
Over the years, . . . the computer revolution has left its
mark in a negative way: the craftsmanship that went
into certain parts of composing type has been sacrificed.
We're not suggesting that we go back to the old ways, but
we are making a plea toward slowly raising the current
standard through increasing awareness of the issues and
the opportunities.

Seybold Report on Publishing
Systems (August 1990)

COMMUNICATIONS OF THE USERS GROUP

EDITOR BARBARA BEETON

VOLUME 11, NUMBER 4 NOVEMBER 1990

PROVIDENCE . RHODE ISLAND U.S.A.

TUGboat

During 1991, the communications of the 'l&X Users
Group will be published in four issues. Two issues

will consist primarily of Proceedings. one of m 9 0 ,

Cork (Vol. 12. No. 1). and the other of the 1991

TUG Annual Meeting (Vol. 12, No. 3).
TUGboat is distributed as a benefit of mem-

bership to all members.
Submissions to TUGboat are for the most part

reproduced with minimal editing, and any questions
regarding content or accuracy should be directed

to the authors, with an information copy to the
Editor.

Submitting Items for Publication

The deadline for submitting technical items for
Vol. 12, No. 2, is February 19, 1991, and for news

items, March 19, 1991; the issue will be mailed in
May. (Deadlines for future issues are listed in the

Calendar, page 666.)

Manuscripts should be submitted to a member
of the TUGboat Editorial Committee. Articles of

general interest, those not covered by any of the

editorial departments listed, and all items submitted
on magnetic media or as camera-ready copy should

be addressed to the Editor, in care of the TUG
office.

Contributions in electronic form are encour-

aged, via electronic mail, on magnetic tape or

diskette, or transferred directly to the American
Mathematical Society's computer; contributions in

the form of camera copy are also accepted. The
TUGboat "style files", for use with either p l a i n

TFJ or U r n , will be sent on request; please specify

which is preferred. For instructions, write or call
Karen Butler at the TUG office.

An address has been set up on the AMS com-
puter for receipt of contributions sent via electronic

mail: TUGboat @Math. AMS . corn on the Internet.

TUGboat Advertising and Mailing Lists

For information about advertising rates, publication

schedules or the purchase of TUG mailing lists, write

or call Karen Butler a t the TUG office.

TUGboat Editorial Committee

Barbara Beeton, Editor
Ron Whitney, Production Assistant
Helmut Jiirgensen, Associate Editor, Software
Georgia K.M. Tobin, Associate Editor, Font Forum
Don Hosek, Associate Editor, Output Devices
Victor Eijkhout, Associate Editor, Macros
Jackie Damrau, Associate Editor, U Q X
Alan Hoenig and Mitch Pfeffer, Associate Editors,

Typesetting on Personal Computers

See page 483 for addresses.

Other TUG Publications

TUG publishes the series Wniques , in which have
appeared user manuals for macro packages and

w - r e l a t e d software, as well as the Proceedings
of the 1987 and 1988 Annual Meetings. Other

publications on m n i c a l subjects also appear from

time to time.
TUG is interested in considering additional

manuscripts for publication. These might include

manuals. instructional materials, documentation, or
works on any other topic that might be useful to

the community in general. Provision can be

made for including macro packages or software in
computer-readable form. If you have any such

items or know of any that you would like considered

for publication, contact Karen Butler at the TUG

office.

Trademarks

Many trademarked names appear in the pages of
TUGboat. If there is any question about whether
a name is or is not a trademark, prudence dictates
that it should be treated as if it is. The following

list of trademarks which appear in this issue may
not be complete.

APS p5 is a trademark of Autologic, Inc.

DOS and MS/DOS are trademarks of Microsoft
Corporation

LaserJet, PCL, and DeskJet are trademarks of

Hewlett-Packard, Inc.

METAFONT is a trademark of Addison-Wesley Inc.

PC w is a registered trademark of Personal m,
Inc.

Postscript is a trademark of Adobe Systems, Inc.

m and A M S - ~ are trademarks of the American
Mathematical Society.

UNIX is a trademark of AT&T Bell Laboratories.

TUGboat, Volume 11 (1990), No. 4

General Delivery

From the President

Nelson H.F. Beebe

Meetings

This has been a busy year for TUG, and for me.
I've just returned from Ireland and Britain after a
very successful '!$X190 meeting in Cork and a short
family vacation.

The TUG'S0 meeting in June in College Sta-
tion is now behind us, and the Proceedings have a p
peared in record time as TUGboat 11, no. 3; copies
were available on September 10 in Cork. I'd like to
thank the authors, the program committee, the Pro-
ceedings editor, and the TUG office for contributing
to the rapid completion of the job.

The Cork meeting was well attended. with 175
participants from 23 countries. I was pleased to
have an opportunity to meet for the first time so
many Europeans with whom I've exchanged letters
and e-mail. Despite rain the week before and af-
ter the meeting, the weather cooperated and gave
us sunshine and warmth all during the conference
week. Our greatest thanks go to Peter Flynn and
his support staff at Cork, the TUG office, the pro-
gram committee, and all who attended for making
it such an interesting meeting. Meals were served in
the dining hall adjacent to the building where the
lectures took place, and I think many will agree that
the food was possibly the best we have enjoyed at
any TUG meeting.

The weekend before the Cork meeting was de-
voted to a long TUG Board meeting on Saturday
(which resumed again Wednesday evening), and a
European summit meeting on Sunday. The Board
has been dealing with difficult and divisive issues
that are still not resolved; I expect to schedule a
two-day board meeting at the TUG'S1 meeting in
Boston.

The European summit meeting was an oppor-
tunity for the heads of TUG and the European
groups (five in western Europe, with five more in the
early stages of formation in Czechoslovakia, Hun-
gary, Poland, the Soviet Union, and Yugoslavia) to
meet and talk about common issues. There are ru-
mors of other regional groups forming, including one
in Ireland. According to the March 1990 member-
ship list, TUG itself has members from 48 countries.

Font standardization

One joint effort of TUG and the European groups
on which excellent progress has been made is the
definition of a 256-character font standard for w;
an agreement is rapidly needed here if &bit fonts are
to become a reality for worldwide TEX users without
also becoming a terrible barrier to document porta-
bility. We hope to be able to report further on this
soon (see Michael Ferguson's "Report QXI Multilin-
gual Activities", p. 514, in this issue of TUGboat).
For background, see the recent TUGboat articles
11, 2, 31 and references cited therein.

tuglib archive server

The tuglib server mentioned in my editorial in
TUGboat 11, no. 1. is now fully functional at the
Internet address science. utah. edu. A preliminary
description appeared in '!$Xline 11, which was dis-
tributed at the Cork meeting. At Utah, our vener-
able 12.5 year-old DEC-20 is slated for retirement
on 31 October 1990. The name science .utah. edu
will live on as an alias for its replacement, a U N I x

machine, so as not to confuse the thousands of peo-
ple who have used it. Because this will change some
of the details of tuglib access, I decided to delay an
in-depth article about tuglib until the next issue of
TUGboat, when the changeover will be behind us.

Bibliography archive

Earlier this year, I began a bibliography project
which is now well underway. Its eventual goal is
to provide public access to a collection of B I B W -
format bibliographies of

publications about '!$X (files texbookl . *)
books and journals that use w for their pro-
duction (files t exbook:!. *)
journals that accept articles written in W
(files t exbook3. *)
literate programming
POSTSCRIPT
digital typography

as well as to collect bibliographies for many scien-
tific journals in fields that I'm interested in. How-
ever, I am also willing to deposit there contributed
bibliographies for journals in any field of science or
engineering.

An e-mail message to

tuglib@science.utah.edu

with the text send index from tex/bib will re-
turn an index of current holdings. It is intended
that these holdings will be available on computer-
readable magnetic media for users who lack e-mail
access.

TUGboat, Volume 11 (1990), No. 4

A bibliography consists of at least two files:

(1) a J2-7&X file that prints the entire bibliography,
together with a title page, a version date and num-

ber, and a short prefacing text; and (2) one or more
 BIB^ .bib files that hold the actual entries. The

bibliography produced this way is in two-column for-

mat with alphanumeric tags. This choice was in-

tentional: it produces narrow columns that stress
m ' s formatting abilities, and it detects certain er-

rors in author names (such as an incorrectly placed
Jr.) that would not be caught if numeric citations

were used. Explicit hyphenations are supplied to

reduce, if not completely eliminate, overfull boxes.
The \emergencystretch feature of W 3.0 is most

helpful in reducing the rivers of white that otherwise
tend to occur with narrow columns; this support is

hidden in an option file, bibmods. s t y , that works
with pre-3.0 versions of TEX as well.

The IP'I'EX files all use showtags . s ty , a style
file that I wrote for the project; it produces a bold-

face copy of each B I B W citation tag in a right-
adjusted framed box over the corresponding entry,

which makes a typeset copy handy for reference. For
another recent approach to the bibliography lookup

problem, see [4].
The bibliography entries for books contain

ISBN values, and for journals, ISSN values, where

these are available, and modified B I B W style files

support the printing of these fields. ISBNs contain a
check digit verifiable by a GNU Emacs editor func-

tion I wrote; this Emacs function is also available

from t u g l i b as the file isbn . e l . Does anyone know

if the 8-digit ISSNs have a check digit, and if so,
what the algorithm for computing it is?

All files in the collection contain a special com-
ment header whose style we hope to popularize for

m w a r e . Here is an example, somewhat reformat-
ted to accommodate the narrow columns of TUG-
boat:

aLaTeXstylefile{

author = "Nelson H. F. Beebe",
version = "l.OIM,

date = "11 Jul 199OU,

filename = "showtags. sty",

address = "Center for Scientific

Computing

Department of Mathematics

South Physics Building

University of Utah

Salt Lake City, UT 84112
USA

Tel: (801) 581-5254",

checksum = "70 333 3033",

email = "beebeQscience .utah. edu" ,
codetable = "ISO/ASCII",

keywords = "bibtex, cite tag, latex",

supported = "yes",

docstring = "This style file causes

the bibliography cite

tags to be displayed in

boldface text in a

right-adjusted framed

box over each entry in a

bibliography. This

serves as a handy

reference when the tags

are needed for a \tits()

macro.

For flexibility, the

user may redefine

\thecitetag to change

the format. E.g.

\renewcommand{\thecitetag}

[#I] I\fboxC\small\tt #I))

would typeset the tag in

small typewriter text in

a box.

The checksum field above

contains the standard

UNIX wc (word count)

utility output of lines,

words, and characters;

eventually, a better

checksum scheme should

be developed. "
3

The format is similar to that used in BIB^ files, al-

though it is not expected to be processed by BIB^;
doing so would require writing a special . bs t style

file, and augmenting B I B W with a simple filter to

delete comment markers prefixing each line. It is
not hard to keep a template for this comment header
available for insertion into files that you write; the

GNU Emacs file texf i l e . e l , available with the col-
lection, can be customized for your personal use to

insert one.

are:

0

0

0

0

The essential features of this comment header

The keyword = "value" format is extensible;

the ones shown above are recommended for a

start, but others may be desirable in the future.

The original filename is included in case the file
itself is renamed due to constraints of some file

systems.

Author name and address, and whether the file

is maintained and supported, are recorded.

The last modification date, and major and mi-
nor version numbers, are provided. The minor

TUGboat, Volume 11 (1990), No. 4

number is incremented whenever any change is

made to the file.

A documentation string is provided to hold a

short abstract describing the file. The intent of

the keywords and d o c s t r i n g fields is to pro-

vide information that can be automatically ex-

tracted for publication in a local file guide.

The character set used for the file is recorded in

the codetable value; this will become increas-

ingly important as 8-bit character sets become
more common and files are exchanged electron-
ically.

The checksum field can be used to detect cor-

ruption or modification of the file. Corrup-

tion of electronic mail through certain antiso-
cial gateway machines is a regrettable fact of

life, but it can also happen through file transfers
between unlike systems, or more rarely, from
media errors.

The current checksum scheme is too simple: it

records only counts of characters, words, and lines.

This does not detect errors of transposition or sub-
stitution; the latter are typical of e-mail corruption.

A better checksum system is needed. probably

one based on cyclic redundancy checksums, such as

the widely-used CRC-16. For our purposes. such a

checksum should be independent of the line termi-
nators used (CR, CR LF, LF, or other), but should

still incorporate the line count; that way, the same

checksum will be obtained on different file systems.
Also, while the checksum is embedded in the file it-

self, it should not affect the checksum computation;

otherwise, you could never set it correctly. Do we
have volunteers for a WEB implementation? I can
provide simple code for a fast compact implementa-
tion of the CRC-16 checksum that can be used for

a start.

Other archive sites are welcome to pick up the
current bibliography collection from Utah; they are

warned, however, that these files are undergoing

rapid evolution, and often change several times a
week.

I invite you to support this project; after get-

ting a copy of any of the bibliographies, send me

corrections and additions, the latter preferably in

 BIB^ format, including ISBN or ISSN fields. The

scope of literature that I'm trying to cover is far
larger than any single individual can manage. The

texbook2. b i b and texbook3. b i b files in particular

need to be greatly expanded.

If you have other bibliographies in BIB^ for-
mat that you would be willing to contribute to the
collection, I would like to hear about them.

TUGboat publication

TUGboat has finally reached a stage where we

have a backlog of papers to publish. This introduces

a publication delay, and also means that we need

to modify procedures somewhat. In the past. our

capable editors have undertaken the job of referee

as well as the normal work of editor.
Traditionally, scientific publishing has used the

referee process to improve the quality of published

papers, to catch errors before they appear in print,

to discourage the publication of substandard work,

and to encourage concise presentation. Unfortu-
nately, the pressure on authors to publish has re-

sulted in a proliferation of journals whose page lim-
its often force omission of important details; concise-

ness should not be achieved at the loss of readability
and usability.

I hereby call for qualified volunteers to act as
referees for TUGboat articles. You may send a
statement to that effect to the TUGboat editors; it
will be helpful to them if you list the subject areas

in which you are willing to referee papers. In the
interests of preserving rapid publication, you should

be willing to carry out your referee job within a few
days of receipt of a paper. and as is traditional, you

will remain anonymous (except to the editors), and

be under obligation not to disclose, or make use of,

refereed papers before they are published.

References

[I] Nelson H. F. Beebe. Character set encoding.
TUGboat. 11(2):171-175, June 1990.

[2] Janusz S. Bieri. On standards for computer mod-
ern font extensions. TUGboat, 11(2):175-183.
June 1990.

[3] Yannis Haralambous. and latin alphabet
languages. TUGboat, lO(3) :342-345, November

1989.

[4] Michael A. Harrison and Ethan V. Munson.

On integrated bibliography processing. Elec-
tronic Publzshing-Origination, Dissemznation,
and Design, 2(4):193-209, December 1989.

o Nelson H.F. Beebe
Center for Scientific Computing
Department of Mathematics
220 South Physics Building
University of Utah
Salt Lake City, U T 84112
USA
Tel: (801) 581-5254
FAX: (801) 581-4148
Internet: BeebeQscience .utah. edu

488 TUGboat, Volume 11 (1990), No. 4

The Future of T)QC

At the Texas and Cork conferences, birds-of-a-

feather (BOF) sessions were held to discuss the

future of m. In particular, the attendees were
concerned about the maintenance of when
Prof. Knuth no longer wished to be involved, and

about the possible evolution of incompatible m-
like products should this occur. These discussions
gave rise to a number of questions, which were pre-

sented to the TUG Board during the Cork meeting
for formal response. The questions are shown here,

and were also communicated to Prof. Knuth by one

of the BOF attendees. Prof. Knuth has been kind
enough to provide a definitive response as to the

future of rn and of METAFONT; this response is
given on the following pages, along with a commen-

tary by the TUG President, Nelson Beebe.

Attendees of the "Future of W" Birds-of-a-Feather

Session a t m 9 0 , Cork:

Johannes Braams

PTT Research, The Netherlands

Tim Bradshaw

University of Edinburgh, UK

Adrian F . Clark

University of Essex, UK

Christine Detig

Germany

Angus Duggan

University of Edinburgh, UK

Victor Eijkhout

University of Nijmegen,
The Netherlands

Jeremy Gibbons

Oxford University, UK

Michel Goossens

CERN, Switzerland

Klaus Guntermann

Technische Hochschule Darmstadt,

Germany

Amy Hendrickson

1. Does the TUG Board acknowledge the need to

maintain and develop when Prof. Knuth
decides to be no longer involved?

2. Does the Board agree that TUG should oversee

and coordinate changes to in an attempt
to improve the program as well as to establish

a single standard?

3. What mechanism can be established to enable

TUG to maintain control over without sti-
fling further necessary development?

4. Does the board agree that fundamental research
into unsolved typographical problems is neces-

sary to improve and that TUG should pro-
mote and seek funding for such research?

Wnology, Inc, USA

Alan Jeffrey

Oxford University, UK

Frank Mittelbach
Electronic Data Systems, Germany

Timothy Murphy
Trinity College Dublin, Ireland

Marion Neubauer
Universitat Heidelberg, Germany

David Osborne

Nottingham University, UK

Nico Poppelier
Elsevier Science Publishers BV,

The Netherlands

Thomas Reid

Texas A&M University, USA

David Rhead

Nottingham University, UK

Future of BOF
Cork, 12 Sept 1990

Chris Rowley

Open University, UK

Jan Michael Rynning

Royal Institute of Technology,
Sweden

Jens Schmidt

Universitat Hamburg, Germany

Rainer Schopf
Universitat Heidelberg, Germany

Joachim Schrod

Germany

Alan Wittbecker
Digital Equipment Corporation,

USA

Ralph Youngen
American Mathematical Society,

USA

TUGboat, Volume 11 (1990), No. 4

The Future of and METAFONT

Donald E. Knuth

My work on developing w. METAFONT, and

Computer Modern has come to an end. I will make

no further changes except to correct extremely
serious bugs.

I have put these systems into the public domain
so that people everywhere can use the ideas freely

if they wish. I have also spent thousands of hours

trying to ensure that the systems produce essentially

identical results on all computers. I strongly believe

that an unchanging system has great value, even
though it is axiomatic that any complex system can

be improved. Therefore I believe that it is unwise to
make further "improvements" to the systems called

T@ and METAFONT. Let us regard these systems
as fixed points, which should give the same results

100 years from now that they produce today.
The current version number for is 3.1, and

for METAFONT it is 2.7. If corrections are necessary,

the next versions of TEX will be 3.14, then 3.141.
then 3.1415. . . . , converging to the ratio of a circle's

circumference to its diameter; for METAFONT the

sequence will be 2.71. 2.718, . . . , converging to the

base of natural logarithms. I intend to be fully
responsible for all changes to these systems for the

rest of my life. I will periodically study reports of

apparent bugs, and I will decide whether changes

need to be made. Rewards will be paid to the first
finders of any true bugs, at my discretion. but I can

no longer afford to double the size of the reward
each year. Whenever I have created a new version,

I will put it in the official master T@ archive.

which currently resides at Stanford University. At
the time of my death, it is my intention that the

then-current versions of 7&X and METAFONT be
forever left unchanged, except that the final version

numbers to be reported in the "banner" lines of the
programs should become

TeX, Version π

my own programs. as I have specified in the manuals

for the TRIP and TRAP tests. And nobody is allowed

to use the names of the Computer Modern fonts
in Volume E for any fonts that do not produce

identical tfm files. This prohibition applies to all

people or machines. whether appointed by TUG

or by any other organization. I do not intend to

delegate the responsibility for maintenance of T@,
METAFONT, or Computer Modern to anybody else.

ever.
Of course I do not claim to have found the best

solution to every problem. I simply claim that it is a

great advantage to have a fixed point as a building
block. Improved macro packages can be added

on the input side; improved device drivers can be
added on the output side. I welcome continued

research that will lead to alternative systems that

can typeset documents better than is able to

do. But the authors of such systems must think of

another name.
That is all I ask, after devoting a substantial

portion of my life to the creation of these systems

and making them available to everybody in the
world. I sincerely hope that the members of

TUG will help me to enforce these wishes, by
putting severe pressure on any person or group who

produces any incompatible system and calls it T)jX
or METAFONT or Computer Modern-no matter

how slight the incompatibility might seem.

o Donald E. Knuth
Department of Computer Science
Stanford University
Stanford, CA 94305

and

METAFONT, Version e

respectively. From that moment on, all "bugs" will

be permanent "features."

As stated on the copyright pages of Volumes B,
D, and E, anybody can make use of my programs in

whatever way they wish, as long as they do not use
the names TjjX, METAFONT, or Computer Modern.

In particular, any person or group who wants to

produce a program superior to mine is free to do so.

However, nobody is allowed to call a system or

METAFONT unless that system conforms 100% to

TUGboat, Volume 11 (1990), No. 4

Comments on the Future of and
METAFONT

Nelson H.F. Beebe

1 Introduction

Donald E. Knuth's article above, "The Future of
!l&X and METAFONT", clearly states the Grand

Wizard's wishes about these programs and the Com-

puter Modern font family.
Where does that leave TUG? The opening para-

graph of TUG'S bylaws includes this statement (the
emphasis is mine):

. . . specifically to identify, develop, operate,

fund, support, promote and encourage char-
itable, educational and scientific programs

and projects which will stimulate those who

have an interest in sys tems f o r typeset t ing
technical t ex t and font deszgn; to exchange

information of same and associated use of

computer peripheral equipment: to establish

channels to facilitate the exchange of macro
packages, etc., through publications and oth-

erwise; and to develop, implement and spon-

sor educational programs, seminars and con-
ferences in connection with the foregoing. . .

I believe that this expressly says that TUG'S
purview legitimately goes beyond m , METRFONT,

and Computer Modern, whose further development
has been frozen by their author in the interests of

providing a constant solid base for their users, and
of returning to his own extensive research and writ-

ing efforts, which have been outstanding landmarks

in the development of the fields of Computer Science
and Applied Mathematics.

2 TEX is international

As the m - r e l a t e d portion of the Utah bibliogra-

phy project described in my President's message in
this issue of TUGboat will attest, the use of 7QX is
widespread. Many books and journals are routinely

typeset by 7&X, including almost all of the publica-

tions of the American Mathematical Society, one of
the world's largest publishers of mathematical ma-

terial. Large on-line data bases in TEX input form
now exist.

I suggest that no other typesetting system, or

desk-top publishing system, has been used for as

many languages as has. QjX is in use for
all major European languages, plus Arabic, Chi-

nese, Coptic (Ethiopian), Hebrew, several Indian
languages, Japanese, Persian, Russian, Thai, Turk-

ish, Vietnamese, and likely others that I may be
unaware of. This list includes languages that are

written horizontally and vertically. TEX can sup-

port typesetting of multiple languages in the same

text, thanks to the work of Frank Liang on hyphen-

ation [ll], of Michael Ferguson on multi-lingual TeX

[4, 5, 6, 71, and of Donald Knuth and Pierre MacKay

on W - X J g [9].
These research efforts led to several features in-

corporated in 3.0 to make multilingual typeset-

ting standardly available. For related work in other

typesetting systems, see [2] on tri-directional type-

setting. and articles in the July 1987, August 1988,
and May 1990 issues of the Communications of the

ACM.
There are textbooks about !l&X in at least Dan-

ish, Dutch, English, French, German, and Japanese,

and I know of in-progress translations to Persian of

the T)jXbook and the I P - ' User's Guide and Ref-
erence Manual.

There are TUG members in nearly 50 countries,

and I'm sure there are T@ users in many more. Be-
sides TUG, there are five thriving regional groups in

Western Europe, and five or more others are form-

ing.

3 The challenge from desk-top publishing
systems

The international use of suggests that Donald

Knuth's decision to freeze further development will

in some ways be highly beneficial. However, it does

n o t imply that m, METAFONT, and Computer
Modern are the last word in computer-based type-
setting. If TUG does not pursue further develop-
ment of typesetting software, 7&X may be doomed

to extinction far sooner than it should, for several

reasons:

Desk-top publishing is big business, with sev-

eral tens of millions of installed personal com-

puters forming the potential market base. The
Salt Lake Tribune on 10 October 1990 car-

ried an article on Utahns included in the just-

released Forbes list of the 400 wealthiest people

in the world. The two developers of Word Per-

fect, one of the most popular word processing
systems available on personal computers, work-

stations, and some mainframes, have a com-
bined worth of nearly one (North American)

billion dollars; the young chairman of Microsoft
Corporation is worth even more.

Software is a commodity that is relatively cheap
to produce and distribute. The actual devel-

opment costs of most commercial software are
only a small fraction of potential sales rev-

enues, and the computing industry has numer-

ous examples of the quick attainment of fab-

TUGboat, Volume 11 (1990), No. 4

ulous wealth. What does cost a lot of money

is sales and marketing, and the on-going sup-
port of software, including personnel. author-

ing. and documentation. This situation encour-
ages competitiveness and rapid development of

new products.

Desk-top publishing (WYS1WYG)l systems are

attractive to many people, particularly novices,

because of the immediate feedback that they
provide. With most of them, it is impossible to

generate syntax errors of the type that l&X is
perhaps infamous for, because input is checked

character by character as it is entered, and for-

matting commands are generated by function

keys and menu selections, rather than as em-

bedded markup. Few of these systems today

are suited to the batch typesetting required in

journal and periodical production. because they
bind a graphical input and output interface too

tightly to the typesetting machinery; however,
that market, because of its publishing volume,

will eventually prove attractive.

Users of most WYSIWYG systems are encour-

aged by the immediate feedback of the typeset

display to make visual, rather than logical, de-

sign decisions. Design professionals often crit-
icize visual design [lo. Section 1.41 because it

can lead to poor typography. Also, the visual
layout may make it difficult to re-use the text,

or to reformat it for a different output style.

These objections may disappear as newer gen-
erations of these systems provide better support

for document styles, and separation of the jobs

of authoring or document entry, and document
design.

Several desk-top publishing systems are already

capable of easily handling multi-column out-

put, multi-column floats, flowing of typeset

text around inserts (both rectangular and non-
rectangular), and easy integration of graphics

with text; these are areas where is notice-
ably deficient.

4 m's advantages

In view of the points raised in the preceding section,

we must then ask what does (and I mean also
METAFONT, Computer Modern, and related soft-
ware) offer that competing desk-top publishing sys-

tems do not, at least not yet?

WYSIWYG = What You See Is What You

Get, sometimes called What You See Is All You've
Got.

provides public-domain access to the

source code of its related software. Source code
of commercial implementations remains propri-

etary, but the changes from the public domain
versions are usually in system-dependent areas

that do not affect the overall operation of the
software, and for most machines, both public

domain and commercial implementations are

available.

Public access to the source code is extremely

important. I t permits both low-cost, or even

free, public-domain implementations, and sup-

ported commercial implementations, of TE,X to

be available on many different platforms. A
commercial user of need not be tied to

any single vendor of the software; such ties can

become a significant competitive disadvantage

when the supplier does not keep up with tech-
nological progress. As one such example, I cite

the TV Guide experience [I].

Although l@X is probably one of the most

bug-free software packages of its size, it is re-
assuring to a user to know that if a question

ever arises as to why the system typeset text

in a particular way. the availability of well-
documented source code makes it in principle

possible to find the reason. Public access to
source code means that bugs are often found

and reported by several users, and fixes can
come more quickly. By contrast, commercial

desk-top publishing systems are almost always

unfathomable black boxes whose surprises are

indecipherable; it may be difficult to convince
a vendor that an anomaly is a 'bug' instead of

a 'feature'.

TEX source code is written in a relatively
portable language, and consequently, it is avail-

able today for virtually every commercially-

available computing system, from personal
computers, up to supercomputers.

The wide availability and use, and the frozen

development, of W mean that we can view
it as an archival document formatting sys-
tem. Most commercial publishing products

have completely ignored this issue; succeeding

product generations offer new features and bug

fixes, but are often incompatible with earlier
ones. It is certainly true that much of what is

published today is "throw-away" material. and

in such cases, whether the publishing system
can reformat the same document years from

now is of no concern.

However, in academic circles, this is decid-

edly not the case. Academicians research and

TUGboat, Volume 11 (1990), No. 4

write in the interest of wide dissemination of

their ideas, both to current colleagues, and to
future generations. Authors and publishers of

such material are interested in re-using it for

multiple documents. One of the m 9 0 speak-

ers from a major publisher noted that in some
fields of study, the same text can be re-used

more than a dozen times.

m ' s freedom from architectural and commer-
cial licensing restrictions facilitates collabora-

tive efforts of several authors to work on the

same document, even if they have different com-

puter hardware.

W ' s markup is visible, not hidden in magi-

cal undocumented binary data embedded in the
document. This has several virtues:

- Detection and correction of formatting er-

rors is usually easier when the formatting

commands can be seen.

- It is relatively easy to write simple filters

that strip the markup from a document to
produce raw text which is input to other

software tools for spell checking, grammat-

ical analysis, and so on.

- The markup is recorded in the same char-
acter set as the raw text, greatly facili-

tating document exchange between unlike
systems, or via electronic mail.

0 m ' s support for visible markup means that

translation may be possible between it and
other markup systems, such as SGML-based

ones.

0 m supports a powerful macro language that
permits the creation of separate input inter-

faces that can be quite different from p l a i n

m . AMS-rn and IPW are the most ob-
vious examples, but the Free Software Founda-

tion's W i n f o and I P w i n f o systems, and the

use of m as the typesetting engine for docu-
ments written in other markup languages, as is
done at at least two major publishing houses,

are other examples. Most desk-top publishing

systems lack this extensibility.

0 TFJ is capable of handling multi-lingual type-
setting; few commercial publishing systems to-

day can make this claim.

W ' s mathematical typesetting abilities are
still unmatched by most desk-top publishing
systems. Its Computer Modern font family,

together with the AMS font extensions, pro-
vides a repertoire of characters that is far more

comprehensive than almost anything available
on other systems. (I was able to announce at

the Cork meeting that Adobe Systems has fi-
nally released a Lucida font in POSTSCRIPT

format with a set of mathematics characters
matching Computer Modern. Lucida is the

font used in the typesetting of Scientific Amer-
ican.) The public-domain nature of will

of course make it possible for commercial sys-
tems to incorporate m ' s sophisticated algo-

rithms for mathematics; however, this is likely

to happen slowly because most of the commer-
cial desk-top publishing market has little need

for mathematical typesetting.

m, and other systems based on visible
markup (including those that use SGML), have

a significant advantage over WYSIWYG sys-

tems in that style and content can be clearly
separated. In most desk-top publishing sys-

tems, style and content are inextricably en-
twined. This has important ramifications for

alternate uses of the input text, for user train-
ing, and for the effort needed to change the style

without modifying the content.

With W, authors and clerical staff need

learn only one system that can be used with
very minor changes to produce documents in a

wide variety of styles.

Some observations

'QX currently has a portability advantage over most

other typesetting systems. Many commercial pub-

lishing products are tied very closely to the hardware
or window system architecture of a specific machine,

particularly in the personal computer market. This

has meant years of delay in getting them ported to
other systems. The rise of the C language, partic-

ularly during the 1980s, as an efficient, but never-

theless portable, machine-independent implementa-

tion language is slowly beginning to be recognized by
vendors. Assembly-language coded systems are now

being rewritten in C or C++ to reach a wider mar-
ket. Recent examples include SAS, Word Perfect,
and Lotus 1-2-3. Because of the spread of popu-

lar window systems, such as X, Microsoft Windows,
and others, and the efforts to standardize them. I

expect that by the end of this decade, most com-
mercial software products related to publishing will

be available on as wide a range of machines as 'l$X
currently is.

While it is true that standard TEX does not pro-

vide an immediate visual display of the typeset text,

the Berkeley VORTFJ project, about which too little
has been written, and ArborText's Publisher system

are demonstrations that TFJ can have such an inter-
face. The rapid advances in computer speeds that

TUGboat, Volume 11 (1990), No. 4 493

have occurred, largely through RISC processor de-

velopments, and the volume production economiza-
tions possible through sales of millions of personal

computers, suggest that we are only a few short

years away from instantaneous typeset on-line dis-

play.
Few existing systems, including WYSIWYG

ones and w, are suitable for newspaper publish-

ing, which is characterized by its complicated layout

of text and graphics in up to six or eight columns,

and daily deadlines that cannot be missed without

serious economic impact. I expect that the most

printing done in the world today is in newspapers.
While most of larger newspapers now use computer-

based typesetting, I suspect that their systems are

rather specialized for that industry.

6 Necessary future developments

The preceding sections have discussed the relative
strengths and weaknesses of 7&X versus desk-top

publishing systems. I have found in discussions with
other TUG members at meetings. and in mail ex-

changes, that many of us share the view that devel-
opment of 7&X cannot stand still. Donald Knuth

has placed understandable restrictions on the use of

the names w, METAFONT, and Computer Mod-
ern. Consequently, evolutionary systems arising

from TEX will have to use different names.

I believe strongly that what needs to be done

now is for those users of w and METAFONT who

have pushed the limits of those systems to be-
gin writing down detailed descriptions of just what

those limitations are. and to make well thought-out
suggestions about the directions that future work

ought to take.

I made a start last year on the relation of w
and graphics in [3].

Frank Mittelbach gave a wonderfully incisive

exposition on the future of TEX at the College Sta-
tion TUG'S0 meeting [12], and followed that at the

Cork W ' 9 0 conference with a fine presentation of
work done together with Reinhard Wonneberger on

the future of BIB^ [14].

Michael Vulis has shown with an actual imple-
mentation [13] how scalable fonts tightly integrated

into a =-like system can offer new and interest-

ing capabilities. To those who would quibble with

his incorporation of the name w. I would observe

that VTfjX is a superset of Tf$, and with a special

command-line argument, it will disable all exten-

sions and perform exactly like w; nevertheless, it
would be advisable to adhere to the Grand Wizard's

wishes, and change the name.

John Hobby presented some very promising
work at the Stanford TUG'89 meeting on extensions

of METAFONT for generation of POSTSCRIPT output

[8]. and related work by Shimon Yanai and Daniel

Berry should soon appear in TUGboat.

W e need more such articles! Please, if you can
contribute new ideas, and I know from personal con-

tacts that many of you can, write them down (or

even up) for publication in TUGboat or other jour-

nals in the field.
Only when we have a solid base of written con-

tributions from the w experts will it be possible

for some future researcher to have a reliable start-

ing point for the design of the evolution of Tf$ to

the next generation of typesetting system, and that
person will have the added challenge of finding new

names!

Let us hope that a major design goal of such
an effort will be the maintenance of compatibility

with existing TEX and METAFONT input, so that the

substantial, and growing, base of existing 7&X and
METAFONT material will continue to be processable,

with exactly the same results, by the next generation
of computer-based typesetting systems. I believe

that this would be far preferable to having separate,
but mutually incompatible. systems that must try

to coexist peacefully.

Incompatibility may eventually become neces-

sary. By the time that W ' s grandchildren are
born, it may be that they will bear little resem-

blance to their ancestor. We can only hope that use

of w will have become so commercially important

that translators of documents to the new gen-

eration systems will be developed. An analogy can
be found in programming languages: Fortran is a

distant ancestor of the Algol family of languages.

including Pascal, C, C++, and Ada. An enormous
body of important Fortran code exists that cannot

possibly be rewritten by hand; public-domain and

commercial translators have been developed to con-

vert Fortran code to some of these languages.
While the design of w ' s children is underway,

we need to get all w systems upgraded to the fi-
nal versions that Donald Knuth has provided, and

we need to agree upon a standard 8-bit 7&X font en-

coding that will permit the exchange of documents

that make use of the new features of TjjX 3.0. As I

noted in my President's message in this issue, this

second problem should soon be solved.

References

[I] Elizabeth Barnhart. in the commercial en-

vironment - multi-column output. TUGboat,
8(2):185, July 1987.

TUGboat, Volume 11 (1990), NO. 4

Zeev Becker and Daniel Berry. t r i r o f f . an

adaptation of the device-independent t r o f f

€or formatting tri-directional text. Electronzc
Publishmg-Orzginatzon, Dzsseminatzon, and

Deszgn, 2(3):119-142, October 1989.

Nelson H. F. Beebe. 'l&X and Graphics:
The State of the Problem. Cahzers GUTen-

berg, 1(2):13-53, 1989. Presented to: Congrks

GUTenberg, Paris, France, 16-17 May 1989.

Michael Ferguson. Multilingual w update.

TUGboat, 7(1):16. March 1986.

Michael Ferguson. A (hopefully) final extension

of multilingual w. TUGboat, 8(2): 102, July

1987.

Michael Ferguson. Coordination of non-English
use of w. TUGboat. 11(1):8-9, April 1990.

Michael J. Ferguson. A multilingual w.
TUGboat, 6(2):57, July 1985.

John D. Hobby. A METAFONT-like System with
Postscript Output. TUGboat, 10(4):505-512,

December 1989.

Donald Knuth and Pierre MacKay. Mixing

right-to-left texts with left-to-right texts. TUG-

boat, 8(1):14, April 1987.

Leslie Lamport. P W - A Document Prepa-

ratzon System-User's Guzde and Reference

Manual. Addison-Wesley, 1985.

Franklin Mark Liang. Word Hy-phen-atzon by

Com-pu-ter. PhD thesis. Stanford University,

August 1983.

Frank Mittelbach. E-TJ$: Guidelines for fu-
ture rn extensions. TUGboat, 11(3):337-345,

September 1990.

[13] Michael Vulis. V w extensions to the
language. TUGboat, 11 (3):429-434, September

1990.

[14] Reinhard Wonneberger and Frank Mittelbach.

 BIB^ reconsidered. TUGboat, 12(1), Jan-

uary 1991 (to appear).

o Nelson H.F. Beebe
Center for Scientific Computing
Department of Mathematics
220 South Physics Building
University of Utah
Salt Lake City, UT 84112

USA
Tel: (801) 581-5254
FAX: (801) 581-4148

Internet: Beebeascience . utah . edu

Editor ia l C o m m e n t s

Barbara Beeton

T h i s year's "meeting season"

We have come to the end of the 'l&X summer
meeting season, and it was a busy one. I attended

the TUG annual meeting in College Station, Texas.

m 9 0 in Cork (the 5th TEX meeting in Europe,
and the first co-sponsored by TUG), and the NTG
SGML-TJ$ Conference in Groningen. As always,

one of the best parts of these conferences was the
chance to greet in person all sorts of people who
I'd already "met" by e-mail. Meetings in Europe

are a bit less hurried than those in the U.S. - there
is often time to linger over coffee before returning
to the next session. But I was sorry at the Dutch

meeting to miss several talks that I would like to

have attended; there were two tracks, and one had
to make choices.

What were the highlights? This is at least

partly subjective, but I think there were some

features that really stood out.

For those on the TUG Board of Directors,
it was novel and welcome to be able to mingle
with everyone else at lunch time at the annual

meeting, and I felt that the networking lunches

(an innovation this year) were a success and should
become a permanent part of the meeting planning.

In both Texas and Ireland, one of the most
active discussion topics was, whither TEX? We

have an answer from Don Knuth concerning the

software that goes by the name 'l&X (see his

article on page 489, and Nelson Beebe's comments,

page 490). However. I don't assume that means

there can be no growth, only that it should be

well-planned, concentrated in the areas of pre- and

post-processing, and we should start thinking of
good names.

TUG'S e leventh annua l meet ing. The meeting

at Texas A & M University wasn't attended by as

many people as the Tenth at Stanford, but there was
a good program for those who did come. Several

papers stood out for me:

0 Frank Mittelbach on what's still missing from
W. His paper in the Proceedings not only explains
but also illustrates the points he made.

0 Helen Gibson on how an in-house system for
producing high-quality exhibition catalogs and re-
search publications with "problem scripts" (Sanskrit

and South Asian) was built without alienating either
the researchers or the secretaries.

TUGboat, Volume 11 (1990), No. 4 495

rn Mimi Lafrenz on running a small company

that provides T@ services to publishers. Her

message was that sharing information is essential to
producing a quality product. She's also a dynamite

speaker.

And there was a lot more; you can read it in

the Proceedings.

The Proceedings, published as TUGboat 11,

no. 3, were ready in time to be handed out in

Cork. That issue had its own editor, Lincoln Durst;

the timeliness and consistency of the published

work is due, more than I can say, to his energetic

oversight. I was permitted to relax and observe

from a distance. To Lincoln and everyone else who

contributed to its success, good job!

NTG's SGML & rn Conference. The Dutch

SGML Users' Group co-sponsored this conference,
and with the exception of two talks on more general

topics, the program proceeded along two tracks,
one mainly SGML and the other mainly m . This

would seem to have been the ideal opportunity to
indulge in some cross-fertilization, but I thought

that most attendees stayed with the track that was

most familiar. I attended the meeting in Groningen

because Kees van der Laan invited me to give a talk
on the production history of TUGboat. Here are

my impressions of some of the talks.

rn Joop van Gent described the "two faces of
text": the logical content of a scientific document,

and the ancillary things that it is "about" -the

author, the state of knowledge when the work was

written, etc. He then presented some m n i q u e s

for processing documents to make them available

in a form suitable for advanced document retrieval

systems.
rn Malcolm Clark took a look at the problem

of exchanging (m) documents through electronic

mail. The present networks don't support 8-bit
transmission, and even 7-bit is shaky at times. So

what is needed is another piece for the toolkit -

a filter for 8 + 7bit transmission, to give us "safe
qjr'.

rn Sake Hogeveen's paper on aspects of scientific

publishing was on the SGML track, but it managed
to include two introductory courses, " m in five

minutes" and "I4W in six minutes", that got the

idea across quite well to anyone who had never

heard those names. The main points of this talk

were that an "ordinary" author needs all the help

he can get to make manuscript preparation simpler,
and that good typography supports the structure

of a document, so that a reader understands the
structure better because of the typography.

rn Victor Eijkhout considered the need for a

metaformat which would permit the document style
designer to specify attributes in a n o n - m syntax.

This is important because document markup that

identifies common structural elements can permit

a common input view but different outputs, and
the common input view permits a good typist to

go at top speed. The challenge: to implement a

programming language suitable for the designer's

specifications.
rn Johannes Braams gave an overview of the work

of NTG Working Group 13, which has developed

various I4m styles appropriate for Dutch doc-

uments, and of his own work on Babel. a style

for support of multilingual variation (an article

describing this work will appear in TUGboat 12,

no. 2).

Unfortunately, there will be no formal pro-

ceedings of this conference. I hope that the ideas

discussed there will find their way into print in

other ways, and not remain inaccessible.

W 9 0 in Cork. Peter Flynn made sure that
everyone felt welcome at the same institution which

had been home to George Boole - University Col-

lege Cork. The meeting was attended by about

175 w i e s from 23 different countries-a larger
and more varied group than in Texas. Again. just

a few highlights:

rn Christine Detig on hypertext. I want it! I need

it to organize the TUGboat archives!

rn Malcolm Clark on why anyone who wants

to edit and produce the proceedings of a W
conference (or any similar collection) should think

twice.

rn Yannis Haralambous on typesetting Old Ger-

man. He proposed that there is more enjoyment

in reading old texts when the typefaces are appro-

priate, and to illustrate his point he has created
METAFONT fonts for Fraktur, Schwabacher, Go-

tisch, and a beautiful set of ornamented capitals.

This paper was deservedly awarded the prize for
best presentation. (See also Yannis' paper on

Arabic, page 520 in this issue.)

0 Nico Poppelier on the use of SGML as a

common coding system for organizing and re-using
texts and data by a publisher who employs not only

7&X but several other typesetting systems.

Angela Barden on how to write a useful book

on w. (Actually, I missed the presentation. but

496 TUGboat, Volume 11 (1990), No. 4

have heard such good things about this paper that

I can hardly wait for the Proceedings.)
Konrad Neuwirth on why it isn't suitable to

teach in schools. Though still a student,
Konrad admits to being "not typical", and his

arguments were well thought out and to the point.

The Proceedings will constitute TUGboat 12,

no. 1, which will appear early next year.

TUGboat news

With this issue, there is a new Associate Editor

for Macros. Victor Eijkhout. Until recently an

inhabitant of Nijmegen in The Netherlands where
he contributed to NTG Working Group 13 and, via

the networks, to discussions on w h a x . U K w ,
etc., Victor is now working in the Center for

Supercomputing Research and Development at the
University of Illinois in Urbana. We intend to keep
him busy.

Two issues of Proceedings will be published
in 1991. It has already been mentioned that the

Proceedings of T)jX9O, Cork, will be TUGboat 12,
no. 1. This issue will be on a schedule separate from

that of the regular issues, as will the Proceedings of

TUG91, which will appear as 12. no. 3.
There will be a total of four issues in 1991, the

same as in 1990. Issues 2 and 4 will be regular

issues. See below for a discussion of this decision.

To accommodate the expected volume of tech-
nical articles, we are prepared to increase the size

of the two regular issues as much as necessary or

possible, subject to financial considerations. News
items, reports, and the calendar will be published

in all issues. The deadline for such items for TUG-
boat 12, no. 1 will be past by the time you read

this; deadlines for later issues will appear in the

calendar.

The first regular issue will be moved to May

1991, and the editorial deadline adjusted. Now that
there is a Macro Editor, we intend to pay more

attention to details. We are also attempting to have
technical articles refereed, to try to assure an even,

high level of quality. For this, we need more time.

Therefore, for regular issues there will now be two -
deadlines: one for technical articles, and one for

news items and reports. For TUGboat 12, no. 2, the
deadline for technical articles will be February 19,

and for news items and reports, March 19.

We would like to recognize the fine work of our

printer, Waverly Press, whose expeditious service

in 1990 has drastically shortened the time between

deadline and publication. The availability of the

Texas Proceedings in Cork could not have happened
without their cooperation.

The dues increase a n d number of issues

You will notice on the inside front cover and on your

renewal notices that the membership dues will be

$45 next year. There will be no discount for early
renewal, and no postal supplements for members

outside the U.S. The increase from the 1990 rates is

intended to help alleviate TUG's present financial

difficulties.

The TUG Board voted (at a meeting in Cork)
to rescind the postal surcharge. TUG was not

meant to be a U.S.-only organization, and the

required (rather than optional) supplement added
to the perception of members outside the U.S.

that they were being treated as "second class
citizens". The other problem for members outside

North America, that of slow delivery (in spite of
higher charges to provide air mail service) is being

attacked separately, with the help of our printer: an
investigation into the possibility of printing part of

the edition in Europe has been deferred until there

is experience with the new mailing strategy.
After discussion of whether there should be

four or five issues, we have decided on the smaller

number for the following reasons: (1) To add a fifth
issue would have necessitated an increase in dues

larger than the one approved. (2) TUG's financial

situation hasn't been good for the past two years,

and we're trying to attack the problem from both

ends: increased revenue (membership dues) and

decreased costs (holding the line at four issues, even
though only two of those will be regular issues).

(3) The postal permit requires that the Post Office

be notified in advance of changes in the number of

issues scheduled; changes are possible, but (as it
has already been announced that GUTenberg will

publish the m 9 1 Proceedings; see page 667) a
reversing change would be likely next year.

Regardless of these changes, we intend to do
our best to continue to produce a TUGboat that we

can be proud of, and that you will find interesting

and useful.

TUGboat, Volume 11 (1990), No. 4

Arthur Lee Samuel, 1901-1990

The TFJ community lost its beloved senior member
on July 29, when Art Samuel died at age 88. He
had devoted a great deal of time during the past
decade giving personal attention to the needs of
thousands of TEX users all over the world.

Art joined Stanford's rn project in the spring
of 1981, and he was a major participant in all of our
activities during those crucial days of the early 80s
until the project completed its work in 1985. He
continued to answer numerous queries about W.
electronic and otherwise, for several more years,
even though the onset of disease made it difficult
for him to walk and eventually confined him to
a wheelchair. He was more than 50 years older
than nearly everyone else in the TEX group, but he
always was a lively contributor to our meetings and
a source of inspiration.

l&X was, of course, only a footnote to his long
and illustrious career. He did pioneering work on
vacuum tubes at Bell Labs during the 30s; he played
a leading role in the development of the ILLIAC
computer as a faculty member at the University of
Illinois in the 40s; he directed IBM's Poughkeepsie
laboratory where significant research on transistors
was carried out in the 50s: he devoted considerable
time to government service, for example as chair of

the Joint Services Committee on Electron Devices
for 17 years; he received more than 40 patents
for various inventions. When David Fuchs and I
traveled with him to the Cincinnati TUG meeting
in January, 1982, he regaled us with interesting
stories about his experiences as a pilot. He is best
known for the seminal research he did on machine
learning, beginning in 1949; his famous program for
playing checkers won a fine game against America's
number-four-ranked player in 1962 (see [3]).

I think he also had a keen interest in publishing
throughout much of his life. For example, he
was editor of the IBM Journal of Research and
Development from January 1962 to July 1966. He
retired from IBM in 1966 and became a member
of Stanford's Artificial Intelligence Project. MIT
was also wooing him at that time, hoping that he
would move to Massachusetts and participate in
research on publishing automation, sponsored by
the American Newspaper Publishers Association.
We can only guess what the history of computer
typography would have become if he and his wife
had not preferred to settle on the West Coast.

?&X users know Art Samuel best from his
classic booklet First Grade W [6], which came out
almost simultaneously with The m b o o k . This

TUGboat, Volume 11 (1990), No. 4

book was his own idea; he worked on it constantly
for more than a year as w 8 2 was taking shape.

Naturally it was an immediate success. According

to reports in TUGboat, more than 600 copies were

sold by the TUG office in 1984; more than 800

copies in 1985; more than 1200 in 1986 191. And

TUG was only one of several outlets for his book.
Art had long been interested in writing tutorials

for beginners. For example, he had written the

lead article for the IRE'S first special issue on
computers in 1953, entitled "Computing bit by bit,

or Digital computers made easy" [2]. Every user

of Stanford's SAIL computer was helped by his

booklets "Essential En [4] and "Short WAITS" 151,
which provided brief introductions to the text editor

and operating system. So he decided to do a similar

thing for m. (He told me that his first goal was

to write a kindergarten primer; but after awhile

he found that TEX was too complicated, so he
needed to go up to the first grade level.) He

tried valiantly to keep the entire document at most

32 pages long. Finally, however, he accepted the

34-page length that seemed to be necessary. We can
imagine his surprise when the Japanese translation

was published in 1989-his book now ran to 175

pages! [8]
When I taught a special course about META-

FONT in 1984, using a new operating system and a

new text editor on new workstations, Art saved the
day by writing key documentation so that our novice

computer users could cope with the experimental

equipment. He also attended the course: Some of
his homework is displayed in [I].

Incidentally, he had written an article in 1964

predicting what computers would be like in 1984 171;

people tell me that this article, by a senior researcher
a t IBM, was the first public prediction that personal

computers would become commonplace before long.

Some of his futuristic ideas of 1964 were indeed

prophetic. But it is amusing to compare the orderly
transition to a high-tech world envisioned in [7]

with what Art himself was doing in 1984.

Surely Art must hold the all-time world record

so far for correct computer instructions written after

the age of 80. He did a great deal of significant

programming for the 'I)$ project, especially of

device drivers; without them, we wouldn't have been

able to print the results of our basic experiments
when m 8 2 and METAFONT84 were being created.

Ultimately I printed tens of thousands of pages
with his software. running it on three quite different

machines. He incorporated some clever ideas about
caching font data so that memory requirements

would be low.

He also took a look at my GFtoDVI pro-

gram, which originally had a fancy algorithm for

positioning labels near the points on METAFONT

proofsheets. I was quite happy with the algorithm,
but he didn't like the way the labels looked in

his own experiments. So he made his own per-

sonal GFtoDVI and hesitantly showed it to me. At

first I thought it was terrible-my "elegant" data
structure for non-overlapping rectangles had been

replaced by a brute force search-but soon I had

to admit that (a) Art's method gave better results
than mine, and (b) it also ran faster. Needless to

say, I soon abandoned my original approach and

adopted his scheme. Sophisticated computer science

can sometimes be too seductive.
All of us can surely be grateful for the many

things Art Samuel accomplished during his lifetime,
and for the many lessons he taught us. The fruits

of his work will live on.

- Donald Knuth

References

Donald E. Knuth, "A course on METAFONT

programming," TUGboat 5, 2 (November 1984),
105-118; see especially page 114.

Arthur L. Samuel, "Computing bit by bit, or Digital
computers made easy," Proceedings of the Institute
of Radio Engineers 41 (October 1953), 1223-1230.

Arthur L. Samuel, "Some studies in machine learn-
ing using the game of Checkers," IBM Journal
of Research and Development 3 (1959), 210-
229. Reprinted with an additional annotated
game in Computers and Thought, edited by Edward
A. Feigenbaum and Julian Feldman (New York:
McGraw-Hill, 1963), 71-105.

Arthur L. Samuel, Essential E. Stanford Computer
Science Report STAN-CS-80-796 (March 1980).

Arthur L. Samuel, Short WAITS. Stanford Com-
puter Science Report STAN-CS-81-839 (February
1981).

Arthur L. Samuel, First Grade w: Beginner's
w Manual. Stanford Computer Science Report
STAN-CS-83-985 (November 1983).

Arthur L. Samuel, "Computers in 1984: The
banishment of paper-work," New Scientist 21,
no. 380 (February 1964), 529-530.

Arthur L. Samuel, First Grade w; a Japanese
translation with notes (Tokyo: Kinokuniya, 1989).

Samuel B. Whidden, "Acknowledgment of contribu-
tors," TUGboat 6, 1 (March 1985), 5; 7, 1 (March
1986), 7; 8, 1 (April 1987), 5 .

TUGboat, Volume 11 (1990), No. 4

Software

Answers t o

Exercises for TEX: T h e P rogram

Donald E. Knuth

Editor's note: The exercises apropos to these an-

swers were printed in TUGboat 11, no. 2. pp. 165-
170.

1. According to the index, initialize is declared in

$4. It is preceded there by (Global variables 1 3) '

and $13 tells us that the final global variable

appears in $1345. Turning to $1345, we find
'write-loc: pointer;' and a comment. The comment
doesn't get into the Pascal code. The mini-index

at the bottom of page 535 tells us that 'pointer' is
a macro defined in $115. Our quest is nearly over.

since $115 says that pointer expands to halfword,

which is part of the Pascal program. Page ix

tells us that lowercase letters of a WEB program

become uppercase in the corresponding Pascal code:
page x tells us that the underline in 'write-loc' is

discarded. Therefore we conclude that 'PROCEDURE

INITIALIZE' is immediately preceded in the Pascal
program by 'WRITELOC : HALFWORD ; '.

But this isn't quite correct! The book doesn't
tell the whole story. If we actually run TANGLE

on TEX.WEB (without a change file), we find that

'PROCEDURE INITIALIZE' is actually preceded by

{1345:)WRITELOC:HALFWORD;C:1345)

because TANGLE inserts comments to show the origin

of each block of code.

2. The index tells us that done5 and done6 are
never used. (They are included only for people who

have to make system-dependent changes and/or

extensions.)

3. Here we change the input-ln procedure of $31.
One way is to replace the statements 'buffer[last] +-

I xord [f t]; get (f) ' by the following:

if ord (f 7) =, '33 t h e n
begin get (f):

if (ord(ff) > "@I1) A (ord(fT) 5 t h e n

begin buffer [last] +- xord [chr (ord (f f) - ' l o o)] ; get (f) ;
end

else buffer [last] c znvalid-code ;
end

else begin bufler [last] +- xord [f TI ; get (f);
end;

4. The new string essentially substitutes "quar-

ters" q (of value 25) for "dimes" x (of value 10).

Playing through the code of $69 tells us that

69 is now represented by lvvviv and 9999 is

mmmrnmmmmmcmqcvqiv. (The first nine m's make 9000;

then cm makes 900; then qc makes 75; then vq
makes 20; and i v makes the remaining 4.)

5 . Because it may be decreased by 1 in $1293

before being increased by 1 in $82. (The code

in $1293 decreases error-count because "showing"
uses the error subroutine although it isn't really an

error.)

6. The q becomes in $83. This causes $86
to print 'OK, enter ing \batchmode', after which
selector is decreased so that ' . . . ' and (return) are

not printed on the terminal! (They appear only in
the log file, if it has been opened.) This is 7&.X's
way of confirming that \batchmode has indeed been

entered.

7. (a) Arithmetic overflow might occur when
computing t * 297, because 7230585 x 297 = 231 + 97.

(b) Some sort of test is need to avoid division by

zero when 0 < s < 297. If s < 1663497 then
s div 297 < 5601, and 723058515600 is a bit

larger than 1291 so we will have r > 1290 in such

a case. The threshold value has therefore been

chosen to save division whenever possible. (One

student suggested that the statement 'r t t ' be

replaced by 'r +- 1291'. That might or might

not be faster, depending on the computer and the
Pascal compiler. In machine language one would
'goto' the statement that sets badness +- inf-bad,

but that is inadmissible Pascal.) (c) If we get
to $128 with r = p + 1, we will try to make a
node of size 1, but then there's no room for the

node-size field. (d) If we get to $129 with only one

node available, we'll lose everything and rover will
be invalid. (Older versions of have a more

complicated test in $127, which would suppress

going to $129 if there were two nodes available.
That was unnecessarily cautious.) (e) This is a
subtle one. The lower part of memory must not

be allowed to grow so large that a node-size value
could ever exceed max-halfword when nodes are
being merged together in $127.

500

8. W e assume t h a t min-quarterword = min-halfword = 0 .

I I "U" / 400 1
I 11 " f " l 10002 1

1 " f " 0 1

T U G b o a t , V o l u m e 11 (1 9 9 0) , No . 4

type (h l i s t -node) , , l ink

wid th (100 p t)

depth

height (1 0 p t)

shi f t -amount

glue-sign (s t re tch ing) , glue-order (f i l l) , list-ptr

glue-set (t y p e real)

type (d i sc -node) , replace-count, l ink

pre-break , post-break

type (kern-node) , subtype (exp l i c i t) , l ink

wid th (1 0 p t)

type (l igature-node) , , l ink

f o n t , character , lig-ptr

type (penal ty-node) , , l ink

penalty

type (g lue -node) , subtype (n o r m a l) , l ink

glue-ptr (f i l l-glue), leader-ptr

type (v l is t -node) , , l ink

width (1 0 p t)

depth (0.5 p t)

height (5 p t)

shi f t -amount (- 5 p t)

glue-sign (n o r m a l) , glue-order (n o r m a l) , list-ptr

glue-set (t y p e real)

type (hl is t -node) , , l ink

wid th (1 0 p t)

depth

height (5 p t)

shift-amount

glue-sign (n o r m a l) , glue-order (n o r m a l) , list-ptr

glue-set (t y p e real)

type (ru le -node) , , l ink

width (nul l - f lag)

depth

height (0 .5 pt)

f o n t , character , l ink

f o n t , character , l ink

f o n t , character , l ink

f o n t , character , l ink

f o n t , character , l ink

f o n t , character , l ink

TUGboat, Volume 11 (1990), No. 4

9. (Norwegian Americans will recognize this as an

'Uff da' joke.) The output of short-display is

\ l a rge Uff [I

since short-display shows the pre-break and post-

break parts of a discretionary (but not the re-
placement text). However, if this box were output

by hlist-out, the discretionary break would not be

effective; the result would be a box lOOpt wide,

beginning with a large '!' and ending with a small

'da', the latter being raised 5pt and underlined
with a 0.5 pt-rule.

10. Since prev-depth is initially ignore-depth, we

get

v e r t i c a l mode entered a t l i n e 1

(\output rou t ine)
prevdepth -999.99998, prevgraf 1 l i n e

11. According to $236, int-base + 17 is where mag
is stored. (One of the definitions suppressed by an

ellipsis on page 101 is mag; you can verify this by

checking the index!) The initial value of mag is

set in $240. Hence show-eqtb branches to $242 and
prints L\mag=lOOO'.

I

12. In the following chart, '(3)' means a value at level three, and '-' is a level boundary:
(2)

13. (reference count), match ! , match #, left-brace

[, end-match, left-brace {, mac-param #. right-brace
1, mac-param ! , out-param 2, left-brace [. Notice

that the left-brace before the end-match is repeated
at the end of the replacement text, because it

has been matched (and therefore removed from the

input).

14. According to $233, show-eqtb (every-par-loc)

calls show-token-list with the limit 1 = 32. Ac-

cording to $292, we want the token list to contain

a token that prints as many characters as possible

when tally = 31; the value of tally is increased

on every call to print-char ($58). By studying
the cases in $294, we conclude that the worst case

occurs when a mac-param is printed, and when

the character c actually prints as three charac-

ters. The statement 'print-esc("ETC. ")' in $292

will print seven additional characters if the current
escape-char is another tripler. (Longer examples

are possible only if 7QX has a bug that tweaks one

of the outputs '\CLOBBERED.' or ' \BAD . ' in $293;

but this can't happen.)
In other words, a worst-case example such as

in connection with the suggested test line will print

{ r e s to r ing --Meverypar=1234567890123456789012345678901--I--I--METC.~

thereby proving that 44 characters can be printed

by show-eqtb (every-par-loc).

TUGboat, Volume 11 (1990), No. 4

15. Here we must look at the get-next procedure,

which scans the buffer in strange ways when two

identical characters of category 7 (sup-mark) are

found. After the \catcode of open-quote has been

set to 7, get-next begins to scan a control sequence
in 5354, which goes to $355 and finds a space after

' '. Since a space is code ' 40 , it is changed to '140,
and the buffer contents are shifted left 2. By strange

coincidence, '140 is again an open-quote character.

so we get back to $355, which changes ' ' (to h and
goes back to start-cs a third time. Now we go to

$356 and then back to $355 and start-cs, having
changed ") to i. The fourth round, similarly,
changes " ' to a blank space, and the fifth round

finishes the control sequence.
If we try to input the stated line, INITEX will

come to a halt as follows:

! Undefined control sequence.

<*> \catcodeM=7 \hi
! \error

This proves that the buffer now says \hi ! .

16. The error message in question is

! Undefined control sequence.

<*> \endlinechar='! \error
- -M

and our job is to explain the appearance of --M.
The standard \endlinechar is carriage-return,

according to $240; this is '1 5 according to $22, and
'15 is --M in ASCII code. Thus, a carriage-return

is normally placed at the end of each line when it's
read into the buffer (see $360). This carriage-return

is not usually printed in an error message, because

it equals the end-line-char (see $318). We see it

now because end-line-char has changed.
Incidentally, if the input line had been

(without the space after the !) , we wouldn't have

seen the --M. Why not? Because l$$ calls
get-next when looking for the optional space after

the ASCII constant ' ! (see $442-443), hence the

undefined control sequence \error is encountered
before end-line-char has been changed!

17. One problem is to figure out which control

sequence is undefined; it seems to be the '?', since
this character has been made active. One clue is to

observe from $312 and $314 that '<recently read>'
can be printed only when base-ptr = input-ptr,

state = token-list. token-type = backed-up, and

loc = null. A token list of type backed-up usually
contains only a single item; in that case, the control

sequence name must be 'How did this happen?',

and we have a problem getting an active character
into a control sequence name.

But an arbitrarily long token list of type

backed-up can be created with the \lowercase

operation (see $1288). In that case, however, the
right brace that closes \lowercase is almost always

still present in m ' s input state, and it would show

up on the error message. (The back-list procedure

of $323 does not clear a completed token list off of

the stack.) We have to make l$$ clear off its stack
before the) is scanned.

At this point the exercise begins to resemble

"retrograde chess" problems. Here is one solution;

since it requires a very long input line, it has been

/ broken into a three-line answer:

\def \answer<\let'\expandaf ter\lccoder ! ='H% [line has been broken]
-\lowercase-<"!-o-w- -d-i-d- -t-hei-s- % [line has been broken]

-h-a-p-p-e-n-?))

(The 'H' is z lowercase ' ! '; a chain of \expandafter s
is used to make the right brace disappear from the

stack.)

Another approach uses \csname, and manufac-
tures a ? from a !:

\def \answer<\def \a##l<<\global\let##l?\aftergroup##l% [broken]
\escapechar'H\lccode'! I / ' ? % [broken]

\lowercase<\expandafter\a\csname ow did this happen!\endcsname))

TUGboat, Volume 11 (1990), No. 4

But there is a (devious) one-line solution,
which makes the invisible carriage-return following
\answer into a right brace:

\def\answer~\catcode13=2\lccode'!=H\lowercase\bgroup!ow did t h i s happen?)

18. (The answer to this problem was much more

difficult to explain in class than I had thought it

would be, so I guess it was also much more difficult

for the students to solve than I had thought it would

be. After my first attempt to explain the answer,

I decided to make up a special version of T '
that would help to clarify the scanning routines.

This special program, called D e m o w , is just like
ordinary TEX except that if \ t r a c ings t a t s>2 the

user is able to watch l&X's syntax routines in

slow motion. The changes that convert w to

Demo= are explained in the appendix below.

Given D e m o w , we tried a lot of simple examples
of things like ' \hfuzz=l .5pt ' and ' \ ca tcode 'a=l l '

before plunging into exercise 18 in which everything

happens at once. While we were discussing input
stacks, by the way, we found it helpful to consider

the behavior of l&X on the following input:

\output{\botmark)
\def\a{\error)

\mark{

\everyvbox{

\everypar{
\everydisplay{

\everyhbox{

\everymathC\noexpand\a)

$\relax)
\hbox\bgroup\relax)

$$\relax)
\noindent\relax)

\vbox\bgroup\relax)
\hbox()\vf i l l \penal ty-I0000

Here \pena l ty triggers \botmark, which defines

\everyvbox and begins a \vbox, which defines

\everypar and begins a \par, which defines
\everydisplay and begins a \display, etc.)

The first line is essentially

\gdef \a#ld#2#3{#2)

where the second 'd' has catcode 12 (other-char).

Hence the second d will match a d that is generated

by \romannumeral. In this line, scan-znt is called

only to scan the 'd and the 12.

The second line calls scan-dzmen in order to
evaluate the right-hand side of the assignment to

\hfuzz. After scan-dimen has used scan-int to
read the ' loo' , it calls scan-keyword in order to

figure out the units. But before the units are known

to be 'p t ' or 'pc', an \ifdim must be expanded.

