og{. 5pt) % 7 columns for body

\spaninit{4){lOpt){6pt){\og(.5pt) % 4 columns for headings

\CCl)C8pc~C13C2pt)\C(2)I7.5pc>{c~~2pt)

\C{3H7.5pc~Cc~C2pt1\CC4H7.5pcHc3C. 5ptIl

\t oprul

\ttitle{l){Multiple Spanners)

\toprul

\tab{Months and year&

\main(Number of stoppages){l)

\startmain

\maine{3.5pc){Beginning in month or year) I
\maine{3.5pc){In effect during month)

\endmain

&

\main{Workers involved){l)

\st artmain

\maineC3.5pc){Beginning in month or year (in thousands)) I
\maine{3.5pc)(In effect during month (in thousands))

\endmain

&

\mainCDays idle){2) % Style 2: intersecting outside rule
\startmain

\maineC3.5pc){Number (in thousands)) I

\maine{3.5pc){Percent of estimated working time)

TUGboat, Volume 11 (1990), No. 2

Notice the correct vertical alignment of each other. To get a better look at this vertical relation,
component in all the spanner units: The spanner examine Table 8:
heads and also the spanner cells fulfill their assign-
ments once they are able to relate vertically to each

TABLE 8 Mult iple Spanners

CODES:

Warp.

No.

\toprul

\ttitle{l){Multiple Spanners}

\toprul

\tab{Warp. No.& Fabric Description& Thickness (in.)& Weight (oz/yd-2)&

\main{Tensile Strength (lb/in.)){l)

\startmain

\maine{1.5pc){Warp) I
\maine{1.5pc){Fill)

\endmain

&

\main{Tear Strength (lb)){1)

Fabric Description

\st artmain

\maine{1.5pc){Warp)

\maine{l.5pc){Fill)

\endmain

&

\main{Peel Strength

\st artmain

\maineIl .5pc){Warp)

\maine{1.5pc){Fill)

\endmain

&

\mainIFlexural Rigidity* (lb/in.-2/in.)){2) % Style 2: intersecting outside rule
\st artmain

\maineIl.5pc){Warp) I
\maine{l.5pc){Fill)

\endmain

\et)

Thickness

(in.)

Weight

(o z / ~ d ~)

Tensile

Strength

(lblin.)

Warp

Tear

Strength

(lb)

Fill Warp Fill

Peel

Strength

(lb)

Warp

Flexural

Rigidity*

(~ b / i n . ~ /in.)

Fill Warp Fill

TUGboat, Volume 11 (1990), No. 2

Nested spanners. Nested spanners occur when a
spanner unit encloses another spanner unit which, in

turn, comprises another one and so on. E Z supports

four levels of nested spanners descending from the

main to sub to subsub to subsubsub spanners. The

commands for nested spanners are: \sub, \ssub,
and \sssub, all below the main level of \main and

restricted within the limit marked by \startmain
and \endmain. All the subspanner units have the

following usage:

\subC(subspanner heading)){(rule style))
((subcell entries) 3

\ssubC(ssubspanner heading)){ (rule style))
{(ssubcell entries)

\sssub((sssubspanner heading)){(rule style))
{ (sssubcell entries) 1

where the first two arguments are like those in \main.
Only the third argument merits attention because

this extra argument makes \sub (and its counter-

parts) different from \main. A complete look at a

subspanner unit:

\sub{(subspanner heading))((rule sty1e)H
% 3rd argument begins
\sube((cell width))C(entry text)) I

\sube{(cell width))((entry text))
) % end of 3rd argument and subspanner

where \sube is much like \maine and I is the divid-

ing rule between subspanner cells. The focus here is

on the third argument for each subspanner unit: it

must have matching braces to avoid "Runaway ar-
gument" errors. Spaces after the argument's open

brace and also spaces before its close brace are ig-
nored. To see how nested spanners work, examine

Table 9:

CODES:

TABLE 9 Nested Spanners

\ninepoint

\al igncen

\tabinit{7)(lOpt){Gpt)I\og{.5pt) % 7 co l s f o r body

\CC1){4pcHlH. 5 p t ~ \ C I 2) (4 p c H l H 2 p t) \ C I 3 H 3 p c H c ~ ~ . 5ptI\C{4H3pcHcH. 5p t I

\CC5H3pcHcH. 5 p t) \ C ~ 6 ~ { 3 p c 3 C c ~ i 2 p t) \ C I 7 1 ~ 3 p c > ~ c 3 ~ . 5 p t I l

\spaninit{4)(lOpt){6pt)C\og{. 5pt) % 4 co l s f o r headings

\Ci1){4pcHlH. 5 p t ~ \ c ~ 2 3 ~ 4 p c ~ ~ 1 ~ ~ 2 p t) \ C C 3 l ~ 1 3 . 5 p c 3 { c H 2 p t ~ \ c ~ 4 H 3 p c H c ~ ~ . 5pt13

1

Location
quotient

5.9

County

Santa Cruz
(Arizona):

\t oprul

\ttitle{l){Nested Spanners)

\ t op ru l

\tabiCounty% Industry&

\main{Employment change){l)

\ s t artmain

\maine{3pc){Actual) I
\sub{Effect of sh i f t - share by){l){ % subspanner c e l l s go i n here

Industry

Apparel. .

Employment change

Actual

7

Effect of shift-share by

State-
wide

2 8

Industry
mix

48

Country
share

32

TUGboat, Volume 11 (1990), No. 2

\sube{3pc){Statewide) I
\sube{3pc){Industry mix) I
\sube{3pc){Country share) % space ignored

) % end of subspanner

\endmain % end of main spanner
%

Location quotient\et)

\hrulIGpt)CI)

\tab{Santa Cruz (Arizona):% Apparel\dotlead& 7& 28& 48% 32% 5.9\et)

\hrulIGptHI)

More nested spanners

When spanners start to nest in multilevel fashion, question, then start pouring in text data. It also
the user is responsible for keeping track of each one, helps to use a text editor which has a brace-checking
its start and its end. In practice it helps to type utility to spot unbalanced braces. Table 10 features
empty brace pairs first to lock up the design in spanners with three levels deep:

TABLE 10 N e s t e d S ~ a n n e r a

CODES:

Year

\t oprul

\ttitle{l)(Nested Spanners)

\toprul

\tab(%

Year%

Noninstitutional population&

\main(Labor force)(l)

\startmain

\maine{3pc){Number) I
\maine(3pc){Percent of population) 1
\subIErnployed){l){% subspanner begins (space ignored)

\sube{l.5pc){Total} I

Noninsti-

tutional

population

Not in

l a b o r force

Labor force

Number
Percent of

population

Employed

T O ~ ~ I

Unemployed

Number
Percent Of

population

percent of

labor force

Resident

Armed Forces

Clvllian

Total Agrrculture

. u ~ ~ ~ ~ ~ ~ .
cultural

lndustr~es

TUGboat, Volume 11 (1990)' No. 2

\sube{3pc)CPercent of population) I
\sube{3pc)CResident Armed Forces) I

\ssub{Civilian){l){% subsubspanner begins

\ssube~l.5pc){Total) I
\ssube{3pc)~Agriculture) I
\ssube{3pc)~Nonagricultural industries)

) % end of subsub unit
) I % end of sub unit (I comes after sub ends)

\sub{Unemployed){l){% subspanner begins

\sube{3pc){Number) I
\sube{3pc)CPercent of labor force) % space ignored

% end of sub unit
\endmain % end of whole main unit
&Not in labor force\et)

\vskip-2pt

\hrulC3pt)Cl)

Spanners forever. We close this section about by readers to gain an idea about EZ's principles in
column spanners with an example whose details in spanner design:
drawing nested spanners should be studied carefully

CODES:

TABLE 11 Heavy-Duty Spanners

\toprul

\ttitleCl){Heavy-Duty Spanners)

\toprul

Company
and Market

BaltGas

\tab{Company and Market&

\main{Price){l}

\startmain

\maine{1.5pc){Last Week's Close) I % 1st maine
\sub{Pct . Change){l){% % 2nd maine a subunit

\ssub{Last){l){% 1st sube is a ssub unit

\ssube{l .5pc){Week) I
\ssube{1.5pc){4 Wks.)

Price

Last
weekas

s
14.88

Volume

Last Week's

shares
Traded

(000)
110

Earnings and Dividends

Pct . Change

S;z:s
%

.51

P / E Ratio

5 Year lnd,.
cated
Divi-

dend
Yield

%
12.2

Year
~ v e r a g e

-

NA

year

Dt:e

s,
.8

High

s
23.88

Earnrngs per Share

Last
Current

-
NA

Low

$

14.25

Week

%
0

5 Yr.
Annual
Growth
 ate

%
NA

Wts,
%

2 . 6

Laat 12 Months

Amt.

%
NA

Change

%
NA

TUGboat, Volume 11 (lggO), No. 2

) 1 % gutrule MUST be given AFTER end of ssub
\sube{l.5pc){Year to Date)

) I % end sub
\sub{5 Year){1){% 3rd maine a subunit

\sube{l.5pc){High) I
\sube{l . 5pc){Low)

1
\endmain

%

\main{\bf Volume){l)

\startmain

\sub{Last Week's){1){%

\sube{1.5pc){Shares Traded) I
\sube{2pc){Shares Out\-standing)

) X end sub
\endmain

%

\main{\bf Earnings and Dividends){l)

\startmain

\sub{Earnings per Share){l){%

\ssub{Last 12 Months){l){%

\ssube{l.5pc){Amt.) I
\ssube{2pc){Change)

) I % end ssub
\sube{2pc){5 Yr. Annual Growth Rate)

) I % end sub
\maine{1.5pc){Indi\-cated Divi\-dend Yield)

\endmain

%

\main{P/E Ratio){l)

\startmain

\maine{2pc){5 Year Average) I
\maine{2pc){Current)

\endmain

\et)

\vskip-lpt

\hrulCBpt)IO)

Row spanners. In contrast to column spanners \xrowC(entry text))

which cross columns, row spanners cross rows. The and it is treated like a normal column. ~ ~ b l ~ 12
cell supposedly acting as a row spanner will verti- provides an
cally straddle a number of rows; in EZ such a span-
ner is achieved with \xrow. Its usage is:

TABLE 12 Row Spanners

TUGboat, Volume 11 (1990), No. 2

BATTERIES
NOT INCLUDED.

FULL 1-YEAR

I I TOTAL I $ I

MONEY BACK
GUARANTEE

\ttitle{l){Row Spanners)

\toprul

\tab{\xrow{\bf BATTERIES NOT INCLUDED. FULL 1-YEAR MONEY BACK GUARANTEE)

& Subtotal&\$\et)

\prul[2-3,6pt] % partial rule for 2-3 cols; on 6pt leading

\blankI2pt)

\tab{& NY residents add sales tax&\$\et)

\pru1[2-3,6ptl

\blank{2pt)

\tab{& Add \$2 shipping no matter how many you order&\$\et)

\hrul{GptHl)

\blankC2pt)

\tab{&\RL TOTAL&\$\et)

\hrulCGpt}Cl)

Subtotal

NY residents add sales tax

Note that the row spanner acts like a normal col- Conclusion. This article is excerpted from the 118-

umn because, after setting it, one must tab across to page operation manual of Easy Table. Its purpose

the next column. While working with a row spanner, is to illustrate a few major features of this software.

\p ru l will be needed to draw partial hrules which For more information about the purchase of Easy
avoid the cell the row spanner occupies. Once be- Table software, please contact me at 301-598-0557,

yond the row spanner, the normal \h ru l for full- or write to:
width hrules can be used.

o Khanh Ha
14912 Village Gate Drive
Silver Spring,MD 20906

$

$

Add $2 shipping no matter
how many you order

$

TUGboat, Volume 11 (1990), No. 2

Typesetting Bridge via

Kees van der Laan

Abstract

Enhanced p l a in TJ$ macros and a bidding envi-
ronment for typesetting bridge card distributions
and bidding sequences are given as a follow-up to
the IPW macros given in [12]. Moreover, macros
for annotated printing of the course of the play are
provided. Examples of use are included.

Introduction

After the publication of [12], Bernard Gaulle among
others, asked for p l a in TJ$ macros with similar
capabilities. This article concentrates on

a. Translation into p l a in TEX of the IPW
macros for printing card deals and bidding
sequences as published in [12], i.e., emulated
\hand, \crdima macros and a NESW-figure, as
well as a flexible (\bbid, \ebid) environment.

b. (new) macros - (\bplay, \eplay) envi-
ronment and \showgame- for handling the
course of the play. These macros imitate the
spirit in which chess is 'played' in print (i.e.,
with annotations and preserved data-integrity;
see [2, 16]), no retyping of the hands! Dis-
cussion starts in the section "How the play
goes."

The translated macros are enhanced with re-
spect to both language and application flexibility.
The language flexibility is in the spirit of the 'in-
ternational' DUTCH-sty-option activity (see [4]).
Names are provided, via (grouped) macros, which
can be redefined easily. Within the context of
bridge this means redefinition of the four hands

\def\FIH(North)% F I r s t Hand
\def\SEHCEast) % SEcond Hand
\def\THHCSouth)% THird Hand
\def\FOH(West) % Fourth Hand

and redefinition of \N, \E \S, \W, \EW, \NS, \TRICK.

Presented at GUTenberg 90.
Note added in proof: This paper has been
improved with respect to the earlier GUT'S0
version, GUTenberg cahiers 5. The improvements
are: inclusion of explicit \english, \french
and \dutch commands; no separate (\bbidcmp,
\ebidcmp)-environment is needed; and, in printing,
the course of a play each trick starts with the lead.

In several books, e.g. [13], the players are
personalized into: Partner, RHO, YOU, LHO,
where R/L-HO mean Right/Left-Hand Opponent.
In newspaper columns the names of the players
are sometimes given. This, as well as language
variations, can be realized easily by redefinitions
of \FIH, etc. It must be admitted, though, that
editing source texts is in general not that difficult,
just cumbersome.

As long as card values are represented by digits
and letters we don't need control sequences for them.
They can just be typed in, with the representation
you like. We have A(ce), K(ing), Q(ueen) and
J(ack), in English; A(s), R(oi), D(ame), V(alet),
in French; while in Dutch they read A(as), H(eer),
V(rouw) , B(oer); along with T(en) - respectively
T(ien), or generally 10- 9, 8, 7, 6, 5, 4, 3, 2.

Card deals

\hand prints the cards a player holds. \crdima
(CaRD IMAge) prints the cards given for all four
hands in a suitable way. The argument sequences
of \hand and \crdima are similar to the IPW
argument sequences given in [12].

Arguments. \crdima takes six arguments:
first argument: text. In particular, this argument
specifies the dealer and the vulnerability. For exam-
ple: N/None means North dealer and vulnerability
none.
second argument: text. For example, indication
of deal as in Deal 1 or in

next four arguments: the four hands N, E, S, W,
clockwise. Each hand is a call of the \hand macro
with four arguments: the 4, 0, 0, 4 cards.

The central figure is contained in a box register,
\NESW.

For example,

TUGboat, Volume 11 (1990), No. 2

N/None 4 J74 Deal:
V AJ demo

0 QJT2
4 Q874

4 A3 4 K86
v K76 Q 19542
0 963 0 874
4 KJ952 4 T3

4 QT952
V Q83
0 AK5

4 A6

Bidding

The bidding environment is not based on tabbing;
\halign is used. This means that the bidding se-
quences are lines within \halign, with four columns,
and have to obey the usual alignment syntax. The
card deal above takes the following ACOL bidding

North East South West
? n o 14 . . . no

2 4 no 4 4 a.p.

A means Alert, conventional bid
? means explanation asked
. . . means think pause

obtained via

C\medskip\narrower\noindent

\bbid

l\c\alert& ? no& l\s&\think no\cr

2\s& no& 4\s& a.p. \cr

\noalignC\vskip .5ex)

\alert\ means Alert,

conventional bid\hidewidth\cr

? means explanation

asked\hidewidth\cr

\think means think

pause\hidewidth\cr

\ebid \medskip)

Remarks. One has to have a nodding knowledge of
'l&X. A more user-friendly \annotation command
can be written, in the same spirit as a footnote or
endn0te.l

A simple approach could be a command with
two arguments where the first argument contains
the annotation symbol(s), the second argument
contains the explanation, and both are passed on to
control sequences (or token registers). \ebid must
be redefined so that the annotation(s) will appear.

Another issue is whether we should test for
illegal biddings. I did not do this because it will
restrict the use of the macros-illegal biddings are
needed in arbiter courseware, for example.

The above is natural and will suffice for simple
applications. The given \crdima and \hand macros
as well as the bidding environment can be used
in a way similar to their WTEX predecessors. So
'drivers' - e.g., my (Pascal) deal program, for prints
of tournament plays - hardly need to be adapted.

Furthermore, WTEX users can also make use of
these enhanced versions at the expense of \halign7s
syntax for the bid sequences.

In order to handle other bridge typesetting
usages2 elegantly and consistently, we have to think
more thoroughly about how to pass information
from one macro to another.

Variables and parameters vs.
control sequences and arguments

Knuth, [l l , p.2111, names the possibilities:

"It is sometimes desirable to pass informa-
tion from one macro to another, and there
are several ways to do this: by passing
it as an argument, by putting it into a
register, or by defining a control sequence
that contains the information."

It is not clear to me what to provide via arguments,
what via registers and what via control sequences
from one macro to another. The above is the Tm
terminology and well-defined, while in Pascal-like
programming we call the possibilities:

- transfer via parameters (by name, reference or
value),

- via global variables, and
- via procedures.3

In command languages (and also in ADA) we
distinguish between parameters bound to a position
and bound via keywords in free order along with
defaults.

In \crdima the texts and hands, and in \hand
the cards for every colour are provided via argu-
ments. Another approach is to provide all this
information via control sequences, i.e., control se-
quences for

- the vulnerability and dealer information,

In practice simpler techniques are used: Meu-
lenbroek, for example, edits the previous column
with the word processor at hand.

In numerical mathematics we also have what is
called reverse communication.

TUGboat, Volume 11 (1990), No. 2 267

\def\LFTINFiN/None)% LeFT INFO commands I used lower case letters \s, \h, \d,

- general information, \c; \ a l e r t , \ think. For the lead indication and

\def\RGTINFCDemo) % RiGhT INFo
FIrst, SEcond, etc. Player I also used upper case
letters: \LEADN, \LEADE, \LEADS, \LEADW; \FIP,

- cards per cO1our and player, i.e-, \Ns, for \SEP, \THP, \FOP. Language commands are also in
North's)'s, etc. lower case; supplied are \english (default), \dutch,

One could then introduce something like \showgame, and \f rench. This naming convention also holds
with no arguments, which uses these control se- for name combinations in the control sequences for
quences. This is done in the section on "How the the cards per hand per colour, i.e., \Ns, etc. Note
play goes." that we have \NS and \ N s , denoting respectively

So, there is essentially one 'variable' left, the the North-South combination and North's 4's.
representation of the NESW-figure. One could use

Remark. With respect to choosing another lan-
the optional parameter mechanism (see e.g. [3])

guage, I adopted that the result in print will be
with the disadvantage that this parameter must be

in the specified language; the control sequences
supplied for every deal once a personalized layout,

remain in English. Data.which will be printed -
different from the default, has been chosen. In my

card values- have also to be supplied in the other
opinion this kind of variability, which is no longer

language. Note that the card colours have to be
there once personalized, can best be provided via a

denoted in English: V's are always denoted by h (in
register, e.g., a box register in this case, and not via

play environment) or \h (in bidding environment).
an optional parameter. When no figure is wanted,
just 'empty the box', and when you would like one
of your own use \setbox\NESW\hboxC. . .). The
notation for the players used in the NESW-figure is
contained in control sequences, \ N , etc.

In the bidding environment the notation for
the players is also contained in control sequences,
\FIH, etc. This provides language as well as order
flexibility. Annotation commands are, e.g., \ a l e r t ,
\ th ink (think pause), ? (before the bid: explanation
is asked for; after the bid: questionable bid),
whatever you like to add, and various combinations,
such as question followed by think pause.

In the play environment the the lead can be
specified by \LEADN, \LEADE, \LEADS, or \LEADW.
These control sequences set the definitions of
\FIP%FIrst Player, \SEP, \THP, and \FOP. Fur-
thermore, the cards played have to be given in
(English) natural notation, e.g., h8 for 08 . The
\bintermezzo . . . \eintermezzo environment is a
more user-oriented disguise for \noalign.

Remark . It is tempting to ponder about where
keyword parameters come in (see e.g., [I]). Think
of modifying the contents of a register or redefining
a control sequence. The functionality is already
there - for example, see the sect ion on application
flexibility.

Nota t ion

For the names of the control sequences for the
hands and the left and right information, I adopted
upper case letters \FIH, \SEH, \THH, \FOH; \N ,

\E, \S, \W, \NS, \EW; \LFTINF, \RGTINF, and for
the colours of the cards and for the annotation

Application flexibility

a. Another language. In the following, the French
language is used.

takes the following ACOL bidding

Nord Est Sud Ouest
14A pas 14 . . .pas
2 4 pas 4 4 pas

Pas Pas

obtained via

(% Local change,
\f rench
(\medskip\narrower\noindent

\crdimaCN/Personne)C)%
C\handCV74)CAV)CDVlO2HD874)) %N

C\handCR86)ClO9542)C874}(103)}%E

C\handCDlO952)CD83)CAR5HA6)) %S

(\handCA3)CR76)C963)CRV952}} %O

\medskip)
\noindent takes the following ACOL

TUGboat, Volume 11 (1990), No. 2

bidding

(\medskip\narrower\noindent

\bbid

l\c\alert& pas& l\s& \think pas\cr

2\s& pas& 4\s& pas\cr

pas& pas\cr

\ebid \medskip

)% end local change

b. Changing order. If for some reason one likes to

start with another player, e.g. West, in the printing

of the bidding sequences, with the same dealer and

vulnerability, this yields

and

West North East South
- llSA no 14
. . . no 2 4 no 4 4

a.p.

is obtained via

C% Local change, note that the order
% of the defs is free
\def\FIHCWest)\def\SEH(North)

\def\THHCEast)\def\FOHCSouth)

%
\medskip\narrower\noindent

\bbid

--& l\c\alert& no& l\s\cr

\think no& 2\s & no& 4\s\cr

a.p.\cr

\ebid \medskip)

>% end local change

Another adaption is using a different naming, e.g.,

first hand is Partner via \def\FIHCPartnerl etc.

See the section on Endplay analysis, where \ N , etc.,

are personalized.3

c . Natural notation for input. Natural notation

is bound to a language. This gives complications if

one likes to specify the card colours. For example in

the French language we have carreaux and cceurs,

which both abbreviate to c.

Furthermore, one can think of hiding W n i c a -

lities. The latter means that one could omit & and
\cr and use, respectively, a space and a carriage

return instead. I decided not to hide & and \cr.

One can also think of denoting the colours via

the first character of the colour names in the bid

This modification can be simplified when
the NESW-figure is not put in a register, i.e.,
\def\NESWC\hboxC\NESWfig)) and

$\vcenter\NESW$ are used.

environment instead of the corresponding control

sequence. I decided to have control sequences in

the bid environment for the colours, because this
makes it possible to supply any prefix. In the

play environment I decided in favour of the colour

abbreviation, s, h, d , or c, because there is no need

for prefixes.

Remarks. Note the keyword functionality in ex-

amples a and b.

The general disadvantage of flexibility is
the need for discipline; no consistency is

forced. The advantage is freedom, and the

question is how to use it.

Macro texts

The provided NESW-figure is implemented via

a 'ruled' table. The N, E, S, W symbols are
provided via control sequences. The positioning

obeys \halip's rules. -

Source texts. \hand, \crdima, \NESW, and

(\bbid, \ebid)

\def\hand#1#2#3#4{%

%Example: \hand(AKJ765)(AK9){-->{T893)

\vtopC\hbox~\strut\s\enspace#l~

\hbox{\strut\h\enspace#2)

\hbox(\strut\d\enspace#3)

\hbox{\strut\c\enspace#4))%end \vtop

)%end \hand

\def\crdima#l#2#3#4#5#6{%

%purpose: layout bridge hand

%#I left upper text

%#2 right upper text

%#3, #4, #5, #6: N, E, S, W hands

\vbox{\halign{ &##\quad\cr

#I& #3& #2\cr

$\vcenter{#6)$&$\vcenterC\copy\NESW)$&

$\vcenterC#4)$\cr

& #5& \cr

)%end \halip

)%end \vbox

)%end \crdima

\def \NESWf igC%

\vbox~\font\small=cmr9

\def\str{\vrule height2.2exx

depth.75ex width Opt)

\off interlineskip\tabskipOpt\hrule

\halign(\vrule\hskip2pt\relax

##\hfil\tabskip3pt&

\str\hfil##\hfil&

TUGboat, Volume 11 (1990), No. 2 269

##\hskip2pt\relax\hfil\vrule

\tabskipOpt\cr

& \hbox to Opt{\hss\N\hss)& \cr

\W& \phant omCN)&\E\cr

&\str\hbox to Opt{\hss\S\hss)&\cr

)%end \halip

\hrule)%end \vbox

1% end \NESWf ig
\setbox\NESW\hbox{\NESWfig)

\def\ebid{\errormessage{%

bbid command is missing))

\def\bbid{\bgroup

\def\ebid{\egroup\egroup\egroup)

\def\alert{$-A$)

\def\think{\ldots\thinspace)

% etc.
\vt op\bgroup

\halip to4\wr\bgroup\tabskip3ex

plus lex minus 1ex& ##\hfil\cr

\FIH\hfil& \SEH\hfil&

\THH\hfil&\FOH\hfil\cr

)%end \bbid

Remark. plain TEX macros for nicely rounded
frames, UTEX'S 'ovals', have been published (see
[8]). They can be used for another frame represen-
tation in NESW.

Some more examples

a. In order to illustrate general bidding theory from
the viewpoint of one hand only, the \hand macro
can be used. The following layout, heavily used in

[71,

4 AKJ42 North East South West
V AK9 14 no 1NT 2 4
0 T832 ?

4 T

is obtained via

b. For issues related to defense play one often
displays only the dummy hand and your own hand.
The following example is borrowed from [5] .

North East South West
- - - 14
no 2 0 no 2NT
no 4 0 a.p.

Against 4 0 South starts 4 K , taken with *A.
Leader continues VAKQ. On the third round of
V's, partner discards 0 9 (indicates interest in 4).
Leader continues with 02, how do you continue?

The example is obtained via

{\def\S{You) % local change
\setbox\NESW\hbox{\NESWfig)

\medskip\narrower\noindent

\crdimaI)C)%

OOC\handC985)C852)CAJ5)CKqT3))%S

{\hand{AJ632){43){KQ7}{A85))%W

\medskip

)%end local change NESW-figure

Remark. In a similar way W-N, N-E, E-S hands,
or W-E, N-S hands, or one hand only, with NESW-
diagram, can be displayed simply by a suitable call
of \crdima.

c . In discussing endplays only a few cards are left.
The following endplay is taken from from [lo].

TUGboat, Volume 11 (1990), No. 2

4 A J SleadsfiA,
V K W is squeezed

0 -
4 -

0 -
4 - 4 -

4 2
V 4

0 -
4 A

The example is obtained via

C\medskip\narrower\noindent

\crdimaOC\vtopC\hboxiS leads \c A,

\hboxCW is squeezed3))%

C\handiAJ)CK)C--)C--H%N

C\handC7)C9)CT)C--I) %E

i\handC2)C43C--3CA)) %S

(\hand<Kq)CA)C--lC--fi%W
\medskip)

d. Finally, a bidding competition. It illustrates how
the (\bbid, \ebid) environment can be used for this
application. We have taken only two partnerships:
Sjoerd&Martijn and Tsjip&Janski. The material is
borrowed from 1171.~

W/A11; Bidding competition

On the above hands, and given that South will
intervene with 44 , the partnerships bid as follows,

West East West East
Sjoerd Martzjn Tsjip Janski
10 2 4 10 2 0
(4 4 by South) (44 by South)
no 5 4 2 dbl 6 4
7 4 no no

Forcing pass
Grand slam try

obtained via

$$\crdimaC W/A11;

Bidding competition \hidewidth\cr

\noalignC\vskip. 5ex))CI%

()(\handC--)i J8)C~~q54)CAJ7543))%E

Normally, the set of West-hands is separated
from the set of East-hands.

C)C\handCAJ8)CAKT943C83CKT9833 %W

$$

\noindent On the above hands, and given

that South will intervene with 4\s,

the partnerships bid as follows,

%
(\medskip\narrower

\hbox to \hsizeC\hss

C%Sj oerdtMarti jn (Local mods)

\def \FIHC\vtop~\hboxCWest~

\hbox{\it Sjoerd\/)))

\def\THHC\vtopC\hboxCEast)

\hboxC\it Marti jn\/)))

\def \SEHC)\def \FOHO

\def\bidwidth{3\wr)

\bbid

l\h& &2\c\cr

(4\s\ by South)\hidewidth\cr

nol& &5\s2\cr

7\c& &no\cr

\noalignC\vskip.5ex)

$-I$ Forcing pass\hidewidth\cr

2 Grand slam try\hidewidth\cr

\ebid)%end SjoerdkMarti jn

\quad

C%Ts j ip&Janski (Local mods)

\def\FIHC\vtopC\hboxIWest)

\hboxC\it Tsjip\/))>

\def\THHC\vtopC\hbox(East)

\hbox{\it Janski\/)))

\def\SEHC)\def\FOHC)

\def\bidwidth(3\wr)

\bbid

l\h& &2\d\cr

(4\s\ by South)\hidewidth\cr

dbl& &6\c\cr

no\cr

\ebid)%end TsjiptJanski

\hss)%end \hbox

\medskip)

How the play goes

Explanatory schemes of a play are used for instance
on viewgraph instantly during a match, in books
about play technique, or in newspaper columns
when discussing interesting matches or puzzles. In
order to do this systematically and unambiguously,
something similar to the 'algebraic' notation in
chess (see [2, 161) is needed.

