
TransFig: Portable Graphics for T@i

Micah Beck
Department of Computer Science, Cornell University, Ithaca, NY 14853

(607) 255-8597. Internet: beck@cs.cornell.edu

Alex Siege1
Department of Computer Science, Cornell University, Ithaca, NY 14853

(6071-255-1165. Internet: siegel0cs.cornell.edu

Abstract

The TransFig software package defines a portable description
language for technical graphics. Translations are provided from
this language to commonly used graphics description formats,
which can then be included in typeset documents. TransFig
includes a particularly convenient framework for including figures
in U r n . The graphics language defined by TransFig facilitates
the interchange of structured, modifiable graphics between
applications. In this paper, we review our experience with
TransFig to argue the need for a standard application level
graphics language, and suggest guidelines for its design.

Fig and TransFig

The Fig graphics editor was originally developed
by Supoj Sutanthavibul at the Universtiy of Texas.
Fig was designed to produce output in the language
of the PIC graphics preprocessor for Troff, although
it uses an editable intermediate file format which
is quite independent of the output language. This
Fig code format consists of a simple dump of Fig
internal data structures. Fig was distributed from
the University of Texas with two translators: from
Fig code to PIC and to Postscript.

TransFig. Neither of the output forms supported
by Fig allowed inclusion of Fig graphics in rn
documents in the operating environment of the
Computer Science Department at Cornell Univer-
sity. To make such inclusion possible, Micah Beck
developed a translator from Fig code to
macros [Wichura]. Frank Schmuck, also at Cornell,
developed a translator to I4w picture environ-
ment macros: the generality of this translation was
restricted by limitations of the target language.
These two translators, together with those devel-
oped at Texas, and a translation to the EPIC and
EEPIC macro packages developed by Conrad Kwok
at the University of California, Davis, were com-
bined to create a single package for Translating Fig
code [Beck].

TransFig was developed with two high level
goals:

1. to define a useful graphics intermediate form
with a clear interpretation which can be imple-
mented in any reasonably expressive graphics
language.

2. to create a framework for the convenient inclu-
sion of figures in documents with no user
customization due to the choice of graphics
language.

In order to create a widely used intermediate
form quickly, it was decided to define a standard
interpretation for the Fig intermediate format. A
reference manual was developed which defines Fig
code and its interpretion [Beck]. While this in-
terpretation was derived from the Fig editor, it is
independent of that implementation. The second
goal was addressed in the UNIX computing environ-
ment by the Transfig program which is described in
a later section.

Goals

TransFig should be evaluated in light of its specific
goals; we will therefore look more closely at what
TransFig does and does not attempt to achieve.

Expressiveness. The most important parameter
in the design of TransFig is the class of graphical
figures which is to be expressed. These figures,

TUGboat, Volume 11 (1990), No. 3 -Proceedings of the 1990 Annual Meeting 3 73

Beck, M. & Siegel, A.

which we call technical graphics, are combinations
of graphical primitives with embedded text; bitmaps

are not included. Primitives are simple lines and

curves, with properties such as dotted or dashed

lines, shading, and arrow heads; text properties

include font and size.

Technical graphics are typically used to illus-

trate some idea or example. The content of such
figures is transmitted mainly through the shape and

labelling of primitives and their placement relative

to one another. This should be considered in con-

trast to the pixel-level precision required to produce

highly detailed or realistic images (For examples,

see Appendix A).

Restricting our interest to technical graphics
limits the possible uses for TransFig. On the other

hand, it allows us to give a less precise interpretation

to Fig code than is required for a general purpose

graphics language such as Postscript. A less exact
interpretation in turn eases the task of producing

a correct implementation using a wide variety of

output languages.

TransFig does not attempt to model the ex-
pressiveness of Postscript. its most flexible output

form. The goal of portability leads TransFig to a

level of expressiveness closer to the least common
denominator of its output forms. This has led to a

reluctance among some developers of Fig to main-

tain compatibility with the TransFig interpretation

of Fig code.

Portability. Portability of graphics is a goal which

underlies many other choices in the design of Trans-

Fig. We have mentioned portability as a limiting

factor on the precision and expressiveness of the

interpretation of Fig code; it also rules out local

or non-standard interpretations. In this context,
portability means that a document, including fig-

ures, can be moved between operating environ-
ments.

To illustrate this point, consider the specifi-

cation of bitmap patterns for area fill. It would
be possible to increase the flexibility of the area
fill specification by using a local configuration file

to map logical names of area fill types to actual

bit patterns. This would, however, also reduce the

portability of the resulting Fig code. For this reason

the list of area fill patterns defined by TransFig is

not locally extensible; the intent is for this list to

be extended at the discretion of the developers of

TransFig.