Here we need to call scan-dimen recursively, twice;

it finds the value 12 pt on the left-hand side, and
is interrupted again while scan-keyword is trying to

figure out the units on the right-hand side. Now a

chain of \expandaf t e r s causes \romannumeral888

to be expanded into dccclxxxvii i , and then we
have to parse \a dccclxxxvii i . Here # I will be
\ e l s e , #2 and #3 will each be c: the expansion

therefore reduces to cc lxxxvi i i \ re lax \ f i . The
first 'c' completes the second 'PC', and the \ i fdim

test is true. Therefore the second 'c' can complete

the first 'PC'. and \hfuzz is set equal to 1200pt.
The characters l xxxv i i i now begin a paragraph.

The \ f i takes the \ifdim out of w ' s condition

stack.
(The appendix below gives further information.

Examples like this give some glimmering of the weird

maneuvers that can be found in the TRIP test, an

intricate pattern of unlikely code that is used to
validate all implementations of w .)

19. If. for example, \thickmuskip has the value

5mu p lus 5mu that plain w gives it, the first com-

mand changes its value to -5mu p lus -5mu, because
scan-glue in $461 will call scan-something-internal

with the second argument true; this will cause all

three components of the glue to be negated (see

$431).
The second command, on the other hand, tells

TEX to expand '\the\thickmuskip' into a sequence
of characters, so it is equivalent to

\thickmuskip=-5mu plus 5mu

(The minus sign doesn't carry into the stretch

component of glue, since $461 applies negate only
to the first dimension found.)

This problem points out a well-known danger

that is present in any text-macro-expanding system.

20. We'd have a funny result that two macro texts

would be considered to match by \ i f x unless the

first one (the one starting at q when we begin

$508) is a proper prefix of the second. (Notice the
statement ' p + null' inside the while loop.)

21. Because the byte in dvi-buf [dvi-ptr - 11 is

usually not an operation code, and it just might
happen to equal push.

504 TUGboat, Volume 11 (1990); No. 4

22. 2,7d l d 8,2,8, ld 8,2,8,4, 5,gd 0d 4, 5,. disallowed (see $336 and $346). However, insertions

23. rn is in 'no mode' only while processing
\wr i te statements, and the mode is printed during

\wr i te only when tracing-commands > 1 during

expand. We might think that \catcode operations
are necessary, so that the left and right braces

for \wri te exist; but it's possible to let W ' s

error-recovery mechanism supply them! Therefore
the shortest program that meets the requirements

is probably the following one based on an idea due

to Ronaldo Amti, who suggests putting

\batchmode\tracingcommands2

\immediate\write!\nomode

into a file. (Seven tokens total.)

are still allowed, and this can lead to a third level
of error when overflow calls succumb.

For example, let's assume that max-in-open =

6. Then you can type '\catcode1?=15 \x' and
respond to the undefined control sequence error by

saying ' i \x??' six times. This leads to a call of

error in which six ' < in se r t> ' levels appear; hence
in-open = 6, and one more insertion will be the last

straw. At this point, type '1'; this enters error at a
second level, from which 'i' will enter error a third

time. (The run-time stack now has main-control

calling get-x-token calling expand calling error
calling get-token calling get-next calling error

calling begin-file-reading calling overflow calling

error .)
24. When error calls get-token, because the user

has asked for tokens to be deleted (see $88). a second 25. In $38. define str-number to be the same as

level of error is possible. but further deletions are pool-pointer, and define str-end = 128. In $39,

I delete the declaration of str-start. In $40, declare

function length(s : str-number): znteger;
var t: pool-pointer ;

begin t c s;
while str-pool [t] # str-end do incr(t);

length + t - s;
end:

In $41, define cur-length - (pool-ptr - str-ptr). In
$43, declare

function make-string: str-number; {current string enters the pool)
var t: str-number; { the result)
begin str-room (1); append (str-end);

t +- str-ptr; str-ptr +- pool-ptr; make-string +- t ;
end;

In $44, we can

define Push-string - begin repeat decr (str-ptr);
until str-pool[str-ptr - 11 = str-end:

pool-ptr + str-ptr;

end

The comparison function in $45 is used only in
$259, where we can replace

'if length (text (p)) = 1 then if str-eq-buf (text (p), j) '

by 'if str-eq-buf (text (p), j , I)'. The function now
has three parameters:

TUGboat, Volume 11 (1990), NO. 4

funct ion str-eq-buf (s : str-number; k. 1 : rnteger): boolean;

{ test equality of strings)
l abe l exit;

var j : pool-poznter: { running index)
begin j c- s; s +- s + 1;

if str-pool[s] # str-end t h e n str-eq-buf +- false

else begin while j < s d o

begin if str-pool [j] # buffer[k] t h e n
begin str-eq-buf c- false; return; end ;

zncr(j); incr(k):

end ;

str-eq-buf +- true;
end ;

exit: end ;

The procedure of $46 is modified in an obvious.
similar way.

The first three statements of 547 become just

two: 'pool-ptr +- 128; str-ptr +- 128'. The body of

the for loop in $48 becomes just

if ((Character k cannot be printed 4 9)) t h e n

if k < '1 00 t h e n str-pool [k] +- k + '1 00
else str-pool [k] +- k - '1 00

else str-pool [k] + k

In $59, variable j is no longer needed. If 0 5 s < 128

and

say

-

if s isn't the current new-line character, we now

begin if str-pool[s] # s t h e n

begin print-char (" -"); print-char ("^");
end ;

print-char (sir-pool [s]);

e n d

In the other case, where s 2 128, we say

while str-pool[s] # str-end d o

begin print-char (str-pool [s]); incr (s) ;

end

In 5407, similarly, variable k is eliminated: the loop

on k becomes a loop on s, while str-pool[s] #
str-end.

In 5464, replace the two occurrences of

'str-start[str-ptr]' by 'str-ptr'.

The first loop in 5603 becomes

k +- font-area [f];
while str-pool[k] # str-end d o

beg in dvi-out (str-pool [k]); incr (k);

e n d

and the second is like unto it.

26. Let's assume that we have a machine in which

str-pool is addressed by byte number, so that 8-
bit values take no more space than 7-bit values.

Method (a) requires us to impose a limit on the
length of strings: 255 characters max. This isn't

unreasonable, because the only important use of
longer strings is in the implementation of \special.

when the restriction doesn't actually apply (since

$1368 doesn't call make-strzng). But method (a)

saves no space and little or no time by comparison

with the simpler method of problem 25. Problem 25

saves about one byte per string, compared to the

text's way. Method (b) saves another byte per string
but at the expense of considerable programming

complexity; it requires awkward special-casing to

deal with empty strings.

27. We'd replace 'wzdth (g)' by

wzdth (g) + shzft-amount (g)

(twice). Similar changes would be needed in

5656. (But a box shouldn't be able to retain its

shzft-amount; this quantity is a property of the list
the box is in, not a property of the box itself.)

28. The final line has infinite stretchability, since

plain sets \parf illskip=Opt plus if il. Re-
ports of loose, tight, underfull, or overfull boxes are

never made unless o = normal in $658 and 5664.

29. If a vbox is repackaged as an hbox. we get really

weird results because things that were supposed to

stack up vertically are placed together horizontally.
The second change would be a lot less visible, except

in characters like V where there is a large italic

correction; the character would be centered without

taking its italic correction into account. (The italic

correction in math mode is the difference between

horizontal placement of superscripts and subscripts

in formulas like V;.)

30. The spacing can be found by saying

$x==l$ $x++l$ $x,,l$ \tracingall\showlists.

Most of the decisions are made in 5766. using the

spacing table of 5764. But the situation is trickier in
the case of +, because a bzn-noad must be preceded
and followed by a noad of a suitable class. In

506 TUGboat, Volume 11 (1990), No. 4

the formula $x++l$, the second + is changed from and there's only one, QQ2, for the second. But for

bin-noad to ord-noad in 5728. It turns out that the third, a line from QQ2 to QQ3 (the break after

thick spaces are inserted after the x and before 'para-') has 46725 demerits, which certainly looks
the 1 in 'x == 1'; medium spaces are inserted worse than the 1225 demerits from QQ2 to QQ4. This,

before each + sign in 'x + +I,; thin spaces are however, leads Brand X into a trap, since there's no

inserted after each comma in 'x, ,1 ' . good way to continue from QQ4. Similarly, Brand X
will choose to go from QQ7 to QQ9, and this forces

31. The behavior of the simpler algorithm, which
it to Q Q l I and then infelicitously to QQ13 (because

we may call Brand X, can be deduced from the
the syllable 'break-' is too long to be squeezed in).

demerits values ('d=') in the trace output. There is
The resulting paragraph, as typeset by Brand X,

only one reasonable choice, QQI, for the first line;

I
looks like this (awful):

31. When your instructor made up this problem, he

said ' \ t racingparagraphs=i ' so that his transcript
file would explain why has broken the paragraph
into lines in a particular way. He also said

' \pretolerance=-1' so that hyphenation would be

tried immediately. The output is shown on the next
page; use it to determine what line breaks would have

been found by a simpler algorithm that breaks one

line at a time. (The simpler algorithm finds the
breakpoint that yields fewest demerits on the first

line, then chooses it and starts over again.)

32. (This exercise takes awhile. but the data struc- Given the word aabcd. it is interesting to watch 5923

tures are especially interesting; the hyphenation produce the hyphenation numbers 'oaoazb cods'
algorithm is a nice little part of the program that from this trie.

can
are

be studied in isolation.)
constructed:

OP

trie[96] 0
trie[97] 0

trie[98] 0
trie[100] 1

trie[l02] 1

trie[l03] 0

trie[l05] 3

The following tables

char link

96 1

97 5
97 2

98 3
99 4
98 6
99 4

33. The idea is to keep line numbers on the save

stack. Scott Douglass has observed that, although

is careful to keep cur-boundary up to date.
nothing important is ever done with it; hence

the save-index field in level-boundary words is not
needed, and we have an extra halfword to play with!

(The present data structure has fossilized elements

left over from old incarnations of m.) However,
line numbers might get larger than a halfword; it

seems better to store them as fullword integers.

[I] 12] 131 This problem requires changes to three parts of
hyf-distance 2 0 3 the program. First, we can extend 51063 as follows:

hyf-num 1 3 2

hyf-next 0 0 2
I

(Cases of main-control that build boxes and lists 1056) +-
non-math(1eft-brace): begin saved (0) + line; incr(save-ptr); new-save-level(simp1e-group);

end; {the line number is saved for possible use in warning message}

any-mode (begin-group): begin saved (0) + line; incr (save-ptr); new~save~level(semi~simple~group);
e n d ;

any-mode (end-group): if cur-group = semi-simple-group t h e n
begin unsave; decr (save-ptr); { pop unused line number from stack)
end

else off-save;

TUGboat, Volume 11 (1990)' No. 4

A similar change is needed in 51068, where the first

case becomes

simple-group: begin unsave; decr (save-ptr); { pop unused line number from stack)
end;

Finally, we replace lines 6-11 of 51335 by code

for the desired messages:

while cur-level > level-one do
begin print-nl (I' (I f) ; print-esc ("enduoccurreduwhenu'~);

case cur-group of
simple-group: print-char ("C");
semi-simple-group: print-esc("begingroup");

othercases confusion (" endgroup")

endcases;
print (",onulineU"); unsave; decr (save-ptr); print-int (saved (0)) ; print ("uwasuincomplete) ");
end;

while cond-ptr # null do
begin print-nl(" (I 1) ; print~esc("enduoccurreduwhenu~l); print-cmd-chr(if-test , cur-if);

34. First, 52 gets a new paragraph explaining what
is, and the banner line changes:

define banner - 'ThisuisUTeXX ,,,VersionU2. 2 * { printed when starts }

Then we add two new definitions in 5134:

define is-xchar-node(#) = (font (#) = font-base) { is this char-node extended?)
define bypass-xchar (#) z

if is-xchar-node(#) then # +- l ink(#)

(It's necessary to say font-base here instead of

null-font , because null-font isn't defined until later.)
The short-display routine of 5174 can treat

an \xchar like an ordinary character, because
print-ASCII makes no restrictions. Here is one way

to handle the change:

procedure short-display(p : integer); {prints highlights of list p)

label done;

var n: integer; { for replacement counts)
ext : integer; { amount added to character code by xchar)

begin ext t 0;
while p > mem-min do

begin if is-char-node(p) then
begin if p L: mem-end then

begin if is-xchar-node (p) then
begin ext +- 256 * (qo(character(p))); goto done;

end;
if font(p) # font-in-short-display then

begin if (font (p) < font-base) V (font (p) > font-max) then print-char("*")

else (Print the font identifier for font(p) 267);

print-char(","); font-in-short-display t font(p):

end:

TUGboat, Volume 11 (1990), No. 4

print-ASCII (ext + qo (character(p))); ext +- 0;

e n d ;

e n d
else (Print a short indication of the contents of node p 175);

done: p +- link(p);

e n d ;
e n d ;

A somewhat similar change applies in $176:

p r o c e d u r e print-font-and-char (p : integer); { prints char-node data)
l abe l reswitch;

var ext: integer; {amount added to character code by xchar, or -1)
begin ext + -1;

reswitch: if p > mem-end t h e n print-esc ("CLOBBERED. ")
else beg in if is-xchar-node (p) t h e n

beg in ext +- qo (character (p)); p +- link (p); g o t o reswitch; e n d ;
if (font(p) < font-base) V (font(p) > font-max) t h e n print-char("*")

else (Print the font identifier for font(p) 267);

print-char

if ext < 0 t h e n print-ASCII (qo (character (p)))

else beg in print-esc("xcharM); print-hex (ext * 256 + qo(character (p)));

end:

e n d :

e n d :

(These routines must be extra-robust.) The first Every opcode that follows it in $208 and $209,
line of code in '$183 now becomes from math-char-num to mas-command, must be

if is-char-node (p) t h e n increased by 1. We also add the following lines to

beg in print-font-and-char (p); $265 and $266, respectively:

bypass-xchar (p): primitive ("xchar 'I, xchar-num, 0);
end xchar-num: print-esc("xchar");

In $208 we introduce a new operation code. This puts the new command into m ' s repertoire.

define xchar-num = 17 The next thing we need to worry about is

textended character (\xchar)) what to do when \xchar occurs in the input.
It's convenient to add a companion procedure to

] scan-char-num in 5435:

p r o c e d u r e scan-xchar-num;

beg in scan-int ;

if (cur-val < 0) V (cur-val > 65535) t h e n

beg in print-err ("Bad,chara~ter,code~~);

help2 ("Anu\xchar,numberumustubeubetweenU~uandu255. 'I)

("Iuchangeduthisuoneutouzero . It); int-error(cur-val); cur-val +- 0;
e n d ;

e n d :

TUGboat. Volume 11 (1990) , No. 4

Similarly, new-character gets a companion in 5582:

function new-xchar(f : internal-font-number; c : integer): pointer:
var p, q: pointer: { newly allocated nodes)
begin q t new-character (f , c mod 256);
if q = null then new-xchar + null
else begin p +- get-avail; font (p) +-- font-base: character(p) +- qi ((c div 256)) ; link (p) + q;

new-xchar + p;
end;

end;

Extended characters can be output properly if
we replace the opening lines of the code in $620 by
these:

reswitch: if is-char-node (p) then
begin synch-h; synch-v;
repeat if is-xchar-node (p) then

begin f +- f o n t (l i n k (p)) ;
if character (p) = qi (0) then p +-- l i n k (p) ; { bypass zero extension)

end
else f t f on t (p) ;
c + character (p) ;
if f # dvi-f then (Change font dvi-f to f 621);
if is-xchar-node (p) then

begin dvi-out (s e t l + 1) ; dvi-out (q o (c)) ; p t l i n k (p) ; c c character(p);
end

else if c 2 qi (128) then dvi-out (s e t l);
dvi-out (qo (c)) ;

Many of the processing routines include a
statement of the form ' f + fon t (#) ' , which we

want to do only after bypassing the first half of an
extended character. This can be done by inserting

the following statements:

bypass-xchar (p) in $654;

bypass-xchar (s) in $842;

bypass-xchar (cur-p) in $867;

bypass-xchar (s) in $871;

bypass-xchar (p) in $1147.

In $841 we need to do a little more than a simple

bypass:

if is-char-node (u) then
begin if is-xchar-node (v) then

begin v t l i n k (v) ; decr(t) ;
{ an xchar counts as two chars)

end;

Two changes are needed in order to suppress
hyphenation in words that contain extended char-

acters. First we insert

if hf = font-base then goto d o n e l ;
{ is-xchar-node (s))

after the third line of $396. Then we replace

'endcases;' in $899 by

endcases
else if is-xchar-node (s) then goto done1 ;

If \xchar appears in math mode, we want

to recover from the error by including mmode +
xchar-num in the list of cases in $1046. If \xchar

appears in vertical mode, we want to begin a

paragraph by including vmode + xchar-num in the

second list of cases in 51090.

But what if \xchar appears in horizontal

mode? To handle this, we might as well rewrite

$1122:

510 TUGboat, Volume 11 (1990), No. 4

1122. We need only two more things to complete the horizontal mode routines, namely the
\xchar and \accent primitives.

(Cases of mazn-control that build boxes and lists 1056) +-
hmode + ~char-num: begin scan-~char-num; link(tai1) + new~xchar(cur~font, cur-val);

if link(taz1) # null t h e n tazl t link(lznk(taz1));

space-factor + 1000;

end ;
hmode + accent: make-accent ;

Finally, we need to extend make-accent so that
extended characters can be accented. (Problem 34
didn't call for this explicitly, but should surely
do it.) This means adding a new case in $1124:

else if cur-cmd = xchar-num t h e n

begin scan-xchar-num ; q + new-xchar (f , cur-val);

e n d

and making changes at the beginning and end of

$1125:

(Append the accent with appropriate kerns, then set p +- q 1125) -
begin t 6 slant (f)/float-constant (65536):
if zs-xchar-node(q) t h e n i +- char-znfo (f)(character(lznk (9)))

else i t char-znfo (f)(character (9));

w +- charwidth(f)(z);

subtype(tazl) + acc-kern; link(p) + tad;

if 2s-xchar-node (q) t h e n { in this case we want to bypass the xchar part }
begin tail-append (q); p +- link (q);

e n d

else p + q;

e n d

35. The main reason for preferring the method of

problem 34 is that the italic correction operation
($1113) would be extremely difficult with the other

scheme. Other advantages are: (a) Division by

256 is needed only once; m ' s main loops remain
fast. (b) Comparatively few changes from TEX
itself are needed, hence other ripoffs of m can

easily incorporate the same ideas. (c) Since fonts

don't need to be segregated into 'oriental' and

'occidental', \xchar has wide applicability. For

example, it gives users a way to suppress ligatures
and kerns; it allows large fonts to have efficient
256-character subsets of commonly-used characters.

(d) The conventions of TEX match those of the GF

files produced by METAFONT.

The only disadvantage of the T&X method is
that it requires all characters whose codes differ by

multiples of 256 to have the same box size. But this
is a minor consideration.

Appendix

The solution to problem 18 refers to a special version

of T@ called D e m o m , which allows users to see
more details of the scanning process. D e m o m is

formed by making a few changes to parts 24-26 of

w.
First, in $341, the following code is placed

between 'exit:' and 'end':

if tracing-stats > 2 then
begin k + trace-depth; print-nl(" ");
while k > 0 d o

begin print decr (k);

end ;
print (" I "); print-char ('Iu");

if cur-cs > 0 t h e n
begin print-cs (cur-cs);
print-char ("=");
end ;

print-cmd-chr (cur-cmd, cur-chr);
end;

TUGboat, Volume 11 (1990)' No. 4

(A new global variable, trace-depth, is declared
somewhere and initialized to zero. It is used to

indent the output of D e m o m so that the depth of
subroutine nesting is displayed.)

At the beginning of expand (in $366): we put
the statements

incr (trace-depth);

if tracing-stats > 2 then print(",<xU);

this prints '<x' when expand begins to expand

something. The same statements are inserted at the

beginning of scan-int ($400), scan-dimen ($448),

and scan-glue (sec461)' except that scan-int prints
'c i ' , scan-dimen prints '<d3, and scan-glue prints

'cg'. (Get it?) We also insert complementary code
at the end of each of these procedures:

decr (trace-depth);

if tracing-stats > 2 then print-char(">");

this makes it clear when each part of the scanner
has done its work.

Finally, scan-keyword is instrumented in a

similar way, but with explicit information about
what keyword it is seeking. The code

incr (trace-depth);

if tracing-stats > 2 then
begin print (",< '"); print (s) ;

print-char (I 1 - ");
end;

is inserted at the beginning of 5407, and

if tracing-stats > 2 then print-char("*");

exit: decr (trace-depth);
if tracing-stats > 2 then print-char(">"):

end;

replaces the code at the end. (Here '*' denotes
'success': the keyword was found.)

For example, here's the beginning of what

D e m o w prints out when scanning the right-hand
side of the assignment to \hfuzz in problem 18:

I ! t h e charac te r = <d
I! t h e charac te r 1 <i

I! t h e charac te r 1

I! t h e charac te r 0
I ! t h e charac te r 0

I ! t h e l e t t e r P>

I ! t h e l e t t e r P <'em'

I ! t h e l e t t e r P> < 'ex '

I ! t h e l e t t e r P> < ' t r u e '

I ! t h e l e t t e r P> < ' p t '

I ! t h e l e t t e r P
I! \ i fdim =\ifdim <x <d

I! t h e charac te r 1 <i

I ! t he charac te r 1

l ! t he charac te r 2

I! t he l e t t e r p>
I! t he l e t t e r p <'em'

I ! t he l e t t e r p> < ' ex '

I ! t he l e t t e r p> < ' t r u e '
I ! t he l e t t e r p> < ' p t '

I ! t he l e t t e r p

I! t he l e t t e r t*>

I! t he charac te r =>

(After seeing '=', TEX calls scan-dimen. The next
character seen is '1'; scan-dimen puts it back

to be read again and calls scan-int, which finds

' loo' , etc. This output demonstrates the fact

that frequently uses back-input to reread a
character, when it isn't quite ready to deal with

that character.)

Acknowledgement

I wish to thank the brave students of my exper-

imental class for motivating me to think of these
questions, for sticking with me when the questions

were impossible to understand. and for making
many improvements to my original answers.

o Donald E. Knuth
Department of Computer Science
Stanford University
Stanford. CA 94305

Webless Literate Programming

Jim Fox

Abstract

This article introduces c-we8 (no-web, for short) as

an alternative to the CWEB 'literate programming'
system. c-web is a method which allows a program-

mer to both t e x (format) and cc (compile) the same

source, without the need for preprocessors.

What is ewe8

In c all comments begin with the characters ' /*'
and end with the characters '*/'. c-web is a macro
package that w s all comments, 'verbatims' all the

code, and uses the comment delimiters to switch be-

tween the two modes. A c-we8 program can be com-

piled directly by c and can be formatted directly by
w. It has the advantage of high portability, while

providing fully m ' d comments, page headers and
footers, and a table of contents.

TUGboat, Volume 11 (1990), No. 4

\title{ . . . 1 Titles the program.

\section{ . . .) Begins a section. The
section title is also included in the ta-
ble of contents and in the page header.

\subsection{ . . .) Begins a subsection.

The subsection title is also included in

the table of contents.

\subsubsection{ . . .) Begins a subsub-

section.

\newpage Causes a page eject after the cur-

rent line. This is usually used in a com-

ment by itself. e.g., /* \newpage */.

\endc Ends the c-we8 listing. This is

usually the last line in the file, e.g..

/* \endc */.

\" . . . " Prints bold text.

\ ' . . . ' Prints italic text.

\ I . . . I Prints typewriter text.

< . . . > Prints verbatim. This allows c

code to be included in comments.

Figure 1: c-weB definitions

Why C-web?

CWEB is essentially a c implementation of Edsger
Dijkstra's Notes on Structured Programming, with

fine formatting thrown in for good measure. The

benefits of WEB are well known but it is unsuitable

for many programmers and applications for a couple

of reasons.
The first problem concerns portability. A pro-

gram written in CWEB can only be conveniently im-

plemented on a computer which already runs TEX.
That is unfortunately a very small subset of the com-
puting world. Anyone writing in CWEB greatly lim-

its the portability of his or her programs.
The second problem concerns the translation of

the code part of a program. A well written program
consists of small pieces of code consisting of a doc-

umentation part, which explains to humans what

the part does and how it does it, and a code part,
which is a realization of the documentation. Both

CWEB and c-we8 print program listings assuming

this method, and they both the commentary.

Where they differ is in the formatting of the code.

c-we8 leaves it alone except for indentation. CWEB

gratuitously translates it into something that looks

more like mathematics. Because programs undergo

continual modifications. one tends to look to the

source file to see what the code actually does. Many

programmers, myself included, are more comfort-

/* samp1e.c in cnoweb format
by Jim Fox, August 19, 1990

\input cnoweb

\title {Sample with procedure) */

/* \section{Sum)
This procedure computes and returns

$$ {\bf sum) = \sum-Ci=O)-{\bf n)

{\bf f) (i) $$

There is no error checking

in this example. */

double sum(f ,n)

double (*f) () ; /* function to call */
int n; /* summation limit */
{

int i;

double s = 0;

for (i=O; i<=n; i++) {

s += f (i) ;

3
return (s) ;

1

/* \endc */

Figure 2: Procedure sum from program sample.

able with code in the file that looks like the code in

the listing.
CWEB allows a programmer to break programs

into small pieces without resorting to c's procedure
calls. This is an attempt to directly implement the

'layers' described by Dijkstra. c - 6 cannot do this.
However, procedures are often the better choice.

They are more easily tested. more formally isolated

from the caller, and usually produce more flexible

code.
In any case, my effort here is only to introduce

an alternate 'literate programming' method-not to

compare the two beyond this introduction.

Using c-web

The c-weB program must begin with a comment that

contains:

\input cnoweb

and must end with a comment that contains:

TUGboat, Volume 11 (1990) , No. 4

sum(f,n) sample - 9

/* sum(f,n) This procedure computes and returns
n

sum = C f (i)

There is no error checking in this example. */

double sum(f ,n)

double (*f) () ; /* function to call */
int n; /* summation limit */
C

int i;

double s = 0;

for (i=O; i<=n; i++) C
s += f (i) ;

1
return (s) ;

1

Figure 3: sum from the listing of samp1e.c

Other than this the program need not contain

any text. Most programs, however, will use

plain commands in comments. as well as sev-

eral new commands provided by c-web. These are
described in Figure 1.

Figure 2 is a sample procedure, sum, from a

program in c-web format. Figure 3 is the listing of

the procedure. Not shown in figure 3 is the title

page, which includes the title, synopsis (none in this

example), and table of contents.
Features of c - 4 , some of which are demon-

strated in the example, include:

1. Page breaks occur only before comments.

2. The code portion is printed not quite

verbatim-indentation is automatically pro-

vided. Lines following an opening bracket or

parenthesis are indented until the line contain-

ing the closing bracket or indentation.

3. The page heading contains the c file name, the

page number, and the current section name.

4. Alignment rules on the top and left help verify
indentation.

Trying it out

A sample program (pf . c) demonstrates c - 4 and
describes the commands in more detail. Inter-

ested persons should obtain a copy of the macro file
(cnoweb. tex) and the sample program by anony-

mous ftp to u.washington. edu. They are in the

directory pub/tex/cnoweb. Anyone without access

to ftp may request the files by mail to me at the

address below.

o Jim Fox

University of Washington

foxQcac.washington.edu

A Previewer for "Slow" Terminals

Harold T . Stokes

In our department, we have a multi-user computer

cluster with one copy of and one laser printer.

Our previewer sends document pages to the user's
terminal in the Tektronix 4010/4014 graphics for-

mat. Most graphics terminals can emulate the

Tektronix 4010/4014. This includes PCs using a
terminal emulator like MSKermit.

The terminals in our department are connected

to the system through a data switch. The rate at
which data can be sent to a terminal is limited to

9600 baud (1200 bytes/second). This is rather slow
for displaying graphics.

As an example, consider how we might draw

the character T on the screen. The individual pixels
for this character (from the cmrl0 font) are shown

in Fig. l a . Since Tektronix 4010/4014 graphics

is vector-oriented, we might try the obvious raster

scan shown in Fig. lb . However, there are 44 line
segments in that raster scan. To draw a single line

segment in Tektronix 4010/4014 graphics, at least

seven bytes must be sent to the terminal (sometimes

eight or nine). At 9600 baud, it would require at
least 0.25 seconds to display this single character.

An entire document page which may contain 3000

characters would require more than ten minutes to

be displayed. This, of course, is unacceptable for a

previewer.

(a) (b) (c)

Fig. 1. The character T from cmri0: (a) pixels,

(b) raster scan, (c) stick figure.

TUGboat, Volume 11 (1990)) No. 4

We solved this problem by designing a new set
of fonts. We call them "stick-figure" fonts. The
T is displayed as two line segments (Fig. lc). In

Fig. 2 we show a sample of some text, including a
displayed equation. (The actual clarity will depend

on the resolution of the graphics screen used.)

Using the stick-figure font, a page containing 3000
characters can usually be displayed on the screen in
less than a minute. Some users have even used this

previewer from home over a modem.

(1) Subduction condition. The irrep D of Go
must subduce into the indentity irrep of G, that is,

where i(G) is the subduction frequency, and ~ (g)

is the character of D for the element g of G. The
summation is taken over all elements g of G.

(1) S u M u c t i o n cond i t ron T h e r r e p 5 o f Gc
must s u b d u c e 1 7 t o t h e i n d e i ~ t i t y r r e p o f G, t h a t is,

w h e r e r(G) I S t h e s u b d u c t 0 1 7 f rec lue i?cy, a ~ ? d ~ (g)

I S t h e c h a r a c t e r o f D f o r t h e e e w e i ? s g of G T h e

s u w n a t 1 0 1 - i I S t a k e , ? o v e r a l l e l e m e ~ . l t s g o f G

Fig. 2. Sample output (a) from our laser
printer and (b) how it appears using our previewer

with stick-figure fonts.

Our previewer has one major fault. We cannot

distinguish between some of the different fonts. But
the speed gained more than compensates for this

disadvantage.

Our previewer is written in a portable C

computer language.

o Harold T. Stokes
Department of Physics and

Astronomy
Brigham Young University
Provo, Utah 84602
Phone: (801) 378-2215
Bitnet: stokeshQbyuvax

Philology

Report on Multilingual Activities

Michael J. Ferguson

We now have an Extended Font Encoding

which should be officially approved by TUG and

available on the archives by the time you read this
report. This new standard is the first step in
exploiting the enhanced capabilities of 3.0 in a

multilingual environment. The use of this standard

will enable the direct use of accented characters,

hyphenation, and will create. for the first time, a
consistent interface to all text fonts in T)jx systems.

The new standard is intended to be used for all
of m ' s text fonts. This means that accessing
a particular code in any font will produce similar

results. To this end, a tt font will have a f f i

sequence of monospaced characters at the same

location as the ffi ligature in the bold roman font.

It should also serve as the encoding standard for
non-Greek variable names in math mode.

The new standard extends the alphabetic con-

tent of IS0 Latin 1 by including all of the linguistic
characters in IS0 Latin 2 along with ligatures and

punctuation relevant to these languages. This stan-

dard includes the national characters, without the

necessity of explicit accenting, for Albanian, Czech,

Danish, Dutch, English, Faeroese, Finnish, French.
German, Hungarian, Icelandic, Irish, Italian, Nor-

wegian, Polish, Portugese, Rumanian, Serbocroat-

ian, Slovak. Slovene, Spanish, Swedish and Turkish.
It also includes a block of diacritics, so that these

"basic" characters may be extended by use of QX's

accenting mechanism. This capability should allow
for the extension to other languages, for example

Lappish, at the possible penalty of not allowing
hyphenation of words containing these explicitly

accented characters.

The standard also includes some important
innovative extensions to increase flexibility of use

and enhance lexical semantic consistency.

0 It includes both a "dash" and an explicit

"hyphen char". This capability allows font

designers the option of replacing the "-" with
an it-,, - without losing the dash. Since the

"-" is no longer the hyphen char, it allows

words with explicit dashes, such as INRS-
T~16communications to be hyphenated. It also

allows for the Serbocroatian hyphenation rule

which says that a word broken at a "-" should

TUGboat, Volume 11 (1990), No. 4 515

have the "-" both at the end of the line and

the beginning of the next.
It includes codes for opening quotes ", closing

quotes " , and the ASCII double quote character

". TEX normally accesses the opening and

closing quotes as ligatures, and tends to use

the ASCII double quote for special purposes

such as designating hex numbers. The ASCII

double quote code in a font should correspond

to straight quotes, much as they are in the tt
fonts. This makes a new character available

in the Roman fonts and removes an irritant in

the use of double quotes in these fonts. The

font designer can decide whether the opening

double quotes, closing double quotes. and the
ASCII double quotes are distinguishable. The

standard also includes < > in the normal ASCII

location.
0 It includes a small "on to match the "%" to

enable allow for a "milli" or "milli.milli. . . " ,
a "visible space", and both diacritic and non-
diacritic versions of such characters as the " e

- ,1

0 Perhaps the most innovative feature of the new

standard, and potentially the most powerful.
is the inclusion of a "Compound Word Mark --
<cum>". The <cum>, whose image is invisible,

is effectively a character of zero width and
depth. This character would be used to

break up ligatures on subword boundaries in

German. For example, the German word

"auflage" should not have the "fl" ligature

because it occurs on the subword boundary
between "auf" and "lage". However a word

such as 9lach" should have the ligature. There

are many ways to enable input of the <cwm>.

One might be to define the " \ f l " as meaning
the f <cwm>l. Then the input sequence "au\f 1

age" would be rendered as "auflage". The
<cwm> can also be used to selectively enable

ligatures. For instance. if one wanted the "ff"

ligature in the font to be off most of the time,

the ligature access sequence in the font would
be "f <cm>f1' . Explicitly including the <cwm>

at input would enable the ligature. The <cwm>

can also serve as an invisible hyphen char. It is

our belief that this is just the beginning of the

possible uses for this character.

access Greek symbols used in math from a Greek
text font or from an extended math font. In the

interim the Greek characters may be accessed from

the current cm fonts.
Now that we have an extended font encoding

standard, we are in a position to create complete

3.0 compatible hyphenation patterns. These

patterns should be expressed using only the normal

printable ASCII character set so that they can be
transmitted by electronic mail. All non-printable

ASCII characters such as an or an Icelandic
"thorn" should be expressed as backslash sequences.

Thus the French pattern which allows a hyphen t o

occur before any would be encoded as l \ c c

and \accenthyphcodes preceding the inputting of
these patterns would include \ c c("e7) for the q

definition necessary within the patterns. Finally.

the new patterns need to account for use of the
<cwm>. It may be as simple as including the pattern

equivalent to I<cum>, or it may be more elaborate.
I would like to review these patterns for syntactic

consistency but would like the originators to make

the arrangements for the actual distribution. I could
act as the coordinator of the list of "responsables" .

Finally, this new font encoding standard is

important for all TfjX ports because it defines
W'S internal character codes. Thus this encoding

will be the basis of the xchr[. . I and xord[. .I
translation arrays.

I should especially like to thank Jan Michael
Rynning for his work in collecting the detailed
information needed for creating this standard. I

should also like to thank Jan Michael and Yorbert

Schwarz for their leadership, hard work, and atten-
tion to detail during the Cork meeting that made

this important standard possible.

o Michael J. Ferguson
Coordinator for Multilingual

Activities
INRS - TClCcommunications
UniversitC du QuCbec
3 Place du Commerce
Verdun H3E 1H6
QuCbec, Canada
mikeminrs-telecom.uquebec.ca

Although we have an excellent extended text

font definition, there is much work to be done.

Perhaps the most urgent is the definition of an

extended math symbol font. A key decision in

this particular exercise is whether to include Greek
symbols in an extended math symbol font or to

Extended TEX Font Encoding Scheme - Latin Cork, September 12, 1990

'OOx
"Ox

'26x

'2 7x

'30x

'31 x

'32x

'33x

A few words of explanation:

'01 x
- < >

'36x

'3 7x

'000-'014 are accents. '014 is an ogonek. '015-

'024 are quotation marks. '030 is a small 0 to
put after the per cent sign, to turn it into a per

thousand (%o) or per million ((rooo) sign. '027

(cwm) is a compound word mark (a zero-width

invisible character) used e.g. for avoiding ligatures.
'040 is a visible space. '042 is a straight double

quotation mark.

'041 -'I76 is like the 7 bit ASCII code. Some char-

acters that - at first glance - appear duplicated
as accent characters usually have a different shape.

i.

Y

A

E

D

0

'1 77 is the hyphen character (that may be different

from the dash ('055)). '202, '21 0, '242, and '250
are A's and E's with ogonek accents.

B

0

The table has been sorted to reflect \uppercase

\lowercase mechanism for all characters.

This table shows the character codes' positions, but

the shapes are only approximations.

S

i

A

E

N

u

-
n

ii

S

i

A

E

0

u

b

li

9

z

A

E

0

u

6

u

t'

ij

A

1

0

u

o

u

f
I

A
I

0

Y

-
o

P

u

i

IE

i

0

P

o

b

6

6:

(2
I

a3

S s

"Bx

"Cx

"Dx

a

8
"Fx

TUGboat, Volume 11 (1990), No. 4

Fonts

Filenames for Fonts

Karl Berry

As more typeface families become available for
use with TEX, the need for a consistent, rational

naming scheme for the font filenames concomitantly

grows. Some (electronic) discussion has gone into

the following proposal: I felt it was appropriate now

to bring it before a wider community. In some

respects, it follows and simplifies Mittelbach's and

Schopf's article in TUGboat, volume 11, number 2
(June 1990).

Here are some facts about fonts that went into

the hopper when creating this proposal:

TFJ runs on virtually all computers, under

almost as many operating systems, all with
their own idea of how files should be named.

Any proposal regarding filenames, therefore.

must cater to the lowest common denominator.

That seems to be eight characters in length. not
counting any extension, and with case being

insignificant. Characters other than letters and

numerals are probably unusable.
Most typefaces are offered by several vendors.

The version offered by vendor A is not compat-

ible with that of vendor B.

Typefaces typically come in different weights
(hairline to extra heavy), different expansions

(ultra condensed to wide). and an open-ended

range of variants (italic, sans serif, typewriter.

shadow, . . .). No accepted standards exist for

any of these qualities, nor are any standards
ever likely to gain acceptance.'

The Computer Modern typeface family pre-

serves traditional typesetting practice in at
least one important respect: different sizes of

the same font are not scaled linearly. This is in
contrast to most commercial fonts available.

Editor's note: A draft international standard,

ISO/IEC DIS 9541, Font Information Interchange.

attempts t o define these qualities, among others, in

a manner acceptable to font suppliers and usable
by a wide variety of typesetting software. including

(indirectly) m. The Editor has been a participant

in this working group for several years, and is trying

to make sure that the needs of TFJ users are heard.

Here is how I

characters:

FTTWVEDD

where

517

propose to divide up the eight

F represents the foundry that produced the

font, and is omitted if there isn't one.

0 TT represents the typeface name.

W represents the weight.
V represents the variant, and is omitted if both

it and the expansion are "normal".

E represents the expansion, and is omitted if it

is "normal" .
0 DD represents the design size, and is omitted if

the font is linearly scaled from a single tfm file.

See the section on virtual fonts (towards the

end) for an exception to the above.

The weight, variant. and expansion are prob-
ably all best taken from the original source of the

typeface, instead of trying to relate them to some

external standard.
Before giving the lists of abbreviations, let me

point out two problems. to neither of which I have

a good solution. 1) Assuming that only the English

letters are used, two letters is enough for only 676
typeface families (even assuming we want to use all

possible combinations, which is doubtful). There

are many more than 676 typeface families in the

world. 2) Fonts with design sizes over lOOpt are

not common. but neither are they unheard of.

On to the specifics of the lists. If you adopt

this proposal at your own installation, and find that

you have fonts with some property I missed, please
write to me (see the end of the article for various

addresses), so I can update the lists. You can get the

most up-to-date version of these lists electronically,

by anonymous ftp from the host f tp . cs . umb . edu.

I will also send them to you by electronic mail, if

necessary.

I give the letters in lowercase, which is preferred
on systems where case is significant. The lists are

in alphabetical order by the abbreviations.

Foundry

Autologic

Bitstream

Compugraphic

Free Software Foundation (g for GNU)

Bigelow & Holmes (with apologies to

Chuck)

International Typeface Corporation

Adobe (p for Postscript)

TUGboat, Volume 11 (1990); No. 4

r reserved for use with virtual fonts; see

below

s Sun

Typeface families

Adobe Garamond

Avant Garde

Antique Olive

American Typewriter

Bembo

Bodoni

Benguiat

Bookman

Balloon

Baskerville

Broadway

Cooper Black

Cloister

Courier

Century

Century Schoolbook

Helvet ica

Garamond

Goudy Oldstyle

Gill Sans

Joanna

Lucida

Lutetia

New Century Schoolbook

Optima

Palatino

Perpetua

Rockwell

Stone

Symbol

Times

Univers

University

Zapf Chancery

Zapf Dingbats

Weight

a hairline

b bold

c black

d demi

h heavy

i extra light

k book

1 light

m medium

r regular

s semi

t thin

u ultra

x extra bold

In order of lightest to heaviest (more or less):

hairline demibold

thin semi

extra light bold
light extra bold

book heavy

regular black
medium ultra

Variant

bright

small caps

engraved

grooved (as in the IBM logo)

shadow

(text) italic

outline

informal

oblique (i.e., slanted)

normal (roman or sans)

sans serif

typewriter

unslanted italic

If the variant is r; and the expansion is also normal;

both the variant and the expansion are omitted.
When the normal version of the typeface is sans

serif (e.g., Helvetica), r should be used, not s. Use

s only when the typeface family has both serif and
sans serif variants.

Expansion

c condensed (by hand)

e expanded (automatic)

n narrow (automatic)

o extra condensed

regular, normal, medium (always omitted)

w wide

x extended (by hand)

In order of narrowest to widest (more or less):

TUGboat, Volume 11 (1990), No. 4

extra condensed extended
condensed expanded

narrow wide
regular

Expansion of fonts is sometimes done automatically

(as in Postscript scale), and sometimes done by

humans. I chose 'narrow' and 'expanded' to imply
the former, and 'condensed' and 'extended' to imply

the latter, as I believe this reflects common usage.

Vir tual fonts

In concert with releasing TEX 3.0 and META-

FONT 2.7. Don Knuth wrote two new utility pro-

grams: VFtoVP and VPtoVF, which convert to and
from "virtual" fonts. Virtual fonts provide a general
interface between the writers of macros and

font suppliers. In general. therefore, it is impossible

to come up with a general scheme for naming vir-

tual fonts, since each virtual font is an individual
creation, possibly bringing together many unrelated

fonts.
Nevertheless, one common case is to use virtual

fonts to map W ' s default accent and other char-

acter code conventions onto a vendor-supplied font.

For example, dvips (by Tom Rokicki) does this for

fonts given in the Postscript "standard encoding".
In this case, each font consists of a "virtual" tfrn

file, which is what TeX uses. a "raw" tfrn file, which

corresponds to the actual device font, and a vf file.

which describes the relationship between the two.
This adds another dimension to the space

of font names, namely, "virtualness" (or rather.

"rawness", since it is the virtual tfrn files that the
users want to see). But we have already used up all

eight characters in the font names.
The best solution I have been able to think of

is this: prepend r to the raw tfrn files; the virtual

tfrn files should be named with the usual foundry
prefix. For example, the virtual Times Roman tfrn

file is named ptmr, as usual; the raw Times Roman
tfrn file is named rptmr. To prevent intolerable

confusion, I promise never to give a foundry the

letter r.
This scheme will work only as long as the

virtualized fonts do not have design sizes; if they

do, another foundry letter will have to be allocated,

it seems to me.
A pox upon the houses of those who decided

on fixed-length filenames!

Examples

In closing, I will give two examples. First, the

fonts in the Univers typeface family were assigned

numbers by its designer, Adrien Frutiger. (You can

see the scheme on. for example, page 29 of The
Art of Typo.icon.ography, by Martin Solomon.)

Naturally. we want to give them names.

45 (light): unl

46 (light italic): unli
47 (light condensed): unlrc

48 (light condensed italic): unlic

49 (light extra condensed): unlro

53 (medium extended): unmrx
(medium): unm

(medium italic): unmi
(medium condensed): unmrc

(medium condensed italic): unmic

(medium extra condensed): unmro
(demibold extended): undrx

(demibold): und
(demibold italic) : undi

(demibold condensed) : undr c

(demibold condensed italic): undic

(bold extended): unbrx

(bold): unb

(bold italic): unbi
(extra bold extended): unxrx

Second. here are names for the 35 standard

PostScript fonts:

AvantGarde-Book: pagk
AvantGarde-Bookoblique: pagko

AvantGarde-Demi: pagd

AvantGarde-DemiOblique: pagdo
Bookman-Demi: pbkd

Bookman-DemiItalic: pbkdi
Bookman-Light: pbkl

Bookman-LightItalic: pbkli

Courier-Bold: pcrb
Courier-Boldoblique: pcrbo

Courier: pcrr

Courier-Oblique: pcrro

Helvetica-Bold: phvb
Helvetica-Boldoblique: phvbo

Helvetica-NarrowBold: phvbrn

Helvetica-NarrowBoldOblique: phvbon

Helvetica: phvr

Helvetica-Oblique: phvro

Helvetica-Narrow: phvrrn

Helvetica-Narrowoblique: phvron
NewCenturySchlbk-Bold: pncb

NewCent uryschlbk-BoldItalic: pncbi

520 TUGboat, Volume 11 (1990), Yo. 4

New CenturySchlbk-Italic: p n c r i

NewCenturySchlbk-Roman: pncr

Palatino-Bold: pplb

Palatino-BoldItalic: p p l b i

Palatino-Italic: p p l r i

Palatino-Roman: p p l r

Symbol: psyr

Times-Bold: ptmb

Times-BoldIt alic: ptmbi

Times-Italic: ptmr i

Times-Roman: ptmr

ZapfChancery-MediumItalic: pzcmi

ZapfDingbats: pzdr

Please contact me if you have any comments

or additions.

o Karl Berry
135 Center Hill Rd.
Plymouth. MA 02360
karl@cs.umb.edu

- - -

Arabic, Persian and Ottoman 'I'EX
for Mac and PC

Yannis Haralambous

jEl peor con T p ,

es la gente

que lo gusta!

- Anonymous

The whole thing started when my friend Siavash

Mirshams Shahshahani from the Sharif University
of Technology. Tehran, asked me to find some

arabic-alphabet rn for the PCs of his department.

I looked around and found out that there is none, at
least not in the public domain. Unfortunately, not

even W-)(Fjr, the right-to-left version of rn is

available for Mac or PC. So I decided to fill the gap.

For this I had to create the necessary font yarb

w h i c h is suitable for arabic. persian and ottoman

as well- and a Pascal preprocessor yarbtex. This

work has been done on a Mac SE/30 with O z m ,
MacMETAFONT, and Think Pascal v3.0.

The arabic alphabet

The common arabic alphabet has the following 28
letters:

] + G & C C ~ ~ ~

~ j u ~ e > - b A t E
L j L h J J r 0 o , i S

To cover also persian and pre-1932 turkish, one has

to consider the following 5
.*. J 3
J

Finally u is used for the arabic transliteration of

the sound "v" , as in "Vienna" : u.
Let's see now how letters are combined to form

words; with the letters G, d and we can form

the word & (right to left!). As you can see,

letters are written in a different way according to

their position inside the word. Consequently. arabic
letters appear in four forms: in i t ia l (like Y for a),
rnzddle (like < for d), final (like c for t) and

zsolated. The letters 1, 3, i, J, j, j, , have only
final and isolated forms. So when they occur inside

a word, the next letter is initial (as in d,).
As in german, there are short and long vowels.

The long ones are 1 . and 15. The short ones

are not represented at all, except in classical or

educative texts, where they are represented by

accents: (fatha), , (kasra), ' (damma). respectively
for the sounds of a, i and u. In this case, the lack
of vowel is represented by ' (tasdid). Also there are

8" +
other accents (-, , ,-) for special purposes.

The preprocessor yarbtex

While typing the input, it would be too tedious to

think in which form each letter should be written.
and since this problem is much too complicated to

be solved only by ligatures inherent to the font,
it was necessary to make a preprocessor which

converts an xxx. a r b input file, into a xxx. t e x

'QjX-file. The usual procedure

dvi tops
. t e x y . d v i - . ps

is now one step longer

yarbtex dv i tops
. a r b - . t e x y . d v i - .ps .

Let's take a look now at an xxx . a r b file: to typeset
in arabic, persian and/or ottoman (in short APO)

you have to enter into "arabic mode" by typing a
vertical bar I . The I will change to arabic mode

regardless of whether you are in text or math mode.

so you should use $\ver t$ to obtain I in non-arabic

mode.
Once you are in arabic mode, you can choose

between the following submodes:

a, text and arabic numerals (the numerals used in

arabic typography),

TUGboat, Volume 11 (1990), No. 4 521

b. transliterated text (to get an output in latin
alphabet, following your own transliteration),

c. comment mode (to insert comments).

d. math mode (to insert a short math sequence)

and display math mode.

e. command mode (to insert some commands

which have to be executed inside arabic mode).

Text and arabic numerals. APO text has to be

written in a special "machine-like" transliteration.
By this I mean that you'll have to type as few as

possible ASCII characters and that this text won't
be very readable (at least until you get used to it).

Since there are no uppercase letters in APO I used

lower and uppercase ASCII characters to represent
different APO letters: s stands for u. and S for

Lj;;. I also used "hat + character" combinations: - s

gives and ^S, c. Here is an example: to obtain
c s 41 , w,JI

you have to input

I-A'Lrnb U AlfIll

which will look like

\arbword{\yarbC\char133H\char2373%

{\char166){\chari2)%

€\char031
\arbwordC\yarb{\char24633

\arbword{\yarbC\char2313C\char250)%

C\char206H\char2293~\chari2813

\arbof f

in the corresponding . t e x file. You can find the
complete list of input codes in Appendix A (column
3). I suggest you make a copy of this list and keep

it in front of you while you are typing: this because,

unfortunately. not all characters transliterate into
the right phonetic counterparts (like c which stands
for b ') .

APO words are never hyphenated. The way
typographical spacing problems are resolved is by
inserting straight line segments , between charac-

ters. Perhaps in some later version of yarbtex this

will be done automatically. For the moment you'll
have to do it manually: just type an - to get a line

segment with the length of half an n-dash. Here is

some advice: if you are using accents, sometimes
it looks better to place the accent over the middle

of the Jine segments, L, instead of one of the

ends, 4. Note that all the "m-forbidden"

ASCII characters we encountered (-, -, etc.) and
will encounter, disappear in the xxx . t ex file.

When you type 0. 1, ..., 9 inside arabic mode
you get the arabic numerals

+ . \ , Y , Y , t , o , ? , V , A , 9 .

yarbtex automatically writes numbers left-to-right:

14311962 becomes \97r \ \ ty . The punctuation

marks . L : 7 ! \ - - () [] and special

characters)i 38 0 $ are included in the font.

When you exit arabic mode (by typing again a

vertical bar I) , a new paragraph gets started. If you

want just to insert a short arabic sequence inside

latin text, you'll have to type \ins before getting

into arabic mode. We will return to this later in
the discussion of the output file.

Transliterated text. As in the AMS-W cyrillic
package. you can use the same input to obtain either

a text in the arabic alphabet or a transliteration
into the roman alphabet. The mechanism is simple:

just type Qu inside arabic mode, and everything

up to the next Qu, will be transliterated into latin
alphabet.

The natural question to ask is: which translit-

eration should be chosen? Transliteration is most
of the time based on phonetics and these can be

very different from one country to the other. So it

should be possible to use different transliterations

(for example you could use characters from the

Washington Computer Modern IPA font wsuipa),
and switch easily from one to the other. without

having to recompile yarbtex's source. The solution

I propose is the following: yarbtex is accompa-
nied by a text-file, named yarbtex.dat . The first
57 x 4 = 228 lines of this file contain the translit-

erations of the 57 APO letters and accents, each
in its 4 forms. The transliteration included in the
package (and given also in Appendix A, column
2) comes from A. A. Ambros's Einfiihrung in die

moderne arabische Schriftsprache. Here is how to

change an item. Let's say you want to transliterate

L. (the final form of A) by "th" instead of "t".
As you can see in column 4 of Appendix A. A has
the number 5. Go to line 23 = 5 x 4 + 3 (0 for

isolated, 1 for initial, 2 for middle and 3 for final)

of yarbtex. da t and replace \d t by t h .

Comment mode. Just use % to insert a comment:

everything on the right of % in the . a rb file will

stay on the right of it in the . t e x file, in order to
be considered as a comment by m.
Math mode. If you want to insert a short math

sequence (such as $f (XI$), go ahead and type
it. But you should try to avoid having math

expressions split on an end-of-line, since it will be

rather confusing to split them from left to right
when the text goes from right to left. For longer
math sequences use display math mode, as in TjjX.

522 TUGboat, Volume 11 (1990), No. 4

Cammand mode. Let us first describe the output

file. Each APO character is written as (\char xxx).

The braces are there to allow the use of accents:

\f atha(\charlGO) gives . Each arabic word gets

into an \arbword(. . .) macro. Everytime TEX

reads this macro, it first checks if its argument
fits into the current line. If this is the case, it

appends it on the left of the line and looks for the

next \arbword(. . .); else, it outputs the line and
starts a new one. When you leave arabic mode.

an \arboff macro appears in the output file. If
the arabic text is to be inserted into a latin text

(that is if you had typed \ i n s before entering into
arabic mode), \arbof f just outputs the remaining

\arbwords; else, it also starts a new paragraph.
Since all these macros deal with \hboxes, one

should be very careful which macros to insert

into arabic mode and which not. For example.
a change of arabic font must occur inside each

\arbword and on the left of the first (\char), but

a macro like \ c en t e r l i ne has to occur outside of

arabic mode. The solution is the following: if you
need a macro to affect the argument of \arbword,

type an asterisk * and the macro in braces: for

example if \yarbbf is the boldface arabic font,

type *(\yarbbf). This feature is similar to W ' s
\everyhbox; all forthcoming arabic words will be

in boldface, until you type *, which is equivalent to
*(I. If you want to add a second macro \yyy you

have to rewrite the first: *C\yarbbf\yyy), since
each *(. . .I replaces the previous one.

On the other hand, for macros affecting the
whole \arbword box, you'd better exit arabic mode.

For example, the first line in the text of Appendix

B (The Rabbit and the Elephant) has been typeset
in the following way:

The yarb font

The characters of this font belong to the nashi style.

which is the most common in arabic typography. At
this time there is not yet enough metaness in this

font; in some later version, the same .mf sources

will also produce typewriter and straight modern
styles.

Calligraphic arabic has many ligatures and

is much more difficult to typeset. The ligature
problem could be solved, by using more than one

table of 256 characters for each font and creating a
special version of yarbtex which would, beside its

regular tasks, detect the ligatures. For the moment,

the only ligature I include is the standard lam-alif

9, which is input by one ASCII character, namely L

(instead of 1A).
The ornamentation of Appendix B comes from

OSAMA EL NAHAS'S beautiful book on Islamic Dec-

orative Elements (Cairo 1985). The repetitive and

symmetric character of islamic decoration makes it

a real challenge for TEX and METAFONT.

The standard yarb font has 256 characters, but

since there are still PCs which don't support the
larger fonts, there is a second version of yarbtex
which uses two different 128-character fonts yarb

and ysarb.

Things remaining to do and availability

Besides further development on calligraphy and dec-
oration, all other TEX features will be made avail-

able in APO. Compatibility with macro-packages

like AMS-m. LAMS-m. I4m will be tested,
and fine points of APO typography studied. I
would be really grateful for every suggestion and

comment.
The status of the YARB package is postcard-

ware (which means that each user should send me a
postcard, for my collection). It is freely available at

my address either by electronic mail, or by ordinary
mail (please add some answering coupons).

o Yannis Haralambous
UniversitC de Lille 1

59655 Villeneuve d'Ascq

France
Bitnet: yannis@f r c i t l 8 1

TUGboat, Volume 11 (1990), No. 4 523

Appendix A

In the first column, the APO (Arabic-Persian-

Ottoman) character is represented in its isolated

form. Character 3 comes from CARL FAULMANNS
Das Buch der Scrift, enthaltend die Schriftzeichen

und Alphabete aller Zeiten und aller Volker des Erd-

kreises, Vienna 1880, p. 104, "Tiirkische Nesxi" ,
where it is transliterated as li. The translitera-
tion in column two comes from ARNE A. AMBROS'S

Einfiihrung in die moderne arabische Schriftsprache.

The input code of column three tries to be as short
and as phonetic as possible; for example j stands

for f because of its sound in spanish, and y for

because of its correspondence to the Cyrillic br
which has almost the same phonetic value. Un-

fortunately, this correspondence cannot always be

achieved: i has no phonetic relation to c, etc. In the

case of hamza, -0 is used for the "standing-alone
hamza" s and -- for the "hamza with carrier" !
(only initial and middle forms). Finally, in the

fourth column you have a number which is purely

inherent to yarb tex and will help you change the

transliteration data in y a r b t e x . d a t .

524 TUGboat. Volume 11 (1990), No. 4

- -

Appendix B. The Rabbit and the Elephant, from Kalila and Dimna.

TUGboat, Volume 11 (1990), No. 4

Environment for Translating
MET AFONT to POSTSCRIPT

Shimon Yanai and Daniel M. Berry

Abstract

This paper describes a program, mf2ps, that translates

a METAFONT font definition into a definition for the

same font in the POSTSCRIPT language. mf2ps is con-

structed out of the part of the METAFONT program that

extracts the envelopes of the letters; these envelopes are

converted into POSTSCRIPT outlines.

1 Introduction

This paper describes a program, mf2ps, that takes from

a METAFONT [lo, 111 program for a font all the neces-

sary information in order to create an equivalent POST-

SCRIPT [l] font definition. The program makes use of

the front end of the METAFONT program to extract the

envelopes of the letters to produce the POSTSCRIPT out-

lines. What makes this process natural is that both

METAFONT and POSTSCRIPT make liberal use of Bkzier

curves to describe non-circular curves.

By producing this translator, it is hoped to be able

to produce from METRFONT fonts POSTSCRIPT outline

fonts which are more compact than the bitmapped fonts

produced by the METRFONT program. Certainly the out-

line fonts are more easily scaled to other magnifications

and possibly even other design sizes than are bitmaps.

Moreover, doing so makes fonts heretofore available

only on TEX [9] and other DVI-based formatters, avail-

able on ditroff [8] and other formatters which have

evolved, or have been designed, for use with POST-

SCRIPT printers. This paper, which is typeset by ditroff,
uses a POSTSCRIPT version of the logo font in order to

print the word "METAFONT" in the same appearance as

in GX-generated documents. Moreover, these new

POSTSCRIPT outline fonts can be used in TEX also! One

needs only the TEX@ [3] software.

The organization of this paper is as follows. Sec-

tion 2 presents the background of this work. Section 3
explains the rationale behind building the translator and

describes a previous attempt at writing the translator

and an approach to avoid. The software engineering

aspect of the translator is described also in Section 3.
The details of the implementation are exposed in Sec-

tion 4. Section 5 describes the operation of the pro-

gram. Section 6 evaluates the results. Finally Section 7
describes improvements to the translator that are left for

future work.

2 Background

Typesetter formatting systems such as TEX and ditroff

use fonts as raw material. The formatters accept mixed

text and commands as input and produce output, which,

if sent to the laser printers or typesetters, yields format-

ted text printed on pages. The laser printers and

typesetters use fonts, i.e., sets of printable patterns, one

per character, in various representations in order to

cause the desired characters to appear on the printed

form. For some printers, bitmaps are used, with 1's

representing inked dots and 0's representing non-inked

dots. Other printers accept commands that cause draw-

ing of the characters, the printer providing the inked

dots according to the drawing commands. One such

popular command language is POSTSCRIPT, and its

usual use is to specify the outline of the character with

the interpreting printer filling in the outline with ink.

One popular method of describing fonts is with the

METAFONT language, in which declarative definitions of

how to paint the characters are given in terms of pen

path and pen shape. Another popular method is the

same POSTSCRIPT that many printers accept. The prime

difference is that the METAFONT program translates the

font definitions into bitmaps prior to sending the font to

the printer while a POSTSCRIPT printer translates the

outlines into bitmaps at the time of printing. Interest-

ingly, both the METRFONT language and the POSTSCRIPT

language use Bezier curves for describing the curves

followed by the pen or the outlines. As usually

configured these days, TEX uses bitmapped fonts in the

Computer Modern family generated by METAFONT, and

ditroff uses POSTSCRIPT outline fonts supplied by

Adobe.

The subsequent subsections delve deeper into

these issues in order to be able to state the goal of this

paper in the next section.

2.1 Fonts, design sizes, and magnifications. As

mentioned, fonts are the raw material of typesetting. A

font is a set of printable patterns, one for each charac-

ter, that causes printing of that character in a particular

recognizable style on the page. As mentioned, these

patterns can be represented by bitmaps or drawing

instructions.

Characters come in various sizes. There are two

independent notions of sizing for fonts, point size or

design size and magnification. The design sire is the

size at which the character is designed to be used and

is, in well-designed text, the size in which the character

appears in final, printed copy. Design size is usually

expressed in units of points, which are each approxi-

mately 1/72 of an inch. Most normal text in books,

newspapers, and magazines is printed in I0 point type.

Headlines are larger, perhaps as large as 30 points. The

mcrgn+rcrtion of a font is the inverse of the ratio

TGGboat. Volume 11 (1990). No. 4

between the design size of the character and the size of

the character as it emerges on the printer, the assump-

tion being that the final copy is a photo reduction of the

printed copy. Thus, if photo reduction halves linear

dimensions, one prints with magnification 2. If every-

thing is done right, then after reduction, the letter

appears at its design size.

A 10 point design sized font printed at magnifica-

tion 2 is similar to but not quite the same as a 20 point

version of the same font. For example, the serifs on a

large point size are smaller than they would be if strict

linear magnification were used. Other proportions, e.g.,

of x-height to cap-height and of width to height, are
also different. While many purists, Knuth included,

insist on using a different pattern for each design size,

many people accept magnification as yielding accept-

able fonts at other point sizes. If the unit of

magnification is not too big the results are acceptable

even to many purists.

2.2 Problems with bitmapped fonts. A bitmap for a
character is a rectangular array of bits covering the so-

called bounding box or frame that exactly contains a
letter. Figure 1 shows a low resolution bit map for the

letter "N" in a sans serif font. The inked squares or pix-

els are denoted by "I" bits and the uninked pixels are

denoted by " 0 bits.

Figure 1

The low resolution example of Figure 1 illustrates a

major problem with bitmapped fonts. Curved lines and

straight lines that are neither vertical nor horizontal

cannot be represented exactly by a rectangular pattern

of pixels. One is forced to approximate them with rec-

tangular steps. At high resolution, e.g. above 1000 or

so, the human eye cannot see the steps, but at low

resolution the steps are quite apparent. Visible steps

are called "jaggies" after the jagged edges.

Bitmaps for a font must be built for each design

size, magnification, and resolution. If the resolution is

fixed, as is the case on most printers, a bitmap must be

built for eacli design size and magnification. An attempt

to use a given bitmap at a larger design size or

magnification by just enlarging the area of each dot

yields a bad case of jaggies.

2.3 METRFONT and i t s environment. METRFONT, a

language for the specification of fonts or typefaces, has

been used to provide fonts for the TEX family of

typesetting systems. A METAFONT user writes a pro-

gram for each letter or symbol of an alphabet. These

programs are different from the usual computer pro-

grams, because they are essentially declarative rather

than imperative, using an algebraic language to

describe the center stroke or edges of the characters.

The description of a letter in METRFONT is a set of equa-

tions describing the strokes. When combined with

parameters describing the pen shape and size, one gets

a full description of a letter. Sizes and shapes of pen

nibs can be varied in METWONT and the characters can

be built up in such a way that the outlines of each

stroke are precisely controlled. Herein lies the advan-

tage of METAFONX a font is easily specified and varia-

tions are obtained by varying parameters.

Currently, the program that converts a set of

METAFONT font descriptions into a bitmapped font

translates the description of a letter combined with a

point size and a magnification into a bitmap. This bit-

map can be sent to the printer to get a letter on the page.

Herein lies a disadvantage of METAFONT; a bit map

must be kept for each point size and magnification, and

this can require a lot of space.

2.4 The PosrrScR1r'r language. The POSTSCRIPT

language is an interpretive programming language with

graphics capabilities. POSTSCRIPT'S extensive page

description capabilities are embedded into a general-

purpose programming language framework. The

language includes a conventional set of data types such

as numbers, arrays, and strings, control primitives such

as conditionals, loops and procedures, and some

unusual features such as dictionaries. In most POST-

SCRIPT fonts, each letter is described by an imperative

program tracing the outline of the letter. This tracing

may include curves given as Bezier curves, straight

lines, arcs, etc. A POSTSCRIPT printer interprets this

outline program to draw and fill in the letters on the

page. Some consider the imperative nature of POST-

SCRIPT to be a disadvantage in comparison to META-

TUGboat, Volume 11 (1990), No. 4 527

FONT'S declarative nature. The main advantage of

POSTSCRIPT relative to METAFONT is that one needs to
keep only the outline. If, as in the usual case, the out-

line is specified in terms of a fixed path through

Euclidean two-space, this outline may be scaled arbi-

trarily to yield any magnification. The scaling is done

by the POSTSCRIPT interpreter at the printer. Thus the

different magnifications do not require any additional

storage space. Actually, the outlines are kept as if they

were for the Adobe-standard 1000 dots per emm, which

at a design size of 10 points amounts to 7200 dpi.