Agreed, reading a book filled mostly with
(algebraic) notation tables is quite dull and we can
never replace the literarily gifted commentator. So,

TUGboat, Volume 11 (1990), No. 2 271

this reduces the practical value of the exercise, but
for solutions of puzzles it might be quite efficient,
although I don't expect that many solutions will
be sent in using m, in spite of quite numerous
bridge unions, e.g., NBB (75,000 members), [5],
to name but one union. On the other hand, the
systematic approach eliminates misprints in shown
phases while discussing a play.

Anyhow, it was great fun, and I learned a lot
from it.

What we need is a compact unambiguous
notation which contains per trick the information
about the cards played and who led. Who gained the
trick5 can be deduced from the general knowledge
of the contract and the lead. In print one generally
starts every trick with the lead; every card that is
played is given by the card colour and card value,
followed eventually by commentary symbols like !,
or ?.

To print all this information, I used basically a
table with four columns (the players) and thirteen
rows (the tricks). Each row starts with the lead.6
Apart from printing the cards played (along with
trick number), the cards in every hand -the (toks
register) control sequences \ N s , etc. -are updated.
The use is illustrated below.

Let us play a game

The following appeared in 'Meulenbroek's column'
last C h r i ~ t m a s . ~

Puzzle 4 KQ76 6NT,
0 J98 by East
0 5942

4 65
4 T9 $ 3 V A2

Q AK3 0 T5

4 AQT 4 KJ9xxxx
4 8542
V QT74

0 Q876
6 2

Problem. How must NS defend in order to guar-
antee 1 trick?

On viewgraphs underlining is commonly used;
this can be implemented, but because of entailed
inflexibility I refrained from it.

The lead indication can be hidden for the
first lead in something like \ cont rac t , \ l eader or
explicitly \ lead, and for the next tricks along with
the automation of who gained the trick.

Borrowed from [6].

Solution. Start with a V lead in order to break
communication. N must discard V's and S must
discard 4's.

Trick
1.
2.
3.
4.
5.
6.
7.

On lead of the next 4 neither South nor North can
be squeezed as can be seen from

Puzzle 4 KQ NS squeezed on
0 J 4 continuation?
0 J94

4 -
4 A

0 AK3 0 T5
0 6 3 4 - $,' 4 x

4 -
V QT7

0 Q87
4 -

with continuation

8. & x 0 7 0 6 V J - 8

9. O T 0 7 OA 0 4 - 9
10. O K 0 9 0 5 0 8 - 10
11. 0 3 O J 0 A 0 T - 11

12. 4 T V Q 4-4 4 Q - 12
13. 0 3 4 K 4 9 0 Q 1 12

Input. The above is obtained by

\def\LFTINF(Puzzle)

\def \RGTINF(\vtop(\hboxCGNT ,
\hboxCby East)))

%
\NS={K~~~)\ES=(T~)\S~=(B~~~)\WS=(AJ~)
\Nh={J98) \Eh=(A2)\Sh={qT74)\Wh=(K653)

\Nd=(J942)\Ed=(T5)\Sd=Cq876)\Wd=(AK3)

\Nc=(65)\Ec=~KJ9xxxx)\Sc=~2~\Wc=~~T)

%

\subhead *Problem*

How must NS defend i n order t o

guarantee 1 t r i c k ?

%
\subhead *Solution* S t a r t with a \h\

l ead i n order t o break communication.

N must d i scard \h ' s

TUGboat, Volume 11 (1990), No. 2

and S must discard \s's.

\smallskip\noindent

\LEADS

\bplay

h4! & hK & h8 & h2 & -- & l\LEADW\cr

cA & c5 & cx & c2 & -- & 2\cr

cQ & c6 & cx & s2 & -- & 3\cr

cT & h9 & cK & s4 & -- & 4\LEADE\cr

cJ & s5 & s3 & s6 & -- & 5\cr

c9 & s8 & h5 & s7 & -- & 6\cr

cx & d6 & sJ & d2 & -- & 7\cr

\bintermezzo

On lead of the next \c\

neither South nor North can be

squeezed as can be seen from%

\def\RGTINFC\vtopC\hboxCNS squeezed on)

\hboxC\c\ continuation?)))

\showgame

with continuation

\eintermezzo

cx & h7 & h6 & hJ & -- & 8\cr

dT & d7 & dA & d4 & -- & 9\LEADW\cr

dK & d9 & d5 & dB & -- & 10\cr

h3 & dJ & hA & hT & -- & Il\LEADE\cr

ST & hQ & sA & sQ & -- & 12\LEADW\cr

d3 & SK & s9 & dQ & 1 & 12\cr

\eplay

Remark. The cumulative tricks can be suppressed
by deleting columns 5 and 6 and emptying the head
texts via \def \NSO and \def \EWO.

Macros for annotated play

The (\bplay, \eplay) environment is aimed at
printing schematically the cards played. Interleav-
ing remarks, showing the phase of the play etc., can
be supplied within the

\bintermezzo . . . \eintermezzo

subenvironment. \pc does two things: it prints
the card played and deletes the card from the
appropriate hand. \strip essentially strips out one

symbol from a string. \showgame is just a call of
\crdima with the current values of \Ns etc.

Explanation. The problem is to determine dy-
namically with which colour from which player we
are dealing. In each eolumn of \bplay the player is
known via the control sequences \FIP, \SEP, \THP
and \FOP (these are eventually adjusted by \LEADN,
\LEADE, \LEADS, or \LEADW) and passed on to \PC,
as first argument (see template line of \halign in

\bplay). From the typed-in information, within the
(\bplay, \eplay) environment, the colour is passed
on as second argument to \PC. Symbols after that
are handled as text, and influence \halip's column
positioning.8 \strip is called by \pc to delete a
symbol. The symbol that has to be located in the
string is used as argument separator.

Source texts.

\def \eplayC\errormessageC%

bplay command is missing))

\def\bplay{\bgroup\global\tmo=0

%Version 21/3/90

\def\eplayC\egroup\egroup)

\def\bintermezzoC\noalign\bgroup

\smallskip\noindent)

\def\eintermezzo{\smallskip\egroup)

\tabskipiex plus lex minus lex

\halip to7\wr\bgroup

\global\advance\trno by 1

\hbox to\wr~\hss\the\trno.\hss) %
\pc\FIP##\hfil&

\pc\SEP##\hfil&

\pc\THP##\hfil&

\pc\FOP##\hf il&&

\hfil##\hfil\cr %Template line

\omit\hbox to\wrC\TRICK\hss)&

\omit&\omit&\omit&

\ \NS&\ \EW\cr%Headline
3% end \bplay

\def\pc#l#2#3C% Version 3/3/90

%Function: prints card #2#3 and

% deletes it from hand \#I

%#I the hand N, E, S, W(uppercase)

%#2 colour s, h, d, or c

%#3 card value A K Q . . . 2, or x
%(or your (consistent/language) choice)

%I. Update hand \#1#2; e.g. \Ns

\xdef\hnd{\csname #1#2\endcsname)

\stripC#3)C\hnd)%

% end update hand
%2. print card in table

\xdef\colourC\csname #2\endcsname)

\colour\thinspace #3%

% %Needed for immediate * mark
% end print card
1% end \pc

Of course use of \ . . .lapC(symbol)) will not
affect the column positioning, but will possibly spoil
your print.

TUGboat, Volume 11 (1990), No. 2

\def\strip#l#2(% Version 3/3/90

%Function: deletes card value #I

% from #2, i.e., \Ns, or . . .
\def\wis##l#l##2\wisC%

%Function: #I is deleted from argument

% in \wis . . . \wis and result
% is assigned to \hnd;

% (last card is replaced by --)

\global\hnd=C##l##23

\xdef \paC##l) \xdef \pbC##2)

\ifx\pa\empty C\ifx\pb\empty

\global\hnd={--3% void colour

\f i)\f i

3% end \wis
\expandafter\wis\the #2\wis

)% end \strip

\def\showgameC%Shows the play, with

%control sequences Ns, . . . , Wc,
%(note use of upper case for player)

%\defs: LFTINF, RGTINF

$$\crdima{\LFTINF){\RGTINF)%

C\handC\the\Ns)C\the\NhH\the\Nd)%

C\the\Nc))%
C\handC\the\Es)C\the\Eh)C\the\Ed)'/o

C\the\Ecl)%
(\handC\the\Ss)C\the\Sh)C\the\Sdl%

C\the\Sc33%

C\handC\the\Ws)C\the\WhH\the\Wd)%

C\the\Wc)3%

$$I% end \showgame

Remarks. Use is made of \halip, with a counter
for the tricks, and of \noalign for the intermezzo.
One can also use a third, fourth. etc. symbol,
after the colour and card value, in order to denote
something special, e.g., !, for a well-played card.
I added the reader-friendly feature of printing the
cumulative number of tricks gained by each side in
extra columns.

One abstraction I consider particularly useful
is the notation of x for cards which don't matter.
(Because of the freedom in representation of card
values nothing extra had to be done.)

Another question is what to do when the card
is not in the hand? This will yield a TEX error
message.

Flexibility: Endplay Analysis. The analysis be-
low is due to [15] and shows the elegant use of
\showgame with (global) control sequences.

Analysis 4 A8653 70,
0 A4 by South
0 AJT
i A54

4 KQ94
0 3
0 Q987652

Rens Dick

4 T86 Frans
4 QJ92

4 J7
0 KQJ9765

0 K
4 K73

0 2 lead is taken with the K, followed by 4 to A.
OA (leader discards a 4) , 4 trumped, OK, V to A,
again 4 trumped, followed by all but one trump.
The leader arrived at

Squeeze 1 4 8 0 5 will squeeze:
0 - W (positionally)

O J E (automatically)
4 A5

Anton

0 Q
Frans

0 -
4 T86 4 &Jg

Other squeezes can be envisioned, e.g., (note central
figure is suppressed)

Squeeze 2 4 A8 W squeezed
0 - in 410
O J
a -

4 KQ 4
0 - V not

0 & 0 important
(I) - a

4 J7
0 5

0 -
a -

This squeeze works whenever West holds 4KQ (or
5'4) and OQ, etc.

Remark. However interesting other squeeze possi-
bilities -after a trump or 4 lead- might be, they
don't contribute further to 'bridge in print'. The
above is meant as an illustration of the use of the
macros within the context of a less rigid way of de-
scription. Because of the informal way the endplays
are arrived at, we edited the hands. General play
commands, which will update the hands, are once

274 TUGboat, Volume 11 (1990), No. 2

again not that difficult to write.g For the moment I
stopped.

Input for Endplay Analysis. The above is ob-

tained via

C%local adaptation variables in NESWfig

\def\N(Anton)\def\ECDick)

\def \S{Frans)\def \Wfiens)

\setbox\NESW\hbox{\NESWf ig)

\def\LFTINF(Analysis)

\def \RGTINF(\vtopC\hboxC7\h, 3
\hbox{by South)))

\N~=CA8653)\Es=(Kq94)\Ss=IJ7) \Ws=(T2)

\Nh=(A43 \Eh=(T82) \Sh=(KQJ9765)\Wh=C3)

\Nd=(AJT)\Ed=(43) \Sd=(K)\Wd={Q987652)

\Nc=CA54)\Ec=(qJ92)\Sc=iK73) \Wc=(T86)

%
\showgame

%
\d2 lead is taken with the K, followed by

\s\ to A, \d A (leader discards a \s),

\s\ trumped, \h K, \h\ to A, again

\s\ trumped, followed by all but one

trump. The leader arrived at

\Ns=C83 \Es=(K) \Ss=(--3 \Ws=(--1

\Nh=i--I\&={--) \Sh=(5) \Wh={--1

\Nd={J) \Ed=(--> \Sd={--1 \Wd=(Q)

\NC=(A~)\EC=(~J~)\SC=(K~~)\W~=(T~~)

\def\LFTINF(Squeeze 1)

\def\RGTINF(\vtopC

\hbox(\h5 will squeeze:)

\hbox(W (posit ionally))

\hbox(E (automatically) 3))
\showgame

%
Other squeezes can be envisioned, e.g.,

(note central figure is suppressed)

\Ns=CA8)\Es={) \Ss=(J7) \Ws={KQ)

\Nh={--)\Eh=(not)\Sh={5) \Wh={--1

\Nd=(J)\Ed=(important}\Sd=(--)\Wd=CP)

\Nc~--)\Ec=() \SC={--3 \WC={--1

\def\LFTINF(Squeeze 2)

\def \RGTINF(\vtop(\hbox(W squeezed}

\hbox{in \s/\d))l

%
C%Sublocal mod: empty figure

Informal notation is characterized by incom-

pleteness. In bridge, while discussing the course of

a play, it is assumed that the reader knows which

player played a card. One could write a general
\strip command, with a suitable name, which lo-

cates the appropriate hand and subsequently strips

and prints the card.

)%end sublocal mod empty figure

%
This squeeze works whenever

West holds \s Kq (or 5$-+$\s) and
\d Q, etc.

)%end local change \NESWfig

Looking back. I refrained from introducing case
insensitivity in the card values, and from automat-

ically counting the gained tricks, which is cumber-

some but not too difficult to implement, once a
suitable representation for ordering of the cards is

chosen.
The above features. as well as more natural

input, can best be considered when the macros

are targeted for a particular application, e.g., for
typesetting (in a specified language) tournament

reports, puzzles and answers, or whatever.

Because of the history of \crdima and \hand,
and because I did not much ponder a przorz about

the 'data structure', I started with a natural ap-

proach. Looking back, I could have started from a
13*4-matrix, where the rows denote the card values

and the columns the colours. The value of an array

element represents the status, e.g., the card belongs
to either N. El S, W, or has been played. not to

mention 'penalty' cards. Updating this structure
can be done via the 'array addressing' technique

given in [9]. \showgame (and \crdima) as well
as \hand will become more complicated, however.

To be honest, I started in my deal program with

5 2 numbers for shuffling; these 52 numbers could
be generalized into 52 memory locations, suitably

addressed.

Looking ahead. What about using these macros

interactively, e.g., in bridge play programs, or by

commentators on TV? Not only to delete a card
will be needed but also the reverse, to insert a card,

in order to demonstrate variants.'' Of course, some
fancy graphics will be indispensable, like showing

real card faces instead of symbols and playing the

cards, i.e., letting them move. Animation. Multi-

media information exchange, how exciting! My case
rests.

Availability of the macros. This article, with

macros included, will be available on TeX-NLQHEARN.

The previous I4W article is also there. I welcome

lo Perhaps best implemented via a conditional
delete?

TUGboat, Volume 11 (1990), No. 2

copies of any publication using these macros, or
derivatives thereof. Comments are appreciated.

Conclusions

The author claims that bridge publications with
respect to card distributions and bidding sequences
can be typeset with high quality via U r n , see [12],
or via w and the macros given. Furthermore, it
is possible to explain the course of a play in print
systematically and unambiguously, where updating
of the hands is done automatically when a card
is 'played', i.e., when within the (\bplay, \eplay)
environment the colour and card value are given,
obeying \ h a l i p ' s rules. The display of the course
of the play can be interrupted with the intermezzo
(sub)environment, for, among others, showing the
cards still active in the play via \showgame.

Proofreading of deals not generated and typed
by computer is error-prone and remains tiresome.

TEX programming differs from 'structured pro-
gramming' not in the least

- in terminology - (positional, keyword) param-
eters vs. arguments, variables vs. registers and
control sequences - and

- in its attitude -proving programs vs. knowing
what one is doing.

Roughly three columns were needed for the (com-
mented) macros; m is a powerful tool!

Acknowledgements

The author is grateful to Bernard Gaulle for his
interest in the macros. Johannes Braams, who
enlarged the I 4 W macros into a bridge style file,
is kindly acknowledged for emphasizing language
flexibility. Victor Eijkhout suggested use of an
argument separator for locating a symbol in a
string. He also carefully read the manuscript and
proposed improvements to my English. Phil Taylor
and Amy Hendrickson, whom I met at the Stanford
TUG89 conference, and have had T)$ contacts with
since, contributed a lot, not in the least helping me
'onward and upward' with the for me unusual way of
TEX programming. Last but not least I would like
to thank the Groningen bridge community for the
inspiring discussions and the first class examples.

References

1. Appelt, W. (1987): Macros with keyword
parameters. TUGboat 8, no. 2, 182-184.

2. Appelt, W. (1988): Typesetting Chess.
TUGboat 9, no. 3, 284-287.

Bechtolsheim, S. von (1988): Tutorial on
\ fu ture le t . TUGboat 9, no. 3, 276-278.
BRIDGE. Monthly of the NBB (Dutch Bridge
Union).
Coffin, G. S. (1954): Bridge Plays: Four
classics. Faber and Faber. London.
Crowhurst, E. (1986): ACOL in competition.
Pelham. London.
Braams, J., V. Eijkhout, N.A.F.M. Poppelier
(1990): The development of national I4"
styles. TUGboat 10, no. 3, 401-406.
Glendown, G. (1990): Round boxes for plain

m. TUGboat 10, no. 3, 385-386.
Greene, A.M. (1989): Wrea t ion -Playing
games with w ' s mind. TUG89 conference,
TUGboat 10, no. 4, 691-705.
Kelder, J . , B. van der Velde (1986):
Dwangposities tegen 6611 tegenstander. Becht.
A'dam. (Dutch). Translated from: Kelsey,
H.W. (1985, paperback): Simple squeezes.
Gollancz. London.
Knuth, D. (1984): The W b o o k . Addison-
Wesley.
Laan, C.G. van der (1989): Typesetting
bridge via I 4 w . TUGboat 10, no. 1,

113-116.
Lawrence, M. (1988): The complete book
on hand evaluation. Max Hardy. ISBN
0-939460-27-0.
Meulenbroek, D. (1989): Nieuwsblad v/h
Noorden. December. (Dutch)
Paternotte, R. (1989): Dwangneurose. De
Enige Goede Bridge Courant. December.
(Dutch)
Rubinstein. Z. (1990): Printing annotated
chess literature in natural notation.
TUGboat 10, no. 3, 387-389.
Vries, H. de (1990): Biedwedstrijd. De Enige
Goede Bridge Courant. Maart. (Dutch)

Appendix. Registers and control sequences used

%Card def in i t ions
\def\s(\spadesuit)
\def\h(\heartsuit)
\def\d(\diamondsuit)
\def\cC\clubsuit3
%(Toks r eg i s t e r) control sequences
%for hands used by play macros:
%showgame, pc, s t r i p
\let\NT\newtoks
\NT\hnd%Dynamically one o f :
\NT\Ns\NT\Es\NT\Ss\NT\Ws

\NT\Nh\NT\Eh\NT\Sh\NT\Wh
\NT\Nd\NT\Ed\NT\Sd

TUGboat, Volume 11 (1990), No. 2

\NT\Wd %Beware! Already

%in TUGboat.sty i n lower case

\NT\NC\NT\EC\NT\SC\NT\WC

\def\englishI

%In cen t r a l f i g u r e NESW

\def \NCN)\def \ECE)\def \SCS)\def \ W O
%In heading bplay

\def\NSiNS)\def\EWCEW)

\def\TRICK(Trick)

%Defini t ion of hands

%used by bbid

\def\FIHCNorth)\def\SEHCEast)

\def\THHCSouth)\def\FOH(West)

)% end \english

\english%defaul t

\def\LEADNC\gdef\FIP(N)\gdef\SEP(E)%

\gdef\THPCSl\gdef\FOPCW))
\def\LEADEC\gdef\FIP(E)\gdef\SEPCS)%

\gdef\THP{W)\gdef\FOPCN))
\def\LEADS(\gdef\FIPiS)\gdef\SEPCW)%

\gdef \THPCN)\gdef \FOPIE))

\def\LEADWC\gdef\FIPO\gdef\SEPCN)%

\gdef\THP{E)\gdef\FOPCS))

%Defini t ion of counters

%used by bplay

\newcount\trno%trick number

%Defini t ion of dimensions

%used i n bbid

\newdimen\wr %width column

\wr=7ex \ r e l ax

\def\bidwidth{4\wr)

%used i n crdima

\newbox\NESW

o Kees van der Laan
Rekencentrum RUG
Landleven 1, 9700AV
Groningen, The Netherlands
cglQrug.nl

The UTEX Column

Jackie Damrau

In the April 1990 issue, I shared a beginner's type question. This issue I would like to share a macro
that was recently needed in my job. I must give proper credit for part of this macro to Norman Richert,
University of Houston-Clear Lake.

This example is an excerpt from the Wolf Cub Scout Book from the section discussing Family Discussions
about Drug Abuse.

Should anyone have a macro they would like to share, I urge them to submit the macro no matter how
simple it may seem. The macro might be of help to others who are trying to solve a similar problem or help
to answer a gray cloud that is hanging over the macro developer.

TUGboat, Volume 11 (1990), No. 2

Double Item Macro

\topmargin -.5in % Parameters for SSC
\oddsidemargin -.lin % Laboratory print environment
\textheight 8. gin

\textwidth 6.5in

% Special notation needed
Q Q Q o o ~ o Q 0 a 0 0 a o 0 0 0 0 0 o O o o Q Q o Q o Q Q Q P o Q o o Q Q Q Q Q Q Q Q Q Q o o o ~ o o Q o o o o o o o o o Q * LL

\def\header#l#2{\parindentOemC#l \hfill #2)%

\vskip.2in \parindent 1.7em)

\def\@oddfootC(\bf \LaTeX\ Column) \hfil \thepage \hfil \today)

\def\section~\@startsectionCsection~Cl~C\zQ3+3.5ex plus +1ex

minus +.2ex)C2.3ex plus .2ex)(\normalsize\rm))

\def\myth#l((\bf Myth No.\ #I})

\def\fact(C\bf Fact))

Q o Q Q 0 0 Q 0 Q o Q Q o o Q P Q O o P o I O D o O o I o O D D O o Q o Q Q o Q Q Q o Q Q Q Q Q Q Q o o Q o Q Q Q o Q Q o o Q Q LL
% Macros for "double items"
% Modified version of \item macro and context on
% p. 355 of TeXBook
%
% Norman J. Richert March 1990

% Univ. of Houston-Clear Lake
% e-mail: richert@cl.uh.edu
0 Q Q o Q Q o 0 0 0 o Q Q Q Q Q Q 0 o O Q Q Q Q Q Q o O Q Q o Q Q O o o o O o O o o o o Q Q Q o Q Q Q Q Q Q o Q o Q Q Q Q Q Q Q LALL

Register for box w/dblskip width

Dblskip width of 7.5 pc

Register for box w/firstdbl width

Firstdbl width of 6 pc

Register for box w/seconddbl width

Seconddbl width of I pc

Indent width of dblskip

No indent, horiz. skip of dblskip

\llap(\hbox to\dblskip(\hbox to\firstdblC#l \hfil)%

% left lap with 2 hbox spreads to argi
\hbox to \seconddbl~#2\hfil)})\ignorespaces)

% hbox spread to arg2
\def\dblitemC\vskip6pt\dblhang% % Definition of dblitem
\dbltext indent)

1 o 0 Q Q Q Q Q Q Q Q Q 0 Q 1 o o 0 1 o Q o o Q o o o o o O o Q Q Q Q # O O Q o Q Q Q Q o Q o o ~ Q Q o o o o o o Q o Q o Q Q Q LL

TUGboat, Volume 11 (1990), No. 2

Use of Double Item Macro

Family Discussions Myths and Facts

Discussing the different myths about drug use is a good way to get children to open up. Listed below
are several myths that parents can discuss with their children:

Myth No. 1 - You won't become addicted to cocaine with casual use.

Fact - The two million cocaine addicts will tell you differently. The up-and-down cycle of the

cocaine user who always needs more to get a kick is often started with casual use and
often continued without the user knowing he or she is becoming addicted.

Myth No. 2 - One time can't hurt you.

Fact - More potent, more available, and more lethal than ever, cocaine, heroin, and a rapidly
increasing list of synthetic drugs can threaten the life of even a first-time user. Cocaine,
once thought to be less dangerous than other drugs, in 1986 accounted for over 350
deaths. Today's marijuana has three times the amount of THC (the main mind-altering
ingredient in marijuana) than marijuana that was available in the 1960s and early 1970s.

Code Used to Produce the Above Example

\headerCFamily Discussions)(Myths and Facts)

Discussing the d i f f e r e n t myths about drug use i s a good way t o ge t

chi ldren t o open up. Lis ted below are severa l myths t h a t parents can

discuss with t h e i r ch i ldren:
\dblitem(\myth(l))(--) You won't become addicted t o cocaine with casual

use.

\dblitem(\fact)(--3 The two mi l l ion cocaine addic ts w i l l t e l l you

d i f f e r e n t l y . The up-and-down cycle of the cocaine user who always needs
more t o ge t a kick i s of ten s t a r t e d with casual use and of ten continued

without t he user knowing he o r she i s becoming addicted.

\dblitemC\mythC2)H--1 One time can ' t hur t you.

\dbl i temi\factH--1 More potent , more avai lab le , and more l e t h a l than
ever , cocaine, hero in , and a rap id ly increasing list of synthe t ic drugs

can threa ten t h e l i f e of even a f i r s t - t ime user . Cocaine, once thought

t o be l e s s dangerous than other drugs, i n 1986 accounted f o r over 350

deaths. Today's marijuana has th ree times the amount of THC (the main
mind-altering ingredient i n marijuana) than marijuana t h a t was avai lab le

i n the 1960s and e a r l y 1970s.

o Jackie Darnrau
Physics Research Division
MS-2002
SSC Laboratory
2550 Beckleymeade Avenue (214) 708-6048
Suite 260 Bitnet: damrauQsscvx1
Dallas, TX 75237-3946 Internet: damrauQsscvxl. ssc. gov

TUGboat, Volume 11 (1990), No. 2

Making 35 mm Colour Slides with S L W

Ken Yap

When I first read about S L ~ , and the colour
layers feature, I envisioned being able to generate
pretty 35mm slides for talks from S L ~ input.
Some conferences suggest that 35 mm slides be used
on account of the large lecture theatres. I was disap-
pointed to discover that slides meant page-size over-
head transparencies, and colour meant that one had
to obtain special colour materials.

When I saw a colour film recorder, I realized
that this was the output device I was looking for.
These devices can have resolutions as high as 4096
by 4096 pixels within a 24 mm by 36 mm frame. So
I decided to write a dvi-to-35 mm slide converter.

1 Overview of S L ~

To produce colour slides in S L ~ , a list of legal
colours is declared in the root file thus:

Next the slide file is included with the command
sequence

In the slide file, the list of colours that will be
used on a given page is specified thus:

The backend comprises two programs: dviras
and rascombine. The former converts dvi in-
put into a monochrome Sun format rasterfile, and
the latter combines monochrome rasters, assigning
colours, to produce a colour rasterfile.

For dviras, I started with the Nelson Beebe
suite of dvi converters because the rasterization
code was already written, since Beebe's dvi family
includes backends for dot matrix printers. The only
hitch encountered was when I realized that the film
recorder needed landscape format rasters. A 90' ro-
tation had to be done on portrait pages. I did not
want to use a nai've bit-by-bit copying algorithm on
a raster of some 2 million bits, so I sought help. Alan
Paeth of the University of Waterloo kindly showed
me a fast rotation algorithm for 1-bit deep rasters
which took under a second for a 2000 by 1000 raster
on a Sparcstation I. Problem solved.

The second program, rascombine, assigns
colours to each layer, then merges those layers into
a single colour raster. The layer colours should be
those in the colour list of the root file. A database
converts colour names to red/green/blue values, so
one can paint layers by name, e.g. vermilion. It is
also possible to assign the colours of the background
and of entities outside the scope of colour declara-
tions. So "black" lettering can be made purple, if
desired!

Any of the legal colours may be used as com-
mand sequences or as environment arguments, simi-
lar to typeface or size commands. The colour names
are meaningful to the author only; S L W has no
way of checking what colours will be on the output
media.

The reason for the separation of the root file
and the slide file becomes clear when one examines
the dvi output from a run of S L ~ : S L ~ it-
erates through the colour list with the slide file, so
in the example above, first the red pages are gen-
erated, then the green pages and finally the yellow
pages. Each page appears as many times as colours
that it uses. The entities that appear on a layer
page are those of the matching colour, or those that
are outside the scope of any colour declaration, i.e.
pervasive entities. This means that several colour
layers have to be combined to yield a slide for each

page.

2 Implementation

Our film recorder differs from a printer in one major
respect: there is no font cache. This device takes an
array of pixels and renders that onto the film. The
converter has to do the page rasterization.

3 Example

dviselect I < root.dvi > 1.dvi
dviras I .dvi

rascombine -b gray -0 x.ras

red,green,yellow l.ras

Chris Torek's excellent dviselect program ex-
tracts all the layers of page 1 into I . dvi. Next, the
dviras command creates the rasterfile I .ras with
three consecutive rasters. Finally the rascombine
command creates a colour rasterfile x.ras with a
background of gray and with red, green and yellow
text.

4 Results

We have just made our first batch of slides with this
backend and they look gorgeous. One advantage of
using slides for talks is that pictures of experimental
results can accompany text slides and one does not
have to flitter between the slide projector and the
overhead projector.

I hope to try the backend on a colour printer
next. This software will be available as part of Nel-
son Beebe's forthcoming release of his dvi driver
family.

280 TUGboat, Volume 11 (1990), No. 2

5 Conclusion

A more elegant and general solution is to merge the

pages at the dvi level, inserting \specials between
entities from different layers. This would have two

advantages: the amount of data to be handled is
smaller before rasterization, and non-raster devices

can be handled by minor modifications to existing

drivers. For example, the injected \specials could

direct the output device to change colours. This
approach would also produce a method for includ-
ing n o n - r n graphics in slides; any graphics ac-
cepted by the driver and printer could be included,

whereas currently, with rasterfiles, only rasters can

be merged into the final image, and that with diffi-
culty.

o Ken Yap
Department of Computer Science,

University of Rochester
Internet: kenlcs. rochester . edu

--

An Easy Way to Make Slides With PTEX

Georg Denk

Introduction

In the following, a style option for the article style

will be presented which makes it easy to produce

slides. It does not support an overlay structure as

S L W , but it enables the user to change an article
to a sequence of slides by simply copying and rear-

ranging. Therefore, it is merely an option for the
article style and not a new style.