Ease of inclusion. One goal of TransFig is to allow

the user to specify the location of a figure within

a rn document with a simple command which

requires no information about the figure except

the name of the Fig code file. This means that

the rn file produced by TransFig must include

all the spacing information required for the proper
placement of graphics relative to the surrounding

text; the bounding box of the figure must be known.

The details of how to include figures described

in Fig code in a document will be discussed later.

The problem of calculating the bounding box points

up one of the main problems of the definition of Fig

code. Formatted text embedded in figures is not

handled properly by TransFig, since the bounding

box of the text is known only after it has been

formatted.

Implement at ion

The current implementation of TransFig is a com-

promise; it meets some of the above goals, and

meets others only partially. Further discussion of

the current implementation can be found in the

TransFig manual [Beck].

The Fig2dev program. All Fig code translation

programs are derived from F2p, the original pro-

gram written by Supoj Sutanthavibul to translate

Fig code to PIC. The TransFig translators were
named Fig2pic, Fig2ps, Fig2tex, Fig2latex, and

Fig2epic to differentiate them from the original

versions.

Recent releases of TransFig have combined

these five translation programs into a single program

called Fig2dev. This program consists of a common

control structure which uses a standard subroutine
interface to produce a specific output form. A

specific translation is then implemented as a set

of subroutines meeting this interface, much like an

operating system device driver.

Output languages. The translations currently

implemented by Fig2dev are from Fig code to
the following output languages:

m, a general picture environment for

which uses only native facilities [Wichura].

W r n picture environment, a restricted graphics fa-

cility that uses special fonts which are a standard

part of [Lamport].
EPIC (Extended Picture Environment), a more flex-

ible extension of I4m picture environment [Po-

dar] .
EEPIC (Extended EPIC), a generalization of EPIC

which uses an extension of m ' s DVI output

format [Kwok].

Postscript, a general graphics description language

often proposed as an industry standard [Adobe].

374 TUGboat. Volume 11 (1990), No. 3-Proceedings of the 1990 Annual Meeting

TransFig: Portable Graphics for TEX

PIC, a graphics language designed for the Troff

typesetting program [Kernighan] .

None of these output languages can be used

to include any figure in all operating environments;

taken together they provide a translation compat-

ible with most environments. TEX has no native

graphics facility, so each output language must
strike a balance between generality and adherence

to standards.

Qm draws lines using a text character, usually
the period, as a pen. This strategy, together with

the implementation of all calculations using rn
integer registers, allows graphics to be generated

using only standard features. Formatting complex

figures. however, is slow and can require a very

large internal T)$ memory.
I P w picture environment uses special drawing

fonts which are a standard part of U r n ; however.

the class of figures which can be represented is

quite restricted; slopes of lines are restricted to a

small set, curves and area fill are not implemented

at all.

EPIC is an extension of picture environment

which can represent a broader, but still restricted,

class of figures using the same I P w drawing

fonts.
EEPIC is a reimplementation of EPIC which uses a

graphics extension of the DVI output format (tpic

specials), and therefore requires non-standard

software support.
PostScript is a very general graphics description

language which requires non-standard software

(and often hardware) support.

PIC figures require non-standard software support

to be included in TEX documents (tpic specials).

The Transfig program. The goals of generality

and portability are addressed by the Fig2dev pro-

gram; the Transfig program provides ease of graphics

inclusion, at least in the UNIX operating environ-

ment. Each figure in a document is represented by a

separate Fig code file. In order to create a printable
document, these figures must be translated to some

w-compat ib le output language, and appropriate

commands must be inserted in the TEX document.

These commands will, in general, depend on the

choice of output language. The Transfig program

hides these details from the user by automating

them.
The mechanics of including a set of figures

expressed in a given graphics language can be

divided into two parts: certain definitions required

by all figures, and a particular set of commands for

each figure. To allow the automatic generation of

the initial definitions, the user must \input into

the document the file t ransf i g . t ex , which will be
created by Transfig. For each Fig code file named

f igu re . f i g , the user must input into the document

the file f i gu re . tex, which will also be created by

Transfig.
The Transfig program takes as arguments an

output language and the list of Fig code files. It
creates an initial file of definitions t ransf i g . t ex ,

and it creates a Makef i l e which, when processed by
the UNIX Make facility, invokes Fig2dev to translate

each Fig code file into an appropriate '@X file.