Because a typical phototypesetter has a maximum reso-

lution of about 2500 dpi, the outlines are said to be
arbitrarily scaleable. If the outlines are kept, as are

many METAFONT definitions, as paths through points
calculated by the outline program, then it is possible to,

say, make serifs grow more slowly than linearly. It
would then be possible to have one POSTSCRIPT font

scaleable to all design sizes. Generally, outline fonts
are not written this way, so that strictly speaking they

are scaleable only to all magnifications.

In addition, the POSTSCRIPT language has a way to

work with bitmapped fonts. While the POSTSCRIPT
printer can scale them before printing, the end result is
that each of the fixed number of dots in the bitmap is

made larger or smaller. Since the human will see larger
dots as jagged lines, such fonts are not really con-

sidered scaleable.

2.5 BQier curves. Both METAFONT and POSTSCRIPT
use Bbier cubics to specify curves. For the Bbier

form, four points are used, the start point, the end point,

and two control points, as shown in the top half of Fig-
ure 2. The tangent vectors of the endpoints are deter-
mined from the line segments P I P 2 and P3P4. The

mathematical introduction of the Bizier form when
given four points P I , P Z , P3, and P4 is

f o r 0 l t S 1.

Two characteristics of the BCzier form tend to
make it widely used in graphics. First, by choosing the
control points one can easily mold the curve to a

desired shape. Second, the four control points taken in

another order define a convex polygon, P I P2 P4 P3 P I
in this case, the convex hull, which bounds the Bbier

curve. The convex hull is useful in clipping a curve

against a window.

When a METRFONT user specifies a path, METR-

finds some for the splines of a curve, while POSTSCRIPT

requires all the four points to be explicitly given.

Figure 2

3 METAFONT to POSTSCRIPT compiler-
why and how

This section describes a major performance problem

with METRFONT-generated fonts that perhaps can be

solved by translating them into POSTSCRIPT fonts. The

goals of this translation are established. Based on these
goals, a particular approach is adopted to engineer the

software largely from existing components.

FONT creates a list of knots and control points for the

associated cubic spline curves. If the user has not
3.1 A problem with METAFONT-generated bit-

specified the control points explicitly, METAFONT itself
mapped fonts. In METAFONT, one gets one bitmap per

point size and magnification. The size of these bitrnaps

TUGboat, Volume 11 (1990), No. 4

grows as the square of product of the design size and

the magnification and requires a large storage space.

Files that are sent to the printer will be large, especially

if lots of different point sizes or magnifications are

used. In POSTSCRIPT with outline fonts, there is one

outline per character which can be scaled arbitrarily to

any magnification that might be needed. Moreover,

POSTSCRIPT outline fonts are generally more compact

than bitmapped fonts. For example, an enclosed rectan-

gle is represented by its four comer points rather than

by all the bits enclosed by the rectangle.

Certainly the outline fonts are more easily scaled

to other magnifications. By scaling the bitmapped fonts

downward, too much information is lost, and scaling

upward introduces the jaggies. Moreover, the pixel

array is device dependent; it is valid for output devices

of only one particular resolution and one choice of pos-

sible data values per pixel. Scaleable fonts have a great

advantage - you need only one font description file for

all magnifications of that font. Actually, POSTSCRIPT

outline fonts are more scaleable even than the META-

FONT originals for another reason. In [9], it is said,

"Caution: before using this 'at' feature (i.e. scaling

downward or upward) you should check to make sure

that your typesetter supports the font at the size in ques-

tion; '&X will accept any (desired size) that is positive

and less than 2048 points, but the final output will not

be right unless the scaled font really is available on

your printing device." Getting POSTSCRIPT outline ver-

sions of METAFONT fonts is possible since both are

based on Bkzier curves. Doing so makes fonts hereto-

fore available only on T m and other DVI-based for-

matters available on ditroff and other formatters which

have evolved to or have been designed for use with

POSTSCRIPT printers.

3.2 Goals. Based on the observations of Section 3.1,

the goal of this research is to produce a METAFONT to

POSTSCRIPT compiler, mf2ps. Its operational require-

ments are items 1 through 5:

1. It must be possible to translate any legitimate

METAFONT font definition at any given design size

into a POSTSCRIPT outline font.

2. The resulting POSTSCRIPT outline font should be

arbitrarily scaleable.

3. The resulting fonts should look like the bitmapped

fonts when printed on the same printer.

4. The resulting POSTSCRIPT outline font should be

more compact when sent to the printer than a

POSTSCRIPT version of the METAFONT-generated

bitmapped font.

The fourth requirement deserves a bit of explanation

and qualification. First note that what is compared is

what is sent to the printer. Certainly there are

compressed versions of the bitmapped fonts that reduce

the disk storage requirements of the bitmapped fonts.

However, they must be uncompressed before sending

them to most printers. It is the printer's storage that is

limited; generally disk space is in abundance. However,

since printers these days are general purpose comput-

ers, what a printer accepts may in fact be a compression

that it has been programmed to undo.

Now for the case in which disk space is of con-

cern, the comparison should still be relative to printable

versions. There exist algorithms, e.g. that of Lempel

and Ziv [13] that can be used to compress POSTSCRIPT

outline fonts which are, after all, just ASCII files.

Therefore, in order not to have a contest between

compression algorithms, the uncompressed versions are

compared. Furthermore, in order not to have a contest

between different kinds of printers that may have

differing font representations, POSTSCRIPT outline fonts

are compared to POSTSCRIPT bitmapped fonts. When

considering disk space, the fact that one bitmapped font

is needed for each magnification is taken into account.

Thus, the interest is in comparing the size of a scaleable

outline font to the total storage for the bitmapped fonts

for all magnifications of a given design size.

5. The resulting POSTSCRIPT outline font should be

more compact than the total of the sizes of the

POSTSCRIPT versions of the METAFONT-generated

bitmapped fonts at each available magnification.

Even this comparison is not completely fair since

only specific magnifications are provided, while

the POSTSCRIPT font is arbitrarily scaleable.

Observe finally, that the comparison is against

magnifications of a single design size since purists

would argue that there should be a different outline font

for each design size. Since there are those that do not

require this purity, the various design sizes will be com-

pared also.

The software engineering goal is item 6.

6. mf2ps should be written as much as possible using

the existing METAFONT program both to save work

and to ensure that all METRFONT-acceptable font

definitions are handled.

The evaluation of the results will be done relative to

these goals.

3.3 Previous attempts. Leslie Carr wrote a collection

of programs to produce POSTSCRIPT outline fonts from

METAFONT fonts in 1987. Carr's programs take as input

TUGboat. Volume 11 (1990), No. 4

the log output file of METRFONT which contains a

description of all the paths that METRFONT traces out in

drawing a character.

Carr has problems of information loss as a result

of not having entered into the METRFONT program. This

is the reason why Carr's characters are poor looking. In

[5] , Carr observes, "In the cmrlO font, the crisp pen

has diameter zero, so serifs have square corners. In the

cmtt 10 font, crisp is set to a larger value and the

serifs end in semicircles. Because the shape of the

current pen can NOT be taken into account in POST-

SCRIPT, these differences in the characters shapes will

not be seen. This is a fundamental problem: given a

path p and a pen q (whose shape is also an arbitrary

path), METAFONT effectively envelopes y with respect to

the shape of q; POSTSCRIPT can do nothing other than

stroke it to produce a line of constant width. This

incompatibility comes to light when the width of the

pen is significant to the shape of the character".

In order to avoid this problem, rnf2ps finds the

internally generated envelope, which is used as the

boundaries of the inked region, and uses this envelope

as the outline. It does not matter, then, what the pen

path and the pen shape are.

More recently, during the time that the work

described herein was being done, there were other

efforts with similar goals.

Doug Henderson [6] obtained outline font charac-

ters by modifying the endchar macro, which is called

for each character after the bitmap is generated, to take

the bitmap for the character and white out all but the

bits on the edge. The number of bits left on the edge is

varied according to the resolution of the bitmap. These

outlines, being bitmapped, are just as unscaleable as are

the bitmaps for the filled-in characters.

Neil Raine and Graham Toal [121 have developed

software that takes the bitmaps and rediscovers the out-

lines by tracing the pixels. The outlines that are used as

the basis for POSTSCRIPT fonts are, for the most part,

generated from bitmaps at 2400 dpi. They first generate

RISC OS outline fonts which are screen fonts for

Acorn's Archimedes RISC computer. These are true

scaleable outlines. Then, these outlines are converted

into POSTSCRIPT format. Toal says that the the quality

of the fonts produced is not too great at low resolutions

because of shortcomings in Adobe's rendering algo-

rithm. He adds that at 1200 dpi on a phototypesetter,

they are indistinguishable from METRFONT-generated

bitmapped fonts. These authors suspect that information

that is critical for good appearance is lost when tracing

an outline on a bitmap generated from a mathematically

described envelope. Better results should be obtainable

using the original envelope.

John Hobby [7] has developed a program called

MetaPost, which translates from an extension of METR-

FONT into POSTSCRIPT cubic splines and commands.

His goal was to turn METAFONT into a system for

typesetting general graphics, including embedded text.

His approach, similar to ours, was to modify the METR-

FONT program into what he desired. Befitting his more

general goals, besides modifying the output, he has

added new commands to the input language. Moreover,

his translation appears to be a direct mapping from a

METRFONT command sequence to a POSTSCRIFT com-

mand sequence. The result is a program more powerful

than rnf2p.s. It will be interesting to compare fonts pro-

duced by MetaPost and mf2ps for appearance and per-

formance.

3.4 Methodology. There are a number of ways to

build the compiler. They include

writing the whole compiler from METRFONT to

POSTSCRIPT from scratch: This has the advantage

that one does not have to get into another person's

software, which is not very pleasant when the

software is so big. On the other hand. one would

have to treat the whole job of turning mathemati-

cal equations and any arbitrary pen shape into out-

lines.

using the METRFONT output as was done by Leslie

Carr [5] : This has the advantage of not requiring

delving into another's software, but the generated

information is not enough if one wants no devia-

tions from the originals.

getting into the METRFONT program: This requires

examining the internals of the METRFONT program.

However, METRFONT and POSTSCRIPT make

liberal use of Bdier curves to describe non-

circular curves. This fact makes the translation

process natural. For each specified path, METR-

FONT creates control points for the associated

cubic spline curves before calculating the bit map.

METRFONT also calculates the edge offsets implied

by the pen shape. Using the necessary information

one can get a new set of control points that define

BCzier curves and lines that are needed to build the

POSTSCRIPT outline fonts.

Software engineering of solution. The idea is to

split the METRFONT program into front end and back

end. The front end takes METRFONT specification of a

character. magnification, and point size, and produces

the envelope, i.e., the outline of the character, and the

back end fills the envelope with bits. Taking the exist-

ing front end and writing a new back end that converts

530 TUGboat, Volume 11 (1990), No. 4

the envelope into a POSTSCRIPT specification of an out-

line is our method of producing mf2ps. The bit-filling

process will be done by the printer.

In order to make POSTSCRIPT fonts arbitrarily

scaleable, we have to ask the rnf2ps program to use a

very large magnification, at least to try to match the

grid on which Adobe plots the points of its outlines.

Adobe plots its characters on a 1000 x 1000 grid. Thus,

Adobe's resolution is 1000 dpm (dots per em), which

for design size 10 points is 7200 dpi. Unfortunately,

METRFONT, and thus mf2p.S accepts resolutions only up

to 3000 dpi. The results should be sufficient to produce

fonts scaleable up to magnification 7 or 8, which is a

reasonable range in typesetting.

This approach helps meet goal 6 because the origi-

nal unchanged METRFONT program is used. Thus,

exactly the same input is accepted as in the METRFONT

program. There is some extra frosting obtained by the

chosen approach. The program for translating METR-

FONT to POSTSCRIPT is actually a bit of an interactive

environment because the new back end is an extension

of the existing one. This existing back-end provides an

interpreter that executes a METAFONT character

definition and displays the defined character on the

screen. Figure 3 shows the dump of a screen containing

several windows, one showing a METAFONT definition,

another showing the result of its interpretation, and a

third containing the POSTSCRIPT translation of the

definition in the first window. If software to interpret

POSTSCRIPT definitions were available here, a fourth

window could be set up showing the result of interpret-

ing the translation of the third window. This would

allow comparison of the character's appearances

without having to print them on paper.

4 The program

In the following discussion, the METRFONT program is

often called just " METRFONT".

The METRFONTprogram has been written so that it

can be made to run efficiently in a wide variety of

operating environments by making comparatively few

changes. Such flexibility is possible because the pro-

gram is written in the WEB language which is at a

higher level than Pascal. The preprocessing step that

converts WEB to Pascal is able to introduce most of the

necessary refinements. Semiautomatic translation to

other languages is also feasible, because the program

does not make extensive use of features that are pecu-

liar to Pascal.

The program has two important variations: First,

there is a long and slow version called INIMF. which

does the extra calculations needed to initialize META-

FONT'S internal tables. It has to be run first. It initializes

everything from scratch without reading a base file, and

i t has the capability of dumping a base file. Secondly,

there is a shorter and faster production version called

VIRMF, which cuts the initialization to a bare minimum.

It is a virgin program that needs to input a base file in

order to get started. VIRMF typically has more memory

capacity than INIMF, because it does not need the space

consumed by the dumping and undumping routines, etc.

In order to generate a compiler that translates

METRFONT to POSTSCRIPT, additional external pro-

cedures and functions were added to the METRFONT

program so that it runs exactly the same except that

when it asks for an output file name, it asks for an addi-

tional name, for the extra output file that is to contain

the POSTSCRIPT outlines. Those changes were made on

the Pascal version of the VIRMF, and were compiled
later with METAFONT'S library files. (It was a complete

oversight on our part not to have modified the WEB ver-

sion of VIRMF.) A few extra lines were added to the

macro file, p l a i n .mf. These act as flags, identifying

that METRFONT has entered some of the macros.

4.1 Basic idea. To specify a character in METRFONT,

one specifies either an envelope (outline) or a center-

line path and a pen head. For the former, METRFONT

just fills the envelope with bits. For the latter, META-

FONT pretends that it is drawing the character with a

pen of specified head shape following the specified

path, i.e., the center of the head stays on the path. The

distance from the center-line path and outer edge of ink

trail left by pen head is called the offset. So, for a char-

acter, METRFONT follows the center-line path to calcu-

late the path of offset points, i.e., the envelope, and then

fills the envelope with bits. In either case, METRFONT

ends up filling an envelope.

We need to break METAFONT into a front end and a

back end at the point just after the envelope has been

calculated. Then we provide a new back end that con-

verts the envelope into POSTSCRIPT instead of filling

the envelope with bits. Note then that the POSTSCRIPT

printer will fill in the envelope with bits as it fills the

path obtained from the envelope.

The following subsections describe the data and

the calculations involved in the new back end.

4.2 Data structures. The main data structures that

METRFONT keeps for a character are the center-line

path, the pen shape, and the envelope path. There are a

few operations that can be performed on paths, called

transformations.

4.2.1 METRFONT'S path representation. When a

METAFONT user specifies a path, METAFONT creates a

list of knots and control points for the associated cubic

)p y l r - h ; b o t y41-0; z2=whatever[zl l ,z4r]; 23-whatever[zl l .z4r];
r e you c rea t ing the whole d i c t i o n a r y (y h) ?n

l l l d r a w z l r { 4 (x l l - x l r) , y i l - y l r } , . . {down}zll . . . 221
--- 231 . . . { down}z41{4(x4r-x41),y4r-y41} , . . {up}z4r . . . z3r
--- z2r . . . { up}cycle; '/. long diagonal

*** embedded METAFONT t o Pos tsc r ip t Compiler * * *

)s5(cap-stem ,75) ; pos6(cap_stem,90) ; pos7(cap_stem,75) ;
(no base preloaded)

f t x51-hround(w-4u)-eps; x6- .5[~5,x7] ; x7-x4;
5-yl; b o t y71-x-height-o; z6=whatever[z51,~7rI;

(mycmsyl0 .mf (cmbase .mf) (mymathsy .mf (mysymbol .mf

I l l d r a w z5 r€4(~51-~5r) , y51-y5 r } . . . {down}z51
H;brew l e t t e r aleph C641)))

. . .z61{z7r- i51}. . . {dwnjz71{4(~7r-x71) ,y7r-y71}. . .{up}z7r

. . . z6rCz51-2711 . . . { up}cycle; % shor t diagonal
)s8(cap_hair,@); posg(cap_hair,0); 28-26; x9-x8-.75u; zQ=whatever[z2,z31;
I l l d r a w s t roke z8efdownl..Cdownlz9e: X r i o h t stem - - - - . -
~siB(cap-hair,-30); posi l(stem,0);
3sl2(cap-curve,0); posl3(cap-curve,0); pos l4(va i r ,90);
f t x l l l - h r o u n d 1 . 5 ~ ; x10-x12- . 4 [x l l , .5w]; zl0-whatever[z2,z3] ;
f t xl31-hround u; 2131-2141; y l l - . 5 y l 0 ; y12- .2[y14r ,y l l] ; bo t y13-0;
I 1 ldraw s t roke z l0e{2(x i l -x10) , y l l - y l 0 }

.{dwn}z12e; X l e f t stem

232 676 1 l n e t o
234 678 l i n e t o
232 676 l i n e t o
230 674 228 672 228 670curve to
228 672 l i n e t o
226 668 l i n e t o
218 656 218 642 218 628curve to
218 626 l i n e t o
220 624 l l n e t o
220 614 226 602 236 588curve to
234 590 l i n e t o
236 586 1 i n e t o
238 586 l i n e t o

262 552 276 538 curveto
514 262 514 262 curveto

TUGboat, Volume 11 (1990), No. 4

spline curves. If the knots are Z O , z l , . . . , zII, there are

control points z i and zk+l such that the cubic splines

between the knots zk and z k + ~ are defined by the Bezier

formula

f o r 0 l t l 1.

There is a 7-word node for each

+ t3:x+1,

knot q , contain-

ing one word of control information and six w&ds for

the x and y coordinates of zk and zx and z:. The control

information appears in the left-type and right-type

fields and they specify properties of the curve as it

enters and leaves the knot. There is also a link field,

which points to the following knot. Before the Bkzier

control points have been calculated, the memory space

they will ultimately occupy is taken up by information

that can be used to compute them. The METRFONT

make-choices procedure chooses angles and control

points for the splines of a curve when the user has not
specified them explicitly.

4.2.2 METAFONT's path transformation. When

METRFONT digitizes a path, it reduces the problem to

the special case of paths that travel in the jiixt oc tmt

directions; i.e., each cubic z (t) = (x (t) ,y (t)) being digi-

tized will have the property that 0 5 y ' (t) I xJ (t) . This

assumption makes digitizing simpler and faster than if

the direction of motion has to be tested repeatedly.

When z (t) is cubic, x'(t) and y'(t) are quadratic, hence

each of the four polynomials, x'(t), y'(t), x l (t) -y f (t) ,

and xf(t)+y'(t), crosses through 0 at most twice. If we

subdivide the given cubic at these places, we get at

most nine subintervals. In each of these intervals each

of x f (t) , y f (t) , x f (t) -y f (t) , and xf (t)+yf (t) has a constant

sign. The curve can be transformed in each of these

subintervals so that it travels entirely in first octant

directions, if we exchange x and -x, y and -y, and x and

y as necessary.

4.3 Pens and envelopes. There are two kinds of pen

heads that may be used, polygonal and elliptic. There

are a number of trade-offs involved in their use. The

first subsection treats the case of an n-vertex polygonal

pen shape and the second treats the case of an elliptical

pen shape. Both describe the influence of pen shape on

the envelope of the font.

4.3.1 Polygonal pens. Suppose that the vertices

of a polygon are w 0 , w l , . . . , w ~ , - ~ , w,, = w o in coun-

terclockwise order. A convexity condition requires that

each vertex turns left when one proceeds from M'o to

w l
. to w,. The envelope is obtained if we offset a

given curve z (t) by wi when that curve is traveling in a

direction ~ ' (t) lying between the directions wk-wx-~

and Wr+l-wk. At times t when the curve direction ~ ' (t)

increases past M"+I -wk, METRFONT temporarily stops

plotting the offset curve and inserts a straight line from

z (t)+wL to I (t)+wL+,; notice that this straight line is

tangent to the offset curve. Similarly, when the curve

direction decreases past wk-wx-,, METRFONT stops plot-

ting and inserts a straight line from z(t)+wk to

z (t) + ~ ~ - ~ ; the latter line is actually a retrograde step,

which will not be part of the final envelope under

METAFONT's assumptions. The result of this considera-

tion is a continuous path that consists of alternating

curves and straight line segments. The segments are

usually so short, in practice, that they blend with the

curves.

4.3.2 Elliptical pens. To get the envelope of a

cyclic path with respect to an ellipse, METAFONT calcu-

lates the envelope with respect to a polygonal approxi-

mation to the ellipse. This has two important advan-

tages over trying to obtain the exact envelope:

1. Polygonal envelopes give better results, because

the polygon has been designed to counteract prob-

lems that arise from digitization; the polygon

includes sub-pixel corrections to an exact ellipse

that make the results essentially independent of

where the path falls on the raster.

2. Polygonal envelopes of cubic splines are cubic

splines. Hence it is not necessary to introduce

completely different routines. By contrast, exact

envelopes of cubic splines with respect to ellipses

are complicated curves, more difficult to plot than

cubics.

4.4 Taking out data. After METRFONT has calculated

the paths and the offsets, it is ready to send the values to

the make-moves procedure which generates discrete

moves for any four points that represent a Bb ie r curve.

This is done for each one of the cyclic paths from

which the letter is built. When the offsets are zero, this

is done by the $11-spec procedure. Otherwise this is

done by thefrll-envelope procedure. In the latter case,

the line segments, which were discussed earlier, should

be taken out also in order to get smooth connections

between the different curves that the cyclic path is built

from. Because POSTSCRIPT describes any shape in

terms of curves and lines, this is the point to take

advantage of METRFONT's calculations, i.e., when

METRFONT calls the niuke-nioves procedure and when

METAFONT draws line segments for offset corrections.

4.5 Processing the data. The generated data are not

TUGboat, Volume 11 (1990), No. 4 533

ready yet to be used. First, we should unskew, i.e.,

transform from the first octant back to the original, the

paths according to the octant that the paths were trav-

eled in before they were skewed. This unskewing is

done by taking out the octant number at the moment

that the make-moves procedure is called and then using

METAFONT's unskew procedure that sets values .Y' and

y' to the original coordinate values of a point, given an

octant code and coordinates (x,y) after they have been

mapped into the first octant and skewed; the new values

are sent to the sendg-s procedure. This procedure has

eight formal parameters that are all used when sending

a curve. When sending a line, only four parameters are

used, two to denote the start point and two to denote the

end point; the remaining four parameters are sent as

zeros so sendg-s can distinguish whether a line was

sent or a curve. In the next step, s a n d x s unscales the

numbers because METAFONT works with units of scaled

points, of which there are 216 in an ordinary point.

While unsealing, the values are transformed in order to

send them to the POSTSCR~PT dictionary FontBBox

command. After this pre-processing, the data are sent to

a temporary file.

4.5.1 Getting more information. When METR-

FONT calls the make-moves procedure, it does not have

any information on the role that this path is going to

play, whether the current cyclic path is going to be

filled or whether it will act as a boundary of a region to

be erased.
In order to distinguish between the cases, more

information has to be taken. This is done by copying

the p l a i n . m f file into a new file named

m y p l a i n .mf and adding a few lines to it. The addi-

tional code was added in order to identify METRFONT's

use of the macros. METAFONT uses the variables for date

only once, when the program is started, so it was

decided to use them in the rest of the program. The
y e a r is changed to -1 when METAFONT'S

pen- s t roke macro is applied on a cyclic path, i.e., in

the characters such as "ow, "Ow, and "Q", and to -2

when the e r a s e macro is called. The month is

changed when the f i 11 macro is called. There are

three kinds of paths:

1. paths to be filled are processed using the POST-

SCRIPT f i l l command.

2. paths to be stroked are processed using the POST-

SCRIPT e o f i l 1 command.

3. paths to be erased are processed using specialized

procedures which will be discussed later.

A letter cannot always be treated as one unit by

means of the f i 11 and eo f ill commands. For

instance, the letter "Q" is built of two different paths,

the first of which is stroked and the second of which is

filled. Generating the letter using the POSTSCRIPT

e o f ill command causes a hole in the image (see Fig-

ure 4).

Figure 4

So while generating a letter, fill mode can be changed

for each cyclic path. Moreover, when generating a

letter whose paths should be filled, it is not always pos-

sible to use just one f i l l command (see Figure 5).

Figure 5

When a POSTSCRIPT f i l l command is applied to a

path that is composed of more than one subpath, say

two for the sake of simplicity, and one subpath is inside

the other and is drawn in a direction opposite to the

external one, the internal path is considered a hole and

is not filled (see Figure 6). So, if several paths are to be

filled in this manner, the description of each one of

them should be ended with the f i l l command. There

is one more benefit to using this strategy: The POST-

SCRIPT c u r r e n t p a t h stack becomes empty after

encountering any kind of f i l l command. Therefore,

using the f i l l command after each path can help

avoid s t a c k o v e r f l o w e r r o r s if all paths

together are too long.

4.5.2 Treating erasing paths. There are three

methods of handling the problem of paths that should

be erased by mf2ps itself:

1, filling with white: Because erasing paths are built

in order to erase an existing filled area and POST-

SCRIPT overlaps paths (i.e., a region is shown in

the color that was drawn last), erasing paths can be

implemented by filling those paths with white.

This solution is the easiest, but it works only if the

background is white and the letter is drawn in

some level of gray. If one wants to draw a letter

with background other than white, the resulting

TUGboat, Volume 11 (1990), No. 4

Figure 7

There are other problems caused by the erasing

paths. Because the erasing paths have segments in com-

mon with paths to be filled, POSTSCRIPT must decide

whether the common segments are in the clipping path
or not. POSTSCRIPT does not seem to have a consistent

policy on that and it seems to be that the decision is

taken arbitrarily (see Figure 8).

Figure 6

appearance will not be correct.

2. calculating new paths resulting from subtracting

the erasing paths from the previous filled paths:

Such a solution can be global. However, it costs a

lot in terms of processing time and accuracy,

because paths are given implicitly by four points,

and in order to calculate the new paths, one should

find the intersection points of B6zier curves, i.e., to

find points that lie on both Bdier curves, and then

calculate new curves, which are difficult to calcu-

late from those points.

3. using the POSTSCRIPT eoclip command: Be-

cause the letters are bounded in a 1000 x 1000 box,

a primary square path whose segments are 1000

units long should be declared and after it all the

erasing paths should be listed. After relocating the

erasing paths we are ready to declare eoclip,

which means that the clipping path is the external

primary one and the internal paths, the erasing

paths, are holes. This is an elegant solution that

uses the power of the language and is available in

simple situations in which there is no intersection

between the erasing paths (see Figure 7). If there

were intersections, a little more sophisticated use

of the eoclip command would be needed. Relo-

cation of the erasing paths is done by the pro-

cedure doarrange.

Figure 8

An attempt to resolve the clipping path problem led to

the first author sending the following electronic mes-

sage (obviously, not as nicely formatted as herein) to

Glenn Reid of Adobe Systems, Inc.

From simon Tue Mar 2 1 l3:22:32 1989
To: greid@adobe.com

Subject: Problem in Postscript

Dear Mr. Reid

I have got a problem in understanding the

Postscript policy in determining "what is in

the clipping path". I think there is a problem

in the boundaries. Here is an example that

shows that problem:

gsave

initclip

newpath

0 0 moveto

0 1000 lineto

1000 1000 lineto

1000 0 lineto

0 0 lineto

300 100 moveto

700 100 lineto

700 300 lineto

300 300 lineto

TUGboat, Volume 11 (1990), No. 4 535

700 900 moveto

300 900 lineto

300 700 iineto

700 700 lineto

700 900 lineto

eoclip

newpat h

100 100 moveto

900 100 iineto

900 900 lineto

100 900 lineto

100 100 lineto

fill

grestore

The problem is that the path you are filling

falls exactly on the edge of the clipping path.

This produces a zero-width area to fill, and

unfortunately it sometimes fills and some-

times does not with the current fill algorithm.

I believe that i t is related to the direction of

the paths; if the paths are going in opposite

directions along the same line, it will fill with

a one-pixel area, but if they are going in the
same direction, it will not fill. I believe this

has been fixed to be more consistent in

Display Postscript, for what it's worth.

Glenn Reid

Adobe Systems

The idea of using opposite directions had been

checked before sending the letter. so the problem had to

be solved within the back end of mf2ps. The erasing

paths near the top of the letter had their y coordinates
As you see, the problem is that on top of the

increased by 0.8 points, and those near the bottom had
shape, the line which belongs to the upper

their y coordinates decreased by the same amount. This
"hole" in the clipping path and to the current

shift is invisible to the human eye because the font
path (to be filled) is drawn, and on bottom of

definitions are in terms of hundreds of points (see Fig-
the shape it is not.

ure 10). This solution was designed to work with most

existing METAFONT fonts. It is that there will be
This is happening both on the Apple Laser

fonts that are not treated well by this solution.
printer and on the QMS-80.

I would be glad to have a reply from you.

Thanks in advance

Shimon Yanai

C.S Dep.

Technion

X
Figure 10

4.6 Optimization. Optimization is done in order to
Reid saw when he printed the PosTSCR1pr make the description of the fonts shorter and to save

commands contained in the message is reproduced in
work in the POSTSCRIPT interpreter. This is done in

Figure 9.
three ways:

Figure 9

1. not printing lines with length zero. As was said

earlier, the METAFONT program prints lines to con-

nect offset points. There are times that after round-

ing or truncating the output data, the start point

and the end point are equal. In such cases, the lines

are eliminated.

Mr. Reid replied with the following: 2. checking if the BCzier curve acts as a line. From

From: greid@adobe.com (Glenn Reid)

To: Shimon Yanai <simon@techunix>

Cc: greid@ adobe.com

Subject: Re: Problem ifl Postscript

In-Reply-To: Your message of Wed, 22 Mar 89 ...
Date: Wed, 22 Mar 89 1 1 :4 1 :35 PST

the definition of the Btzier curve, it is known that

if the two control points lie on the line that con-

nects the start point and the end point, the curve is

of degree one. In such cases mf2ps generates a

command to print a line from the start point to the

end point. thus saving space and avoiding redun-

dant calculations for the POSTSCR~FT interpreter.

536 TUGboat; Volume 11 (1990), No. 4

3. checking if a series of consecutive line segments

are in the same line. This is done by storing the

segments in a buffer and checking whether a new

segment is collinear with the last stored.

4.7 Changed or added routines. The following is a

list of routines that were changed or added in order to

build mf2ps from METRFONT.

printchar was modified to get character names.

fixdateandtime was modified to initialize variables

that were used as flags in the macros.

fillspec was modified to send out data on splines.

skewlineedges was modified to send out offset lines.

dualmoves was modified to send out offset lines.

fillenvelope was modified to send out data on

splines.

dostatement was modified to identify tokens that are

strings.

main was modified to call the mf2ps procedure in

the beginning and ending of the program.

sendcurve was added to unskew spline values and to

send them to the next process.

sendline was added to unskew line values and to

send them to the next process.

ok was added to check if two lines are collinear.

restore was added to restore the parameters of the

last line.

recall was added to recall values from the buffer.

us was added to convert the METAFONT scale so that

a letter would fit the Adobe standard 1000 x 1000

bounding box.

sendg_s was added to create a POSTSCRIPT file of

lines and curves.

makemoves was modified to send out spline data.

dump was added to append information from the file

named f to the file named g.

checkerase was added to identify the file that con-

tains "erase" commands, and their position within

the file.

doarrange was added to put erasing paths at the

beginning of the file.

print-start was added to signal the beginning of a

new cyclic path to be processed.

print-end was added to signal the end of the current

cyclic path.

i n i t j x was added to make initializations.

makenc~def was added to make initializations when

more than one character occurs in the input.

c.loseolddef was added to close the last definition.

t i n i j ~ s was added to handle the ending of the pro-

cess.

u~r.\~pr~intchar was added to print characters.

rr~~spYnt was added to print strings.

5 Operation of mf2ps in a UNIX environment

When invoked, mf2ps first asks for an output file

name. For the example this file is called exl. mf2ps
then asks.

"Are you creating the whole dic-

tionary (y/n)?".

If the answer is other than "y" or "Y", it is considered

"no". If the answer is "y" or "Y", then the whole dic-

tionary is created. This means that mf2ps creates a

POSTS~RIPT dictionary that includes entries for all the

characters that are in the input, e.g., cmrlO set. This

dictionary needs additional definitions such as left side
hearing, ~ i d t h , lmrncling h v , etc. These definitions

need info~mation on character features that must be cal-

culated within the program. Otherwise, the whole dic-

t i ona l~ is not created and the program treats the input

as a single character definition that is to be translated

into a P o s r S c ~ r m outline definition. After mf2ps
prompts "* *" , we are in the METRFONT environment.

Now the user inputs

After mf2ps has finished, the resulting POSTSCRIPT

font dictionary can be used to print text. In order to

print text, the font dictionary should be installed in

some formatter's font source directory, and then it can

be loaded through the fo~matter's commands. The dic-

tionary followed by appropriate show and showpage
commands can also be sent directly to the printer.

6 Evaluation of results

This section evaluates the mf2ps program relative to

goals established in section 3.2. The program was pro-

duced as a variation of METRFONT and it accepts any

METRFONT font definition and produces a POSTSCRIPT

TUGboat, Volume 11 (1990), No. 4

outline font scaleable up to magnification 8, or to point

size 80 if you are not a purist. Thus goals 6 and 1 have

been entirely met and goal 2 is partially met. To meet

goal 2 fully the program must be modified to allow

large enough arrays to handle magnifications up to

7200; this is left to future work.

It remains to evaluate the appearance and sizes of

the outline fonts relative to the bitmapped fonts to see if

goals 3 ,4 , and 5 have been met.

6.1 Appearance. In order to compare appearances,

the outline font (Subsubfigure P) and and the 300 dpi

bitmapped font (Subsubfigure M) generated from the

same METAFONT definition are used to print similar sen-

tences at one, two, or three different sizes or

magnifications on three devices of differing resolutions.

The sentences are printed in the c m r (Subfigure R),

c m t t (Subfigure T), and l a s y (Subfigure S)

typefaces. The bitmapped fonts may be printed at

design sizes 7, 8, 10, or 12, and the outline fonts may

be printed at magnifications .7, .8, 1.0, or 1.2. Finally,

the three devices are the 300 dpi LaserWriterII (Figure

11-LW300), the 600 dpi Varityper (Figure 1 1-VT600),

and the 1270 dpi Linotronic 300 (Figure 1 1-LT1270).

The bitmapped font examples are formatted with TEX

while the outline font examples are hand-coded POST-

SCRIFT files sent directly to the printer. Since the for-

matter with which this paper is printed can use arbitrary

POSTSCRIPT fonts, half of the examples could have

been done in-line without pasting in. However, for fair-

ness in the comparison, all examples were cut out and

pasted in.

There are visible differences due to differences in

the formatting software. TEX squeezes the letters closer

together than does the POSTSCRIPT engine. Moreover,

the interword space is constant in the POSTSCRIPT dic-

tionary but is varied by T# according to the line struc-

ture. These differences are not the differences that are

at issue here.

On the 300 dpi device, the characters from the bit-

mapped fonts print thinner than are those of the outline

fonts. However, the edges of both sets are equally

smooth or jagged as the case may be in all sizes.

Overall, then, the appearance of the characters of the

bitmapped fonts is crisper than that of the outline fonts.

On the higher resolution devices, the thicknesses of the

characters are closer to being equal at all sizes. Thus,

the METAFONT program does a better job of building a

correctly sized bitmap at 300 dpi than does the 300 dpi

POSTSCRIPT engine of the LaserWriterII. The latter

seems to round up too much. However, both seem to

get the edges equally smooth even at low sizes and low

resolutions.

At the two higher resolutions, the outline fonts are

significantly better than the outline fonts at lower reso-

lutions and are significantly better than the bitmapped

fonts at the same resolution of printing. However, this

latter is true because the bitmapped fonts were gen-

erated by the METAFONT program specifically to be

printed at 300 dpi. When a 300-dpi bitmap is printed

with no scaling at 600 or 1270 dpi, it remains a 300-dpi

bitmap. As expected, the 300-dpi bitmapped fonts print

better at 300 dpi than they do at the two higher resolu-

tions.

The generated outlines are not fine-tuned for print-

ing at low resolutions, such as 300 dpi, as are the METR-

FONT-generated bitmaps. It might be useful to make use

of the POSTSCRIPT facilities for hinting to improve the

appearance of the characters printed from the outlines

at low resolutions.

Figure 12 shows samples of similar sentences

printed on the same three devices using the standard

Helvetica, Times Roman, and Courier POSTSCRIFT out-

line fonts built into most Pos~Sc~im-execut ing laser

printers. It appears to these authors that the standard

POSTSCRIPT fonts are significantly better than those

generated from METAFONT fonts. However, this is not

surprising. Adobe uses a grid of 1000 x 1000 for its

character definitions, resulting in a resolution of 7200

dpi for characters printed at point size 10. Because of

size limitations of the METRFONT program the META-

FONT outline fonts are using a resolution of 3,000 points

per inch. However, when using the letters in small sizes

such as from 10 to 70, quality differences are hardly

visible especially when working with printers that have

a resolution of 300 points per inch such as the Apple

Laserwriter. Moreover, Adobe makes liberal use of

hinting to improve the appearance of its fonts at low

resolutions. We completely ignored hinting, as we did

not see any way to automatically generate the hints.

6.2 Sizes of fonts. Recall that it is necessary to com-

pare the size of the POSTSCRIPT outline font for a par-

ticular METAFONT definition to the sizes of the bit-

mapped fonts in POSTSCRIW fonts for the individual

and all magnifications.

This comparison is made in this section for the

cmrlO font at the standard set of six magnifications 1,

1.095, 1.2, 1.44, 1.728, and 2.07 (which are approxima-

tions of 1.2 raised to the powers 0, .5, 1, 2, 3, and 4,
respectively). In addition, as a gesture to those who are

not purists and accept magnifications of the 10 point

design size as different point sizes, the comparison

includes the c m r font at point size 5, 6, 7, 8, 9, 10, 12,

and 17, the standard eight design sizes maintained for

use with TEX.

538 TUGboat, Volume 11 (1990), No. 4

R M 7: THIS IS CMR SEVEN POINTS WRITTEN IN METAFONT

10: THIS IS CMR TEN POINTS WRITTEN IN METAFONT
12: THIS IS CMR TWELVE POINTS WRITTEN IN METAFONT

P 7 : THIS IS CMR SEVEN POINTS WRITTEN IN POSTSCRIPT

10: THIS IS CMR TEN POINTS WRITTEN IN POSTSCRIPT
12: THIS IS CMR TWELVE POINTS WRITTEN IN POSTSCRIPT

T M 8: THIS I S CMTT EIGHT POINTS WRITTEN IN HETAFOBT

10: THIS IS CMTT TEN POINTS WRITTEN I N METAFONT

12: THIS I S CMTT TWELVE POINTS WRITTEN I N METAFONT

P 8: THIS IS CMTT EIGHT POINTS WRITTEN IN POSTSCRIPT

10: THIS I S CMTT TEN POINTS WRITTEN I N POSTSCRIPT

12: THIS I S CMTT TWELVE POINTS WRITTEN I N POSTSCRIPT

Figure 1 1 -LW300

R M 10: THIS IS CMR TEN POINTS WRITTEN IN METAFONT
12: THIS IS CMR TWELVE POINTS WRITTEN IN METAFONT

P 10: THIS IS CMR TEN POINTS WRITTEN IN POSTSCRIPT
12: THIS IS CMR TWELVE POINTS WRITTEN IN POSTSCRIPT

T M 10: THIS IS CMTT TEN POINTS WRITTEN I N METAFONT

12: THIS I S CMTT TWELVE POINTS WRITTEN I N METAFONT

P 10: THIS I S CMTT TEN POINTS WRITTEN I N POSTSCRIPT

12: THIS I S CMTT TWELVE POINTS WRITTEN I N POSTSCRIPT

Figure 1 1 -VT600

TUGboat, Volume 11 (1990), No. 4

R M 10: THIS IS CMR TEN POINTS WRITTEN IN METAFONT
12: THIS IS CMR TWELVE POINTS LVRITTEN IK METAFOKT

P 10: THIS IS CMR TEN POINTS WRITTEN IN POSTSCRIPT
12: THIS IS CMR TWELVE POINTS WRITTEN IN POSTSCRIPT

T M 10: THIS IS CMTT TEN POINTS WRITTEN IN METAFONT

12: THIS I S CMTT TWELVE POINTS WRITTEN I N METAFONT

P 10: THIS I S CMTT TEN POINTS WRITTEN IN POSTSCRIPT

12: THIS I S CMTT TWELVE POINTS WRITTEN I N POSTSCRIPT

Figure 1 1 -LTl27O

Editor's note: See page 537 for discussion of resolution in METAFONT samples.

LM7300: THlS IS HELVETICA TEN POINTS WRITTEN IN POSTSCRIPT
THlS IS HELVETICA TWELVE POINTS WRITTEN IN POSTSCRIPT

THIS IS TIMES-ROMAN TEN POINTS WRITTEN IN POSTSCRIPT
THIS IS TIMES-ROMAN TWELVE POINTS WRITTEN IN POSTSCRIPT

THIS IS COURIER TEN POINTS WRITTEN IN POSTSCRIPT

THIS IS COURIER TWELVE POINTS WRITTEN IN POSTSCRIPT

VT600: THlS IS HELVETICA TEN POINTS WRITTEN IN POSTSCRIPT
THlS IS HELVETICA TWELVE POINTS WRITTEN IN POSTSCRIPT

THIS IS TIMES-ROMAN TEN POINTS WRITTEN IN POSTSCRIPT
THIS IS TIMES-ROMAN TWELVE POINTS WRITTEN IN POSTSCRIPT

THIS IS COURIER TEN POINTS WRITTEN IN POSTSCRIPT

THIS IS COURIER TWELVE POINTS WRITTEN IN POSTSCRIPT

LT1270: THlS IS HELVETICA TEN POINTS WRITTEN IN POSTSCRIPT
THlS IS HELVETICA TWELVE POINTS WRITTEN IN POSTSCRIPT

THIS IS TIMES-ROMAN TEN POINTS WRITTEN IN POSTSCRIPT
THIS IS TIMES-ROMAN TWELVE POINTS WRITTEN IN POSTSCRIPT

THIS IS COURIER TEN POINTS WRITTEN IN POSTSCRIPT

THIS IS COURIER TWELVE POINTS WRITTEN IN POSTSCRIPT

Figure 12

TUGboat, Volume 11 (1990), No. 4

Table 1 shows the sizes in bytes. Thus it is clear

that the POSTSCRIPT outline font is bigger than any bit-

mapped font and that goal 4 fails. Moreover, it is clear

that the outline font is bigger than the sum over all

magnifications of one design size and than the sum over

all standard design sizes. Thus goal 5 fails. In fact, this

failure is the reason that the samples of Figure 11

involve only upper case letters. Samples with complete

fonts with both cases often overloaded the printer avail-

able to the students at the time this work was done.

Font Design Magni- Bitmap Outlines

size fication (size in (size in

bytes) bytes)

c m r 10 1.0 22,8 12 245,000
t 10 1.095 24,23 1

10 1.2 26,044

10 1.44 3 1,892

10 1.728 39,614
I* 10 2.07 50,578

5 1.0 16,729 c m r
I t 6 1.0 17,757

7 1.0 18,820

8 1.0 20,041

9 1.0 2 1,580
4 , 12 1.0 25,658 ,

17 1.0 37,140

Total 352,896 245,000

Table 1

However, do note that the outline font is smaller

than the sum over all design sizes and magnifications

thereof.

So in terns of disk space for the non-purists, the

outline font represents a savings. Again notice that not

all magnifications of the bitmapped fonts are main-

tained and the outline font is arbitrarily scaleable.

Moreover, as the magnification grows the size of the

bitmap grows even more rapidly.

The disappointment with respect to saving printer

and disk memory says that it is important to spend more

effort to optimize the outline font.

All is not lost, though! As this paper was being

prepared for publication in TUGhoat, one reviewer,

Nelson Beebe, pointed out something that we can only

kick ourselves for not noticing. The POSTSCRIPT outline

fonts that are generated by mf2ps are horrendously

wasteful in space. They use original, built-in command

names and absolute coordinates. A significant reduction

in size can be obtained by definition and use in the out-

lines of single-character command names, e.g., "M" for

" m o v e t o " , and by use of relative versions of these

commands with operands of fewer digits after the initial

absolute m o v e t o of any character. A simple filter was

written to obtain new compressed versions of the POST-

SCRIPT outline fonts. The appearances of the output

when printing with these new versions is unchanged,

but what is sent to the printer is significantly smaller,

about 37.7% smaller. The reduction on a per-letter basis

is about 45%. Table 2 shows the information of Table

1 for the new versions of the outline fonts.

Font Design Magni- Bitmap Outlines

size fication (size in (size in
bytes) bytes)

c m r 10 1.0 22,8 12 152,670
10 1.095 24,23 1 It

10 1.2 26,044

10 1.44 3 1,892
I

10 1.728 39,614

10 2.07 50,578
I,

5 1.0 16,729 c m r

6 1.0 17,757 t t

7 1.0 18,820
! t

8 1.0 20,04 1
9 1.0 21,580

12 1.0 25,658

17 1.0 37,140

Total 352,896 152,670

Table 2

There are still better compressions that can be

achieved. According to Beebe 141, Toal and Raine's

outline representation of c m r at 10 points requires

about twice the space needed for bitmaps of the same;

at 14 to 16 points, the outlines and the bitmaps occupy

about the same amount of space; above 16 points, the

outlines are smaller than the bitmaps. It is clear that

better encodings exist than we explored and these must

be explored for any future version of mf2ps.
One such better encoding appears to be that used

by Adobe for its own proprietary fonts; fonts encoded

this way have a FontType of 1. User defined fonts have

a FontType of 3. Beebe [4] says that type 1 fonts are

handled with greater efficiency than type 3 fonts on

most existing POSTSCRIPT interpreters, especially those

that are based on Adobe-licensed code. Adobe has

recently published specifications for the type 1 font

encoding [2], thus allowing anyone to produced type 1

fonts. Beebe believes that the market forces will drive

other companies to encode their fonts as type 1. More-

over, as more and more windowing systems based on

POSTSCRIPT, e.g., NeWS and NeXT, appear, the attrac-

tion of POSTSCRIPT outline fonts will increase, as then

the same font can be used for both printing and pre-

viewing. Thus, the incentive will be to convert META-

TUGboat, Volume 11 (1990). No. 4 541

FONT fonts into type 1 POSTSCRIPT outline fonts.

Ultimately, the tradeoff is between the size of the
font sent to the printer, and the time it takes for the

printer to decode the program for the characters. How-

ever, with proper cacheing, a big enough cache, and a
not very fancy document, the decoding is done only

once per character for the document!

7 Future work

For the future, there are a number of improvements that
can be made. Currently, each letter of the POSTSCRIPT
outline fonts is described as a set of cyclic paths. When

all are filled or stroked, one gets the desired letter.
Some of those cyclic paths have a common boundary

that is inside the letter and is not necessary for the out-
line description of the letter as a whole. Eliminating

these paths and creating one outline for the letter will

save space. Today this can be done manually, and is

worth the effort because the translation process is done
only once. From that time on, the font is used the way it

is.

As was demonstrated by Beebe's rescue of our
result, closer attention should be paid to obtaining more

compact representations of character outlines, represen-
tations for which POSTSCRIPT routines can be written to

interpret them into standard outline drawing commands.

Collapsing commands into single characters and using
relative movements saved significant amounts of space.

Perhaps, even more dramatic savings can be obtained
by giving coordinates and distances in hexadecimal.

More effort can be spent on modifying the pro-

gram in order to allow magnifications up to 7200
points. Thus, no jaggies will be seen, as occasionally

happens when using higher magnifications, e.g., in our

translated fonts at magnification 8. This could be done
by enlarging the program arrays to handle characters

based on 7200 points. A sophisticated solution is
required if one wants to save room while compiling the

input font. In such a case, any linear translation which

is done within the POSTSCRIPT program is with a factor
less than 1.

METAFONT was changed for @X 3.0. It is neces-
sary to build a new version of rnf2ps based on this

latest version of METAFONT. As the changes to the

METAFONT program deal mainly with ligatures and
kerning, the calculation of envelopes is probably not
affected. Therefore, it is likely that the portion of METR-

FONT up to the calculation of the envelope can still be

used as a front end for mf2ps with very little change in

the portion of the program we wrote.

Finally, it might be worthwhile, for the sake of

portability to other systems and enhanceability by other

humans, to rewrite or to write the next version of

mf2ps with WEB.

Acknowledgments

The authors thank the TUGhoar editors, and Nelson
Beebe for their help, sharp comments, and result-saving

ideas. Dealing with their comments made this a better

paper.

References

1. POSTSCRIPT Laliguuge Reference Manual,
Adobe Systems Incorporated, Addison-Wesley,

Reading, MA (1985).

2. "Adobe Type 1 Font Format," Part No.
LPS0064, Adobe Systems, Inc. (March, 1990).

3. S. von Bechtolsheim, "The TEX Postscript

Software Package," TUGhoat 10(1), p. 25-27

(1989).

4. N. Beebe, Private communication, via electronic

mail. (1990).

5. L. Carr, "Of Metafont and Postscript,"

T'xm'ques 5, p. 141-152 (August, 1987).

6. D. Henderson, "Outline fonts with METAFONT,"

TUGboar 10(1), p. 36-38 (1989).

7. J.D. Hobby, "A METAFONT-like System with

Postscript Output," TUGhoat 10(4), p. 505-512

(1989).

8. B.W. Kernighan, "A Typesetter-independent

TROFF," Computing Science Technical Report

No. 97, Bell Laboratories, Murray Hill, NJ

07974 (March, 1982).

9. D.E. Knuth, The T ~ X h o o k , Addison-Wesley,

Reading, MA (1984).

10. D.E. Knuth, The M E T A F O N T ~ O O ~ , Addison-
Wesley, Reading, MA (1986).

1 1. D.E. Knuth, METRFONT: The Program,
Addison-Wesley, Reading, MA (1987).

12. G. Toal, Private communication, via electronic
mail. (1 990).

13. J. Ziv and A. Lempel, "A Universal Algorithm

for Sequential Data Compression," IEEE Trans-
actions on Infornzation Theory 3, p. 337-343

(May, 1977).

0 Shimon Yanai 0 Daniel M. Berry
IBM Science and Technology Computer Science

Center Technion
Technion City Haifa 32000
Haifa 32000 Israel
Israel dberry@cs.technion.ac.il
y anai@ israeam.bitnet

TUGboat, Volume 11 (1990), No. 4

An Improved Chess Font

David Tofsted

In the July 1989 issue of TUGboat an article by

Zalman Rubinstein discussed how to display chess

board positions using a font created with META-

FONT. Upon reading this article I was interested
enough in the idea of producing a high quality chess

font that I felt I had to try my hand at improving

on Professor Rubinstein's "first cut." The model I
used for the set was derived from a combination of

the chess characters used by the New York Tzmes
and those of a vintage chess tutorial I have at

home. The results of this work are presented here

along with some comments concerning METAFONT
peculiarities that were overcome in developing the

characters. I do hope there is enough interest in

the community to use this new font. Perhaps
it will also inspire others as to the highly versatile

nature of the METAFONT program.

To begin. consider the net results. Figure 1
shows the 26 possible characters in this font. These

include the six different pieces of each side on two

differently colored squares each, plus an empty black
and an empty white square. The commands used
to present the chess board can be obtained from
either Prof. Rubinstein's article or the article by

Mr. Wolfgang Appelt (December 1988, TUGboat).

BLACK

WHITE

Figure 1.

In describing how these characters are formed,

it must first be noted that the original printing

format was a LaserJet, Series 11. At 300 dpi the

characters are amazingly sharp, but the hatched
background (lines 28-33)' had to be handled care-

fully. It was designed such that every fifth column

of dots was turned on. This limited the META-

FONTness of the resulting font because changes were

required at each magnification. Having a column

of filled-in dots every five columns required adjust-
ing the looping factor on the hatch subroutine.

Without this adjustment the METAFONT program

performs roundoff that causes the line spacing to
be uneven. Also, the LaserJet tends to overlap the

space between dots. This overfilling meant that the

erase draws performed in the interior of the black
characters had to be two dots wide rather than one,

to compensate for the overfilling.

Aside from this minor detail, the characters
are drawn similarly for both black and white pieces.

The same set of control points can be used for

each (the pair function w [I) . Thus the array
assignments only need to be specified once (lines

46-59) for each piece type. These points are then

converted into z points (lines 64, 99. 119, and 143)

within the character description. Additionally, the

total number of characters is 26, but the number

of chess pieces that must actually be drawn is only

12. This is possible because of Donald Knuth's

keepit "dirty trick" (The METGFONTbook, p. 295)

(lines 4-14. 88, and 98 for example). Using Knuth's
technique, the chess piece is first drawn on a white

background and saved (88, 98), then the next
character (same piece on a black background) can

be drawn simply by calling the hatch subroutine

into a fresh picture drawing area (105), erasing out
the area of the hatched character that will be filled

in by the previously drawn piece (106-112), and

then using the addto command (113) to combine
the original chess piece with the new background.

Space would not allow a full listing and descrip-

tion of all the characters. so I will discuss in detail

the steps required to generate only the Bishop.
leaving the rest as an exercise for the reader. Before

proceeding though, it would seem appropriate to
comment on some of the key aspects of each of the

other pieces as well. The two simplest characters

were the Rook and the Queen. Both are symmetric
about the vertical center line. Both were composed

almost entirely of straight line segments. The Rook

was particularly simple in that it used several points
along the vertical center line and then achieved the

brick corners via penpos commands.

'Ths notation refers to line numbers in the

listing at the end of this article. Other references

to the listing will be designated similarly.

TUGboat, Volume 11 (1990), No. 4

A third piece, the King, was only difficult
because of the number of points involved. Over 50

were needed. One problem area that did arise was

in producing the curved lines describing the King's
upper crown. Control points had been chosen in

the arc around the two upper lobes of the crown,

but when drawing the crown the tension command

was needed on either side of the center to keep the
lines from overlapping as in the example below. (A
tension of 1.2 was found sufficient to correct the

problem.)

Of the remaining three pieces, producing the

Knight was rather simple because of its asymmetric

shape. The asymmetry meant there was a wider

range of shapes that "looked" right. I must however

credit my wife Laura for the original drawing of
the horse used in the Knight. The Pawn I finally

adopted is possibly too simple, but this was a
design decision since it focuses more attention on

the stronger pieces.
This leaves the Bishop. Oddly enough more

time was spent getting this character right than
any of the others. At first a doubled miter was

tried, but this construct resulted in a lopsided look.
Also I had originally defined twelve points to use

as turning points in drawing the cross in the miter.

But this approach led to problems on the 300 dpi
machine. I cannot reproduce this problem for this

article because of the higher printer resolution, but

suffice it to say that the vertical lines in the upper
extension of the cross did not match the line in the

lower cross portion. The vertical section therefore

appeared crooked in the middle. This problem

was remedied by using f i l l and unf ill commands

(lines 82-85) instead of a single draw command.
A final problem was discovered after the other

characters had been produced. This problem is

illustrated by the Bishop below on the left.

The Bishop on the left has a small overlap of the
lines at the miter's base. The solution was to use

the up directional command at that point (75 and

78).
Given this description, the complete code used

to compose all four versions of Bishop is included

below.

i.%Components needed for D. Knuth's

2. @/,KEEPIT dirty trick.

3. %
4. picture extrapic;

5.b00lean currentnull, extranull;

6. def clearit = currentpicture:= extrapic;

7. currentnull:=extranull;

8. extrapic : =nullpicture;

9. extranull : =true ; enddef ;

10.

11. def keepit =

12. cull currentpicture keeping (1,infinity);

13. extrapic:=currentpicture;

14. extranull:=currentnull; enddef;

15.

16.xDefine LaserJet device parameters.

17. %
18. mode-setup;

19. em#:=1/3in#;

20. thin#:=.Olem#; thick#:=.02em#;

21. define-pixels(em,cap,ext,dep);

22. def ine-blacker-pixels(thin,thick) ;

23. curve-sidebar=round 1/18em;

24.

25. %Draw vertical hatching background for

26. %pieces on black squares.

27. %
28. def hatch(expr dummy) =

29, pickup pencircle scaled thin;

30. for i=O upto 22:

31. draw (w*i/22,0)--(w*i/22,h);

32. endfor

33. enddef;

34.

35.xPoint locations as a percentage of the

36.xfull character width. #'s 1-5 define

37. %the left cloth strip, 6-10 the right

38. %cloth strip, 11-16 the left side of

39.%the miter, 16-17 the top circle, 18-20

40. %and 26-27 the right side of the miter,

41.%21-25 were are an unused second miter

42. %section, 28-29 details at the base of

43. %the miter, 30-37 cross in the center

44. %of the miter.

45. %
46. pair w [I ;
47, w1=(7,9); u2=(10,15);

48. u3=(16,16) ; w4=(38,lO) ;

49. w5=(46.5,20); w6=(53.5,20); u7=(62,10);

so. w8=(84,16) ; w9=(90,15) ; w10=(93,9) ;

51. ull=(35,2O) ; w12=(35,30) ; v13=(29,43) ;

52. u14=(29,55) ; w15=(38,75) ; w16=(50,86) ;

53. u17=(50,95) ; u18=(62,75) ; ul9=(71,55) ;

54. u20=(71,43) ; w21=(65,75) ; u22=(61,73) ;

55. u23=(72,55); w24=(69,55); u25=(69,43);

56. w26=(65,30) ; w27=(65,20) ; w28=(42,30) ;

57. w29=(58,3O) ; w30=(39,56) ; w31=(6I ,56) ;

58. w32=(50,39) ; w33=(50,70) ; w34=(41,56) ;

59. w35=(59,56) ; u36=(50,41) ; u37=(50,68) ;

TUGboat, Volume 11 (1990), No. 4

60.

61. %The White Bishop on a White Square

62. %
63. beginchar(4,em#,em#,O) ; "White Bishop";

64, for i=l upto 37: z [i] =h/100*w [i] ; endfor

65. penposl (4thick,-20) ; penpos2 (4thick, -50) ;

66. penpos3(4thick,-70) ; penpos4(4thick, -70) ;

67. penpos5(4thick,0) ; penpos6(4thick,0) ;

68. penpos7(4thick,60) ; penpos8(4thick,60) ;

69. penpos9(4thick, 50) ; penpos10(4thick,40) ;

70. penpos30(3thick,90) ; penpos31 (3thick,90) ;

penpos32(3thick,O) ; penpos33(3thick,O) ;

penpos34(thick,90) ; penpos35(thick, 90) ;

penpos36(thick,O) ; penpos37(thick, 0) ;

pickup pencircle scaled thick;

draw zlr. . z2r. .z3r. .z4r. .Cup). 5 [z5 ,z6]--
z51..~41..~31..~21..zll--cycle;

draw z6r..z7r..z8r..z9r..z10r--z101..z91..

z81..z7l..{up}.5[~5,~6]--cycle;

draw z11--~12..~13..~14..~15..~16--~16..

z18..~19..~20..~26--z27--cycle;

81, draw 216. .ZIT.. cycle;

82. fill z30r--z31r--z311--z3Ol--cycle;

83. fill ~32r--z33r--z331--~321--cycle; cullit;

84. unfill ~34r--z35r--z351--~341--cycle;

85. unfill ~36r--z37r--z371--~361--cycle;

86. pickup pencircle scaled thin;

87. draw z12--z28--z51--z28--z29--z6r--z29--z26;

88. showit ; keepit ;

89. endchar;

90.

91.%The White Bishop on a Black Square

92. %(All that is necessary is hatching,

93.%unfilling the area to be filled be the

94.%previously drawn character, and using

95. %addto.)

96. %
97 beginchar(lO,em#,em#,O) ; "Wht Bish on Blk" ;

98. keepit; currentpicture:=nullpicture;

99. for i=l upto 37: z[i]=h/lOO*w [i] ; endf or

penposl (4thick, -20) ; penpos2 (4thick, -50) ;

penpos3(4thick,-70) ; penpos4(4thick, -70) ;

penpos5(4thick,O) ; penpos6 (4thick,0) ;

penpos7(4thick,60) ; penpos8 (4thick, 60) ;

penpos9(4thick,50) ; penpos10(4thick,40) ;

hatch(1) ;

unfill zlr..z2r..z3r..z4r..z5r--z51..~41.

z31..z21..zll--cycle;

unfill z6r..z7r..z8r..z9r..z10r--z101..

z91..~81..~71..z6l--cycle;

110. unfill z11--~12..~13..~14..~15..~16--~16..

111. z18..~19..~20..z26--z27--cycle;

112. unfill zl6..zl7..cycle; cullit;

113. addto currentpicture also extrapic;

114. pickup pencircle scaled thick;

119. for i=l upto 33: z[i]=h/lOO*w[i] ; endfor

120. penposl(4thick,-20) ; penpos2(4thick, -50) ;

121. penpos3(4thick,-70); penpos4(4thick,-70); . .

122. penpos5(4thick,O) ;

123. penpos7(4thick,60) ;

124. penpos9(4thick,50) ;

125. penpos30(2thick, 90)

126. penpos32(2thick,O) ;

127. fill zlr . . z2r. . z3r.
128. 231..221..211-

129. fill z6r. . z7r. . z8r.
130. z91..z81..z71.

131. fill 211--212. .z13.

132. z18..~19..~20..

. -

penpos6(4thick,0);

penpos8(4thick, 60) ;

penpos10(4thick,40);

penpos31(2thick,90) ;

penpos33(2thick, 0) ;

z4r..z5r--z51..z41..

cycle;

z9r..z10r--z101..

z61--cycle;

z14..~15..~16--z16..

z26..z27--cycle;

133. fill zl6. .z17. .cycle;

134. cullit;

135. unfill z30r--z31r--z311--z3Ol--cycle;

136. unfill ~32r--z33r--z331--~321--cycle;

137. pickup pencircle scaled thick;

138, erase draw ~12--~26--~29--~6r--z51--~28;

139. showit ; keepit ;

140. endchar;

141.

142,beginchar(22,em#,em#,O); "Blk Bish on Blk";

143. for i=l upto 33: z[i]=h/100*w[i] ; endfor

144. penpos5(4thick,O) ; penpos6(4thick,0) ;

145. penpos30(2thick,90) ; penpos31(2thick,90) ;

146. penpos32(2thick,O); penpos33(2thick,O);

147. hatch(1) ;

148. unfill z30r--z31r--z311--z3Ol--cycle;

149. unfill ~32r--z33r--z331--~321--cycle;

150. pickup pencircle scaled thick;

151. erase draw z12--~26--~29--~6r--z51--~28;

152. showit;

153. endchar;

154.

155. stop"" ;

156. end;

T o conclude, the chess font described was de-

signed to be useful for a variety of chess publication

needs. It is hoped the font provided is robust

enough to avoid others having rework this same

problem later. I also hope this example of the
METAFONT program's capabilities should stimulate

interest in other applications along these lines. One

such application might extend into the area

of archeology by way of a font for hieroglyphics or

cuneiform.

Any comments, suggestions, or requests regard-

ing this font are welcome. I can be reached at the
address below. Unfortunately I do not have access
to electronic mail.

o David Tofsted
P. 0. Box 6926

Las Cruces! NM 88006

115. showit ;

116. endchar ;

117.

118, beginchar(l6, em#, em#, 0) ; "Black Bishop" ;

TUGboat, Volume 11 (1990), No. 4

Output Devices

'I'&X Output Devices

Don Hosek

Introduction

The number of device drivers (especially in the UNIX

world) and proliferation of distribution venues for
those drivers has caused it to be impossible to re-

tain the old format for the driver listings and pro-

vide a useful amount of information (not to mention

the difficulties in maintaining such a monster). The

listings are in the process of being installed into a
database to simplify answering driver queries and

maintenance of information; this should allow fu-
ture occurrences of these listings to be somewhat
timelier .

The information is now broken down into four
sections, one for each of laser xerographic printers.
impact printers, phototypesetters, and screen dis-

plays. The listings are first by output device then by

computer hardware, except for the previewers which

are listed by computer. In those cases where a driver
for a given printer runs on more than one computer,

the description of the driver is listed just under the

name of the printer and cross-reference is made to it
under each computer on which it runs. Difficult-to-

classify drivers (e.g. , those which, rather than drive

printers directly, drive some generic graphic inter-

face) are put a t the end of the impact printer section

for lack of a better place. All suppliers are given in

a final section.

The old tables have been replaced by simplified
tables which indicate the existence of a driver for a

given printer/computer combination by referring to
the page number on which that combination's listing

begins. If no page number is present, we are unaware

of a driver for the combination. These tables, which
begin on page 567, can therefore be used as an index

into the listings.

In coming volumes of TUGboat, the complete
driver listings will appear in the first regular issue

with updates published as necessary in subsequent

regular issues for that year.

As before, corrections, updates, and new infor-

mation for the list are welcome; they may be sent

t o me a t dhosek9ymir. claremont . edu or via postal

mail to the address listed on 483.