The design of this option fits into the philos-
ophy of I4m: The logical structure of a text is
created by the user and not the details of how to

put this into a nice output.

The style option described here supports a stan-
dard layout which is nevertheless easy to change if

necessary. The user is able to think in "normal" di-
mensions and font sizes as the proper magnification

of the slide is done by the output device.

Some Commands

The style option eslides - which stands for easy
slides and is used to distinguish this option from

S L ~ - makes several commands and environ-

ments available to the user. These are described in
the following. This style option will not conflict with

other style options such as 12pt or german. The op-

tion file is not listed here but is available from the

author. Send a short request to the e-mail address

given below.

The Magnification of the Slide

The \magnification command gives the global

magnification of the slide. As the dvi file should
be magnified by the same factor, only the quantities

1000, 1095, 1200, 1440, 1728, 2074 and 2488, resp.,

should be used. A magnification factor of 1440 or
1728 will give good results. Thus one says, e. g.,

Leslie Lamport has written that I4m should not

worry about a magnification of a document. As

the output device, however, magnifies everything

on the page but the sheet of paper, it is necessary
that some of the lengths for the page layout such as

\textwidth have to be scaled properly. This is done

by the \magnification command. As this proce-

dure is hidden away from the user, he is able to think
in "real" dimensions. The previewing will show a
correct picture of the slide, usually only somewhat

smaller.

If the output device is not able to magnify the
slide, it can be done with a photocopying machine,
too. The calculation of the various lengths of the

page differs as the fixed point of the mapping has
changed from the offset point to the middle of the

upper edge of the sheet. The eslides .sty file con-
tains the necessary commands to handle this.

Page Layout

The eslides style makes the pagestyle myslide

available to the user:

\pagestyle{myslide)

Every slide will have a head line and a foot line, sep-
arated from the text by a horizontal rule. The head

consists of a centered running head which is set with

the \markright or \markboth command. The foot

line contains a logo, the "name of the conference"

and the page number of the slide.

The logo can be anything, e. g., the logo of the
university or of the company. In the following exam-

ples it is the logo of the Technical University of Mu-
nich which is drawn by some picture commands.

The logo is changed by

\renewcommand{\logo)C your logo)

As the logo will not change often, probably the best
place for the definition will be in the eslides. sty

file. Perhaps, the logo can be taken from your spe-

cial letter. sty.

TUGboat, Volume 11 (1990), No. 2

Similarly, the conference is set by

\renewcommand{\conf erence){whatever

you want) \begin{slide)
\begin{center)

and can be anything, e. g., the name of the confer-
ence at which the slides are presented or a \today

\bf

A Short-Cut to Your Slides:
command.

\end{center)

The slide Environment \begin{itemize)

The text of a slide is put between \beginCslide)
and \end{slide). It is vertically centered between
the horizontal rules. The user has to take care that
the text fits within a single page.

The remark Environment

The remark environment enables the user to cre-
ate a remark to a slide. This will produce an extra
page which contains the note and is numbered with
"Remark to . . . ". The remark environment should
follow directly the slide to which it belongs:

\end{slide)

\begin{remark)

Example

On the following two pages an example for a slide
with a remark is given. These pages are produced
with a magnification of 1728. The input for the ex-
ample is shown in the following. The blank titlepage
is not presented; it is a trick to produce a running
head even on the first page of a document. Normally,
the first slide giving the title of the presentation does
not need such a running head.

\documentstyle[titlepage,eslides]{article)

% titlepage used, because first page
% should have a running head

\beginCdocument)

\pagestyle{myslidel

\markright{An Easy Way to Make Slides With

\LaTeX)

\item take your finished

{\tt article) file

\item add the style option

C\tt eslides)

\item initialize

\verb#\magnification#

and

\verb#\conference#

\item put some

\verb#\begin{slide)#s

and

\verb#\end{slide)#s

around the parts you

want to present

\item comment out the rest

\item run \LaTeX

\endCitemize)

\endCslide)

\begin{remark)

This is a note to myself,

perhaps reminding me of

what I wanted to say here,
e.-g.\ that this note is

stolen from Lamport's

\LaTeX\ book.

o Georg Denk

Mathematisches Institut

Technische Universitat Miinchen

Arcisstrafie 21

D-8000 Miinchen 2

Bitnet: Ti11 1AAQDMOLRZOl

\begin{titlepage)

\mboxCl

\end{tit lepage)

% see p. 162 of Lamport's LaTeX book,
% the first page should have a
% running head

An Easy Way to Make Slides With UTEX

A Short-Cut to Your Slides:

take your finished a r t i c l e file

add the style option e s l i d e s

initialize \magnif i c a t ion and \conference

put some \begin{slide)s and \end{slide)s around the parts you

want to present

0 comment out the rest

run UTEX

TUGboat 1990

283

An Easy Way to Make Slides With UTEX

This is a note to myself, perhaps reminding me of what I wanted to say

here, e. g. that this note is stolen from Lamport's UTEX book.

TUGboat 1990 Remark to 1

TUGboat, Volume 11 (1990), No. 2

-

A New Implementation of the BTjijX
verbatim and verbatim* Environments*

Rainer schopf t

Abstract

This style option reimplements the I 4 w verbatim

and verbatim* environments. In addition it pro-
vides a comment environment that skips any com-
mands or text between \begin{comment) and the
next \end{comment). It also contains a redefini-
tion of I 4 w ' s \verb command to better detect the
omission of the closing delimiter.

1 Usage notes

V W ' s verbatim and verbatim* environments
have a few features that may give rise to problems.
These are:

0 Since has to read all the text between the
\begin{verbatim) and the \end{verbatiml

before it can output anything, long verbatim
listings may overflow W ' s memory.

0 Due to the method used to detect the closing
\end{verbatim) (i.e. macro parameter delim-
iting) you cannot leave spaces between the \end

token and {verbatim).

Whereas the last of these points can be considered
only a minor nuisance the other one is a real limita-
tion.

This style file contains a reimplementation of
the verbatim and verbatim* environments which
overcomes these restrictions. There is, however,
one incompatibility between the old and the new
implementations of these environments: the old
version would treat text on the same line as the
\end{verbatim} command as if it were on a line
by itself. This new version will simply ignore
it.l It will. however, issue a warning message of the
form

LaTeX warning: Characters dropped

a f t e r \end{verbatlm*)!

* This file has version number v1.4a dated
90/04/04. The documentation was last revised on
90/04/04.

!Many thanks to Chris Rowley from The Open
University, UK, for looking this over, making a lot of
useful suggestions, and discovering bugs. And many
thanks to all the beta testers who tried this style file
out.

This is the price one has to pay for the removal
of the old verbatim environment's size limitations.

This is not a real problem since this text can easily
be put on the next line without affecting the output.

This new implementation also solves the sec-
ond problem mentioned above: it is possible to leave
spaces (but not end of line) between the \end and
the {verbatim) or {verbatim*):

\begin {verbatim*}

t e s t

t e s t

\end {verbatim*}

Additionally we introduce a comment envi-
ronment, with the effect that the text between
\begin{comment) and \end{comment) is simply ig-
nored, regardless of what it looks like. At first sight
this seems to be quite different from the purpose
of verbatim listing. but actually these two concepts
turn out to be very similar. Both rely on the fact
that the text between \begin{. . .) and \end{. . . I
is read by TEX without interpreting any commands
or special characters. The remaining difference be-
tween verbatim and comment is only that the text
is to be typeset in the former case and to be thrown
away in the latter.

\verbat iminput is a command with one argu-
ment that inputs a file verbatim, i.e. the command
verbat iminputixx. yy) has the same effect as

\begin{verbatim)

(Contents of the file xx. yy)

\end{verbat i m)

This command has also a *-variant that prints
spaces as ,.

2 Interfaces for style file designers

The verbatim environment of version 2.09
does not offer a good interface to programmers. In
contrast, this style file provides a simple mechanism
to implement similar features, the comment environ-
ment provided here being an example of what can
be done and how.

2.1 Simple examples

It is now possible to use the verbatim environment
to define environments of your own. E.g.,

can be used afterwards like the verbatim environ-
ment, i.e.

\begin {myverbatim}

t e s t

t e s t

\end Cmyverbatim)

TUGboat, Volume 11 (1990), No. 2 285

Another way to use it is to write

and from that point on environment f oo is the same
as the comment environment, i.e. everything inside
its body is ignored.

You may also add special commands after the
\verbatim macro is invoked, e.g.

\newenvironment{myverbatim)%

~\verbatim\myspecialverbatimsetup)%

{\endverbat im)

though you may want to learn about the hook
\everyQverbatim at this point. However, there are
still a number of restrictions:

1. You must not use \begin(verbatim) inside a
definition, e.g.

\newenvironment(myverbatim3%

I\endgraf\noindentuMYVERBATIM:%

,,\endgraf\begin{verbatim))%

(\end(verbatim))

If you try this example, 'l&X will report a
"runaway argument" error. More generally,
it is not possible to use \begin(verbatim). . .
\end(verbatim) or the related environments in
the definition of the new environment.

2. You cannot use the verbatim environment in-
side user defined commands: e.g..

\newcommand [ll (\verbatimfile)%
(\begin(verbatim)%

,,\input (#I)%

,,\endCverbatirn))

does not work; nor does

\newcommand[1] (\verbatimfile)%

{\verbatim\input(#l)\endverbatim)

3. The name of the newly defined environment
must not contain characters with category code
other than 11 (letter) or 12 (other), or this will
not work.

2.2 The interfaces

Let us start with the simple things. Sometimes it
may be necessary to use a special typeface for your
verbatim text, or perhaps the usual computer mod-
ern typewriter shape in a reduced size.

You may select this by redefining the macro
\verbatimQfont. This macro is executed at the
beginning of every verbatim text to select the font
shape. Do not use it for other purposes; if you find
yourself abusing this you may want to read about
the \everyQverbatim hook below.

Per default. \verbatimQf ont switches to the
typewriter font and disables the ? ' and ! ' ligatures.

There is a hook (i.e. a token register) called
\everyQverbatim whose contents are inserted into
m ' s mouth just before every verbatim text. Please
use the \addtoQhook macro to add something to this
hook. It is used as follows:

\addtoQhook(name of the hook)
((commands to be added))

After all specific setup. like switching of cate-
gory codes, has been done, the \verbatim@start
macro is called. This starts the main loop of the
scanning mechanism implemented here. Any other
environment that wants to make use of this feature
should call this macro as its last action.

These are the things that concern the start of a
verbatim environment. Once this (and other) setup
has been done, the code in this style file reads and
processes characters from the input stream in the
following way:

1. Before it starts to read the first character of an
input line the macro \verbatimQstartline is
called.

2. After some characters have been read, the
macro \verbatimQaddtoline is called with
these characters as its only argument. This may
happen several times per live (when an \end
command is present on the line in question).

3. When the end of the line is reached, the macro
\verbat imQprocessline is called to process
the characters that \verbatimQaddtoline has
accumulated.

4. Finally, there is the macro \verbatimQf inish
that is called just before the environment is
ended by a call to the \end macro.

To make this clear consider the standard
verbatim environment. In this case the three
macros above are defined as follows:

1. \verbatimQstartline clears the character
buffer (a token register).

2. \verbat imQaddt oline adds its argument to
the character buffer.

3. \verbatimQprocessline typesets the charac-
ters accumulated in the buffer.

With this it is very simple to implement the comment
environment: in this case \verbatimQstartline
and \verbatim@processline are no-ops whereas
\verbatim@addtoline discards its argument.

Another possibility is to define a variant of the
verbatim environment that prints line numbers in
the left margin. Assume that this would be done by
a counter called VerbatimLineNo. Assuming that
this counter was initialized properly by the environ-
ment, \verbatimQprocessline would be defined in
this case as

TUGboat, Volume 11 (1990), No. 2

As a final nontrivial example we describe
the definition of an environment called
verbatimwrite. It writes all text in its
body to a file the name of which it is
given as an argument. We assume that
a stream number called \verbatimQout
has already been reserved by means of
the \newwrite macro.

Let's begin with the definition of the
macro \verbat imwrite.

First we call \Qbsphack so that this envi-
ronment does not influence the spacing.
Then we open the file and set the cate-
gory codes of all special characters:

The default definitions of the macros

are also used in this environment. Only
the macro \verbat imQprocessline has
to be changed before \verbatimQstart
is called:

The definition of \endverbatimwrite is
very simple: we close the stream and call
\Qesphack to get the spacing right.

3 The implementation

We use a mechanism similar to the one implemented for the \comment.. . \endcomment
macro in A M S W : We input one line at a time and check if it contains the \end{. . . I
tokens. Then we can decide whether we have reached the end of the verbatim text,
or must continue.

As always we begin by identifying the latest version of this file on the VDU and in
the transcript file.

1 \typeoutCStyle-Option: 'verbatim'

2 \f ileversion \space <\f iledate> (RmS)}

3 \typeout{English Documentation

4 \@spaces \@spaces \space <\docdate> (RmS))

3.1 Preliminaries

We begin by defining a macro that adds tokens to a hook. The first argument
supposed to be a token register, the second consists of arbitrary text.

5 \def\addto@hook#l#2{#l\expandafter{\the#1#2l}

The hook (i.e. token register) \everyQverbatim is initialized to (empty).

6 \neutoks\every@verbatim

7 \every@verbatim={}

\@makeother takes as argument a character and changes its category code to 1 2
(other).

The macro \Qvobeyspaces causes spaces in the input to be printed as spaces in the
output.

TUGboat. Volume 11 (1990), No. 2 287

\verbatim@startline

\verbat imQaddt oline

\verbatimQprocessline

\verbat imQf inish

\verbat imQf ont

The macro \Qxobeysp produces exactly one space in the output, protected against

breaking just before it. (\QM is an abbreviation for the number 10000.)

We use a newly defined token register called \verbatim@line that will be used as the

character buffer.

The following four macros are defined globally in a way suitable for the verbatim and

verbatim* environments.

\verba t imQstar t l ine initializes processing of a line by emptying the character buffer

(\verbat im@line).

\verbatimQaddtoline adds the tokens in its argument to our buffer register

\verbatimQline without expanding them.

16 \def \verbatimQaddtoline#l(%

17 \verbatimQline\expandafter{\the\verbatimQline#l)}

Processing a line inside a verbatim or verbatim* environment means printing it.

Ending the line means that we have to begin a new paragraph. We use \par for this
purpose. Note that \par is redefined in \@verbatim to force into horizontal mode
and to insert an empty box so that empty lines in the input do appear in the output.

As a default, \verbatimQf i n i s h processes the remaining characters. When this macro

is called we are facing the following problem: when the \end{verbatim) command

is encountered \verbatimQprocessline is called to process the characters preceding
the command on the same line. If there are none, an empty line would be output if

we did not check for this case.

If the line is empty \ the\verbatimQline expands to nothing. To test this we use
a trick similar to that on p. 376 of the m b o o k , but with $. . . $ instead of the !

tokens. These tokens can never have the same category code as those appearing in the

token register \verbatimQline where $ characters were read with category code 1 2

(other). Note that \ i f c a t expands the following tokens so that \ the\verbatim@line

is replaced by the accumulated characters

19 \def\verbatimQfinish{\ifcat$\the\verbatimQline$\else

20 \verbatim~processline\f i)

3.2 The verbatim and verbatim* environments

We start by defining the macro \verbatimQf ont that is to select the font and to set

font-dependent parameters. For the default computer modern typewriter font (cmtt)

we have to avoid the ligatures i and i, (as produced by ! ' and ?'). We do this by

making the backquote ' character active and defining it to insert an explicit kern

before the backquote character. While the backquote character is active we cannot

use it in a construction like \ ca t code ' (char)=(number). Instead we use the ASCII
code of this character (96).

TUGboat, Volume 11 (1990), No. 2

\@verbatim The macro \@verbatim sets up things properly. First of all, the tokens of the
\everyQverbatim hook are inserted. Then a t r i v l i s t environment is started and its
first \ i tem command inserted. Each line of the verbatim or verbatim* environment
will be treated as a separate paragraph.

The paragraph parameters are set appropriately: left and right margins, paragraph
indentation, the glue to fill the last line and the vertical space between paragraphs.
This has to be zero since we do not want to add extra space between lines.

There's one point to make here: the l i s t environment uses W ' s \parshape primitive
to get a special indentation for the first line of the list. If the list begins with a
verbatim environment this \parshape is still in effect. Therefore we have to reset
this internal parameter explicitly. We could do this by assigning 0 to \parshape.

However, there is a simpler way to achieve this: we simply tell to start a new
paragraph. As is explained on p. 103 of the m b o o k , this resets \parshape to zero.

We now ensure that \par has the correct definition, namely to force into horizon-
tal mode and to include an empty box. This is to ensure that empty lines do appear
in the output.

30 \def \par{\leavevmode\null\Qmpar}%

Now we call \obeylines to make the end of line character active,

switch to the font to be used,

32 \ve rba t imQf ont

and change the category code of all special characters to 12 (other).

\verbat im Now we define the toplevel macros. \verbatim is slightly changed: after setting up

\verbatim* things properly it calls \verbatirn@start.

\verbatim* is defined accordingly.

\endverbatim To end the verbatim and verbatim* environments it is only necessary to finish the
\endverbatim* t r i v l i s t environment started in \@verbatim.

3.3 The comment environment

\comment The \comment macro is similar to \verbatim*. However, we do not need to switch

\endcomment fonts or set special formatting parameters such as \parindent or \parskip. We need
only set the category code of all special characters to 12 (other) and that of ^-M (the
end of line character) to 13 (active). The latter is needed for macro parameter delimiter
matching in the internal macros defined below. In contrast to the default definitions
used by the \verbatim and \verbatim* macros, we define \verbatimQaddtoline to
throw away its argument and \verbatim@processline, \verbat im@start l ine, and

TUGboat, Volume 11 (1990), No. 2 289

\verbatimQfinish to act as no-ops. Then we call \verbatim@. But the first thing
we do is to call \Qbsphack so that this environment has no influence whatsoever upon
the spacing.

38 \def\comment{\Qbsphack

39 \let\do\Qmakeother\dospecials\catcode1\~~M\active

40 \let\verbatimQstartline\relax

4 1 \let\verbatimQaddtoline\Qgobble

42 \let\verbatimQprocessline\relax

43 \let\verbatimQfinish\relax

44 \verbat imQ)

\endcomment is very simple: it only calls \@esphack to take care of the spacing.
The \end macro closes the group and therefore takes care of restoring everything we
changed.

3.4 The main loop

Here comes the tricky part: During the definition of the macros we need to use the
special characters \, C, and 3 not only with their normal category codes, but also with
category code 12 (other). We achieve this by the following trick: first we tell TEX that
\, C, and are the lowercase versions of ! , [, and I . Then we replace every occurrence
of \, C , and) that should be read with category code 12 by !, [, and 1 , respectively,
and give the whole list of tokens to \lowercase, knowing that category codes are not
altered by \lowercase!

But first we have ensure that ! , [, and 1 themselves have the correct category code! To
allow special settings of these codes we hide their setting in the macro \vrbQcat codes.
If it is already defined our new definition is skipped.

This allows the use of this code for applications where other category codes are in
effect.

We start a group to keep the category code changes local.

We also need the end-of-line character - - M , as an active character. If we were to
simply write \catcode'\--M=\active then we would get an unwanted active end of
line character at the end of every line of the following macro definitions. Therefore
we use the same trick as above: we write a tilde " instead of - -M and pretend that
the latter is the lowercase variant of the former. Thus we have to ensure now that the
tilde character has category code 13 (active).

The use of the \lowercase primitive leads to one problem: the uppercase character
'C' needs to be used in the code below and its case must be preserved. So we add the
command:

53 \lccode'\C='\C

Now we start the token list passed to \lowercase.

54 \lowercase{%

Since this is done in a group all macro definitions are executed globally.

290 TUGboat, Volume 11 (1990), No. 2

\verbatim@start The purpose of \verbat im@start is to check whether there are any characters on

the same line as the \begin{verbatim) and to pretend that they were on a line by

themselves. On the other hand, if there are no characters remaining on the current
line we shall just find an end of line character. \verbat im@start performs its task by

first grabbing the following character (its argument). This argument is then compared

to an active a-M, the end of line character.

If this is true we transfer control to \verbatim@ to process the next line. We use
\next as the macro which will continue the work.

58 \let\next \verbat imQ

Otherwise, we define \next to expand to a call to \verbatim@ followed by the character

just read so that it is reinserted into the text. This means that those characters

remaining on this line are handled as if they formed a line by themselves.

Finally we call \next.

60 \next}%

\verbatim@ The three macros \verbatim@, \verbatim@@; and \verbatim@@@ form the "main

loop" of the verbatim environment. The purpose of \verbatim@ is to read exactly

one line of input. \verbatim@@ and \verbatim@@@ work together to find out whether

the four characters \end (all with category code 12 (other)) occur in that line. If

so, \verbatim@@@ will call \verbatim@test to check whether this \end is part of

\end{verbatim) and will terminate the environment if this is the case. Otherwise

we continue as if nothing had happened. So let's have a look at the definition of

\verbatim@:

61 \gdef\verbatim@#l-(\verbatim@@#l!end\@nil}%

Note that the ! character will have been replaced by a \ with category code 1 2 (other)
by the \lowercase primitive governing this code before the definition of this macro

actually takes place. That means that it takes the line, puts \end (four character

tokens) and \ @ n i l (one control sequence token) as a delimiter behind it, and then

calls \verbat im@@.

\verbatim@@ \verbatim@@ takes everything up to the next occurrence of the four characters \end

as its argument.

62 \gdef\verbatim@@#l!endC%

That means: if they do not occur in the original line, then argument #1 is the whole

input line, and \@ni l is the next token to be processed. However, if the four characters

\end are part of the original line, then #1 consists of the characters in front of \end,

and the next token is the following character (always remember that the line was
lengthened by five tokens). Whatever #I may be, it is verbatim text, so #1 is added

to the line currently built.

The next token in the input stream is of special interest to us. Therefore \f u t u r e l e t

defines \next to be equal to it before calling \verbatim@@@.

\verbatim@@@ \verbatim@@@ will now read the rest of the tokens on the current line, up to the final
\ @ n i l token.

65 \gdef \verbatim@@@#l\@nil{%

TUGboat, Volume 11 (1990), No. 2

If the first of the above two cases occurred, i.e. no \end characters were on that line,
#1 is empty and \next is equal to \@ni l . This is easily checked.

If so, this was a simple line. We finish it by processing the line we accumulated so far.
Then we prepare to read the next line.

67 \verbatim@processline

68 \verbatim@st art line

69 \let\next\verbatim@

Otherwise we have to check what follows these \end tokens.

Before we continue, it's a good idea to stop for a moment and remember where we
are: We have just read the four character tokens \end and must now check whether
the name of the environment (surrounded by braces) follows. To this end we define a
macro called \@ternpa that reads exactly one character and decides what to do next.
This macro should do the following: skip spaces until it encounters either a left brace
or the end of the line. But it is important to remember which characters are skipped.
The \end(optional spaces){ characters may be part of the verbatim text, i.e, these
characters must be printed.

Assume for example that the current line contains

As we shall soon see, the scanning mechanism implemented here will not find out that
this is text to be printed until it has read the right brace. Therefore we need a way to
accumulate the characters read so that we can reinsert them if necessary. The token
register \@ternptokena is used for this purpose.

Before we do this we have to get rid of the superfluous \end tokens at the end of
the line. To this end we define a temporary macro whose argument is delimited by
\end\@nil (four character tokens and one control sequence token) and use it on the
rest of the line, after appending a \ @ n i l token to it. This token can never appear in
#I. We use the following definition of \@ternpa to store the rest of the line (after the
first \end) in token register \ toks@ which we shall use again in a moment.

We mentioned already that we use token register \@ternptokena to remember the
characters we skip, in case we need them again. We initialize this with the \end we
have thrown away in the call to \@ternpa.

We shall now call \verbat imQtest to process the characters remaining on the current
line. But wait a moment: we cannot simply call this macro since we have already
read the whole line. We stored its characters in token register \toks@. Therefore we
use the following \edef to insert them again after the \verbatirn@test token. A --M
character is appended to denote the end of the line.

That's almost all, but we still have to now call \next to do the work.

75 \fi \next)%

\verbatbatest We define \verbat im@test to investigate every token in turn.

TUGboat, Volume 11 (1990), No. 2

First of all we set \next equal to \verbatim@test in case this macro must call itself
recursively in order to skip spaces.

We have to distinguish four cases:

1. The next token is a --M, i.e. we reached the end of the line. That means that
nothing special was found. Note that we use \if for the following comparisons
so that the category code of the characters is irrelevant.

We add the characters accumulated in token register \@temptokena to the current
line. Since \verbatim@addtoline does not expand its argument, we have to do
the expansion at this point. Then we \let \next equal to \verbatim@ to prepare
to read the next line.

2. A space character follows. This is allowed, so we add it to \@temptokena and
continue.

An open brace follows. This is the most interesting case. We must now collect
characters until we read the closing brace and check whether they form the envi-
ronment name. This will be done by \verbatim@testend, so here we let \next
equal this macro. Again we will process the rest of the line, character by charac-
ter. The characters forming the name of the environment will be accumulated in
\@tempt. We initialize this macro to expand to nothing.

Note that the [character will be a C when this macro is defined.

4. Any other character means that the \end was part of the verbatim text. Add the
characters to the current line and prepare to call \verbatim@ to process the rest
of the line.

89 \else

90 \expandafter\verbatimQaddtoline

91 \expandafter{\the\@temptokena)%

92 \def\next{\verbatimQ#1)%

93 \f i\f i\f i

The last thing this macro does is to call \next to continue processing.

94 \next}%

\verbatim@testend \verbat imatestend is called when \end(optional spaces){ was seen. Its task is to scan
everything up to the next 1 and to call \verbatim@@testend. If no 1 is found it must
reinsert the characters it read and return to \verbatim@. The following definition is
similar to that of \verbatim@test: it takes the next character and decides what to
do.

Again, we have four cases:

TUGboat, Volume 11 (1990), No. 2 293

1. --M: As no 3 is found in the current line, add the characters to the buffer. To
avoid a complicated construction for expanding \Qtemptokena and \Qtempc we
do it in two steps. Then we continue with \verbat imQ to process the next line.

2. 3: Call \verbatimQQtestend to check if this is the right environment name.

3. \: This character must not occur in the name of an environment. Thus we
stop collecting characters. In principle, the same argument would apply to
other characters as well, e.g., {. However, \ is a special case, since it may
be the first character of \end. This means that we have to look again for
\end((envzronrnent name)). Note that we prefixed the ! by a \noexpand primi-
tive, to protect ourselves against it being an active character.

4. Any other character: collect it and continue. We cannot use \edef to define
\Qtempc since its replacement text might contain active character tokens.

As before, the macro ends by calling itself, to process the next character if appropriate.

114 \next)%

\verbatimQ@testend Unlike the previous macros \verbatimQQtestend is simple: it has only to check if the
\end{. . . 1 matches the corresponding \begin{. . . 3.

We use \next again to define the things that are to be done. Remember that the
name of the current environment is held in \@currenvir, the characters accumulated
by \verbatimQtestend are in \Qtempc. So we simply compare these and prepare
to execute \end{(current environment)) macro if they match. Before we do this we
call \verbatimQfinish to process the last line. We define \next via \edef so that
\Qcurrenvir is replaced by its expansion. Therefore we need \noexpand to inhibit
the expansion of \end at this point.

Without this trick the \end command would not be able to correctly check whether its
argument matches the name of the current environment and you'd get an interesting
J3m error message such as:

! \begin{verbatim*) ended by \end{verbatim*).

TUGboat, Volume 11 (1990), No. 2

But what do we do with the rest of the characters, those that remain on that line?

We call \verbat imarescan to take care of that. Its first argument is the name of the

environment just ended, in case we need it again. \verbatim@rescan takes the list

of characters to be reprocessed as its second argument. (This token list was inserted
after the current macro by \verbat im@Q@.) Since we are still in an \edef we protect

it by means of\noexpand.

If the names do not match, we reinsert everything read up to now and prepare to call

\verbatim@ to process the rest of the line.

Finally we call \next.

\verbatim@rescan In principle \verbatimQrescan could be used to analyse the characters remaining

after the \end(. . .) command and pretend that these were read "properly", assuming
"standard" category codes are in force.2 But this is not always possible (when there

are unmatched curly braces in the rest of the line). Besides, we think that this is not

worth the effort: After a verbatim or verbatim* environment a new line in the output

is begun anyway, and an \end(comment) can easily be put on a line by itself. So there

is no reason why there should be any text here. For the benefit of the user who did

put something there (a comment, perhaps) we simply issue a warning and drop them.
The method of testing is explained in Appendix D, p. 376 of the m b o o k . We use ^ - M

instead of the ! character used there since this is a character that cannot appear in #I.

The two \noexpand primitives are necessary to avoid expansion of active characters
and macros.

One extra subtlety should be noted here: remember that the token list we are currently

building will first be processed by the \lowercase primitive before TEX carries out
the definitions. This means that the 'C' character in the argument to the \@warning

macro must be protected against being changed to 'c'. That's the reason why we
added the \lccodel \C= ' \C assignment above. We can now finish the argument to

\lowercase as well as the group in which the category codes were changed.

128 \gdef\verbatim@rescan#l#2-I\if\noexpand-\noexpand#2-\else

129 \@uarning{Characters dropped after '\string\end(#l)')\fi))
130 \endgroup

3.5 The \verbatiminput command

\verbatiminput \verbatiminput first starts a group to keep font and category changes local.

The right sequence of actions is crucial here. First we must check if a star follows.