The t r ans f ig . t ex file generally inputs style

or macro files specific to a given output language.
The file f i gu re . t ex may be a large file of graphics

commands. Some output forms, notably Postscript,

require the creation of an additional file. which is

given an appropriate suffix such as f igure .ps . The

file f i gu re . t e x will then contain l&X commands

which make reference to the Postscript file.

TransFig compatibility. The most powerful as-

pect of TransFig is that it defines a non-proprietary

application level language for the description and

transfer of technical graphics. By application level,

we mean a language which describes graphics prim-

itives at a level high enough to be edited by users
or conveniently translated to other forms. In con-

trast, PostScript is a description level language; it
is impossible to recover the higher level primitives

from PostScript, particularly the text formatting

commands. TransFig is non-proprietary in the sense

that it is not under the exclusive control of the

developer of any particular software tool. It is based

on the Fig graphics editor, but has a definition and

interpretation of its own.
Many application level description languages

have been defined; every structured graphics editor

defines an intermediate format for storage of figures,

and ultimately translates it to a printable form.

Since such a storage format is seen only as a utility
for one graphics editor, there is generally little

attention paid to its design. The definition of the

format is encoded in the programs which use it, and

can change with every release. These proprietary

graphics formats are not useful for interchange of

graphics between applications.
Fig code is derived from the proprietary graph-

ics format of the Fig graphics editor. In fact, recent

developers of Fig have defined Postscript-oriented

extensions to the format which are not compati-

ble with the standard TransFig interpretation. To

distinguish the TransFig definition of Fig code, we

refer to it by its version identifier TFX (for TransFig

TUGboat, Volume 11 (1990), No. 3 -Proceedings of the 1990 Annual Meeting 375

Beck, M. & Siegel, A.

extension). TFX is a language with a fixed syntax
and interpretation, albeit somewhat loosely speci-
fied. This makes it appropriate as a target language
for other graphics applications.

The most flexible version of the Fig graphics
editor currently available is Fig 1.4.FS, or Fig-
FS, which supports all TFX features. Fig-FS is
a version of Fig Version 1.4 Release 2, the last
release distributed from Texas, enhanced by Frank
Schmuck of Cornell, and runs under the SunView
windowing system.

XFig 2.0 is the most recent version of Fig
which runs under the X Windowing System. XFig
has been developed by several people; Brian Smith
of the Lawrence Berkeley Laboratory has made the
most recent improvements. XFig supports one of
two Fig code dialects for use as an intermediate
language, TFX and its own 2.0 format; the choice is
made at compile time. Fig code 2.0 is a PostScript-
oriented extension to Fig code; the PostScript driver
in recent versions of the Fig2dev program supports
both dialects.

Several programs are currently compatible with
TransFig and with one another through their use of
TFX. These include:

Gnuplot, a numerical plotting program, which can
produce output in TFX;

Pic2fig, which translates PIC into TFX;

Plot2fig, which translates the UNIX plot file format
to TFX.

TransFig is a flexible and widely used tool for
the portable exchange and inclusion of graphics.
This success has come in spite of serious shortcom-
ings which the definition of TFX has inherited from
the initial implementation of Fig. In any case. it is
worthwhile asking what the most appropriate appli-
cation level graphics format for technical graphics
in m documents would be.

Intermediate Languages

Fig code has serious shortcomings as an application
level graphics description language. These problems
include:

1. an unreadable syntax,
2. an ad hoc integration of text with graphics,
3. limited facilities for the creation and use of

composite graphics objects.

The least important problem is the syntax; it
is mainly troublesome to software developers. In
order to be easily parsed using the C language I/O
library, Fig code consists almost solely of numbers;
strings are used only to represent text objects. A

more readable syntax similar to that of PostScript
would be preferable. The other points are more
troublesome, and the first question to address is:
why not settle on PostScript as a standard graphics
language for m?
Postscript. It is commonly held that one graphics
language will suffice for all document description
needs, and that PostScript is the appropriate stan-
dard. As we have pointed out, the level at which
graphics are described in PostScript is too low to
be useful as an application level representation. The
function served by Fig code is simply different from
that served by more primitive languages.

If PostScript were accepted as the standard
graphics language for TkX, no higher level standard
would be needed to provide portability. On the
other hand, PostScript is very general and a full im-
plementation places a substantial and unnecessary
burden on users of technical graphics. A simpler
extension to the DVI format would suffice for that
purpose.

A simple interface designed to meet a specific
purpose can insulate a software system from changes
in technology. This is an important function of non-
proprietary document description languages like
Fig code or the 7&X DVI format. It is possible that
PostScript will be superceded by another popular
page description language; the TEX community
should not be tied to a single low level interface.