Contents

Drivers for Laser Xerographic and
Electro-Erosion Printers 545

Drivers for Impact Printers and
Miscellaneous Output Devices 553

Drivers for Phototypesetters 558

Screen Previewers 559

Amiga . 559

Apollo . 559

. Atari S T . 559

Cadmus 9200 559
Data General MV 559

DEC Rainbow PC100 559

DEC-20 559
. DEC RISC Ultrix. 559

HP9000/500. 559
IBM MVS 560

IBM P C 560

IBM PC/RT 560
IBM VM/CMS 560

Sun Workstation 561

Unix . 561
VAX/VMS 561

Vaxstation/Unix 562

Vaxstation/VMS 562

Supplier Information 562

Drivers for Laser Xerographic and
Electro-Erosion Printers

Agfa P400

DVIP400 (by Bernd Schulze). Uses PXL files. Allows
landscape printing and inclusion of P400 bitmap
graphics. Written in WEB. Source available on
request.

IBM MVS

DVIP400 (by Bernd Schulze). See description above.
Cost: 300-1848DM. Suppliers: Systemhaus fur
Elektronisches Publizieren.

IBM P C

DVIP400 (by Bernd Schulze). See description above.
Cost: 300-1848DM. Suppliers: Systemhaus fiir
Elektronisches Publizieren.

IBM VMICMS

DVIP400 (by Bernd Schulze). See description above.
Cost: 300-1848DM. Suppliers: Systemhaus fur
Elektronisches Publizieren.

TUGboat , Volume 11 (1990), No. 4

Siemens BS2000

Unspecified program. Suppliers: Universitat des
Saarlandes.

Unix

DVIP400 (by Bernd Schulze). See description above.
Cost: 300-1848DM. Suppliers: Systemhaus fur
Elektronisches Publizieren.

Unspecified program. Suppliers: Universitat des
Saarlandes.

DVIP400 (by Bernd Schulze). See description above.
Cost: 300-1848DM. Suppliers: Systemhaus fur
Elektronisches Publizieren.

Canon LBP-A2, LBP-8

DVICAN (by Nelson H. F. Beebe). Uses GF, PK or
PXL files. Written in C. Source is included.

Atari S T

DVICAN (by Nelson H. F. Beebe). See description
above. Suppliers: FTP (science.utah.edu),
F T P (ymir.claremont.edu), University of Utah.

DEC-20

DVICAN (by Nelson H. F. Beebe). See description
above. Suppliers: FTP (science.utah.edu),
F T P (ymir.claremont .edu) .

0 IBM P C

DVICAN (by Nelson H. F. Beebe). See description
above. Suppliers: FTP (science.utah.edu),
F T P (ymir.claremont.edu), Radel, Personal w.

Unix

DVICAN (by Nelson H. F. Beebe). See description
above. Suppliers: FTP (science.utah.edu),
F T P (ymir.claremont.edu), University of Utah.

Unspecified program. Suppliers: Canon.

VAX/VMS

DVICAN (by Nelson H. F . Beebe). See description
above. Suppliers: FTP (ctrsci.utah.edu), University
of Utah.

Cordata LP300

IBM PC

P C Laser/Cordata. Requires 512K RAM disk.
Cost: $195. Suppliers: Personal w.

DEC LN03, LN03+

DVIL3P (by John Sauter). Uses GF, PK. and PXL
files. Written in C. Source is included.

Atari S T

DVIL3P (by John Sauter). See description
above. Suppliers: FTP (science.utah.edu),
FTP (ymir.claremont.edu), University of Utah.

DEC-20

DVIL3P (by John Sauter). See description
above. Suppliers: FTP (science.utah.edu),
FTP (ymir.claremont.edu).

0 IBM P C

DVI2LN3 (by Flavio Rose, modified by Stanley
Sawyer). Uses all three PC PXL formats and PK
files. Graphics specials for line drawing included.
The driver will scale fonts by multiples of 2 or 3
if no closer size would be available. Written in C.
Source included. The program is distributed free of
charge with the receipt of a blank disk and return
mailer. Suppliers: Washington University.

DVIL3P (by John Sauter). See description
above. Suppliers: F T P (science.utah.edu),
F T P (ymir.claremont .edu), Radel, Personal m.

Unix

DVILSP (by John Sauter). See description
above. Suppliers: FTP (science.utah.edu),
F T P (ymir.claremont.edu), University of Utah.

VAX/VMS

DVI2LN3 (by Flavio Rose; modified by Edwin Bell).
Uses PXL files. Allows inclusion of Sixel graphics
in two formats. Written in C. Distributed in source
format. Suppliers: University of Kansas.

DVIL3P (by John Sauter). See description
above. Suppliers: F T P (ctrsci.utah.edu),
F T P (ymir.claremont.edu), University of Utah.

DVItoLNO3 3.0 (by Brian Hamilton Kelly). Uses PK
and PXL files. Written in WEB. Source is included.
The program is accessed through the standard DCL
interface. Font downloading is on a per character
basis rather than a per font basis to conserve
printer memory. Large characters are printed
as downloaded graphics. Support for invisible
fonts and 256 character fonts is provided. The
driver does not require additional RAM cartridges
for the printer, but it helps. Suppliers: Aston,
DECUS collection, FTP (uk.ac.aston.tex),
FTP (ymirxlaremont .edu).

T2/LN03. Uses GF or PK files. Distributed as
executable (VMS 4.6 or later). Supports use of
LN03 internal fonts and inclusion of LN03 graphics
and illustrations. A RAM cartridge is suggested for
optimal performance. Cost: $495 (1600bpi magtape),
$515 (TK50 cartridge). Suppliers: Northlake
Software.

TUGboat, Volume 11 (1990), No. 4

Unspecified program. Suppliers: Procyon
Informatics.

Golden Dawn Golden Laser 100

DVIGD (by Nelson H. F. Beebe). Uses GF, PK, and
PXL files. Written in C. Source is included.

0 Atari ST

DVIGD (by Nelson H. F. Beebe). See description
above. Suppliers: FTP (science.utah.edu),
FTP (ymir.claremont.edu), University of Utah.

DEC-20

DVIGD (by Nelson H. F. Beebe). See description
above. Suppliers: FTP (science.utah.edu):
FTP (ymir.claremont.edu) .

0 IBM P C

DVIGD (by Nelson H. F. Beebe). See description
above. Suppliers: FTP (science.utah.edu),
FTP (ymir.claremont.edu), Radel, Personal m.
0 Unix

DVIGD (by Nelson H. F. Beebe). See description
above. Suppliers: FTP {science.utah.edu),
FTP (ymir.claremont.edu). University of Utah.

DVIGD (by Nelson H. F. Beebe). See description
above. Suppliers: FTP (ctrsci.utah.edu), University
of Utah.

Unspecified program. Suppliers: JDJ Wordware.

0 HP 1000

Unspecified program. Suppliers: JDJ Wordware.

Unspecified program. Suppliers: Hewlett-Packard

HP LaserJet, LaserJet Plus, 11, IID, IIP,
111, 2000

DVI2XX (by Gustav Neumann). Uses PK or PXL
files. Written in C. Source is included. Supports odd
and even-only page printing (for two-run duplex).
Graphics inclusion is also supported.

DVIJE2. Uses GF, PK or PXL files. Written in C. A
modified version of DVIJEP by Nelson H. F . Beebe
optimized for the LaserJet Series 11.

DVIJEP (by Nelson H. F. Beebe). Uses GF, PK or
PXL files. Written in C. Source is included. Graphics
inclusion specials are available on request.

DVIlaserlHP. Uses GF, PK. or PXL files. Allows
inclusion of graphics, use of printer resident fonts,
font substitution, font scaling, and magnifies or
shrinks images.

0 Amiga

Unspecified program. Uses PK files. Allows
landscape printing. Suppliers: Radical Eye Software.

0 Atari S T

DVIJE2. See description above. Suppliers:
FTP (ymir.claremont .edu).

DVIJEP (by Nelson H. F. Beebe). See description
above. Suppliers: FTP (science.utah.edu):
F T P (ymir.claremont .edu), University of Utah.

Unspecified program. Cost: £100. Suppliers:
Oxford [2].

Unspecified program. Suppliers: m s y s .

Unspecified program. Suppliers: Tools GmbH Bonn.

DVIJE2. See description above. Suppliers:
FTP (ymir .claremont .edu) .

DVIJEP (by Nelson H. F. Beebe). See description
above. Suppliers: FTP (science.utah.edu),
FTP (ymir.claremont.edu).

Unspecified program. Suppliers: Technical Research
Center of Finland.

0 IBM PC

DVI2XX (by Gustav Neumann). See description
above. Suppliers: Neumann, FTP (uk.aston.ac.uk)

DVIHPLJ (by Eberhard Mattes). Uses PK or PXL
files. Supports VF files and graphics inclusion.
Suppliers: Aston, F T P (rusmvl.rus.uni-stuttgart.de),
FTP (terminator.cc.umich.edu),
FTP (uk.ac.aston.tex), Radel.

DVIJE2. See description above. Suppliers:
FTP (ymir.claremont.edu) .

DVIJEP (by Nelson H. F. Beebe). See description
above. Suppliers: FTP (science.utah.edu),
FTP {ymir.claremont.edu), Radel, Personal m.
DVIlaser/HP. See description above. Allows use of

HP soft fonts. Cost: $225. Site licenses available.
Academic discounts available. Suppliers: ArborText,
Inc., TEX Users Group.

P T I Laser/HP. Allows automatic font substitution,
landscape printing, and inclusion of graphics.
Cost: $195. Suppliers: Personal m.
Unspecified program. Suppliers: Laserprint.

Unspecified program. Suppliers: XOrbit.

TUGboat , Volume 11 (1990)' No. 4

0 Prime

DVI2LJ (by Tor Lillquist; ported to Primos by
Marc-Rene Uchida). Uses PXL files. Written in
Pascal and PLP. Source included. Suppliers: Prime
distribution tape.

0 Unix

dvi2lj (by Riccardo Mazza). Written in C. Source
included. The program has been ported to VAX BSD
4.3, SCO i386 Unix and various 680x0 System V
systems. It can only print on A4 paper. Suppliers:
F T P (orc.olivetti.com).

DVI2XX (by Gustav Neumann). See description
above. Runs on an HP9000/500. Suppliers:
Neumann.

DVIJEQ. See description above. Suppliers:
F T P (ymir.claremont.edu) .

DVIJEP (by Nelson H. F. Beebe). See description
above. Suppliers: F T P (science.utah.edu),
F T P (ymir.claremont.edu), University of Utah.

DVIlaser/HP. See description above. Available
for DEC/Unix, Apollo and Sun. Cost: $500
workstations; $750 mainframes. Site licenses
available. Academic discounts available. Suppliers:
ArborText, Inc.

Unspecified program. Written for HP 9000/500.
Suppliers: Max-Planck-Institut fur Aeronomie.

Unspecified program. Available for Ultrix
and SunOS. Other ports available on request
Cost: £100. Suppliers: Oxford [2].

Unspecified program. Suppliers: Texas A&M [2]

VAXJVMS

DVIJEZ. See description above. Suppliers:
F T P (ymir.claremont .edu).

DVIJEP (by Nelson H. F. Beebe). See description
above. Suppliers: FTP (ctrsci.utah.edu), University
of Utah.

DVIlaser/HP. See description above. Cost: $500
workstations; $750 mainframes. Site licenses
available. Academic discounts available. Suppliers:
ArborText, Inc.

T2/jet. Uses GF or PK files. Distributed as
executable (VMS 4.6 or later). Allows inclusion of
PCL graphics, landscape printing, use of HP built-in
and cartridge fonts as well as downloadable soft
fonts. Supports duplex printing on LaserJet IID and
LaserJet 2000. Cost: $395 (1600bpi magtape), $415
(TK50 cartridge). Suppliers: Northlake Software.

Unspecified program. Suppliers: Laserprint.

Unspecified program. Cost: E100. Suppliers:
Oxford [2].

IBM 38xx, 4250, Sherpa

DVIZLIST (by Bob Creasy and Peter Sih). Uses
IBM fonts. Comes with utility program for creating
IBM fonts from PXLs. Graphics inclusion is
supported.

DVI2XX (by Gustav Neumann). Uses PK or PXL
files. Written in C. Source is included. Supports odd
and even-only page printing (for two-run duplex).

DVIIBM. Uses PXL files. Supports landscape
printing.

0 IBM MVS

DVIZLIST (by Bob Creasy and Peter Sih; modified
by Joachim Lammarsch). See description above.
Suppliers: University of Heidelberg.

DVIIBM. See description above. Suppliers:
Gesellschaft fur Mathematik und
Datenverarbeitung [I].

IBM P C

DVIZXX (by Gustav Neumann). See description
above. Suppliers: Neumann.

0 IBM VM/CMS

DVIZLIST (by Bob Creasy and Peter Sih). See
description above. Suppliers: Washington State
University.

DVTIBM. See description above. Suppliers:
Gesellschaft fur Mathematik und
Datenverarbeitung [1] .

0 Unix

DVI2XX (by Gustav Neumann). See description
above. Runs on an HP 9000/500. Suppliers:
Neumann.

Imagen

DVIIMP (by Lon Willett). Uses GF, PK or PXL
files. Written in C. Source is included.

DVIlaser/IMP. Uses GF, PK, or PXL files. Allows
inclusion of graphics and use of resident fonts, font
substitution, font scaling, and magnifies or shrinks
images. VF support included.

0 Amdahl MTS

DVIlaser/IMP. See description above. Supported
on 'as is' basis. Cost: $750. Site licenses available.
Academic discounts available. Suppliers: ArborText,
Inc.

Unspecified program. Suppliers: University of British
Columbia.

0 Atari ST

DVIIMP (by Lon Willett). See description
above. Suppliers: FTP (science.utah.edu),
FTP (ymir.claremont.edu), University of Utah

TUGboat , Volume 11 (1990), No. 4

Data General MV Unspecified program. Suppliers: Sun.

Unspecified program. Suppliers: Texas A&M [I]

DEC-20

DVIIMP (by Lon Willett). See description
above. Suppliers: FTP (science.utah.edu),
FTP (ymir.claremont.edu) .

Unspecified program. Suppliers: Columbia
University.

IBM P C

DVIIMP (by Lon Willet t). See description
above. Suppliers: FTP (science.utah.edu),
FTP (ymir.claremont.edu), Radel, Personal m .

DVIlaser/IMP. See description above. Supported
on 'as is' basis. Cost: $225. Site licenses available.
Academic discounts available. Suppliers: ArborText,
Inc., Users Group.

IBM VM/CMS

DVIlaser/IMP. See description above. Supported
on 'as is' basis. Cost: $750. Site licenses available.
Academic discounts available. Suppliers: ArborText.
Inc.

WIMPRESS. Uses RST files. A program to convert
PXL files to RST files is included. Written in Pascal.
Source is included. Suppliers: Weizmann.

DVITOIMP. Uses RST files. A program to convert
PXL files to RST files is included. Allows inclusion
of graphics, landscape printing and 2-up printing.

Symbolics Lisp

dvi-stream (by Chris Lindblad). Written in Zetalisp.
Source is included. Uses the Generic Hardcopy
Interface to drive the Imagen printer. Supports
landscape printing and graphics inclusion. Suppliers:
Massachusetts Institute of Technology.

Unix

DVIIMP (by Lon Willett). See description
.,, above. Suppliers: FTP (science.utah.edu),

F T P (ymir.claremont.edu), University of Utah. -'

DVllast%/IMP. See description above. Supported
on 'as is' basis. Available for DECIUnix, Apollo
and Sun. Cost: $750 multi-user systems. $500
workstations. Site licenses available. Academic
discounts available. Suppliers: ArborText, Inc.

iptex (by Chris Torek). Uses GF, PK, or PXL files.
Written in C with a front end written in Unix sh.
Source is included. Supports landscape printing and
variable printer resolution. A program for creating
a DVI file containing a subset of pages of the
original DVI file is included. Suppliers: University of
Mary land.

Unspecified program. Available for the Apollo.
Suppliers: OCLC.

VAX/VMS

DVIIMP (by Lon Willett). See description above.
Suppliers: F T P (ctrsci.utah.edu), University of Utah.

DVIlaser/IMP. See description above. Supported on
'as is' basis. Suppliers: ArborText, Inc.

IMPRINT. Uses GF and PK files. Can use printer
resident fonts and print in landscape orientation.
Cost: $1200 on a 600' magtape at 1600bpi.
Suppliers: Northlake Software.

Kyocera F-lOxx, F-2Oxx

Atari ST

Unspecified program. Suppliers: m s y s .

IBM P C

DVIHPLJ (by Eberhard Mattes). Uses PK or PXL
files. Supports VF files and graphics inclusion.
Suppliers: Aston, FTP (rusmvl.rus.uni-stuttgart.de),
FTP (terminator.cc.umich.edu),
FTP (uk.ac.aston.tex). Radel.

Unspecified program. Suppliers: LaserPrint

Unix

Unspecified program. Written in C. Suppliers:
Max-Planck-Institut fiir Aeronomie.

Unspecified program. Suppliers: LaserPrint.

Unspecified program. Written in C. Suppliers:
Max-Planck-Institut fiir Aeronomie.

Unspecified program. See TUGboat 10, no. 1,

pp. 56-58. Suppliers: OcC-Nederland.

Olympia Elsa

IBM VM/CMS

DVIELSA (by Dr. Georg Bayer). Uses PXL files
at 300dpi. Suppliers: Technische Universitat
Braunschweig.

Postscript printers

DVIALW (by Nelson H. F. Beebe and Neal Holtz).
Uses GF, PK or PXL files. Graphics inclusion is
supported. Written in C. Source is included.

DVllaser/PS. Uses GF, PK, and PXL files. Allows
inclusion of graphics, use of printer resident fonts,
font substitution, font scaling, landscape printing
and magnifies or shrinks images. A program AFtoTF
is included for generating TFM files from AFM files.
VF support included.

TUGboat, Volume 11 (1990), No. 4

DVIPS (by Tom Rokicki). Uses P K files. Allows
landscape printing, inclusion of PostScript graphics
and use of internal and downloadable PostScript
fonts. VF support is included. Written in C. Source

included.

dvitops (by James Clark). Uses PK files. Allows
use of printer-resident and downloaded PostScript
fonts. Allows inclusion of graphics files and inline
PostScript as well as arbitrary linear transformations
to regions of the DVI file. Output is designed so that
each page depends only on itself and the preamble.
There is no device-dependence in the PostScript
code. Included are programs for converting AFM
files to PL files (aftopl) and for converting Adobe
fonts from IBM P C format to straight PostScript
(afbtops). Written in C. Distributed as source.

0 Amiga

Unspecified program. Uses PK files. Allows inclusion
of graphics and landscape printing. Suppliers:
Radical Eye Software.

Atari ST

DVIALW (by Nelson H. F. Beebe and Neal
Holtz). See description above. Suppliers:
F T P (science.utah.edu), F T P (ymir.claremont.edu),
University of Utah.

DEC-20

DVIALW (by Nelson H. F. Beebe and Neal
Holtz). See description above. Suppliers:
FTP (science.utah.edu), FTP (ymir.claremont.edu).

0 IBM PC

DVIALW (by Nelson H. F. Beebe and Neal
Holtz). See description above. Suppliers:
FTP (science.utah.edu) , FTP (ymir xlaremont .edu) ,
Radel, Personal m.
DVIlaser/PS. See description above. Cost: $225.
Site licenses available. Academic discounts available.
Suppliers: ArborText, Inc., QjX Users Group.

dvitops (by James Clark). See description above.
Suppliers: Aston, Clark, FTP (uk.ac.aston.tex).

P T I Laser/PS. Allows landscape printing, use
of Postscript fonts, and inclusion of PostScript
graphics. Cost: $195. Suppliers: Personal Q j X .

0 IBM VM/CMS

DVIlaser/PS. See description above. Cost: $750.
Site licenses available. Academic discounts available.
Suppliers: ArborText, Inc.

Prime

DVISPS (by Tang Tang). Uses PXL files. Written
in C. Source included. Suppliers: Prime distribution
tape.

DVIALW (by Mark Furon). Uses PXL files. Allows
inclusion of PostScript. Written in C. Source is
included. Suppliers: Prime distribution tape.

0 Symbolics Lisp

dvi-stream (by Chris Lindblad). Written in Zetalisp.
Source is included. Uses the Generic Hardcopy
Interface to drive the PostScript printer. Supports
landscape printing and graphics inclusion. Suppliers:
Massachusetts Institute of Technology.

Unix

dvi2ps. Uses PXL files. Allows landscape printing
and graphics inclusion. Written in C. Source is
included. Suppliers: Massachusetts Institute of
Technology.

dvi2ps (modified by Paul Leyland). Uses PK files
Suppliers: Oxford [I].

dvi2ps (modified by Piet van Oostrum). Uses PK
files and PostScript built-in fonts. Suppliers: van
Oostrum.

dvi3ps (by Kevin Coombes). Uses GF, PK or PXL
files. Supports use of printer-resident fonts, Asian
fonts with the technique specified by the Japan 7Q$

Users Group, runtime set table printer resolution,
PSFig specials, and page selection. Suppliers:
F T P (stag.math.1sa.umich.edu).

DVIALW (by Nelson H. F. Beebe and Neal
Holtz). See description above. Suppliers:
FTP (science.utah.edu), FTP (ymir.claremont.edu):
University of Utah.

DVIlaser/PS. See description above. Available
for DEC/Unix, Apollo and Sun. Cost: $500
workstations; $750 mainframes. Site licenses
available. Academic discounts available. Suppliers:
ArborText, Inc.

DVIPS (by Tom Rokicki). See description above.
Suppliers: FTP (1abrea.stanford.edu).

dvitops (by James Clark). See
description above. Suppliers: Aston,
Clark, FTP (june.cs.washington.edu) ,
F T P (uk.ac.aston.tex), FTP (ymir.claremont.edu).

dvitps (by Stephan v. Bechtolsheim). Uses GF.
PK, and PXL files. Fonts may have up to 256
characters. Allows use of printer-resident PostScript
fonts. Supports inclusion of PostScript graphics
(through PSFIG), graphics through the tpic specials,
arbitrary extension and mapping of the PostScript
fonts, memory management, and generation of
Transcript-compatible code. Included are programs
for creation of TFM files for PostScript fonts
(pfd2tfm) and for management of PostScript font
mappings (printpdr). Suppliers: Bechtolsheim,
F T P (cs.purdue.edu), Unix distribution tape.

Unspecified program. Suppliers: Carleton University.

TUGboat , Volume 11 (1990), No. 4

VAXJVMS

DVIALW (by Nelson H. F . Beebe and Neal
Holtz). See description above. Suppliers:
FTP (ctrsci.utah.edu). University of Utah.

DVIlaser/PS. See description above. Cost: $500
workstations; $750 mainframes. Site licenses
available. Academic discounts available. Suppliers:
ArborText, Inc.

DVIOUT (by Scott Campbell). Uses GF, PK, and
PXL files. Allows landscape printing, inclusion
of MacDraw bitmaps, inclusion of Tektronix
plot files, drawing of line, arc, point, and filled
polygons through \special commands, and

support. Written in C and Macro-32.
The program comes with a well-featured Postscript
symbiont. Suppliers: DECUS Collection,
F T P (ymir.claremont.edu).

DVIPS (by Tom Rokicki). See description above.
Suppliers: DECUS TEX Collection.

Dvi/PS (by Alec Dunn). Uses GF, and both word-
and byte-packed PXL files. Allows landscape
printing, inclusion of PostScript graphics (described
in TUGboat 8#2), and use of PostScript fonts.
A Postscript-from-Mac program is available on
request. The program communicates with the printer
to determine what resolution/set of fonts to use.
Written in Pascal. Source not included. Cost: $500.
Suppliers: University of Sydney.

PSPRINT (by Andrew Trevorrow). Uses PK and
PXL files. Allows landscape printing, inclusion
of Postscript graphics and use of printer-resident
fonts. Written in DCL and Modula-2. Source
included. Suppliers: Aston, DECUS w Collection,
FTP (aston.ac.uk), FTP (ymir.claremont .edu) ,
INFNICNAF.

T2/script. Uses GF or PK files. Allows landscape
printing, use of built-in and downloadable PostScript
fonts, inclusion of graphics (rotated to match
surrounding text) and produces output conforming
to Adobe Document Structuring Conventions
v2.1. Cost: $495 (1600bpi magtape), $515 (TK50
cartridge). Suppliers: Northlake Software.

QMS Kiss, Smartwriter

0 Amiga

Unspecified program. Uses PK files. Allows
landscape printing. Suppliers: Radical Eye Software.

QMS Lasergrafix

dvi2qms (Chris Lindblad). Uses PXL files. Includes
support for landscape printing and graphics
inclusion. Can be run as a filter. Written in C.
Source included.

GTEX. Uses P K files. This driver is part of a CGM
interpreter package and shares output drivers with
that package.

DVIlaser/QMS. Uses GF, PK, and PXL files. Allows
inclusion of graphics. use of printer resident fonts,
font substitution, font scaling, landscape printing,
and magnifies or shrinks images. VF support
included.

DVIQMS. Uses PXL files. Supports landscape
printing.

Amdahl MTS

DVIlaser/QMS. See description above. Supported
on 'as is' basis. Cost: $750. Site licenses available.
Academic discounts available. Suppliers: ArborText,
Inc.

Amiga

Unspecified program. Uses PK files. Allows
landscape printing. Suppliers: Radical Eye Software.

Da ta General MV

Unspecified program. Suppliers: Texas A&M [I].

0 IBM MVS

DVIQMS. See description above. Suppliers:
Gesellschaft fur Mathematik und
Datenverarbeitung [I].

IBM PC

DVIlaser/QMS. See description above. Supported
on 'as is' basis. Cost: $225. Site licenses available.
Academic discounts available. Suppliers: ArborText,
Inc., TEX Users Group.

0 IBM VMJCMS

DVIlaser/QMS. See description above. Supported
on 'as is' basis. Cost: $750. Site licenses available.
Academic discounts available. Suppliers: ArborText,
Inc.

DVIQMS. See description above. Suppliers:
Gesellschaft fur Mathematik und
Datenverarbeitung [l] .

0 Prime

DVILG8, DVILG12, DVILG15 (by Norman Naugle).
Uses GF, PXL, or PK files. Allows inclusion of
QUIC commands from files or as part of the
input stream. Allows landscape printing through the
\special command. Allows use of printer-resident
fonts. Includes CRERES for creating printer-resident
fonts. The Prime distribution tape includes
pre-compiled copies of the programs. Written in
WEB. Source included. Cost: $150 from n2; if the
program is obtained from the Prime distribution
tape, it is considered shareware-sites using the
program are encouraged to send a $150 contribution
to n2 Consultants. Suppliers: n2 Consultants, Prime
distribution tape.

0 Siemens BS2000

TUGboat , Volume 11 (1990), No. 4

Unix

DVIQMS. See description above. Suppliers:
Gesellschaft fiir Mathematik und
Datenverarbeitung [I].

0 Symbolics Lisp

dvi-stream (by Chris Lindblad). Written in Zetalisp.
Source is included. Uses the Generic Hardcopy
Interface to drive the QMS Lasergrafix printer.
Supports landscape printing and graphics inclusion.
Suppliers: Massachusetts Institute of Technology.

Unix

dvi2qms (Chris Lindblad). See description above.
Suppliers: Massachusetts Institute of Technology.

GTEX. See description above. Suppliers:
F T P (casce.psc.edu).

DVIlaser/QMS. See description above. Supported
on 'as is' basis. Available for VAX Unix, Apollo and
Sun. Cost: $500 workstations; $750 mainframes. Site
licenses available. Academic discounts available.
Suppliers: ArborText, Inc.

quicspool (Scott Simpson). Uses PK files. Supports
landscape printing and all 4.2 BSD spooler functions
for QMS QUIC printers. Also included are drivers
for troff, programs to convert TFM to troff width
tables, and METAFONT code for troff fonts. Written
in C with lex and yacc. Source included. Suppliers:
Unix distribution tape.

Unspecified program. Runs on Sun. Suppliers:
University of Delaware.

Unspecified program. Runs on Apollo. Suppliers:
Scan Laser.

Unspecified program. Runs on an H P 9000/500.
Suppliers: Texas A&M [2].

GTEX. See description above. Suppliers:
F T P (b.psc.edu).

DVIlaser/QMS. See description above. Supported
on 'as is' basis. Cost: $500 workstations; $750
mainframes. Site licenses available. Academic
discounts available. Suppliers: ArborText, Inc.

Unspecified program. Suppliers: GA Technologies.

Unspecified program. Suppliers: n2 Consultants.

Talaris (See also QMS Lasergrafix)

0 IBM MVS

Unspecified program. Suppliers: Talaris.

0 IBM PC

Unspecified program. Suppliers: Talaris.

IBM VM/CMS

Unspecified program. Suppliers: Talaris.

0 VAX/VMS

Unspecified program. Suppliers: Talaris.

Xerox 270011, 3700, 4045

DVIX27 (by John Gourlay). Uses Xerox 2700 special
fonts (the cm* fonts are supplied up to magstep 5 in
this format). Written in WEB. Source included.

CDC Cyber

Unspecified program. Suppliers: Bochum.

DEC-20

DV1X27 (by John Gourlay). See description above.
Suppliers: Xerox, Ohio State University.

IBM VM/CMS

DV12700 (by Maurice Vallino and Chantal Durand).
Uses Xerox 2700 special fonts. Inclusion of Xerox
bitmap files is made possible by the \ specia l

command. An auxiliary program, PXLXEROX, is
provided to allow conversion of PXL files to Xerox
2700 format. Written in Pascal. Source included.
Suppliers: Ecole Normale Superieure.

DVIX27 (by John Gourlay). See description above.
Suppliers: Xerox.

0 Unix

DVIX27 (by John Gourlay). See description above.
Suppliers: Xerox.

DVIX27 (by John Gourlayj. See description above

Suppliers: Xerox.

Unspecified program. Suppliers: Brigham Young
University.

Xerox 8700, 8790, 9700, 9790, 4050

DVIXER (by Paul Grosso). Written in WEB. Source
included. Uses fonts preloaded onto the printer.
Allows duplex printing.

m r o x (by Thomas J. Reid). Written in C.
Source included. Uses fonts preloaded onto the
printer. Allows duplex printing and four basic page
orientations plus special formats for booklets and
reference cards. Multiple DVI files may be merged
using the driver. Includes utilities for creating Xerox
fonts from G F or PXL files and for creating TFM
files for Xerox internal fonts.

Amdahl MTS

DVIXER (by Paul Grosso). See description above.
Supported on 'as is' basis. Cost: $1500. Site licenses
available. Academic discounts available. Suppliers:
ArborText, Inc.

Unspecified program. Suppliers: Talaris.

TUGboa t , Volume 11 (1990)' No. 4

DVIXER (by Paul Grosso; modified by Kari Gluski).
See description above. Supported on 'as is' basis.
Suppliers: University of Michigan.

0 IBM MVS

DVIXER (by Paul Grosso). See description above.
Supported on 'as is' basis. Cost: $1500. Site licenses
available. Academic discounts available. Suppliers:
ArborText , Inc.

W r o x (by Thomas J. Reid). See description above.
Written in C and 370 Assembler. Suppliers: Texas
A&M [3].

0 IBM VM/CMS

DVIXER (by Paul Grosso). See description above.
Supported on Las is' basis. Cost: $1500. Site licenses
available. Academic discounts available. Suppliers:
ArborText, Inc.

m r o x (by Thomas J. Reid). Written in C. See
description above. Suppliers: Texas A&M [3].

0 Unix

m r o x (by Thomas J. Reid). See description above.
Tested under VM/UTS and Sun Unix. Suppliers:
Texas A&M 131.

Unspecified program. Runs on Apollo. Suppliers:
COS Information.

Unspecified program. Runs on Apollo. Suppliers:
Scan Laser.

Unspecified program. Suppliers: University of
Delaware.

VAX/VMS

DVIXER (by Paul Grosso). See description above.
Supported on 'as is' basis. Cost: $1500 mainframes,
$1000 workstations. Site licenses available. Academic
discounts available. Suppliers: ArborText. Inc.

m r o x (by Thomas J . Reid). See description above.
Suppliers: Texas A&M [3].

Unspecified program. Suppliers: Advanced Computer
Communications.

Drivers for Impact Printers and
Miscellaneous Output Devices

Apple Imagewriter

DVIM72, DVIMAC (by Nelson H. F. Beebe). Uses
GF, PK, or PXL files. DVIM72 uses the Imagewriter
at 72dpi, DVIMAC uses a resolution of 144dpi.
Written in C.

Acorn

DVIM72, DVIMAC (by Nelson H. F. Beebe). See
description above. (Beta test version available on
request.) Suppliers: University of Utah.

Amiga

Unspecified program. Uses PK files. Suppliers:
Radical Eye Software.

0 Apple Macintosh

DVIM72-Mac 1.8 (by Jim Walker). Uses PK files.
Can run in the background under Multifinder.
Intended for use with OZTEX. Suppliers:
FTP (giza.cis.ohio-state.edu).

0 Atari S T

DVIM72, DVIMAC (by Nelson H. F.
Beebe). See description above. Suppliers:
FTP (science.utah.edu), FTP (ymir.claremont.edu),
University of Utah.

DEC-20

DVIM72, DVIMAC (by Nelson H. F.
Beebe). See description above. Suppliers:
F T P (science.utah.edu), FTP (ymir.claremont.edu).

0 IBM P C

DVIDOT (by Eberhard Mattes). Uses PK or
PXL files. DVIDOT is a generic dot matrix
printer that supports different printers through
a configuration file. Supports VF files. Suppliers:
Aston, FTP (rusmvl.rus.uni-stuttgart.de),
FTP (terminator.cc.umich.edu);
F T P (uk.ac.aston.tex), Radel.

DVIM72, DVIMAC (by Nelson H. F. Beebe).
See description above. Written in Microsoft
C. Suppliers: Aston. FTP (science.utah.edu),
F T P (ymir.claremont.edu), University of Utah.

0 IBM VM/CMS

DVIM72, DVIMAC (by Nelson H. F. Beebe). See
description above. Written in Waterloo C. (Beta test
version available on request.) Suppliers: University of
Utah.

0 Prime

DVIM72, DVIMAC (by Nelson H. F. Beebe). See
description above. (Beta test version available on
request.) Suppliers: University of Utah.

0 Unix

DVIM72, DVIMAC (by Nelson H. F. Beebe).
See description above. Runs on most Unix
variants. Suppliers: F T P (science.utah.edu),
FTP (ymir.claremont.edu), University of Utah.

0 VAX/VMS

DVIM72, DVIMAC (by Nelson H. F. Beebe). See
description above. Suppliers: F T P (ctrsci.utah.edu),
University of Utah.

Unspecified program. Suppliers: Louisiana State
University.

TUGboat , Volume 11 (1990), No. 4

0 IBM VM/CMS Benson 9424

IBM VM/CMS

DVIBENA3, DVIBENA4, DVIBENA5 (by
Dr. Georg Bayer). Uses PXL files at 254dpi.
DVIBENA3 creates a page for DIN A3 paper,
DVIBENA4 creates a page for DIN A4 paper
placing 2 pages per sheet, and DVIBENA5 creates
a page for DIN A5 paper placing 4 pages per sheet.
Suppliers: Technische Universitat Braunschweig.

0 IBM P C

DVIDOT (by Eberhard Mattes). Uses PK or
PXL files. DVIDOT is a generic dot matrix
printer that supports different printers through
a configuration file. Supports VF files. Suppliers:
Aston, FTP (rusmvl.rus.uni-stuttgart.de),
F T P (terminator.cc.umich.edu),

F T P (uk.ac.aston.tex), Radel.

Citizen 120-D

0 Amiga

Unspecified program. Uses PK files. Suppliers:
Radical Eye Software.

DEC LA75, LPlOO

DVIL75 (by John Sauter). Uses GF, PK, and PXL
files. Written in C.

0 Acorn

DVIL75 (by John Sauter). See description above.
(Beta test version available on request.) Suppliers:
University of Utah.

Atari ST

DVIL75 (by John Sauter). See description
above. Suppliers: FTP (science.utah.edu),
F T P (ymir.claremont.edu), University of Utah.

DEC-20

DVIL75 (by John Sauter). See description
above. Suppliers: FTP (science.utah.edu),
F T P (ymir.claremont .edu) .

DVILA (by John Gourlay). Uses PXL files. Comes
with PXLPXL, a utility for converting PXL files
from one resolution to another. Written in WEB.
Source included. Suppliers: Ohio State University.

IBM P C

DVIL75 (by John Sauter). See description
above. Written in Microsoft C. Suppliers:
F T P (science.utah.edu), FTP (ymirxlaremont .edu).
University of Utah.

DVIL75 (by John Sauter). See description above.
Written in Waterloo C. (Beta test version available
on request.) Suppliers: University of Utah.

Prime

DVIL75 (by John Sauter). See description above.
(Beta test version available on request.) Suppliers:
University of Utah.

0 Unix

DVIL75 (by John Sauter). See description
above. Suppliers: FTP (science.utah.edu),
FTP (ymir.claremont.edu), University of Utah.

VAX/VMS

DVIL75 (by John Sauter). See description above.
Suppliers: FTP (ctrsci.utah.edu), University of Utah.

Epson FX/MX/JX/RX

DVIE72, DVIEPS (by Marcus Moehrman). Uses
GF, PK, or PXL files. DVIE72 prints at 60h x 72v
resolution, DVIEPS prints at 240h x 216u resolution.
Written in C. Source is included.

0 Acorn

DVIE72, DVIEPS (by Marcus Moehrman). See
description above. (Beta test version available on
request.) Suppliers: University of Utah.

Amiga

Unspecified program. Uses PK files. Suppliers:
Radical Eye Software.

0 Atari S T

DVIE72, DVIEPS (by Marcus Moehrman).
See description above. Suppliers:
FTP (science.utah.edu), FTP (ymir.claremont .edu).
University of Utah.

Unspecified program. Suppliers: W s y s .

Unspecified program. Suppliers: Tools GmbH Bonn.

DEC-20

DVIE72, DVIEPS (by Marcus Moehrman).
See description above. Suppliers:
FTP (science.utah.edu), FTP (ymir.claremont.edu).

H P 1000

Unspecified program. Suppliers: JDJ Wordware.

Unspecified program. Suppliers: University of
Sheffield.

0 IBM P C

DVIDOT (by Eberhard Mattes). Uses PK or
PXL files. DVIDOT is a generic dot matrix
printer that supports different printers through
a configuration file. Supports VF files. Suppliers:

TUGboat , Volurne 11 (1990), No. 4

Aston, FTP (rusmvl.rus.uni-stuttgart.de),
FTP (terminator.cc.umich.edu)~

FTP (uk.ac.aston.tex) , Radel.

DVIE72, DVIEPS (by Marcus Moehrman). See
description above. Written in Microsoft C. Suppliers:
FTP (science.utah.edu), FTP (ymir.claremont.edu),
Radel, University of Utah.

DVIEPS (by Gavin Melville and Gordon Findlay
from the Beebe driver). Uses GF. PK, or PXL files
at 240h x 216v resolution. Written in Microsoft C, no
executables. The page bitmap is not held in RAM.
Suppliers: Radel.

P C DOT Epson F X / R X . Cost: $95. Suppliers:
Personal w.
Unspecified program. Suppliers: Texas A&M [I].

Unspecified program. Suppliers: Universiti Degli
Studi Milan.

Unspecified program. Suppliers: University of
Sheffield.

IBM VM/CMS

DVIE72, DVIEPS (by Marcus Moehrman). See
description above. Written in Microsoft C. (Beta test
version available on request.) Suppliers: University of
Utah.

Prime

DVIE72, DVIEPS (by Marcus Moehrman). See
description above. (Beta test version available on
request.) Suppliers: University of Utah.

Unix

DVIE72, DVIEPS (by Marcus Moehrman).
See description above. Suppliers:
FTP (science.utah.edu), F T P (ymir.claremont.edu),
University of Utah.

VAX/VMS

DVIE72, DVIEPS (by Marcus Moehrman). See
description above. Suppliers: FTP (ctrsci.utah.edu),
University of Utah.

Epson LQ, NEC P6/P7

Amiga

Unspecified program. Uses GF, PK or PXL
files. Based on the Beebe 2.10 drivers. Suppliers:
F T P (tut.cis.ohio-state.edu).

Unspecified program. Uses PK files. Suppliers:
Radical Eye Software.

Atari ST

Unspecified program. Suppliers: m s y s .

IBM P C

DVIDOT (by Eberhard Mattes). Uses PK or
PXL files. DVIDOT is a generic dot matrix

printer that supports different printers through
a configuration file. Can print a t 180 x 180,
360 x 180 or 360 x 360. Supports VF files. Suppliers:
Aston, FTP (rusmvl.rus.uni-stuttgart.de),
FTP (terminator.cc.umich.edu).
FTP (uk.ac.aston.tex), Radel.

DVINECLQ (by Fuyun Ling from the Beebe
DVITOS program). Uses GF. PK or PXL files a t
360dpi. The page bitmap is swapped to ramdisk or
hard disk. or sent directly to LPT1: Distributed as
executables only. Suppliers: Channel 1 BBS, Ling,

Radel.

P C DOT Epson LQ. Cost: $95. Suppliers: Personal

w.
Fujitsu

Atari ST

Unspecified program.

w s y s .

0 Cadmus 9200

Unspecified program.

GE 3000

Unix

Unspecified program.
COS Information.

HP DeskJet

0 Amiga

Unspecified program.

Uses PK files. Suppliers:

Suppliers: University of Koln.

Runs on Apollo. Suppliers:

Uses PK files. Suppliers:
Radical Eye Software.

Atari ST

Unspecified program. Uses GF, PK or PXL files.
Based on Beebe 2.10 drivers. Comes in two versions
for different memory configurations. Requires a hard
disk. Suppliers: FTP (terminator.cc.umich.edu),

Long.

IBM P C

dvidjp (by Paul Kirkaas). Uses GF, PK or PXL
files. Based on Beebe 2.10 drivers. Suppliers:
FTP (ymir.claremont .edu) .

Unspecified program. Cost: $119. Suppliers: Personal

w .

Unspecified program. Cost: $100. Suppliers: The
Toolsmith.

HP InkJet

Amiga

Unspecified program. Uses PK files. Suppliers:
Radical Eye Software.

TUGboat , Volume 11 (1990), No. 4

MPI Sprinter

DVIMPI (by Nelson H. F. Beebe). Uses GF, PK, or
PXL files. Written in C.

0 Acorn

DVIMPI (by Nelson H. F. Beebe). See description
above. (Beta test version available on request.)
Suppliers: University of Utah.

0 Atari S T

DVIMPI (by Nelson H. F. Beebe). See description
above. Suppliers: FTP (science.utah.edu),
FTP (ymirxlaremont .edu), University of Utah.

DEC-20

DVIMPI (by Nelson H. F. Beebe). See description
above. Suppliers: FTP (science.utah.edu),
F T P (ymir.claremont.edu) .

IBM P C

DVIMPI (by Nelson H. F. Beebe). See description
above. Written in Microsoft C. Suppliers:
FTP (science.utah.edu), FTP (ymir.claremont.edu),
University of Utah.

0 IBM VM/CMS

DVIMPI (by Nelson H. F. Beebe). See description
above. Written in Waterloo C. (Beta test version
available on request.) Suppliers: University of Utah.

0 Prime

DVIMPI (by Nelson H. F. Beebe). See description
above. (Beta test version available on request.)
Suppliers: University of Utah.

0 Unix

DVIMPI (by Nelson H. F. Beebe). See description
above. Suppliers: FTP (science.utah.edu),
F T P (ymir.claremont.edu), University of Utah.

0 VAX/VMS

DVIMPI (by Nelson H. F. Beebe). See description
above. Suppliers: FTP (ctrsci.utah.edu), University
of Utah.

NDK Printstar

0 IBM VM/CMS

DVINDKN, DVINDKQ (by Dr. Georg Bayer).
Uses PXL files at 120dpi. DVINDKN prints lines
of text horizontally, while DVINDKQ prints lines
of text vertically. Suppliers: Technische Universitat
Braunschweig.

Okidata

DVI072, DVIOKI (by Nelson H. F. Beebe). Uses
GF, PK, or PXL files. DVI072 prints at 72dpi
resolution; DVIOKI prints at 144dpi. Written in C.

Acorn

DVI072. DVIOKI (by Nelson H. F. Beebe). See
description above. (Beta test version available on
request.) Suppliers: University of Utah.

Amiga

Unspecified program. Uses PK files. Suppliers:
Radical Eye Software.

0 Atari S T

DVI072, DVIOKI (by Nelson H. F.
Beebe). See description above. Suppliers:
F T P (science.utah.edu), FTP (ymir.claremont.edu),
University of Utah.

DEC-20

DVI072, DVIOKI (by Nelson H. F.
Beebe). See description above. Suppliers:
FTP (science.utah.edu), FTP (ymir.claremont.edu).

IBM P C

DVI072, DVIOKI (by Nelson H. F. Beebe). See
description above. Written in Microsoft C. Suppliers:
FTP (science.utah.edu), FTP (ymir.claremont.edu),
University of Utah.

0 IBM VM/CMS

DVI072, DVIOKI (by Nelson H. F. Beebe). See
description above. Written in Waterloo C. (Beta test
version available on request.) Suppliers: University of
Utah.

0 Prime

DVI072, DVIOKI (by Nelson H. F. Beebe). See
description above. (Beta test version available on
request.) Suppliers: University of Utah.

0 Unix

DVI072, DVIOKI (by Nelson H. F.
Beebe). See description above. Suppliers:
FTP (science.utah.edu), FTP (ymir.claremont .edu),
University of Utah.

VAXlVMS

DVI072. DVIOKI (by Nelson H. F. Beebe). See
description above. Suppliers: FTP (ctrsci.utah.edu),
University of Utah.

Printronix

DVIPRX (by Nelson H. F. Beebe). Uses GF, PK, or
PXL files. Written in C.

0 Acorn

DVIPRX (by Nelson H. F. Beebe). See description
above. (Beta test version available on request.)
Suppliers: University of Utah.

TUGboat , Volume 11 (1990), No. 4

0 Atari S T

DVIPRX (by Nelson H. F. Beebe). See description
above. Suppliers: FTP (science.utah.edu),
FTP (ymirxlaremont .edu), University of Utah.

0 Data General MV

Unspecified program. Suppliers: Texas A&M [l].

DEC-20

DVIPRX (by Nelson H. F. Beebe). See description
above. Suppliers: FTP (science.utah.edu),
FTP (ymir.claremont.edu).

0 IBM P C

DVIPRX (by Nelson H. F. Beebe). See description
above. Written in Microsoft C. Suppliers:
FTP (science.utah.edu), FTP (ymir.claremont.edu),
University of Utah.

Unspecified program. Suppliers: Texas A&M [I].

0 IBM VM/CMS

DVIPRX (by Nelson H. F. Beebe). See description
above. Written in Waterloo C. (Beta test version
available on request.) Suppliers: University of Utah.

0 Prime

DVIPRX (by Nelson H. F. Beebe). See description
above. (Beta test version available on request.)
Suppliers: University of Utah.

0 Unix

DVIPRX (by Nelson H. F. Beebe). See description
above. Suppliers: FTP (science.utah.edu) ,
FTP (ymir.claremont.edu), University of Utah.

VAX/VMS

DVIPRX (by Nelson H. F. Beebe). See description
above. Suppliers: FTP (ctrsci.utah.edu), University
of Utah.

Texas Instruments 855

0 IBM P C

Unspecified program. Suppliers: Texas A&M [I].

Toshiba

DVITOS (by Nelson H. F. Beebe). Uses GF, PK, or
PXL files. Written in C.

Acorn

DVITOS (by Nelson H. F. Beebe). See description
above. (Beta test version available on request.)
Suppliers: University of Utah.

Atari ST

DVITOS (by Nelson H. F. Beebe). See description
above. Suppliers: FTP (science.utah.edu),
FTP (ymir.claremont.edu), University of Utah.

0 Data General MV

Unspecified program. Suppliers: Texas A&M [I].

DEC-20

DVITOS (by Nelson H. F. Beebe). See description
above. Suppliers: FTP (science.utah.edu),
F T P (ymir.claremont .edu).

0 IBM P C

DVITOS (by Nelson H. F. Beebe). See description
above. Written in Microsoft C. Suppliers:
FTP (science.utah.edu) , FTP (ymir.claremont .edu) ,
University of Utah.

PC DOT Toshiba. Cost: $95. Suppliers: Personal

w.
0 IBM VM/CMS

DVITOS (by Nelson H. F. Beebe). See description
above. Written in Waterloo C. (Beta test version
available on request.) Suppliers: University of Utah.

Prime

DVITOS (by Nelson H. F. Beebe). See description
above. (Beta test version available on request.)
Suppliers: University of Utah.

Unix

DVITOS (by Nelson H. F. Beebe). See description
above. Suppliers: FTP (science.utah.edu),
FTP (ymir.claremont.edu), University of Utah.

VAX/VMS

DVITOS (by Nelson H. F. Beebe). See description
above. Suppliers: FTP (ctrsci.utah.edu), University
of Utah.

Unspecified program. Suppliers: Procyon
Informatics.

Varian

Unspecified program. Suppliers: Science
Applications.

Versatec

0 IBM MVS

DVIVER. Uses PXL files. Suppliers: Gesellschaft fiir
Mathematik und Datenverarbeitung [I].

0 IBM VM/CMS

DV182 (by Yossie Silverman). Uses PXL files.
Allows inclusion of raster files. Written in assembly
language. Source is included. Suppliers: Weizmann
Institute.

0 Unix

Unspecified program. This program is included with
iptex. Suppliers: University of Maryland.

558 TUGboat , Volume 11 (1990), No. 4

Miscellaneous (generic print interfaces,
special graphic formats, etc.)

IBM P C

DVIDOT (by Eberhard Mattes). Uses PK or
PXL files. DVIDOT is a generic dot matrix
printer that supports different printers through
a configuration file. Supports VF files. Suppliers:
Aston, FTP (rusmvl.rus.uni-stuttgart.de),
F T P (terminator.cc.umich.edu),
F T P (uk.ac.aston.tex), Radel.

DVIMSP (by Eberhard Mattes). Uses PK or PXL
files. Creates Microsoft Paint files. Supports VF files.
Suppliers: Aston, F T P (rusmvl.rus,uni-stuttgart.de),
F T P (terminator.cc.umich.edu),
F T P (uk.ac.aston.tex). Radel.

QX-FAX. Sends DVI files to a FAX machine.
Cost: $395 (for 4800bps FAX board), $795 (for 9600
bps FAX board). Suppliers: Kinch Computing.

Drivers for Phototypesetters

Allied Linotype CRTronic

VAX/VMS

Unspecified program. Suppliers: Procyon
Informatics.

Allied Linotype L100, L300P

IBM P C

Unspecified program. Suppliers: Personal TEX

Allied Linotype L202

IBM P C

Unspecified program. Suppliers: Personal TEX.

VAX/VMS

Unspecified program. Suppliers: Procyon
Informatics.

Autologic APS-5, Micro-5

DVIAPS. Autologic resident fonts and logo
processing are supported, and a separate program
that creates laser printer and screen resolution fonts
from Autologic font tapes is available. VF support is
provided.

IBM PC

DVIAPS. See description above. Cost: $3000. Site
licenses available. Academic discounts available.
Suppliers: ArborText, Inc.

Unix

DVIAPS. See description above. Available for VAX
Unix and Sun. Cost: $3000. Site licenses available.

Academic discounts available. Suppliers: ArborText.
Inc.

Unspecified program. Runs on Apollo. Suppliers:
COS Information.

Unspecified program. Runs on Apollo. Suppliers:
Scan Laser.

VAX/VMS

DVIAPS. See description above. Cost: $3000. Site
licenses available. Academic discounts available.
Suppliers: ArborText, Inc.

Unspecified program. Suppliers: Intergraph.

Compugraphic 8400

HP 3000

Unspecified program. Suppliers: University of
Sheffield.

IBM P C

DVICG. VF support is provided. Cost: $2000. Site
licenses available. Academic discounts available.
Suppliers: ArborText, Inc.

Unix

DVICG. VF support is provided. Site licenses
available. Academic discounts available. Suppliers:
ArborText, Inc.

VAXJVMS

C G W . Includes FDtoPL for creating TFM files for
Compugraphic fonts as well as some pre-generated
TFMs for selected Compugraphic fonts. Cost: $3400
on 600' 1600bpi magtape. Suppliers: Northlake
Software.

Compugraphic 8600

C D C Cyber

Unspecified program. Suppliers: Aarhus University.

IBM P C

DVICG. VF support is provided. Cost: $2000. Site
licenses available. Academic discounts available.
Suppliers: ArborText, Inc.

IBM VM/CMS

Unspecified program. Written in WEB. Source
included. Suppliers: FTP (ymir.claremont.edu),
Washington State University.

Sperry 1100

Unspecified program. Suppliers: University of
Wisconsin.

Unix

DVICG. VF support is provided. Site licenses
available. Academic discounts available. Suppliers:
ArborText, Inc.

TUGboat , Volume 11 (1990), No. 4

VAXlVMS

C G W . Includes FDtoPL for creating TFM files for
Compugraphic fonts as well as some pre-generated
TFMs for selected Compugraphic fonts. Cost: $3400
on 600' 1600bpi magtape. Suppliers: Northlake
Software.

Compugraphic 8800

IBM PC

DVICG. VF support is provided. Cost: $2000. Site
licenses available. Academic discounts available.
Suppliers: ArborText, Inc.

0 Unix

DVICG. VF support is provided. Site licenses
available. Academic discounts available. Suppliers:
ArborText, Inc.

Harris 7500

0 Unix

Unspecified program. Suppliers: SARA.

Hell Digiset

DVIDIGI. Uses special format files. A program for
converting PXL files to this format is included.

IBM MVS

DVIDIGI. See description above. Suppliers:
Gesellschaft fiir Mathematik und
Datenverarbeitung 121.

Siemens BS2000

DVIDIGI. See description above. Suppliers:
Gesellschaft fiir Mathematik und
Datenverarbeitung 121.

Screen Previewers

Amiga

Unspecified program. Uses PK files. Written in C.
Included with A m i g a m . Suppliers: Radical Eye
Software.

Apollo

DVIAPOLLO (by Leonard N. Zubkoff). Supports
GPR. Uses Apollo font files. Included is a program
to convert PXL files a t 118 dpi to Apollo font files.
Suppliers: F T P (june.cs.washington.edu).

Preview. Uses PXL, GF, and PK files as well as
tuned Postscript fonts (the base set available
with PostScript printers). Features include font
substitution, page magnification and shrinking,
searching for character strings, selection of arbitrary
pages, display of pages in two-up mode, and preview

of integrated bitmap graphics. Cost: $500. Suppliers:
ArborText. Inc.

Texx (by Dirk Grunwald). Supports X-11 Windows

System. Uses PK, GF, and PXL files at output
device resolution. The window size may be changed
for closeups of the page. Two pages may be viewed
simultaneously. Suppliers: FTP (cs.uiuc.edu) .

Atari ST

DVIST (by Avy Moise and Tyler Ivanco). Suppliers:
FTP (ssyx.ucsc.edu) .

Unspecified program.

W S Y S .

Unspecified program.

Cadmus 9200

Unspecified program.

Data General MV

Unspecified program

Uses PK files. Suppliers:

Suppliers: Tools GmbH Bonn.

Suppliers: University of Koln.

Suppliers: Texas A&M [I].

DEC Rainbow PC100

RBDVI 1.0. Uses a limited set of 19 CM and 5
L+W fonts built into the program for efficiency's
sake. Uses font substitution to display other fonts.
Fits in 150K of disk space. Cost: $59.95. Special
discount available for IRUG members. Suppliers:
SullivanSFT.

DVIBIT (by Stephan Bechtolsheim, Bob Brown,
Robert Wells, Jim Schaad, Richard Furuta, Nelson
H. F. Beebe, Simon Barnes, Robin Rohlicek).
Supports BBN Bitgraph Terminal. Uses GF, PK, or
PXL files. Written in C. Source included. Suppliers:
University of Utah.

DVIDOC (by John Gourlay). Supports ASCII
output. Reads font information from TFM files and
generates a text file representation of the DVI file.
Suppliers: Ohio State University.

DEC RISC Ultrix

Preview. Uses PXL, GF, and PK files as well as
tuned PostScript fonts (the base set available
with Postscript printers). Features include font
substitution, page magnification and shrinking,
searching for character strings, selection of arbitrary
pages, display of pages in two-up mode, and preview
of integrated bitmap graphics. Suppliers: ArborText,
Inc.

DVIBIT (by Stephan Bechtolsheim, Bob Brown,
Robert Wells, Jim Schaad, Richard Furuta, Nelson
H. F. Beebe, Simon Barnes, Robin Rohlicek).

TUGboat , Volume 11 (1990), No. 4

Supports BBN Bitgraph Terminal. Uses GF, PK, or
PXL files. Written in C. Source included. Suppliers:
University of Utah.

Preview. Uses PXL, GF, and PK files as well as
tuned Postscript fonts (the base set available
with Postscript printers). Features include font
substitution, page magnification and shrinking,
searching for character strings, selection of arbitrary
pages, display of pages in two-up mode, and preview
of integrated bitmap graphics. Suppliers: ArborText,
Inc.

IBM MVS

DVIGDDM. Supports GDDM supported IBM
display stations (including IBM 3179, 3192, 3193,
and 3279). Uses PXL files. Suppliers: Gesellschaft fiir
Mathematik und Datenverarbeitung [I].

Unspecified program. Supports Tektronix 4014
terminal. Suppliers: Universiti Degli Studi Milan.

IBM PC

cdvi. Supports EGA, CGA, Hercules. Cost: $175
Suppliers: n2 Consultants.

CDVI 1.2 (by W.G. Sullivan). Supports VGA,
MCGA, EGA, CGA, Hercules Monochrome,
Olivetti. Uses the basic 16 plain Q X fonts in an
internal format (they are part of the program).
Cannot preview documents that contain fonts other
than those 16. Suppliers: DECUS Collection,
Radel.

CDVI 2.02. Supports CGA, EGA, VGA, MCGA,
Hercules, Olivetti-ATT or Toshiba 3100. Uses
a limited set of 19 CM and 5 IPm fonts built
into the program for efficiency's sake. Uses font
substitution to display other fonts. Fits in 150K of
disk space. Note that there are separate programs
for each display type which must be purchased
separately. Cost: $35. Volume discounts available.
Suppliers: SullivanSFT.

DVIEW. Supports CGA, EGA, VGA, [Hercules].
Uses PXL files. Hercules previewing is done through
the SIMCGA program which is also included.
Suppliers: DECUS Collection, Radel.

dvimswin (by Doug McDonald). Supports Microsoft
Windows. Suppliers: FTP (wsrnr-simtel20.army.mil).

DVISCR (by Eberhard Mattes). Supports
CGA, EGA, VGA, Hercules. Uses PK or
PXL files. Supports VF files. Suppliers:
Aston, F T P (rusmvl.rus.uni-stuttgart.de),
FTP (terminator.cc.umich.edu),
FTP (uk.ac.aston.tex), Radel.

DVIVGA 2.10 (by Doug McDonald from the Beebe
drivers). Supports VGA. Uses GF, PK, or PXL files.
Diff files from the Beebe driver source are supplied
in lieu of the original C code. An executable is also

included. Suppliers: Channel 1 BBS, DECUS TEX
Collection, F T P (wsmr-simtel20.army.mil), Radel.

DVIVIK (by Eberhard Mattes). Supports Viking I.
Uses PK or PXL files. Supports VF files. Suppliers:
Aston, FTP (rusmvl.rus.uni-stuttgart.de);
FTP (terminator.cc.umich.edu),
FTP (uk.ac.aston.tex), Radel.

Maxview. Supports IBM EGA (mono or color),
CGA, VGA, Hercules Graphics Card, Wyse
WY/700, Genius VHR Full Page Display, AT&T
6300. Uses fonts from the laser printer driver in PK
or PXL format to display text. Magnification may be
set on entry. Suppliers: Aurion Tecnologia, Personal

m.
Preview. Supports IBM EGA (mono or color),
MCGA. VGA, Hercules Graphics Card. Olivetti
Monochrome. Tecmar Graphics Master, Genius VHR
Full Page Display, ETAP Neftis Monitor, Toshiba
3100, AT&T 6300. Uses PXL. GF, and PK files as
well as tuned PostScript fonts (the base set available
with PostScript printers). Features include font
substitution, page magnification and shrinking,
searching for character strings, selection of arbitrary
pages, display of pages in two-up mode, and preview
of integrated bitmap graphics. Cost: $149. Suppliers:
ArborText, Inc.. 'I'EX Users Group.

PTIVIEW. Uses GF, PK, and PXL files. On the fly
magnification, on the fly inclusion of DVI files, font
substitution, and 256 character fonts are supported.
Cost: $149. Suppliers: Personal TJ$.

W V i e w 2.06 (by Laurie Benfield from the Beebe
drivers). Supports Hercules. Uses GF, PK, or PXL
files at 300dpi. The DVI file is first converted into
a graphics image by DVIHERC then viewed by
W V i e w . Suppliers: Radel.

IBM PC/RT

Texx (by Dirk Grunwald). Supports X-11 Windows
System. Uses PK, GF, and PXL files. The high
resolution fonts used by laser printer drivers are used
and shrunk to the screen resolution. The window
size may be changed for closeups of the page. Two
pages may be viewed simultaneously. Suppliers:
FTP (cs.uiuc.edu) .

IBM VM/CMS

DVI3279 (by Dr. Georg Bayer). Supports IBM
3179g and 3279 GDDM-driven graphics terminals.
Uses PXL files at 120dpi. Written in WEB. Source
and executables are included. Displays page either
in 8 parts at natural size or 3 parts compressed
(with a loss of readability). This driver is on CMS

TEX tapes created after 3/88. Suppliers: Stanford
CMS distribution tape, Technische Universitat
Braunschweig, Washington State University.

TUGboat, Volume 11 (19901, No. 4

DVI82 (by Yossie Silverman). Supports IBM 3279,
3179-G terminals. Uses PXL files. Allows inclusion of
raster files. Written in assembly language. Source is
included. Suppliers: Weizmann Institute.

DVIGDDM. Supports GDDM supported IBM
display stations (including IBM 3179, 3192, 3193,
and 3279. Uses PXL files. Suppliers: Gesellschaft fiir
Mathematik und Datenverarbeitung [I].

DVIview (by Don Hosek). Supports
VT640-compatible terminals and
Tektronix-compatible terminals connected
through a Series-117171 protocol converter, IBM
3179g and 3279 GDDM-driven graphics terminals.
Uses PK files. Allows resizing of preview "window"
on the page and box outlines of characters for a
quick view of page layout. Written in WEB. Source
and executables are included. The previewer may
be obtained by sending a blank tape and a check or
money order for $30 to cover duplication costs to
Don Hosek. Suppliers: Quixote.

DVIBIT (by Stephan Bechtolsheim, Bob Brown,
Robert Wells, Jim Schaad, Richard Furuta, Nelson
H. F. Beebe, Simon Barnes, Robin Rohlicek).
Supports BBN Bitgraph Terminal. Uses GF, PK, or
PXL files. Suppliers: University of Utah.

Sun Workstation

Preview. Uses PXL, GF, and PK files as well as
tuned Postscript fonts (the base set available
with Postscript printers). Features include font
substitution, page magnification and shrinking,
searching for character strings, selection of arbitrary
pages, display of pages in two-up mode, and preview
of integrated bitmap graphics. Cost: $500. Suppliers:
ArborText, Inc.

W s u n (by Dirk Grunwald). Supports Sunview
Window System. Uses PK, GF, and PXL files. The
high resolution fonts used by laser printer drivers
are used and shrunk to the screen resolution. The
window size may be changed for closeups of the
page. Two pages may be viewed simultaneously.
Suppliers: F T P (cs.uiuc.edu) .

Texx (by Dirk Grunwald). Supports X-11 Windows
System. Uses PK, GF, and PXL files. The high
resolution fonts used by laser printer drivers are used
and shrunk to the screen resolution. The window
size may be changed for closeups of the page. Two
pages may be viewed simultaneously. Suppliers:
FTP (cs.uiuc.edu) .

Unspecified program. Suppliers: University of
California, Berkeley.

Unspecified program. Suppliers: University of
California. Irvine.

Unix

DVIBIT (by Stephan Bechtolsheim, Bob Brown,
Robert Wells, Jim Schaad, Richard Furuta. Nelson
H. F. Beebe, Simon Barnes, Robin Rohlicek).
Supports BBN Bitgraph Terminal. Uses GF, PK, or
PXL files. Written in C. Source included. Suppliers:
University of Utah.

DVIDMD (by Lou Salkind; portions adapted from
Chris Torek's ctex package). Supports DMD 5620.
Uses 118dpi fonts in GF, PK or PXL format. The
program consists of two parts: a program that
runs on the host computer and a program that
is downloaded to the terminal. TPIC output is
supported. The DMD terminal may be used in either
window (MPX) or standalone mode. Suppliers:
F T P (nymedu), Unix TkX distribution.

GTEX. Supports Tektronix, X11, Sun CGI. Uses
PK files. This driver is part of a CGM interpreter
package and shares output drivers with that
package. Suppliers: F T P (casce.psc.edu).

S e e m 2.15 (by Dirk Grunwald). Supports
X11. Supports display Postscript under
DECwindows. Suppliers: FTP (expo.lcs.mit .edu) :
F T P (foobar.colorado.edu).

DVIBIT (by Stephan Bechtolsheim, Bob Brown,
Robert Wells, Jim Schaad, Richard Furuta, Nelson
H. F. Beebe, Simon Barnes, Robin Rohlicek).
Supports BBN Bitgraph Terminal. Uses GF, PK, or
PXL files. Written in C. Source included. Suppliers:
University of Utah.

DVIOUT(by Scott Campbell). Supports Tektronix
4014. Uses GF, PK, and PXL files. Allows
landscape printing, inclusion of MacDraw bitmaps,
inclusion of Tektronix plot files, drawing of line,
arc, point, and filled polygons through \special
commands, and T E X - ~ support. Written in C
and Macro-32. Suppliers: DECUS Collection,
FTP (ymir.claremont.edu).