Then we must read the argument (the file name). Finally we must set up everything

to read the contents of the file verbatim. Therefore we must not start by calling

\@verbatim to change font and the category code of characters. Instead we call one

Remember that they were all read with category codes 11 (letter) and 1 2 (other)
so that control sequences are not recognized as such.

TUGboat, Volume 11 (1990)' No. 2

of the macros \sverbatim@input or \verbatimOinput, depending on whether a star
follows.

132 \Qifstar\sverbatimQinput\verbatimQinput)

\sverbatim@input reads the file name argument and sets up everything as in the
\verbatim macro. Then it reads in the file, finishes off the t r i v l i s t environment
started by \@verbatim and closes the group opened in \verbatiminput. This restores
everything to its normal settings.

\verbat imainput is nearly the same; it additionally calls \f renchspacing and
\@vobeyspaces (as in \verbatim and \verb).

3.6 Redefinition of the \verb command.

The implementation here has the following advantage over that in the original U r n :
it will not accept that the end of the input line is reached before the verbatim text
has ended. Instead, it will end the verbatim text and generate an error message.

We need special category codes during the definition: the end of line character (- 7 4)

must be an active character. We do this in the same way as above:

We use here \verbatimQfont rather than switching directly to \tt.

142 \verbat imQf ont

Now we make the end of line character active and define it to restore everything back
to normal and to signal an error.

143 \def-{\endgroup\Qlatexerr(\string\verb\space command ended by

144 end of line.)\Qehc)%

The rest is copied from l a t e x . t e x where we have replaced one macro (\@verb) by its
expansion.

\@sverb gains control when we are ready to look for the delimiting character. It
reads it and defines this character to be equivalent to the \endgroup primitive. 1.e.
it will restore everything to normal when it occurs for the second time. But this is
not enough: if the first character of \verb's argument is a space and if a line break
occurs at this point the space will still disappear. To avoid this we include an empty
\hboxC) at the beginning.

TUGboat, Volume 11 (1990), No. 2

Index

The italic numbers denote the lines where the corresponding entry is described, num-

bers underlined point to the definition, all others indicate the places where it is used.

Symbols
\@makeother . - 8

. \@sverb 148
. \@verbat im - 25

\Qvobeyspaces - 9

\Qxobeysp . - 13

v
\verb . - 138

\verbatim 34 - .
\verbatim* 34 -
\verbatim@ - 61

\verbat im@Q - 62

\verbatim@@@ - 65

\verbat im@@testend - 115

\verbat imaaddtoline - 15

\verbatimQf i n i s h - 19

\verbat im@f ont 21

\verbat im@input 135
\verbat imaline - 14

\verbat im@processl ine 15

\verbatim@rescan 128
\ve rba t im@star t - 55

\verbat i m a s t a r t l i n e - 15

\verbat i m @ t e s t - 76

\verbat imQtestend - 95

\verbat iminput 131

o Rainer Schopf
Institut fiir Theoretische Physik
der Universitat Heidelberg
Philosophenweg 16

D-6900 Heidelberg
Federal Republic of Germany

TUGboat, Volume 11 (1990), No. 2

Editor's note: We regret to say that a large piece of

Frank and Rainer's article below was inadvertently

deleted from the file used to publish the article in

TUGboat 11, no. 1. Under the section-numbering

presented here, the previously missing portion ex-

tends from the end of section 1 to subsection 3.2.

We feel it is best to reprint the article entirely, and

apologize for any confusion or misunderstanding this

has caused our readership.

Reprint (with corrections):

The New Font Family Selection-

User Interface to Standard IPm

Frank Mittelbach

Rainer Schopf

Contents

General remarks 297

Choosing a new text font 298

2.1 Choosing a new family

2.2 Choosing a new series
2.3 Choosing a new shape
2.4 Choosing a new size
2.5 Doing it by hand

2.6 Changing the meaning of \rm, \sf etc.

Fonts for Math

3.1 Simple formulas

3.2 Special math alphabets

Processing older documents 302

Setting up a new format 302

5.1 Preparations

5.1.1 Preloading Fonts

5.1.2 Making more fonts available

5.2 Running I n i m

Remarks on the development of this

interface 304

Acknowledgements

List of distributed files

Abstract

In this article we describe the use of the new font se-

lection scheme in the standard IPTji$ environment.

The main characteristics are:

The possibility to change family, series, shape

and sizes independently of one another.

The existence of a style file to process older doc-

uments without any changes to their layout and

their input files.

A macro setup which is consistent with existing

standard document styles.'

It is planned to incorporate this font selection

scheme into LPTjijX version 2.10.

1 General remarks

In TUGboat 10, no. 2 we presented a new scheme

to select fonts in T@ macro packages. This article

describes the use of this new scheme in the I4QX

environment. The technical parts of the interface

(which are of some interest to readers who plan to

use our scheme with other fonts or with other macro

packages) will be published in a separate article.

The necessary macros are distributed by the

AMS together with the amstex.sty option which

was announced in TUGboat 10, no. 3. The availi-

bility of the new font selection scheme at the usual

servers will be announced separately in m h a x , etc.

Please refrain from asking for personal distribution.

To get a better understanding of this IPTpjX in-

terface, some words on the organisation of font fam-

ilies are in order. Readers of our article about the

basic macros will notice that our understanding of

these matters increased while working on this inter-

face and the amstex.sty project; in some regards

we have changed our point of view rather drastically.

Surprisingly, only a few internal details within the

basic macros needed adjustment; it seems that even

without the real understanding, we instinctively got

most of the things right when we designed them.

(But probably we are still ignorant of the underly-

ing concepts.)

In his book about "Methods of Book Design"

Hugh Williamson writes [I]

[. . .] To the printer, an alphabet is a set

of twenty-six letters of a certain design and

body, together with a few additional combi-

nations of letters. A fount is usually made

up of a set of alphabets of one size and based

on one design. It may consist of one alphabet

only, if no more alphabets exist in that de-

sign and size. Usually however a text fount

will comprise five alphabets - roman and

1 However, small changes in the document styles
would make font changes a bit faster.

298 TUGboat, Volume 11 (1990), No. 2

italic upper and lower-case, and small capi-

tals. [. . .] A series is a set of founts closely

related to each other in design, and usually

very similar to each other, but graded in size.

If only one alphabet has been made in a cer-

tain design, that alphabet alone may be a

series. A family is a group of series compat-

ible for composition, but loosely related in

design. A family may include excerpts from

more than one series.

Since T@'s physical fonts (which is the Amer-

ican word for fount) all contain exactly two alpha-

bets, namely the upper and lower-case alphabets of

a certain design, we will use the word font for phys-

ical T@ fonts, and fount for bundles of T@ fonts

consisting for example of roman (upright or normal),

italic and small capitals shapes.

The above quotation gives a good clue how to

organize fonts in our font selection scheme. Hence

we use the \shape command from the basic macros

to distinguish between normal (n), italic (it), small

caps (sc), sloped or slanted (sl) and upright italic

(u) typefaces within one fount. Founts of differ-

ent sizes form a series, so we use \ s i ze to access

these. We think that the weight and the width of

a series are good candidates to distinguish between

individual series, therefore we combine them in the

\ s e r i e s command. Again we use one and two letter

abbreviations as shown in table 1. One or more of

these series form a family which is accessed via the

\family command.

To give some practical example, we arranged

the most important families of the Computer Mod-

ern fonts according to this classification in table 2.

Please note that some families like 'computer mod-

ern funny roman' (cmff) or 'computer modern sans

serif quotation' (cmssq) are unclassified. These spe-

cial purpose fonts are not accessible in the standard

distribution of the new font selection scheme, al-

though they could be added easily in a style file.

Given this overview about the classification of

fonts it should be clear how to select a specific font

with the primitive commands \family, \ ser ies ,

\shape, \ s ize , and \ se lec t font . As described in

[5], the \ s i z e macro takes two arguments: the size

in printer's points as a numeral (i.e. without the

dimension) and the corresponding \basel ineskip

value. \ s e l ec t f ont finally selects the font using

values of the surrounding environment if some of

the commands are missing. E.g., the sequence

\familyCccr3\series(c)\shapeCsl)%

\size{9)(lipt)\selectfont

will explicitly load the font mentioned above, pro-

vided the necessary font shapes are known to the

system.'

However, in the normal case, the IPTjiJX user

can safely rely on the standard IPT@ font selection

commands defined in terms of these primitive com-

mands. These standard commands are discussed in

the next sections.

2 Choosing a new t ex t font

In standard I P W , different fonts (of the same size)

are selected by commands like \ r m , \bf, \it, etc.

These commands, however, select a specific font re-

gardless of surrounding conditions. E.g., if you write

\sf\bf you don't get the 'bold extended' series of

the 'sans serif' family (i.e. cmssbx), instead you get

the 'bold extended' series of the 'roman' family

(i.e. cmbx). In our implementation this will be dif-

ferent.

Commands like \bf (or \ s f) are now imple-

mented to switch to the wanted series (or family,

respectively), but to leave the other font charac-

teristics untouched. However, this concept has one

drawback in the current I P w version: commands

like \footnote might switch to a smaller she but

will inherit other characteristics for the font to use

from the environment where they are used. E.g., a

footnote appearing in the scope of a theorem envi-

ronment will erroneously be typeset in italic shape.

This problem will vanish in IPT@ version 2.10. Un-

til then all font characteristic~ in such special cir-

cumstances must be reset by hand using the com-

mands given below. However, this is not necessary

if one uses the 'oldlf ont' style option described in

sections 4 and 5. This option defines the font selec-

tion commands to behave in the same way as they

do now in IPTjiJX 2.09.

2.1 Choosing a new family

To switch to another family one may use \rm, \sf or

\tt denoting the 'cmroman', 'cmsansserif' or 'cm-

typewriter' family, respectively. The new font is se-

lected without changing the current series, shape,

' Among the AMS distribution an example style
option 'concrete. s ty ' is provided which makes the
Concrete roman as well as the Euler math fonts
available. These fonts were used to typeset [4] and
this article.

TUGboat, Volume 11 (1990), No. 2

Weight Class

Ultralight

Extralight

Light

Semilight

Medium (normal)

Semibold

Bold

Extrabold

Ultrabold

Width Class

Ultracondensed 50%

Extracondensed 62.5%

Condensed 75%

Semicondensed 87.5%

Medium 100%

Semiexpanded 112.5%

Expanded 125%

Extraexpanded 150%

Ultraexpanded 200%

Table 1: Weight and width classification for fonts. The percent values are derived from 121. To combine
the abbreviations in the \ s e r i e s command, weight is used first and any instance of medium (m) is dropped
except when weight and width are both medium. In this case one single m is used. So bold expanded would
be bx whereas medium expanded would be x.

Compute r Modern families

I Computer modern r o m a n I

family

I Computer modern sans serif 1

I I

series

cmr

cmr

crnr

I Computer modern typewriter I

shape(s)

r

m

bx

b

cmss

cmss

cmss

Example of external names

n, it, sl, sc, u

n, it, sl

n

m

bx

sbc

cmtt

Table 2: Classification of the Computer modern fonts. You will notice that not all possible combinations
of family, series and shape are available. E.g. there is no small capitals shape in the medium series of the
computer modern sans serif. However, Philip Taylor announced recently that he has filled some of the
holes. It might be a good idea to include such additional parameter files for METAFONT into the general
distributions.

cmrl0, cmti10, cmsll0, cmcsc10, cmulO

cmbxl0, cmbxti, cmbxsl

cmb 10

n, sl

n

n

Computer modern jibonacci
r I

m

cmii I m n I cmfib8

n, it, sl, sc cmtt l0, cmitt10, cmsl t t , cmtcsclO

300 TUGboat, Volume 11 (1990), No. 2

and size. E.g., if the current font is cmbxlO (that is

family 'computer nodern roman', series 'bold ex-

tended', shape 'normal', and size 'lOptl) then \sf

will change to cmssbxl0 (that is family 'computer

modern sansserif', series 'bold extended', shape

'normal', and size 'lOptl). Using, e.g., \tt after-

ward will produce a warning and switch to cmttlO

because the 'computer modern typewriter' family

does not contain a 'bold extended' series; therefore

the default ('medium') series is tried.

2.2 Choosing a new ser ies

To switch between 'medium' and 'bold extended1

series the commands \mediumseries and \bf are

provided.

2.3 Choosing a new shape

Analogously the commands \ s l , \it, and \ sc are

used to switch to the shapes 'sloped', 'italic' and

'smallcaps', this time leaving family, series, and

size alone.

In addition, we introduce the \normalshape

command, in case one wants to switch back to the

'normal' shape. If font changes are done only inside

of groups this command is necessary only to reset a

shape in a footnote or a similar context to avoid the

problem mentioned above.

2.4 Choosing a new s ize

To change to another size the standard I4-W com-

mands

\ t i ny \ s c r i p t s i z e \ f ootnotesize

\small \normalsize \ la rge

\Large \LARGE \huge and \Huge

may be used. These commands also set the param-

eter \basel ineskip and the \s trutbox as well as

the script and scriptscript sizes for the new text

size. But once again they will not change other font

characteristics. So, for example, it doesn't matter

whether one writes \ l a rge \ t t or \ t t \ l a r g e , the

same font will be selected.

2.5 Doing it by hand

As mentioned before, primitive font selection com-

mands like \family, \ s e r i e s , \shape, \ s ize , and

\ s e l ec t fon t are also available to carry out the

change. E.g.,

\shapeCn)\familyCcmss3\selectfont

will switch to the 'cmsansserif' family with 'nor-

mal' shape.3 This article was set in concrete roman

type by simply writing \f amilyCccr)\seLectf ont

following the \beginCdocument) ~ o m m a n d . ~ Of

course, the \document s t y l e command also speci-

fies a style option ('concrete') which sets up the

internal tables for these fonts.

2.6 Changing the meaning of \rm, \sf etc.

To make it easy to typeset documents with other

font families (like Times Roman, Optima etc.) we

maintain seven additional macros

\rmdefault \ s fdefaul t \ t t de fau l t \bfdefault

\ i t d e f a u l t \scdefault \ s ldefaul t

denoting the family chosen by \rm, \ s f , \tt or

the series chosen by \bf or the shape for \it, \sc

and \sl, respectively.5 If, for example, a doc-

ument should be typeset in sans serif one could

add in the preamble (between \documentstyle and

\begin{document)) the following redefinitions:

\renewcommandC\rmdefault)~cmss)

\renewcommandC\itdefault)Csl)

The first line means that whenever \ r m is called the

family cmss (i.e. computer modern sans serif) is cho-

sen and the second line redefines \it to switch to the

slanted shape since this family hasn't got an italic
shape. Another possible use is to say

\renewcommandC\bfdefault)o

This will redefine \bf to select the bold instead of

the bold extended series which is the current de-

fault. However these commands are probably ig-

nored by document styles for journals which decide

to use their own font families in the final print.

3 Fonts for Math

The selection of a specific typeface in a math formula

should not depend on the surrounding environment.

Characters in math normally denote special things

which should stay fixed even if the surrounding text

is set in another shape or series. Therefore the

strategy for selecting math fonts is somewhat differ-

ent.

For full details of the usage of these primitive
commands see the article about the basic macros [5].

Actually we also said \size{lO)C13pt) to es-
tablish a larger \baselineskip.

This was suggested by Sebastian Rahtz who
was one of the first users of our prototype version.

TUGboat, Volume 11 (1990), No. 2 301

3.1 Simple formulas

Normal letters and standard symbols are typeset

simply by using the letters directly or using a

command that denotes the wanted symbol. So

$\sum A-Ci)$ will produce Ai. The typeface

chosen will depend on the current (m a t h vers ion) .

You can switch between (m a t h versions) outside of

math mode,6 thereby changing the overall layout of

the following formulas.

IPw knows about two versions called 'nor-

mal' and 'bold'. As the name indicates,

\mathversionCnormal) is the default. In contrast,

the bold version will produce bolder letters and sym-

bols. This might be suitable in certain situations,

but recall that changing the version means changing

the appearance (and perhaps the meaning) of the

whole formula. For historical reasons IPW main-

tains two abbrevations to switch to its math ver-

sions: \boldmath and \unboldmath.

Other versions could be provided in special

style options. For example the 'concrete' option

mentioned before sets up a version called 'euler' to

typeset formulas in the same way as it was done

in [4].

3.2 Special math alphabets

But simple formulas with one alphabet and a huge

number of symbols are not sufficient for mathemati-

cians to expose their thoughts properly. They tend

to use every available typeface to denote special

things.

To cope with this need for special alphabets

in formulas,' we introduce the concept of (m a t h

alphabet identi f iers). These constructs are special

commands which switch to a specific typeface. They

might correspond to different typefaces in different

math versions but within one version they always

select the same typeface regardless of surrounding

conditions.

A (m a t h alphabet identi f ier) can be defined

according to the users' needs but standard I P W

already has a few of them built in. They are de-

scribed in table 3.

When using such an (alphabet identi f ier) two

syntax variants are available: one can understand a

command like \ ca l as a switch to a different font,

i.e. using a syntax C\cal . . .) as the old I P '
does, but we prefer to view the (m a t h alphabet

This is done with the command
\mathvers ion{ (vers ion n a m e) 1.

identi f ier) as a command with one argument, i.e.

to use a syntax of the form . .\calCA). . To se-

lect the first alternative a style option 'nomargid'

is provided. This option is automatically selected

if the 'oldlfont ' option is used since this option is

supposed to produce identical results for older doc-

uments.

New (m a t h alphabet identifiers) are defined

in two steps. First the identifier is made known

to the system with the \newmathalphabet com-

mand. Then specific typefaces in some or all

(m a t h versions) are assigned by means of the

\addtovers ion command.

Let us discuss this process in detail. Suppose

that you want to make a sans serif typeface available

as a math alphabet. First we choose a new command

name (e.g. \sfmath) and tell P'QX about it with the

line

\nemathalphabet(\sfmath)

Then we consult table 2 to find suitable fonts to as-

sign to this alphabet identifier. As you find out, the

computer modern sans serif family consists of three

series, a medium, semi bold condensed and a bold

extended one. The medium and the bold extended

series both contain a normal shape typeface. So we

add the line:

\addtoversionCnormal~C\sfmath~Ccmss3Cm~Cn~

\addtoversion~bold~C\sfmath~Ccmss)ibxHn~

Now our alphabet identifier is ready for use in these

two versions. We demonstrate this with the formula

En, = t a n a

which was produced by

Note that we first switched back to the normal ver-

sion. This was necessary since this article is typeset

with a third version (Euler) in force. If we had tried

to use \sfmath in this version we would have gotten

an error message stating that this (m a t h alphabet

identi f ier) isn't defined for the Euler ~ e r s i o n . ~

Actually we cheated a bit more in this article:
we had to reset the \mathcode of certain charac-
ters because they are in different places in the Euler
version. A few more detaiis can be found in Don
Knuth's article [3]. However, this is not a real prob-
lem because such changes can be done in commands
similar to \boldmath if such incompatible versions
are to coexist in real applications.

302 TUGboat, Volume 11 (1990), No. 2

UT# knows about three (math alphabet identifier)^. \ ca l will select calligraphic letters like

ABCD, \mathrm will select upright roman letters for use in functions like maxi, and finally \ m i t

selects the default math italic alphabet.

Table 3: Predefined (math alphabet identzfiers) in I P W

If we are interested in a slanted shape we have things do not work.g If you are using I4w on your

to face a problem: there is no slanted shape in the own PC you might have to read this section, too,

bold extended series of the Computer Modern sans

serif family. So, if we make the identifier known

only in the normal version then it would produce

an error message when encountered in the bold (or

any other) version. Of course we can get by using

always the same typeface in all versions. To make

this task a bit easier there is also a * variant of

the \newmathalphabet command which takes three

more arguments: the default values for family, se-

ries and shape for all math versions in which the

alphabet identifier is not explicitly defined via an

\addtoversion command. So our second example

can be set up simply by stating

This would have the additional advantage that this

math alphabet identifier is also allowed in math

versions which are defined in style files or docu-

ment styles (like the Euler version mentioned ear-

lier). Any explicit \addtoversion command over-

writes the defaults given by \newmathalphabet*;

so, it might be a good idea always to specify default

values.

Here we show the same formula as above, but

this time in the Euler version and with \sfslmath

instead of \sfmath:

4 Processing older documents

To typeset documents which are written with the

old U ' (i.e. with a format using the old font

selection scheme) only the source line containing

the \documentstyle command has to be changed.

More exactly the 'oldlfont' option must be added to

the list of document style options if the new font

selection scheme is in force.'

5 Setting up a new format

This section is written for people called 'local wiz-

even if you don't feel like being a wizard.

5.1 Preparations

Before generating a new format it is necessary to

rename a few files. This enables you to customize

the format to the special needs of your site.

l f o n t s . t ex First of all you should rename the

file I f onts . t e x (supplied with the standard

distribution of IPTE;X); otherwise you will al-

ways end up with an old format. Call it, say,

I f onts . o r i .

hyphen. t e x Another file which should probably be

renamed is hyphen. t ex (the original Ameri-

can \pa t t e rns from Don Knuth) because this

enables you to insert your favourite \pa t te rn

package when I n i w is asking for this file. This

might even be useful if you use w version 3.0

which is multilingual (assuming that your com-

puter has only a limited memory).

5.1.1 Preloading Fonts

Now you have to decide which fonts to preload in

your format. Unlike the old font selection scheme

of WT@, where only preloaded fonts could be used

in math applications (like subscripts etc.), the new

font selection scheme poses no restriction at all; doc-

uments will always come out the same. So you have

to take your pick by weighing the two conflicting

principles:

0 Preloading often used fonts might make your

7&X run a bit faster.

0 Using more load-on-demand fonts will make

your format much more flexible, because you

can switch to different families far more easily.

After all, there is an upper limit to the num-

ber of fonts 7&X can use in one run and every

preloaded font will count even if it is never ac-

cessed.

ards' by the U' manual, which simply refers to YOU might belong to this group!
the (poor) guys who are always being pestered if

' This means that it is the default (see next
section).

TUGboat, Volume 11 (1990), No. 2 303

On the PC at home we nowadays always use for-

mats with only 5 fonts preloaded.'O We don't think

that T@ is actually running much more slowly than

before.

Together with the new font selection scheme

two files preload .min and preload. o r i are dis-

tributed. The first one will preload next to noth-

ing while the second will preload the same fonts as
the old I f onts . tex. You can copy either of these

files to preload. t e x and then change it if you want

to preload some other fonts. But please make sure

that you don't change one of the original files of the

distribution.

1p la in . t ex will try to \input the files hyphen.tex

and 1fonts . tex .

As we said above, it seems a good idea to re-

name these files because, when 'I)# complains that

it cannot find them and asks you to type in another

file name, you get the chance to substitute your

favourate hyphenation patterns without changing

l p l a i n . t ex or copying something to hyphen. t ex.

The transcript file will show the name of the f ie used

which is very useful to debug weird errors (later).

When the point is reached where T)i$ wants

to read in l fon t s . t ex , you now have to specify

'If onts .new'. This file will \ input some other files.

After processing them (which will take some time),
5.1.2 Making more fonts available

I n i w stops once more since it cannot find the file
Besides deciding which fonts to preload, YOU also xxxlfont. sty. c his is intentional; in this way you
have to tell the ?X sytem which external fonts are may now specify the desired default by entering one
available and how they are organized in families, of the following file names:
series, shapes and sizes. In short you have to set

up internal tables giving informations like "family

cmr, series b, shape n, size 10 is associated with the

external font cmblO but there is no font with simi-

lar characteristics in size 9". This is done with the

\newOf ontshape command, either in a style file (see

'concrete .s ty ' as an example) or when dumping a

format.

Again two files fontdef . o r i and f ontdef .max

are distributed. You can copy one of them to

fontdef . tex. The file f ontdef . o r i defines all

fonts which are necessary to run standard UT@

documents while font def . max also defines certain

fonts from the AMSFonts collection. To make other

font families available you can either append appro-

priate \newQf ontshape definitions to f ontdef . t e x

(again, leave the originals untouched!) or add them

in a style file.'' For a detailed description of how to

set up new families with the \newQf ontshape com-

mand, see [5] about the basic macros or one of the

example files.

5.2 Runn ing I n i w

When setting up a new format one has to start

I n i m with 1pla in . tex as the input file. After

displaying some progress report on the terminal,

lo This is the absolute minimum. These fonts are
accessed by l p l a i n . t e x and l a t ex . t e x when the
format is generated.
'' The latter alternative might be better if you

use these fonts very rarely (e.g., at sites with many
users) to avoid filling m ' s memory with unneces-
sary definitions.

"

o ld l f ont . s t y If you choose this file, your format

will be identical to the standard IPW version

2.09 except that a few additional commands

(like \normalshape) are available. Of course,

documents or style options which explicitly re-

fer to things like \ t e n t t will produce error

messages since such internal commands are no

longer defined.12 Nevertheless it is easy to iix

the problem in such a case: if we know that

\ t e n t t referred to cmttl0, i.e. Computer mod-

em typewriter normal at lOpt, we can define it

as

\newcommandC\tentt)C\family(cmtt3

\seriesCm3\shapeCn3\sizeC103C12pt)

\ se lec t font)

Since we assume the 'oldlfont ' option as de-

fault, where \tt resets series and shape, the

definition could be shortened to

\newcommand~\tentt)C\size~10~~12pt~\tt)

To get the new way of font selection as de-

scribed in the previous sections (e.g. where \tt

simply means to switch to another family) you

only have to add the 'newlfont' style option

to the \documentstyle command in your doc-

ument.

l2 By the way, such documents were at no time
portable since Leslie Lamport stated that it was al-
ways permissible to customize I f onts . t ex accord-
ing to the local needs. Therefore this is not an in-
compatible change.

304 TUGboat, Volume 11 (1990), No. 2

newlfont . s ty This is just the counterpart to

oldlfont .s ty: it will make the new mech-

anism the default and you have to add

'oldlf ont' as a style option if you want to pro-

cess older documents which depend on the old

mechanism.

basef n t . t ex This file is similar to newlf ont . s t y

but does not define the I4T@ symbol fonts.

These fonts contain only a few characters which

are also included in the AMS symbol fonts.

Therefore we provided the possibility of gen-

erating a format which doesn't unnecessarily

occupy one of the (only) sixteen math groups

within one math version. Using this file you

can easily switch to the old scheme (adding

'oldlfont ' as an option), to the new scheme

with I4T@ symbol fonts (using 'newlf ont') or

to the new scheme with additional AMS fonts

by using either the style option 'amsfonts'

(fonts only) or the style option 'amstex' (defin-

ing the whole set of AMS-'l$jX macros in a

like syntax).

We suggest using the basef n t . t e x file since the

new font selection scheme will be incorporated into

UT@ version 2.10, but on installations with many

users it might be better to switch smoothly to the

new font selection scheme by first using 'oldlf ont '

as a default.

Anyway, after reading the file chosen, W will

continue by processing l a t e x . t e x and finally dis-

playing the message "Input any local modifications

here". If you don't dare to do so, use \dump to finish

the run. This will leave you with a new .fmt file (to

be put into w ' s format area) and the correspond-

ing transcript file. It isn't a very good idea to delete

this one because you might need it later to find out

what you did when you dumped the format!

6 Remarks on the development of this
interface

We started designing the new font selection scheme

around April 1989. A first implementation was

available after one month's work and thereafter the

prototype version ran successfully for some months

at a few sites in Germany and the UK. Rank's visit

to Stanford as well as our work on the 'amstex' style

option brought new aspects to our view. The result

was a more or less complete redefinition of the I 4 m

interface for this font mechanism. It was a long way

from the first sketch (which was about five pages in

Frank's notebook) to the current implementation of

the interface which now consists of nearly 2000 lines

of code and about 4000 lines of internal documenta-

tion. The AMSQX project itself, which triggered

this reimplemenation, has about the same dimen-

sions. Surely in such a huge software package one

will find typos and bugs. But we hope that most

of the bugs in the code are found by now. It is

planned that the new font selection scheme will re-

place the old one in IPT@ version 2.10. We therefore

hope that this pre-release which runs in version 2.09

will help to find all remaining problems so that the

switch to version 2.10 will be without discomfort to

the user.

7 Acknowledgements

During this project we got help from many peo-

ple. A big 'thank you' to all of them, especially

to Michael Downes from the AMS for his coopera-

tion and help, to Stefan Lindner for his help with

the Atari T@ and to Sebastian Rahtz for playing

a willing guinea-pig. Finally we also want to thank

Ron Whitney who did a marvelous job on all our

articles so far. This time we posed some extra prob-

lems because he had to first make a new format in

order to read how to make a new format.

8 List of distributed fiIes

l f o n t s .new The new version of I f onts . tex, to

be copied to a file of this name after the old

I f ont s . t ex has been renamed.

f ontdef . o r i The font definitions for the computer

modern fonts in the distribution by Donald E.

Knuth. To be copied to fontdef . tex if this

selection is to be used.

fontdef .max Complete font definitions for the

computer modern fonts and the AMSFonts col-

lections. To be copied to fontdef . t ex if this

selection is to be used.

preload. o r i Preloads the same fonts as the

old I f onts . tex does. To be copied to

preload. tex if this is desired.

preload .min Preloads only the absolute minimum

of fonts. To be copied to preload. t e x if this is

desired.

f am. t e x The basic macros for the new font selection

scheme. Automatically read by I f ont s .new.

l a t i n t . t e x IPW interface for the new font

selection scheme. Automatically read by

I f onts .new.

s e t s i z e . t ex Size definitions for the LkW inter-

face. Automatically read by I f ont s . new.

TUGboat, Volume 11 (1990), No. 2

newlf ont . s t y Selects new version of font selection

for LPW.

old l f ont . s t y Selects old version of font selection

for LPW.

basef n t . t ex Like newlf ont . s ty , but does not de-

fine the symbol fonts.

margid. s t y Style file that defines all (m a t h

alphabet identifiers) to have one argument.