Note that the choice of PostScript or some other
language of equivalent power is not important for
our purposes. The complexity of technical graphics
does not change rapidly; like technical prose, figures
which convey ideas are best expressed with simple
constructs. The full flexibility of PostScript is not
required, and may in fact distract the technical
writer.

Embedded text. Ifitegrating text into graphics
turns out to be more of a problem than integrating
graphical figures into text documents. The problem
is that a graphical interpreter may not be able to
deduce what the size and shape of the text will be
after formatting. On the other hand, it is necessary
to allow formatting of text, in order to give unity to
the appearance of the text and figures, and because
technical graphics often require complex equations
to be embedded.

Because of this problem, the TransFig inter-
pretation of Fig code does not allow any embedding
of formatting commands in text objects. This strict
interpretation is, however, unacceptable to users,
and so formatting of text objects is a necessity. To
illustrate the problem posed by mixing of formatted

376 TUGboat, Volume 11 (1990), No. 3-Proceedings of the 1990 Annual Meeting

TransFig: Portable Graphics for QjX

and unformatted text, consider how the curly brace

character (C), which has a special significance to

T@, is handled when it appears in a text object.
When the curly brace character appears in un-

formatted text, it must be escaped with a backslash

(\{) to indicate that it is not to be interpreted

as a control character by ?(. In formatted text,

however, control characters are not escaped; the

translation program must know which type of text

is being handled.

Since Fig code does not provide a means for

making the distinction, TransFig takes a heuristic

approach: text that has either the font or size field

set to a non-default value is assumed not to include
formatting commands; a text object which has both

text properties set to the special default value is

allowed to include such commands. A better way to

deal with this problem is by differentiating between
three distinct types of text: plain, formatted, and

special.

Plain text contains no formatting commands. Parop-

erties such as font and size are specified as prop-

erties of the text object, but do not appear in

the text itself. This treatment of text is the most

common in graphics editors.

Formatted text contains simple formatting com-
mands in a language which is part of the defini-

tion of the intermediate language. An appropriate

choice might be a subset of MT@.
Special text can be expressed in any formatting

language; it is not interpreted but is passed

through to the output language unchanged. The

specific formatter used can be specified as a

property. or omitted.

The properties of plain or formatted text must
be part of the definition of the language. Further-

more, a reasonably powerful graphics editor should

be able to display formatted text. A very sophis-

ticated editor might actually invoke a formatting

program to generate output for special text. To
allow sufficient space to be left in the containing

document, however, the bounding box of special

text must be explicitly specified as a property of

the text object.

Intermediate language design goals. The de-

sign of an intermediate graphics representation is a

complex matter, with many trade-offs to consider.

We can, however, list a number of design goals for

such a language:

Fast load and store: since this language will be used

by an editor as the main form of graphics storage,
it must be very efficiently loaded from and stored

to a file.

Fast display: graphics previewers and editors must

be able to interpret the language with minimal

computational overhead.
Easy conversion to other formats: translation of this

language to other languages such as Postscript

will be very common. Unusual drawing primitives

can be a major impediment to this conversion.
Extensibility: there must be a well defined facility for

efficiently adding primitives or attributes to the

language. It must be possible to parse extensions

to the language without necessarily interpreting

the extension.

User readability: users must be able to under-

stand and edit the language. This is valuable
for software debugging and for making manual

adjustments to pictures.

Intuitive interpretation: there must be a direct

correspondence between intuitive concepts and
language constructs. Unusual constructs lead to

bugs, misunderstandings, and lengthy documen-

tation.

Density: pictures will be archived for long periods
of time in this language. The most common

constructs should be expressed with as few wasted

characters as possible. The judicious use of macros

and abreviations is very helpful in this respect.

Composition: it must be convenient to create com-

pound objects from more primitive objects, and
to manipulate these compound objects.

The most important shortcomings of Fig code

and Postscript can be understood in terms of

these goals. For example, Fig is unreadable and

not conveniently extensible; Postscript suffers from
high compuational overhead due to high language

complexity and low density due a verbose style of

punctuation.

ApGraph

Experience with Fig code has demonstrated the
usefulness of an application level graphics descrip-
tion language to the community. In spite the

shortcomings of Fig code, the use of Fig and Trans-

Fig is increasing along with the popularity of the

applications which use it. This is the appropriate

time to stop and redesign TransFig; code based on

preexisting designs and minimal resources is not a

sound basis for future development.
At Cornell, Alex Siege1 is developing ApGraph,

an intermediate language for Application Graphics,
which is intended to replace Fig code eventually.