DVItoVDU (by Andrew Trevorrow). Supports AED
512, ANSI-compatible, DEC ReGIS, DEC VT100,
DEC VT220, Tektronix 4014, Visual 500, 550. Uses
PK or PXL files a t output device resolution. Written
in Modula 2. Source included. Suppliers: Aston,
DECUS T)?-X Collection, FTP (uk.ac.aston.tex),
FTP (ymir.claremont .edu) , INFNICNAF, Northlake
Software.

DVIVIEW (by Peter Scott). Supports Tektronix,
Pericom, Navplot, VT100, VT220, RAMTEK.
Uses modified Hershey fonts for fast previewing.
Suppliers: JPL.

GTEX. Supports Tektronix, GPX/UIS. Uses PK
files. This driver is part of a CGM interpreter
package and shares output drivers with that
package. Suppliers: FTP (b.psc.edu).

TUGboat , Volume 11 (1990), No. 4

P r e w t . Supports Talaris T7600. The T7600
terminal has 28 resident CM fonts for previewing.
Cost: $750. Suppliers: Talaris.

Preview. Uses PXL, GF, and PK files as well as
tuned PostScript fonts (the base set available
with Postscript printers). Features include font
substitution, page magnification and shrinking,
searching for character strings, selection of arbitrary
pages, display of pages in two-up mode, and
preview of integrated bitmap graphics. Runs under
DEC-Windows. Suppliers: ArborText, Inc.

TP. Supports Tektronix 4010/4014 compatible. Uses
special "stick-figure" fonts to display TQX output.
Written in Fortran. Source included. Distributed
on your choice of IBM 5.25" disk, IBM 3.5" disk,
Mac 3.5" disk, or TK50 cartridge (enclose your
own or add $40 to order). Cost: $185. Suppliers:
TPSoftware.

TXMAPPER, TXREGIS. Supports DEC ReGIS.
Uses PXL files. Written in Fortran. Source
included. Suppliers: Aston, DECUS Collection,
F T P (uk.ac.aston.tex), INFNICNAF.

Texx (by Dirk Grunwald). Supports X-11 Windows
System. Uses PK, GF, and PXL files. The high
resolution fonts used by laser printer drivers are
used and shrunk to the screen resolution. The
window size may be changed for closeups of the
page. Two pages may be viewed simultaneously.
This implementation may encounter some byte order
problems. Suppliers: FTP (cs.uiuc.edu).

DVIDIS (by Jerry Leichter). Supports GPX(U1S).
Uses PK files at 150dpi (optional) and 300dpi
subsampled to screen resolution. Distributed as
executables only (source available only on special
request). Suppliers: DECUS 7&X Collection, Yale
University.

Preview. Supports DECwindows. Uses PXL, GF,
and PK files as well as tuned Postscript fonts (the
base set available with PostScript printers), Features
include font substitution, page magnification and
shrinking, searching for character strings, selection
of arbitrary pages, display of pages in two-up
mode, and preview of integrated bitmap graphics.
Cost: $500. Suppliers: ArborText, Inc.

Preview (by Randy Buckland). Supports GPX(U1S).
Uses PK files at 78dpi. Allows magnification of
preview window by TEX magsteps. Includes Font,
a program for viewing fonts on the VAXstation
display. Written in Ada. Source included. Suppliers:
Research Triangle Institute.

TZ/View. Supports DECwindows. Suppliers:
Northlake Software.

TP. Supports GPX(U1S). Uses PK or PXL files
at output driver resolution. Written in Fortran.
Source included. Distributed on your choice of IBM
5.25" disk, IBM 3.5" disk, Mac 3.5" disk. or TK50
cartridge (enclose your own or add $40 to order).
Cost: $185. Suppliers: TPSoftware.

TXUIS. Supports GPX(U1S). Uses PXL files.
Written in Fortran. Source included. Suppliers:
INFNICNAF.

XDVI. Supports DECwindows. Suppliers: DECUS
'QX Collection. FTP (ymir.claremont.edu).

Unspecified program. Suppliers: Philips
Kommunikations Industrie AG.

Supplier Information

0 Aarhus University

ArborText, Inc.

Contact: Sales Department. 535 W. William
Street, Suite 300, Ann Arbor, MI 48103.
Internet: sa lesQarbor text . com. 313-996-3566.

Aston

Contact: Peter Abbott.
Janet: abbottpmuk. ac. aston. Computing Service.
Aston Triangle. Birmingham B4 7ET. A complete
CODY of the Aston archive is available in VMS
BACKUP format on two 2400' tapes at 6250bpi. To
receive it send two blank tapes and return postage.
The Unix 7&X distribution may also be obtained in
exchange for one 2400' tape and return postage.

Aurion Tecnologia

Contact: Armando Jinich. Arquimedes #3, 501,
Polanco 11570, Mkxico, D.F. 905-545-7315.
Telex: 171314 NACOME.

Bechtolsheim

Contact: Stephen v. Bechtolsheim. 2119 Old Oak
Drive, West Lafayette, IN 47906. Send $80 ($110
outside the continental U.S.) and you will receive a
Sun cartridge plus complete documentation.

Bochum

Contact: Norbert Schwartz. Ruhr Universitat
Bochum. 49 234 700-4014.

Brigham Young University

Contact: Paul Malquist.
Internet: malquistp@yvax . byu. edu.

Canon

Carleton University

Contact: Neal Holtz. 613-231-7145.

Channel 1 BBS

Modem: 617-354-8873.

TUGboat. Volume 11 (1990), NO. 4

Clark rn FTP (expo.lcs.mit.edu)

Contact: James Clark. 30 Peel Street, London W8 rn FTP (foobar.co1orado.edu)
7PD England. UUCP: j j cQj clark. uucp.

rn FTP (giza.cis.ohio-state.edu)

Columbia University pub/oztex/other contains DVIM72-Mac.

Contact: Frank da Cruz. Center for Computing
rn FTP (june.cs.washington.edu)

Activities, Columbia University, 612 West 115th
Street, New York, NY 10025. 212-280-5126. Contact: Elisabet Tachikawa. 206-543-6259.

Internet: elisabetQrnax .u. washington. edu.
COS Information tex/dviapollo . tar. Z (DVIAPOLLO in compressed

Contact: Gilbert Gingras. 5647 rue Ferrier, Montreal tar file).

H4P 1N1, Quebec Canada. 514-738-2191.
rn FTP (nyu.edu)

CUBE Software Contact: Lou Salkind.

Contact: Warren W. Wolfe. 3002 Cadboro Internet: SalkindQAcf 8. N W . edu. pub/dmd . tar. Z
Bay Road, Victoria V8R 559, B.C. Canada. (DVIDMD in compressed tar file).

604-380-4592.
rn FTP (orc.olivetti.com)

DECUS TEX Collection pub/tmp/dvi2lj 1-11. tar. Z contains dvi2lj.

Library Order Processing, 219 Boston Post Road.
BP02, Marlboro, MA 01752. 508-480-3418,
508-480-3659, 508-480-3446.

Digital Equipment Corporation

Contact: John Sauter. 801128
Bates Road, Merrimack, NH 03054.
Internet: SauterxDssdev .DECQDecwrl . DEC . com.
603-881-2301.

rn Ecole Normale Superieure

Contact: Chantal Durand. Centre de Calcul, Ecole
Normale Superieure, 45 rue d'Ulm, 75005 Paris,
France.

rn FTP (b.psc.edu)

Contact: Anjana Kar. Internet: kar0b.psc .edu.
The GTEX files for VMS are located in
TEX$ROOT: [GPLOT] .

rn FTP (casce.psc.edu)

Contact: Anjana Kar. Internet: karQb . psc . edu.

rn FTP (cs.purdue.edu)

Contact: Stephan Bechtolsheim.
pub/svb/TeXPS/TEXPS-3.0. tar. Z contains the
dvitps driver.

rn FTP (cs.uiuc.edu)

Contact: Dirk Grunwald.
Internet: grunwaldQm. cs .uiuc . edu.
pub/TeX/uiuctex2.0. tar. Z contains Grunwald's
drivers.

rn FTP (csseq.tamu.edu)

rn FTP (ctrsci.utah.edu)

Contact: Nelson H. F. Beebe. 801-581-5254.
Internet: BeebeQScience .Utah. edu.

rn FTP (rusmv1.rus.uni-stuttgart.de)

Eberhard Mattes' drivers are distributed with
e m m in soft/tex/emtex.

rn FTP (science.utah.edu)

Contact: Nelson H. F . Beebe. (801) 581-5254.
Internet: BeebeQscience .utah.edu.
-ftp/pub/tex/pub/dvi/* and

-f t~/oub/tex/~ub/dvi/doc/* (Beebe drivers
and documentation).

rn FTP (ssyx.ucsc.edu)

rn FTP (stag.math.lsa.umich.edu)

Contact: Kevin Coombes.
Internet: kevinQmath. 1sa.umich. edu.
pub/kevin/dvidps .tar. Z (dvi3ps driver).

rn FTP (terminator.cc.umich.edu)

The Atari ST DeskJet driver is in /atari/tex.
Eberhard Mattes' drivers are distributed with the
e m m package in msdos/text-mgmt/TeX/emtex.

rn FTP (tut.cis.ohio-state.edu)

The 24-pin Epson driver for the Amiga is in
pub/amigo.

rn FTP (uk.ac.aston.tex)

Contact: Peter Abbott.
Janet: abbottpouk. ac . aston. Accessible to
JANET users only. Use Username PUBLIC,
Password PUBLIC. For information on Mail access
send a mail message with 3 lines containing (1) three
hyphens, (2) your return mail address, and (3) the
word HELP, to texserverQuk. ac. aston.
Gustav Neumann's DVI2XX is available
in [TEX-ARCHIVE .DRIVERS. NEUMANN] as
NEUMANN .BOO. Nelson Beebe's drivers are in
[TEX-ARCHIVE.DRIVERS.BEEBE1.

TUGboat , Volume 11 (1990), No. 4

0 FTP (wsmr-simtel20.army.mil)

0 FTP (ymir.claremont.edu)

Contact: Don Hosek.
Internet: dhosek0ymir. claremont .edu.
Bitnet: dhosekQhmcvax .bitnet. Get the
file [anonymous. texl Ooreadme . txt before
attempting to retrieve files. Text files from
this site are also available by requesting files
frommailserv@ymir.claremont.edu. Send the
command help to that address for more details.
[anonymous.tex.drivers.beebe2-10 . . . I
contains the Beebe drivers.
[anonymous.tex.drivers.beebe-extensions]

contains extensions to the Beebe driver family.

GA Technologies

Gesellschaft fur Mathematik und
Datenverarbeitung [I]

Contact: Ferdinand Hommes. GMD Zl.BN,
Postfach 1240, D-5205 St. Augustin 1, Federal
Republic of Germany. Bitnet: GRZTEXQDBNGMD21.
+49-228-8199621.

Gesellschaft fiir Mathematik und ,

Datenverarbeitung [2]

Contact: Dr. Wolfgang Appelt. Schloss
Birlinghoven - P F 1240, D-5202 St.
Augustin 1, Federal Republic of Germany.
UUCP: seismo!unido!gmdzi!zi.gmd.dbp.de!appelt.

Hewlett-Packard

Contact: Stuart Beatty. Hewlett-Packard Company,
3404 E. Harmony Rd.. Ft. Collins, CO 80525.
303-229-2067.

INFN/CNAF

Contact: Maria Luisa Luvisetto. Via
Mazzini 2, 40138 Bologna, Italy.
51-498286. Bitnet: MiltexQIboinfn.
DECnet: (39947: :luvisetto>. The files are
available only via DECnetISpan; for more
information on this, send mail to the DECnet
address: <39947: : luvisetto>. No tape distribution
from INFNICNAF is available.

Intergraph

Contact: Mike Cunningham. One Madison
Industrial Park, MS HQ1200, Huntsville, AL 35807.
205-772-2000.

JDJ Wordware

Contact: John D. Johnson. JDJ Wordware, P.O.
Box 354, Cupertino, CA 95015. 415-965-3245.
Internet: M. JohnQSierra. Stanford. edu.

JPL

Contact: Peter Scott.
Internet: p j s'/,grouchQ jpl-mil . jpl .nasa. gov.
818-354-2246.

Kinch Computing

501 South Meadow Street, Ithaca, NY 14850.
607-273-0222. FAX: 607-273-0484.

0 Laserprint

P.O. Box 35, D-6101 Frankisch Crumbach, Federal
Republic of Germany. +49-6164-4044.

Ling

Contact: Fuyun Ling. 202 Chestnut
Ave., Jamaica Plain, MA 02130.
Internet: lingf uyunQnuhub . acs .northeastern. edu.

0 Long

Contact: Jeff Long.
Internet: jlong@blackbird. af it. af .mil.
Mr. Long is only willing to distribute minimal files
to those who can't F T P and who already have the
bulk of the Beebe Driver package.

0 Louisiana State University

Contact: Neal Stoltzfus. Department of
Mathematics, Louisiana State University,
382 Lockett Hall, Baton Rouge, LA 70803.

504-388-1570.

Massachusetts Institute of Technology

Contact: Chris Lindblad. MIT A1 Laboratory,
Room 733, 545 Technology Square, Cambridge, MA
12138. Internet: CjlOReagan. ai .Mit . edu.

0 Max-Planck-Institut fur Aeronomie

Contact: Helmut Kopka. Max-Planck-Institut
fiir Aeronomie, Katlenburg-Landau, D3411,
Federal Republic of Germany. 49-556-41451.
Bitnet: Mio401@Dgogwd01.

0 n2 Consultants

Contact: Norman Naugle. P. 0 . Box 2736,
College Station, TX 77841. 409-845-3104.
Internet: Naugle@Ee . Tamu. edu.
Neumann

Contact: Gustav Neumann.
Bitnet: Neumann@Awiwuwll.

Northlake Software

Contact: David Kellerman. 812 SW Washington,
Portland, OR 97205. 503-228-3383.

UUCP: nls ! davek.

Oc6-Nederland

Contact: Jan van Knippenberg. Office Automation,
P.O. Box 101, 5900 MA VENLO, The Netherlands.
0-77-592222.

OCLC

Contact: Tom Hickey. 6565 Frantz Road, Dublin,
OH 43017. 616-764-6075.

TUGboat , Volume 11 (1990), No. 4

0 Ohio State University

Contact: Ms. Marty Marlatt. Ohio State University,
Department of Computer and Information Science,
2036 Neil Avenue, Columbus, OH 43210. The

drivers are distributed on either ANSI or TOPS-20
DUMPER tapes, with hardcopy documentation.
There is a $125 service charge (payable to Ohio
State University) to cover postage, handling,
photocopying, etc.

0 Oxford [I]

Contact: Paul Leyland.
Janet: pclQrobots.ox.ac.uk.

Oxford [2]

Contact: Dr. P.S. Aspinwall. Oxford University
Department of Theoretical Physics, Keble
Road, Oxford, OX1 3RH, United Kingdom.
44-865-273954. Internet: aspinQvax . oxford. ac . uk.
Janet: aspinQuk. ac .oxford. vax.

Personal TEX

Contact: Lance Carnes. 12 Madrona Street,
Mill Valley, CA 94941. 415-388-8853.
Telex: 510-601-0672.

0 Philips Kommunikations Industrie AG

TEKADE Fernmeldeanlagen, Attn. Dr. J. Lenzer,
Thurn-und-Taxis-Str., D-8500 Niirnberg, Federal
Republic Germany. +49-911-5262019.

0 Prime distribution tape

Contact: John M. Crawford. Computing
Services Center, College of Business, Ohio
State University, 1775 College Road, Columbus,
OH 43210. 614-292-1741. Bitnet: Craw4dQOhstvma.
Internet: Crawford-jQOSU-20.ircc.Ohio-State.edu.

Procyon Informatics

Contact: John F. Roden. Glendenning House,
7-8 Wicklow St., Dublin 2, Ireland. 353-1-791323.

Quixote

Contact: Don Hosek. 440F Grinnell, Claremont, CA
91711. Bitnet: DHOSEKQhmcvax.

Radel

Contact: Jon Radel. P.O. Box 2276, Reston, VA
22090. Software is distributed on 5.25" 360K floppy
disks. For floppies sent with a return mailer, there
is a charge of $1.50/floppy U.S. orders, $2/floppy
elsewhere. For orders where floppies are supplied by
Jon Radel, there is a charge of $5/floppy for U.S.,
Mexican and Canadian orders, $6/floppy elsewhere.
3.5" 720K disks are also available for the cost of any
two floppies each.

0 Radical Eye Software

Contact: Tom Rokicki. Box 2081, Stanford, CA
94309. 415-326-5312.

0 Research Triangle Institute

Contact: Randy Buckland.
Internet: rcbQrti .rti. org. The program is
available in the comp . sources .misc archives on
Internet and Usenet.

Scan Laser

Contact: John Escott. 6 Churchill Close, Hartley
Wintney, Nr Basingstoke, Hants RG27 2RA.
England. f44-1-638-0536.

Science Applications

San Diego, CA. 619-58-2616.

0 Stanford CMS distribution tape

0 Stanford DEC-20 distribution tape

Stanford VMS distribution tape

Contact: Maria Code. Data Processing Services,
1371 Sydney Drive, Sunnyvale, CA 94087.

0 Stichting Acad Rechenzentrum
Amsterdam

Contact: Han Noot. Stichting Math Centrum,
Tweede Boerhaavestraat 49, 1091 AL Amsterdam.
The Netherlands.

SullivanSFT

P. 0 . Box 292431. Lewisville, TX 75029.

Sun

Systemhaus fiir Elektronisches Publizieren

Contact: Robert Schoninger. Arndtstrasse 12,
5000 Koln, Federal Republic of Germany.

Talaris

Contact: Sam Hassabo. 619-587-0787.

0 Technical Research Center of Finland

Contact: Tor Lillqvist. VTT/ATK, Lehtisaarentie 2,
SF-00340 Helsinki, Finland. +358-04566132.
Bitnet: TmlQFingate.

0 Technische Hochschule Darmstadt

Contact: Klaus Guntermann. Fachbereich
Informatik, Insitut fiir Theoretische Informatik,
Alexanderstrasse 24, D-6100 Darmstadt, Federal
Republic of Germany. Bitnet: XITIKGUNQDDATHDZ 1.

Technische Universitat Braunschweig

Contact: Georg Bayer. Bitnet: C0030001QDbstul.

Users Group

P.O. Box 9506, Providence, RI 02940-9506.
401-751-7760. Internet: tughath. ams. com.

Texas A&M [I]

Contact: Bart Childs. Department of Computer
Science, Texas A&M University, College
Station, TX 77843-3112. 409-845-5470.
Internet: childsQcs. tamu.edu.

566 TUGboat , Volume 11 (1990), No. 4

Texas A&M [2] University of KSln

Contact: Ken Marsh. Thermodynamics Research
Center, Texas A&M University, College Station,
TX 77843. 409-845-4995. Bitnet: KMarshQTamnil.

Texas A&M [3]

Contact: Thomas Reid. Computing Services Center,
Texas A&M University, College Station, TX 77843.
409-845-8459. Bitnet: XO66TRQTAMVM1.

m s y s
Contact: Joachim Schrod. Kranichweg 1, D-6074
Rodermark, Federal Republic of Germany.
+49-6074-1617.

Tools GmbH Bonn

Contact: Edgar Fufl. Kaiserstrafle 48,
5300 Bonn, Federal Republic of Germany.
UUCP: . . . unido!bnu!fuss.

The Toolsmith

Contact: Jochen Roderburg.
Bitnet: A0045QDkOrrzkO. Rechenzentrum.
University of Koln, D5000 Koln 41, Federal Republic
of Germany. 02211-1478-5372.

0 University of Maryland

Contact: Chris Torek. Computer Science
Department, University of Maryland,
College Park, MD 20742. 301-454-7690.
Internet: ChrisQCs .Umd. edu. The Imagen
driver may be obtained via anonymous FTP from
a. cs .uiuc. edu in the directory pub/TeX, file
iptex. tar. Z or from mimsy .umd. edu in the directory
tex. file ctex.

University of Sheffield

Contact: Ewart North. Data Processing Unit,
University of Sheffield, Western Bank, Sheffield S10
ZTN, England. (0742)-78555 ext. 4307.

P.O. Box 5000, Davis, CA 95617. 916-753-5040. University of Sydney

TPSoftware Contact: Alec Dunn. School of Electrical
Engineering, University of Sydney,

Contact: Harold T. Stokes. P.O. Box 922, Provo, NSW 2006, Australia. 02-692-2014.
UT 84603-0922. ACSnet: alecdQf acet . ee. su. oz.
UniversitA Degli Studi Milan Internet: alecd%facet.ee.su.ozQSeismo.Css.gov.

Contact: Dario Lucarella. 02123.62.441. 0 University of Utah

Universitat des Saarlandes

Contact: Prof. Dr. Reinhard Wilhelm.
F B 10 Informatik, Im Stadtwald 15, D-6600
Saarbrucken, Federal Republic of Germany.
UUCP: uilhelmQsbsvax.WCP.

University of British Columbia

Contact: Afton Cayford. Mathematics - University
of British Columbia, 121-1984 Mathematics Road,
Vancouver V6T 1Y4, British Columbia, Canada.
604-228-3045.

University of California, Berkeley

Contact: Michael Harrison.
Internet: vortex0berkeley . edu.

University of California, Irvine

Contact: Tim Morgan. Internet: morganQuci. edu.

Contact: Nelson H. F. Beebe. Center for Scientific
Computing, Department of Mathematics,
220 South Physics, University of Utah,
Salt Lake City, UT 84112. 801-581-5254.
Internet: BeebeQscience .utah. edu. All of the
Beebe drivers are distributed together. They are
available on 1600bpi 9-track tape in VAXIVMS
BACKUP format. Unix tar format, and ANSI
D-format. Send US$100 for a copy. IBM PC floppies
are available from Personal or Jon Radel. The
programs are available for anonymous FTP from
science. utah . edu on the Internet; information
is in the file 'f tp/OOreadme . txt. A VAXIVMS
binary distribution is available for anonymous F T P
(password guest) from ctrsci .utah.edu. The file
OOreadme . txt in the login directory gives details.
On JANET, the programs may be obtained from
the directory aston. tex: : [public. texdvi2lOl. On

University of Heidelberg DECnet, they are available from the DECnet file
repository; for more information send mail to the

Contact: Joachim Lammarsch. DECnet address <39937: :luvisetto>. The drivers
Bitnet: RZ92QDHDUFiZ1. are available from Listserv on EARN to European

University of Kansas Bitnet users. Sending the command GET DRIVER
FILELIST (in an interactive message, or as the first

Contact: Edwin Bell.
line of a mail message) to LISTSERVQDHDURZl. Files

Bitnet: BellQUkanvax. SPAN: BellQKuphsx.
are obtained with the command GET filename

Internet: Bell%Kuphsx. SpanQStar. Stanf ord. edu.
f iletype.

Department of Physics and Astronomy, University of
Kansas, Lawrence, KS 66045. 913-864-3610. University of Washington

Contact: Elisabet Tachikawa. Northwest Computer
Support Group, University of Washington, Mail

TUGboat , Volume 11 (1990), No. 4

Stop DR-10, Seattle, WA 98195. 206-543-6259.
Internet: el isabetQmax . u . washington. edu.

University of Wisconsin

Contact: Ralph Stromquist. 1210 W. Dayton Street,
Madison, WI 53706. 608-262-8821.

Unix distribution tape

Contact: Elisabet Tachikawa. Northwest Computer
Support Group, University of Washington, Mail
Stop DR-10, Seattle, WA 98195. 206-543-6259.
Internet: el isabetQmax . u . washington. edu. The
Unix distribution tape may be obtained from the
Northwest Computer Support Group for $100 ($110
for foreign sites). It is available either as Unix tar
blocked 20, 1600 bpi, or in 114'' streamer cartridges
for the Sun workstation. The DEC-20 program is
available on request. Checks should be made payable
to the University of Washington.

van Oostrum

Contact: Piet van Oostrum.
Internet: p i e t Q c s . r u u . n l .

UUCP: pietQruuinfvax.WCP.

Washington University

Contact: Stanley Sawyer. Department of
Mathematics. Campus Box 1146. St. Louis,
MO 63130. 314-889-6703.

Weizmann Insititute

Contact: Malka Cymbalista. Computer Center,
Weizmann Institute of Science, Rehovot 76100,
Israel. 08-482443. Bitnet: VumalkiQWeizmann.

Xerox

Contact: Margot Nelligan. Xerox Printing Systems
Division, 880 Apollo Street, El Segundo, CA 90245.

213-333-6058.

XOrbit

P.O. Box 1345, D-8172 Lenggries, Federal Republic
of Germany. +49-8042-8081.

Yale University

Contact: Jerry Leichter. Bitnet: LeichterQYalevms.

Internet: Leich te r - j e r ryQcs . y a l e . edu. Available
for anonymous F T P from Venus. ycc . ya le . edu.

Log in as anonymous and do a CD [.DVIDISl . That -
0 Washington State University

directory contains the three required files needed to
run the previewer. The image must be transferred

Contact: Dean Guenther. Bitnet: GUENTHERQWSWMI. using BINARY mode.
Computing Service Center, Washington State
University, Pullman, WA 99164-1220. 509-335-0411.

Typesetters

VAX
VMS

558

558

558

558

559

UNlX

558

558

558

559

559

Sperry
1100

558

<

Siemens
BS2000

559

IBM

Ex

558

IBM PC

558

558

558

558

558

559

Allied Linotype
CRTronic

Allied Linotype L100,
L300P

Allied Linotype L202

Autologic APS-5,
Micro-5

Compugraphic 8400

Compugraphic 8600

Compugraphic 8800

Harris 7500

Hell Digiset

HP3000

558

CDC
Cyber

558

IBM
MVS

559

TUGboat, Volume 11 (1990), No. 4

TUGboat, Volume 11 (1990), No. 4

5 70 TUGboat, Volume 11 (1990), No. 4

Report from the D V I Driver Standards
Committee

Don Hosek

Attendees of the Texas A&M T@ Users Group Con-
ference will doubtless be disappointed to see the lack

of the full and final version of the Level 0 Driver

Standard on these pages. The public exposure of the

text revealed many unforeseen difficulties in some
of the aspects of the standard which have detained

completion of the standard unavoidably.
However, by the time that you read this the

standard should be available in its final form.
For those with net access, the files will be made
available from ymir . claremont . edu for F T P and
mail server access. F T P users should get the file
level0-standard-f inal. tex from the directory
[anonymous. tex. dvi-standard] . Those without
F T P access should send the command

send [tex. dvi-standard] level0-standard-f inal. tex

to mailservQymir . claremont . edu. This file will
also be available on MS-DOS floppy disks from Jon

Radel (see address on 483). The file will be a self-
contained IPm file. There also will be a file in
that directory called standard-news . txt which will

have the status of the standards development by
that time.

o Don Hosek
Quixote
440F Grinnell
Claremont, CA 91711
dhosekQymir.claremont.edu

Resources

Updates from All Over

Barbara Beeton

The Aston Archive

Some very general information: The top-level di-
rectory at Aston is TEX-ARCHIVE, username

PUBLIC, password PUBLIC. It contains files

named OOODIRECTORY.LIST, 000DIRECTORY.SIZE
and 000LAST30DAYS .FILES, which are respectively

short and long form directory listings, and the
names of any files that have changed in the past

month. All these files are updated every day, at

about 0130 local time. Note that these names

all start with three zeroes, unlike those mentioned
below, which have deliberately kept to a length

compatible with the lowest common denominator of

computers, namely IBM.

In addition. every directory in the tree contains
a OOFILES . TXT which gives a reverse chronological

list of all the files in the current directory. These
files are only updated whenever anything changes;

the programs and batch job to perform these daily

updates was written by Niel Kempson. Note that
the action of changing one of these files results in

that for the level above noticing that the directory
itself has changed. so the date of a OOFILES. TXT in

any of the first level directories TEX-ARCHIVE.*
will reveal when anything in that branch of the tree

was last addedlupdated.
A small request to w s e r v e r

<TeXserver@uk.ac.aston.tex>

or (in the U.S.)

as follows could collect all such first-level listings

in one go: they'll all arrive separately, unless you

care to append the /DCLAR qualifier to the files
command, to have it send you a batch job that will

reconstitute all the files:

FILES

[TEX-ARCHIVE.*]OOFILES.TXT

Your address will be extracted from the headers

arriving at Aston. If you wish to use a different
return address for the information to be mailed back

to you (perhaps avoiding certain gateways which
mangle ASCII during a conversion to/from EBCDIC),

then you may specify the return address (including

the necessary gateway) on the line preceding the
m s e r v e r command; prefix any such alternate

address with the directive PATH, followed by a
space. Also, if you are on a system in which

the case of letters in usernames is significant, you

may always wish to provide a PATH directive, as the
incoming mailer at Aston always upcases usernames

(a bug of which the supplier is aware).

Other valid m s e r v e r commands may be given

in the first non-blank line: HELP, DIRECTORY, FILES,

WHEREIS, or SEARCH.

The above information was provided by Brian
{Hamilton Kelly). (Thanks, Brian, and I love your

bow tie.)

TUGboat, Volume 11 (1990), No. 4 571

I have received a letter from Andrew Trevorrow,

in Hyderabad, India. As of the middle of Au-

gust he was nearly ready to release the O z W

implementation of 7&X 3.0.

In the letter, Andrew described one change

that should prove both useful and popular: "All

of W ' s large arrays are dynamically allocated

according to sizes appearing in a configuration file,
so users can easily change mem-max, font-max,

font-mem-size, hash-size, pool-size, etc., without
having to recompile m . "

O z w 1.3 should be at the usual archives by
the time you read this.

Public Domain TEX on PCs

The following information was forwarded by D.

Monk, of the University of Colorado, Boulder. Note
that the reference for e m m corrects an error in

TUGboat 11, no. 2; thanks to everyone who pointed

that out.

Note: The systems mentioned below can be

obtained from sources. other than those indicated.

Some of the internet numbers and directories may
change without notice. Access method for subdi-

rectories varies; go down one directory at a time.

1. A M S - W . Complete, with .mf sources for
the fonts. ftp 134.173.4.23, directory tex/mf / a m

and, for Russian fonts? tex/babel/russian/f onts-
uwash. (Claremont)

2. D o s m . m, I P W , driver and fonts for
Epson FX. Obtainable in SimTel archives, 26.2.0.74

or 1istservOndsuvm or, in Europe, via Earn trickle
servers. Files are pdl : cmsdos . tex>dostexl .arc
through . . . dostex6. arc.

3. Em=. A complete TEX with m, LAW,
METAFONT, many drivers and fonts (Epson FX,
HPLJ, Apple Laserwriter, etc.). In Europe ftp

to 129.69.1.12, directory soft/tex/emtex. In

USA ftp to terminator. cc. umich. edu, directory

msdos/text-mgmt/TeX/emtex.

4. S b w . only. Obtainable in SimTel
archives, 26.2.0.74 or 1istservQndsuvm or, in Eu-

rope, via Earn trickle servers. File

By ordinary mail, most of the above for PCs

can be obtained for mailing costs from Jon Radel,
P. 0 . Box 2276, Reston. VA 22090, USA. Send

self-addressed envelope with 45 cents postage (4

International Reply Coupons outside USA) for his

latest catalog.

The IPm help service

Max Hailperin informs us that "The LAW-help

volunteer question-answering round-robin service

has moved. Although the previously published

address at sumex-aim will continue to work for the
foreseeable future, greater reliability and speed will

be achieved by instead mailing to:

LaTeX-helpOcs.Stanford.edu

In related news, I have passed on the coordina-

torship to Ed Sznyter; many thanks to him for
volunteering."

T'Xware from the networks

An article from Peter Flynn giving an exhaustive list

of network sources for public domain and shareware
implementations of m, METRFONT, macros, and

everything related, will appear in the next regular

issue (TUGboat 12, no. 2).

Eplain

Karl Berry

I developed the eplain macros as part of producing

the book 7)i$ for the Impatient. Unlike the book,

however, they are free.
eplain stands for "extended plain'' (or "ex-

panded", if you like). I attempted to provide
macros that would be useful to most documents,

as the macros in plain w a r e , rather than ones

for high-level, "intensional", typesetting (such as a

\chapter command).

Specifically, I wrote macros implementing these

features (in no particular order):

left-justified displays

double column output

producing tables of contents
\hrule and \mule with a different default

than 0.4 pt
producing the time of day

listing files verbatim
generalized footnotes

blank and black boxes
citations using BIB^, a la I P W

5 72 TUGboat, Volume 11 (1990). No. 4

Oren Patashnik took the macros implementing
the last of these, citations B la I4m. and put them
into a separate file, 'btxmac . texl . (He modified
them a bit at the same time.) 'eplain. tex ' \ inputs
'btxmac . tex ' , naturally.

The epla in distribution includes a 20-odd page
user manual. Besides the features above, it describes
some other definitions that may be useful to people
writing their own macros. The user manual is
written in Texinfo format, and therefore can be
translated to a form readable by GNU ern^ cs, as
well as printed.

You can get the epla in distribution via anony-
mous ftp from the hosts

i c s .uc i . edu
1abrea.stanford.edu

and

successful answer to the first question. My thoughts
on the second question follow below.

for the Impatient has a very appealing
front cover: the white rabbit from Alice in Won-
derland (the one that exclaims "Oh dear, I shall be
too late!") is sitting, looking at his watch, very im-
patiently. The inside of the book looks good. Com-
puter Modern is used for the text, with a surprising
but very satisfactory choice of Optima bold for head-
ings. Thirteen chapters and an index make up the
approximately 360 pages of the book.

After two inevitable chapters 'Using this book'
and 'Using m', follows an interesting third chap-
ter: 'Examples'. Ten page-long examples with the
input on the facing page give a good impression of
m ' s capabilities, and give the novice a source of
commands and constructs to study (and copy).

ftp.cs.umb.edu Chapter four 'Concepts' starts the reference
part of the book. Instead of merging the list of con-

It is available as a compressed tar file and, on
cepts treated here into the table of contents, the

the latter two, also as straight text files. The
authors decided to print it separately on the in-

file 'btxmac.tex' is also available on its own from
side of the back cover. An unusual idea, but I like

labrea . s tanf ord. edu. I encourage other archives
it. The list is some 90 terms long, and the chap-

to redistribute eplain. I am also willing to send it
ter spans 55 pages. Individual concepts are there-

via electronic mail to people who cannot get it any
fore treated briefly but the explanations are clear

other way.
and well-written, and there are many references to

o Karl Berry
135 Center Hill Rd.
Plymouth, MA 02360
karlQcs.umb.edu

New Books on

Victor Eijkhout

One of the aspects of TEX that sets it apart from
other text processors is the fact that there exists
an ultimate reference: The W b o o k . As its in-
troduction states, this book is both for people who
have never used T& before and for the experienced
hackers alike. for the Impatient makes a simi-
lar claim: Paul Abrahams, the senior author, asked
himself "What kind of book would have made it eas-
ier for me to learn 7J$? What kind of book would
I need now, as a more experienced user, to locate
commands or functions that I never learned or only
half remember?" In my opinion he, and co-authors
Karl Berry and Kathryn Hargreaves, have given a

the subsequent chapters which treat individual com-
mands. In this chapter I appreciated especially the
fact that the authors use the anatomical analogy for
m ' s workings, and refer to it repeatedly.

Although the authors suggest that novices, af-
ter having read chapters 1-3, start looking up com-
mands and concepts as needed from the summary
of commands (chapter 13), I feel that chapter 4 is
really also part of the introduction to m. Call it
a higher introduction.

The following chapters, 5-9, treat TEX com-
mands, grouped by subject. Here too the expla-
nations are clear, but they are less complete than
I would like them. It was a wise decision not to
treat each command separately, but to tackle a few
commands at a time, for instance \hss and \vss, or
\unskip, \unkern, and \unpenalty.

Chapters 10-12 are probably a good selling
point for this book: let it suffice that the titles
are 'Tips and techniques', 'Making sense of error
messages', and 'A compendium of useful macros'.
This last chapter contains an 'extended p l a in for-
mat' (see also p. 571), defining valuable macros, such
as those for cross references and left-aligned dis-
play equations. Explanations of these macros limit
themselves to explanations of the way to use them.
A 'Capsule summary of commands' and an index
complete the book.

TUGboat, Volume 11 (1990), No. 4 573

On the whole, I find this book very clearly
written, and all its information is readily accessi-
ble. However, I was perturbed by the small errors
that I found. For instance, the delimiters around
\ . . withdelims commands don't grow as the au-
thors claim; they are determined by font parame-
ters 20 and 21 of the symbol font. Also, the re-
marks about the depth (height) of a \vbox (\vtop)
on pages 52 and 16112 are at odds; in most cases
this dimension is the depth (height) of the last
(first) box or rule. On page 52 it is stated that
this value is zero if the last (first) item is kern
or glue, but on page 16112 it is stated that the
value is zero if the last (first) item is not a box
or rule. The first statement is incomplete for the
\vtop, because \vtop{\write\f ileC . . .) . . .) also
has a zero height; the second statement is wrong for
the \vbox, because \vbox(. . . \write\f i l e (. . . 3)
need not have zero depth.

As I mentioned above, the question underly-
ing this second part of the book was "What kind
of book would I need now, as a more experienced
user, . . . " . By 'experienced user' the authors appar-
ently do not mean an aspiring TEX hacker, since this
book explains the effects of commands, but little of
the large scale mechanisms connecting them.

For instance, one technique in chapter 10.
'Leaving space at the top of page', is treated in a
mere five lines: the reader is told that \vskip does
not work, but that \topglue does. I was particu-
larly struck by this, since I didn't know the latter
command, which is a late addition to QX version 3.
Neither here, nor in the systematic reference chap
ters is it mentioned whether this is a macro or a
primitive. That information can only be found in
the command summary; it is not even in the index,
as it is in The W b o o k .

Another example: page 86 states that "When
T)$ breaks a page, it discards any sequence of glue,
kerns, and penalty items that follows the break .
This is rather a simplification of what really hap-
pens; one might even say that this is just not true.
However, it is a convenient way of looking at things,
and as long as you stick to the p l a in TJ$ output
routine you never notice the difference.

The most obvious sign that the authors do not
aim at hackers is of course the fact that they
repeatedly refer to The p b o o k for the details. On
page 167 they say "if you want to get adventurous
you can learn all about it from pages [. . .] of The
w b o o k " .

In general, this book gives good factual infor-
mation, and the information is very easy to find.

What it lacks are the explanations, not of commands
but of mechanisms.

But, since some very handy macros are given
in chapter 12, this book can be useful for people
wanting to understand and modify or extend exist-
ing macros. And as an introduction, it is simply a
good book.

o Victor Eijkhout
Center for Supercomputing

Research and Development
University of Illinois
305 Talbot Laboratory
104 South Wright Street
Urbana, Illinois 61801-2932. USA
eijkhoutQcsrd.uiuc.edu

A Proto-TUG Bibliography:
Installment Three

Barbara Beeton

Two installments of a TUG bibliography have ap-
peared in previous issues. The list below continues
with references to books and articles about m,
MQX, WEB and related topics. or prepared using one
of these tools. Thanks to the many readers who have
added to the file, and especially to Nelson Beebe,
whose core bibliographies have given us a model to
follow in o w additions and a permanent place to
file the information so that it will be accessible to
all electronically.

Please continue to send in your suggestions.
The elements that we want to include are de-
tailed with the last installment (TUGboat ll, no. 2.
p. 208).

Publications about

Neenie Billawala. Metamarks: Preliminary studies
for a Pandora's Box of shapes. Technical Report
STAN-CS-89-1256, Stanford University Computer
Science Department, May 1989.

Francis Bourceux. U r n - l a perfection duns le
traitement du texte. Editions Ciaoco, Artel, Brux-
elles. Belgium, 1990. ISBN 2-87085-194-4.

Cahiers GUTenberg, 1988-. Journal of Groupe
des Utilisateurs de TJ$ Francophones, (group of
French-speaking TJ$ Users).

comp.text.tex, 1989-. This is an unmoderated
Usenet discussion list about T)$.

574 TUGboat, Volume 11 (1990), No. 4

Jacques Deiarmenien. How to run TJ$ in
French. Technical Report STAN-CS-84-1013,
Stanford University, August 1984.

Victor Eijkhout and Nico Poppelier. Wat is W .
T WIOscoop, 8(2):44-48, 1990.

Paul M. English. Using METAFONT for original
font design. August 1987 (unpublished).

K. Cleo R. Huggins. Egyptian hieroglyphs for
modern printing devices. Technical Report STAN-
CS-89-1251, Stanford University, June 1988.

Donald E. Knuth. Mathematical typography.
Technical Report STAN-CS-78-648, Stanford Uni-
versity, February 1978.

Donald E. Knuth. The letter S. Technical Report
STAN-CS-80-795, Stanford University, April 1980.

Donald E. Knuth. The concept of a meta-font.
Technical Report STAN-CS-81-886, Stanford Uni-
versity, October 1981.

Donald E. Knuth. Lessons learned from META-

FONT. Technical Report STAN-CS-83-978. Stan-
ford University, August 1983.

Donald E. Knuth. Literate programming. The
Computer Journal, 27(2):97-111, May 1984.

Donald E. Knuth. Digital halftones by dot diffu-
sion. ACM Transactzons on Graphics, 6(4):245-
273, October 1987.

Donald E. Knuth. The errors of m . Techni-
cal Report STAN- CS-88- 1223, Stanford Univer-
sity Computer Science Department, September
1988.

Donald E. Knuth. Calling all grand wizards.
m h a x , 89(98), November 1989.

Donald E. Knuth. The errors of m. Soft-
ware-Practzce and Experzence, 19(7):607-681,
July 1989. This is an updated version of the Stan-
ford CS report.

Donald E . Knuth. Virtual fonts: More fun for
Grand Wizards. m h a x , 90(11 and 12), January
1990.

Donald E. Knuth. Virtual Fonts: More Fun for
Grand Wizards. TUGboat, 11(1):13-23. April
1990.

Donald E. Knuth and Joe Weening. New m/
METAFONT sources available on Stanford's master
archive. m h a x , 90(13), January 1990.

Helmut Kopka. U m - E i n e Eznfuhrung. Addi-
son-Wesley, 1990. ISBN 3-89319-199-2.

Helmut Kopka. UTjjX-Erwezterungsmoglich-
keiten. Addison-Wesley, 1990. ISBN 3-89319-287-
5.

Steen Larsen. DTjjX p i dansk. UNIoC, Danmarks
EDB-Center for Forskning og Uddannelse, 1989.
ISBN 87-7252-089-2.

Michael Lesk. GRAB-inverted indexes with low
storage overhead. Computzng Systems. 1(3):207-
220, 1988.

Franklin Mark Liang. Word hy-phen-a-tion by
com-put-er. Technical Report STAN-CS-83-977,
Stanford University, August 1983.

m Nederlandstalige W gebruikersgroep, 1989-.
Journal of the NTG (Dutch-speaking Users
Group.

Lynn Ruggles. Letterform design systems. Techni-
cal Report STAN-CS-83-971, Stanford University,
April 1983.

Lothar Schumann. Professzoneller Buchsatz mzt
m . R. Oldenbourg Verlag, Munich and Vienna.
1989. ISBN 3-486-21173-0.

David R. Siegel. The Euler project a t Stanford.
Technical report. Stanford University, 1985.

Richard Southall. Designing new typefaces with
Metafont. Technical Report STAN-CS-85-1074,
Stanford University, September 1985.

Michael D. Spivak. UMS-TjjX, The Synthe-
szs. The w p l o r a t o r s Corporation, 3701 W. Al-
abama, Suite 450-273, Houston. TX 77027, USA.
1990.

Michael D. Spivak. The Joy of !&?-A Gourmet
Guzde to Typesettzng with the AMS-T&X macro
package. American Mathematical Society, 2nd re-
vised edition, 1990.

W E u r o , 1989%. This is an unmoderated dis-
cussion list for m with emphasis on Euro-
pean issues. To subscribe. send a request with
the text subscribe tex-euro to 1istservQ-
dhdurzl.bitnet.

m h a x , 1987-. This is a TUG-supported mod-
erated electronic mailing list. To subscribe, send
a request to texhax-requestQjune. cs .washing-
ton. edu.

m l i n e . Malcolm Clark, editor, 1987-. This is an
informal newsletter of the w community.

w m a g , 1988-. This is an electronic maga-
zine with articles about m. To subscribe, send
a request with the text subscribe texmag-1 to
listservQvm.byu.edu.

UKTeX. 1987-. This is an electronic discussion
list for 'l&X issues in the United Kingdom.

Publications prepared with TEX

Harold Abelson and Gerald Jay Sussman, with
Julie Sussman. Structure and interpretatzon of
computer programs. MIT Press, Cambridge, MA,
1985. ISBN 0-0262-01077-1.

m The American Bibliography of Slavic and East Eu-
ropean Studies, Barbara Dash, editor. Library of

TUGboat, Volume 11 (1990), No. 4

Congress, 1988. IPm for text; plain m for 3-
column index.

American Mathematical Society, 198x. By the end
of the 1980s, almost all AMS journals and mono-
graphs have been set using m. This entry needs
to be replaced by an explicit list of them.

S. Angus, B. Armstrong, and K. M. de Reuck.
Chlorzne Tentatzve Tables. IUPAC chemical data
series. Pergamon Press, Oxford, 1985. ISBN 0-08-
030713-2. Typeset using m 8 0 .

= Richard H. Battin. An Introductzon to the Math-
ematzcs and Methods of Astrodynamzcs. AIAA
Education Series. American Institute of Aeronau-
tics and Astronautics, New York, 1987. ISBN O-
930403-25-8.

= Rodney A. Brooks. Programmzng zn Common
Lzsp. Wiley, 1985.

Elizabeth A. Cashdan, editor. Rzsk and Uncer-
taznty zn Trzbal and Peasant Economzes. West-
view, San Francisco, 1990.

= Hal Caswell. Matrzx Populatzon Models. Sin-
auer Associates, Sunderland, Massachusetts, 1989.
ISBN 0-87893-094-9 (cloth) 0-87893-093-0 (pa-

per).
Malcolm Clark, editor. Coastal research: UK per-
spectzves, Norwich. UK. 1984. Geo Books. ISBN
0-86094-166-3. Typeset using m 8 0 .

Malcolm Clark. pc-Portable Fortran. Computers
and their applications. Ellis Horwood, 1986. ISBN
0-7458-0005-X. Laser-printed using m .

= Computational linguistics, James S. Allen, editor,
1991. To be published quarterly by MIT Press;
fonts not yet finalized.

Complex Systems, Stephen Wolfram, editor. Com-
plex Systems Publications Inc., 1987. Technical
journal published six times per year, using Com-
puter Modern fonts.

Guy L. Curry. Bryan L. Deuermeyer, and
Richard M. Feldman. Dzscrete Szmulatzon: Funda-
mentals and Mzcrocomputer Support. Holden Day,
1989. ISBN 0-8162-2080-3.

Dam Engineering. Reed Enterprise, Reed Business
Publishing Group, Room 922, Quadrant House,
The Quadrant, Sutton, Surrey SM2 5AS, UK,
January 1990. Publication of International Water
Power & Dam Construction. Laser-printed using

urn.
Arthur de Gobineau. "Mademozselle Irnozs" and
Other Storzes". University of California Press,
Berkeley, 1988. ISBN 0-520-05946-8. translated
and edited by Annette Smith and David Smith.

= Carl L. DeVito. Functzonal Analyszs and Lznear
Operator Theory. Addison-Wesley, 1990. ISBN
0-201-11941-2.

R. Kent Dybvig. The SCHEME Programmzng
Language. Prentice-Hall, 1987.

Paul J. Ellis and Y. C. Tang, editors. Trends zn
Theoretzcal Physzcs. Addison-Wesley, 1990. ISBN
0-201-50393-X.

8 Electronic Publishing-Origination, Dissemina-
tion, and Design. Wiley, 1988-. This journal ac-
cepts papers in T)jX form.

Stephen A. Fulling. Aspects of Qumtum Fzeld
Theory zn Curved Space-Tzme. London Math-
ematical Society Student Texts, 17. Cambridge
University Press, Cambridge, 1989. ISBN 0-521-
34400-X (hardcover), 0-521-37768-4 (paperback).
This book was prepared with P C m ; the figures
were prepared with PI-.

Rosalind S. Gibson. Prznczples of Nutrztzonal As-
sessment. Oxford University Press. 1990. ISBN
0-19-505838-0. Set by IPW, with graphics from
Harvard Graphics and Adobe Illustrator: designed

-

by Ian L. Gibson and Philip Taylor with the as-
-

sistance of the publisher. The book is typeset in
Adobe Times Roman 10.5112 and 8.5110.5, with

-
figure annotation in Adobe Helvetica. The reasons
for the unusual font size are described in Philip
Taylor's m 9 0 conference paper. to appear in
TUGboat 12, no. 1, 1991.

Philip E. Gill, Walter Murray. and Margaret H.
Wright. Practzcal Optzmzzatzon. Academic Press,
London, 1981. ISBN 0-12-283952-8.

Daniel H. Green and Donald E. Knuth. Mathe-
matzcs for the Analyszs of Algorzthms. Birkhauser.
second edition, 1982.

W. Daniel Hillis. The Connectzon Machzne. MIT
Press, Cambridge, Mass., 1985 (1989 softbound).
ISBN 0-262-08157-1 (hardcover), 0-262-58097-7
(softbound). This book was prepared with I P m .

IEEE Transactions on Electrical Insulation,
1989-.

Eeva Ilola and Arto Mustajoki. Report on Rus-
szan Morphology As It Appears zn Zalzznyak's
Grammatzcal Dzctzonary. Number 7 in Slavica
Helsingiensia. Helsinki, 1989. ISBN 951-45-4904-
X. Typeset using AM and MCYR fonts.

The Journal of C Language Translation, Rex
Jaeschke, editor. 1810 Michael Faraday Drive.
Suite 101, Reston, VA 22090, USA. Tel: (703) 860-
0091. E-mail: uunet laussiel j c t , 1989-.

Journal of Geophysical Research. The American
Geophysical Union, 2000 Florida Avenue, NW,
Washington, DC 20009. This journal accepts pa-
pers in w form.

Samuel N. Kamin. Programming Languages:
An Interpreter-Based Approach. Addison-Wesley,
1990. ISBN 0-201-06824-9.

576 TUGboat, Volume 11 (1990), No. 4

m James P. Keener. Principles of Applied Mathemat-
ics. Addison-Wesley, 1988. ISBN 0-201-15674-1.

B j ~ r n Kirkerud. Object-Oriented Programming
with Simula. Addison-Wesley, 1989. ISBN 0-201-
17574-6. Typeset using U r n .

David M. Kreps. A Course in Microeconomic The-
ory. Princeton University Press, 1990. ISBN O-
691-04264-0. Typeset using Postscript and Com- - - -
puter Modern fonts.

Rolfe A. Leary. Interaction Theory in Forest Ecol-
ogy and Management. Martinus Nijhoff/Dr W.
Junk Publishers, 1985. ISBN 90-247-3220-4.

Jack London. John Barleycorn: Alcoholic Mem-
oirs. Oxford University Press, Oxford, 1989. ISBN
0-19-281804-X. edited with an introduction by
John Sutherland.

Marc Mange1 and Colin W. Clark. Dynamic Mod-
eling in Behavioral Ecology. Princeton University
Press, Princeton, NJ, 1988.

Mathematica Journal, Stephen Wolfram, editor.
Addison-Wesley, 1990.

Neural Computation, Terrence Sejnowski. editor.
MIT Press, 1989. Technical journal published four
times per year, using PostScript and Computer
Modern fonts.

Yoh-Han Pao. Adaptive Pattern Recognition and
Neural Networks. Addison-Wesley, 1989. ISBN
0-201-12584-6.

Sebastian P. Q. Rahtz, editor. Information Tech-
nology in the Humanities, Computers and their
applications. Ellis Horwood, 1987. ISBN 0-7458-
0148-X. Laser-printed using IPW.

Tom Richards. Clausal Form Logic. Addison-Wes-
ley, 1989. ISBN 0-201-12920-5. Typeset using

w.
David F. Rogers. Procedural Elements for Com-
puter Graphics. McGraw-Hill Publishing Com-
pany, 1985.

Robert Sedgewick. Algorithms in C. Addison-
Wesley, Reading, 1990. ISBN 0-201-51425-7.

John Sutherland. The Longman Companion to
Victorian Fictzon. Longman, Burnt Mill, Harlow.
Essex, England, 1989. ISBN 0-582-49040-5. Pub-
lished in the U.S. as The Stanford Companion to
Victorian Fiction, (Stanford: Stanford University
Press, 1989).

John Sutherland. Mrs Humphry Ward: Eminent
Victorian, Pre-eminent Edwardian. Oxford Uni-
versity Press, Oxford, 1990. ISBN 0-19-818587-1.

Tommaso Toffoli and Norman Margolus. Cellular
Automata Machines. MIT Press, Cambridge, MA.
1987. ISBN 0-262-20060-0.

Ib Troen and Erik Lundtang Petersen. El At-
las Edlico Europeo. R i s ~ National Laboratory,
Roskilde, Denmark, 1990. ISBN 87-550-1638-
3. Typeset on a Canon Series I11 300-dpi laser
printer, with extensive graphics and data tables;
the data files are available on IBM PC diskettes.

TV Guide magazine, 1987. Portions of this mag-
azine (20 million issues weekly) are set with QX.

Robert Ulichney. Digital Halftoning. MIT Press,
1987. ISBN 0-262-21009-6.

VAX VMS version 4.x and 5.x manuals. Digi-
tal Equipment Corporation, 1988. The complete
VMS manuals sets are produced with m, but
authors actually prepare input in a form suitable
for an earlier in-house system, which is then auto-
matically translated to m form.

Bruce S. Weir. Genetic Data Analysis. Sinauer,
Sunderland, Mass., 1990.

Herbert S. Wilf. Algorithms and Complexity.
Prentice-Hall. 1986.

The 1990 DECUS Collection

Ted Nieland

The DECUS Languages and Tools SIG Public Do-
main Working Group and the Electronic Publishing
SIG m/IPTpX/WEB Working Group are proud to
announce the 1990 DECUS TEX Collection. This
collection offers nearly everything a T@ User would
want on their system for TEX.

The master tapes for the collection have been
sent to DECUS Library and to the top of the DECUS
LUG distribution tree. The new collection will be
available to all shortly through their channel for
procuring DECUS Software.

This collection is an extensive rework of the
previous collection with nearly all of the material
being updated or new. More DVI drivers have been
added and many of the VMS programs now sport a
CLD interface.

Also, an extensive effort on documentation has
taken place resulting in a DECUS 'QX Help Library.

The following items are included in the DECUS
TpX Collection 1990:

WEB (Tangle 4.0 / Weave 4.1)
Version 3.0

TUGboat, Volume 11 (1990), No. 4 577

METRFONT Version 2.0

I P ' Macro Package 2.09 (7 Dec 1989) (with

mod for W 3.0)

S L W Macro Package 2.09 (7 Dec 1989)
(with mod for m 3.0)
 BIB^ Version 0 . 9 9 ~

W s i s Macro Package Version 2.13

DVIOUT Version 1.2
DVIPS for VMS. Version 5.35

DVItoVDU Version 3.2

DVItoLN03 Version 3.1-4
XDVI (with support for DecWindows)

TEXX (with support for DecWindows)
Vassar Spell Version 2.2

FWEB (including support for VMS)

CWEB (including support for VMS)
MWEB

TIB

CRUDETYPE

DVIDIS (for VAXstations Running VWS)

GPLOT 4.23
RNOTOTEX

IDX'

G l o w

DVIDVI
MAKEINDEX

PI-
W T Y L

DVI2TTY
LSE Templates for LATEX and BIB^
MFWARE (GFtoPK. GFtoPX. etc)

PICMODE
TR2TEX

WS2LATEX

AMS-' Macro Package
A M S - I P ' Macro Package
PHYZXX Macro Package

PHYSE Macro Package

Script' Macro Package

Mu' Package (including METAFONT files)
Clarkson I 4 W & BIB^ Style Collections
DECUS TEX Help Library

Beebe Utah DVI Driver Collection with

additional submissions
DVI2PS

Many Font Additions (Concrete, Diirer,

Chess. DECUSLOGO, among others)
Support for foreign languages including

Dutch, French. German, Greek. Hebrew.

Icelandic, Italian. Japanese, Korean.
Portuguese. Russian, Spanish, Thai, Turkish,

and Vietnamese

TEX for the Amiga with some DVI Drivers

and the U'I'EX Picture Editor (LPE)

TEX for the Macintosh (O z w) . along with
BIBTEX. and DVI drivers

m for MS-DOS. plus previewers and DVI
drivers

Various w w a r e for UNIX, including WEB2C

and X' (for DECstations)

The following output devices are supported:

- DEC LN03 (requires a RAM Cartridge)
[DVITOLNO3]

- DEC LN03 Plus (uses bitmaps) [DVIL3P]
- DEC LA75 [DVI175]

- Postscript (LPS40. Apple Laserwriter,

LN03S) [DVIALW. DVIPS, DVIOUT. GTEX]
- Hewlett Packard Laserjet [DVIJET]

- Hewlett Packard Laserjet Plus [DVIJEP]

- Cannon Engine Laserprinter [DVICAN]

- EPSON Printer [DVIEPS]
- Printronix Printer [DVIPRX]

- Okidata Pacemark 2410 (72 or 144 DPI)

[DVIOKI]
- VT terminals. ReGIS Terminals. Tektronix

Terminals [DVITOVDU]

- VAXstations running VWS [DVIDIS]

- DECWindows [XDVI. 'XI
- Version 3.10 BBN BitGraph Terminal

[DVIBIT]
- Golden Dawn Golden Laser 100 printer

[DVIGD]
- Imagen imPRESS-language laser printer

family [DVIIMP]

- Apple Imagewriter 72 or 144 dpi printers
[DVIM72 or DVIMAC]

- MPI Sprinter 72 dpi printer [DVIMPI]

- Toshiba P-1351 180 dpi printer [DVITOS]

- Generic Output [DVI2TTY]
- QMS Laser Printers [GTEX]

The collection includes numerous example files

including A Gentle Introduction to by Michael

Doob and Essential L A W by Jon Warbrick.

For more information on getting a copy of the
DECUS m Collection, contact your DECUS Local

User Group or the DECUS Library at:

DECUS Library (BP02)

219 Boston Post Road

Marlboro, MA 01752-1850

(508) 480-3418/3659/3446

The IVRITEX Mailing List

Don Hosek

IVRITEX is a discussion list primarily for those using
rn to typeset Hebrew. The forum, like m h a x ,
is intended for both users and implementors. The

primary focus is on the use of the m-w program
for typesetting Hebrew text and the font problem,

but discussion of issues regarding other m add-

ons for handling R-L text and/or issues regarding
other R-L languages (e.g., Arabic, Aramaic, etc.) is

encouraged. An informational message summarizing

the state of Hebrew w is posted to the list on a

bi-weekly basis.
Users may subscribe to the list by sending the

following command as the first line of a mail message
to the Bitnet address LISTSERVQTAUNIVM:

SUBS IVRITEX your full name

(Your name is not your net-address.) Non-Bitnet

subscribers may need to explicitly route all messages
to TAUNIVM through an appropriate mail gateway,

e.g.1

LISTSERV%TAUNIVM.BITNETQCUNYVM.CUNY.EDU

If the attempt is successful, you will receive a mail

message from the listserver notifying you that you

are added to the list.
There is also an archive of files for Hebrew

available from LISTSERVQTAUNIVM. To get a list of
files available from the listserver, send the command

INDEX IVRITEX to LISTSERVOTAUNIVM. For help on

accessing files from the listserver. send the command

HELP.

0 Don Hosek
440F Grinnell
Claremont, CA 91711
dhosek@ymir.claremont.edu

VM/CMS Site Report

Joachim Lammarsch

The new changes for 7&X 3.1 et al. are finished and

will be available on the next distribution tape which

can be ordered from Maria Code next January.
Peter Breitenlohner, who has written all the new

changefiles, has developed a new program named

DVICOPY which reads a dvi-file containing virtual
fonts and writes a dvi-file containing real fonts.

TUGboat, Volume 11 (1990). NO. 4

To make the changefiles and the new pro-
gram available. I have created a new filelist at

LISTSERVODHDURZI .BITNET named VM-CMS which

contains the new files.

To get an index send the command

GET VM-CMS FILELIST

to the server. To get a file send the command

GET filename f i l e t y p e VM-CMS

Further news will be announced in the discussion list

TEX-IBM. To subscribe to this list send the command

SUB TEX-IBM firstname familyname

to your nearest listserv.

Dean Guenther has made available the whole
distribution tape via FTP from

WSWM1.CSC.WSU.EDU

(134.121.1.39). Login with the account TEX, pass-

word is GUEST.

0 Joachim Lammarsch
Computing Center
University of Heidelberg
Im Neuenheimer Feld 293
6900 Heidelberg 1

Germany
Bitnet: X92QDHDURZi

Typesettings on PCs

7l&X Implementations for IBM PCs:
Comparative Timings

Erich Neuwirth

Timing tests were performed on several implemen-

tations of rn for IBM PCS (and compatibles).

These were the tested versions:

P C m 2.93 (2.9b)
P u b l i C w 2.99

SB 'ID 2.9

S B W 3.0
PW 2.96.2
D O S w 2.93a

em= 2.99 [2g]

e m w 3.0 [2h]

The files used for testing:

TUGboat, Volume 11 (1990), No. 4

Textl is The =book.* It is 494 pages long.

Text2 is a mathematical paper which needs

I 4 W and PI^, so it really uses lots of
memory. The document is 11 pages long.

Text3 is a book of solutions for a college
mathematics textbook. It consists almost

completely of formulas and there is almost

no text. It is among the most complicated
m files I have ever seen. It uses I 4 W and

additionally the msxm and msym fonts from (old)

A M S - ~ . The document is 40 pages long.
Text4 is the demo file for M u s i c w , which is

a rather large macro package for typesetting
music. The document is 2 pages long.

Text5 is Michael Wichura's original paper from

TUGboat 9. no. 2. describing m. It

makes extensive use of PICI&X macros and also
uses rather large data sets for the graphics.

Additionally it uses the TUGboat macro files

(in a stripped down version). The document is
10 (narrower than a page) columns long.

* The file for The =book used with permission

of the American Mathematical Society.

Table 1. Test times

Textl Text2

12:ll (3) 1:28

27:32 2:28
14:28 1:26

13:35 1:21
15:51 (1)

16:31 (1)
11:32 (1)

30:51 2:21
29:38 2:17

15:05 1:14
14:44 1:12

Table 2. Relative performance

Text 1

0.90
2.03

1.07
1.00

1.17
1.22

0.85
2.27

2.18
1.11

1.08

Text 2

1.09
1.83

1.06

1.00

1.74

1.69

0.91

0.89

Text6 is Barbara Beeton's review and the
Boston Computer Society mathematical text

processor benchmark from TUGboat 6, no. 3.

It (naturally) contains complicated formulas

and uses the TUGboat style. The document is
4 pages long.

Table 1 shows the times associated with the tests.
The following special events occurred during

the benchmark:
(1) hash table size exceeded, program stopped.

(2) capacity exceeded, program stopped.
(3) Textl, Text4, Text5, and Text6 under

P C w had to be run with additional command
line parameters, /f =26OOO /m=65000 in our case.

P u b l i C w (in normal run) used the hard disk

for virtual memory
If we take S B W 3.0 as the base for a

comparison of performance, we get relative indices

of performance as shown in Table 2 (a low value

indicates fast performance).
All programs were run on a 25MHz 386 machine

with MSDOS 3.3 installed. All programs were run

with QEMM-386 installed giving 960K of simulated
expanded memory and 600KB free main memory.

Text3

3:39
6:17

3:27
3:14

(2)
3:28

3:17

7:18
7:lO

3:11

3:02

Text 3

1.13

1.94

1.07

1.00

1.07
1.02

2.26

2.22

0.98

0.94

580 TUGboat, Volume 11 (1990), No. 4

Additionally. a real "stress" test was per-
formed with all these implementations of m.
Text5 was "hardened": \Lasertrue (a switch from

TUGboat . s t y) was added (doing real two-column

setting in m), which usually has the consequence
of needing much more TEX main memory. Addi-

tionally (in the third degree) all \e j e c t commands
introduced to use W ' s memory cautiously were

removed from Texts.

Only b i g e m w and b igemm286 survived
this test. The running times were:

b i g e m w 3:34

b i g e m m 2 8 6 3:33

Other implementors are invited to provide
copies of their implementations to be run through

the same tests, the results to be reported in a future

issue of TUGboat. I am willing to accept hints

and suggestions from the implementors about how
to make the tests run as efficiently as possible. I

am also willing to send out any files which cause
problems and rerun the tests after the problems

have been solved.
This test would not be what it is without

valuable advice and some test files from Barbara
Beeton.

o Erich Neuwirth
Institute for Statistics and

Computer Science
University of Vienna
Universitatsstrafie 519
A-1010 Vienna, Austria
Bitnet: A4422DABQAWIUNIll

Tutorials

Long-winded Endnotes and
Exercises with Hints or Solutions

Lincoln Durst

This is the third in a series of tutorials written for

readers interested in exploring some of the subtler

areas of w . We illustrate the concepts described

by considering tools that may prove useful to au-

thors interested in using plain during creation

of manuscripts of books or articles. The first and
second installments appeared in TUGboat 10. no. 3,

pp. 390 - 394, and volume 11, no. 1, pp. 62 -68.

In this episode, we consider discursive endnotes

and exercises for which hints or solutions are given.

We are interested in endnotes and exercises that

may be longer than one paragraph and that may

cite one another. (We treat the endnote case as a

special case of the exercise case.) As in the earlier

pieces in this series. one of the main ideas is to get

rn to attend to the numbering of items and to
provide marginal notes in working drafts in order

to facilitate cross references. Some of the central

ideas here have been introduced in the earlier pieces

(for example, using TJ$ to write things into files),
but this time we will be forced to devote special
attention to some subleties not considered in the
earlier cases.