This is the default that is built in into the new

font selection scheme. Therefore this style file

is only necessary if the installation decided to

load 'nomargid. s ty ' at dump time.

nomargid.sty In contrast to margid.sty, defines

all (ma th alphabet identifiers) to switch to the

alphabet. This style option is necessary if you

want to be compatible to the old IPT@ syntax

in math mode only.

t r a c e f n t . s t y Style file that allows the tracing of

font usage. Use \ t racingf ont s with values 1

to 3 and watch what happens.

synt only. s t y Defines the \s ynt axonly declara-

tion. This can be used in the preamble of a

document to suppress all output.

amsf onts . s t y Defines the commands to select sym-

bols from the AMSFonts collection.

amsbsy . s t y Defines the \boldsymbol command.

amssymb . s t y Defines additional AMS-T@ sym-

bols.

amstex. s t y Defines special A M S ~ structures

(like alignments in math mode) with UT@ syn-

tax.

amstext . s t y Defines the AMS-T@ \ t ex t com-

mand.

eusc r ip t . s t y Contains the definitions to use the

Euler script fonts.

References

Hugh Williamson, Methods of Book Design,

Yale University Press, New Haven, London,

Third Edition, 1985.

International Business Machines Corporation,

Font Object Content Architecture Reference,

First Edition, December 1988.

Donald E. Knuth, "Typesetting Concrete

Mathematics," TUGboat 10, no. 1, 1989,

pp. 31-36.

Ronald L. Graham. Donald E. Knuth, and

Oren Patashnik, Concrete Mathematics.

Addison- Wesley, 1989.

Frank Mittelbach and Rainer Schopf,

"A New Font Selection Scheme for T@
Macro Packages," TUGboat 10, no. 2, 1989,

pp. 222-238.

Frank Mittelbach o
Electronic Data Systems
(Deutschland) GmbH
Eisenstrafie 56
D-6090 Riisselsheim
Federal Republic of

Germany
Bitnet: pzf 5hzQdrueds2

Rainer Schopf
Institut fiir Theoretische

Physik der Universitat
Heidelberg

Philosophenweg 16
D-6900 Heidelberg
FederaI Republic of

Germany
Bitnet: BK4QDHDURZi

Abstracts

Deutsche Kurzfassungen der
TUGboat-Artikel
[German Abstracts of TUGboat Articles]

Luzia Dietsche

in Produktionsumgebung -
Die Auswertung eines Fragebogens
(E. M. Barnhart, S. 154)

Ungefahr vor einem Jahr erschien im TUGboat ein
Fragebogen, der sich an w-Benu tze r im Nicht-
universitaren Bereich wandte und die Anwendung
von w und damit zusammenhangende Aspekte
durch diesen Personenkreis behandelte. In diesem
Artikel werden nun (zusammen jeweils mit den
Fragen) in genauer Aufschliisselung die Ergebnisse
dieser Aktion vorgestellt. An der Aktion teilgenom-
men haben 60 Personen aus der gesamten Welt.

Kodierung von Zeichensatzen (N. Beebe,
S. 171)

Der Prikident der TUG stellt die diversen Probleme
dar, die mit 3.0 auf die m - W e l t zukommen.
Nicht nur die Frage, ob ISO-Norm ja oder nein,
und wenn ja, welche der Normen, auch die Frage
der Portabilitat, der Kompatibilitat, sowie der Tren-
nung sind zu beachten. Fiir Interessierte an IS08859
und IS0010646 existieren zwei Listen am Listserv in
JHUVM, in die sich alle mit email-Anschlufl eintra-
gen konnen.

306 TUGboat, Volume 11 (1990), No. 2

Auf dem Weg zu einer Standardisierung der
neuen CM Fonts (J. S. Bieri, S. 175)

Der Vorschlag von Y. Haralambous aus TUG-
boat 10, no. 3, wie man den bisher ungenutzten Teil
der CM Fonts standardisieren konnte, wird hier aus
polnischer Sicht besprochen, vertieft und erweitert.
Die Idee basiert darauf, ein vergrofjertes CM Font
Layout zu gestalten. Ein Beispiel fiir eine mogliche
Anwendung der neuen Fonts wird mitgeliefert.

ubungen fur TJjX: The Program
(D. E. Knuth, S. 165)

Prof. Knuth stellt eine Reihe von ubungen, Proble-
men und deren Losungen vor, die er fiir einen von
ihm im Fruhjahr 1987 gehaltenen Kurs benWigte.
Er sammelte und stellte sie fiir diejenigen zusam-
men, die m: The Program lernen wollen ohne in
einen Kurs zu gehen.

Kreisfdrmige Beweisfuhrung: Einen
Kreis setzen (und was man dazu braucht)
(A. Hoenig, S. 183)

Hier wird in dezidierter Form dargestellt, wie man
rnit rn und METRFONT Buchstaben gedreht bis
hin zur Kreisform darstellen kann. Dazu sind Mod-
ifikationen in .mf Quellecodes notig, daraus resul-
tierend jede Menge neuer Fonts und diverse Makros.
Alle ~ n d e r u n ~ e n , die dazu gebraucht werden, wer-
den zusammen rnit Beispielen und der dahinterste-
henden Mathematik mitgeliefert.

Einbinden von Graphiken in 'fEX mittels
Postscript (G. Berendt, S. 190)

Wer PostScript Graphiken auf PC erstellen kann
und diese in rn einbinden will, bekommt einen
Treiber PTIPS vorgestellt, der es moglich macht,
rnit einer erweiterten I P W picture Umgebung ge-
zeichnete Bilder in I4m Text-Dateien zu integri-
eren.

Einbinden von Graphiken in 'fEX
(G. Berendt, S. 190)

Das Problem vieler PC-Benutzer ist es, daf3 QX
auf diesem Rechnertyp nur einen sehr begren-
zten Speicherplatz hat. Hier wird eine Losung
vorgestellt, rnit der Bilder trotz der ublichen Gren-
Zen gezeichnet und eingebunden werden konnen.

Einbinden von Macintosh Graphiken in
I Q ' Dokumente (L. Schwer, S. 194)

In diesem Artikel geht es um die Einbindung von
Graphiken in I P m auf einem Mac. Er soll fiir
alle Neulinge einen ~berbl ick geben. Da es keine

universelle Moglichkeit einer solchen Graphikein-
bindung gibt, ist der Artikel so allgemein wie
moglich gehalten. Er stutzt sich auf DVIPS und
PSFIG. Das benutzte Ausgabegerat ist ein Apple
Laserwriter+. Um den Artikel zu verstehen, sind
Kenntnisse von Mac, PostScript und IP7$jX von
Noten.

Kombination von Graphiken und
auf einem PC rnit Laser Drucker, Teil I1
(L. S. Pickrell, S. 200)

In diesem Artikel soll eine friiher aufgestellte Be-
hauptung erhktet werden, daf3 rn einen aus-
gezeichneten Mechanismus zur Verfugung stellt,
mit dem man Graphiken einbinden kann. Die
dargestellte Methode zeigt die vollen Fahigkeiten
von rn, Graphiken genauso gut zu positionieren
wie normalen Text. Zusammen mit den technischen
Aspekten von diesem Projekt werden auch einige
seiner Grenzen gezeigt. Aderdem soll uber die
eventuell vorhandenen Vorteile der Konvertierung
von Graphiken in PK/TFM Files diskutiert wer-
den. Einer der vielen Vorteile dieser Form der
Graphikeinbindung ist es, dafj sie auch zusammen
rnit PostScript Treibern verwendet werden kann.

Fur plain F&A: Eine neue Spalte im
TUGboat (A. Hoenig, S. 212)

Das Redaktionsteam vom TUGboat plant eine
Frage- und Antwortecke fiir plain ' fiir seine
nachsten Ausgaben. Hierfur wird um rege Beteili-
gung gebeten. Beantwortet werden nur ganz
konkrete Fragen zu plain m. I P ' Probleme
werden auch weiterhin von J. Damrau beantwortet.
Fragen 8. la "Ich brauche ein bestimmtes Makro.
Wie geht das?" werden verstandlicherweise nicht
behandelt .

Output Routinen: Beispiele und Techniken.
Teil 11: OTR Techniken (D. Salomon, S. 212)

Im zweiten Teil seiner Serie uber Output Routinen
stellt der Autor einige Techniken vor, fiir die das-
selbe gilt, wie im ersten Teil: sie diirfen nicht ein-
fach kopiert und angewandt werden. Im Gegenteil,
sie sollen genau durchgearbeitet und an spezielle
Probleme angepaf3t werden. Der Schwerpunkt liegt
diesmal darauf, einzelne Zeilen durch Output h u -
tinen zu definieren, manipulieren und auszugeben.
Des weiteren zeigt D. Salomon, wie man die OTR
aktivieren kann oder einen zweimal durchlaufbaren
Job generiert, der im ersten Schritt Informationen
rausschreibt und im zweiten Schritt die Informatio-
nen wieder einliefjt.

TUGboat, Volume 11 (1990), No. 2

Listen in m ' s Innerem (A. Jeffrey, S. 237)

Es gibt in W zwar einen \item-Befehl, will man
jedoch kompliziertere Listen benutzen und verwal-
ten, m d man sich selbst weiterhelfen. Der Autor
hat dazu eine Listenumgebung entwickelt, mit der es
moglich ist, im Input in beliebiger Reihenfolge auf
die Items einer Liste zu verweisen und sie in geord-
neter Reihenfolge wieder ausgeben zu lassen. Er hat
in dern Artikel die genaue Entwicklung der Makros
gepaart rnit einer Menge Informationen uber W-
Makros beschrieben, so dafl man gut verfolgen kann,
welcher Schritt wofiir von Noten ist.

Verbatim Mode zum schachteln (P. Taylor,
S. 245j

verbatim. s t y in I P W ist bekannt und ausge-
sprochen nutzlich. Hier wird jetzt ein p l a i n Makro
vorgestellt, rnit dern in 'l&X von einer verbatim
Umgebung in die nachste geschachtelt werden kann,
wobei zwischen verbatim und normaler Umgebung
gewechselt wird. Dieser Schachtelung ist theoretisch
keine Grenze gesetzt (allerdings durfte irgendwann
der stack-space zu Ende sein). Das Listing des
Makros und ein Beispiel sind dern Artikel beigefiigt.

Easy Table (K. Ha, S. 250)

Easy Table ist ein neues Programm, mit dern
Tabellen jeder Couleur einfach und klar zu setzen
sind. Trotz ca. 200 Kommandos ist es laut Autor
leicht zu lernen und in 'l&X und I 4 W einsetzbar.
Wer naheres Interesse daran hat, die komplette
Beschreibung und das Programmpaket selbst zu
bekommen, mu13 sich rnit dern Autor in Verbindung
setzen.

Bridge setzen rnit 'l&X (K. v. d. Laan,
S. 265)

Es stehen jetzt p l a i n Makros und eine Umgebung,
rnit der man Kartenverteilungen und Meldefolgen
bei Bridge zeichnen kann, zur Verfugung. Dieses
Paket stellt eine Fortsetzung und Erweiterung der
in TUGboat 10, no. 1 vorgestellten I4W-Styles
dar. Zusatzlich sind Makros fiir die anspruchsvolle
Darstellung eines ganzen Spielverlaufs in Vorbereit-
ung. Beispiele fiir die Benutzung der Makros werden
mitgeliefert .

Die Wl&X Ecke - Dblitem Makro
(J. Damrau, S. 276)

J. Damrau stellt einen Stylefile vor, rnit dern einer
Aufzahlung zwei Argumente ubergeben werden

Trennzeichen. An ein solchen Makros oder Stylefiles
besteht fur eine Veroffentlichung jederzeit Interesse.

35mm Folien rnit S L ~ (K. Yap, S. 279)

SLIT)$ ist auf den ersten Blick eine sehr nutzliche
Anwendung fur alle, die regelmaflig Vortrage hal-
ten miissen. Allerdings nur fiir diejenigen, die einen
Farbdrucker mit Druckmaflen grofler als 35mm be-
sitzen. Deshalb beschlofl K. Yap, ein Konvertierpro-
gramm fiir DVI in 35mm zu schreiben, gestutzt auf
die Treiberfamilie von N. Beebe. Das Ergebnis wird
in die neue Treiberfamilie ubernommen werden.

Einfach Folien mit W m machen (G. Denk,
S. 280)

Eine weitere Moglichkeit, Folien herzustellen, wird
rnit e s l i d e . s t y angeboten. Allerdings nicht nach
dern Prinzip von S L ~ , sondern rnit einer Stylefile
Option zu a r t i c l e . s ty . Ein bereits vorhandener
Text kann durch diesen Zusatz rnit wenigen Kom-
mandos in gut lesbare Folien umgewandelt werden.
Erhaltlich ist die Source beim Autor.

Eine neue Implementation der WI&X
Umgebungen verbatim und verbatim*
(Rainer Schopf, S. 284)

Diese Option zum I 4 W \documentstyle Kom-
mando stellt eine neue Implementation der
verbatim und verbatim* Umgebungen dar. Ferner
stellt sie die comment Umgebung zur Verfugung, die
alle Eingabe zwischen \begin{comment) und dern
nachsten \end(comment) uberspringt. Schliefllich
wird noch das \verb Kommando neu definiert, um
den Benutzer vor den Folgen eines vergessenen Be-
grenzungszeichens zu schutzen.

o Luzia Dietsche
Rechenzentrum der Universitat
Heidelberg
Im Neuenheimer Feld 293
D-6900 Heidelberg 1

Bitnet: X680DHDURZl

kijnnen: d i r gewiinschte Text und das gewiinschte

308 TUGboat, Volume 11 (1990), No. 2

Calendar

May 21 - 25 Intensive BeginningIIntermed. m,
University of Houston/Clear Lake,
Houston, Texas

TUG90 Conference
Texas A & M University
College Station, Texas

Jun 11-15

Jun 11-15

Jun 11-15

Jun 11-15

Jun 12-15

Jun 13-15

Jun 13-15

Jun 14-16

Jun 18-20

Jun 21-22

Jun 21-23

Intensive BeginningIIntermed. TEX

Advanced W / M a c r o Writing

Intensive I P m

J.4W Style Files

METAFONT

Output Routines

Post Script

SGML

TUG'S llth Annual Meeting

Macro Writing

Graphics in TEX

Jul 15 Papers from TUG Annual Meeting:
Deadline for receipt of camera copy
for TUGboat Proceedings issue.

Providence College,
Providence, Rhode Island

Jul 16 - 20 Intensive BeginningIIntermed. T)$

Jul 17 - 20 Beginning TEX

Jul 23 - 27 Advanced W / M a c r o Writing

Jul 24 - 27 Intermediate QX

Vanderbilt University, Nashville, Tennessee

Jul 23 - 27 Intensive BeginningIIntermed. m
Jul 30- Advanced m / M a c r o Writing

Aug 3

McGill University, Montreal, Qukbec

Aug 6 - 10 Intensive BeginningIIntermed. TEX

Aug 13- 17 Advanced W / M a c r o Writing

Rutgers University, Busch Campus,
Piscataway, New Jersey

Aug 6-10 I47Q$ Style Files

Aug 13 - 17 Advanced w / M a c r o Writing

University of Illinois, Chicago, Illinois

Aug 13 - 17 Intensive BeginningIIntermed. rn
Aug 14 - 17 Beginning

Aug 20 - 24 Intensive I P W

Aug 21 - 24 Intermediate W
--

California State University,
Northridge, California

Aug 20 - 24 Intensive BeginningIIntermed. W
Aug 21 - 24 Beginning lJ$

Aug 27 - 31 Advanced m / M a c r o Writing

Aug 28 - 31 Intermediate m

University of Maryland,
College Park, Maryland

Aug 20 - 24 Intensive Beginning/Intermed. W
Aug 27 - 31 Intensive J.4m
Sep 4 - 7 METAFONT

Aug 31 NTG-SGML Holland meeting
Groningen, The Netherlands.
For information, contact
Kees van der Laan (Bitnet:
C G L ~ . RUG. NL)

- -

m 9 0 Conference
University College
Cork, Ireland

Sep 3 - 7 Intensive BeginningIIntermed.

Sep 3 - 5 Intensive I4W

Sep 3 - 7 Intensive METRFONT

Sep 5 - 7 S G M L / W

Sep 7 - 8 Advanced TJ$

Sep 10 - 13 TUG'S 1" Conference in Europe

Sep 14 - 15 Macro Writing

Sep 14- 15 IPl&X Style Files

Sep 14 - 15 Graphics in rn

Status as of 1 May 1990

TUGboat, Volume 11 (1990), No. 2

Sep 11 TUGboatVolume11,
3rd regular issue:
Deadline for receipt of manuscripts
(tentative).

Sep 18-20 EP'90
National Institute of Standards
and Technology, Gaithersburg,
Maryland. For information,
contact Richard Furuta
(f u r u t a Q b r i l l i g .umd. edu).

Oct 3 - 5 Seybold Computer Publishing
Conference, San Jose Convention
Center, San Jose, California.
For information, contact Seybold
Publications, West Coast Office
(213-457-5850).

Oct 10 - 12 gth annual meeting, "Deutsch-
sprachige T@-Interessenten" ;
DANTE e.V.: 3rd meeting, GWD,
G Wtingen. For information, contact
Dr. Peter Scherber (Bitnet:
PSCHERBQDGOGWDGI) or DANTE e.V.
(Bitnet: DANTEQDHDURZI)

Dec 6 - 8 European Publishing Conference,
Netherlands Congress Centre,
The Hague, Holland.
For information, contact Seybold
Publications, U. K. Office
((44) 323 410561).

Jan 15 TUGboat Volume 12,

lSt regular issue:
Deadline for receipt of manuscripts
(tentative).

Feb 20- 22 loth annual meeting, "Deutsch-
sprachige T@-Interessenten" ;
DANTE e.V.: 4th meeting,
Technical University of Vienna.
For information, contact
Dr. Hubert Part1 (Bitnet:
Z3000PAQAWITUWOl) or DANTE e.V.
(Bitnet: DANTEQDHDURZI)

Apr 9 TUGboat Volume 12,
2nd regular issue:
Deadline for receipt of manuscripts
(tentative).

Sep 10 TUGboat Volume 12,
3rd regular issue:
Deadline for receipt of manuscripts
(tentative).

For additional information on the events listed
above, contact the TUG office (401-751-7760) unless
otherwise noted.

--

Production Notes

Barbara Beeton

Input and input processing

Electronic input for articles in this issue was received
by mail and on floppy disk.

Authors who had written articles previously for
TUGboat typically submitted files that were fully
tagged and ready for processing with the TUG-
boat macros-tugboat . s t y for plain-based files
and 1 tugboat . s ty for those using U r n . (The
macros - see the Authors' Guide, TUGboat 10,
no. 3, pages 378-385- have been installed at
labrea . stanf ord . edu and the other archives, and
should be retrieved by prospective authors before
preparing articles; for authors who do not have
network access, the TUG office can provide the
macros on diskette.)

Almost two-thirds of the articles, and about
half the pages in this issue are I4m. For conve-
nience in processing, p l a in or IPW articles were
grouped whenever possible. Articles in which no,
or limited, T@ coding was present were tagged
according to the conventions of tugboat . s t y or
l tugboat . s t y as convenient. Most articles tagged
according to the author's own schemes were modi-
fied sufficiently to permit them to be merged with
the rest of the stream. Especial care was taken
to try to identify macro definitions that conflicted
with ones already defined for TUGboat.

Several articles required extra-special handling.
The article by Mittelbach and Schopf (p. 297)
was set using a preliminary version of the new
I4W font access technique which it describes.
And the articles by Ha (p. 250) and Salomon
(p. 212) used an experimental enhancement of the
p l a i n TUGboat macros that permits changing the
number of columns in mid-page.

TUGboat, Volume 11 (1990), No. 2

Test runs of articles were made separately and
in groups to determine the arrangement and page
numbers (to satisfy any possible cross references).
A file containing all starting page numbers, needed
in any case for the table of contents, was compiled
before the final run. Final processing was done in 7
runs of TfJX and 9 of I P W , using the page number
file for reference.

The following articles were not prepared using

- Barbara Beeton, Editorial comments,
page 153.

- Elizabeth Barnhart, w in the production
environment -questionnaire responses,
page 154.

- Donald Knuth, Exercises for QX: The
Program, page 165.

- Alan Hoenig, Circular reasoning: typesetting
on a circle, and related issues, page 183.

- Bart Childs, Data General site report,
page 206.

- Barbara Beeton, Resources available to
users, page 207.

- Ted Nieland, DECUS w collection -
submissions wanted, page 211.

- Alan Hoenig, Just plain Q&A, page 212.

- David Salomon, Output routines: Examples
and techniques. Part 11: OTR techniques,
page 212.

- Khanh Ha, Easy Table, page 250.
- Philip Taylor, A nestable verbatim mode,

page 245.
- Kees van der Laan, Typesetting bridge via

Q X , page 265.

Output

The bulk of this issue was prepared on an IBM PC-
compatible 386 using P C m and output on an
APS-p5 at the American Mathematical Society us-
ing resident CM fonts and additional downloadable
fonts for special purposes.

The article by Lee S. Pickrell (cited above) re-
quired output to be prepared on an HP LaserJet 11.

Only one item (other than advertisements) was
received as camera copy: the figures for the Output
routines tutorial by David Salomon (p. 212), which
were prepared on a 300 dpi Apple Laserwriter.

The output devices used to prepare the ad-
vertisements were not usually identified; anyone
interested in determining how a particular ad was
prepared should inquire of the advertiser.

New Publications and Software
Available through the TEX Users Group, June 1990

(These product descriptions were taken, for the
most part, from the publishers' announcements.)

T'X for the Impatient
by Paul W. Abrahams, with Karl Berry and
Kathryn A. Hargreaves

If you're eager to find fast answers to common

questions, your wait will soon be over. T'EX
for the Impatient, a practical handbook for m ,
will be available this July. Clear, concise, and
accessible, this book is organized for easy retrieval of
information. It's thoroughly indexed and carefully
designed so you can learn by example. Plus, it is
packed with explicit instructions, useful tips and
techniques, and a wealth of lightly humorous and
very illuminating examples. Features include:

- complete descriptions of 7&X commands, ar-
ranged for lookup either by function or alpha-
betically;

clear definitions of essential Tl$ concepts,
collected in a separate chapter so that the com-
mand descriptions remain brief and accessible;
explanations of common error messages and
advice on solving problems that frequently
arise;
collection of useful macros (also available in
electronic form).

Addison- Wesley Publishing Co., Reading, Mass.,
1990, 384 pp.

I4" for Engineers and Scientists
by David J . Buerger

Your comprehensible guide to D m : Coping with
even the most complex multiline equations - well
beyond the scope of most computerized publishing
systems-is a simple matter when you combine
the high-powered functionality of I P W with this
guide. With I P W , scientists, engineers, and other
professionals can produce technical documents to
the highest professional typeset standards. This

TUGboat, Volume 11 (1990), No. 2

fast, easy-to-use primer quickly brings newcomers
to IPT@ up to complete mastery of this powerful
new software tool's most sophisticated features. A
pleasure to use, this book clearly spells out how to:

- change fonts and type sizes at will for the most
impressive, professional results;

- organize book-length documents with the high-
est levels of editorial integrity;

- create footnotes, cross-references, bibliogra-
phies, and indexes automatically;

- generate presentation-quality tables and figures
with a publisher's precision;

- handle two-column documents in the style of
professional proceedings and journals.

To further assist you, the author provides exer-
cises (with answers), sample input files, a table
of mathematical symbols, a convenient glossary of
I P W forms, and special help with deciphering
error messages.

McGraw-Hill, New York, 1990, xvii + 199 pp.

Proceedings
Third European TEX Conference
m 8 8 - Exeter, August 1988
TEX Applications, Uses, Methods
Malcolm Clark, editor

Table of Contents:
Peter Abbott: U K m and the Aston archive.
Graham Asher: Type and set: TEX as the engine

of a friendly publishing system.
Anne Briiggemann-Klein and Derick Wood:

Drawing trees nicely with m.
Lance Carnes and William S. Kaster: ?IEX device

drivers today.
Francis J. Cave: The notation and structure of

mathematical texts and their representation
within electronic documentation systems.

Malcolm Clark and Cathy Booth: Whither W ?

Why has TEX not taken over the world . . . ?
Frank R. Drake, John Derrick, and Laurent

Siebenmann: Sweet-teX, a report.
Roger Gawley: 7$J in the mainframe world - the

Durham experience.
Klaus Guntermann and Joachim Schrod: High

quality DVI drivers.
Alois Heinz: Including pictures in m.
Alan Hoenig: An introduction to T@ for new

users.
Alan Hoenig: Line-oriented layout with W .
Boguslaw Jackowski, Tomasz Holdys, and Marek

RyCko: With TFJ to the Poles.
Susanne Lachmann: P R O W : Integration of text,

graphics and images.

Rod Mulvey: The Cambridge m - t o - T y p e service.
Bill Noble and Rachel Ganz: QX and good

design - are they compatible?
A. C. Norris and A. L. Oakley: Electronic

publishing and chemical text processing.
Peter J . Olivier: Publishing 'exotic' documents

with E x o m .
Victor Ostromoukhov: METAFONT versus

Postscript.
Hubert Partl: German m.
Gerlinde Petersen: L i n o w : professional

electronic publishing.
Sebastian P. Q. Rahtz: A survey of picture-drawing

in I P W .
Michael Ramek: Chemical structure f o r m u l ~ and

x/y diagrams with TEX.
Rainer Rupprecht: Using menudriven W under

MVS.
Richard 0. Simpson: Nontraditional uses of

METAFONT.
Thomas Stadler and Tibor Tscheke: An

environment for l'@-output with original
Monotype fonts.

Jan van Knippenberg: Quality printing of m
DVI files.

Jorg Winckler: QX-fonts in image generation
software.

Ellis Horwood, Chichester, 1990, 271 pp.

1989 Conference Proceedings
T$JX Users Group
Stanford University, August 1989
Ten Years of and METAFONT
Christina Thiele, editor

Table of Contents:

Editor's Introduction

Keynote Address
Donald E. Knuth: The Errors of m
Font Forum
Doug Henderson: Introduction to METAFONT
Neenie Billawala: Opening Pandora's Box
Alan Hoenig: Fractal images with 'l&X
Don Hosek: Design of oriental characters with

METAFONT
Bob Batzinger: Thai Languages and METAFONT
John D. Hobby: A METAFONT-like system with

Postscript output
Ralph E. Youngen, Daniel C. Latterner, and

William B. Woolf: Migration from Computer
Modern fonts to Times fonts

Arvin C. Conrad: Fine typesetting with QX using
native Autologic fonts

TUGboat, Volume 11 (1990), No. 2

Raining
Michael Doob: Of the computer scientist, by the

computer scientist, for the computer scientist
Hope Hamilton: Mastering lQX with templates
Anita C. Hoover: Using Wordperfect 5.0 to create
m and U m documents

Robin L. Kubek: m for the word processing
operator

Jo Ann Rattey-Hicks: 7&X and its versatility in
office production

General Applications
Max Diaz: 'I'EX in M6xico
James Haskell, Wally Deschene and Alan Stolleis:
TFJ for 30,000

Alan Wittbecker: TEX enslaved

Graphics Applications
Tom Renfrow: Methodologies for preparing and

integrating PostScript graphics
Rolf Olejniczak-Burkert: texpic - design and

implementation of a picture graphics language in
& la pic

Database Applications
William B. Woolf and Daniel C. Latterner: at

Mathematical Reviews
Jorgen L. Pind: Lexicography with TE.X

General Information
Malcolm Clark: Olde Worlde TEX
Peter Abbott: The U K W Archive at University

of Aston

T&X Tools
Frank Mittelbach and Rainer Schopf: With I4W

into the nineties
Andrew Marc Greene: =reation - Playing

games with m ' s mind
Bill Cheswick: A permuted index for TFJ and

urn
Steve Sydoriak: I 4 w memos and letters
Gary Benson, Debi Erpenbeck and Janet Holmes:

Inserts in a multiple-column format
Mary McClure: TFJ macros for COBOL syntax

diagrams
Brad L. Halverson and Don L. Riley: Creating an

efficient and workable PC interface for TEX

T&X Users Group, Providence, R.I., 1989
(published as TUGboat 10, no. 4).
Vector'QijX
retains all the advantages of m plus:

- saves megabytes of storage-entire VTEX fits
on one floppy;

- instantly generate any font in any size and in
any variation from 5 to 90 points;

- standard font effects include compression, slant,
smallcaps, outline and shading. New: shadow;

- discover the universe of MicroPress professional
typefaces: not available for any other m.

Includes the VT@ typesetter, 10 scalable typefaces,
VVIEW (arbitrary magnification on EGA, CGA,
VGA, Hercules, AT&T), VLASER (HP LaserJet),
VPOST (PostScript), VDOT (Epson, Panasonic,
NEC, Toshiba, Proprinter, Star, DeskJet) and
manuals.

MicroPress, Inc., Forest Hills, N. Y .

AP-'QijX Fonts
provide the quality of Adobe PostScript fonts for
your TFJ documents and non-PostScript printer. If
you use any brand of m with an HP LaserJet
or DeskJet printer, the AP-T)$ fonts add a wealth
of attractive typefaces identical to the popular
PostScript extended font families. By de-crypting
the Adobe coding it is possible to exactly translate
the PostScript fonts into TEX font bit map and
metric files. These translated fonts include the
renowned Adobe "hints," which render the smaller
point sizes of the fonts with remarkable clarity on
laser and ink-jet printers. The fonts use the TFJ
character set encoding and font metrics, including
full kerning and ligature programs. The AP-T@
fonts, supplied on ten 360K 5-114" PC floppy disks,
contain 35 typefaces in pk format (including W
font metric (t f m) files) for 300 dotslinch laser and
ink-jet printers. The fonts included are identical
to the Adobe PostScript implementations of the
trade names and samples shown on page 147,
TUGboat 11, no. 1 (1990). The point sizes for
each typeface included are the TEX sizes 5, 6, 7,
8, 9, 10, 11, 12, 14.4, 17.3 20.7, and 24.9 points.
Headline styles (equal to Times Roman, Helvetica,
and Palatino, all in bold) also are included at 29.9,
35.8, 43.0, 51.6, 61.9, and 74.3 points.