A new graphics editor based on the X Windowing

System will support ApGraph as well as TFX, and

TUGboat, Volume 11 (1990), No. 3 -Proceedings of the 1990 Annual Meeting 377

Beck, M. & Siegel, A.

TransFig will continue to support both. Further Acknowledgements -

development based on Fig code will, however, cease.
The development of TransFig has been made pos-

The community has much to gain by
sible by the collaboration of a group of individuals

adopting some application level graphics language
on the network too numerous to list here. The

as a standard' We hope that be an
most important individual contributions were made

attractive option, as it is a simple language oriented
by Frank Schmuck and Conrad Kwok. Ajei Gopal

towards the technical graphics most needed by
first introduced Micah Beck to Fig, and Alex Aiken

the l$J community. Of course, other standards
patiently tested the F ig - to -RQX translator while

are possible, including the ANSI/ISO standard
writing his thesis. A special acknowledgement goes

Computer Graphics Metafile (CGM) format. The
to Supoj Sutanthavibul, whose original implemen-

best choice of language requires further study and
tation of Fig has lived on in many incarnations and

consideration.
from which all versions of Fig and TransFig are
derived.

Conclusions

We have defined a set of goals for an application Bibliography
level intermediate form for technical graphics in

documents. We have seen how the definition of
a standard interpretation for Fig code has allowed
it to serve the function of an intermediate graphics
language. The TransFig package, which implements
this standard interpretation of Fig code, is gaining
increasing popularity and acceptance in the rn
community, in spite of Fig code's serious shortcom-
ings as a graphics language. We have argued the
value to the 'l$J community of adopting a standard
language for application level description of techni-
cal graphics, and outlined some design requirements
of such a language. ApGraph is being developed as
Cornell in the hopes of influencing the definition of
such a standard.

Software Availability

Most of the software described in this article is avail-
able without charge from the archive server at Clark-
son University (Internet: sun. soe . clarkson. edu).
Access is through anonymous FTP or by mail.
Many packages, including the most recent version
of TransFig, are also avaiable for FTP from Cornell
University (Internet: svax. cs . corne l l . edu). FTP
sites for packages not available from Clarkson are
listed below. This information is subject to change.

GnuPlot is available from duke. cs .duke. edu.
Pic2fig is not available for anonymous FTP. Contact

author Micah Beck for distribution.
Plot 2fig is available from qed . r i c e . edu.
Xfig is available from expo. l c s . m i t . edu as a con-

tributed client.

Adobe Systems Incorporated. Postscript Language
Reference Manual. Reading, Mass.: Addison-Wes-
ley, 1985.

Beck, Micah. "TransFig: Portable Figures for 'l$Jjl

Cornell University Dept. of Computer Science
Technical Report #89 - 967, (February 1989)

Kernighan, B. W. "PIC-A Language for Type-
setting Graphics", Software Practice and Experi-
ence, 12(1), pp. 1-21 (January 1982)

Kwok, Conrad. "Extensions to EPIC and IPm
Picture Environment." Software documentation.
University of California, Davis, Dept. of Com-
puter Science. (July 1988)

Lamport, Leslie. D m : A Document Preparation
System. Reading, Mass.: Addison-Wesley, 1986.

Podar, Sunil. "Enhancements to the Picture En-
vironment of IP'l$J." State University of New
York at Stony Brook, Dept. of Computer Science
Technical Report #86- 17 (July 1986)

Wichura, Michael. "The Manual." Soft-
ware Documentation. The University of Chicago.
(November 1986) Second printing, by The rn
Users Group, as Wniques , Number 6, 1987.

TUGboat, Volume 11 (1990), No. 3 -Proceedings of the 1990 Annual Meeting

TransFig: Portable Graphics for

Appendix

, - - - - - - - , ' - - - - - - , r - - - - - -, r - - - - - -, r - - - - - 1

I fig I I gnuplot I I pic2fig I I plot2fig I I xapgraph I

L - - - - - J L - - - - - J L - - - - - - I L - - - - - J L - - - - - J

Fig code

J,

PiCTeX Post LaTeX (E)EPIC PIC

macros Script commands commands +
r - - - - - i

I tpic I

L - - - - - J

tpic

specials

TUGboat, Volume 11 (1990), No. 3 -Proceedings of the 1990 Annual Meeting

Beck, M. & Siegel, A.

TUGboat, Volume 11 (1990), No. 3-Proceedings of the 1990 Annual Meeting