Source code for The m b o o k (part of the gen-
eral TEX distribution; it is described in Appendix E
of The m b o o k , pages 412-425) reveals that a
central idea of Knuth's about exercises and their
solutions is that these should not be separated from

one another in the text file (zbzd . , page 422), no

matter how far apart they will eventually appear in
the finished book (or books, if solutions or answers

are to appear in separate units- for example, in a

supplementary volume for teachers).

If we keep the exercises and their solutions
together in the source file, it will be possible to

rearrange their order, add more, or delete some,

and let m do the renumbering without tampering
with the coordination between the exercises and

the solutions. Think of this as analogous to the

way footnotes are treated in TEX: the text of each
footnote is imbedded in the source file at the point

at which it is cited. This is also the way complicated

endnotes ought to be handled, for exactly the same
reasons. And, while we're at it, there's no difficulty
in arranging for solutions and exercises to appear

next to each other even in draft versions of the

printed text until the dust settles and preparation
of pages in final form is ready to begin. In addition.

some authors may find it helpful to see the text of

endnotes in draft versions of the printed text at the

places they are called. Code that will make this
possible is described below.

In some books, the fifth edition of Harold Dav-

enport's The higher arithmetic (Cambridge Uni-

versity Press. 1982) is one, separate sections or
appendixes are provided to contain hints for the

exercises and their answers. No problem.

Exercises and endnotes, some preliminaries.
Eventually we will consider definitions for macros
such as

TUGboat, Volume 11 (1990)' No. 4

1. Powers, primes, polynomials, and polygons. \sect .PPPP.

Exercise 1.1. Show that if n has an odd factor greater than 1. \exer.oddfact.

2n + 1 is not a prime number and, therefore. the only primes of

this form are Fermat numbers.

Consider a regular polygon of n sides with one vertex at

(1'0) and the others lying on the circle with radius 1 whose
center is at the origin (0,O). If 4 is the angle between radii from

the origin to consecutive vertices, we may write 6 ; = cos k4 +
i sink4 for the complex numbers representing the vertices of
the polygon; here 0 < k 5 n - 1. These n complex numbers are

roots of the polynomial xn - 1, which always has at least the

two factors x - 1 and xn-I + . . . + x2 + x + 1 (sum of a geometric

series, again!). If n is a prime, it can be proved (see FIGURE 2
for a pair of sources) that the second factor is irreducible. More

generally, suppose that 6 , is a root of an irreducible polynomial

of degree d. It can be proved (same sources) that if p is a prime
whose square does not divide n. then d is divisible by p - 1: and

if p is a prime whose square divides n. then d is divisible by

P(P - 1).

Exercise 1.2. Determine all values of n for which d, the degree \e~er.~ower2.

of the irreducible polynomial with root 6,. is a power of 2 .

Hints for exercises.

1.1. Consider the sum of the geometric series 1-x+z2 - z 3 + . . .+x2k. \exer. oddf act.

Answers for exercises.

1.1. First 1 - x + z 2 - x 3 + . . . + z~~ = (x2k+1 + l) / (x + 1) . SO with \exer.oddfact.

n = I m . l = 2 k + l . a n d ~ = 2 ~ , wehave 2n+1 = (2 m + 1) (1 - 2 m +

22m - 23m + . . , + 2('-'Im). If n has no odd factors greater than 1 ,

it must be a power of 2.

1.2. Suppose p is any prime dividing n. 1f p2 divides n, then d has \e~er.~ower2.

the factor p(p - 1) which must be a power of 2. so p is 2; and if p2

does not divide n. then p - 1 still divides d which means that p - 1
is a power of 2. Therefore (cf. Exercise 1.1) all such n have the form

n = 2 m F n 1 . . . Fn,.

where m > 0 and all the factors after 2m. if any, are distinct Fermat

primes, F, (of which only five are known. 0 5 i 5 4).

\exercise #l \exer #2\hint #3\answ #4\endexer

\endnote #l \note #2\endendn

that will do all the things we want. Parameter #1

provides a "tag" to appear in the name of the macro

that will be used to cite the exercise or note (as in

the previous tutorial): parameters #2, #3, and #4

represent the texts of the exercise or the note. the

hint, and the solution, respectively. While working

with the material on the screen, you may find it
convenient to begin a new line (indented) for each

of the delimiting control sequences, say,

\ exerc i se (t a g)
\exer (t ex t of exerczse)

(more of the same)
\hint (t ex t of hznt)

(more h i n t)
\ a n s w (t ex t of solution)

(solution, solution, solution)
\endexer

or

\endnote (t a g)
\note (t ex t of endnote)

(more of the s a m e)
\endendn

This should make it easier to find your way around

during revision than it might be if everything were
rolled up together into one big wad.

If you're not going to distinguish between hints

and solutions or if you're never going to cite any

exercises. you can get away with fewer than four

TUGboat, Volume 11 (1990), No. 4

parameters, of course. In our examples for exercises

we include all four and leave for the reader omission

of any considered superfluous for a given project.
In order to provide for the possibility that the text

of the endnote or the exercise itself, the hints, or

the solutions, may run to more than one paragraph,
we use \long\def s. For the preprocessing run (see

the previous tutorial in this series), we can set (in
prepare. tex):

\long\def
\exercise #l\exer #2\hint #3\answ #4\endexer

C\ExerC#1)3

\long\def
\endnote #l\note #2\endendn{\Endn{#l))

(Notice that, with these definitions, the texts of

exercises, hints, solutions, and endnotes will be

discarded during preprocessing. Only the tags for

the macro names are of interest at that stage.) In
addition to the definitions above, we put the fol-

lowing code in prepare. tex, mimicking definitions

in the previous tutorial for \Section and \Eqnum
(page 65, column 1):

For composition runs in proof mode, hints,

lutions, and endnotes could be embedded in

1

SO-

the
printed text, say on a narrower line measure with

smaller type (as in FIGURE 3) in order to distin-

guish them more easily from the text itself; for this,
include the following code in prepare. tex:

\newif\ifEmbedded \Embeddedfalse
\def \EmbedNotesEtc{\Embeddedtrue

\ShowMacros)

and include \EmbedNotesEtc as an option in the

driver file. Comment out this option when pages

are being prepared for final copy, or for copy fitting

in preparation for making final copy, at which time

the hints, solutions, and texts of the endnotes
should instead be written into the files to be used

to typeset them (call these files (jobname).hnt,
(jobname) . ans, (jobname) .not, say).

Endnotes and exercises: First versions. The

ideas involved are the same in both cases, but
\endnote is simpler to work with, so we consider it

before \exercise. Here is code for compose. tex,

beginning with the allocation of a file to hold the

notes. Notice the extra counter, \EndNs. In the

special case of endnotes, it serves no useful purpose,

since it keeps step with \endnnm; for exercises,
however, where there will be an option to skip

hints or answers, the second counters will function

as "pseudo-booleans": zero before the first item in
question and positive otherwise. Thus they will be

useful for decisions that must be made (a) to open
(jobname) .not , . hnt, or .ans whenever the first

endnote, hint, or solution is encountered, and (b) to
input the file in question, if it isn't empty, when its

contents are to be printed.
. . * A/ , / , Endnotes (simplest form) %%%

\newwrite\endns \newcout\EndNs \EndNs=O
\long\gdef
\endnote #l\note#2\endendn{\Endn{#l}%

\uskip$-{\Endunurn)$\
\begingroup\notef ont

\ifEmbedded
\par{\narrower\parindent=Opt
\Endnnum. \vadjNote\margtext\

#2\strut\par)\noindent
\else

\global\advance\EndNs by 1
\ifnum\EndNs=l%

\immediate\openout
\endns=\ j obname .not

\immediate\write\endns
{\topline)%

\fi
\ifShowingMacros

\expandaf ter\edef
\csname enmn\Endnnum
\endcsname{\margtext}%

\fi
\immediate\write\endns

{\Endnnum. \ \noexpand\vadjNote
{\csname enmn\Endnnurn

\endcsname))%
\Write\endns{#2\uskip\newpar)

\f i\endgroup) % end \notef ont

Here the first case (\ifEmbedded) is the easi-

est: The note is printed in the text where it
is cited and no writing to files is involved (see

FIGURE 3). In the \else-case, various things oc-

cur. For the first note encountered the file is

opened and something is written at the top of the
file (perhaps only something like \parindent=Opt

or \parskip=. 2\baselineskip, etc.; in special

cases - see below - there may be other things, as
well). Next the macros to be used for cross refer-

ences are defined and, as in the previous tutorials,
there are two cases corresponding to the option of

printing macro names in the margins of drafts or not
printing them; in both cases the text of the note is

written into the file (jobname) .not. (Observe that,

for \ShowingMacrosf a l se , the text of the marginal

note is just \ relax.) For the present, we can define

TUGboat, Volume 11 (1990), No. 4

\Write to be \immediate\write; we will describe

another choice later. after we consider some of the

risks involved in all this. \newpar may be simply

\par to end the note. or it could also provide a
\ s t r u t or \vskip to create space between adjacent

notes.
The subtlest part of the code so far is the

method used to send the text of the marginal notes

into the file so they will be properly identified

when they are read back in. Because the marginal
notes are saved for later use. it must be possible

to distinguish between them; this problem did not
arise in the earlier tutorials because the notes were

used immediately after being created. Here we

identify these marginal notes by incorporating the

endnote numbers in the names of the macros that
expand to the texts of the notes. The macros are

named \enmn\Endnnum, i.e., \enmnl, \enmn2, etc.,

which may look strange to any but the more critical

readers of page 40 in The W b o o k . When using

\csname, nonalphabetic characters may appear in

macro names: See lines 4 and 5 in the second full

paragraph on page 40. Of course. one can never

actually write \ e m 1 or \enmn2, but can only write

\csname enmn\Endnnum\endcsname instead. As a

matter of fact these macro names are never used
by the author, they are written and seen only

by 7&X; when expanded they produce the macro
names printed in the margin; recall that \mugtext

is defined in compose. t ex as follows:

\gdef\margtext{%
\backslash\lowercasei#l) . #2\unskip.)

where #1 and #2 are the arguments of \MakeNote (in

this case #I is Note and #2 is the "tag", Source, say,

in FIGURE 2). For reasons given in the previous

tutorial, the user writes only \note . # I . when

making a cross reference to one of the endnotes,

here #1 is the "tag" used to identify it. This trick

with \csname is what facilitates forward references.

as explained last time (page 65, foot of column 1).
\exercise will be handled analogously, the

only difference being that there are more com-

ponents to be juggled. Before going further, we

simplify things a bit in order to reduce duplication

of code by creating a generic file-writing macro,

based on \endnote, for use in the other cases. Let
us, therefore, rewrite the definition of \endnote as

follows:

\long\def
\endnote #l\note#2\endendn{\Endn(#l)%

\unskip$-{\Endmum)$\
\begingroup\notef ont

\if Embedded
\par{\narrower\parindent=Opt
\Endnnum.\vadjNote\margtext\

#2\strut\par)\noindent

\else
\WriteFile\Endnnum\EndNs\endns %
InotlIenmnH#2)%

\fi\endgroup) % end \notefont

where

\long\def
\WriteFile#1#2#3#4#5#6{\def\Number{#l)%

\def\Counter{#2)\def\FileReg{#3)#
\def\FileExt{#4)\def\Ident{#5)%
\global\advance\Counter by 1
\ifnum\Counter=l

\immediate\openout
\FileReg=\ j obname . \FileExt

\immediate\write\FileReg
{\topline)%

\fi
\ifShowingMacros
\expandafter\edef

\csname\Ident\Number

With all this in hand, we can write down the

definition for \exercise immediately:
,.* / , / ,A Exercises (simplest form) %%%

\newwrite\hints \nevurite\answs
\newcount\Hints \Hints=O
\newcount\Answs \Answs=O
\long\gdef
\exercise #l\exer #2\hint #3\answ #4\endexer

C\Endn{#ll%
\smallskip\noindent

{\bf Exercise \Exernurn.)\
\ifShowingMacros

#2\par\begingroup\answfont
\long\def \argiii{#3)\long\def \argiv{#4)%
\ifEmbedded

\ifx\argiii\relax\else
{\narrower\parindent=Opt

Hint : \ #3\par)
\fi
\ifx\argiv\relax\else

{\narrower\parindent=Opt
Answer : \ #4\par)

\fi
\else

\if x \argiii\relax\relax\else
\WriteFile\Exernum\Hints\hints

Chnt)Cexmn)C#3)
\f i
\ifx \a.giv\relax\relax\else

\WriteFile\Exernum\Answs\answs

CansHexmn)C#41
\fi

\f i\endgroup) % end \answf ont

TUGboat, Volume 11 (1990), No. 4

Three classical construction problems.

We1 propose to treat of geometrical constructions, and our

object will not be so much to find the solution suited to each case

as to determine the possibil i ty or imposs ib i l i ty of a s ~ l u t i o n . ~

Three problems, the object of much research in ancient

times, will prove to be of special interest. They are

1. T h e prob lem of t h e dup l i ca t i on of t h e cube (also called

the D e l i a n problem) .3

2. T h e t r i s ec t i on of a n arbi t rary angle.4

3. T h e quadrature of t h e czrcle, i.e., the construction of ~ r . ~

In all these problems the ancients sought in vain for a solu-
tion with straight edge and compasses, and the celebrity of these

problems is due chiefly to the fact that their solution seemed to
demand the use of appliances of a higher order. In fact. we

propose to show that a solution by the use of straight edge and
compasses is impossible.

Notes.

1. The text shown here appears on page [I] of Felix Klein's little \note.~ource.

book Famous problems of elementary geometry, based on lectures
first given by Klein in Gottingen. Easter vacation, 1894.

The English translation was made originally by W. W. Beman and
D.E. Smith (Ginn & Co., 1897), and revised by R.C. Archibald
(Stechert, 1930) based on the latter's article in the American Math-
ematical Monthly, volume 21. 1914, pages 247-259. Famous prob-
lems was later reprinted by Hafner (1950), Dover (1956); and Chelsea
(1955, 1962, 1980).

2. The main result used to settle questions concerning constructions \note.~olution

possible with straight edge and compasses is the following theorem: If
x, t he quanti ty to be constructed, depends only upon rational expres-
sions and square roots, i t i s a root of an zrreduczble equatzon 4(x) = 0
[with rational coefficients], whose degree i s always a power of 2. See
page [5] of the book cited in Note 1.

3. The irreducible polynomial in question is x3 - 2, whose degree is \note.~elian.

certainly not a power of two. loc. cit., page [13].

4. In this case, Klein works with the equation x 3 = cos q5 + i s i n 4 in \note.~risect.

the complex plane, loc. cit., pages 14! 15.
For another approach, see Louis Weisner, Introduction to the the-

ory of equations, Macmillan: New York. 1938, pages 159-162. Weis-
ner bases his argument on the irreducibility, over the field of rational
functions R (t) , of the equation 4x3 - 32 - t = 0 satisfied by t = cos 0 ,

o x = cos g .

5. In 1882, Lindemann proved [Mathematische Annalen, volume 201 \note .pi.

that T is a transcendental number, i.e., it is not the root of any
polynomial with rational coefficients and, therefore, certainly not a
root of one with degree a power of 2. (Cf. Klein, ibid., Part 11.)

When either a hint or an answer is to be omitted. discussion is concerned with limitations of the

its argument should be \ r e l ax or, to be on the safe procedure described above and with ways those
side, \ r e l a x '/, (see below). limitations may be circumvented.

So much for the simple stuff! The code listed
above can actually be used to produce the results

Files read by TEX. In the first place, when
writes something into a file, it writes one line at

shown in the FIGURES 1 - 3 (defining \Write to be

\immediate\write), but would fail for examples
a time. so that the kind of thing we have been

discussing can result in some very long lines: Whole
somewhat more complicated. The rest of this

TUGboat, Volume 11 (1990), No. 4 585

paragraphs. or collections of several paragraphs, if

they appear as a single argument, will be strung

out into gigantic lines in the files we have been

constructing. The trouble with this occurs as
tries to read long lines when the files are \ input

so their contents can be typeset. Some of the lines

produced in making the figures for this tutorial

(using the code described above) contain seven or

eight hundred characters. When lines from a file
being \input are read, w writes them to a buffer,

which, for some implementations, can accomodate

only a thousand or so characters and in some cases.

even fewer (cf. buff-size, in m: The Program,

sections 11 and 30).
For exercises, this problem may not be serious.

since hints tend to be terse, and answers (and

even solutions!) probably should be kept succinct

on grounds unrelated to typographical questions.
With endnotes, however, the situation is frequently

quite different, especially in fields such as history
or philosophy, where such self-restraint may be less

common than in some of the sciences.

Questions to examine: (a) What factors con-
tribute to the length of the lines written into files by

m? (b) HOW can the lines be broken into smaller
pieces? There is more than one answer to each of

these questions.

Why are some of these lines so long? Aside

from the fact that some authors can be long-winded,

any macros in the lines are expanded when
writes them into a file. For example, the macro

\TeX whose name has only four characters expands

into more than fifty characters. as shown on page

66 of The m b o o k ; and even something as simple

as \bf, an umlaut, or a circumflex, can generate a
dozen or so characters when expanded. Maybe there

is no limit to the number of characters one could

obtain by expanding such things. Thus brevity

on the part of authors cannot solve the whole

problem, although it surely may help to alleviate it

somewhat.

by converting the (ordinarily invisible) end-of-line

mark. ^ - M , to an "active" character.

Two problems require special care when one
attempts to diddle with T)jX fundamentals as we

are about to do. First, it is very important to

confine such irregularity with care; hence:

\def\endlineactive{\begingroup
\cat code '\--M=\active)

Under normal circumstances, - - M is simply replaced

by a space (The m b o o k . page 351), but the
simpler of the methods here (first suggested to me

by Ron Whitney) calls for making '-M perform

the function of the primitive \newlinechar.

[See Peter Breitenlohner, TUGboat. volume 11,

number 1, page 62.1 So, we can define:

Note that, below, the pair \ f i x l ines , \endgroup
delimits the region in which ^ ^ M will be permitted

its strange behavior.

The other problem that requires special atten-

tion is that it is impossible to monkey with m ' s

system of categories after the text involved has been

seen by m. Therefore we shall cut the macros

for endnotes and exercises into two pieces, so we

can make the switch after sees the tags and

the text of the exercise but before sees the

material to be put into the files: the text of the
notes, hints, and solutions. We therefore define, in

compose. tex.

\gdef\Endnote #l\note{\def\tag{#l)%
\flxllnes\Note)

\long\def\Note #l\endendn{\endnote\tag %
\note #l\endendn\endgroup)%end \flxlines

\endgroup) % end \f ixlines
Breaking the lines into shorter ones. Two

variations on \obeylines (The W b o o k , pages In both these cases, we simply define \Write to be

94, 352) can be used to cut the text into pieces \immediate\write. What we get in the files, then.

corresponding to linebreaks that are present in is a series of lines each of which stands between

the source file; one of these methods is simple
a pair of end-of-line characters in the arguments

and relatively straightforward, the other is more
containing the notes, hints, and answers. Two

intricate and accomplishes more. Both methods use observations are appropriate in connection with this

versions of the macros defined above; they differ first method: (a) All macros will still be expanded

in two ways. most significantly in the definitions (one of the lines produced this way in one of the

chosen for the macro \Write. figures still has over 150 characters in this case).

As with \obeylines, it must be possible to (b) If any line contains a comment (%. . .), it does

recognize line-ends in the input file: This is done not contain an end-of-line character so it will be

TUGboat, Volume 11 (1990), No. 4

run in with its successor (with a space between
them only if a real space precedes the percent sign

terminating the first of the pair of lines: spaces

after control sequences do not qualify, of course).

Moreover, because macros are still expanded, the file
may well contain an at-sign, Q, which turns up in the

expansions of quite a few so-called "private control
sequences" (see The W b o o k , pages 344 - 364);

hence, in this case (as well as in the original case,

where no lines are broken), \ topl ine should contain
\ca tcode ' \ s t r ing\Q=l l , as a safety measure.

The first version (just described) is easy to
explain, takes a little care in its use, and will be

sufficient in many situations. The second version, to

be described next, is considerably trickier (the tricks

are all in the definition of \Write), and it does much

more. In particular, because it does not expand

macros. it not only produces files whose lines are

even shorter. but the results are more easily read

by ordinary humans. It is also useful in a number

of situations other than the one that concerns us

here. The central idea is described in an article by
Ron Whitney in this issue of TUGboat ("Sanitizing

control sequences under \wri ten. p. 620). Next

we apply simplified versions of some of the ideas in
that article to our problem (simplified because, for

endnotes and answers, we need not worry about the

number of the page on which the note is cited or
the exercise is stated). When one makes a table of

contents, for example, a more complicated version
will be required, as discussed in the article just

mentioned.

Breaking lines without expanding macros.
The big trick described in Ron Whitney's report

involves using the primitive \meaning. \mean-

ing takes a token as its argument and, in the

case where that token is a defined control sequence,
produces a string of "characters" which appear in

the argument's expansion. Thus \meaning\cos

expands to

macro: ->\mathop{\rm cos)\nolimits

What follows the "arrow" here (: ->) looks like
the expansion of \cos, but - as explained in the

sanitizing article -it is not really the expansion

because all the characters shown above (except for
the space) have category 12 (other: none of the

above or below) instead of what they ought to have

(backslash should really have category 0, left and
right curly braces categories 1 and 2, and the letters

category 11; see The W b o o k , page 37).

The trick is to create a new macro whose
(first-level) expansion is what you want to write

into the file, apply \meaning to the new one,
then catch the sequence following the arrow in

\meaning's expansion, and write that (which will

not be expanded) into the file as a string of

individual characters. Later, when the file is read,

TEX won't remember how those characters got

there, it will just take them for what they appear

to be. Here's one way to pull this off: First define

\def\getMeaning#l:->#2\endget{%
\def\Meaning{#2)}

\getMeaning may be used as follows: Suppose that

\Line represents one of the lines in a paragraph to
be sent to a file. Then consider

Here \expandafter causes \meaning\Line to ex-
pand to

macro: ->(text of the h e)

and \getMeaning throws out everything here not
after the "arrow". As mentioned above, our code is

a bit simpler than Ron's because we can ignore the

number of the page on which the exercise appears

or the endnote is cited.
So far we know how to avoid expansion of

macros; now we have to cut the lines into shorter

pieces so we can use this trick. Again we make - - M

active in order to find the end-of-lines in the file,
but this time we use the end-of-lines as terminators

of strings of characters whose "meanings" will be
written into the proper files one at a time. In

order to distinguish the two cases, we choose for

convenience

For the line breaking process, we follow the method

indicated in the article cited, and use a \loop: see
The W b o o k , page 217, for the garden variety. and

sources cited in Ron's article, for the fancy version

being used here:

\returnactive %
\gdef\Parseline#l--M#2\endParse{%

\def\Firstline{#l)%
\def\Remainder{#2)%

3
\long\gdef\Write #1#2{%

\let\FirstLine\empty %
\def\Remainder{#2-'MI%

\loop %
\expandafter %
\ParseLine\Remainder\endParse %
\expandaf ter\getMeaning %

\meaning\FirstLine\endget %
\immediate\write#l{\Meaning)%

\ifx\Remainder\empty\else\repeat %
lendgroup % end \returnactive

When using this method, set

instead of \breaklines, as before.

TUGboat. Volume 11 (1990), No. 4 587

1. Powers, primes, polynomials, a n d polygons. \sect .PPPP

Exercise 1.1. Show that if n has an odd factor greater than 1, \exer.oddfact.

2n + 1 is not a prime number and, therefore, the only primes of

this form are Fermat numbers.
Hint: Consider the sum of the geometric series 1 - x + x 2 -

x 3 + . . . + x ~ ~ .
Answer: First 1-x+x2-x3+. . .+x2k = (~ ~ ~ + ~ + 1) / (5 + 1) .

so with n = lm, 1 = 2k + 1 , and x = 2m. we have 2n + 1 =

(2m + 1) (1 - 2m + 22m - 23m + . . . + 2(1 -1)m) . If n has no
odd factors greater than 1, it must be a power of 2.

Consider a regular polygon of n sides with one vertex at

(1,O) and the others lying on the circle with radius 1 whose

Three classical construct ion problems.

We l
1. The text shown here appears on page [l] of Felix Klein's \note. source.

little book Famous problems of elementary geometry, based
on lectures first given by Klein in Gottingen, Easter vaca-
tion, 1894.

The English translation was made originally by W. W.
Beman and D.E. Smith (Ginn & Co., 1897), and revised
by R. C. Archibald (Stechert, 1930) based on the latter's
article in the American Mathematical Monthly. volume 21,

1914. pages 247-259. Famous problems was later reprinted
by Hafner (1950) , Dover (1956)' and Chelsea (1955, 1962.

1980).

propose to treat of geometrical constructions, and our object

will not be so much to find the solution suited to each case as

FIGURE 3

Even with the fancier method there are some
details to note. For example, if --M is inside a group

(such as (\it . . .--M.. .\/), as in the theorem

quoted in note 2, FIGURE 2), it will be passed over
when the loop breaks the lines. To force the lines
to break in this case, use

\it . . . - - M...\/\m
instead, say, or even

\bgroup\it . . . --M. . . \/\egroup
Failure to correct this problem has two conse-

quences: you will write some long lines into the file
and the --Ms within the groups will no longer be

invisible. Thus, when you later input the file, you
will lose everything after the first -^M between the

two curly braces, up to and including the second
brace and anything between that and the next

--M. In this situation the visible --M is interpreted

as a line-terminator and functions as a comment

character.

In both of the cases in which --M is active, it is
essential to replace \ r e l ax by \ re lax % or the test

made to determine that a hint or a solution should

be omitted will fail: in these cases the argument
will be \ r e l a x --M unless the end-of-line has been

commented out. As Ron Whitney puts it so

picturesquely, it can be difficult to induce one part
of the anatomy, even W ' s , to simulate some other

part and be "wholly successful" in the process.

The following code brings together the three
cases we have been describing. It provides, in

compare. t e x the working definitions for \f i x l ines ,

\ topl ine , and \Write for the three cases considered
above.

\if Embedded
\let\fixlines\begingroup

\else
\gdef\newpar{\par\vskip 2pt)
\ifexpmacros

\let\fixlines\breaklines
\gdef \topline(\parindent=Opt

\catcode'\string\Q=l1)
\long\gdef\Write{\immediate\write)

\else
\let\fixlines\returnactive
\gdef \topline{\parindent=Opt)
\returnactive %(*I
\gdef\Parseline#l"-M#2\endParse{%

\def \Firstline{#l)%
\def\Remainder{#2))%

\long\gdef\Write #1#2{%
\let\FirstLine\empty%
\def\Remainder{#2-*MI%

TUGboat, Volume 11 (1990), No. 4

\loop %
\expandafter %
\ParseLine\Remainder\endParse %
\expandafter\getMeaning %

\meaning\FirstLine\endget %
\irnmediate\write#l{\Meaning)%
\ifx\Remainder\empty\else%

\repeat)%
\endgroup % end \returnactive %(*I

\fi %
\fi %

Notice that \ r e tu rnac t i ve must be used not only

when the lines are actually broken, but also for the
definitions of \Parse l ine and \Write since they

involve the active --M. The definition to be used

here for \loop is that in Ron Whitney's paper (note

the \e l se \ repea t) . The switch \ifexpmacros is

controlled by the following code in prepare. t e x for

yet another option, \ExpandMacros:

The swarm of %-signs is here to prevent the over-

active ^-Ms from creating mischief. In a more
advanced course, you may learn a simpler way to

tame them (cf. the "sanitizing" paper in this issue).

Special challenge. Consider the endnotes in Edith

Hamilton's The Greek way (W. W. Norton, 1942):
No marks appear in the text itself, but each note

indicates the page number and the line number on

that page to which the note refers. Had T)jX existed

in 1942, how might this have been achieved?

In the next tutorial, we consider some questions

related to the construction of indexes. Among other

ideas, there will be more about parsing by context
and some examples of other ways to use loops.

Note. A disk (5.25in DSDD) containing source

text for the figures in this series of four tutorials,

and the code files used to produce them, is available

for MS DOS users who are members of the rn Users

Group. Send $6 (which includes a royalty for the
Users Group) to the address below. Outside

North America, add $2 for air postage.

As usual, Ron Whitney has been generous with
ideas and inspiration. He has taught me a lot
about T)Q-everything I know about it, except
for all the things I learned from Barbara Beeton,
over a period of several years, and things that I
understood when I read about them for the first
time in The m b o o k .

o Lincoln Durst
46 Walnut Road
Barrington, RI 02806

Output Routines: Examples and Techniques.
Part 111: Insertions

David Salomon

Note: Before reading this article. the reader should

glance at parts I or I1 for disclaimers and remarks

on notation.
Insertions are considered one of the most com-

plex topics in W. Many users master topics such

as tokens, file 110, macros. and even OTRS before
they dare tackle insertions. The reason is that

insertions are complex, and The W b o o k , while
covering all the relevant material, is somewhat cryp-

tic regarding insertions, and lacks simple examples.
The main discussion of insertions takes place on

[115-1251. where W ' s registers are also discussed.
Examples of insertions are shown, mostly without

explanations, on [363-364, 423-4241. There is.

therefore, a need for an article like the present one.
It tries to explain insertions in detail, and shows

specific. simple examples. Concepts are developed

gradually, and the ultimate truth revealed in steps.

Introduction

Definition: An inser t ion is a piece of a document

that is generated at a certain point but should
appear in the document at another point.

Common examples of insertions are footnotes.

endnotes (Note l) , and floating insertions. These are
important features, which explains why a general

insertion mechanism has been incorporated into

TEX. The following short quote (from [124]) says
it all: " T h z s algorithm i s admit tedly complicated,
but n o szmpler m e c h a n i s m seems t o do nearly
as much." Using insertions, it is possible to

accumulate material (textlpictures) in a box and
typeset it anywhere in the document. The material

can be inserted on the current page. it may be held
over by and inserted on the following page. it

may be split between the current page and the next

one, or it may wait for the end of the document.

The p l a i n format also provides very convenient

macros, based on the general insertion mechanism,
to handle footnotes and floating insertions.

A good example of insertions is the placement

of index items in the right margin [423-4241, an op-

eration that is part of the m a n m a c format [App. El.

See (Note 2) for an outline of the idea. A simple

version is developed elsewhere in this article.

It is important to point out that, even though

the insertion mechanism of TEX is general and

complex, it cannot deal with every conceivable situ-

ation. Consider the case of facing figures (Note 3).

TUGboat, Volume 11 (1990). No. 4

This is a problem that W ' s insertion mechanism

cannot handle. It is easy to implement in other

ways, though (Note 4).

A simple example

Before delving into the details of insertions, it is

useful to develop a simple example from scratch,

without using any of the built-in features for in-

sertions. We will develop a simple mechanism for

handling floating insertions. Suppose that diagrams
should be pasted into our document (after it's been

typeset) at certain points. We need to reserve room

for each diagram, which is done by placing an empty
\vbox at each insertion point.

Exercise: Why not simply say \vsk ip . . . or
\kern. . . to reserve vertical space on the page?

(Note 5) .

We therefore define a macro \Pic by

and call it by, e.g., \P ic 3 . 5 i n high. The problem.
of course, is that there may not be 3.5 inches of

space left on the current page. In such a case, the

insertion should be 'floated' to the top of the next

page. We therefore have to generalize our macro
such that it measures the space left on the current

page before it creates the \vbox. To understand
how this is done, the reader should first review the

section on \ p a g e t o t a l and \pagegoal in part I,

where macro \pagespace was developed. This

macro, whose definition is copied below, does just

that.

We now generalize macro \Pic. It starts by

setting \box0 to the desired, empty \vbox. It then

compares the height of the picture to the available

space on the page. If there is enough room, \box0

is simply typeset, which reserves room on the page

for the diagram: otherwise, \box0 is appended to

another box, called \ f i g .

After several calls of \Pic. \box\f ig is either

void, or contains a bunch of vboxes with nothing

in between. When the OTR is next invoked, it first

ships out the current page, then checks \box\f i g .

If that box is nonvoid, the OTR empties it by simply

saying \unvbox\f i g , which places its contents on

top of the MVL: to appear at the top of the next

page.

This way. enough space is reserved on top of

the next page for as many diagrams as necessary.
It is important to say \unvbox\fig. rather than

\box\f i g , since this places on the MVL. not
the single \box\f i g - which is indivisible - but its

contents, as separate boxes. The contents may now

be spread over more than one page, if they involve

many elements.
This simple example should be studied care-

fully, since it provides a good starting point for a
full understanding of insertions.

Insertions (introductory)

On the first reading of this section. the endnotes

should be ignored.
The insertion mechanism used by 7&X (see

[122-1251) is based on box variables. A box variable

is allocated. and the \ i n s e r t command is then
used to accumulate, in that box (Note 6). vertical

material to be eventually typeset (on the same page

or someplace else in the document). The OTR

can typeset the box anywhere on the page, using

standard features, as shown below (Note 7).
Example: The command \newinser t \ f ig al-

locates the box variable \box\f ig . Each command

of the form \ insert\figC(verticaI materzal)) ac-

cumulates material in the box (Note 8), material

which assumes is to be eventually typeset,

by the OTR, somewhere in the document. If the

material is to be typeset on the current page,

is instructed (see discussion of \count\f i g below)

to decrement g (Note 9) by the vertical size of the

material, in order to reserve room on the page.

Just before the OTR is invoked, the insertion

box becomes available (Note 10). We quote from

[254] ". . .just before the output routzne begzns, inser-

tzons are put znto thew own boxes." The OTR can

590 TUGboat, Volume 11 (1990), No. 4

typeset the material in \box\f i g by constructions

such as:

I . \shipout\vbox{\box255\unvbox\fig),to

typeset the insertion at the bottom of the

page.
2. \shipout\vbox{\unvbox\f ig\box255), to

typeset it at the top.

3. \shipout\vbox{\vsplit255 t o 4 in
\box\f i g \box255), to typeset it 4 inches

from the top of the page.

4. \shipout\vbox{\rlap{\kern\hsize \vbox
t o Opt {\box\f i g \vss))\box255), to place
the insertion at the top right margin.

Insertions (intermediate)

The actual steps taken by rn are more compli-
cated. In response to the \ i n s e r t \ f i g command,

the material is accumulated, not in the insertion
box but rather in a temporary buffer. Just before

the OTR is invoked, as much of the material in the

buffer as can fit on the page, is appended to the

insertion box. Note that the user may. from time to
time, append things to the insertion box explicitly,

by means of

\setbox\f ig=\vbox(\unvbox\f i g (material) . . .)
The accumulated material is eventually appended to

those things. When the OTR typesets the box on the
page, all the box contents go on the page; however,

room on the page is reserved only for material
handled through the \ i n se r t \ f i g command.

The \newinsert command mentioned above

does more than just allocate a box. It allocates

a class of insertions. The class includes \count,

\dimen, and glue (\skip) variables, all of the

same number, and all set to zero by default. So,
for example, the \newinsert \ f ig above reserves

variables \box\f i g , \count\f i g , \dimen\f i g , and

\skip\f ig . They are considered class insertion

\ f i g . If \ f i g happens to be 100, then the
\newinsert\f i g above allocates variables \box100.

\count 100, \dimenloo, and \skiploo.
Since \box255 is reserved for special OTR use,

only insertion classes 0 . . .254 can be allocated.

Macro \newinsert computes a number (counting

down from 254) and allocates a box, a count, a
dimen, and a skip register with that number. The

reason for allocating from 254 instead of 255 is
that \box255 is reserved for special OTR use. The

reason for allocating downwards is that registers
\count 0, \count 1. . . are used for the page number,
and that many people tend to use registers \boxO,

\boxl . . .for temporary storage.

The \dimen\fig variable limits the size of

the insertion material per page. In response to

\dimen\fig=8in 7$J will place at most 8 inches

worth of insertion material from the temporary

buffer in \box\f i g per page. If the buffer contains

more than 8in of material, the excess will be

heldover for the next page. Placing 8 inches worth

of material from the buffer in \box\fig may also

mean that an insertion will have to be split by 7$J.
The splitting is done by \ v s p l i t (Note ll), an

operation which is also available for general use. If

\dimen\f i g is not set by the user, its value is zero,
which means no room at all on the page for insertion

material. The material simply accumulates in the

buffer without being used. or until the value of

\dimen\f i g is changed.
The \count\f i g variable specifies by how much

g should be decremented. Setting \count\f ig=25O
causes g to be decremented by 25% of the height

(plus depth) of each block of insertion material
placed in \box\fig. Example 4 above should set

\count\f ig=O, since the insertion is done on the

right margin and no room should be reserved for it

on the page.

The \skip\f i g variable specifies how much

vertical skip the user wants to place, by means of
the OTR, on the page above or below the insertion.

7$J decrements g once by the amount of \skip\f i g

on those pages which have some insertion material
of class \ f i g in order to reserve room on the page

for the skip. The skip itself, however, is not done

automatically, and the OTR should not forget to

add vertical glue totalling \skip\f i g to the page.

Tracing insertions (preliminary)

A good way to understand insertions (and many

other aspects of W) is to trace the values of the

various quantities involved. Such tracing is easily

done by \message commands. which can display

many internal quantities at run time. A test of the

type shown below is simple and can reveal a lot
about the inner workings of insertions.

\messageCl:t=\the\pagetotal; g=\the\pagegoal)
Text f o r t he f i r s t paragraph

TUGboat, Volume 11 (1990), No. 4 591

\message{2:t=\the\pagetotal; g=\the\pagegoal)

\insert\f ig{(Material))

Text for the second paragraph

This simple experiment should be repeated with
\tracingpages=l to get even more information

on how TEX (actually, the page builder) handles
insertions (see detailed examples in a later section

on tracing).

Example: Endnotes

Endnotes are used in this article as a simple example
of insertions. They are implemented in three steps.

1. A new class of insertions is declared and

initialized by:

Since the notes will be typeset on the last

page, no room should be reserved for them on
the current page, which is the reason for setting
\count\notes=O. Setting\dimen\notes=\maxdimen

guarantees that any amount of endnotes, even more

than a page worth, could be placed in \box\notes.
2. Macro \endnote can be expanded anywhere

in the document. It accepts one parameter, the text
of the endnote, and executes \insert\notes{#l).

It also computes the note number, and typesets the

word 'Note' and the note number in parentheses.

\newcount\notenumber

\notenumber=O

\long\def\endnote#l{\advance\notenumber by 1

(Note \the\notenumber)%

\insert\notes{\noindent[\the\notenumber]

#I. \medskip))

3. The endnotes should be typeset at the end

of the document, but how? Generally, a box, such

as \boxO, is typeset by saying \box0 or \unvboxO.

However, we cannot do that with an insertion box,

since the contents is only placed in it before the
OTR is invoked. The job, therefore, has to be done

in the OTR, and one way of doing it is:

This method uses the special penalty value of

-20000, and is explained later. in the section on

\superej ect.

Each \insert\notes command places the ma-

terial in \box\notes as a paragraph or as several
paragraphs. Commands that apply to paragraphs

in general, may be used for this material. The

\noindent above is one example. Without the

\noindent, the insert becomes

and the material will be placed in \box\notes with

the first paragraph indented. Another possibility is

which will place the material in \box\notes, broken

into narrow lines.

It is also possible, of course. to say

and this will place each endnote in \box\notes as a

\vbox. Such endnotes cannot be split across pages,

and the last page where they appear, may come out

too long or too short.
(See Lincoln Durst's article beginning on p. 577

of this issue of TUGboat for a different treatment

of endnotes.)

Example: Footnotes

The footnotes example shown here is similar to the
one implemented in the plain format [363], but is

much simpler.
1. An insertion class \f ootins is declared and

initialized by:

\newinsert\footins

\skip\footins=12pt plus 4pt minus4pt

\count\footins=1000

\dimen\footins=8in

The last line limits the amount of footnote material

per page to 8 inches. If there are more footnotes

than that, the excess is held over to the next

page. This is automatically done by w ' s insertion
mechanism. Note that preparing 8 inches worth of

footnotes may necessitate splitting one footnote.
2. A \footnote macro is defined, with two

parameters: the footnote reference symbol, and

the footnote text. It typesets its first parameter

and appends both parameters (without a space in

between) to the insertion box.

592 TUGboat. Volume 11 (1990), No. 4

The footnote text may be longer than one line.

but, when placed in \box\f oo t ins , it will be broken

into lines of size \hsize, and will not be indented.
If the footnotes should be typeset in a small

size, we can say, e.g.,

which typesets the footnote text in seven-point

roman. The footnote symbol will be set in the
current font (the font that is current at the time of

insertion).
Readers experimenting with these macros will

notice that the two examples of \ footnote above
result in bad vertical spacing, both inside and

between the footnotes. The reasons are (1) se-

lecting a font does not automatically change the

interline spacing. The value of \base l inesk ip in

\box\f oo t ins is still 12pt, appropriate for cmrl0,

but not for cmr7; (2) there is no separation. in

\box\f oo t ins . between the individual footnotes.
To correct the spacing. (1) the interline glue

(\base l inesk ip) should be set, in \box\footins.

to a value appropriate for a seven-point font: (2) the

individual footnotes should be separated by placing

a strut with the desired height and depth at the be-
ginning and end of each of them (see also [Ex. 21.31).

Much better footnote spacing is obtained by:

Further improvement is obtained when TEX
is discouraged from splitting a footnote between

pages, whenever possible. This is done by (1) plac-

ing a penalty between the lines of each footnote;
(2) placing a negative penalty between footnotes

in \box\foot ins; (3) adding flexibility to the 4pt

separating the footnotes. Some flexibility may also

be added to the interline glue, but this results in

nonuniform appearance of the pages.

The last point to consider is the two parameters

\ l e f t s k i p , \ r igh tsk ip . They are inserted on the

left and right of every line of text [loo]. Normally
they are zero, but the user may set them to any

value at any time. If we don't want them to affect

the horizontal size of our footnotes. they should be
set to zero locally, when the footnote text is inserted

into \ f oo t i n s . This is done by:

\def\footnote#l#2{#l\insert\foot~ns(

\leftskip=Opt\rightskip=Opt

\interlinepenalty=lOOO

\basel ineskip=8pt pluslpt \noindent

\sevenrm#l#2 \penalty-1000
\vskip4pt plus2pt minus2pt))

3. The OTR should ship out a page consisting

of (1) the body of the text. in \box255; (2) a
\vskip\skip\foot ins . with a rule znszde zt; (3) the

footnotes for the page. in \unvbox\f oo t ins . Here

is how it's done:

\output={\shipout\vbox t o \vsize(\unvbox255
\ i f vo id \ foo t in s \ e l s e

\vskip\skip\foot ins
\kern-3pt\hrule width2in\kern2.6pt

\unvbox\footins

\f i)

}

In practice. the OTR should do other things,

such as typesetting and incrementing the page
number, but those are ignored here. The reason for

unboxing \box255 is so that its flexible glues could

blend with the ones in the insertion box (see the

last six lines on [I251 for a similar comment).
It should be mentioned here that these foot-

notes may appear on a page different from the one on

which they are referenced (see [Ex. 15.131 for other
cases where this may happen). This happens when

there are many footnotes but we limit the amount
of space on the page where footnotes can be type-

set by assigning a small value to \dimen\f oo t ins .
A value such as 0.4 in is generally enough for 4

footnote lines and. if there is more footnote text

for the page, it would be typeset on the following

page. This sometimes requires splitting a footnote
into two parts, which is why footnotes should be

inserted into \ f oo t i n s as individual lines. not as a
\vbox (which is indivisible). Thus we should avoid

something like:

\def\footnote#l#2{#1\insert\footins~

\vbox{#l#2 \vsklp4pt)))

Example: Right margin insertions

Another useful example of insertions has to do with

index items. Preparing an index for a textbook
can be no small task, and T)$ can help a lot

in this (Note 12). Typically, macros should be

defined to identify parts of the text as index items,

and write them on a file for future sorting and
processing. However. it is very useful, while writing

and modifying the document. to typeset all the

index items of a page on the right margin of the

page. When the document is ready, the final run
omits the notes on the margin. Such an example is

TUGboat, Volume 11 (1990), No. 4 593

shown on 1415. 423-4241 and is described here in a
simplified form.

The main steps are:

1. A boolean variable \proofmode is declared

and set to true. A new class of insertions. called

\margin, is declared and initialized.

1. \newif \if proof mode

2. \proof modetrue

3. \newinsert\margin

4. \dimen\margin=\maxdimen

5. \count\margin=O

6. \skip\margin=Opt

Line 4 allows any amount of marginal notes per

page (Note 13). Line 5 guarantees that no space

will be reserved on the page for the notes, and

line 6 says not to skip vertically before the notes

are typeset.
2. The index macro is defined. It has one

parameter, the index item. The macro writes it

on a file, with the page number, and inserts it in

\insert\margin. The latter part is done by:

\ifproofmode\insert\margin(

\hbox<\sevenrm #l}}\fi

Each index item is placed in an \hbox, and

so becomes one line. If it is too long to fit on

the margin, part of it will fall off the page. If it

is important to see the entire text of the note. it
can be placed in a narrow \vbox. where it will be

broken into lines. Assuming a 1 inch wide margin.

we can write:

\ifproofmode

\insert\margin(\vbox~\hsize=lin

\baselineskip=8pt\tolerance=2000

\sevenrm\noindent#l)\smallskip~

\f i

Note the vertical spacing of the notes, which is

similar to the case of footnotes. (Note 14)

3. The OTR should typeset \box\margin on

the right margin of the page during \shipout. Here

are the basic steps:

\output=~\shipout\vbox to \vsize(

\ifvoid\margin \else

\rlap<\kern\hsize\kern4pt

\vbox to0ptC\box\margin\vss~~

\f i

\unvbox255)}

The \rlap leaps over to the right margin with

the \kern\hsize, then moves another 4pt to the

right, to separate the marginal notes from the body
of the text. The OTR should, of course. do other

things, such as advancing the page number, and

appending a header, a footer, and footnotes.
The main differences between the marginal

notes and the footnotes discussed earlier are (1) no

marginal notes should be held over to the next page

(even if they don't all fit on the current page);

(2) no room should be reserved on the page for the

marginal notes; (3) overfull boxes are okay since the

marginal notes will be omitted anyway on the final

run.

Example: Floating insertions

We describe a mechanism for floating insertions,

similar to the \midinsert of the plain format.

\midinsert is explained on [I161 and its definition
shown on [363]. Our example is simpler and does

not do as much as \midinsert. but it works, and it

serves t o illustrate the principles involved.
An insertion class \midins is declared, and a

macro pair \midinsert, \endinsert is defined and

used to delimit the material to be inserted. It is

used as follows:

\midinsert

(material to be inserted)
\endinsert

The material to be inserted may contain commands
and specifications that should be kept local to

the insertion (Xote 15). This is achieved by the

\bgroup, \egroup pair (see below), which acts as

a quarantine. The main task of this pair. however.
is to collect all the material appearing between

\midinsert and \endinsert, and either typeset

it. or place it in \midins. The \begingroup.

\endgroup pair serves to localize the settings of
\box0 and \dimen0 which the user never sees.

Most of the work is done by \endinsert.

It closes the insertion material into \box(), and

measures- with the help of our old friend, macro

\pagespace-the amount of space left on the cur-

rent page. If there is enough space, it typesets \box0
immediately, otherwise. it inserts it in \midins.

\def\midinsert<\par\begingroup

\setboxO=\vbox\bgroup}

\def\endinsertC\egroup % finish the \vbox
\pagespace

\dimenO=\htO \advance\dimenO by\dpO

\ifdim\dimenO>\spaceleft

\insert\midins<\unvboxO}

\else

\box0 \bigbreak

\f i

\endgroup}

594 TUGboat, Volume 11 (1990), No. 4

\output={\shipout\box255

\ifvoid\midins\else\unvbox\midins\fi

\advancepageno)

Note that \unvboxO, not \boxO, gets inserted
in \midins. This way the insertion material is the
contents of \box0 and, if it is too large, TEX will

be able to split it (unless it is itself a box). Also,

the \unvbox\midins has the effect of placing the

contents of \midins as a top insert at the head of
an otherwise empty MVL.

The maximum size of inserted \midins material
per page is the value of \dimen\midins which, in

our case, is \vsize. This means that the entire page

can be devoted to \midins insertions. However,
if we set \dimen\midins=2in then each page will
contain at most 2 inches worth of material from

\box\midins. If \box\midins contains more than
\dimen\midins of material, some of it will be held
over to the next page (requiring, perhaps, splitting

one block of insertion material).

If the contents of \box0 is another box, then it

is indivisible, and TFJ will not split it. In such a
case, more than \dimen\midins worth of material

may appear on a page. In fact, the resulting

page may even be larger than \vsize, and no

error message would be issued. Thus when using
unsplittable insertions, the user should make sure

that they are not too big. A detailed discussion of

insertion splitting appears later.

The appearance of the text can be improved
if we automatically add some glue, such as a

\bigskip, after each insertion. If a page is broken
between the insertion and the glue, the glue will. as

usual, be discarded at the top of the new page. Also,

the natural size of the \bigskip, 12pt, should be

included in the test for space left. Only \endinsert
needs to be modified.

\def\endinsertC\egroup % finish the \vbox
\pagespace

\dimenO=\htO \advance\dimenO by\dpO

\advance\dimenO by \bigskipamount

\ifdim\dimenO>\spaceleft

\insert\midins{\unvboxO \bigskip)

\else

\box0 \bigskip

\f i

\endgroup)

Readers experimenting with these macros will
discover very quickly that insertions are sometimes

typeset in reverse order. This may occur when
a large insertion appears close to the bottom of

a page. Imagine a situation where 3 inches are
left on the page and the user calls \midinsert to

insert a binch-tall figure. \endinsert will save

the figure in \midins and it will eventually appear

at the top of the next page. Imagine now that
the user immediately calls \midinsert to insert

another figure, only 2 inches tall. Since there is
room on the current page for the second figure, it
will be inserted in place, with the result that the

two figures are now inserted in reverse order.

A simple (but, unfortunately, incomplete) so-
lution is: A new boolean variable, \ifsavedl is
declared. When an insertion is placed in the inser-

tion box, \endinsert invokes the OTR temporarily,
using a penalty of -10001. The OTR sets \if Saved

to true, and returns without shipping out anything.

When the OTR is invoked normally. it sets \if Saved
to false. \if Saved therefore indicates whether an
insertion has been saved on the current page.

When \endinsert finds that there is room
on the current page for the current insertion, it
typesets it only if \ifsaved is false.

\newif\ifSaved \Savedfalse

\def\midinsert{\par\begingroup

\setboxO=\vbox\bgroup)

\def\endinsertC\egroup % finish the \vbox
\pagespace

\dimenO=\htO \advance\dimenO by\dpO

\ifdim\dimenO>\spaceleft

\insert\midins{\unvboxO)\penalty-10001

\else

\if Saved

\insert\midins{\unvboxO)

\else

\box0 \bigbreak

\f i

\f i

\endgroup)

\output={%

\ifnum\outputpenalty=-10001

\global\Savedtrue

\unvbox255

\else

\global\Savedf alse

\shipout\box255 \advancepageno

\ifvoid\midins\else\unvbox\midins\fi

\f i)

This is a good solution that works almost

always. It may fail in some rare cases, however.

The reason is that \penalty-10001 does not invoke
the OTR immediately. The penalty is stored in the

MVL, and is only noticed by TFJ when it starts

looking for a good point to break the page. This

process is explained in detail in part 11. but here is
an example.

TUGboat, Volume 11 (1990), No. 4 595

Imagine a case where there is an insertion. with

\penalty-10001, on line 60, and page 7 should be

broken around that line. When TEX invokes the

page break algorithm, it notices the special penalty,
breaks the page at that point, and invokes the

OTR. The OTR also senses the special penalty and
assumes that there is an insertion on page 7. The

OTR then returns the material to the MVL, which
causes QX to immediately start looking for a page

break. Since the special penalty is no longer there

(Note 16), Q,X may select a different breakpoint,

such as line 59. Line 60 is now the first line of

the next page, page 8, but the OTR has already
assumed that there is an insertion on page 7.

\t opinsert and \pageinsert. These macros are

part of the plain format, in addition to \midinsert

[115-1161. Material appearing between \topinsert

and \endinsert is considered a floating top inser-
tion. QX will try to place it at the top of the

current page but, if there is not enough room on

the current page, the material will be placed at the
top of the next one. Similarly, material appearing

between \pageinsert and \endinsert is stretched

to the size of a page, and becomes the next page.
Readers who have read the preceding text and

examples are urged to look at [363] and try to

understand the definitions of the three macros.

Example: Two insertion classes

It is possible, of course, to declare several insertion
classes and limit the amount of insertions placed on

a page from each class. Following are the outlines

of a case where two insertion classes, \midins and

\f ootins are declared and limited to 2.5in and

lin per page. respectively.

\output={\shipout\vbox(\box255

\ifvoid\footins\else

\vskip\skip\footins

\kern-3pt\hrule width2in\kern2.6pt

\box\f ootins

\f i3

\ifvoid\midins\else\unvbox\midins\fi

\advancepageno>

The OTR ships out \box255 followed by the

footnotes, and Q,X's insertion mechanism guaran-

tees that the total amount of footnotes will not

exceed lin per page. Also, if there are \midins

insertions. they will not exceed 2.5in per page.

It is now clear why material is not inserted

directly into the insertion box but is saved in a
temporary buffer. This is how insertion material

can be held over for the next page. Right before

the OTR is invoked, the right amount of material is

moved from the buffer and is placed in the insertion

box.

The plain format OTR

Short and elegant. this OTR makes a good example.

since it supports both footnotes and floating inser-

tions. It is described on [255-2561 and, therefore.
only a few short remarks are necessary here. The

first step is to define a macro \plainoutput

\def\plainoutput(\shipout\vbox

(\makeheadline\pagebody\makefootline>

\advancepageno

\ifnum\outputpenalty>-20000

\else\dosupereject\fi)

following which, the OTR is defined by

\output=C\plainoutput>

This way, the OTR can be redefined and then reset
back to its original definition.

\def\makeheadline{\vbox toOpt{\vskip-22.5pt

\line{\vbox to8.5pt{>\the\headline>\vss)

\nointerlineskip)

Macro \makeheadline is the first item shipped.

It suppresses the normal interline glue, so it is placed

right on top of the second item (which is supplied by

\pagecontents, see below). To achieve a uniform

appearance of the document, the headline should

have the same position, relative to the main body of

the text, on all the pages. Its baseline is positioned,
by \makeheadline, exactly 24pt above the baseline

of the top line of \box255. This is achieved by

placing the headline in a \vbox toopt, moving up

22.5pt in the box, and typesetting the headline. The
quantity 22.5pt (see diagram on following page) is

the value that x should have in order that x + 10

should be equal to 24 + 8.5.
The quantity \headline is declared as a \toks

variable by \newtoks\headline and is set to an
empty line \headline=(\hfil). It can be reset by

the user to any token string.

Macro \pagebody limits the depth of the page

to the value of parameter \mudepth. whose plain

format value is 4pt [348]. (See discussion of
\bornaxdepth in part I. See also the section, later

in this part, on the depth of the current page.)

Position of Headline

\def\pagebody{\vbox to \vs ize

{\boxmaxdepth=\maxdepth \pagecontents31

The \pagecontents macro starts by preparing
the floating insertions, if any. It then opens \box255

and, finally, prepares the footnotes, if any.

\def\pagecontents

{\ifvoid\topins\else\unvbox\topins\fi

\dimenO=\dp255 \unvbox255

\ i f vo id \ foo t in s \ e l s e

\vskip\skip\foot ins
\ foo tnoteru le

\unvbox\f oo t ins

\ f i

\ ifraggedbottom \kern-\dimen0 \ v f i l \ f i)

The two insertion boxes and \box255 are opened.

exposing their glues. The glues are now flexed
to help \pagebody prepare a \vbox to \vs ize . If
the user wishes a ragged bottom, a \ v f i l glue is
placed at the bottom of the page. This glue is

flexed together with the other flexible glues on the
page, leaving a glob of glue of non-zero size at the

bottom of the page. The result is pages in which

the bottom lines are not all at the bottom of the

page. It should be noted that the definition of
\raggedbottom (on 13631) also makes the \ topskip

glue stretchable, and that there is a \normalbottom

macro (defined on the same page) that cancels the

ragged bottom effect.
Macro \f oo tnoteru le creates the rule separat-

ing the footnotes from the main body of the text.

The rule is placed 3pt above the top footnote.

\def\footnoterule{\kern-3pt

\h ru le width 2 t rue in \kern 2.6pt)

% t h e \ h ru l e i s .4pt high

Finally, macro \makef oo t l i ne places the foot-
line 24pt below the main body of the page.

\def\makefootline{\baselineskip=24pt

\ l ine{\ the\foot l ine))

TUGboat, Volume 11 (1990), No. 4

The footline itself is a \ toks variable declared

by \newtoks\f oo t l i ne , and is set to

\footline={\hss\tenrm\folio\hss~

The page number. Some of the information in

this section has already appeared in part I, and is

repeated here for the sake of completeness.

In book publishing, both roman and arabic

numerals are used for page numbers. Variable
\count0 is reserved by the p l a i n format for the page

number (\countdef \pageno=O) and, consequently,

should not be used for anything else. It is initialized

to one (\pageno=l), and is handled by several useful
macros:

Macro \ f o l i o typesets the page number either

in arabic numerals or, if it is negative, in roman

numerals.

The \nopagenumbers macro suppresses page
numbers by eliminating them from the \ foot l i n e .

Macro \advancepageno increments the page

nurnber by either 1 or -1. depending on its sign.
In certain documents, composite page numbers

are used, which consist of more than one number. A
page number such as 12-52 is common and usually

refers to page 52 of chapter 12. The best way to

implement such numbers in is to use some of the

ten counters \count0 through \count9 1119, 2541.

They should be declared, initialized, incremented
and typeset by the user. lQX. however, helps in

two ways:
0 It writes the values of the ten counters on

the dvi file with each page. This helps the preview
program and the printer driver identify the pages

previewed or printed. In fact, those programs do

not know what page number actually appears on

the page. and they consider the ten values on the
dvi file as the page number. The user should thus

refer to those ten numbers when communicating

with any program that handles the dvi file.

0 TEX also displays the ten counters on the
user's terminal. with trailing zeros omitted, when

a page is shipped out. This is how things such as

[I] , C12.0.521 are displayed at typeset time.

\superej e c t

The \bye control sequence, which is the rec-

ommended way to stop, is a macro defined by

TUGboat. Volume 11 (1990), No. 4 597

\par\vf ill\supere j ect\end. Why \supere ject

and not just \eject? And what is \supereject?
If many insertions are used throughout a doc-

ument, there is a good chance that, after the last

page is shipped out, some insertions will be left in

their buffers, waiting to be typeset. This should be

done as part of the 'end game' of m. which is

initiated by the \supere j ect macro [116].

It is defined on [353] as \par\penalty-20000.

The plain format output routine tests (on [255]) for
this value and, if \outputpenalty=-20000, expands

macro \dosupere j ect. This macro. defined on

[256], tests the parameter \insertpenalties (see
below) to see if any insertions remain heldover in

their buffers. If there are any, \dosupereject

makes sure that the output routine will be invoked
again, giving it a chance to shipout those insertions.

To make sure that the OTR is invoked again,

\dosupereject prepares a blank page in the MVL
by executing \line{)\vf ill\superej ect. This

generates vertical material with a blank line at the

top and a penalty of -20000 at the bottom. The

material is simply left in the o ~ ~ (m o r e precisely,
put on the vertical list constructed by the OTR),

which means it will be returned to the MVL, causing
to invoke the OTR again.

When the OTR is invoked again, it will out-
put another page and, as usual, place \topskip
worth of glue on top of it. To cancel that glue,
\dosupereject really generates:

line{)\kern-\topskip\nobreak

\vfill\supereject

[256], but this is a minor point.

If there are any insertions left, they will be

placed in their boxes each time the OTR is invoked
for an empty page. The amount of inserted

material per page is controlled, as usual. by the
\dimen variable associated with the insertion.

A simple example is the endnotes described

earlier. In that example, notes are accumulated in

a temporary buffer, and should be typeset at the

end of the document. This has to be done from the

OTR, and the best way to do it is to use the special

penalty generated by the \bye.

This is one of many internal quantities that

uses (see the complete list on [271]). During an

OTR, it is equal to the total number of heldover

insertions [254] (Note 17). A heldover insertion is

an insertion (a parameter of an \insert command)

that should have been typeset on the current page

but, because of lack of space on that page did not
make it, and will be made available to the OTR

in the next page. Such a heldover insertion is

sometimes split and only part of it appears on the
current page.

Insertions (advanced)

This is advanced material, potentially useful to users

who are heavily involved with OTRS and insertions,
or to people who want a deeper understanding of

TjijX. For most users, however, the following quote
(from [123]) may apply: "On the other hand, maybe
you don't really want to read the rest of this chapter
at all, ever."

The current page and the list of recent con-
tributions. As mentioned in part 11, the MVL

consists of two parts, the current page and, below
it, the lzst of recent contrzbutzons. The current page

holds the material that will become \box255. The

recent contributions temporarily hold recently read
material. After an entire paragraph has been read,

it is typeset, and the lines of text appended to the

recent contributions. At that point, the page budder
is invoked (exercised). Its job is to move lines, one

by one. from the recent contributions to the current

page. For each line, the page builder calculates the

cost of breaking the page after that line. For the

first couple of lines the cost is very high because

breaking there would result in a stretched page.
Thus, for those lines, the badness b becomes 10000

and the cost c. 100000 (see formula on [I l l]) .

At a certain point-when there are enough

lines in the current page. for a normal page-b
(and, as a result, c) starts getting smaller. A while

later, there may be too many lines of text on the

current page, and it has to be shrunk. increasing

b and c again. The entire process can be seen. in

real time. by setting \tracingpages=l [112]. If

the page has to be shrunk more than its maximum
shrinkability, both b and c become infinite. When

c becomes infinite (or when a penalty 5 -10000 is

found, see below) the page builder goes back to the
line of text where the cost was lowest, breaks the

top of the current page and places it in \box255

[§1017]. The bottom part of the current page is

then returned to the recent contributions, and the

page builder invokes the OTR.

The page builder is exercised at the end of a

paragraph, at the end of a display equation within

a paragraph, at the end of an \halign, and in a few

other cases (see [122, 2861). The OTR can only be

invoked by the page builder [§1025], which is why it

is never invoked in the middle of a paragraph (unless

the paragraph contains display math material).
The advanced reader might want to glance at

[§980-10281 for the actual code of the page builder.
Since the page builder is exercised quite often.

the list of recent contributions is usually small or

598 TUGboat, Volume 11 (1990), No. 4

Figures. 1-4.

empty, and the current page gets larger and larger.

When the OTR is invoked, the current page is empty.
The \showlists command can always be used to

display the two parts of the MVL in the log file.
The quantity t (\pagetotal) mentioned before

as the height of the MVL is. actually, the height of

the current page. It is updated by the page builder

each time a line (or glue) is added to the current

page.
A better understanding of this process must

include glue and penalties. They are appended to
the recent contributions, with the lines of text. when

a paragraph is typeset, and are eventually moved to

the current page. If the current page is empty, all
glues, kerns and penalties moved to it are discarded.

When the first box is moved to the current page,

glue is added above it to keep its baseline \ topskip

below the top of the page. Following that, all glue.
kern, and penalties are moved, with the text, from

the recent contributions to the current page.
When a penalty 5 -10000 is encountered,

breaks a page. The resulting page may be underfull.
Such penalty values can be used to eject a page (by

\vf ill \penalty-10000), or to communicate with

the OTR.
It should be stressed again, however, that

\penalty- 10000 does not invoke the OTR zmme-

diately. If such a penalty is created inside a

paragraph, between lines of text, it is saved in
the recent contributions with the lines, and is only

recognized as special when it is moved, by the page

builder, to the current page. As a result, if a

paragraph contains:

the OTR will be invoked after the entire paragraph

has been read and broken into lines, and will find
\dimen0 to be Ip t .

A page can be broken only at a glue, kern or
penalty. If a page is broken at a glue or kern,
the glue stays in the recent contributions (to be

discarded when moved to the top of the next page).
If the page is broken at a penalty, the penalty

is saved in variable \outputpenalty and removed
from the vertical list. This variable can be used

to communicate with the OTR. Also, if the user

wants to return some material from \box255 to the
current page, he may want to reinsert the penalty,

by saying \penalty\outputpenalty.

Insertions and the page builder. We are now

familiar with how the MVL is maintained in cases

that don't involve insertions. In this section we
see how insertions are handled in the MVL by

the line break algorithm and the page builder.

Let's assume that an insertion class n has been

defined. When an \ i n s e r t n is read from the

source file, both the command and its insertion

material are placed in the recent contributions. The

next time the page builder is exercised, it finds

the command, followed by the insertion material.

The material should not be moved to the current
page, since it is an insertion (review the definition

of insertions). Instead, it should be moved to

\boxn, so the OTR should be able to typeset it
anywhere on the page. However, material is only

moved to \boxn just before the OTR is invoked (see

below). Therefore, when the page builder discovers
the command, it (1) moves the command (and the

insertion material), to the current page, but as a

special item, not as a regular part of the current

page (the material will later be moved to \box n
from the current page); (2) decrements g by the size

(height plus depth) of the insertion material.
Figures 1-2 show a paragraph (A-B) read into

the recent contributions and moved to the current

page. Figures 3-4 show how an \ i n s e r t \ f i g

command, followed by insertion material (C-D), is
also read into the recent contributions and moved.

as a special item, to the current page.