The Kinch Computer Co., Ithaca, New York

CAPTURE

is the graphics solution for PC-based m. It places
graphics in m documents produced on IBM PC
systems (and compatibles) with Hewlett-Packard
LaserJet printers. It doesn't require Postscript.

CAPTURE is designed for m . It carefully re-
moves all 28 LaserJet control codes that disrupt
. It has been tested with P C W , p m ,
and m p l u s . It "captures" the graphics gener-
ated by any application program, including "paint"
programs, circuit design, CAD, scientific data plot-
ters, optic design, terminal emulators, clip art,
spreadsheets, databases - anything that supports

TUGboat, Volume 11 (1990), No. 2

Institutional
Members

The Aerospace Corporation,
El Segundo, Calzfornia

Air Force Institute of Technology,
Wright-Patterson AFB, Ohio

American Mathematical Society,
Providence, Rhode Island

ArborText, Inc.,
Ann Arbor, Michigan

ASCII Corporation,
Tokyo, Japan

Aston University,
Birmingham, England

Belgrade University,
Faculty of Mathematics,
Belgrade, Yugoslavia

Brookhaven National Laboratory,
Upton, New York

Brown University,
Providence, Rhode Island

California Institute of Technology,
Pasadena, California

Calvin College,
Grand Rapids, Michigan

Carleton University,
Ottawa, Ontario, Canada

Carnegie Mellon University,
Pittsburgh, Pennsylvania

Centre Inter-RCgional de

Calcul ~ l e c t r o n i ~ u e , CNRS,
Orsay, France

College of William & Mary,
Department of Computer Science,
Wi~~iamsburg, Virginia

DECUS, L&T Special Interest
Group, Marlboro, Massachusetts

Department of National Defence,
Ottawa, Ontario, Canada

Digital Equipment Corporation,
Nashua, New Hampshire

Edinboro University
of Pennsylvania,
Edinboro, Pennsylvania

Emerson Electric Company,
St. Louzs, Mzssourz

Environmental Research
Institute of Michigan,
Ann Arbor, Mzchzgan

European Southern Observatory,
Garchzng bez Munchen,
Federal Republzc of Germany

Fermi National Accelerator
Laboratory, Batavza, Illznozs

Fordham University,
Bronx, New York

Fijrsvarets Materielverk,
Stockholm, Sweden

General Motors
Research Laboratories,
Warren, Mzchzgan

Geophysical Company
of Norway A/S,
Stavanger, Norway

GKSS, Forschungszentrum
Geesthacth GmbH,
Geesthacth, Federal Republzc of

Germany

Grinnell College,
Computer Services,
Grznnell, Iowa

Harvard University,
Computer Services,
Cambrzdge, Massachusetts

Hatfield Polytechnic,
Computer Centre,
Herts, England

Hewlett-Packard Co.,
Bozse, Idaho

Hughes Aircraft Company,
Space Communications Division,
Los Angeles, Calzfornza

IBM Corporation,
Scientific Center,
Palo Alto, Calzfornza

Institute for Advanced Study,
Prznceton, New Jersey

Institute for Defense Analyses,
Communications Research
Division, Prznceton, New Jersey

Kuwait, Institute for
Scientific Research,
Safat, Kuwait

The Library of Congress,
Washington D. C.

Los Alamos National Laboratory,
University of California,
Los Alamos, New Mexico

Louisiana State University,
Baton Rouge, Louisiana

Marquette University,
Department of Mathematics,
Statistics and Computer Science,
Milwaukee, Wisconszn

Massachusetts Institute
of Technology,
Artificial Intelligence Laboratory,
Cambridge, Massachusetts

Mathematical Reviews,
American Mathematical Society,
Ann Arbor, Michzgan

Max Planck Institut
fiir Mathematik,
Bonn, Federal Republic of Germany

Max Planck Institute Stuttgart,
Stuttgart, Federal Republic of
Germany

McGilt University,
Montre'al, Que'bec, Canada

Michigan State University,
Mathematics Department,
East Lansing, Michzgan

National Cancer Institute,
Frederick, Maryland

National ~egearch Council

Canada, Computation Centre,
Ottawa, Ontario, Canada

Naval Postgraduate School,
Monterey, Cahfornza

New Jersey Institute of
Technology, Newark, New Jersey

New York University,

Academic Computing Facility,
New York, New York

Nippon Telegraph &
Telephone Corporation,
Software Laboratories,

Intevep S. A., Caracas, Venezuela
Tokyo, Japan

Iowa State University,
Ames, Iowa

TUGboat, Volume 11 (1990), No. 2

Northeastern University,
Academic Computing Services,
Boston, Massachusetts

Norwegian Pulp & Paper
Research Institute,
Oslo, Norway

Pennsylvania State University,
Computation Center,
Unzverszty Park, Pennsylvanza

Personal QX, Incorporaked,
Mzll Valley, Calzfornza

Princeton University,
Prznceton, New Jersey

Promis Systems Corporation,
Toronto, Ontarzo, Canada

Peter Isaacson Publications,
Vzctona, Australza

Purdue University,
West Lafayette, Indzana

Queens College,
Flushzng, New York

REISPEC, Inc.,
Rapzd Czty, South Dakota

Rice University,
Department of Computer Science,
Houston, Texas

Rogaland University,
Stavanger, Norway

Ruhr Universitat Bochum,
Rechenzentrum,
Bochum, Federal Republzc of
Germany

Rutgers University, Hill Center,
Pzscataway, New Jersey

St. Albans School,
Mount St. Alban, Washzngton,
D. C.

Sandia National Laboratories,
Albuquerque, New Mexzco

SAS Institute,
Car-, North Carolzna

I. P. Sharp Associates,
Palo Alto, Calzfornza

Smithsonian Astrophysical
Observatory, Computation Facility,
Cambrzdge, Massachusetts

Software Research Associates,
Tokyo, Japan

Sony Corporation,
Atsugi, Japan

Space Telescope Science Institute,
Baltimore, Maryland

Springer-Verlag,
Heidelberg, Federal Republic of
Germany

Stanford Linear
Accelerator Center (SLAC),
Stanford, California

Stanford University,
Computer Science Department,
Stanford, California

Stefan Ram, Programming and
Trade, Berlin, Federal Republic of
Germany

Syracuse University,
Syracuse, New York

Talaris Systems, Inc.,
San Diego, Calzfornia

TECOGRAF Software,
Milan, Italy

Texas A & M University,
Department of Computer Science,
College Station, Texas

Texcel, Oslo, Norway

TRW, Inc., Redondo Beach,
California

Tufts University,
Medford, Massachusetts

TV Guide, Radnor, Pennsylvania

TYX Corporation,
Reston, Virginia

UNI-C, Aarhus, Denmark

Universidad Sevilla,
Sevilla, Spain

Universidade de Coimbra,
Coimbra, Portugal

Universita degli Studi Milano,
Istituto di Cibernetica,
Milan, Italy

University College,
Cork, Ireland

University of Alabama,
Tuscaloosa, Alabama

University of British Columbia,
Computing Centre,
Vancouver, British Columbia,
Canada

University of British Columbia,
Mathematics Department,
Vancouver, British Columbia,
Canada

University of Calgary,
Calgary, Alberta, Canada

University of California,
Division of Library Automation,
Oakland, California

University of California, Berkeley,
Computer Science Division,
Berkeley, California

University of California, Berkeley,
Space Astrophysics Group,
Berkeley, Calzfornza

University of California, Irvine,
Department of Mathematics,
Irvine, California

University of California, Irvine,
Information & Computer Science,
Irvine, California

University of California,
Los Angeles, Computer
Science Department Archives,
Los Angeles, California

University of California,
San Diego, La Jolla, California

University of Canterbury,
Christchurch, New Zealand

University of Chicago,
Computing Organizations,
Chicago, Illinois

University of Chicago,
Chicago, nlinois

University of Crete,
Institute of Computer Science,
Heraklio, Crete, Greece

University of Delaware,
Newark, Delaware

University of Exeter,
Computer Unit,
Exeter, Devon, England

University of Glasgow,
Department of Computing Science,
Glasgow, Scotland

TUGboat , Volume 11 (1990), No. 2

University of Groningen,
Groningen, The Netherlands

University of Illinois at Chicago,
Computer Center,
Chicago, Illinois

University of Kansas,
Academic Computing Services,
Lawrence, Kansas

University of Maryland,
Department of Computer Science,
College Park, Maryland

University of Maryland
at College Park,
Computer Science Center,
College Park, Maryland

University of Massachusetts,
Amherst, Massachusetts

UniversitC de MontrCal,
Montre'al, Que'bec, Canada

University of Oslo,
Institute of Informatics,
Blindern, Oslo, Norway

University of Oslo,
Institute of Mathematics,
Blindern, Oslo, Norway

University of Ottawa,
Ottawa, Ontario, Canada

University of Salford,
Salford, England

University of Southern California,
Information Sciences Institute,
Marina del Rey, California

University of Stockholm,
Department of Mathematics,
Stockholm, Sweden

University of Texas at Austin,
Austin, Texas

University of Vermont,
Burlington, Vermont

University of Washington,
Department of Computer Science,
Seattle, Washington

University of Western Australia,
Regional Computing Centre,
Nedlands, Australia

University of Wisconsin,
Academic Computing Center,
Madison, Wisconsin

Uppsala University,
Uppsala, Sweden

USDA Forest Service,
Washington, D. C.

Vereinigte Aluminium-Werke AG,
Bonn, Federal Republic of Germany

Villanova University,
Villanova, Pennsylvania

Vrije Universiteit,
Amsterdam, The Netherlands

Washington State University,
Pullman, Washington

Widener University,
Computing Services,
Chester, Pennsylvania

John Wiley & Sons, Incorporated,
New York, New York

Worcester Polytechnic Institute:
Worcester, Massachusetts

Yale University, Computer Center,
New Haven, Connecticut

Yale University,
Department of Computer Science,
New Haven, Connecticut

The American Mathematical Societv can offer vou a basic TFX ~ublishing service. You provide the - -
/ DVI file and we will produce typeseipages using an Autologic APS ~ i c r o - phototypesetter. The low

cost is basic too: only $5 per page for the first 100 pages; $2.50 per page for additional pages, with a
$30 minimum. Quick turnaround is important to you and us . . . a manuscript up to 500 pages can
be back in your hands in just one week or less.

As a full service TEX publisher, you can look to the American Mathematical Society as a single source
for all your publishing needs.

~ M a c r o - W r i t i n g ~ I ~ ~ ~ ~
-1 Camera Work

For more information or to schedule a job, please contact Regina Girouard, American Mathemat-
ical Society, P.O. Box 6248, Providence, RI 02940 or ca11401-455-4060 or 800-321-4AMS in the
continental U.S.

'QjX Users Group 1990 Membership Form

Request for Information

The TEX Users Group maintains a database and
publishes a membership list containing informa-
tion about the equipment on which l)$ is (or will
be) installed and about the applications for which
rn is used. This list is updated periodically and
distributed to members with TUGboat, to permit
them to identify others with similar interests. Thus,
it is important that the information be complete
and up-to-date.

Please answer the questions below, in particu-
lar those regarding the status of T@ and the hard-
ware on which it runs. (Operating system informa-
tion is particularly important in the case of IBM
mainframes and VAX.) This hardware information
is used to group members in the listings by com-
puter and output device.

If accurate information has already been pro-
vided by another TUG member at your site, indi-
cate that member's name and the same information
will be repeated automatically under your name. If
your current listing is correct, you need not answer
these questions again. Your cooperation is appre-
ciated.

Send completed form with remittance
(checks, money orders, UNESCO coupons) to:

Users Group
P. 0. Box 594

Providence, Rhode Island 02901, U.S. A.

For foreign bank transfers
direct payment to the w Users Group,
account #002-031375, at:

Rhode Island Hospital Trust National Bank

One Hospital Trust Plaza
Providence, Rhode Island 02903-2449, U.S.A.

General correspondence
about TUG should be addressed to:

TpJ Users Group

P. 0. Box 9506
Providence, Rhode Island 02940-9506, U. S. A.

Name:
Home []
BUS. [I Address:

Qty (1990 Membership/TUGboat Subscription (Jan.-Dec.) (Amount I
New (first-time): [] $35.00 each; students [] $25.00 each
Renewal: [] $45.00; [] $35.00 - reduced rate if renewed before February 1,1990
Mailing charges p e r subscription: CanadaIMexico - $5; Europe - $10; Other Countries - $15

TUGboat backvolumes 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
Circle volume(s) desired: v. 1 v. 2 v. 3 v. 4 v. 5 v. 6 v. 7 v.8 v.9 v. 10

$18 $50 $35 $35 $35 $50 $50 $50 $50 $75
I

Issues of TUGboat will be shipped via air service outside
North Amerira. TOTAL ENCLOSED: - - - . -- . -. - - -

Quantity discounts available on request. (Prepayment in US. dollars required)

Membership List Information

Institution (if not part of address): Date:

Title:
Phone:
Network address:

[] Arpanet [] BITnet

[1 CSnet [] uucp
[] JANET [] other

Specific applications or reason for interest in w :

My installation can offer the following software or
technical support to TUG:

Please list high-level rn users at your site who would not
mind being contacted for information; give name, address, and
telephone.

Status of r n : [] Under consideration
[] Being installed

[] Up and running since: -
Approximate number of users: -

Version of W :
[] Pascal

I I C
[] other (describe)
From whom obtained:

Hardware on which ?QX is used:
Operating Output

Computer(s) system(s) device(s)

Revised 5/90

VECTOR
a TEX

TEX FOR THE 90's

Are you still
struggling with

PXL's, PK's or GF's?
Move on to scalable
fonts:

Save megabytes of storage-entire VTEX fits on

one floppy.

Instantly generate any font in any size and in any

variation from 5 to 100 points.

Standard font effects include compression, slant,

smallcaps, outline, shading and shadow.

New: landscape.

Discover the universe of MicroPress Font Library

professional typefaces: not available from any

other TEX vender.

List price $399 Introductory offer $299

Includes the WEX typesetter (superset of TEX), 10 scalable

typefaces, VVIEW (arbitrary magnification on EGA, CGA, VGA,

Hercules, AT&T), VLASER (HP LaserJet), VPOST (PostScript).

VDOT (Epson, Panasonic, NEC, Toshiba, Proprinter, Star, DeskJet)

and manuals.

Introductory offer expires on September 1, 1990. S/H add $5.
COD add 55. Wordperfect Interface add $100. Site licenses

available. Dealers' inquiries welcome. Professional typefaces

available for older implementations of TEX.

MICRO

MicroPress Inc.
67-30 Clyde Street, #2N, Forest Hills, NY 11375

L___.

PRESS Tel: (718) 575-1816 Fax: (718) 575-8038

VEX IS a trademark of MtcroPress Inc Other Products rnent~oned are trademarks of theu iespecllve companies

WYSIWYG ->

View your equation as
you create it. Then
insert into your T@
document with one
command.

30 West First Avenue KTAUG) Cohmbus, Ohio 43201
T@ Edition ONLY $129.00 C O M M U N I C A T I O N S = (614) 294-3535
~rofessional Edition $199.00
Shipping: $4 (U.S.A.), $25 (Canada), $35 (Overseas)
VISA, Mastercard and University and Government P.O.'s accepted.

FAX (614) 294-3704

TurboT~X Release 3.0 soft-
ware brings you the latest ?$$ 3.0
and METAFONT 2.0 standards:
preloaded plain ?$$, U T G ,
AJMS-'QX and AJMS-UT$, and
plain METAFONT interfaced to
CGA/EGA/VGA/Hercules graph-
ics; TRIP and TRAP certification;
Computer Modern and UT$ fonts,
and printer drivers for H P LaserJet
Plus/II/IIP, H P DeskJet, PostScript,
and Epson LQ and FX dot-matrix
printers. This wealth of software runs
on your IBM P C (MS-DOS or OS/2),
UNIX, or VAX/VMS system.

H Best-selling Value: Turbo-
TEX sets the standard for power
and value among ?$$ implemen-
tations: one price buys a complete,
commercially-hardened typesetting
system. Computer magazine recom-
mended i t as "the version of ?$$ to
have," IEEE Software called it "in-
dustrial strength," and thousands of
satisfied users worldwide agree.

T u r b o w gets you started quickly,
installing itself automatically under
MS-DOS, and compiling itself auto-
matically under UNIX. The 90-page
User's Guide includes generous exam-
ples and a full index, and leads you
step-by-step through installing and
using TEX and METAFONT.

H P o w e r Features: Turbo-
7&X breaks the 640K memory bar-
rier under MS-DOS on any IBM-
compatible P C with our virtual mem-
ory sub-system. Even without ex-
panded memory hardware, you'll

have the same sized QJ that runs
on multi-megabyte mainframes, with
plenty of memory for large docu-
ments, complicated formats, and
demanding macro packages (like
PIC?$$ and A&-UT$ 2.0) that
break other 'QX implementations.
On larger computers, T u r b o w runs
up to 3 times faster in less memory
than the Stanford Pascal distribution.

H S o u r c e code: Order the Turbo-
?$$ source in portable C, and you
will receive more disks with over
85,000 lines of generously commented
TEX, Turbo?$$, METAFONT, and
printer driver source code, including:
our WEB system in C; PASCHAL, our
proprietary Pascal-to-C translator;
and preloading, virtual memory, and
graphics code. T u r b o w meets C
portability standards like ANSI and
K&R, and is robustly portable to a
growing family of operating systems.

H Availability & R e q u i r e m e n t s :
T u r b o w executables for IBM PC's
include the User's Guide and require
640K and hard disk. Order source
code (includes Programmer's Guide)
for other machines. Source compiles
with Microsoft C 5.0 or later on the
PC; other systems need 1 MB mem-
ory and a C compiler supporting
U N I X standard 110. Media is 360K
5-114" P C floppy disks; other formats
at extra cost.

H Upgrades : If you have Turbo-
Release 2.0, you can upgrade

the executahles for only $40. If you
have the source distribution, upgrade

both executables and source for $80.
Or, get either applicable upgrade free
when you buy the AP-TEX fonts (see
facing page) for $200!

H No-risk t r i a l offer: Examine
the documentation and run the P C
T u r b o w for 10 days. If you a re not
satisfied, return it for a 100% refund
or credit. (Offer applies to P C exe-
cu tab le~ only.)

H F r e e Buyer ' s Guide: Ask
for the free, 70-page Buyer's Guide
for more details on Turbo'l$J and
dozens of QJ- re la ted products: pre-
viewers, QJ- to-FAX and w - t o -
Ventura/Pagemaker translators, op-
tional fonts, graphics editors, pub-
lic domain QJ accessory software,
books and reports.

O r d e r i n g T u r b o w

Ordering Turbo% is easy and deliv-
ery is fast, by phone, FAX, or mail.
Terms: Check with order (free media
and ground shipping in US), VISA,
Mastercard (free media, shipping ex-
tra); Net 30 to well-rated firms and
public agencies (shipping and media
extra). Discounts available for quan-
tities or resale. International orders
gladly expedited via Air or Express
Mail.

T h e K i n c h C o m p u t e r C o m p a n y

PUBLISHERS OF TuRBoT)$Y
5 0 1 S o u t h M e a d o w S t r e e t

I t h a c a , N e w York 14850 U S A
T e l e p h o n e (607) 273-0222

FAX (607) 273-0484

AP-TEX Fonts Times Roman

485 fonts identical to
Times Bold

Adobe Postscript Fonts for $200 Times Italic

Get ready for the quality of Adobe Postscript
Times Bold Italic

fonts for your T~;.x documents and non-post- Helvetica
Script printer! i? you use any brand of 'I$$ with Helvef ica Bold
an HP LaserJet or DeskJet printer, the AP-
T)$ fonts from Kinch add a wealth of attrac- Helvetica Oblique
tive typefaces identical to the popular Postscript Helvefica Bold Oblique
extended font families.

C o u r i e r
By de-crypting the Adobe coding, we are able C o u r i e r B o l d
to exactly translate the Postscript fonts into
'I$$ font bit map and metric files. These trans- Co uri er Obl qu
lated fonts include the renowned Adobe "hints," C o u r i e r B o l d O b l i q u e
which render the smaller point sizes of the fonts
with remarkable clarity on laser and ink-jet Avant Garde Book
printers. The fonts use the w character set Avant Garde Book Oblique
encoding and font metrics, including full kerning Avant Garde Demi
and ligature programs.

Avant Garde Demi Oblique
The AP-'I$$ fonts, supplied on ten 360K 5-114" B
PC floppy disks, contain 35 typefaces in PK for-

ookman Demi
mat (including TE)[font metric (TFM) files) for Bookman Demi Italic
300 dotslinch laser and ink-jet printers. The
fonts included are identical to the Adobe Post-

Bookman Light
Script implementations of the trade names and Bookman Light Italic
samples shown a t right. The point sizes for each Helvefica Narrow
typeface included are the sizes 5, 6, 7, 8,
9, 10, 11, 12, 14.4, 17.3, 20.7, and 24.9 points. Helvetica Narrow Bold
Headline styles (equal to Times Roman, Hel- Helvefjca Narrow Bold Oblique
vetica, and Palatino, all in bold) also are in-
cluded a t 29.9, 35.8, 43.0, 51.6, 61.9, and 74.3 Helvetica Narrow Oblique
points. New Centurv Schoolbook Roman

The Kinch Computer Company New S~h00lb00k Bold
PUBLISHERS OF TURBO= New Century Schoolbook Italic

501 South Meadow Street
Ithaca, New York 14850

New Century Schoolbook Bold Italic
Telephone (607) 273-0222 Palatin0 Roman

FAX (607) 273-0484 Palatino Bold

Helvet~ca, Palat~no, Times, and New Century Schoolbook are

Palatino Italic
trademarks of Abed Linotwe co I T c Avant Garde. ITc Palatino Bold Italic
Bookman, ITC Zapf ~hanldry , and ITC Zapf Dingbats are
registered trademarks of International Typeface Corporation. Zapf Chnce Y Medium I~u&
LaserJet and DeskJet are trademarks of Hewlett-Padtard Corpc-
ration. Postscript is a registered trademark of . d o h Systems Zapf Dingbats @6~#9@$+%:-0$ *+p+++
Incorporated. is a trademark of the American Math Soci-
ety. T u b o w and AP-TEX are trademarks of Kinch Computer
Company. Prices and specifications subject to change without

Symbol A@T~A~IOZYQ~YCXPXFE$~
notice. Revised ~ e b r u i ~ 8, 1990.

gives you more
than just
economy!

TEX Plus gives you the performance and
features you need at a price you can afford.

Not only is our new 2.0 model faster (up to 40%
faster than 1.8), we've also added support for
EMS and an update to version 3.0 of the TEX
language.

TEX Plus also includes our TEXWR~TE editor, our
TEXPRINT drivers for HP LaserJet and Postscript
printers, and the standard macro packages and
Computer Modern fonts. Plus we've added a
driver for EpsonIFX printers, and the SliTEX
fonts-for only $1 95.

Free Upgrade
And that's not all! We'll provide you with a free
upgrade to our 3.0 model when it's available.
TEX Plus 3.0 will add a built-in previewer with
support for CGA, EGA, VGA and Hercules
adapters, and a Big TEX which provides 4 times
the currently available TEX main memory. TEX
Plus 3.0 will be priced at $249, so take
advantage of this offer and order now. (TEX Plus
3.0 will be available in mid-July).

386 Version
We'll be introducing a new version of TEX
Plus-called TEX Pro-specially designed to
take advantage of your 386 or 486 computer.

TEX Pro will include everything you would
normally get with TEX Plus, including Big TEX,
TEXWRITE, drivers and previewer, all designed to
take advantage of the 386.. TEX Pro will be
available in midJuly and will be priced at $295
with upgrades available from TEX Plus.

Need a good driver?
If you just need a driver for a driver for your HP
LaserJet PlusISeries II/IIP/IlI or PostScript
printer, we've got just what you're looking for.
Our TEXPRINT drivers are fast, full-featured, and
reasonably priced at only $1 29.

Both drivers offer support for landscape printing,
inclusion of graphics (using packages such as
CAPTURE), collating, odd or even page
selection, and include a set of the Computer
Modern and SliTEX fonts. With the HP driver you
also get an HP soft font conversion utility, and
with the PostScript driver you get an AFM to
TFM conversion utility so that you can use both
native and downloaded PostScript fonts.

Ask us about site licenses and our new LAN
license. You'll be pleasantly surprised at how
inexpensive it can be to put a complete TEX
environment on your network.

To take one of our new models for a test drive
just give us a call. All our products carry an
unconditional 30-day money-back guarantee so
you'll never be stuck with a lemon.

Oregon House Software, Inc.,
Box 70, 12894 Rices Crossing Road,
Oregon House, CA 95962
(91 6) 692-1 377

Oregon House Software, Inc.,
Box 27057, 1395 Marine Drive,
West Vancouver, B.C.,
V7T 2x8 Canada
(604) 926-0500

Distributor inquiries welcome.

TEX Plus is a trademark of the American Mathematical
Society. TEX Plus is a trademark of Oregon House
Software, Inc. All other product names are the trademarks or
registered trademarks of their respective holders.

Publishing Companion translates

WordPerfect

It doesn't take a T~Xpert to use TEX.

With Publishing Companion, you can publish documents using TEX with little or no U X
knowledge. Your WordPerfect files are translated into TEX files, so anyone using this simple
word processor can immediately begin typesetting their own documents!

And now, Publishing Companion translates WordPerfect 5.0 and 5.1 files into T@.

Retail Price . $249.00

Academic Discount Price . $199.00

For the power of T@ with the ease of a word processor, Publishing Companion is your
"best friend" for desktop publishing.

For more information to place an order, call or write:
30 West First Ave., Suite 100

Columbus, Ohio 43201
(614) 294-3535

C O M M U N I C A T I O N S = FAX (614) 294-3704

DESKTOP PUBLISHING HAS NEVER BEEN SIMPLER
AND WILL NEVER BE THE SAME

Public Domain T@

The public domain versions of 'J-'ErY software are available from Maria Code - Data Processing

Services by special arrangement with Stanford University and other contributing universities. The
standard distribution tape contains the source of TEX and METAFONT, the macro libraries for

A M - m , BTEX, S l i m and HP m, sample device drivers for a Versetec and LN03 printers,
documentation files, and many useful tools.

Since these are in the public domain, they may be used and copied without royalty concerns. A

portion of your tape cost is used to support development at Stanford University.

Compiled versions of T@ are available for DEC VAXIVMS, IBM CMS, IBM MVS and DEC

TOPS systems. Systems using a standard format must compile 'I)$ with a Pascal compiler.

T$jX Order Form

Distribution tapes: Font Library Tapes (GF files)
- Standard ASCII format - 300 dpi VAXIVMS format
- Standard EBCDIC format - 300 dpi generic format
- Special VAXIVMS format Backup - IBM 382013812 MVS format

- Special DEC 20/TOPS 20 Dumper format - IBM 3800 CMS format
- Special IBM VMICMS format - IBM 4250 CMS format
- Special IBM MVS format - IBM 382013812 CMS format

Tape prices: $92.00 for first tape, $72.00 for each additional tape. Postage: allow 2 Ibs. for each

tape.

Documents:

.................... W b o o k (vol. A) softcover

......... TEX: The Program (vol. B) hardcover

............. METAFONT book (vol. C) softcover

... METAFoNT: The Program (vol. D) hardcover

Computer Modern Typefaces (vol. E) hardcover

........... BTEX document preparation system

WEB language *
m w a r e *
B i b w *
Torture Test for *
Torture Test for METRFONT *
METAFONTware *
Metarnarks *

* published by Stanford University

Price $

30.00

44.00

22.00
44.00

44.00

30.00

12.00

10.00

10.00

8.00

8.00

15.00

15.00

Weight

2

4

2
4

4

2

1

1

1
1

1

1

1

Orders from within California must add sales tax for your location.

Shipping charges: domestic book rate-no charge, domestic priority mail-$1.50/lb, air mail to
Canada and Mexico-$2.00/lb, export surface mail (all countries)-$1.50/lb7 air mail to Europe,

South America-$5.00/lb7 air mail to Far East, Africa, Israel-$7.00/lb.

Purchase orders accepted. Payment by check must be drawn on a U.S. bank.

Send your order to: Maria Code, DP Services, 1371 Sydney Drive, Sunnyvale, CA 94087

FAX: 415-948-9388 Tel.: 415-735-8006.

The Wait Will Soon Be Over!

TEX for the Impatient
Paul W. Abrahams
with Karl Berry and Kathryn A. Hargreaves

If you're eager to find fast answers to common TEX questions, your

wait will soon be over. TEX for the Impatient, a practical hand-

book for TEX, will be available this July!

Clear, concise, and accessible, this book is organized for easy

retrieval of information. It's thoroughly indexed and carefully

designed so you can learn by example. Plus, TEX for the Impatient

is packed with explicit instructions, useful tips and techniques, and

a wealth of lightly humorous and very illuminating examples.

Features include -

Complete descriptions of TEX commands, arranged

for lookup either by function or alphabetically

Clear definitions of essential TEX concepts,

collected in a separate chapter so that the command

descriptions remain brief and accessible

Explanations of common error messages and

advice on solving problems that frequently

Collection of useful

macros (also available

in electronic form)

Hurry! Follow the lead of the

White Rabbit and add TEX
for the Impatient to your set

f TEX resources.

1990 (51375) 384 pp.

Available wherever computer
books are sold.