Splitting insertions. Before the page builder
decrements g, it executes the rules on [123-1241
to determine how much of the insertion material

TUGboat, Volume 11 (1990), No. 4 599

can appear on the page. If there is no room for

the entire insertion-either because it is large, or

because \dimen n has been assigned a small value -

the rules tell how to determine a good point to split

the insertion material so the remainder can be held

over for the next page. The result obtained by the

rules is used to decrement g, to reserve room on the
page for the insertion.

Again, it should be emphasized that the split

itself does not occur at this point. It takes place

just before the OTR is invoked (see below). At that
time, the top part of the split insertion is placed in

\boxn, and the bottom part is saved as a heldover
insertion.

The rules for splitting insertions, in simplified

form, are:
1. The first \ i n s e r t n for the page decrements

g by (the natural size of) \ sk ipn , and again by

the height plus depth of \boxn. Note that g is

not decremented by the size of the present insertion

(this is done in rule 3.)
What can \box n contain at this point?

la . It may be empty.

lb . It may contain material from the previous

page. Typically, such material should have been

typeset, by the OTR, on the previous page, and

\box n emptied. However, if the OTR did not empty

the box, room is now reserved for its contents on

the present page.
lc. It may contain material placed there by

the user explicitly, not through the \ i n s e r t n

command. In such a case, room is now reserved
on the page for this material. If anything is placed
explicitly in the box after this point, no room will

be reserved for it on the page [§1009].

2. If a previous \ i n se r t n on the current page

has been split (because it didn't fit on the page). the
present insertion will certainly not fit on the page,

and has to be held over. The only thing done at

this point is to increment \ i n se r tpena l t i e s by the

parameter \f loat ingpenalty. This increases the

cost of breaking the page at this point. See [124-1251

for examples of values of \f loat ingpenalty.

3. Determine if the insertion will fit on the

page without being split. If it will, decrement g

by the size x (height plus depth) of the insertion

material. Otherwise go to step 4 to calculate the
split size.

We denote the quantity 0.001\count n by f.
The value of g should be decremented by the scaled
size xf of the insertion material.

An insertion will fit on the page if its scaled
size x f is zero (or negative), or if

xf 5 9 - t (1)

or if \count n = 0. The actual test also includes

the \pagedepth, \pageshrink parameters, which

are ignored here for simplicity. They are introduced

in a later section.
4. Determine where to split the insertion. Let's

assume that we end up splitting \ i n se r t n at a

distance v from its top. What determines v? After

the material is split and is placed in \boxn, the

box's vertical size increases to x + v. The value
of v should, therefore. be the largest number that

satisfies (a) the new size, x + v, of \boxn should

be 5 \dimenn; (b) v should also be 5 g - t (the
available space on the page). Relation (b) will also

be modified later.
Since a split must occur between lines of text,

it may be impossible to split \ i n s e r t n to v.

therefore uses an algorithm, similar to the page

builder but without insertions, to determine a value

u close to v .

g is now decremented by u and the parameter

\ i n se r tpena l t i e s is incremented by the penalty

value (if any) found at the spljt point. The page

builder marks this insertion. in the current page,

as a split insertion. Note that the split itself does

not take place at this point. It is done after the

page breakpoint is determined, and before the OTR

is invoked.
All this happens when an \ i n se r t command is

discovered by the page builder on the recent contri-

butions, and is moved to the current page [§1000,

$10081. The page builder continues its operations
and, finally, decides on a good breakpoint for the

page. (Note: The value of \ i n se r tpena l t i e s is

used to help make the decision and, once it is made,
\ i n se r tpena l t i e s is free to be used for something

else.) Fig. 5 shows an example of a current page

with 3 paragraphs (A-B, E-F, and I-J) and 3 in-
sertions (C-D, G-H and K-L) the second of which

is stored in the current page as a split insertion (the

'*' marks the split point.) The recent contributions

list is empty.
The page builder then (see [125]) removes the

bottom of the current page (everything below the
breakpoint) and returns it to the recent contri-

butions (Fig. 6). The next step is to place all
the insertion material of class n in \boxn. The

page builder scans the current page and, for each

\ i n s e r t n found, appends the insertion material to

\boxn. When it finds a split insertion, it performs
the actual split, appends the top partyof the split

material to \boxn, and saves the bottom, as an in-
dependent insertion, in a separate place. All class n

insertions found on the current page following this

point, are saved in the same way, to be held over

(Fig. 8).

TUGboat, Volume 11 (1990). No. 4

the new parameter \holdinginserts to a positive

value.

This feature will be mentioned on [I251 starting

with the seventeenth printing of The m b o o k .

Tracing (in detail)

As mentioned before. a good way to learn about

insertions is to trace the internal operations of E X
while it handles this 'sensitive' material. Fortu-

nately, several tracing commands [303] are available,

to bring out and print the values of many internal

quantities. The most useful to us are \message,

\tracingpages and \showlists. The following

examples illustrate tracing, and should be studied,

performed, and modified by the serious reader. This
is an excellent way to understand the operations

discussed in the previous section.

We start with a simple example involving 5
short paragraphs, and 4 unsplittable insertions.

\mesl

Tracing insertions. Both message \&

tracingpages are used to keep track

of the values of certain quantities

involved with insertions. This helps

to understand the operations of the

page builder. \par\mes2

\insert\trace{\vbox to30pt{%

A 30pt insertion\vfil\hrule}}
Paragraph 2 \par\mes3

\insert\trace<\vbox to25pt{%

A 25pt insertion\vfil\hrule>}
Paragraph 3 \par\mes4

\insert\traceC\vbox to20pti%

A 20pt insertion\vfil\hrule}}

Paragraph 4 \par\mes5

\insert\tracei\vbox tol5pt{%

A 15pt insertion\vf il\hrule}}

Paragraph 5 \par\mes6

\bye

Typesetting the material above creates three

small typeset pages (only the first two of which are
shown here.)

Tracing insertions. Both message & tracing-
pages are used to keep track of the values of certain

quantities involved with insertions. This helps to
understand the operations of the page builder.

A 30pt insertion

Paragraph 2
Paragraph 3

A 25pt insertion

A 20pt insertion

It also generates the following log file.

1. \trace=\insert252

2.1: O.Opt, 16383.99998pt, 0;

3.%% goal height=l00.0, max depth=4.0

4.% t=10.0 g=lOO.O b=l0000 p=250 c=l00000#

j.% t=22.0 g=lOO.O b=10000 p=O c=l00000#

s . % t=34.0 g=100.0 b=10000 p=150 c=100000#

7.2: 46.0pt, 100.0pt, 0;

s . % t=46.0 g=58.0 b=10000 p=O c=100000#
9.3: 58.0pt, 58.0pt, 0;

lo.% split252 to -1.94444,25.0 p=-10000

1i.X t=58.0 plus 1.0 g=33.0 b=* p=O c=*

12. R: 58.0pt, 0; [I]
13.%% goal height=100.0, max depth=4.0

14.X t=10.0 g=63.0 b=l0000 p=O c=l00000#

15.4: 22.0pt, 63.0pt, 0;

16.% tZ22.0 plus 1.0 gz43.0 b=10000 p=O

17. ~=~ooooo#
1s. 5: 34.0pt, 43.0pt, 0;

19.x split252 to 7.05556,15.0 p=-10000

602 TUGboat, Volume 11 (1990), No. 4

20.;: t=34.0 plus 2.0 g=28.0 b=* p=O c=* looking for a page break, so the page builder goes
21. R: 43.0pt , 0 ; [21 back to the point, in the current page, with the
2 2 . % % goal height=100.0, max depth=4.0 least cost, and breaks the page there. What is that
2 3 . X t = l O . O g=73.0 b=10000 p=O c=100000# point? The current page contains 5 lines. Each of
2 4 . 6 : 22.0pt , 73.0pt , 0; the first 4 lines is associated with a cost of 100000,

2 5 . X t=22.0 plus 1 .0 g=73.0 b=10000 p=O and the last line has infinite cost. The most logical
26. c=lOOOOO# point for a page break is, therefore, following the

27. % t=23.94444 plus 1.0 plus I . Of ill g=73.0 fourth line.
28. b=O p=-20000 c=-20000#

29 R : 73.0pt , 0 ; [3]

Message 1 (line 2) shows the values of t and g

before encounters any text. Line 3 (with %%)
shows the goal height, which is still \vsize. Line 4

is generated when the first text line is moved to the
current page. It shows t = lOpt, the height of the

first line of text (plus the \ topskip glue above it).

Line 5 shows t = 22pt, which is the height of the

first text line, plus the \basel ineskip following

it, plus the height of the second line of text (the
depth of the last line is the depth of the page, and

is therefore not included in t). Lines 6-8 show t
growing in steps of 12 pt until it reaches 46 pt, the

total height of the 4 lines of the first paragraph.
Message 2 (line 7) shows t = 46 pt and g = 100 pt,

still equal to \vsize. However, line 8 shows that g

was decremented, as a result of the first \ i n s e r t .

from 100 to 58, a difference of 42pt. This equals
the size (30pt) of the material inserted, plus the

natural size (12 pt) of \skip\ t race.

Message 3 (line 9) shows t = 58pt, because
the second paragraph (a single line) was read,

typeset, and moved to the current page. At this

point both t and g equal 58 pt (but for different

reasons!). It would seem like an ideal point to
break the page, but the page builder starts looking

for a page break only when c = cc or when the

current penalty 5 -10000 [§1005]. So it reads the

next item from the source file, which happens to be
the next insertion (25pt). The page builder tries

to move it to the current page, and it executes the

4 steps on [123-1241. Steps 1, 2, don't apply. The
test in step 3 is not passed, so the page builder goes

to step 4 and calculates a good splitting point for

the insertion. The test on the second line of [I241

results in v = -d (since t = g and f = 1). This

means that the ideal split is at a point 1.9444pt

above its top. This is why line 10 shows that the
page builder has tried to sp l i t252 t o -1.94444.

This is a strange split but, in any case, it cannot be

done since the insertion is a box. The page builder

thus moves the entire insertion to the current page,
and decrements g to 33pt.

However, the 58 pt of material cannot be shrunk
to 33pt, resulting in line 11 with b=* p=O c=*,

infinite badness and cost. This is the time to start

The part of the current page below the break-

point (consisting of the line "Paragraph 2" and
the 25 pt insertion) is returned to the list of recent
contributions. The insertion material from the cur-

rent page is moved to \box\trace, the rest of the

current page is moved to \box255 (actually, the rest

of the current page becomes \box255), and the page
builder invokes the OTR.

A \showlis ts command placed in the OTR

would show no current page, and recent contribu-
tions consisting of the line "Paragraph 2" and the

25 pt insertion.

The R message (line 12) shows \ht255 = 58pt,

so the total height of the page shipped out is
58 + 12 + 30 = 100 pt. This is a successful case since,

with many unsplittable insertions, some pages must

be stretched a lot.
The next page starts with (line 14) t = lOpt

(one line of text, "Paragraph 2"), and g = 63pt
(= 100 - 12 - 25). On lines 16-18 t is incremented to

34pt. which means that 3 lines of text (paragraphs
2, 3 and 4) are tentatively considered). Message 5
(line 18) shows g = 43pt which means that the 20 pt

insertion has been read. It also shows t = 34pt

which means that there is still room on the page for

9 pt worth of material (typically 7 pt high and 2 pt
deep).

The next item is read from the source file. It
is the 15pt insertion. the page builder calculates
(line 19) a split point (sp l i t252 t o 7.05556) but,

since it is an (indivisible) box, it cannot be split.

It is moved to the current page, causing an infinite

cost (line 20). A page break point is determined as
before, and it is following the second line ("Para-

graph 3"). Paragraph 4 and the 15pt insertion are

returned to the list of recent contributions, and the

current page becomes \box255.

The R message (line 21) shows \ht255 = 43 pt.
The box contains just two lines of text (a height of
22 pt) and was stretched to 43 pt at the paragraph

break.

The rest of the log file, pertaining to the third

page, is easy to read and is left as an exercise.
Exercise: Add flexibility to \ sk ip \ t race

(such as 12pt plus6pt minus4pt) and typeset the

example. Make sure that you see how the flexibility

is reflected in the values for t .

TUGboat, Volume 11 (1990), No. 4

Exercise: Change \vsize to 90 pt and repeat

the experiment. The main changes should be in

the splitting. The page builder will try to split the
insertions at different points. Since the insertions

are indivisible, they will not be split.

Exercise: Add \showlist s commands after

each \message, and in the OTR. You may have

to fiddle with the values of \showboxbreadth and

\showboxdepth in order to get the right amount of

output.

The next experiment deals with splittable in-

sertions. We modify the source file to:

\hsize=3in \vsize=lOOpt

\tracingpages=l

\showboxbreadth=1000 \showboxdepth=l

Tracing insertions. Both message \&

tracingpages are used to keep track

of the values of certain quantities

involved with insertions. This helps

to understand the operations of the

page builder. \par\mes2

\insert\traceC\noindent* This is the

first insertion, about four lines worth

of text. This would make it possible

for \TeX\ to split the insertion,

if necessary. Up until now our insertions

were unsplittable)

Paragraph 2 \par\mes3

\insert\trace(\noindent* This is the

second insertion, three lines worth

of text. This would make it possible

for \TeX\ to split the insertion, if

necessary.}

Paragraph 3 \par\mes4

\insert\trace{\noindent* The third

insertion, four lines worth of text,

to illustrate the insertion splitting

rules on [123]. Note how this is split,

and how the split part is typeset

following the text on this page.)

Paragraph 4 \par\mes5

\insert\trace{\noindent*

Insertion 4, one line.)

Paragraph 5 \par\mes6

\bye

This produces 3 typeset pages, only the first 2
of which are shown here.

Tracing insertions. Both message & tracing-
pages are used to keep track of the values of certain

quantities involved with insertions. This helps to

understand the operations of the page builder.

* This is the first insertion, about four lines worth

of text. This would make it possible for TEX to

split the insertion, if necessary. Up until now our
-1-

Paragraph 2
Paragraph 3

insertions were unsplittable
* This is the second insertion, three lines worth of

text. This would make it possible for TJ$ to split

the insertion, if necessary.
* The third insertion, four lines worth of text, to il-

-2-

It also generates the following log file:

\trace=\insert252

1: O.Opt, 16383.99998pt, 0;

%% goal height=l00.0, max depth=4.0
% t=lO.O g=100.0 b=l0000 p=250 c=l00000#
% t=22.0 g=100.0 b=10000 p=O c=100000#
% t=34.0 g=100.0 b=l0000 p=150 c=100000#
2: 46.0pt, 100.0pt, 0;

% split252 to 40.05556,33.44444 p=150
% t=46.0 g=54.55556 b=10000 p=O c=100000#
3: 58.0pt, 54.55556pt, 150;

% t=58.0 plus 1.0 g=54.55556 b=* p=O c=*
R: 54.55556pt, 1; [I]
%% goal height=100.0, max depth=4.0
% t=O.O g=76.05556 b=l0000 p=O c=l00000#
% t=10.0 g=42.61111 b=10000 p=O c=100000#
4: 22.0pt, 42.61111pt, 0;

604 TUGboat, Volunle 11 (1990), No. 4

% split252 to 18.66667,9.44444 p=250 Summary
% t=22.0 plus 1.0 g=33.16667 b=10000 p=O
c=100000#

5: 34.0pt, 33.16667pt, 250;

% t=34.0 plus 2.0 g=33.16667 b=* p=O c=*
R: 33.16667pt, 1; [2]

%% goal height=l00.0, max depth=4.0
% t=O.O g=52.05556 b=10000 p=O c=100000#
% t=lO.O g=42.61111 b=10000 p=O c=l00000#
6: 22.0pt, 42.61111pt, 0;

% t=22.0 plus 1.0 g=42.61111 b=10000 p=O
c=100000#

% t=23.94444 plus 1.0 plus l.Ofill
g=42.61111 b=O p=-20000 c=-20000#

R: 42.61111pt, 0; [3]

The main differences between this experiment
and the previous one are:

1. Insertions can now be split. The message
split252 to 40.0555,33.4444 p=150 shows that

the first insertion should, ideally, have been split

at a distance of 40pt from the top. Such a
point, however, is between two lines of text. so the

insertion ended up being split at 33.4pt, after the
third line of text. Note the widowpenalty of 150

found there.

The split operation is similar to a page break,

a fact which shows us how to control insertion

splitting. We can, e.g., place a penalty of -10000

in the first insertion.

\insert\traceC\noindent* This is the first

insertion, about four lines worth of text.

\vadjust{\penalty-10000) This would make

it possible . . . were unsplittable)
This will force a split of the insertion after the

second line. The log file will now contain the line:

split252 to 39.5,21.6527 p=-10000

showing that the split occurred 21.6 pt from the top
(a height of two lines) because of the large negative

penalty found.

2. The displayed values of \insertpenalties

show the dual nature of this parameter. Several mes-

sages display the value 150 (= \widowpenalty). In

the OTR, however, the value of \insertpenalt ies
is not a penalty but the number of heldover in-

sertions. When the first page is shipped out. the

second insertion has already been read, and is being

held over, together with the split part of the first in-

sertion. As a result. the value of \insertpenalties
in the OTR is 2.

Exercise: Place \showlists commands after

each \insert\trace{. . . I and in the OTR. This

will show how inserted material is stored in the

recent contributions and in the current page.

This is a tutorial, not a cookbook. It does not

contain any canned macros that can be directly
copied and used. Instead. it tries to develop

a better understanding of insertions. so that the

reader will be able to implement insertions for

specific applications.
All the material presented here (except, per-

haps, some examples) can be found in The m b o o k .

although in a somewhat cryptic language. The se-
rious reader should, therefore, after reading this

tutorial and doing the exercises, go back to the

book to get a different perspective on the topics

discussed here.

Endnotes

[l] This is an endnote. Look at the endnotes

example to see how it works.

[2] The idea is that, when a textbook is written,
items that should appear in the index of the book

should be flagged by the author and written by
on a file, for the future preparation of an index.

While the book is being written and proofread.
it is also handy to have all the index items for

a page printed on the right margin of that page.

On the final printing of the page, those items are

suppressed.

[3j Given two large figures that are textually related.
they should be inserted into the document close to

each other. If they don't both fit on one page. they

should be inserted on facing pages, which means

that the first figure should be inserted on the next
even-numbered page, and the second figure, on the

page following.

[4] All that the user has to do is save the figures
in boxes and check, in the OTR, for the next

even-numbered page.

[5] Answer: Because glue and kern are discardable

items and disappear at a page break.

[6] Actually, in a temporary place.

[7] Actually, just before the OTR is invoked. the

material is brought in from temporary storage and

is appended to the box. Note that the allocated box

may contain other material. placed there by the user

not through the \insert command. Such material

remains in the box and is eventually typeset on the

page by the OTR. However. no room is reserved on
the page for such material, and it may cause a page

overflow.

[8] Actually, in a temporary buffer.

[9] We use t to denote \pagetotal, and g to denote

\pagegoal.

TUGboat: Volume 11 (1990), No. 4

[lo] The temporary buffer is appended to it.

[11] The \ v s p l i t command works by splitting a

vbox at a permissible point. If the insertion material

is made up of line boxes, it will be split between
lines, not in the middle of a line. Penalties also

control the split. Sometimes a box will be split

a t a point away from where we wish, because of a

penalty that encouraged breaking the box at that

point. However, the material split will be shrunk or

stretched to bring it to the desired size.

[12] Although it cannot do the entire job.

[13] If the amount of marginal notes exceeds \vsize.
some of it will be printed off the page, but will not

be held over to the next page.

1141 Because of the narrow box width, there
will be overfull boxes, but the thick vertical

bars accompanying them can be eliminated by
\overful l rule=Opt .

1151 Things like \hs ize=xxx. \ raggedright , and

\obeylines.

[16] It is not returned to the MVL when the OTR
says \unvbox\midins.

[17] However, outside the OTR it contains. not the

number, but the sum of penalties. of all the heldover

insertions [I l l] .

o David Salomon
California State University,

Northridge
Computer Science Department
Northridge, CA 91330
dxsQrnx. csun. edu

Macros

A N e w E d i t o r

Victor Eijkhout

Starting this issue, I've joined the editorial commit-
tee as associate editor for macro affairs (see the re-

verse of the title page for the other members).

The fact that incoming articles about T~Xnical
affairs will undergo my scrutiny does not mean that

there is suddenly a large chance that submitted ar-

ticles will be returned, rubber-stamped 'rejected'.
My job will be to assist authors in creating articles

that are of maximum value to the TUGboat reader-

ship. Often this means that my main concern is .how

well does this article explain whatever it is telling',

rather than 'is this all completely original'. Remem-

ber that rn is not something you read about, it is

something you actually do. The subject matter of

the article is therefore a secondary concern: TUG-

boat is read by beginners and grand masters alike.

so articles need not be very high-brow. In fact, we
need more articles that help the beginners take the

first steps to grand masterhood.

Let these few lines with which I have introduced
myself then also be an invitation to prospective au-

thors: if you have done something new, or if you

have something interesting to say about something
old, write it down. and send it to TUGboat. Should

you have trouble with the finishing touch, send in

what you have and we will discuss it.

Victor Eijkhout
Center for Supercomputing

Research and Development
University of Illinois
305 Talbot Laboratory
104 South Wright Street
Urbana, Illinois 61801-2932. USA
eijkhoutQcsrd.uiuc.edu

Line Break ing i n \unhboxed Text

Michael Downes

In the course of my work (macro writing and
troubleshooting for m - b a s e d production at the

American Mathematical Society) I recently had to

investigate a line-breaking problem in the bibliogra-
phy macros of the documentstyle amsppt, used with

AMS-m. This is a report on the results of my
investigations. Applications where this information

might be useful include (1) implementation in rn
of SGML-style macros with omitted end tags as an

option, and (2) using the width of a piece of text to

choose between two formatting alternatives.

T h e amsppt bibl iography macros

Although they're less sophisticated than BIB^,
the amsppt bibliography macros are simple to use

and provide a certain degree of style independence

(which makes the . t e x file more portable). They

are designed to allow the individual parts of a

606 TUGboat, Volume 11 (1990). No. 4

reference to be specified in any order, with punc-

tuation between the parts and other formatting

supplied automatically. In addition, an individual

field within the reference does not have an ending

delimiter: \paper (used for article titles) does not

have a matching \endpaper, and so on. In SGML

terminology, these would be called structures with
'omitted end tags'. A typical reference looks like

this:

\ r e f \key C 1

\by B . Coomes

\book Polynomial f lows, symmetry

groups, and condi t ions s u f f i c i e n t

f o r i n j e c t i v i t y of maps

\bookinfo Ph.D. t h e s i s

\pub1 Univ. Nebraska--Lincoln

\ y r 1988

\endref

In m, the combination of omitted end tags and
randomly ordered elements (possibly with some

elements absent) is not easy to provide. If it were

required that all the tags had to be present, and in

the right order, one way of obtaining at least the

appearance of omitted end tags would be to define

each beginning tag as a macro with an argument
delimited by the next tag:

\def\key#l\by((process the argument)\by)

\def \by#l\book{(process the argument)

\book)

\def \book#l\bookinf process the

argument)\bookinf o)

and so on. Another approach would be to use ^^M

(carriage return) as the ending delimiter: however,
this would require the user to have each element

on a separate line, and to add percent signs at

the end of each line but the last if an element

were more than one line long-not too impractical

perhaps in the context of a bibliography situation,
but trouble-prone in general.

The straightforward approach of having \key,

\by, etc., be macros with an argument enclosed in

braces would work fine, but doesn't seem to be a

case of true omitted end tags since the closing 3 is
necessary. And it's a little more work for the user

to type the braces.

The amsppt bibliography macros take a differ-

ent approach. using \hbox\bgroup . . . \egroup.

The definition of \by, for example, ends with

and the \egroup to end the box is supplied by
\book, or whatever tag follows next. This stores

the author name in the box \bybox. Each part

of the reference is similarly stored away in a box

instead of being put on the page immediately. The

\endref macro then unboxes all the boxes, using

\unhbox, and sets them in a paragraph in the

proper order.
This method avoids reading the text as a macro

argument, and makes omitted end tags possible,

because during the \ se tbox operation TEX actually

typesets the text, expanding macros along the way.

This is essential if m is to find the \egroup to
close each box.

The problem

Interestingly. it seems that the amsppt docu-

mentstyle was used for more than five years before
the line-breaking problem, which had been present

from the beginning, was identified (by Barbara
Beeton's eagle eye). Most likely. the problem did

manifest itself occasionally during that time but was

dismissed without investigation because it could be
resolved easily by adding a \ l inebreak . What

Barbara noticed was that. in the example given

above, the compound 'bNebraska-Lincoln'' wasn't
breaking properly at the end of a line. The best line

break was definitely after the en-dash. but instead

"Lincoln" was hanging over the right margin. After
she pointed the bad break out to me and we did

some experiments, it became clear that although
hyphenation between letters was working as normal,

after explicit hyphens the possibility of a line break

was disappearing.

Horizontal lists

If you have the complete Chapter 14 of The
m b o o k stored in the "non-volatile memory'' of

your brain then you probably already know the

cause of the phenomenon we were seeing. For those
of you who don't. I'll review some terminology and

ideas.
All characters typeset by TQX are put into

what is called a "horizontal list". Characters and

other elements of a math formula or subformula are
first processed as a math list, but they end up being

transformed into ordinary horizontal list material:

characters, boxes. glue, penalties.

To be more specific, the components of a

horizontal list are:

(1) characters;

(2) glue (usually interword spaces)
(3) kerns (usually adjustments between letters);

(4) discretionary breakpoints (usually discre-
tionary hyphens):

(5) penalties (encouraging or discouraging line

breaks) ;

TUGboat, Volume 11 (1990), No. 4

(6) boxes (\vboxes or \hboxes containing sub-

sidiary vertical or horizontal lists);

and (7) a few other miscellaneous kinds of things

not important in the current discussion.

For line-breaking purposes m does not dis-

criminate between single characters. boxes, or

rules-each of these treated as a box with a
particular width-except that automatic hyphen-

ation occurs only between letters (more precisely,

characters with \lccode # 0; nonletters normally
have an \lccode of 0).

Horizontal lists are constructed either in "hor-
izontal mode" or in "restricted horizontal mode".

The former is the mode used in making ordinary

paragraphs; the latter is the mode used inside an
\hbox. Actually the material of a paragraph also

ends up in \hboxes, because a finished paragraph is

just a stack of \hboxes separated by \basel ineskip

glue; but the horizontal list for a paragraph is dif-
ferent in a few significant respects from a horizontal

list constructed in restricted horizontal mode.

Recall that m optimizes line breaks over an

entire paragraph; the horizontal list of a paragraph

is not broken up into separate lines until the \par or

other paragraph-ending command has been reached.

At that point 7l&X goes through the entire horizontal
list of the paragraph and chooses line breaks based

on the current values of \hsize, \ pa r f i l l sk ip .
\ r ightsk ip , \ l e f t sk ip , \parshape, \ tolerance,

\hyphenpenalty, and other parameters. During

the initial construction of the horizontal list, TEX
adds certain things to help in the line-breaking

process.
These items added to a horizontal list by

TEX are not explicitly present in the input file,

but are inferred by rn based on the context.

Many of the seemingly magical effects of are
accomplished this way: paragraph indentation is ob-

tained by inserting an \hbox of width \parindent

in the horizontal list; and one step in the pro-

cess of automatic hyphenation is the addition of

\discretionary(-)()(> in the horizontal list at

all the hyphenation points determined by QX' s hy-

phenation patterns. These items aren't ephemeral,
they're really there in the finished list, and can be

seen using \showlists.

Because these items are really present in the

finished list, they use up box memory (part of
W ' s main memory). Therefore avoids adding

items unnecessarily. Primarily this means that
in restricted horizontal mode-in the making of

an \hbox- where line breaking is not a possibil-

ity, breakpoint items such as \discret ionarys or

\penaltys that would be added in unrestricted

horizontal mode are omitted.

Since each piece of an amsppt reference is

typeset using \hbox, breakpoints are not added by

7&X to the enclosed horizontal list. This is not a

problem unless you \unhbox the box and reuse the
contained horizontal list to make a paragraph. But

that's exactly what the amsppt bibliography macros

do.

Examples

Here are some examples of output from the

\showlists command, to make it easier to pic-
ture the structure of horizontal lists.

Characters and glue. The word "in", along with
surrounding word spaces:

\glue 3.33333 plus 1.66666 minus 1.11111

\tenrm i

\tenrm n

\glue 3.33333 plus 1.66666 minus 1.11111

Each line corresponds to one item in the horizontal

list. In m ' s eyes \tenrm- the name of the current

font -is not a separate piece of the horizontal list.

but an attribute of the character "i" or "n". The

font attribute is displayed with each character for

informational purposes.
For the numbers given here the units are points;

thus an interword space in this particular font has a
natural width of about 3.33 pt, with stretchability

of 1.67 pt and shrinkability of 1.11 pt. The em-
width of the font is 10 points, so as you can see, the

values correspond to 113 em, em, and 119 em.

Kerns and ligatures. The kerns added by 7QX
in a horizontal list are related to ligatures in that

both of them are dependent on the current font:

If two or more [ordinary characters] occur in

succession, TFJ processes them all as a unit,

converting pairs of characters into ligatures

and/or inserting kerns as directed by the font
information. (m b o o k , p. 286)

Take the word "mode", for example: it has a kern

added between the o and the d, in the font \tenrm

(crnrlo).

And as an example of a ligature, consider the "ff"
ligature in the word "off":

\tenrm o
\tenrm -^K (l i ga tu re f f)

608 TUGboat. Volume 11 (1990), No. 4

The ligature character resides in font position 13.

which is the ASCII location of control-K. When

reads two consecutive L'f"s, it replaces them with

a single control-K character in the horizontal list,

following the instructions in the ligature table for
this particular font. Similarly, the ligature character

for an en-dash in the same font resides in the ASCII

position 123, so in the output of a \ showl i s t s

command it's represented by a left brace:

\ tennu { (l i g a t u r e --)

Discretionaries. The discretionary items added
by TQX in a horizontal list are of two kinds. A

plain \ d i s c r e t i o n a r y is added after every hyphen
character or ligature formed from hyphen charac-

ters. So a more complete picture of an en-dash is

as shown here (using the text "1-9"):

\ tenrm 1

\ tenrm { (l i g a t u r e --)

\ d i s c r e t i o n a r y

\ tenrm 9

As already mentioned, to accomplish automatic
hyphenation, a discretionary hyphen (equivalent to

\discretionary{-){){)) is added at every hy-
phenation point within words, according to m ' s
internalized hyphenation patterns. But this second

kind of \ d i s c r e t i o n a r y is not added at the same

time as the first kind. We'll see the significance of

this shortly.

Penalties and glue. Penalties and glue added be-

hind the scenes in a horizontal list are mainly added
in math formulas. Internally, the automatic spacing

in math formulas is done by adding \g lue items in

the horizont a1 list in the amount of \ thinmuskip.

\medmuskip, or \ thickmuskip. Penalties in the

amount of \ r e l p e n a l t y and \b inoppenal ty are

added after binary relations and binary opera-

tors to allow line breaks. They serve essentially

the same purpose as \d i sc re t ionarys . but unlike

\ d i s c r e t ionarys, which neither encourage nor dis-

courage a break, \ r e l p e n a l t y and \b inoppenal ty

are usually set to some positive value that dis-
courages line breaking. The plain values are

500 and 700, respectively, so that line breaks after
operators are discouraged slightly more than after

relations. The horizontal list representation of the

formula a = b + c looks like this:

\mathon
\ t en i a
\glue(\thickmuskip) 2.77771 plus 2.77771

\tenrm =

\penalty 500

\glue(\thickmuskip) 2.77771 plus 2.77771

\ t en i b

\glue (\medmuskip) 2.22217 plus 1.11108

minus 2.22217

\tenrm +
\penalty 700

\glue(\medmuskip) 2.22217 plus 1.11108

minus 2.22217

\ t en i c
\mathof f

If \mathsurround were, say, 3pt instead of Opt.

the \mathon and \mathof f items would be followed
by the note

(surrounded 3 . 0)

Mathsurround spacing behaves more or less like a

kern of the given amount; if a line break occurs at
the end of a math formula, the spacing is discarded

to keep the line from ending short of the margin.

If you look at the horizontal list using \ showl i s t s ,

you'll see that the \mathof f item remains, but the

(surrounded 3.0) note disappears.

Automatic hyphenation

To summarize what's been covered so far: when l$J
is working in restricted horizontal mode, it omits

all the items that are needed only for line-breaking

purposes - discretionaries after explicit hyphens,
discretionary hyphens, and the penalties after math

relations and binary operators. If the resulting
horizontal list is then \unhboxed and used to make

a paragraph. certain line breaks will simply be

impossible because the breakpoints aren't present.

But one question remains: Why was ordinary

intraword hyphenation still working as normal in

the amsppt bibliography macros? The answer is

that the discretionary hyphens added by to

enable automatic hyphenation are not added at the

same time as the other breakpoints. All the other
kinds of breakpoints are inserted during the initial

construction of the horizontal list. but, striving for

more efficiency, rn tries first to make a paragraph

without resorting to automatic hyphenation: if and
only if this first attempt fails - if line breaks cannot

be found such that the badness of each line is

less than \p re to le rance - rn goes back through

the horizontal list of the paragraph and adds the
discretionary hyphens indicated by its hyphenation

patterns, and goes through another line-breaking

pass. On this second pass it also uses \ t o l e r a n c e

instead of \p re to le rance .

Thus the amsppt bibliography macros first
construct the pieces of a paragraph in restricted

horizontal mode, so that no breakpoints are added:

then the pieces are combined into one long horizon-

tal list and sent to TQX for paragraphing; if the first
attempt at paragraphing fails, T)$ follows its usual

TUGboat, Volume 11 (1990). No. 4 609

process of adding discretionary hyphens, and tries

again to make a paragraph, whereupon hyphenation

works as normal.

Using \vboxes instead of \hboxes

The W b o o k , Appendix D, pp. 398-400, has an

example that uses the technique of \unhboxing to
construct a paragraph out of many short footnotes.

Finding no mention there of hyphenation peculiar-

ities, I wrote to Knuth to suggest that a footnote
about hyphenation might be useful to add in some

future printing, and to ask if there was any way

to provide normal line breaking after hyphens in

unhboxed text: I couldn't think of any solution
short of catcoding the hyphen to be active and

having it do some laborious checking to handle the

possibility of en-dashes and em-dashes (the need to

consider \ r e lpena l t y and \binoppenalty hadn't

even occurred to me). In response Knuth outlined
an interesting alternative: If instead of an \hbox

you use a \vbox with \hsize set to \maxdimen.

the product will be a one-line paragraph. with all

the necessary breakpoints present (because unre-

stricted, rather than restricted, horizontal mode
will be used to construct the horizontal list). There

is an extra level of boxing present, but an extra
unpacking step will take care of that.

Here is a sketch of the m n i c a l details, using

a simplified bibliography scheme with three tags:
reference label \key, author name \by, and article

title \paper.

To start with, some box names need to be

declared:

At the very beginning of a reference, we need to

provide a \bgroup to match the first upcoming

\egroup. We do this by setting a \vbox that will

simply be discarded.

And here's the definition of \key:

Without the \noindent we'd get a box of width

\par indent because we're beginning a paragraph;

this would interfere later when the pieces of the

reference are combined.
Actually, since the macros \by and \paper are

nearly identical. it's better to write a generalized

macro that can be shared by all three:

\def\makerefbox#l#2C\par\egroup

\setbox#l=\vbox\bgroup

\hsize=\maxdimen \noindent#2)

Then the definitions are

\def\key(\makerefbox\keybox\bf)

\def\byC\makerefbox\bybox\rm3

\def\paper(\makerefbox\paperbox\it)

\endref performs the usual sequence \par\egroup

to close the final data box, whatever it may be, and
then unpacks \keybox, \bybox, and \paperbox.

inserting punctuation and space as desired. Since

each unpacking operation is the same, it's best done

as a macro, say \unvxh ("unvbox, extract the last
line, and unhbox it").

\def \endref (\par\egroup

% prel iminary formatt ing

\noindent\hangindent\parindent

% re fe rence l a b e l
(\bf C\unvxh\keyboxl]\enspace

% author name(s)
\unvxh\bybox ,\space

% a r t i c l e t i t l e
\unvxh\paperbox.\par

1
The \bf here is necessary if we want bold []
around the reference key. The contents of \keybox

are already typeset. so we could not change them
to bold at this point if they were not bold already.

The last line of a paragraph ends with three
special items:

\penal ty 10000
\g lue (\pa r f i l l sk ip) 0.0 plus l . O f i l

\g lue(\ r igh tsk ip) 0 . 0

If we made sure \ p a r f i l l s k i p and \ r i gh t sk ip
are zero. by setting them to zero at the same time

as we set \hs ize to \madimen, these items could
perhaps be left in place. On the other hand. if we

remove them, the reassembled reference will more

closely resemble a paragraph typeset naturally, and

furthermore. it will use slightly less of W ' s main

memory. So we remove them using \unskip and

\unpenalty in the macro \unvxh.

\def \unvxh# 1 C %

\setboxO=\vbox~\unvbox#l%

\global\setboxl=\lastbox)%

\unhboxl

% remove \ r i gh t sk ip , \parf i l l s k i p ,

% and pena l ty
\unskip\unskip\unpenalty

3

Now to try these macros out:

610 TUGboat, Volume 11 (1990), No. 4

\ ref \paper T i t l e of t he important

work he wrote

\by Arthur Aja Desc

\key De \endref

\ ref \key K\by Kustirn Kunsla

\paper And t o t e s t l i n e breaking

a f t e r e x p l i c i t hyphens: pneu-mono-ul-%

tra-mi-cro-scop-ic-sil-i-co-%

vol-ca-no-co-ni-o-sis \endref

[De] Arthur Aja Desc, Title of the important work
he wrote.

[K] Kustim Kunsla, And to test line breaking af-

ter explicit hyphens: pneu-mono-u1-tra-mi-cro-
scop-ic-sil-i-co-vol-ca-no-co-ni-o-sis.

Without the use of Knuth's idea there would

be no legal breakpoints after any of the explicit
hyphens in pneu-mono-ul-tra-mi-cro-scop-ic-sil-i-co-

vol-ca-no-co-ni-o-sis and we'd have an overfull line.

Complications

A significant stumbling block was pointed out to

me by Ron Whitney at TUG when I submitted this
article (thank you, Ron): if we're typesetting a piece

of a reference using \vbox instead of \hbox, explicit
line breaks typed by the user will take effect as soon

as a \par is read-that is, when the information

is stored, rather than when it is combined with the
rest of the reference. In addition to the under fu l l

\hbox message that will result (because \hs ize =

\maxdimen), this means that the \vbox will contain

more than one line of text, and unpacking it will
not be so simple after all.

Let's suppose that, as in AMS-m, the user

has a single command for forcing a line break.
called \ l inebreak. We don't need to worry about

"suggested" line breaks - anything with a \penal ty

greater than - 10000 -because these will remain
inactive during the initial typesetting, thanks to
the large \hsize. The problem is to take the text
that is split by a \ l inebreak and save it in such

a form that it can later be joined seamlessly with
the rest of the reference, but with the line break

preserved. And we want to suppress the under fu l l

\hbox message while we're at it.

There are various alternatives, and some read-

ers may be able to devise a better solution than
the one I chose. But first let me mention briefly

a couple of the more tempting and less practical
alternatives that I considered:

(1) Tell the users that they can only use
pure bibliographic information inside the reference

macros, unsullied by uncouth raw typesetting com-

mands like \ l inebreak. This would mean only

that users would grumble about their output and
line breaking problems would be deferred to the

attention of publishers' production troubleshooters,
e.g., me.

(2) Redefine \penal ty to check the penalty

amount and make sure it's -9999 or greater; that
is, convert forced line breaks to "emphatically

suggested" line breaks. This would work reasonably

well in a bibliography context (especially with a
high setting of \ tolerance) , since penalties are

only used for line breaking and page breaking, and

within the scope of the \penal ty redefinition there
wouldn't be any embedded vboxes wherein line-

breaking had to be restored to normal. However,

this alternative seems dangerous; I was able to

imagine at least one scenario (too complicated to
be worth describing here) where changing forced

breaks to nonforced breaks would cause a problem.

One way of handling line breaks. Assume that,

as in AMS-W, the user has a single command,
\ l inebreak , to force a line break, and that its

normal definition is essentially \penalty-10000

(ignoring some frills like error messages if in vertical
mode). We don't have to worry about penalties
greater than -10000, as mentioned earlier. Inside

the \vbox that is being typeset by \makerefbox,

we can change the definition of \ l inebreak:

\def\linebreak{\par

\setboxO=\lastbox

\setbox\holdoverbox=

\hbox~\unhbox\holdoverbox

(in case more than one \ l inebreak occurs within a
single piece of the reference)

\unhboxO

\unskip\unskip\unpenalty

\penalty-10000)%

\noindent)

% Can't fo rge t t h i s

\newbox\holdoverbox

Thus \ l inebreak takes the text so far and saves

it in \holdoverbox, along with a break penalty,

inactive here because we're in an \hbox instead of
a \vbox. This saved part will then be combined

with the remainder of the current reference field, by

way of some extra processing in \makerefbox and
\endref.

TUGboat, Volume 11 (1990). No. 4 611

After \checkholdoverbox, we have reduced the
contents of the current \vbox to a single \hbox,

just as if no \ l inebreak had been present.

There are extra complications if the user inserts
a \ l inebreak at the end of a field, because that

means the break will be taken between the text

and ensuing automatic punctuation if we don't

do something about it. Some nice checking and

rearranging to handle this case was present in

Spivak's original version of the amsppt reference
macros and will not be discussed here.

Text measurement applications

To understand more clearly the second application

mentioned at this article's beginning, consider the
usual method for measuring a piece of text and

using the width as a selector:

\def\caption#lC%

\setboxO=\hboxC#l)%

\ifdim\wdO<\hsize

\centerline{\boxO)% centered l i n e

\ e l s e
\noindent#l \par % paragraph

\f i)

Using \unhboxO in the (paragraph) branch would
be slightly more efficient -it avoids typesetting the

text twice. But that would bring in the line-

breaking problems described above. We can have

our cake and speed up, too, if we use Knuth's idea
and start by setting the caption in a \vbox, rather
than an \hbox.

Handling vertical mode material in a caption.
After setting material in a \vbox, simply extracting

\ l as tbox as in the \unvxh example may not be

enough. What if someone wants two paragraphs

in a caption, or maybe even a displayed equation?
A \par or display in the \vbox will mean that

after extracting \ l as tbox some material will be left

behind. I had a chance to experiment in a recent

assignment, which was to create a MTEX docu-

mentstyle for electronic submissions to American

Mathematical Society journals. One of the macros I

had to modify was \@makecaption. whose original

definition from a r t i c l e . s t y was roughly the same
as the \capt ion example above.

This is what \@makecaption had to be modified

to do: If the total width of the caption material

is greater than \columnwidth (29pc), break the

caption into lines using a line width of 23pc. and

center the resulting block between the margins.

Otherwise set the caption as a single line, centered
between the margins.

To do this I decided to set the caption as a

\vbox with line width 23pc, but allow the last line
(which may be the only line) to be up to 29pc long

by adding a kern of -6pc. The last line is put into

box register 1 using \ las tbox. After extracting the
last line, if there is anything left in the \vbox, that

means the caption was (most likely) more than one

line long and some extra processing is needed.
The first argument of \@makecaption is the

name of the figure or table. e.g., "Figure I",
generated automatically by IPW. The second

argument is the caption text typed by the user.

\long\def\hakecaption#1#2{%

We begin by setting the text in a \vbox.

\setbox\@tempboxa\vbox{%

% hs ize := 29 - 6 = 23 pc

\advance\hsize-6pc\noindent

Ordinarily the \unskip here would be done auto-

matically by \par, but here the \kern gets in the

way so we must do the \unskip explicitly.

{\sc#l)\enspace#2\unskip

\kern-6pc\par

\global\setbox\@ne\lastbox)%

Now box 1 holds either the entire caption, or the

last line of a multiline caption. In either case we
want to remove \parf i l l s k i p , \ r igh tsk ip , and

the \kern of -6pc. Before we get to the \kern we

also have to remove the penalty of 10000 that is
inserted by at the end of every paragraph.

\setbox\@ne\hbox~\unhbox\@ne

\unskip\unskip\unpenalty\unkern)%

If \@tempboxa is not empty at this point it means

the caption was more than one line long. In that

case we reset the caption using the contents of

\@tempboxa and \unhboxing box 1 (because the

contents of box 1 may need to be made into two

lines instead of one, if its length is greater than

23 picas). Otherwise the caption material is made

into a single centered line. Note: A box register
containing an empty box is not the same as a void

TUGboat, Volume 11 (1990), No. 4

box register: a box register that contains \vbox{)
will not return true if tested with the \ifvoid

test. So to decide whether \@tempboxa is empty we

cannot use \if void. Instead we employ the simple

strategy of measuring the width of the box. This
will not be 100% failsafe but the failure cases that
I've been able to imagine are all rather exotic.

\ifdim\wd\Qtempboxa=\z@

\setbox\@ne\hbox to\columnwidth{%

\hss\kern-6pc\box\@ne\hss)%

\else % more than one line
\setbox\@ne\vbox{\unvbox\@tempboxa

\noindent\unhbox\@ne

\advance\hsize-6pc\par3%

\f i

The \kern-6pc in the first branch is to offset the

\moveright that is about to be done next. (If
tortured, I would be forced to admit that it took
me several attempts before I figured out the right

amount for this kern and the proper place to put
it.) Finally, we put the caption on the page.

with a \vskip to separate it from the preceding or
following material.

\ifnum\@tempcnta<64 %if it's a figure

\vskip lpc%

\moveright 3pc\box\@ne

\else % if the float IS NOT a figure
\moveright 3pc\box\@ne

\vskip Ipc%

\f i

1

By testing \Otempcnta we can tell whether the
caption is being used in a figure environment or

not; if so, we assume that the caption is placed
below the artwork and hence put the \vskip above
the caption; otherwise we assume the caption is at

the top of the floating insertion and we put the
\vskip below it.

\@makecaption presents a few extra compli-
cations that have been omitted for the sake of

simplicity; as given here, the caption will not be

quite centered if the figure caption has no text, and
SO on.

o Michael Downes
American Mathematical Society
201 Charles Street
Providence, RI 02904

mjdQMath. AMS . com

Looking Ahead for a (box)

Sonja Maus

m ' s primitive \aft erassignment can be used for

macros which first assign a value to a parameter,

and then perform some actions using that value.

For instance the plain macros \mapif ication

and \hglue (see The T~Xbook, p. 364 and 352),
assign a (number) or (glue) value to a variable and

then use this value. They provide a user-friendly

"syntax mimicry": \magnification looks like an
integer parameter in an assignment, and \hglue
looks like the primitive command \hskip. There is

another advantage to this method over the use of
arguments with #I: At the moment when looks
at the tokens of the value. it already knows what

kind of value it is looking for. This would be very
useful when the value to be read is a (box), because

an explicit \hbox or \vbox may contain \catcode
changes and all tokens should not be read ahead.

There are seven ways to write a (box) (The
T&Xbook, p. 278). The \afterassignment com-
mand behaves differently with the first four and the

last three of these (box)es:

\afterassignment\t \setboxO=\boxl

results in \setboxO=\boxl \t, whereas

\afterassignment\t \setboxO=\hbox{h)

results in \setboxO=\hbox{\t h).

The macro \afterbox gives a substitute which
is equally valid for all (box)es. Its syntax is

where (argument) is an argument for an undelimited

macro parameter (see The r n b o o k , p. 204), i.e. a

single token or several tokens in explicit braces.
\afterbox puts the (argument) aside (without the

braces, if any), assigns the (box) to the register
\box\afbox, and then reads the (argument) again.

The definition must be read when @ is a letter:

\newbox\af box

\def\afterbox#li\def\afb@xargC#l)%

\afterassignment\afb@x

\chardef\nextC.}

\def\afb@x{\futurelet\next\afb@xtest)

\def\afb@xtest

~\ifcase\ifx\next\hbox\tw@\fi

\ifx\next\vbox\tw@\fi

\ifx\next\vtop\tw@\fi

\if x\next\box\@ne\f i

\ifx\next\copy\@ne\fi

\ifx\next\vsplit\@ne\fi

\ifx\next\lastbox\@ne\fi

O\errmessageCNo <box>)%

\or\afterassignment\afb@xarg

TUGboat, Volume 11 (1990), No. 4

\ o r \ a f t e ra s s ipen t \ a fbQxagarg

\f i

\setbox\afbox)

\def\afbQxagargC\aftergroup\afbQxarg)

First. \afterbox puts the (argument) into

\afbQxarg. Then the \chardef command reads a

(number) which turns out to be a (normal integer)

with a (character token) (see The m b o o k , p. 269).

As the syntax of (number) requires, w expands

tokens and looks for (one optional space) which
turns out (empty). This looks crazy. but it has

the effect of unpacking the first non-expandable
token of (box) if it was hidden behind expandable

tokens like \null or \line (or \Boxit below). This

non-expandable token's meaning is then assigned to
\next and tested by \afbQxtest. It must be one

of the seven primitives listed with the \if xs, and

the cases 1 and 2 correspond to the two behaviours
of \afterassignment mentioned above. In both

cases, \afbQxarg will reappear exactly at the time

when the \setbox assignment is finished, e.g.:

\af terbox \t \box1

results in \setbox\afbox=\boxl \t. whereas

\afterbox \t \hboxih)

first becomes . . . \hbox(\afbQxagarg h) and then

results in \setbox\afbox=\hbox(h)\t.

For example,

\def\BoxitC\hbox\bgroup\afterbox

{\mule

\dimenO=\dp\afbox

\advance\dimenO by3.4pt

\lower\dimenO \vbox

{\hrule \kern3pt

\hbox{\kern3pt\box\afbox\kern3pt)

\kern3pt \hrule)%

\mule \egroupI)

solves Ex. 21.3 of The m b o o k with \Boxit<box>

instead of \boxit(<box>), and \Boxit<box> is

itself a (box), so that \Boxit\Boxit<box> makes a

double frame. The macro \framedhbox defined by

\def\framedhboxC\Boxit\hbox)

can be used exactly like the primitive \hbox:

It can also be \raised, or assigned to a box register,

and to or spread can be specified.

o Sonja Maus
Memelweg 2

5300 Bonn 1

Federal Republic of Germany

An Indentation Scheme

Victor Eijkhout

Indentation is one of the simpler things in w: if
you leave one input line open you get a new para-

graph, and it is indented unless you say \noindent.

And if you get tired of writing \noindent all of the
time, you declare

at the start of your document. Easy.
More sophisticated approaches to indentation

are possible, however. In this article I will sketch

a quite general approach that can easily be incor-

porated in existing macro packages. For a better

appreciation of what goes on, I will start with a tu-
torial section on what happens when rn starts a

paragraph.

1 Tutorial: paragraph start

When w is not busy typesetting mathematics, it

is processing in horizontal mode. or vertzcal mode.
In horizontal mode it is putting objects - usually

characters-next to each other: in vertical mode it

is putting objects - usually lines of text - on top of
each other.

To see that there is a difference, run the follow-

ing pieces of code through 7&X:

\hboxCa)

\hboxCb)

\bye

and

a

\hboxCb)

\hboxCc)

\bye

You notice that the same objects are treated in two
different ways. The reason for this is that 7&X starts

each job in vertical mode, that is, stacking material.

In the second piece of input saw the character

'a' before it saw the boxes. A character is for TEX
the sign to switch to horizontal mode, that is, lining

up material, and start building a paragraph.

Commands that can make l&X switch to hor-

izontal mode are called 'horizontal commands'. As

appeared from the above two examples characters
are horizontal commands. but boxes are not. Let us

now look at the two most obvious horizontal com-

mands: \indent and \noindent.

1.1 \indent and \noindent

\indent is the command to start a paragraph with

indentation. 7&X realizes the indentation by insert-

614 TUGboat. Volume 11 (1990). No. 4

ing a box of width \par indent . If you say \ inden t

somewhere in the middle of a paragraph you get
some white space there, caused by the empty box.

\noindent is the command to start a para-

graph without indentation. After this command

rn merely switches to horizontal mode; no inden-
tation box is inserted. If you give this command

somewhere in the middle of a paragraph it has no

effect at all.
If rn sees a horizontal command that is not

\ inden t or \noindent, for instance a character, it
acts as if the command was preceded by \ inden t .

This is why paragraphs usually start with an inden-

tation.

As an illustration here is a small variation on

the above two examples:

\no indent

\hboxCa)

\hbox{b)

\ indent

\hbox{a)

\hbox{b)

\bye

Now in both cases the boxes are part of a para-

graph that was explicitly begun with \ indent or

\noindent.

1.2 Using \everypar

performs another action when it starts a para-

graph: it inserts whatever is currently the contents

of the token list \everypar. Usually you don't no-

tice this, because the token list is empty in plain

TEX (the rn book [I] gives only a simple example,

and the exhortation 'if you let your imagination run

you will think of better applications'). IPW [2] ,
however, makes regular use of \everypar. Some

mega-trickery with \everypar can be found in [3].
0 Just to show how this works, I put in front

of this paragraph the statement

\everypar=($\bullet\quad$)

That is, I told l&X that $\bul le t \quad$ should be

inserted in front of a paragraph.

There's nothing specified for this paragraph;

I get the bullet for free, as \everypar does exactly
what its name promises: it is inserted in front of

every paragraph.

At the end of the previous paragraph I specified

\everypar={)

so nothing is inserted from this paragraph onwards.

1.3 Removing indentation

Every TFJ user knows that indentation can be pre-

vented globally by setting \par indent to zero. How-

ever, this is rather crude, and if you use the plain

macros you may notice several rather unpleas-
ant side effects of this action, for instance when you

use the macros \ i tem and \ footnote .

It is possible to use \everypar to prevent in-
dentation, or more correctly: to remove indentation.

This can be achieved by

This needs some explanation.

If the last item that was processed by is a

box, then that box is accessible by the command

\ l a s tbox . If the last item was not a box then

\ l a s t b o x is an empty box, but no error ensues. As

the \everypar list is inserted after any indentation
box, the \ l a s t b o x command will get hold of the

indentation box if there is one. By assigning the

last box to another box register - here \box0 - it
is removed from where it was previously.

Finally, the statement

is enclosed in braces. W ' s grouping mechanism

restores values when the group ends that were cur-

rent when the group began. In this case it has the

effect of totally removing the indentation box: first
it is taken and assigned to \boxO, then the value

of \box0 is restored to whatever it was before the

group began.

1.4 Other actions at the start of a
paragraph

In the above discussion I have omitted one action
that takes place at the start of a paragraph: TEX in-

serts (vertical) \pa rsk ip glue above the paragraph.

As this has no relevance for the subject of inden-
tation I will not go into it any further. However,

in a subsequent article I will give more information

about \parskip.

2 To indent or not to indent

In classical book typography [4] every paragraph is

indented, with the exception of the first paragraph

of a chapter or section. Nowadays a design where

no paragraph indents is quite common. There are

two mixtures between always indenting and never

indenting: occasionally indenting, and occasionally
not indenting. Thus it seems possible to character-

ize indentation strategies by two yes/no parameters:

one that decides whether paragraphs should indent
in principle, and another parameter that can over-

TUGboat, Volume 11 (1990), No. 4

rule those decisions. Let us now see how this can be
implemented in m.
2.1 Implementation

Above I have already indicated that changes to

\parindent should be avoided. Let us then assume

that \parindent is greater than zero, even if we will

never indent a paragraph (see [5] for other uses for
the \parindent quantity). We must then realize
unindented paragraphs by removing their indenta-

tion as explained above.

First we need a macro for removing the inden-

tation:

Then we need the switches that control indentation:

\newif\ifNeedIndent %as a rule

\newif\ifneedindent %special cases

Now for the definition of \everypar. This is a bit

tricky.
Let us first collect some bits and pieces. The

main question is to decide when \removeindent

should be called. This is for instance the case if

\NeedIndentf alse, and that parameter is not over-

ruled by \needindenttrue.

\ifNeedIndent

\ifneedindent

\else \removeindentat ion

\fi \fi

Indentation should also be removed when

\needindentf alse overrules the general parameter

\NeedIndenttrue.

\ifNeedIndent

\else \ifneedindent

\else \removeindentation

\fi \fi

Next we should make sure that \ifneedindent is
used only for exceptional cases: if the user or a

macro sets this parameter to a different value from
\if NeedIndent . then that should be obeyed exactly

once.

\ifNeedIndent

\ifneedindent

\else \needindenttrue \fi

\else \ifneedindent \needindentfalse

\fi \fi

This is then the full definition of \everypar:

\everypar={\controlledindentat ion)

\def \controlledindentat ion

(\if NeedIndent

\ifneedindent

Another implementation would be possible:

This saves one conditional, but for most paragraphs

it involves an unnecessary \let command.

2.2 Usage

My aim in developing this indentation scheme was

to hide all commands pertaining to indentation in

macros. The user should have to specify only once

whether paragraphs should indent as a rule:

and then macros should declare the exceptions:

2.3 But couldn't you simply . . . ?

Maybe people who read this have written macros

themselves that end like

This works reasonably well, but it is not completely
safe. In the first case there shouldn't be an empty
line after a

call, and in the second case there can only be one

empty line after

The reason for this is that every empty line gener-

ates a \par command, which annuls the effect of the

\noindent. Hence the more drastic approach.
An argument the other way around can also be

found, by the way. As Ron Whitney pointed out to

me, the following piece of code causes trouble:

\section{Title)

{\smallcaps The first) words are ...

616 TUGboat, Volume 11 (1990), No. 4

Any changes made by \everypar are now effected ment, the macro \xevpar unwraps the \temppar to-

inside a qroup. In this case one remedy is to insert ken list and the constant actions into \everypar. - -
a \ leavemode command, or to define

\def\smallcapswords#l(\leavevmode

(\smallcaps #I11

which can be used at any place.

Another remedy would be to let all assignments
controlling indentation be global. However, there

are some subtle objections to this.

3 About macro packages and users

Above I remarked that plain rn does not use

\everypar, and that IPm redefines it a lot. This

means that in plain the user is free to take ev-

ery value of \everypar that he or she likes; in I4"
every attempt of the user to use \everypar is im-
mediately thwarted.

One might ask how the use of \everypar that
I have sketched compares to this. Can the user be
allowed to access \everypar, even if the macro pack-

age needs it all the time?

In my own 'Lollipop' format I have taken the
following way out. The user or the style designer is

allowed to fill in \everypar. as long as the statement

\ the\everyeverypar

is included. Here \everyeverypar is the token list

with the constant actions such as indentation control

that should be performed always.

A format designer who wishes to hide even this
from the user or the style designer, could use the

following piece of code

\newtoks\temppar

\def\everyparagraph

C\af terassignment\xevpar

\temppar)
\def\xevpar

(\edef \act(\everypar=
(\the\everyeverypar

\the\temppar

11%
\ a c t3

so that it becomes possible to write

\everyparagraph={\DoSomething

\everyparagraph=())

while the \everypar will still contain all of the con-

stant actions.

Short explanation: \everyparagraph is a
macro that is made to look like a token paramter by
the use of \af terassignment. This latter command

sets aside \xevpar for execution after whatever fol-
lows is assigned to \temppar. Following the assign-

4 Conclusion

In a systematic layout indentation commands need

never be typed by the user; they can all be hidden in

macros. Using \everypar it is possible to prevent

indentation both in single instances, and throughout
the document. This has the advantage that is is not

necessary to zero the \parindent parameter or use

\ indent and \noindent instructions.

The approach of employing \everypar as
sketched above can also be used for a paragraph skip

schenk, as I will show in the subsequent article.

References

[I] Donald Knuth. The m b o o k , Addison-Wesley

Publishing Company, 1984.

[2] Leslie Lamport. WI&X. a document preparation

system, Addison-Wesley Publishing Company,

1986.

[3] Victor Eijkhout, Unusual paragraph shapes,

TUGboat vol. 11 (1990) #1, pp. 51-53.

[4] Stanley Morison. First principles of typography,

Cambridge University Press, 1936.

[5] J. Braams, V. Eijkhout, N.A.F.M. Poppelier.

The development of national IPTfjX styles. TUG-
boat vol. 10 (1989) #3, pp. 401-406.

A \parskip Scheme

Victor Eijkhout

While I was working on the I P W styles described

in [I], it became apparent to me that lots of people
are rather fond of the sort of layout that can be

described as

\par indent =Ocm

\parskip=6pt % or other pos i t i ve s i z e

Unfortunately, most of them realize this layout by

no more sophisticated means than simply inserting
these two lines at the beginning of the input. The

drawback of such a simple action is that all sorts

of vertical spaces are augmented by the \parskip

when there is absolutely no need to, or where it is
positively unwanted. Examples of this are the white

space below section headings. and the white space
above and below list environments in UTm.

TUGboat, Volume 11 (1990), No. 4 617

In this article I will present an approach that
unifies the paragraph skip and the white spaces sur-

rounding various environments. Since the macros
given below make use of the \everypar token list,

this article may be seen as a sequel to the previous

article in this issue of TUGboat concerning an in-

dentation scheme, which is based on a similar princi-

ple. The \everypar parameter was explained there.

'IQX starts a paragraph when it switches from verti-

cal to horizontal mode. The vertical mode may have
been initiated by a \par (for instance because of an

empty line after a preceding paragraph) or by a ver-
tical skip command; the switch to horizontal mode

can be effected by, for example. a character or a
horizontal skip command (see the list in [2, p. 2831).

Immediately above the first line of the paragraph

will then add glue of size \pa rsk ip to the ver-
tical list1.

Apparently, then, the \ p a r s k i p parameter is

very simple to use. That this is only an apparent

simplicity becomes clear in a number of instances.

For instance. unless precautions are taken. the
white space below headings is augmented by the

paragraph skip. Precautions against this are not

particularly elegant: the easiest solution is to in-
clude a

statement, to backspace the paragraph skip in ad-

vance. Such an approach, however, is somewhat

error-prone. Vertical spacing will be messed up if

what follows is not a paragraph, but a display for-
mula or a box.

Similar considerations apply to the amounts of
white space that surround, for example, list environ-

ments, as in I4m.

2 Paragraph skip: t o be or not t o be

(This section is something of a footnote to the rest

of the article. Readers who are not interested in
layout considerations may skip the rest of it.)

Ordinarily in plain m and in I4'IQX the para-

graph skip is set to Opt p l u s l p t , which gives pages

some 'last resort' stretchability. However, even an
amount of vertical space as small as one point may

become very visible, and often without need (see for

instance the first page of the preface of [2]).

Furthermore, Stanley Morison states that
not indenting paragraphs is 'decidedly an abject

Unless this paragraph is at the start of a ver-

tical list. for instance at the start of a vertical box
or insertion item.

method' [3]. However, reading his intention instead

of his words, he is only concerned with the recogniz-

ability of the individual paragraphs. The positive

value of the paragraph skip is sufficient to ensure

this. If a layout is based on zero values for both

\par indent and \parskip, one may for instance

give the \parf i l l s k i p a positive natural width to

prevent last lines of a paragraph from almost, or

completely, lining up with the right margin.
Neither Donald Knuth nor Leslie Lamport

seems to have given much thought to the case where

the paragraph skip has a positive natural width.
Leslie Lamport dismisses all potential difficulties

with the remark that 'it is customary not to leave

any extra space between paragraphs' [4, p. 941.

3 Environments and white lines

Given that the paragraph skip appears to interact

with explicit vertical spacing in user macros, it may

seem like a good idea to find a unified approach to
both. In the rest of this article I will describe the

implementation of the following basic idea: give t h e
paragraph skip the value zero whenever you do a n
explicit vertical skip.

For the presentation I assume a context with
some form of environments. These are the assump-

tions that I make about such environments:

An environment is a portion of material that

is vertically separated from whatever is before

and after it. Thus, according to this definition,
a portion of a paragraph cannot be an environ-

ment, nor can an environment start or end in
the middle of a paragraph.

An environment has associated with it three

glue parameters: to an environment f oo corre-
spond \f o o s t a r t s k i p (glue above the environ-

ment), \f ooParskip (the paragraph skip inside

the environment), and the \f ooEndskip (glue
below the environment).

0 At the outset of the environment a

\StartEnvironment{foo)

statement is executed; at the end of the envi-

ronment a macro

\EndEnvironmentCfoo)

is executed. These statements are assumed to

contain a \begingroup and \endgroup respec-
tively.

Such assumptions are sufficiently general for the

macros below to be adaptable to existing macro

packages. At first sight it would appear as if sec-

tion headings are not covered by the above points.
However, there is no argument against the start and

end of an environment occurring in the same macro.

TUGboat, Volume 11 (1990), No. 4

4 Tools

First I will present two auxiliary macros: \csarg

and \vspace.
The command \csarg is only needed inside

other macros; it is meant to enable constructs such
as

\csarg\vskipC#lParskip)

Its definition is

\def \csarg#l#2C\expandafter

#l\csname#2\endcsname)

By way of explanation of this macro, consider a
simple example. Let us assume that there exists
a macro

\def\startlist#lC . . .
\csarg\vskipC#lStar tskip)

. . .3
The call

\startlistCenumeratel

will then lead to the following call to \csarg:

\csarg\vskipCenumerateStartskip3

This expands to

Now the \expandafter forces \csname to be exe-
cuted before the \vskip, so the next step of the
expansion looks like

\vskip\enumerat eSt art skip

and this statement can simply be executed.
Next I need a generalization of \vskip, which

I will call \vspace: a number of calls to \vspace
should have the effect that only the maximum argu-
ment is placed.

\newskip\tempskipa

\def \vspace #1C%

\tempskipa=#l\relax

\ifmode \ifdim\tempskipa<\lastskip

\else \vskip-\lastskip \vskip\tempskipa

\f i

\else \vskip\tempskipa \fi3

This may need some explanation, too. First, by the
assignment

\tempskipa=#l

I allow the argument of \vspace to be both a control
sequence, for instance \parskip, and a denotation,
for instance 5pt plus 3pt. If one omits the assign-
ment, the latter option would cause trouble in the
\ifdim test.