Publishing Company
1 Jacob Way Reading, MA 01867 617-944-3700

Updated Products
from the American Mathematical Society

AMS-TJ~~X Version 2.0

AMS-W, the macro package that simplifies the typesetting of complex mathematics, has been updated

to version 2.0. AMS-W is intended to be used in conjunction with AMSFonts 2.0 (see below). However,
AMS-W can also be used without AMSFonts. AMS-W is available on IBM or Macintosh diskettes-

either format may be uploaded to many mainframe computers. Prices: $30 list, $27 AMS member. A free

upgrade is available (until September 1, 1990), for those who have purchased a previous version.

AMSFonts Version 2.0

AMSFonts 2.0 are designed for use with either A,wS-w 2.0 or Plain W . AMSFonts 2.0 cannot be

used with previous versions of A M S - w . Two distributions of fonts are available: one for use on PCs and

mainframes (with any implementation of w), the other for use on a Macintosh with Textures. The fonts

included on these distributions are:

Font
Name Description

CMEX

CMCSC
CMMIB

CMBSY

EURB
EURM

EUFB
EUFM

EUSB

CM Math Extension
CM Caps and Small Caps

CM Math Italic Boldface

CM Bold Symbols
Euler Cursive Boldface

Euler Cursive Medium

Euler Fraktur Boldface
Euler Fraktur Medium

Euler Script Boldface

Point Font
Sizes Name Description

Point
Sizes

EUSM Euler Script Medium 5-10
EUEX Euler Compatible Extension 7-10

MSAM Symbols 5-10
MSBM Symbols (w/Blackboard Bold) 5-10

WNCYR Cyrillic Upright 5-lo**

WNCYI Cyrillic Italic 5-lo**

WNCYB Cyrillic Boldface 5-10"

WNCYSC Cyrillic Caps and Small Caps lo**
WNCYSS Cyrillic Sans Serif 8-lo*'

* 10 point is included in the standard distribution.

* * Developed by the University of Washington

AMSFonts for use on a PC or mainframe

0 Font Resolution: 118. 180, 240, 300. 400 dpi (one resolution per order).

0 Magnification: All the standard w magnifications are included. The standard magnifications are: 100.

109.5, 120. 144. 172.8, 207.4, and 248.8%.

0 Format: high-density 5.25"diskettes.

0 Prices: $45 list. $41 AMS member. A free upgrade is available (until September 1, 1990), for those who
have purchased a previous version.

AMSFonts for use on a Macintosh with Textures

0 Font Resolution: 72. 144, and 300 dpi (all resolutions included in each order).

0 Magnification: The standard distribution includes fonts a t 100% and 120%. An extended distribution,

containing all the standard w magsteps, is also available.

0 Format: double-sided double-density 3.5" diskettes.

Prices: Standard (magsteps 0-1): $30 list, $27 AMS member. Extended (magsteps 0-5): $45 list, $41 AMS
member. A free upgrade is available (until September 1, 1990), for those who have purchased a

previous version.

SHIPPING AND HANDLING CHARGE: $8 per order in the US and Canada, $15 elsewhere.

HOW TO ORDER: Prepayment is required. Send orders to: American hlathematical Society, P. 0.

Box 1571, Annex Station, Providence. RI 02901. When ordering AMSFonts for the PC. specify desired

resolution. For more information: Call the AMS at (401) 455-4166, or (800) 321-4AMS in the continental
U.S. and Canada, or write to: 7$X Library. American Mathematical Society, P.O. Box 6248, Providence. RI
02940.

Do more and do it better
with new PCTEX.
PC Tfi, PC Tfl386 & Big PC Tfl386, Versions 3.0

This all adds up to...
More power, greater performance, and increased memory capacity for
the latest versions of popular macro packages like @TEX and AMS-TEX.
And all three new PCTEX products feature the character sets and
hyphenation tables to handle even the most complex European languages.

Order today. Call (415) 388-8853.

P E R S O N A L

Feat ure/Specification

Page & Memory Capacity mem-max

You won't see "7$J Capacity Exceeded!

Hyphenation Table Size trie-size

Space for hyphenation patterns

Trie Op Size trie-op-size

Complexity of hyphenation patterns

Maximum Trie Ops Per Language
Especially important for Dutch and German hyphenation

Buffer Size buf -size

Maximum # of characters on input lines

Stack Size stack-size

Maximum # of simultaneous input sources

Maximum # of Strings max-strings

String Pool pool-size

Maximum # of characters in strings

Save Size save-size

Space for saving values outside current group

Maximum # of Commands hash-size

Minimum Free RAM Required

Minimum Free RAM Recommended
Memory recommended for optimum performance

Font Memory f ont-mem-size

For TFM data storage

Maximum Fonts Per Job font-max

List Price

Order yours today!

Upgrade Price

From PC TEX 2.93 or earlier version

I N C
12 Madrona Avenue
Mill Valley, CA 94941

P C w
2.93

65534

(1.00)

15000

(1.00)

255

(1.00)

N/A

1024

(1.00)

200

(1.00)

4500

(1.00)

50000

(1.00)

600

(1 .OO)

3000

(1.00)

385K

(1.00)

550K

(1.00)

51199

(1.00)

127

(1.00)

$249

(1.00)

$50

(1.00)

PC=
3.0

131070

(Double!)

30000

(Double!)

1024

(4.02)

512

1500

(1.46)

200

(1.00)

5000 1

(1.11)

50000

(1.00)

2000

(3.33)

5000

(1.66)

385K

(1.00)

550K

(1.00)

65534

(1.28)

127

(1.00)

$249

(1.00)

$50

(1.00)

PCTEX is a registered TM of Personal TEX, Inc. TEX is an American Mathematical Society TM. Site licenses available to qualified organizations. Inquire about PTI distributorsh~ps.
This ad was typeset using PCTEX and the T A E Macro Package with Bitstream and Computer Modern fonts.

PC=/386
3.0

131070

(Double!)

30000

(Double!)

1024

(4.02)

512

1500

(1.46)

200

(1.00)

5000

(1.11)

60000

(1.20)

2000

(3.33)

5000

(1.66)

1.3M

(3.38)

1.3M

(2.36)

65534

(1.28)

127

(1.00)

$295

(1.18)

$99

(1.98)

Big

PC'I)i$/386
3.0

262140

(Quadruple!)

60000

(Quadruple!)

2048

(8.03)

512

3000

(2.93)

300

(1.50)

10000

(2.22)

60000

(1.20)

4000

(6.67)

10000

(3.33)

1.3M

(3.38)

4.OM

(7.27)

65534

(1.28)

255

(2.00)

$349

(1.40)

$149

(2.98)

TYPESETTING: JUST

2 50
PER PAGE!

Send us your TEX DVI files and we will typeset your material
at 2000 dpi on quality photographic paper - $2.50 per page!

Choose from these available fonts: Computer Modern,
Bitstream FontwareTM, and any METAFONT fonts. (For each
METAFONT font used other than Computer Modern, $15
setup is charged. This ad was composed with PCTEXB and
Bitstream Dutch (Times Roman) fonts, and printed on RC
paper at 2000 dpi with the Chelgraph IBX typesetter.)

And the good news is: just $2.50 per page, $2.25 each for
100+ pages, $2.00 each for 500+ pages! Laser proofs $SO
per page. ($25 minimum on all jobs.)

Call or write today for complete information, sample
prints, and our order form. TYPE 2000,16 Madrona Avenue,
Mill Valley, CA 94941. Phone 4151388-8873.

T Y P E

TEX Device Interfaces for VMS

Postscript

LaserJet

Northlake Software
81 2 SW Washington, Suite 11 00
Portland, Oregon 97205 USA

503-228-3383 fax 503-228-5662

The VMS TEX speclalists

I!!!!

TEX Users
Computer Composition Corporation offers the
following services to those who are creating
their technical files using TEX:

Convert your DVI files to fully paginated typeset pages on
our APS-5 phototypesetters at 1400 dpi resolution.

Files can be submitted on magnetic tape or PC diskettes.

Provide 300 dpi laser-printed page proofs which simulate
the typeset page. (Optional service $1.50 per page)

Macro writing and keyboarding from traditionally prepared
manuscripts in several typeface families via the TEX
processing system. Send us your manuscript for our review
and quotation.

Full keylining and camera work services, including
halftones, line art, screens and full-page negatives or
positives for your printer.

Quick turnaround (usually less than 48 hours!) on
customer supplied DVI files of 500 typeset pages or less.

From DVI files: first 100 typeset pages at $4.75 per page;
100 pages and over at $3.50 per page. Lower prices for
slower turnaround service.

For further information and / or a specific quotation,

call or write Frank Frye or Tim Buckler

-

ArborText's T@ products reflect more than
10 year's experience and the depth of our
professional development staff. Our T@
programs are flexible, fast, and loaded with
features. Our work with TEX 3.0 and virtual
fonts is yet another example of how our
experience keeps us on the leading edge of
T@ development. Be sure and see our
demonstration at the TUG Conference in
June.

ArborText continues its tradition of dedica-
tion to its customers with a knowledgable
and responsive customer support staff, the
ArborText Tfi Software Newsletter, and fre-
quent software upgrades. ArborText is also a
distributor of T@ support products including
~athernat ica*~ and ~ i ~ a a k . ~ ~

ArborText offers more T@ : products for more
platforms than anyone. Whether you work or
a Sun, Apollo, HP, DEC or PC, ArborTexl
has the TEX solution for you. ArborText has
added 5 new options since January, 1990:
Introducing Preview for XI1 on Sun, Apollo.
HP 9000J3xx and VAXNMS DEC Windows.
Watch for Preview on DEC3100 in June!

See You
for

11th Annual
the

TUG Meeting

- -

535 W . Wllllam St., Ann Arbor, MI 48103, (313) 996-3566, FAX (313) 996-3573

All product names are trademarks or registered mademarks of the" respectwe owners

ARBORTEXT INC.

CAPTURE
Put Graphics in TEX
CAPTURE is the graphics solution for PC-based TEX.

CAPTURE places graphics in TEX documents produced on

IBM PC systems with Hewlett-Packard LaserJet printers

(and compatibles). Doesn't require PostScript.

Designed for TEX. Carefully removes all 28 LaserJet con-

trol codes that disrupt TEX. Tested with PCTEX, ,uTEX,

and TEXPLUS. This ad was made using CAPTURE and

TEXPLUS on an HP LaserJet.

"Captures" the graphics generated by any application pro-

gram, including "paint" programs, circuit design, CAD, sci-

entific data plotters, optics design, terminal emulators, clip

art, spreadsheets, databases - anything that supports the

LaserJet.

Supports PostScript! Graphics can be converted t o the

PK /TFM format o f TEX, and used with PostScript drivers.

View you; graphics on screen previewers.

Graphics can be manipulated by TEX! Plots are defined as

an \hbox() or \mbox{). Do anything with graphics you

can do with type; graphics and text are handled the same.

Price: $137.

Introductory offer: $115.

Prime Distributor:

Micro Programs, Inc.

251 Jackson Avenue

Syosset, NY 11791

(516) 921-1351

Other Distributors:

Oregon House Software

TEX Users Group

GRAVITY DATA (U3NT(WR INTERVAL = 0.761

Graphics Acknowledgements: Top figure produced on PC Paintbrush, by Z-Soft, Inc. Middle figure produced
on SURFER, by Golden Software, Inc. Lower figure produced on OPTEC-11/87 by SCIOPT Enterprises, Inc.

Trademarks: Hewlett-Packard and LaserJet are trademarks of Hewlett-Packard, Inc., I B M and PC are trade-
marks of International Business Machines, Inc., PostScript is a trademark o f Adobe Systems, Inc., PCTEX is a
trademark of Personal TEX, Inc., ~ T E X is a trademark o f ArborText, Inc., TEXPLUS is a trademark o f Oregon
House Software, Inc. CAPTURE is a trademark o f Wynne-Manley Software, Inc. TEX is a trademark of the
American Mathematical Society.

COMPUTERS & TYPESETTING:

Errata and Changes

As of 25 March 1990

This document contains all known errata and changes to Computers & Typeset-
ting, Volumes A-E, as compiled by the T$$ Project at Stanford, from 20 Febru-
ary 1989 through the date shown above. An up-to-date log of changes is available
on-line to users with Internet access. Changes can be found in the files

rn /tex/errata: errata. one (through 22 August 1984),
/tex/errata:errata.two (through 6 January 1986),

rn /tex/errata: errata. three (through 15 June 1987),
rn /tex/errata: errata. f our (through 20 February 1989),
rn /tex/errata: errata.f ive (through 30 September 1989), and
a /tex/errata: errata. tex (the most recent changes).

All errata files are on the LaBrea system at Stanford (@LABREA .Stanf ord.Edu).
The full current errata list is published only once a year, and distributed

with an appropriate issue of TUGboat. Supplements appear as necessary in
subsequent TUGboat issues. The date of the last entry in each section of this
document is listed in the contents, below, so that it is not necessary to check the
detail to see whether anything has been added.

CONTENTS

Colophon for Computers & Typesetting 2

Bugs in Computers & Typesetting

Volume A : The w b o o k (24 March 1990) 3, 17
Volume B : !&$: The Program (31 August 1989) 12
Volume C : The METRFONTbook (24 March 1990) 13, 20
Volume D : METRFONT: The Program

(31 August 1989) 15
Volume E : Computer Modern Typefaces

(13 March 1990) 16

Changes to the programs and fonts

(ver. 3.0, 25 March 1990) 22
METAFONT (ver. 2.0, 25 March 1990) 22
Computer Modern fonts (25 March 1990) 22

Distributed with TUGboat Volume 11 (1990), No. 2. Published by

TEX Users Group
P. 0. Box 9506

Providence, R.I. 02940-9506, U. S. A.

Colophon for Computers & Typesetting

The five volumes of Computers & Typesetting were composed by l&X (w 8 2)

using the Computer Modern (CM85) fonts as produced by METAFONT (META-

FONT84). Thus, the books themselves describe exactly how they were prepared

for printing. Camera-ready copy was set on an Autologic APS Micro-5 typeset-
ter at Stanford University from font images resident on the host computer and

shipped to the typesetter a character at a time, as needed.

The proof-style illustrations in Volume E were also set on the Micro-5, each

figure comprising two images that were combined photographically with the text

material after the images of the character shapes had been screened. The "color

separation" to produce those proofs was done by a program written for that
purpose.

All the copy on the cover, spine, and book jackets was also typeset by the
APS. using Computer Modern fonts, except for the ISBN number.

The books were printed on Finch Opaque, basis 50 lb. acid-free paper, which

has a life expectancy of several hundred years. The hardcover edition was printed

and bound by Halliday Lithograph Corp., Hanover, Massachusetts, as were the
spiral-bound editions of The m b o o k and The METRFONTbook.

Corrections to earlier editions

Corrections and changes to the AMSIDigital Press edition of the and META-

FONT manual (December 1979) and to the m 7 8 and METAFONT79 programs
are described in the booklet w and METAFONT: Errata and Changes dated

September 1983 (originally distributed with TUGboat Volume 4, No. 2). This

document also contains a comparison of w 7 8 (formerly known as m 8 0) with

w 8 2 .

Errata to editions of The w b o o k published prior to 1986 are described in

The m b o o k : Errata and Changes dated February 1986 (originally distributed

with TUGboat Volume 7, No. 1).

Periodically, collections entitled Computers & Typesetting: Errata and

Changes are compiled and distributed, containing errata as well as listings of
changes to TeX.WEB, MF.WEB and to the METAFONT sources of the Computer

Modern fonts from the documentation files TeX82. BUG, MF84. BUG and CM85. BUG

for the corresponding period. Collections for these periods have appeared so

far: through 15 June 1987; 16 June 1987 through 20 February 1989; the present
collection, beginning 21 February 1989.

These documents are available from TUG; for information on how to obtain

copies, write to TUG at the address on the front cover.

Page 3 : Bugs in Computers & Typesetting 25 March 1990

Bugs in Computers & Typesetting

25 March 1990

This is a list of all corrections made to Computers & Typesetting, Volumes A-El between 20

February 1989 and 30 September 1989 (when T)$ Version 3.0 was fully defined and The W b o o k

went into its seventeenth printing). Corrections made to the softcover version of The W b o o k

are the same as corrections to Volume A. Corrections to the softcover version of The MET%

FONTbook are the same as corrections t o Volume C. Some of these corrections have already

been made in reprintings of the books. Several minor changes t o Volumes A and C are not shown

here because they simply make room for the more substantive changes needed to describe the new

features of l$$ Version 3.0 and METAFONT Version 2.0. Hundreds of changes will soon be made

to Volumes B and D because of the upgrades t o and METAFONT; it will unfortunately be

impossible to document all of those changes. Therefore, readers who need up-to-date information

on the w and METAFONT programs should refer to the WEB source files until new printings of

Volumes B and D are issued.

Corrections prior to 20 February 1989 were published by the T)$ Users Group and are

available from the TUG office.

Volume A, in general (9/23/89)

[Change '127' to '255' and '128' to '256' in contexts referring to character codes.
This happens on pages 37(twice), 39, 41, 43, 44(twice), 48, 93, 154, 277, 305(twice),
308(twice), 313, and 343. Also change '7-bit' to '8-bit' on pages 214 and 277.1

Page A23, line 16 (9123189)

T h i s is TeX, Vers ion 3.0 (p re loaded f o r m a t = p l a i n 89.7.15)

Page A34, new copy for bot tom of page (9/23/89)

If you use TEX format packages designed by others, your error messages
may involve many inscrutable two-line levels of macro context. By setting

\errorcontextlines=O at the beginning of your file, you can reduce the amount of
information that is reported; 7&X will show only the top and bottom pairs of context
lines together with up to \ e r ro r context l i n e s additional two-line items. (If anything
has thereby been omitted, you'll also see '. . .'.) Chances are good that you can
spot the source of an error even when most of a large context has been suppressed; if
not, you can say 'l\errorcontextlines=lOO\oopsl and try again. (That will usually
give you an undefined control sequence error and plenty of context.) Plain QX sets

Page A45, lines 9-15 (9/23/89)

'- has an internal code between 64 and 127, subtracts 64 from the code; if the
code is between 0 and 63, QX adds 64. Hence code 127 can be typed - -?, and
the dangerous bend sign can be obtained by saying {\manual--?). However, you must
change the category code of character 127 before using it, since this character ordinarily
has category 15 (invalid); say, e.g., \catcode1\--?=12. The - ^ notation is different from
\char, because combinations are like single characters; for example, it would not
be permissible to say \catcode'\charl27, but symbols can even be used as letters
within control words.

Page 4 : Bugs in Computers & Typesetting 25 March 1990

Page A45, new copy before line 20 (9/23/89)

There's also a special convention in which - - is followed by two "lowercase 9 hexadecimal digits," 0-9 or a-f. With this convention, all 256 characters are

obtainable in a uniform way, from --00 to - - f f . Character 127 is --7f.

[Also remove one of the two dangerous bend signs on line 20.1

Page A45, bottom paragraph and footnote (9/23/89)

z z People who install T)$ systems for use with non-American alphabets can QQ make T)$ conform to any desired standard. For example, suppose you have a
Norwegian keyboard containing the letter ae, which comes in as code 241 (say). Your lo-

cal format package should define \cat code' ae=ll; then you could have control sequences
like \saertrykk. Your T@ input files could be made readable by American installa-

tions of T)$ that don't have your keyboard, by substituting ^-f 1 for character 241.
(For example, the stated control sequence would appear as \ s^-f l r t rykk in the file;

your American friends should also be provided with the format that you used, with
its \catcode'^-f l = l l .) Of course you should also arrange your fonts so that T)$'s

character 241 will print as ae; and you should change T)$'s hyphenation algorithm so

that it will do correct Norwegian hyphenation. The main point is that such changes are

not extremely difficult; nothing in the design of Tj+ limits it to the American alphabet.

Fine printing is obtained by fine tuning to the language or languages being used.

European languages can also be accommodated effectively with only a limited

character set. For example, let's consider Norwegian again, but suppose that

[Now continue with the text on line 11 of page 46.1

Page A47, lines 9-21 (9/23/89)

2 2 If 7&X sees a superscript character (category 7) in any state, and if that charac- QB ter is followed by another identical character, and if those two equal characters

are followed by a character of code c < 128, then they are deleted and 64 is added to
or subtracted from the code c. (Thus, " - A is replaced by a single character whose
code is 1, etc., as explained earlier.) However, if the two superscript characters are im-
mediately followed by two of the lowercase hexadecimal digits 0123456789abcdef, the

four-character sequence is replaced by a single character having the specified hexadec-
imal code. The replacement is carried out also if such a trio or quartet of characters is

encountered during steps (b) or (c) of the control-sequence-name scanning procedure

described above. After the replacement is made, TEX begins again as if the new char-
acter had been present all the time. If a superscript character is not the first of such a

trio or quartet, it is handled by the following rule.

2 2 If 7&X sees a character of categories 1, 2, 3, 4, 6, 8, 11, 12, or 13, or a character QQ of category 7 that is not the first of a special sequence as just described, it

converts the character to a token by attaching the category code, and goes into state M.
This is the normal case; almost every nonblank character is handled by this rule.

Page A48, line 15 (9/23/89)

the input line $xA2$" \TeX a-62--6'?

Paee ~ 5 4 . third line from the bot tom (9123189)

For example, a well-designed TJ$ font for French might well treat accents as lig-

Pane A76, lines 3-5 from the bot tom (9123189)

does not assign any value to \sf code'042.

Page 5 : Bugs in Computers & Typesetting

Page A107, new copy for top of page (9123189)

25 March 1990

z z If you want to avoid overfull boxes at all costs without trying to fix them manu- QQ ally, you might be tempted to set tolerance=10000; this allows arbitrarily bad

lines to be acceptable in tough situations. But infinite tolerance is a bad idea, because

TEX doesn't distinguish between terribly bad and preposterously horrible lines. Indeed,

a tolerance of 10000 encourages m to concentrate all the badness in one place, making
one truly unsightly line instead of two moderately bad ones, because a single "write-

off" produces fewest total demerits according to the rules. There's a much better way

to get the desired effect: has a parameter called \emergencystretch that is added
to the assumed stretchability of every line when badness and demerits are computed,

in cases where overfull boxes are otherwise unavoidable. If \emergencystretch is posi-
tive, 'QX will make a third pass over a paragraph before choosing the line breaks, when

the first passes did not find a way to satisfy the \pretolerance and \tolerance. The
effect of \emergencystretch is to scale down the badnesses so that large infinities are

distinguishable from smaller ones. By setting \emergencystretch high enough (based

on \hsize) you can be sure that the \tolerance is never exceeded; hence overfull boxes

will never occur unless the line-breaking task is truly impossible.

Page A116, lines 11-15 (617189)

If you have two or more \topinsert or \pageinsert commands in quick suc-

cession, 7l$X may need to carry them over to several subsequent pages; but

they will retain their relative order when they are carried over. For example, suppose
you have pages that are nine inches tall, and suppose you have already specified 4 inches

of text for some page, say page 25. Then suppose you make seven topinserts in a row, of

Page A125, lines 13-29 (9/23/89)

When the best page break is finally chosen, Q X removes everything after the 88 chosen breakpoint from the bottom of the "current page," and puts it all back
at the top of the "recent contributions." The chosen breakpoint itself is placed at the

very top of the recent contributions. If it is a penalty item, the value of the penalty

is recorded in \outputpenalty and the penalty in the contribution list is changed to
10000; otherwise \outputpenalty is set to 10000. The insertions that remain on the

current page are of three kinds: For each class n there are unsplit insertions, followed
possibly by a single split insertion, followed possibly by others. If \holdinginserts > 0,

all insertions remain in place (so that they might be contributed again); otherwise they

are all removed from the current page list as follows: The unsplit insertions are ap-

pended to \boxn, with no interline glue between them. (Struts should be used, as in
the \vfootnote macro of Appendix B.) If a split insertion is present, it is effectively

\vsplit to the size that was computed previously in Step 4; the top part is treated

as an unsplit insertion, and the remainder (if any) is converted to an insertion as if

it had not been split. This remainder, followed by any other floating insertions of
the same class, is held over in a separate place. (They will show up on the "current
page" if \showlists is used while an \output routine is active; the total number of
such insertions appears in \insertpenalties during an \output routine.) Finally, the

remaining items before the best break on the current page are put together in a \vbox

Page A131, line 12 (9/22/89)

work fine; but sometimes you want to have uniformity between different members of a

Page -4155, lines 3-5 (9/23/89)

when it encounters a character that is given explicitly as \char(number).

Page 6 : Bugs in Computers & Typesetting

Page A214, lines 19-24 (9/23/89)

\the(special register), where (special register) is one of the integer quantities

\prevgraf, \deadcycles, \ inser tpenal t ies , \inputlineno, \badness, or \parshape

(denoting only the number of lines of \parshape); or one of the dimensions \pagetotal ,

\pagegoal, \pagestretch, \pagef i l s t r e t c h , \pagef i l l s t r e t c h , \pagef i l l l s t r e t c h ,

\pageshrink, \pagedepth. In horizontal modes you can also refer to a special integer,

\the\spacef ac tor ; in vertical modes there's a special dimension, \the\prevdepth.

Paae A229, new c o ~ v after line 11 /9/23/89)

T)$ will report the badness of glue setting in a box if you ask for the numeric

quantity \badness after making a box. For example, you might say

The badness is between 0 and 10000 unless the box is overfull, when \badness=1000000.

Page A271, lines 17-20 (9/23/89)

/ (countdef token) / \count (8-bit number) I (codename) (8-bit number)

I (chardef token) / (mathchardef token) I \parshape I \inputlineno

I \hyphenchar(font) 1 \skewchar(font) I \badness

Page A272, lines 3-4 (9/23/89)

value is between 0 and 2' - 1 = 255; a (4-bit number) is similar.

Page A273, insert after lines 11, 20, 21, 21, 38 (9/23/89)

\holdinginserts (positive if insertions remain dormant in output box)
\language (the current set of hyphenation rules)
\lefthyphenrnin (smallest fragment at beginning of hyphenated word)
\righthyphenmin (smallest fragment at end of hyphenated word)
\errorcontextl ines (maximum extra context shown when errors occur)

Page A274, insert after line 4 (9/23/89)

\emergencystretch (reduces badnesses on final pass of line-breaking)

Page A275, line 13 (9/23/89)

That makes a total of 103 parameters of all five kinds.

Pane A283, line 14 (9/23/891

Page A286, lines 3-12 from the bot tom (9/23/89)

(letter), (otherchar), \char(8-bit number), (chardef token), \noboundary. The

most common commands of all are the character commands that tell T)$ to append a

character to the current horizontal list, using the current font. If two or more commands

of this type occur in succession, 'I)$ processes them all as a unit, converting to ligatures

and/or inserting kerns as directed by the font information. (Ligatures and kerns may be
influenced by invisible "boundary" characters at the left and right, unless \noboundary

appears.) Each character command adjusts \spacef actor, using the \sf code table as

described in Chapter 12. In unrestricted horizontal mode, a '\discretionary(}{)I)'

item is appended after a character whose code is the \hyphenchar of its font, or after

a ligature formed from a sequence that ends with such a character.

25 March 1990

Page 7 : Bugs in Computers & Typesetting 25 March 1990

P a ~ e A287. insert after line 19 (9123189)
-

\setlanguage(number). See the conclusion of Appendix H.

Page A289, lines 9-14 from t h e bot tom (9123189)

2'' - 1. This is done by replacing the character number by its \mathcode value. If the
\mathcode value turns out to be 32768 = "8000, however, the (character) is replaced
by an active character token having the original character code (0 to 255); TQX forgets
the original (character) and expands this active character according to the rules of
Chapter 20.

Page A290, insert before 13th line from bot tom (9/23/89)

\noboundary. This command is redundant and therefore has no effect; bound-

ary ligatures are automatically disabled in math modes.

Page A296, line 16 from the bot tom (9/22/89)

[There should be a '-' just above the '3' in the line below. This was mistakenly

dropped by the printer some time during 1985; it was correct in the first two

printings and it has always been correct inside the computer!]

Page A309, lines 3-5 (9/23/89)

8.4. $3 xll '7 212 $3 -13 ,lo biz vlz ,lo The final space comes from the
(return) placed at the end of the line. Code --6 yields v only when not followed by 0-9
or a-f. The initial space is ignored, because state N governs the beginning of the line.

Pane A314, line 27 (9123189)

The English word 'eighteen' might deserve similar treatment. W ' s hyphenation al-
gorithm will not make such spelling changes automatically.

Page A318, line 19 (3/3/89)

Page A330, line 3 (8/25/89)

Page A336, lines 4-8 (9/23/89)

badness rating of a box is at most 10000, except that the \badness of an overfull box
is 1000000. INITEX initializes \ tolerance to 10000. thereby making all line breaks
feasible. Penalties of 10000 or more prohibit breaks; penalties of -10000 or less make
breaks mandatory. The cost of a page break is 100000, if the badness is 10000 and if
the associated penalties are less than 10000 in magnitude (see Chapter 15).

Page 8 : Bugs in Computers & Typesetting

Page A336, lines 2-16 (9/23/89)

25 March 1990

ifies characters whose codes differ by 64 from the codes of ?, @, A; this convention

applies only to characters with ASCII codes less than 128. There are 256 possible

characters, hence 256 entries in each of the \ca t code, \mathcode, \kcode , \uccode,

\sf code, and \delcode tables. All \ kcode , \uccode, and \char values must be less

than 256. A font has at most 256 characters. There are 256 \box registers, 256 \count

registers, 256 \dimen registers, 256 \skip registers, 256 \muskip registers, 256 \toks

registers, 256 hyphenation tables. The "at size" of a font must be less than 2048pt,

i.e., 2'' pt. Math delimiters are encoded by multiplying the math code of the "small

character" by 212. The magnitude of a (dimen) value must be less than 16384pt,

i.e., 214 pt; similarly, the (factor) in a (fil dimen) must be less than 214. A \mathchar

or \spacef ac tor or \sf code value must be less than 215; a \mathcode or \mag value

must be less than or equal to 215, and 215 denotes an "active" math character. There

are 216 sp per pt. A \delcode value must be less than zz4; a \delimiter , less than

2'7 The \end command sometimes contributes a penalty of -230 to the current page.

A (dimen) must be less than 230 sp in absolute value; a (number) must be less than 231

in absolute value.

Page A348, line 12 from the bottom (9/23/89)

Page A364, insert before line 18 from the bot tom (9/23/89)

\lefthyphenmin=2 \righthyphenmin=3 % disallow x- or -xx breaks

Pane A364. line 5 from the bottom (9123189)

\def\frntna~ne(~lain)\def\fmtversion(3.0) % i d e n t i f i e s the current format

Page A369, insert before line 5 from the bot tom (9/23/89)

Modern keyboards allow 256 codes to be input, not just 128; so 'I$$ represents

characters internally as numbers in the range 0-255 (i.e., '000-'377, or "00-"FF).

Implementations of T$jX differ in which characters they will accept in input files and

which they will transmit to output files; these subsets can be specified independently. A

completely permissive version of 'I$$ allows full 256-character input and output; other

versions might ignore all but the visible characters of ASCII; still other versions might

distinguish the tab character (code '01 1) from a space on input, but might output each

tab as a sequence of three characters --I.

Page A370, lines 3-7 (9/23/89)

close as possible to the ASCII conventions. (b) Make sure that codes '041 -'046, '060-

'071 , '14 1 -'I4 6 , and '1 60 - '1 71 are present and that each unrepresentable internal

code < '200 leads to a representable code when '100 is added or subtracted; then

all 256 codes can be input and output. (c) Cooperate with everyone else who shares
the same constraints, so that you all adopt the same policy. (See Appendix J for
information about the Users Group.)

Page A370, bot tom line (9/23/89)

doesn't matter if these symbols have their plain m meanings or not. (6) There is

a special convention for representing characters 0-255 in the hexadecimal forms '-00-

- - f f , explained in Chapter 8. This convention is always acceptable as input, when -
is any character of catcode 7. Text output is produced with this convention only when

representing characters of code 2 128 that a installer has chosen not to output
directly.

Page 9: Bugs in Computers & Typesetting

Page A385, line 8 (5/14/89)

25 March 1990

Page A400, line 18 from the bot tom (9123189)

page prematurely if you want to pass a signal. (Set \holdinginserts positive to pass

a signal when the contents of \box255 will be sent back through the page builder again,
if any insertions are present.)

Page A419, lines 4-6 (9/23/89)

shortened or lengthened anyway; book preparation with QX, as with type, encourages
interaction between humans and machines.) The lines of the quotations are set flush

right by using \obeylines together with a stretchable \ le f tskip:

Page A444, lines 21-26 (9123189)

following one, using the specified family and the current size, then insert the ligature

character and continue as specified by the font; two characters may collapse into one, or
a new character may appear. Otherwise if the font information shows a kern between

the current symbol and the next, insert a kern item after the current Ord atom and
move to the next item after that. Otherwise (i.e., if no ligature or kern is specified
between the present text symbol and the following character), go to Rule 17.

Page A453. lines 12-14 from the bottom (9/23/89)

Exception: The character '.' is treated as if it were a (letter) of code 0 when it ap-

pears in a pattern. Code 0 (which obviously cannot match a nonzero \lccode) is
used by to represent the left or right edge of a word when it is being hyphen-
ated.

Page A454, lines 7-15 from the bot tom (9/23/89)

2 2 If a trial word 11 . . . 1 , has been found by this process, hyphenation will still 66 be abandoned unless n 2 X + p, where X = max(l,\lefthyphenmin) and
p = max(l,\righthyphenmin). (Plain TJ$ takes X = 2 and p = 3.) Further-

more, the items immediately following the trial word must consist of zero or more char-
acters, ligatures, and implicit kerns, followed immediately by either glue or an ex-

plicit kern or a penalty item or a whatsit or an item of vertical mode ma-
terial from \mark, \ i n se r t , or \vadjust. Thus, a box or rule or math for-

mula or discretionary following too closely upon the trial word will inhibit hyphen-

ation. (Since TJ$ inserts empty discretionaries after explicit hyphens, these rules im-
ply that already-hyphenated compound words will not be further hyphenated by the al-

gorithm.)

Page A455, new copy after line 1 3 (9/23/89)

2 2 So far we have assumed that QX knows only one style of hyphenation at a QB time; but in fact ~ j j ~ can remember up to 256 distinct sets of rules, if you have
enough memory in your computer. An integer parameter called \language selects the

rules actually used; every \hyphenation and \pat terns specification appends new rules
to those previously given for the current value of \language. (If \language is nega-
tive or greater than 255, QX acts as if \language = 0.) All \pa t terns for all lan-

guages must be given before a paragraph is typeset, if INITEX is used for typesetting.

Page 10 : Bugs in Computers & Typesetting 25 March 1990

2 z is able to work with several languages in the same paragraph, be- %? cause it operates as follows. At the beginning of a paragraph the "cur-
rent language" is defined to be 0. Whenever a character is added to the cur-
rent paragraph (i.e., in unrestricted horizontal mode), the current language is com-
pared to \language; if they differ, the current language is reset and a whatsit node spec-
ifying the new current language is inserted before the character. Thus, if you say
'\def \french{\languagel. . .)' and .mix {\french f ranc/a is) with English',
will put whatsits before the f and the w; hence it will use language 1 rules when hy-
phenating f ranc/a is , after which it will revert to language 0. You can insert the what-
sit yourself (even in restricted horizontal mode) by saying \setlanguage(number): this
changes the current language but it does not change \language.

Page A459, right column (9123189)

*\badness, 214, 229, 271.

Page A461, right column (9/23/89)

caron, see hbtek.

Page A464, line 10 (5/15/89)

displays, 87, 103, 139-145, 166-1 67,

Page A464, right column (9/23/89)

Page A465, left column (9/23/89)

Page A466, entry for 'fractions' (9/23/89)

[Add page 332 to this entry.]

Page A466, entry for 'French" (9/23/89)

[Add page 455 to this entry.]

Page A467, entry for 'hexadecimal' (9/23/89)

[Add pages 45, 47-48 to this entry.]

Page A467, right column (9/23/89)

Pane A467, bot tom line (9123189)

Page A468, right column (9/23/89)

infinite badness, 97, 107, 111, 229, 317.

Page A468, right column (9123189)

Page A469, entry for kerns (9/23/89)

[Add pages 286 and 444 to this entry.]

Page 11 : Bugs in Computers & Typesetting 25 March 1990

Page A469, left column (9/23/89)

*\language (hyphenation method), 273, 455.

Page A469, right column (9/23/89)

Page A470, entry for ligatures (9/23/89)

[Add pages 286 and 444 t o this entry.]

Page A472, left column (9/23/89)

*\noboundary, 283, 286% 290.

Page A473, right column (9/23/89)

overfull boxes, 27-30, 94, 229, 238,
302-303, 307, 400.

avoiding, 107.

Page A476, left column (9123189)

Page A476, right column (9/23/89)

Page A476, right column (9/23/89)

Page A479. left column (9/23/89)

Page A481, right column, last six entries (9/23/89)

112, 67, 332.
112, in unslashed form, 141, 186.
(4-bit number), 271.
(8-bit number), 271, 276-278.
(15-bit number), 271, 277, 289, 291.
(27-bit number), 271, 289, 291.

Page A483, lines 15 and 21 (9/23/89)

[Delete these two lines, as TUG'S address is no longer c/o AMS.]

Page 12 : Bugs in C o m p u t e r s & T y p e s e t t i n g 25 March 1990

Page Bvii, top two lines (4/21/89)

WEB documenta t ion for four ut i l i ty programs t h a t are o f t en used in conjunct ion

wi th w: POOLtype, TFtoPL, PLtoTF, a n d DVItype.

Page B2, line 32 (6/20/89)

define banner - ThisuisuTeX, uVersionu2. 991 ' { printed when starts)

Page B118, lines 2-4 (3/2/89)

begin if cur-level > level-one then
begin check-full-save-stack; save-type(save-ptr) +- znsert-token;
save-level(save-ptr) t levekzero; save-index(save-ptr) t t ; incr(save-ptr);
end;

Pane B182. line 13 becomes two lines (6120189)

k , kk : small-number; { number of digits in a decimal fraction)
p, q: pointer; {top of decimal digit stack)

Pane B182. line 15 from the bottom (6/20/89)

begin k +- 0; p +- nul l ; get-token; {point-token is being re-scanned)

Page B182, line 11 from the bottom (6 1 ~ 9)

begin q t get-avazl; lznk(q) +- p; znfo(q) t- cur-tok - zero-token; p +- q; zncr (k) ;

Page B182, line 8 from the bottom (6/20/89)

done1 : for kk t k downto 1 do
begin dig[kk - 11 t in fo(p); q +- p; p +- l i nk (p) ; free-avail(q);
end;

f +- round-decimals (k) ;

Page B332, lines 11 and 12 from the bottom (4/8/89)

begin if cur-align = null then confusion (*endv ');
q + link (cur-align); if q = null then confusion (Oendv -);

Page B466, line 5 becbmes three lines (6/7/89)

mmode + halign: if privileged then
if cur-group = math-shaft-group then init-align
else off-save;

Page B518, line 25 (8/31/89)

undurnp(10-mem-stat-max + l) (l o ~ m e m ~ m a x) (r o v e r) ; p +- mem-bot; q +- rover;

Page 1 3 : Bugs in Computers & Typesetting 25 March 1990

Volume C , in general (9/23/89)

[Change '127' to '255' and '128' to '256' in contexts referring to character codes. This
happens on pages 188(thrice) and 251.1

Page C91, lines 12 and 13 (8/31/89)

\mode=cheapo; i n p u t newface

and the same file should also produce a high-resolution font if we s tar t with

Page C204, line 4 (8/18/89)

so that currenttransform multiplies all y coordinates by aspect-ratio, when paths are

Paee C212. lines 24-27 (9130189)

boundarychar the right boundary character for ligatures and kerns

All of these quantities are numeric. They are initially zero at the start of a job,
except for year, month, day, and time, which are initialized to the time the run be-
gan; furthermore, boundarychar is initially -1. A granularity of zero is equivalent to
granularity = 1. A preloaded base file like plain METRFONT will usually give nonzero
values to several other internal quantities on this list.

Paee C259. lines 16 and 17 from the bot tom (5114189)

s c r e e n c h a r s ; s c r e e n s t r o k e s ; imageru le s ; g f c o r n e r s ; n o d i s p l a y s ;

n o t r a n s f o m s ; i n p u t (filename).

Page (3282' the three lines following the chart (9/30/89)

METAFONT can also be configured to accept any or all of the character codes 128-
255. However, METAFONT programs that make use of anything in addition to the 95
standard ASCII characters cannot be expected to run on other systems, so the use of
extended character sets is discouraged.

Page C316, bottom 14 lines and top 30 of page (3317 (9/30/89)

Ligature information and kerning information is specified in short "ligtable
programs" of a particularly simple form. Here's an example that illustrates most of
the features (although it is not a serious example of typographic practice):

l i g t a b l e "f": "f l ' =: octN013", "i" I=: oct"0201', akipto 1 ;
l ig table I I ~ I I : U ~ M . u p " : I I ~ I I kern .5u#, "0" kern .5u#, "xu kern-.5u#,

1:: " ! " kern u#;

This sequence of instructions can be paraphrased as follows:

Dear TEX, when you're typesetting an ' f ' with this font, and when the following
character also belongs to this font, look at it closely because you might need
to do something special: If that following character is another 'f', replace the
two f's by character code octW0l3" [namely 'ff']; if it's an 'i', retain the 'f'
but replace the 'i' by character code oct"020" [a dotless '1'1; otherwise skip
down to label '1 : : ' for further instructions. When you're typesetting an '0'
or 'b' or 'p', if the next input to QX is 'e' or 'o', add a half unit of space
between the letters; if it's an 'x', subtract a half unit; if it's an exclamation
point, add a full unit. The last instruction applies also to exclamation points
following ' f ' (because of the label '1 : : ').

Page 14 : Bugs in Computers & Typesetting 25 March 1990

When a character code appears in front of a colon, the colon "labels" the starting

place for that character's ligature and kerning program, which continues to the end of
the ligtable statement. A double colon denotes a "local label"; a skipto instruction
advances to the next matching local label, which must appear before 128 ligtable steps

intervene. The special label I I : can be used to initiate ligtable instructions for an

invisible "left boundary character" that is implicitly present just before every word; an
invisible "right boundary character" equal to boundarychar is also implicitly present

just after every word, if boundarychar lies between 0 and 255.
The general syntax for ligtable programs is pretty easy to guess from these

examples, but we ought to exhibit it for completeness:

(ligtable command) ---t l i g t able (ligtable program) (optional skip)
(ligtable program) -+ (ligtable step) 1 (ligtable program) , (ligtable step)

(optional skip) + , sk ipto (code) ((empty)
(ligtable step) ---, (code) (ligature op) (code)

I (code) kern (numeric expression)

/ (label) (ligtable step)
(ligature op) --t =: [I - : / I=:> I =: I / = : I > (I = : I (I=: I > / I = : I > >
(label) - (code) : I (code) : : 1 I I :
(code) i (numeric expression) / (string expression)

A (code) should have a numeric value between 0 and 255, inclusive, after having been
rounded to the nearest integer; or it should be a string of length 1, in which case it
denotes the corresponding ASCII code (Appendix C). For example, " A " and 64.61

both specify the code value 65. Vertical bars to the left or right of '=:' tell to

retain the original left and/or right character that invoked a ligature. Additional 5'

signs tell l)$ to advance its focus of attention instead of doing any further ligtable

operations at the current character position.

Pane C338, lines 21 and 22 (9/30/89)

and 127-255 have to be specified with the '#' option. on non-fancy installations of TEX.
and so does code 35 (which is the ASCII code of .#' itself).

Page C346, left column, after line 14 (9/30/89)

* I = : , 316, 317.

Pane C346, left column. after line 31 (9/30/89)

* : : (local label), 317.
* l 1 : (left boundary label), 317.

Page C347, left column (9/30/89)

*boundarychar, 212, 317.

Page C352, left column (9/30/89)

[Change '(ligature replacement)' t o '(ligature op)'.]

Page C354, left column (9/30/89)

(optional skip), 217.

Page C356, left column (9/30/89)

Page 15 : Bugs in Computers & Typesetting 25 March 1990

Page Dvi, bot tom two lines, and top lines of page vii (4/21/89)

"METAFONTwaren by Donald E. Knuth, Tomas G. Rokicki, and Ar-

thur L. Samuel, Stanford Computer Science Report 1255 (Stanford, California,

April 1989), 207 pp. The WEB programs for four utility programs that are often

used in conjunction with METRFONT: GFtype, GFtoPK, GFtoDVI, and MFT.

Page D63, line 9 (8/31/89)

mem. so we allow pointers to assume any halfword value. The minimum memory index represents

Page D63, line 28 (8/31/89)

null = mem-min < lo-mem-max < hi-mem-min < mem-top 5 mem-end < mem-max.

Page D67. in the July 1987 printing (4/7/89)

[Delete line 7, which has a redundant 'if r = p then ' ; move line 8 to the left 10 points for alignment:
and restore the following line (which was deleted by mistake after line 8):

node-szze(p) t q - p {reset the size in case it grew)
These corrections are needed only in the reprinting made July, 1987.1

Page D228, in the July 1987 printing (4/7/89)

[Delete lines 14-15, which were inserted erroneously from a previous errata list; and restore the following
lines (which were deleted by mistake):

begin double(max-coef); double(x0); double(x1): double(x2);
double(y0); double(y1): double(y2);
e n d

These corrections are needed only in the reprinting made July, 1987.1

Page D248, in the July 1987 printing (4/7/89)

[Delete line 16, which begins with ' d + take-fraction'; and restore the following line (which was deleted
by mistake after line 22):

if d < alpha t h e n d +- alpha
These corrections are needed only in the reprinting made July. 1987.1

Paae D389, line 10 (6/20/891

Page D504, line 25 (8/31/89)

undump(lo~mem~stat~max + l)(lo-mem-max)(rover); p t mem-min; q t rover;

Page D510, in the July 1987 printing (417189)

[Idove the 7th-to-last line, which begins with 'internaljfontmaking]', one line down, and indent it to the
right by 10 more points. This correction is needed only in the reprinting made July, 1987.1

Page 16 : Bugs in Computers & Typesetting

Page Exiii, bottom four lines (5/5/89)

= "Metamarks: Preliminary studies for a Pandora's Box of shapes" by
Neenie Billawala, Stanford Computer Science Report 1256 (Stanford, California,

May 1989), 132 pp. Lavishly illustrated s tudies in parameter variation, leading
t o t h e design of a n e w family of typefaces called Pandora.

Page E401, bottom line (5/16/89)

math-fit(-.3cap_height# * slant - .5u#, ic#);
penlabels(1,2,3,4,5: 6,7 ,8) ; endchar;

25 March 1990

[some points and labels are missing at the tip of the tail on page 4001

Page 17 : Bugs in Computers & Typesetting

Bugs in Computers & Typesetting

25 March 1990

25 March 1990

This is a list of all corrections made to Computers & Typesetting, Volumes

A, C, and E, since 30 September 1989 (when the revisions for w Version 3.0

and METAFONT Version 2.0 were made). Corrections made to the softcover

version of The W b o o k are the same as corrections to Volume A. Corrections

t o the softcover version of The METRFONTbook are the same as corrections to

Volume C. Some of the corrections below have already been made in reprintings

of the books. Hundreds of changes, too many t o list here, have been made to

Volumes B and D because of the upgrades to T)$ and METAFONT. Readers

who need up to -da te information on the w and METAFONT programs should

refer to the WEB source files until new printings of Volumes B and D are issued.

Corrections prior to 20 February 1989 were published by the Users

Group and are available from the TUG office.

Paee A99. line 4 from the bottom (2 122 190)

to be chosen because there was no feasible way to keep total demerits small.

Page A156, line 2 (11/18/89)

Commands like \mathchardef \alpha="OlOB are used in Appendix B to define

Pane A171, lines 24-26 (3/13/90)

formula produces a result exactly equivalent to ' \ l e f t ((subformula)\right)', when
the (subformula) doesn't end with Punct, except that the delimiters are forced to be
of the \big size regardless of the height and depth of the subformula.

Page A193, lines 16-18 (12/2/89)

line if you insert '\noalign{\break)' after the \cr for that line. You can prohibit
all breaks in an \eqalignno if you set \interdisplaylinepenalty=lOOOO; or you can
enclose the whole works in a \vbox:

Page A233, bottom 9 lines, and top three on next page (12/2/89)

The \+ macro in Appendix B works by putting the (text) for each column 9 that's followed by L into an hbox as follows:

\hbox t o (column width){(text)\hss)

The \hss means that the text is normally flush left, and that it can extend to the right
of its box. Since \hf ill is "more infinite" than \hss in its ability to stretch, it has the
effect of right-justifying or centering as stated above. Note that \hf ill doesn't shrink,
but \hss does; if the text doesn't fit in its column, it will stick out at the right. You
could cancel the shrinkability of \hss by adding \hf i lneg; then an oversize text would
produce an overfull box. You could also center some text by putting '\hssl before it and
just '&' after it; in that case the text would be allowed to extend to the left and right of
its column. The last column of a \+ line (i.e., the column entry that is followed by \cr)
is treated differently: The (text) is simply put into an hbox with its natural width.

Page A254, line 5 from the bottom (10/5/89)

\vs ize hasn't changed, and if all insertions have been held in place, the same page break

Page 18: Bugs in Computers & Typesetting 25 March 1990

Page A286, lines 30-32 - (3/13/90)

reading and expanding this token, 7$$ will see the (vertical command) token

again. (The current meaning of the control sequence \par will be used; might

no longer stand for W ' s \par primitive.)

Page A290, lines 12-13 (3/24/90)

simply a single Ord atom without subscripts or superscripts, or an Acc whose nucleus

is an Ord, the enclosing braces are effectively removed.

Page A340, nonblank line 11 (3/13/90)

\ t opg lue l i n % T h i s makes an i n c h of blank s p a c e (l i n=2 .54cm) .

Page A342. line 6 (3/13/90)

\ t o p g l u e but not \hglue . It does not illustrate \ r a g g e d r i g h t setting of para-

Page A346, lines 20-21 (12/3/89)

streams used by \read and \write, to math families used by \ f a , to sets of hyphen-
ation rules used by \language, and to insertions (which require \box, \count, \dimen,

and \skip registers all having the same number).

Page A346, line 20 from the bottom (12/3/89)

manent value. These macros use registers \count 10 through \count20 to hold the

Page A346. lines 8-13 from the bottom (12131891

number was allocated. The inside story of how allocation is actually performed should

be irrelevant when the allocation macros are used a t a higher level; you mustn't assume
that plain. tex really does allocation in any particular way.

\count10=22 % this counter allocates \count registers 23, 24, 25, . . .

Pane A347. lines 2-5 (1213189)

\countl9=0 % this counter allocates language codes 1, 2, 3, . . .
\count20=255 % this counter allocates insertions 254, 253, 252, .
\countdef\inscQunt=20 % nickname for the insertion counter
\countdef\allocationnumber=21 % the most recent allocation
\countdef\mQne=22 \mQne=-1 % a handy constant

Page A347. new line after former line 17 (1213189)

Pane A352, new line before line 6 from the bottom (3/13/90)

\def\topglue{\nointerlineskip \vglue-\topskip \vglue) for top of page

Page A355, line 8 from the bottom (12/3/89)

Page A363, lines 8-9 from the bottom (12/8/89)

Page 19 : Bugs in Computers & Typesetting 25 March 1990

Page A375, line 27 (10/30/89)

depending on whether or not \t contains an asterisk. (Do you see why?) And here's

Page A393, lines 3-5 from the bottom (12/3/89)

\hskip-.17em plus-3em minus.llem

\vadjust(}\penalty 10000

\leaders\copy\dbox\hskip3.3\wd\dbox plus l f il minus. 3\wd\dbox

Page A444, line 4 (3/13/90)

Shift box x down by i (h (x) - d(x)) - a, where a = azz, so that the operator character

Page A450, line 8 02/3/89]

ohoeon5aoto lnoao onzaoto ltoiooo ziooo oozno

Page A450, line 14 (12/3/89)

Page A450, lines 19 and 20 (1213189)

oozno 000nlc0 lcoao lnoao onzaoto ltoiooo ziooo oozno

and this yields 'ocooznlcoaotoe~n~alt~ioozno'! i.e., 'con-cate-na-tion'.

Page A455. last lines before the quotes (11/30/89)

sit yourself (even in restricted horizontal mode) by saying \setlanguage(number);

this changes the current language but it does not change \language. Each what-

sit records the current \lefthyphenmin and \righthyphenmin.

Page A467, right column (12/3/89)

*\hf i lneg, 72, 100. 233, 283. 285, 290, 397

Page A468, right column (12/2/89)

Pane A469, left column (1213189)

*\language (hyphenation method), 273, 346, 455.

Page A469. right column (10/30/89)

Pane A472, left column (1213189)

Page A476, left column (10/30/89)

*\righthyphenmin, 273, 364. 454, 455.

Page A479, new entry (3/13/90)

Page 20: Bugs in Computers & Typesetting 25 March 1990

Page A480, right column (31 13/90)

Page A483, the Providence lines (10/8/89)

[Change the first one to

Providence RI 02940\kern.O5em-9506, USA.

Then the second one will be

Providence RI 02940-9506, USA.

The second line will also appear on page C361.1

Page ~ 2 2 0 , top line (3/13/90)

modes you get into by hitting 'S', %', or Q', respectively, in response to error messages

Page C252, line 16 (3/13/90)

for i:=l upto n-windows: display blankpicture inwindow i; endfor

Page C264, lines 4-6 from the bottom (3/24/90)

vardef counterclockwise primary c =

if turningcheck>O:

interim autorounding:=O;

if turningnumber c <= 0: reverse fi fi c enddef;

Page C306, line 6 (3/13/90)

ligtable 11 J II : n J 11 =: octU042", % close quotes

Page C309, second line from bottom (11/18/89)

Page C315, line 9 from the bottom (1/2/90)

units of printer's points):

Pane C337, line 4 from the bottom (1/7/90)

\def \startf ont{\f ont\testf ont=\f ontname \spaceskip=Opt

Page 21 : Bugs in Computers & Typesetting

Page E325, line 13 (3/13/90)

if serifs: xsr = max(xl,, hround(x1 + .5dot_diam - .2jut) - .5tiny)

else: 2 3 = x1 - 5 fi;

Page E483, line 4 (3/13/90)

% Character codes '000-'100 and '133-'177 are generated.

Page E544, line 5 (3/13/90)

(the rest of the program for 'y' in greek1 comes here)

Page E557, line 9 (3/13/90)

'Nevermore-Ah nevermore. ' "

Page E558, line 21 (3/13/90)

Clasp a r a r e and radiant maiden whom t h e angels name Lenore."

Page E570, lines 27-28 look better with proper skewchars (3/13/90)

Here's some bold 10-point math: A: + ~f - cz x D : / E ~ 63 F*

G: @I H: 01: @ &n.

25 March 1990

Page 22 : Changes to the Programs and Fonts 25 March 1990

Changes to the Programs and Fonts

25 March 1990

The volume of changes to the TEX and METAFONT programs is too large to include in TUGboat.

This material incorporates all the changes made to upgrade to version 3.0 and METAFONT

to version 2.0. The listing of these changes will be available from the TUG office, and inquiries

should be directed there.

w
Changes numbered 351-389 are included in the updates to m, ending with the following:

----------- Here I draw the line with respect to further changes

390. (I sincerely hope that there won't be any more)

METAFONT

Changes numbered 547-554 are included in the METAFONT updates, ending with the following:

----------- Here I draw the line with respect to further changes

555. (I sincerely hope that there won't be any more)

Computer Modern fonts

Changes since 20 February 1989.

Qx in ROMANU, the letter Q (this change simply labels point 8 on proofs)

math-f it (-. 3cap_height#*slant-. 5u#, ic#) ; penlabels (1,2,3,4,5,6,7) ; endchar;

QY
math-f it (-. 3cap_height#*slant-. 5u#, ic#) ;

penlabels(1,2,3,4,5,6,7,8); endchar;

Qz

Qx in ROMANL, the letter i (this change by Jonathan Kew makes the dot rounder)

if serifs: x3r=max(xlr,xl+.5(dot-diam-tiny)-.2jut) else: x3=xl-.5 fi;

QY
if serifs: x3r=max(xlr,hround(x1+. 5dot-diam-. 2jut) - . 5tiny)
else: x3=x1-.5 fi;

Qz

----------- Here I draw the line with respect to further changes

(I sincerely hope there won't be any more!)

TEX Users Group Membership List - Supplement

May 1990

This supplementary list, compiled on 21 May 1990, includes the names of all persons who
have become members of TUG or whose addresses have changed since publication of the last
full membership list, as of 1 March 1990. Total membership: 141 institutional members
and 3,391 individuals affiliated with more than 1.500 colleges and universities, commercial
publishers, government agencies, and other organizations throughout the world having need
for an advanced composition system.

The following information is included for each listing of an individual member, where it
has been provided:

Name and mailing address

Telephone number

Network address

Computer and typesetting equipment avail-
able to the member, or type of equipment

on which his organization wishes to (or
has) installed TEX

Title and organizational affiliation, when Uses to which may be put, or a general

that is not obvious from the mailing address indication of why the member is interested

in T@

CONTENTS

Board of Directors, Site Coordinators and
members of TUG Committees 2

Addresses of TUG Members, additions and changes
from 1 March 1989 through 21 May 1990 4

TFJ consulting and production services
for sale 9

Recipients of this list are encouraged to use it to identify others with similar interests, and, as
TUG members, to keep their own listings up-to-date in order for the list to remain as useful
as possible. New or changed information may be submitted on the membership renewal form
bound into the back of a recent issue of TUGboat. Comments on ways in which the content
and presentation of the membership list can be improved are welcome.

This list is intended for the private use of TUG members; it is not to be used as a source of
names to be included in mailing lists or for other purposes not approved by TUG. Additional
copies are available from TUG. Mailing lists of current TUG membership are available for
purchase. For more information, contact Ray Goucher, TUG Executive Director.

Application to mail at second-class postage rate is pending at Providence, RI and additional
mailing offices. Postmaster: Send address changes to the 7&X Users Group, P. 0. Box 9506,
Providence, RI 02940, U. S. A.

Distributed with TUGboat Volume 11 (1990), No. 2. Published by

'&jX Users Group

P. 0. Box 9506

Providence, R.I. 02940-9506, U.S.A.

Anew and unique service from the Printing Division ofthe Oldest Press in the World

The CAMBRIDGE service that lets you and your publisher decide how your

mathematical or scientific text will appear.

Monotype output in Times and Helvetica as well as a complete range of

Computer Modern faces from your TEX keystrokes

For detailscontact

T E C H N I C A L A P P L I C A T I O N S G R O U P C A M B R I D G E U N I V E R S I T Y P R E S S
U N I V E R S I T Y P R I N T I N G H O U S E S H A F T E S B U R Y ROAD C A M B R I D G E CB2 2 B S E N G L A N D

T E L E P H O N E (0 2 2 3) 3 2 5 0 7 0

Index of Advertisers

325 Addison- Wesley

316,326 American Mathematical Society

331 ArborText

cover 3 Blue Sky Research

M-10 Cambridge University Press

330 Computer Composition

324 DP Services

319,323 K-Talk Communications

With TEXPIC Graphics language? you will have the

tools to make graphics for yourTEX documents.
TEXPIC is now available from Bob Harris at:

MICRO PROGRAMS INC
251 Jackson Avenue, Syosset N Y 11 791

Telephone: (516) 921 1351.

*TUG Boat Volume 10, No. 4, Page 627
1989 Stanford Conference Proceedings

320,321 Kinch Computer Company

M-10 Micro Programs, Inc.

318 Micropress, Inc.

329 Northlake Software

322 Oregon House Software

327 Personal ?&$ Inc.

328 Type 2000

332 Wynne-Manley Software, Inc.