The decision to keep the maximum value of the
skip, instead of always replacing the last skip, was

motivated by phenomena such as a display formula
at the end of a list. If the skip below the display
is larger than the vertical glue below the list (which
may for instance be zero), the former should be re-
tained entirely.

Note that this macro will insert its argument
even if it has the same size as the last skip. There
is a good reason for this. If the call to \vspace
follows a \par command at the end of a paragraph,
it is called in vertical mode, but the last item on the
vertical list is a box (the last line of the paragraph)
instead of a glue item. The parameter \lastskip
will then be zero. If the argument to \vspace is
something like Opt plus 5pt we still want it to be
added to the list, even though its natural size is zero.

5 The environment macros

In this section, I will give the implementation of the
macros \StartEnvironment and \EndEnvironment.

There is a remarkable similarity between these
two macros. As I explained above, the basic idea is
to have only explicit spacing above and below the en-
vironment; thus, the value of \parskip should then
be zero both for the first paragraph in the environ-
ment, and for the first paragraph that follows it.
Both macros should then

0

0

For

save the current value of the paragraph skip:

set the paragraph skip to zero;

give Q J X a signal that, somewhere in the near
future, the old value of \parskip is to be re-
stored.

this I allocate a skip register and a conditional:

\newskip\TempParskip

\newif\ifParskipNeedsRestoring

The basic sequence for the starting and ending
macros is then

\TempParskip=\parskip

\parskip=Ocm\relax

\ParskipNeedsRestoringtrue

For both macros, however, this sequence needs
to be refined slightly.

The paragraph skip to be 'restored' a t the start
of the environment is the specific value associated
with that environment. This gives us:

\def \St art Environment

#l~\csarg\vspace~#lStartskip~

\begingroup %% make changes local
\csarg\TempParskipC#lParskip)

\parskip=Ocm\relax

\ParskipNeedsRestoringtrue)

Note that the statement

\csarg\TempParskip~#lParskip)

TUGboat, Volume 11 (1990), No. 4

Sanitizing Control Sequences Under \wri te

Ron Whitney

W ' s \wri te primitive is typically used to send
information to other files for typesetting later.
The most obvious examples here are those cases
where chapter heads, section heads, and keywords
are written to files along with corresponding page
numbers to make tables of contents and indexes.
(See Salomon in TUGboat 10, no. 3; see also Durst
in the same issue for another use of \wri te)

The syntax of a \wri te statement is

\write(number)((token string) 3

where (number) is a "stream number" usually
allocated by the \newwrite macro and corresponds
to a disk file opened by \openout. To make matters
concrete here. we will simply assume that the user
has called \newwrite\outf i l e and that our syntax
is

\write\outf ileI(token strzng))

The execution of the \wri te statement then ei-
ther involves writing the (token strzng) directly
(i.e. \immediately) to the file corresponding to
\ou t f i l e , or writing the (token string) to a node
placed in m ' s main vertical list. In the latter
case. the (token lzst) in the node is later written
to the file corresponding to \ o u t f i l e as the page
on which the node is placed undergoes \shipout to
the dvi file.

In either case, as the (token lzst) is transferred
to the file \ ou t f i l e , it is fully expanded (that is,
the (token lzst) is expanded as. say. it would be
under an \edef; unexpandable control sequences
are written out using the \escapechar and the
letters or symbols which go to make up their
names). There's Good News and Bad News in
this. The Good News is that the information
to be written to external files is often 'contained'
within control sequences, and we definitely want
tokens such as \number to be expanded (otherwise
an index might show every item appearing on,
literally, \number\pageno). The Bad News is that
we would really much prefer that indexes contain
items like \cos rather than their expansions (e.g.
\mathop(\rm cos3\nolimits). The Bad News
isn't really all that Bad, though, since we can use
m ' s \noexpand and say

\write\outfile~\noexpand\cos)

to achieve what we want.
Then: Where's the Beef? The News isn't really

Totally Good because our solution requires some
knowledge of the contexts in which \noexpand

is appropriate. \wri te statements are typically
hidden a few levels down inside macros and one
might ever know (barring authorship or clear docu-
mentation of the underlying macros) when silliness
such as \noexpand is required. Lamport has done
an admirable job in schooling IPw users to use
\protect for this very purpose, but even so, ques-
tions such as Chris Hand's (TUGboat 11, no. 3,
p. 456) are natural. In Chris' case, a guillement
(\<<) caused a section head to expand to some 509
characters in an . aux file, and that line was too long
for 7J jX to handle when the . aux file was reread. It
is also common to see control sequences for accents
make for inscrutable tables of contents files.

A Better Method

Much nicer than user-keyboarded \noexpands would
be some method of preventing expansion within
macros themselves which use \write, thus not plac-
ing a user under the strain of being on the lookout
for expanding arcana. This note proposes a way
to handle things generally. It was suggested by a
technique used by Michael Wichura in TUGboat 11,

no. 1 along with simultaneous consideration of Pe-
ter Breitenlohner's piece on avoiding long records
in \wri te streams in the same issue of TUGboat.
Other people have undoubtedly thought of the same
thing (see The w b o o k , p. 382).

The primitive \meaning disgorges a "mean-
ing" of whatever token follows it. In the case of
a defined control sequence (and let's assume this
control sequence has no parameters), say \foo.
\meaning\foo will cause to spit up the se-
quence macro:-> followed by a sequence of char-
acter tokens as would be obtained by \s tr inging
the tokens of \foo's definition. The definition is
thus shown as a string of character tokens, all of
category 12 (except spaces).

For example, if \f oo is defined to be the token
string \sin and \cos, its definition consists of
11 tokens altogether: 4 math shifts, 2 spaces. 3
letters, and 2 defined (in plain) control sequences.
On the other hand, \meaning\foo produces the
string

macro:->$\sin $ and $\cos $

whose right part (beyond the :->) consists of 4

space tokens and 15 character tokens of category
12. None of this material is expandable; internal
objects which had been single tokens (such as \ s in)
are now divided into character tokens (such as
\-s-i-n).

TUGboat, Volume 11 (1990), No. 4 621

So, in order to suppress expansion in a (token
string) which is to be written out to an external

file, one need only stuff the (token string) into

a macro, regurgitate the macro's \meaning into

another macro, and \wri te the second macro out.

The data being written out is, in a certain sense,

inert because control sequences have been divided
into the characters forming their names and there

is nothing to be expanded. If this information is

reread from an external file again, however, (and
therefore passes through W ' s mouth again) it can

be reassembled into the original (token string).
To this end, we make the following definition:

The third argument to \GetMacroMeaning is the

control sequence into which the "meaning" will be

placed. The first two arguments will be produced
by 'expanding' \meaning. Thus, converting text
for, say, a section head which a user keys as

\section{. . .I , can be accomplished by inserting

the following sort of code within the definition of

\sect ion:

\def\sect ion #I{%
. . .
\def\sectionhead{#l)%

\expandafter\GetMacroMeaning

\meaning\sectionhead
:->\xxsectionhead\endget

\write\outf i l e

\expandafter{\xxsectionhead)%

. . .
3

The first \expandafter causes \meaning to gobble

\ sec t ionhead and expand into the first 2 arguments
of \GetMacroMeaning. The second \expandafter

is used in the \wri te statement because the code

presented always stores the head to be written out

in \xxsectionhead. When 2 section heads occur

on the same page, the second will overwrite the first
definition of \xxsectionhead, so we must make sure

that the contents of \xxsectionhead gets placed
in the node on the page and not just the token

\xxsect ionhead itself. In situations where one may

write \immediately, the line under discussion could

become

Further Problems

The method above concerns itself only with material
we wish to block from expansion as we \wri te it

out. As noted previously, other data (such as

page and section numbers) must be expanded to get

tables of contents and indexes right. David Salomon

has discussed some of these issues in TUGboat 10,

no. 3. For this article. we only point out that one

can concatenate different kinds of data into one
control sequence and then \wri te that out. For

example. if \sectionnumber is a T'EX count register
containing the current section number, one might

augment and alter the above code to

. . .
3

Thus, for section number 3 with title sin2 x +
cos2x = 1" and appearing on page 22, the above
code will cause

\sec {3){0n $ \ s in -2x+\cos -2x=1$3{22)

to be written on \ou t f i l e . The \edef for

\wri tedata causes expansion in its replacement
text where possible. so the definition of \writedat a

in the case above will be

\sec {3){$\sin -2x+\cos -2x=l$){\number\pageno)

Of course, \sec here consists of 4 tokens of cat-

egory 12 (since the whole line passed through

\meaning), not just one control sequence, and a

similar remark holds for the text of the section head.

\number\pageno, however, has not been sanitized

and will be expanded as this token string is written
to \outf i l e .

A considerable compaction of all this code

can be had by doing the expansions at once (as
suggested by Victor Eijkhout). To this end, make
the definitions

TUGboat, Volume 11 (1990), No. 4 622

and

\def\sectag{\sec)

then rework \ s ec t i on to

\def \ sec t ion #I{%

>
Another problem occurs when one wishes to

\wri te out long strings of text. Peter Breitenlohner

showed in TUGboat 11, no. 1 that one could break
long strings of text exactly as they had been

broken in the source file by activating (carrzage

 return)^ and specifying the \newlinechar to be the
(carriage return). Unfortunately, this method is not

transferrable within the current technique exactly

because of the sanitizing properties of \meaning.

\meaning will disgorge - ^ M sequences for active

(carriage return)^ which cannot in turn be read as
(carriage return)^ because the - will be of category

'other' instead of 'superscript'.

One way to get over this is to use active ^^Ms as
delimiters of line records and \wri te the intervening

material line by line to the output file. Here we use
a method of Alois Kaelschacht (TUGboat 8, no. 2,

p. 184; also pointed out by Sonja Maus recently)

which allows \loops to contain \ e l s e clauses.

\def\loop#i\repeat{%

\def\body{#l\relax\expandafter\body\fi)%

\body)
\ l e t \ r epea t \ f i

To handle a long piece of text line by line, we
define \ParseLine to divide the material after it

into 2 pieces separated by the5rst (carriage return)
in that material.

C\catcode'\--M=\active
\gdef\ParseLine#l--M#2\endParse{%

\def \Firs tLine(#l)%
\def\Remainder{#2)%

)3

\Wri te i t first turns on the (carriage return), then

reads the text to be written to a file. Then it runs

through a \ loop until the \Remainder text is empty,

writing each line with the \meaning technique.

{\endlinechar=-1

\ca t code ' \-^M=\act ive

\catcode ' \Q=ii

\gdef \Writeit{
\bgroup\catcode'\--M=\active

\@Writei t)

\gdef\@Writeit#l\endWriteit{

\ le t \Firs tLine\empty

\def\Remainder{#i--M)

\loop
\expandaf t e r

\ParseLine\Remainder\endParse

\write\outfile\expandafterC

\ san i t ize \F i r s tLine)
\ifx\Remainder\empty\else\repeat

\egroupl)

Of course, this is exactly the kind of nonsense

that Breitenlohner avoided with the \newlinechar

technique, and the 'solution' here still has problems.
For one thing, pairs of braces which occur across

input lines will cause \ParseLine to miss the

intervening --Ms (since arguments to macros must
contain balanced sets of braces). For another, if one

also wishes to use the argument to \Wri tei t for

something else (such as typesetting here and now),

the --Ms are now embedded and have not been

changed into (space) or \par as appropriate. It is
possible to define the active ^ ^ M to check ahead for

another - ^ M immediately following, changing the

pair into \par and otherwise inserting (space), but
at this point we realize we are trying to simulate

'IjEX's mouth behavior with a stomach process and
will never be wholly successful. When an input line

ends with a control word, m ' s mouth will gobble

the end-of-line character, whereas the procedure
above will insert an end-of-line (space) willy-nilly.

All of which is to say that the \meaning

technique outlined here should be confined to cases

where one is fairly certain that the records to be

written are rather short (say, the cases of tables
of contents and indexes). In cases where longer

records are anticipated, Breitenlohner's technique,

accompanied by something analogous to \p ro tec t ,
is needed; or one may simply use a verbatim

approach if the data is not to be used 'immediately'.

o Ron Whitney
Users Group

rfu@Math.AMS.com

TUGboat, Volume 11 (1990), No. 4 623

-- -- --

An Overview of EDMAC: A p l a i n T ' X format for critical editions*

John Lavagnino and Dominik Wujastyk

Abstract

EDMAC is a set of p l a i n ?'EX macros providing the ability to format critical editions of
texts in the traditional way, i.e., similar to the Oxford Classical Texts, Teubner, Arden
Shakespeare and other series. The principal functions that are added are marginal line
numbering and multiple series of footnotes and endnotes keyed to line numbers. While
EDMAC's inner workings are necessarily esoteric, it seeks to provide relatively simple
macros to enable you to control the exact format of the edition, taking into account
the need to vary the format for different sorts of texts.

Contents

1 Introduction 622

1.1 Overview 622
1.2 History 623 .

2 How to use EDMAC 623
2.1 Introduction 623
2.2 General markup 623 3

2.3 The apparatus 625
2.4 Lineation commands . . . 627
2.5 Changing the line numbers 627
2.6 Alternate footnote

formatting 627 4

. 2.7 Crop marks
. 2.8 Endnotes

. 2.9 Cross referencing
. 2.10 Miscellaneous

2.11 Known bugs

Examples
. 3.1 Gascoigne

. 3.2 Shakespeare
. . . 3.3 Sanskrit text edition

Index

1 Introduction

1.1 Overview

The EDMAC macros, together with W, provide several important facilities for format-
ting critical editions of texts in a traditional manner. Major features include:

0 automatic stepped line numbering, by page or by chapter;

sub-lineation within the main series of line numbers;

0 variant readings automatically keyed to line numbers;

0 multiple series of footnotes and endnotes;

0 block or columnar formatting of footnotes.

EDMAC works together with the p l a i n QX format, and with the exception of footnote-
related commands, virtually all p l a i n m commands are available for use in the
normal way. Other languages and fonts (Sanskrit, Greek, Russian, etc.),' can be
incorporated.

EDMAC allows the scholar engaged in preparing a critical edition to focus attention
wholly on the task of creating the critical text and evaluating the variant readings,
text-critical notes and testimonia. m and EDMAC will take care of the formatting
and visual correlation of all the disparate types of information.

This documentation assumes the "manual" use of EDMAC. But EDMAC is also successfully
being used (with m, of course) as the formatting engine or "back end" for the output

* This file is Revision: 1.1. Date: 18 Oct 1990 16:09:24.
See TUGboat 9, no. 2, pp. 131-151.

TUGboat, Volume 11 (1990), No. 4

of an automatic manuscript collation program. COLLATE runs on the Apple Macintosh,

can collate simultaneously up to a hundred manuscripts of any length, and will provide
facilities for the scholar to tailor the collation interactively. Version 1.0 of COLLATE is

scheduled for distribution from March 1991.'

1.2 History

The original version of EDMAC was TEXTED.TEX, written by John Lavagnino in late

1987 and early 1988 for formatting critical editions of English plays.

John passed them on to Dominik Wujastyk who, in September-October 1988, added

the footnote paragraphing mechanism, margin swapping and other changes to suit his

own purposes,3 making the style more like that traditionally used for classical texts
in Latin and Greek (e.g., the Oxford Classical Texts series). He also wrote some extra

documentation and sent the files out to several people. This version of the macros is

called EDMAC . TEX.

The present version was developed in the summer of 1990, with the intent of adding
necessary features, streamlining and documenting the code, and further generalizing

it to make it easily adaptable to the needs of editors in different disciplines. John

did most of the general reworking and documentation, with the financial assistance
of the Division of the Humanities and Social Sciences, California Institute of Technol-

ogy. Dominik adapted the code to the conventions of Frank Mittelbach's doc option,

and added some documentation, multiple-column footnotes, cross-references. and crop
marks.

2 How to use EDMAC

2.1 Introduction

All you need to do to invoke EDMAC is to include the line \input EDMAC at the top

of your document, and to have the file EDMAC.TEX somewhere on your disk that is
"visible" to TEX for input. If you are going to use it frequently, as will certainly be

the case if you are doing a real edition, you will find it convenient to compile it into

a 7&X format file, loading it after PLAIN .TEX and any other private macros.

EDMAC is a three-pass system. Although your textual apparatus and line numbers will

be printed even on the first run, it takes two more passes through Q'J to be sure

that everything gets to its right place. Any changes you make to the input file may
similarly require three passes to get everything to the right place, if the changes alter

the number of lines or notes. EDMAC will tell you that you need to make more runs,

when it notices, but it does not expend the labor to check this thoroughly. If you have
problems with a line or two misnumbered at the top of a page, try running 7)$ once

or twice more.

A file may mix numbered and unnumbered text. Numbered text is printed with

marginal line numbers and can include footnotes and endnotes that are referenced

to those line numbers: this is how you'll want to print the text that you're editing.

Unnumbered text is not printed with line numbers, and you can't use EDMAC's note
commands with it: this is appropriate for introductions and other material added by

the editor around the edited text.

2.2 General markup

\beginnumbering Each section of numbered text must be preceded by \beginnumbering and followed

Contact COLLATE'S author, Peter Robinson, at The Computers and Manuscripts
Project, Oxford University Computing Service, 13 Banbury Road, Oxford OX2 6NN,
England. Janet: peterrQuk . ac . oxford . vax.

These macros were used to format the Sanskrit text in Metarules of Piininian
Grammar by Dominik Wujastyk (Groningen, in press).

TUGboat, Volume 11 (1990), No. 4

\beginnumbering

(text)

\endnumbering

The \beginnumbering macro resets the line number to zero, reads an auxiliary file

called (filename) .nn (where nn is 1 for the first section. 2 for the second section. and so

on), and then creates a new version of this auxiliary file to collect information during

this run. The first instance of \beginnumbering also opens a file called (filename).end
to receive the text of the endnotes. \endnumbering closes the (filename) .M file.

If the line numbering of a text is to be continuous from start to end, then the whole text

will be typed between one pair of \beginnumbering and \endnumbering commands.

But your text will most often contain chapter or other divisions marking sections

that should be independently numbered, and these will be appropriate places to begin

new numbered sections. EDMAC has to read and store in memory a certain amount of
information about the entire section when it encounters a \beginnumbering command,

so it speeds up the processing and reduces memory use when a text is divided into a

larger number of sections (at the expense of multiplying the number of external files
that are generated).

Within a numbered section, each paragraph of numbered text must be marked using

the \pstart and \pend commands:

\pstart

(paragraph of text)

\pend

Text that appears within a numbered section but isn't marked with \pstart and
\pend will not be numbered.

The following example shows the proper section and paragraph markup:

\beginnumbering

\pstart

This is a sample paragraph, with

lines numbered automatically.

\pend

\pstart

This paragraph too has its

lines automatically numbered.

\ p a d

This is a sample paragraph

with lines numbered
automatically.

This paragraph too
has its lines automatically

numbered.

The lines of this paragraph
are not numbered.

And here the numbering

begins again.

The lines of this paragraph are

not numbered.

\pstart

And here the numbering begins

again.

\pend

\endnumbering

You can use \autopar to avoid the nuisance of this paragraph markup and still have

every paragraph automatically numbered. in this manner:

TUGboat, Volume 11 (1990), No. 4

1 A paragraph of numbered
2 text.

3 Another paragraph of
4 numbered text.

A paragraph of numbered text.

Another paragraph of numbered text.

\autopar fails, however, on paragraphs that start with a (or with any other command
that starts a new group before it generates any text. Such paragraphs still need to be
started explicitly using \pstart .

2.3 The apparatus

\text Within numbered paragraphs, all footnotes and endnotes are generated by forms of
the \ text macro:

The (lemma) argument is the lemma in the main text: \ text both prints this as part
of the text, and makes it available to the (commands) you specify to generate notes.
The / at the end terminates the command.

For example:

I saw my friend \text{Smith) 1 I saw my friend
{\af ootnoteIJones C, D.)I/ 2 Smith on Tuesday.
on Tuesday. 2 Smith] Jones C, D.

The lemma Smith is printed as part of this sentence in the text, and is also made
available to the footnote that specifies a variant, Jones C , D. The footnote macro is
supplied with the line number at which the lemma appears in the main text.

The (lemma) may contain further \ text commands. This makes it possible to print
an explanatory note on a long passage together with notes on variants for individual
words within the passage. For example:

\text{I saw my friend 1 I saw my friend
\text(Smith){\afootnote(Jones 2 Smith on Tuesday.
C , D.))/ on Tuesday.) 2 Smith1 Jones C. D.
C\bfootnote{The date was

July 16, 1954.)
7 ,

1-2 I saw my friend
Smith on Tuesday.] The

J / date was July 16, 1954.

However, \ text cannot handle overlapping but unnested notes-for example, one
note covering lines 10-15, and another covering 12-18; a \ text that starts in the

'(lemma) argument of another \ text must end there, too. (The \lemma and \linenurn
commands may be used to generate overlapping notes if necessary.)

Commands used in \text's second argument The second argument of the

\ text macro, (commands), may contain a series of subsidiary commands that gener-
ate various kinds of notes. The braces around (commands) are optional, unless this
instance of \ text appears within the argument of another instance of \ text .

\afootnote Five separate series of footnotes are maintained; when all five are used, the a notes
\bfootnote appear in a layer just below the main text, followed by the rest in turn, down to the
\cfootnote e notes at the bottom. These are the main macros that you will use to construct
\dfootnote the critical apparatus of your text. EDMAC provides five layers of notes in the belief
\efootnote

TUGboat. Volume 11 (1990); No. 4 627

that this will be adequate for the most demanding editions. But it is not hard to add
further layers of notes to EDMAG should they be required.

EDMAC also maintains five separate series of endnotes. By default none of them are

printed: you must use the \doendnotes macro described below (p. 629) to call for this

at the appropriate point in your document.

Sometimes you want to change the lemma that gets passed to the notes. You can do
this by using \lemma within the second argument to \ t ex t , before the note commands.

\lemma((alternative lemma))

The most common use of this command is to abbreviate the lemma that's printed in

the notes. For example:

\text{I saw my friend 1 I saw my friend
\textCSmith)C\afootnote(Jones 2 Smith on Tuesday.

C , D.))/ on Tuesday.) 2 Smith1 Jones C, D
<\lemma(I \dots\ Tuesday.)

1-2 I . . . Tuesday.]
\bfootnote{The date was

The date was July 16: 1954.
July 16, 1954.)

You can use \linenun to change the line numbers passed to the notes. The notes
are actually given seven numbers: the page, line, and sub-line number for the start

of the lemma; the same three numbers for the end of the lemma; and the font family

number for the lemma. As argument to \linenun, you specify those seven numbers in

that order, separated by vertical bars (the I character). However, you can retain the
value computed by EDMAC for any number by simply omitting it: and you can omit a

sequence of vertical bars at the end of the argument. For example, \linenun{ I 1 123)

changes one number, the ending page number of the current lemma.

This command doesn't change the marginal line numbers in any way; it changes the

numbers passed to the footnotes. Its use comes in situations that \ t ex t has trouble
dealing with for whatever reason. If you need notes for overlapping passages that
aren't nested, for instance, you can use \lemma and \linenun to generate such notes

despite the limitations of \ t ex t . If the (lemma) argument to \ t ex t is extremely long,

you may run out of memory; here again you can specify a note with an abbreviated
lemma using \lemma and \linenun. The numbers used in \linenurn need not be

entered manually; you can use the "x-" cross-referencing commands below (p. 629) to
compute them automatically.

Changing the names of these commands The default commands for generat-

ing the apparatus have been given rather bland names, because editors in different

fields have widely divergent notions of what sort of notes are required, where they
should be printed. and what they should be called. But this doesn't mean you should

type \afootnote when you'd rather say something you find more meaningful, like

\variant . We recommend that you create a series of such aliases and use them in-

stead of the names chosen here; all you have to do is put commands of this form at

the start of your file:

\let\variant=\afootnote

\let\explanatory=\bf ootnote

\let\trivial=\aendnote

It is also possible to define aliases for \ t ex t , which can be easier to type. You can
make a single character substitute for \ t ex t by saying this:

\cat code '\<=\active

\let<=\text

TUGboat, Volume 11 (1990), No. 4

\firstlinenun

\linenurnincrement

\firstsublinenurn

\sublinenurnincrement

\leftlinenun

\rightlinenun

\linenumsep

\numlabf ont

Then you can say <{Smith)\af ootnote{Jones)/. This of course destroys the ability
to use < in any new macro definitions, so it requires some care.

Changing the character at the end of the command requires more work:

This allows you to say <{Smith)\afootnote{Jones)>.

These aliases can't be nested: if you want to use a \text within the first argument of

another \text, the outer \text can use an alias but not the inner. For example,

<{a \text{big){\afootnote(bin))/ difference)\bfootnote{no difference)>

2.4 Lineation commands

EDMAC can number lines either by page or by section; you specify this using the

\lineation{(arg)) macro, where (arg) is either page or section. You may only

use this command at places when numbering is not in effect; you can't change the
lineation system within a section. You can change it between sections: they don't all

have to use the same lineation system. The line-of-section system is used by default.

The marginal line numbers will be printed in the left, right, inner, or outer margin,
depending on which you specify as argument to this command. By default, line
numbers appear in the left margin. You can change this whenever you're not in the

middle of making a paragraph. E.g.: \linenummarginiinner).

You set these counters to control which lines are printed with marginal numbers.

\f irstlinenum is the first line in a section to number, and \linenunincrement is

the increment between numbered lines. The other parameters do the same for sub-

lines. By default all these counters are set equal to 5.

These parameters control the appearance of marginal line numbers. You can rede-
fine \leftlinenurn and \rightlinenu to change the way marginal line numbers

are printed; the default values print the number in font \numlabf ont at a distance
\linenumsep from the text.

2.5 Changing the line numbers

\startsub These macros turn sub-lineation on and off. When sub-lineation is in effect, the line

\endsub number counter is frozen and the sub-line counter advances instead. If one of these

commands appears in the middle of a line, it doesn't take effect until the next line; in
other words, a line is counted as a line or sub-line depending on what it started out

as, even if that changes in the middle.

\setline These commands may be used to change the line number (or the sub-line number,
\advanceline if sub-lineation is currently on). They change both the marginal line numbers and

the line numbers passed to the notes. \setline takes one argument, the value to
which you want the line number set; it must be 0 or greater. \advanceline takes

one argument, an amount that should be added to the current line number; it may be

positive or negative.

2.6 Alternate footnote formatting

\notenurnfont These commands select the fonts used in printing all the layers of notes. The

\lemmafont \notenumf ont and \notetextf ont macros take no arguments; they should be equated
\notetextf ont to the appropriate fonts using \let. \lemmaf ont is a macro that takes one argument-

the cluster of line numbers passed to the note commands, a cluster that ends with a

number indicating what font family was in effect at the start of the lemma; \lemmaf ont

TUGboat, Volume 11 (1990), No. 4

selects the appropriate font for the note using that family number. See the full doc-
umentation for more details. What EDMAC does is to use these macros in a default

footnote format macro called \normalf ootfmt. The footnote formats for each of the

layers a to e are \let equal to \normalfootfmt.

But it is also likely that you might want to have different fonts for just. say.

the note numbers in layers a and b of your apparatus. To do this, make two

copies of the \normalfootfmt macro (see the arden. sty example, p. 636 below) or
\twocolf ootfmt, or other appropriate macro ending in -f ootfmt. depending on what

footnote format you have selected, and give these macros the names \afootfmt and

\bfootfmt. Then, in these new macros, change the font specifications (and spacing,
or whatever) to your liking.

\footparagraph All footnotes will normally be formatted as a series of separate paragraphs in one
\foottwocol column. But there are three other formats available for notes, and using these macros

\footthreecol you can select a different format for a series of notes. \footparagraph formats all
the footnotes of a series as a single paragraph; \f oottwocol formats them as separate

paragraphs, but in two columns: \footthreecol, in three columns. Each of these

macros takes one argument: a letter (between a and e) for the series of notes you
want changed.

You should set \hsize for the text, and the \baselineskip of the footnotes

(\af ootbaselineskip, etc.), before you call any of these macros, because their action
depends on those values; too much or too little space will be allotted for the notes on

the page if these macros use the wrong values.

2.7 Crop marks

Publishers usually like crop marks on the camera-ready copy for works of this kind,
so a facility for generating them has been incorporated into EDMAC.

Publishers specify crop marks (or trim lines. etc.) in terms of two dimensions. height

and width, and they also usually specify back and head margins.

The "head margin" is the distance between the top of the printed text and the top
crop marks; it is normally measured from the top of the running head, plain W ' s

\headline. The "back margins" (or "gutter margins") are the right margins of even-

numbered pages, and the left margins of odd-numbered pages. If you hold a book

open in front of you, they are the margins in the middle of the opening.

\cropsetup If you want to have crop marks, and to control the back and head margins, you issue
the \cropsetup macro. It takes four parameters (see Figure 1):

1. the vertical distance between crop marks,

2. the horizontal distance between crop marks,

3. the head margin, and

4. the back margin.

In order to calculate these dimensions properly, EDMAC has to use the \hsize of the

page, as well as information about the height at which the \headline floats above the

main text (which is set in plain W ' s \makeheadline macro). EDMAC performs these
calculations when you issue the \cropsetup command. Therefore, it is important

that you set the \hsize and make any changes to \makeheadline before you issue
the \cropsetup command. If you do change these values, issue the \cropsetup
command again.

\headlinefont In particular, if the \headline is going to be set at a different height from the top
\magicvskip of the text, or in a different font, you can change the appropriate values easily by

using \headlinefont and \magicvskip. The former is what you would expect; just

\let it to be whatever font you like (the font macro should include a definition of
an appropriate \strutbox for that font). The \magicvskip gives you direct access

TUGboat, Volume 11 (1990), No. 4

-
head margin
(cropsetup #3)

- Z h G d E n E 1 1

-

cropsetup # 2

P

r - - - - - - 1

I I

I odd
I

r - - - - - - 7

I I

I I even

1 page I

I C L margl
I text Kcropsetup

I I

I I

I I

I I
L - - - - - - J

I I

Figure 1: Crop marks, back and head margins.

to what Knuth calls a "magic constant" on p. 255 of The Wbook. For p l a in w,
\magicvskip is -22.5 pt, but you can change this if you want the \headline higher

or lower than the default. See the full documentation for more details.

Apart from this stricture that the \cropsetup command should follow any changes

in \hsize and the \headline, there is no relation (other than visual) between the
crop marks and the \hsize and \vsize. You can vary any of these dimensions inde-
pendently, without affecting any other. Your publisher will almost always want the
\hsize and \vsize to be a few picas smaller than the horizontal and vertical distances

between crop marks. And if you want to shift the whole of your printed page about
on the paper, use \hoffse t and \voffse t as described in The rnbook, 251, or use

the facilities of your DVI translator.

\cropwidth and \cropgap define the thickness of the rules used for drawing crop
marks and the gap by which crop marks don't cross: as before, if you change either,

do so before using the \cropsetup macro.

If, for example, you want your text to have a back margin, for two-sided printing, but

you don't want crop marks, just set \cropwidth=Opt.

2.8 Endnotes

\doendnotes closes the .end file, if it's open, and prints one series of endnotes,
as specifed by a series-letter argument, e.g., \doendnot es{a). \endprint is the

macro that's called to print each note. It uses \notenufont , \lemmafont, and
\notetextfont to select fonts, just as the footnote macros do (see p. 627 above).

If you aren't going to have any endnotes, you can say \noendnotes in your file, before

the first \beginnubering, to suppress the generation of an unneeded . end file.

2.9 Cross referencing

EDMAC provides a simple cross-referencing facility that allows you to mark places in

the text with labels, and generate page and line number references to those places

elsewhere in the text using those labels.

First you place a label in the text using the command \label{foo). 'Lfoo" can

be anything you like, including letters, numbers, punctuation, or a combination-
anything but spaces; you might say \label{toves-33, for example.

TUGboat, Volume 11 (1990), No. 4 63 1

Elsewhere in the text, either before or after the \ labe l , you can refer to its location by
saying \pageref Cf 003, or \ l ineref {fool, or \sublineref (f 00). These commands
will produce, respectively, the page, line and sub-line on which the \label{foo)
command occurred.

A \ l abe l command may appear in the main text, or in the first argument of \ t ex t .
But \pageref, \ l ineref and \sublineref commands can be used in the apparatus
to refer to \ labels in the text.

The \ l abe l command works by writing macros to an .aux file (which will only be
created if you are actually using some of these commands). Clearly, then, you will
need to process your document through twice in order for the references to be
resolved.

You will be warned if you say \labelCf oo) and f oo has been used as a label before.
The ref commands will return references to the last place in the file marked with this
label. You will also be warned if a reference is made to an undefined label. (This
will also happen the first time you process a document after adding a new \ l a b e l
command: the auxiliary file will not have been updated yet.)

However, there are situations in which you'll want EDMAC to return a number without
displaying such a warning: if you want to use the reference in a context where TEX
is looking for a number, such a warning will lead to a complaint that the number is
missing. This is the case for references used within the argument to \linenurn, for
example. For this situation, these variants of the reference commands, with the x
prefix, are supplied: the only operations they perform are ones that can do in its
"mouth." They have these limitations: they will not tell you if the label is undefined,
and they must be preceded in the file by at least one of the four other cross-reference
commands-e.g., a \labelCfoo) command, even if you never refer to that label-
since those commands can all do the necessary processing of the . aux file, and these
cannot.

2.10 Miscellaneous

When EDMAC assembles the name of the auxiliary file for a section, it prefixes
\extensionchars to the section number. By default this is empty, but you can add
some characters to help distinguish these files if you like; what you use is likely to
be system-dependent. If, for example, you said \def \extensionchars{! 3, then you
would get temporary files called jobname. ! 1, j obname . ! 2, etc.

2.11 Known bugs

The p l a in \footnote command will work only within unnumbered text; within
numbered text it will wreak havoc.

One seemingly small point that does make a difference to EDMAC is that the definition
of each font should include a definition of the appropriate \ s t r u t and \s trutbox.
Like p l a in itself, EDMAC uses the height of a \s trutbox in one or two places (the
crop marks, the alignment of the top line of footnotes, etc.), and if you change the
size of your fonts, but don't change the size of the \s trutbox too, then there will be
discrepancies in the spacing. For an example of how to do this, see the definition of
\eightpoint on p. 415 of The QjXbook.

\parshape cannot be used within numbered text, except in a very restricted way (see
the full documentation for more details).

Critical editions, like dictionaries, present a great deal of categorized information in a
densely compressed form. Success in making the results legible typically depends on
the carefully planned use of a large variety of fonts. There are several places where
EDMAC suffers from the lack of a general font selection scheme such as Mittelbach and

TUGboat, Volume 11 (1990), No. 4

S ~ h o ~ f ' s . ~ We look forward to a time when it will be possible to rationalize EDMAC's

font calls, and bring them into line with such a general scheme.

Any help, suggestions and corrections gratefully received.

3 Examples

In the following examples, the command \input edmac has been included for com-

pleteness although, as mentioned before, it is usually more convenient to include the
EDMAC macros in a format, t o be invoked with a command such as

t ex &edmac (filename).

3.1 Gascoigne

The first example is taken from an edition of George Gascoigne's A Hundreth Sundrie

Flowres that is being prepared by G. W. Pigman 111. Figure 2 shows the result of
setting the text with EDMAC.

The main input file first calls for a file of initial definitions, called gg. tex. This file,

shown below, demonstrates how EDMAC macros may be customized to give detailed

control over the final format.

% parameters for edition of Gascoigne's {\it A Hundreth Sundrie Flowres).

\ifx\ggloaded\relax\endinput\else\let\ggloaded=\relax\fi

\noendnotes

\font\nineit=cmti9 \f ont\eightrm=cmr8 \let\headf ont=\eightrm

\font\eightit=cmti8 \let\headit=\eightit \font\sixrm=cmr6

\f ont\f oliof ont=cmmi8 \let\os=\f oliof ont \let\numlabf ont=\f oliof ont

%
\firstsublinenum=1000

\hoffset=1.25in \voffset=1.25in \hsize=24pc \vsize=488pt

%
\frenchspacing \parskip=Opt \hyphenpenalty=1000

%
\def\makeheadline(\vbox to Opt{\vskip-16.5pt

\line{\vbox to8.5pt~~\the\headline)\vss)\nointerlineskip)

\nopagenumbers

%
\newif\ifnolinenums % true if you want no line number in the notes
\def\nolinenums{\global\nolinenumstrue)

\def \linenums{\global\nolinenumsf alse)

\newif \ifpoemnum % true if you want to print the poem number in
% the notes

\def\nopoemnum{\global\poemnumfalse)

\newif\ifdbpoemnum % ditto for poems with two numbers, e.g., 64 (v)
\def \nodbpoemnum~\global\dbpoemnumfalse)

\newif \if actnum % ditto for act/scene numbers
\def \noactnum{\global\actnumf alse)

%

See TUGboat 10, no. 2, pp.222-238; 11, no. 1, pp.91-97.

TUGboat, Volume 11 (1990), No. 4

2.1 IOCASTA

Oedipus entreth.
Or that with wrong the right and doubtlesse heire,
Shoulde banisht be out of his princely seate.

Yet thou 0 queene, so fyle thy sugred toung,
And with suche counsel1 decke thy mothers tale,

That peace may bothe the brothers heartes inflame,

And rancour yelde, that erst possest the same.

Eteocl. Mother, beholde, youre hestes for to obey,
In person nowe am I resorted hither:

In haste therefore, fayne woulde I knowe what cause

With hastie speede, so moued hath your mynde

To call me nowe so causelesse out of tyme,
When common wealth moste craues my onely ayde:

Fayne woulde I knowe, what queynt commoditie

Persuades you thus to take a truce for tyme,

And yelde the gates wide open to my foe,
The gates that myght our stately state defende,

And nowe are made the path of our decay.
,, Ioca. Represse deare son, those raging stormes of wrath.

,,That so bedimme the eyes of thine intente,

,,As when the tongue (a redy Instrument)
,,Would fayne pronounce the meaning of the minde,

,,It cannot speake one honest seemely worde.

,,But when disdayne is shrunke, or sette asyde,

,.And mynde of man with leysure can discourse

,,What seemely woordes his tale may best beseeme.
,,And that the toung vnfoldes without affectes

,.Then may proceede an answere sage and graue,

,,And euery sentence sawst with sobernesse:

Wherefore vnbende thyne angrie browes deare chylde,
And caste thy rolling eyes none other waye,

That here doost not Medusaes face beholde,
But him, euen him, thy blood and brother deare.

And thou beholde. my Polinices eke,

Thy brothers face, wherin when thou mayst see

Thine owne image, remember therwithall. 35

That what offence thou woldst to him were done.

0.1 entreth] intrat MS 20--22 AS . . . worde.] not zn 73 20 the] thie MS
21 fayne pronounce] faynest tell MS 21 the minde] thy minde MS 22 It
. . . worde.] Thie swelling hart puft vp with wicked ire / Can scarce pronounce
one inward louing thought. MS 31 Medusaes] One of the furies. 75m

Figure 2: Output from i oca s t a . t ex .

TUGboat, Volume 11 (1990), No. 4

\rightskip=Opt \leftskip=Opt

\parindent=Opt \parfillskip=Opt plus lfil

\printlines#l\ifnolinenums\relax\else\enskip\fi {\nu
#2\def\Qtempa{#2)\ifx\Qtempa\empty

\else]\enskip\fi#3\penalty-lO\hskip lem pluslem minus.4em\relax)}

% : is . in \os
%
\def \printlines#l l#2 1 #3 1 #4 1 #5 1 #6 1 #7(%

\eightpoint

%
% Do nothing if no line numbers are wanted.

\ifnolinenuns

%
% We are printing line numbers. Go into the old-style-digits font.

\else

\begingroup

\os

%
% First, print poem number or act/scene number.

\if poemnum % a poem

\global\poemnumfalse

\fi

\if dbpoemnum a poem with two numbers, e.g. 64 (xii)

\global\dbpoemnumf alse

\fi

\if actnum % a play (act/scene)
\the\actnumber:\the\scenenumber:%

\global\actnumfalse

\fi

% Now do the line numbers. To simplify the logic here we use a lot of

% counters to tell us which numbers need to get printed (using 1 for

TUGboat. Volume 11 (1990), No. 4

% yes, 0 for no). The assignments are: 0 for page numbers; 2 for

% starting subline; 4 for ending line; 6 for ending subline; and 8 for

% dash between the starting and ending groups. There's no counter for

% the line number because it's always printed.
" We print page numbers only if:

--- we're doing by-page lineation, and
--- the ending page number is different from

the starting page number.

\countO=O \count8=0

\if Qbypage

\ifnum#4=#1 \else

\count0=1

\count8=1

\f i

\fi

The ending line number is printed if:

--- we're printing the ending page number, or
--- it's different from the starting line number.

\count4=\countO

\if num#2=#5 \else

\count4=l

\count8=1

\fi

The starting subline is printed if it's nonzero.

\count2=0

\ifnum#3=0 \else

\count2=l

\fi

The ending subline number is printed if it's nonzero and:
--- different from the starting subline number, or
--- the endline is being printed.

\count6=0

\ifnum#6=0 \else

\ifnum#6=#3

\count6=\count4

\else

\count6=l

\count8=1

\f i

\f i

Now we're ready to print it all, based on our counter values. The

only subtlety left here is when to print a : between numbers.

But the only instance in which this is tricky is for ending subline

number: it could be coming after the starting subline number (in

which case we want only the dash) or after an ending line number

(in which case ue need to insert a :).

\ifodd\countO #l:\fi

#2%

\ifodd\count2 :#3\fi

\if odd\count8 (\rm --}\f i

\ifodd\countO #4:\fi

\ifodd\count4 #5\fi

\ifodd\count6 \ifodd\count4:\fi #6\fi

\endgroup % end of \os font

TUGboat, Volume 11 (1990), No. 4

\f i\ignorespaces)

%
% Now reset the \afootnote parameters and macros:
\afootbaselineskip=9pt

\footparagraphCa)

\let\afootfmt=\ggfootfmt

\dimen\afootins=\vsize

\skip\afootins=3pt plus9pt

\def \ggf ootstart#l{\vskip\skip\af ootins}

\let\afootstart=\ggfootstart

\def\title{\pstart\startsub\let\par=\endtitle~

\def\endtitle{\pend\endsub}

\def\verseskip{\vskip6pt plus6pt)

\def\speaker#l{\pstart\parindent=lem\let\par=\pend

{\tenit{#l)}\hbox to lex{}\ignorespaces~

\def\sen{\leavevrnode\lower1ex\hbox{\tenrm"}~

\def\senspeak#1{\pstart\obeylines\setbox0=\hbox{\ten")\leavevmode

\lowerlex\copyO\kern-\wdO\hskiplem{\tenit#1\hbox tolex{)\ignorespaces)

\def\speak#1~\pstart\obeylines\hskip1em{\tenit{#l)~\hbox to

lex{)\ignorespaces}

\def \nospeaker{\parindent=Oem\pstart\let\par=\pend}

\def\nospeak{\pstart\obeylines)

\def \stage#1{\pstart\startsub\parindent=Opt\hmgindent=3em\hmgaf ter=O

{\tenit#l}\let\par=\endstage}

\let\endstage=\endtitle

\def \motto#1{\pstart\startsub\centerline~\tenit#1)}\pend\endsub~

\def\finis#1{\pstart\startsub\smallskip\centerline{{\tenit#1~~

\let\par=\endfinis}

\let\endfinis=\endtitle

\def\initials#l{\pstart\line{\hfil{\it #l}\quad)\let\par=\pend}

\makeat other

With these definitions, the actual input file, iocasta. tex, is relatively simple:

\input edmac

\input gg

\parindent=Opt

\pageno=73

\mark{{\os2:1})

\headline={\ifnum\pageno>6l\ifodd\pageno

\rlap{\foliofont\botmark)\hfil\headfont

IOCASTA\hfil\llap~\foliofont\folio~%

\else

\rlap{\foliofont\folio)\hfil\headfont

IOCASTA\hfil\llap{\foliofont\botmark}\fi

\else\hfil\fi}

\nospeak

Or that with wrong the right and doubtlesse heire,

Shoulde banisht be out of his princely seate.

Yet thou 0 queene, so fyle thy sugred toung,

And with suche counsel1 decke thy mothers tale,

That peace may bothe the brothers heartes inflame,

TUGboat, Volume 11 (1990), No. 4

And rancour yelde, that erst possest the same

\pend

\speak{Eteocl.) Mother, beholde, youre hestes for to obey,

In person nowe am I resorted hither:

In haste therefore, fayne woulde I knowe what cause

With hastie speede, so moued hath your mynde

To call me nowe so causelesse out of tyme,

When common wealth moste craues my onely ayde:

Fayne woulde I knowe, what queynt commoditie

Persuades you thus to take a truce for tyme,

And yelde the gates wide open to my foe,

The gates that myght our stately state defende,

And nowe are made the path of our decay.

\pend

\senspeak{Ioca.)Represse deare son, those raging stormes of wrath,

\sen That so bedimme the eyes of thine intente,

\text{\sen As when \text{the)\afootnote{thie MS)/ tongue (a redy Instrument)

\sen Would \text{fayne pronounce)\afootnote{faynest tell MS)/ the meaning %
of \text{the minde)\af ootnote{thy minde MS)/,

\sen \text{It)\lemma{It \dots\ worde.)\afootnote{Thie swelling hart %
puft vp with wicked ire / Can scarce pronounce one inward louing %
thought. MS)/ cannot speake one honest seemely worde.)\lemma{%

As \dots\ worde.)\afootnote{{\it not in\/) \os73)/

\sen But when disdayne is shrunke, or sette asyde,

\sen And mynde of man with leysure can discourse

\sen What seemely woordes his tale may best beseeme,

\sen And that the toung vnfoldes without affectes

\sen Then may proceede an answere sage and graue,

\sen And euery sentence sawst with sobernesse:

Wherefore vnbende thyne angrie browes deare chylde,

And caste thy rolling eyes none other waye,

That here doost not \text{{\it Medusaes',/))%

\afootnote{One of the furies. {\os75)m)/ face beholde,

But him, euen him, thy blood and brother deare.

And thou beholde, my {\it Polinices\/) eke,

Thy brothers face, wherin when thou mayst see

Thine owne image, remember therwithall,

That what offence thou woldst to him were done,

\pend

\endnumbering

\bye

3.2 Shakespeare

The following text illustrates another input file of moderate complexity, with two
layers of annotation in use. The example is taken from the Arden Merchant of Venice.
First, the file arden. sty contains a set of font definitions and format specifications:

\makeat letter

% Load small fonts: (cf. TeXbook, p.413-415):

\font\eightrm=cmr8 \font\eighti=cmmi8 \skewchar\eighti='177

\font\eightsy=cmsy8 \skewchar\eightsy='60 \font\eightbf=cmbx8

\font\eighttt=cmtt8 \hyphenchar\eighttt=-1 % inhibit hyphenation
\font\eightsl=cmsl8 \font\eightit=cmti8

\font\sixrm=cmr8 \font\sixi=cmmi8 \skewchar\sixi='177

TUGboat, Volume 11 (1990), No. 4

THE MERCHANT OF VENICE [ACT I1

[SCENE 111.- Venice.]

Enter JESSICA and [LAUNCELOT] the clown.

Jes. I am sorry thou wilt leave my father so,
Our house is hell, and thou (a merry devil)
Didst rob it of some taste of tediousness,-
But fare thee well, there is a ducat for thee,
And Launcelot, soon at supper shalt thou see 5

Lorenzo, who is thy new master's guest,
Give him this letter,-do it secretly,-
And so farewell: I would not have my father
See me in talk with thee.

Laun. Adieu! tears exhibit my tongue. most beautiful pa- 10

gan, most sweet Jew!-if a Christian do not play the
knave and get thee, I am much deceived: but adieu!
these foolish drops do something drown my manly
spirit: adieu! [Exit.]

Jes. Farewell good Launcelot. 15

Alack, what heinous sin is it in me
To be ashamed to be my father's child!

Scene 1111 Capell; om. Q, F; Scene IV Pope. Venice] om. Q, F; Shy-
lock's house Theobald; The same. A Room i n Shylock's House Capell.
Launcelot] Rowe; om. Q, F. 1. I am] Q, F; I'm Pope. 9. in] Q; om.
F. 10. Laun.] Q2; Clowne. Q, F. 10. Adieu!] Adiew, Q, F. 11. Jew!]
Iewe, Q, F. do] Q, F; did F2. 12. adieu!] adiew, Q, F. 13. something]
Q; somewhat F. 14. adieu!] adiew. Q, F. S . D.] Q2, F; om. Q; after
1. 15 Capell. 17. child!] child, Q, F; Child? Rowe.

5. soon] early.
10. exhzbit] Eccles paraphrased

"My tears serve to express what my
tongue should, if sorrow would per-
mit it," but probably it is Launce-
lot's blunder for prohibit (Halliwell)

or inhibit (Clarendon).
10-11. pagan] This may have a

scurrilous undertone: cf. 2 H 4, 11.

ii. 168.

11. do] Malone upheld the read-
ing of Qq and F by comparing 11. vi.
23: "When you shall please to play
the thieves for wives" : Launcelot
seems fond of hinting at what is go-
ing to happen (cf. 11, v. 22-3). If
F2's "did" is accepted, get is used
for beget, as in 111. v. 9.

13-14. foolish. . . spirit] "tears do
not become a man" (AYL., I I I . iv.

3); cf. also H 5, IV. vi. 28-32.

Figure 3: Output of the Arden text.

TUGboat, Volume 11 (1990), No. 4

\f ont\sixsy=cmsy8 \skewchar\sixsy='60 \f ont\sixbf =cmbx8

\font\sixtt=cmtt8 \hyphenchar\sixtt=-1 % inhibit hyphenation
\font\sixsl=cmsl8 \font\sixit=cmti8

\def\eightpointC\def\rm{\famO\eightrm}%

\textfontO=\eightrm \scriptfontO=\sixrm \scriptscriptfontO=\fiverm

\textfontl=\eighti \scriptfontl=\sixi \scriptscriptfontl=\fivei

\textf ont2=\eightsy \scriptf ont2=\sixsy \scriptscriptf ont2=\f ivesy

\textf ont3=\tenex \scriptfont3=\tenex \scriptscriptf ont3=\tenex

\def\it(\fam\itfam\eightit)\textfont\itfam=\eightit

\def \sl{\f am\slf am\eightsl)\textf ont\slf am=\eightsl

\def \bf (\f am\bff am\eightbf)\textf ont\bff am=\eightbf

\scriptfont\bffam=\sixbf \scriptscriptfont\bffam=\fivebf

\def\tt{\fam\ttfam\eighttt)\textfont\ttfam=\eighttt

\normalbaselineskip=9pt \global\let\sc=\fiverm

\setbox\strutbox=\hbox~\vrule height7pt depthapt widthopt)%

\normalbaselines\rm}

% Macros for the edition:
\def \stage#l~\rlap~\hbox to \the\linenumsep{\hf il\llap{ [{\it#l\/)]))))

\def\speaker#li\pstart\hangindent2em\hangafterl

\leavewlode{\it#l}\enspace\ignorespaces)

\def\\{\hfil\break)

% EDMAC customizations:
\noendnotes \vsize 40pc \hsize 23pc \parindent Opt

\linenumsep=.3in \rightskip\linenumsep

\let\notenumfont=\eightrm \let\notetextfont=\eightit \let\numlabfont=\eighti

\pagenot46

\headline={\eightpoint{\teni\folio)\hfil THE MERCHANT OF VENICE\hfil [ACT 11)
\cropsetupC8in)(5in}{3.5pc)(3pc)

\hoffset=.75in \voffset=.9375in

\f renchspacing

% Footnote formats:
\def\nonumparafootfmt#1#2#3{% footnote format that doesn't have line numbers

\let\par=\endgraf

\rightskip=Opt \leftskip=Opt

\parindent=Opt \parfillskip=Opt plus lfil

{\eightpoint\lemafont#11#2\/\rm]\enskip\notetextfont

#3\penalty-lO\hskip lem plus.5em minus.lem\relax))

\def\newparafootfmt#1#2#3(%

\let\par=\endgraf

\rightskip=Opt \leftskip=Opt

\parindent=Opt \parfillskip=Opt plus lfil

{\eightpoint\notenumfont\printlines#l~\rm.\enspace

\lemafont#1~#2\/\rm]\enskip\notetextfont

#3\penalty-lO\hskip lem plus.5em minus.lem\relax))

\def\newtwocolfootfmt#l#2#3{%

\let\par=\endgraf

\hsize .48\hsize

\rightskip=Opt \leftskip=Opt \parindent=5pt

(\eightpoint\notenumfont\strut\printlines#lI\rm.\enspace

\it#2\/\rm]\penaltylOO\hskip .5em plus .5em\rm

#3\strut\endgraf \allowbreak\relax}}

TUGboat, Volume 11 (1990), No. 4

% Footnote style selections etc. (done last):
\footparagraph{a)

\foottwocol{b)

\let\afootfmt=\neuparafootfmt

\let\bfootfmt=\newtvocolfootfmt

\let\collation=\afootnote

\let\note=\bf ootnote

\lineation{section)

\linenmarginfright)

\makeat other

The Arden text, using the above definitions, is input as follows (the output is shown
in Figure 3):

\input edmac

\input arden. sty

\let\afootfmt=\nonumparafootfmt % we do not want line numbers initially

\beginnumbering

\pstart

\centerlinef[\text{SCENE 111)

\lemma{Scene 111)

\collationfCapell; om. Q, F; {\rm Scene IV) Pope .)/. ---%
\textf\it Venice)

\collation{om. 4, F; Shylock's house Theobald; The same.

A Room in Shylock's House Capell.}/.]}

\pend

\bigskip

\pstart

\centerlinef\it Enter\/ {\rm JESSICA) and\/

f\rm [\text{LAUNCELOT)

\lemmafLauncelot)

\collationCRowe ; om. 4, F.)/]) the clown.) \pend \bigskip

\let\afootfmt=\neuparafootfmt % we do want line numbers from now

\speakerfJes.) \setline{l)%

\text{I am)

\collationfQ, F; {\rm I'm) Pope.)/

sorry thou wilt leave my father so,\\

Our house is hell, and thou (a merry devil)\\

Didst rob it of some taste of tediousness,---\\

But fare thee well, there is a ducat for thee,\\

And Launcelot, \textfsoon)

\note{early.)/
at supper shalt thou see\\

Lorenzo, who is thy new master's guest,\\

Give him this letter,---do it secretly,---\\

And so farewell: I would not have my father\\

See me \textfin)

\collation{Q; om. F.)/

talk with thee.

\pend

TUGboat, Volume 11 (1990). No. 4

23 om. P / J (an easy confusion in ~ a r a d ~) 24 m"
PI a . c. 2 5 ~ M a 27 W $iT%!f om. a 11 * (-4) Tfg0
B : -'@'ao Pz : 9-0 J (i.e. om. e) I / om P2 a . c.

1 [* PI PI 11 k T : & - codd. (a very easy confusion in k r a d a) :

h P2 a. c. 1 1 ma : 35?r0 - codd. 28 : Pl P (C and 7

are not alike in ~ ~ r a d a . but C and are. So if an original C were transliterated as

and the sandhi then regularized. the MS readings would be accounted for) : J

29 -. - B . P2 a. c. 1 1 - J (m) 1 :

ma J / I oWE~T!$& Abhyankar : 03mrrzirf;r J 9 : [[-I-]] . . .

W$d% PI (substitution of for is not obviously explicable) 30 W -
J B 1 1 T@3@TC B : 4*, J (saut and metathesis) : & PI a . c.

(?) 1 1 I&: w P I 31 Abhyankar : J , P2 a. c. :

PI : Pz : B (not obviously explicable) 1 1 iWWi-4- PI

32 ' - '$7TTh B 33 do J B 3 5 5 5 7 F T F 5 F e r : 5-J

: [q FTF5Fer P I] 3 6 g . m : T m J I I [m @I
1 1 ~;$8i a (i.e. om. a)

Figure 4: Sanskrit edition of a grammatical text.

TUGboat, Volume 11 (1990), No. 4

\text{)\lemma{\it Lam.)

\collation{Q2; Clowne. Q, F.)/%

\text{Adieu!)

\collation{I\rm Adieu), Q, F.)/

tears \text{exhibit)

\noteCEccles paraphrased "My tears serve to express what my

tongue should, if sorrow would permit it," but probably it is

Lance\-lot's blunder for prohibit (Halliwell) or inhibit

(Clarendon).)/

my tongue, most beautiful

\text Ipagan)

\note{This may havt a scurrilous undertone: cf. {\it 2 H 4,)

\sc 11. \rm ii. 168.)/,

most sweet \text{Jew!)

\collation{{\rm Iewe), Q, F. \quad {\rm do]) Q, F; {\rm did) F2.)/---if

a Christian \text{do)

\note{Malone upheld the reading of Qq and F by comparing \sc

11. \rm vi. 23: "When you shall please to play the thieves for

wives"; Launcelot seems fond of hinting at what is going to

happen (cf. \sc 11. \rm v. 22--3). If F2's "did" is accepted,

{\it get\/) is used for beget, as in \sc 111. \rm v. 9.) /

not play

the knave and get thee, I am much deceived; but

\text{adieu!)

\collation{{\rm adieu), 4, F.)/

these \text{foolish drops do \text{something)

\collationIQ; {\rm somewhat} F.)/

drown my

manly spirit)

\lemma~foolish{\rm\dots)spirit)

\note("tears do not become a man" (\it AYL., \sc 111. \rm

iv. 3); cf. also \it H 5, \sc IV. \rm vi. 28--32.)/:

\text{adieu!)

\collation({\rm adieu). Q, F. \quad I\rm S . D.]) 92, F; om. Q; after

1. 15 Capell.)/

\hf ill \stage(Exit .)
\pend

\speakerCJes.)

Farewell good Launcelot . \ \
Alack, what heinous sin is it in me\\

To be ashamed to be my father's \text{child!)

\collation{{\rm child), Q, F; {\rm Child?) Roue.)/

\pad

\endnumbering

\bye

3.3 Sanskrit text edition

Finally, Figure 4 shows an example from an edition of a Sanskrit text on PBninian

grammar that uses Frans Velthuis's excellent Devanagari font. I have not shown the

input file for this because I almost never looked at it myself. The edition records a

large number of variants, and there are frequent font and script changes. Preparing
this purely manually would have been very error-prone. In fact, the text was prepared

using a word processor which had the ability to fold footnotes out of sight. I designed
custom Indic fonts for my computer screen, so that I could see all the diacritical marks

on accented characters as I typed. (A set of 'Q$ macros declared these characters

TUGboat, Volume 11 (1990), No. 4 643

active, and defined them to give the correct output.) Font changes were invoked using

the standard facilities of the word processor, so the perennial "missing closing brace"

hardly ever arose. A short post-processor program changed the word processor file into

correctly tagged EDMAC input, and another post-processor (provided by Velthuis) did

some special processing on the Devanagari strings. This combination of tools proved

very workable and no major problems were encountered.

4 Index

All numbers denote pages where the corresponding entry is discussed.

A
\advanceline 627
\aendnote 626

\af ootnote 625
\autopar 624

B
\beginnumbering . . . 623

\bendnote 626

\bf ootnote 625

F
\firstlinenun 627

\f irstsublinenum . . 627

\footparagraph 628

\footthreecol 628

\f oottuocol 628

N
\noendnotes . .
\notenumf ont .
\notetextf ont

\numlabf ont . .

C
H

\headlinefont 628 R
\cendnote 626 \rightlinenun 627
\cf ootnote 625 r

L
\cropgap 629

\label 629 S
\cropsetup 628 \setline 627
\cropwidth 629 \leftlinenun 627

\startsub 627
\lemma 626

\sublinenunincrement
D \lemmaf ont 627 62 7

\dendnote 626 \lineation 627 \sublineref 630
\dfootnote 625 \linenun 626

\doendnotes , , , , , . . 629 \linenunincrement . 627 T
\linenurnmargin 627 \text 625

E \linenumsep 627

\eendnote 626 \lineref 630 X
\ef ootnote 625 \xlineref 630
\endnumbering 623 M \xpageref 630
\endprint 629 \magicvskip 628 \xsublineref 630

o John Lavagnino o Dominik Wujastyk
Department of English and Wellcome Institute for the History

American Literature of Medicine
Brandeis University 183 Euston Road
415 South Street London NW1 2BN, UK
Waltham, MA 02254-9110, USA Janet: D . WujastykQuk. ac .ucl
Bitnet: 1avQbrandeis Internet: dowQwjhl2. harvard. edu
Internet:

1avQbinah.cc.brandeis.edu

TUGboat, Volume 11 (1990), No. 4

Footnote Strikes A Wrong Chord: How Do
You Conquer It?

Jackie Damrau

Have you ever tried to change the footnote symbol?
Did you find it easy? Well, the way to change the
type of symbol used by the \ foo tno te environment
is, e.g., by:

which provides the *, **, t , 8 , 5, 7 , @ construction.
Should you desire alphabetic (upper or lowercase),
the constructions would be:

or could conceivably be anything else you would

wish to use.

Query from the College Station Meeting

Lowell Smith posed a question at the llth Annual
l$jX Users Group Meeting in College Station where

he wanted to change the \ foo tno te environment in-
side a minipage and no matter what he tried received

lowercase alphabet letters for the footnote symbol.

I would like to throw this question out to the

I4l$jX community to see what responses are submit-
ted. Any solutions submitted will be reviewed in the

next column.

Earlier Column Revisited

In TUGboat 11, no. 1, this column presented macros
for changing from single space to double space. I
received a response from Josephine Colmenares at

Fordham University with a simpler macro that she
has given permission to use. The macros are:

o Jackie Damrau
Computer Operations Support
MS-1011
SSC Laboratory
2550 Beckleymeade Avenue
Dallas, TX 75237-3946
(214) 708-6048
Internet: damrau@sscvxl . ssc . gov

A IAW Document Style Option for
Typesetting APL

Andreas Geyer-Schulz, Josef Matulka and

Gust af Neumann

Abstract

In this article we describe the I 4 m document style
option apl . s t y for typesetting documents contain-

ing passages in APL code. All symbols needed

within a multi-vendor APL environment are pro-
vided. Currently the full symbol sets of the APL
dialects APL2, Dyalog APL, I-APL, Sharp APL.

and APL.68000 are supported. All APL symbols are

constructed with the symbols of the standard UTj$
font family. No additional fonts are needed. Stan-

dard I 4 W commands can be used to change the

size and type style of APL symbols. Automatic con-
version of APL objects is achieved by a preprocessor

written in APL. I4l$jX, apl . s t y and the prepro-
cessor bundled together provide an integrated high-

quality APL publishing system.

1

has

Motivation

Why do you insist on using a notation which

is a nightmare for typist and compositor and
impossible to implement with punching and

printing equipment currently available?
- R. A. Brooker, 1963 [Iverson 631

Since its introduction in the early sixties, APL

been known and even become famous not so

much for the power and elegance of its concepts

but - to a much greater extent - for the "strange"
symbols it uses. A discussion about the useful-
ness and difficulties of APL has remained academic

for large parts of the computer science commu-
nity. Many programmers never managed to get their

dumb ASCII-terminals to produce the non-ASCII

symbols required by the language.

With the advent of bit-mapped displays, down-

loadable fonts and the spread of graphical interfaces
such as the X Window System the situation has

changed. Specialized hardware is no longer a pre-
requisite for APL programming. Although it often

requires some effort of customization and configura-

tion, it is possible nowadays to turn existing hard-

ware into an APL environment.

Troubles show up as soon as you start pub-

lishing results produced in your APL environment.

(Just have a look at some books on APL. where
the APL passages had to be pasted in!) Since

TUGboat, Volume 11 (1990), No. 4

many text-processing and desktop-publishing sys-
tems still lack APL support, it remains difficult to
achieve high printing quality in publications com-
posed of text and APL code. Several extensions
to existing text processors have been implemented
(cf. [Hohti, Kanerva 881). However, most of them
support either only the symbols of one APL dialect
or only one machine or operating system platform.
[Hohti, Kanerva 881 already demonstrated the use-
fulness of w for APL typesetting. The authors
produced a METAFONT description for APL prim-
itive symbols and a set of TJ$ macros to support
Digital's APL interpreter for the VAX-11 series.

In this paper we present our solution to the
problem: An APL publishing system consisting of
an APL front end and a Urn document style op-
tion. The APL front end automatically converts
APL material into I P W code which you can \input
into any standard I4w document. The I4w doc-
ument style option apl . s t y provides macros defin-
ing all APL characters as combinations of standard
I P w symbols, thus relieving us from the burden
of designing new fonts and the user from the task
of incorporating them into the I P w system. As
additional benefit, size and type style of the APL
symbols can be changed by the familiar I P w com-
mands (e.g. \Large, \ s f) .

Compared with the approach of Hohti and Kan-
erva mentioned above, our solution offers the follow-
ing advantages:

Several APL dialects are supported (currently
APL2, Dyalog APL, I-APL, Sharp APL, and
A PL.68000).
No additional fonts are required.
APL symbols for all IPT@ sizes and type styles
are available.
We provide support for automatic typesetting
of APL objects.

There are some disadvantages, however; they
are higher TEX interpretation overhead and higher

memory usage.

2 The APL Publishing System

The APL publishing system consists of two parts,
the APL front end and the I P W document style op-
tion apl . s t y which communicate via a carefully de-
signed interface of w macros (see Figure 1). This
ensures that both parts of the system can be modi-
fied independently.

Each of these modules is composed of two layers
(see Table 1). The main task of the low level for-

I APL code

APL Front end r-l

DVI code qros
Figure 1: Modules of the Publishing System

matt ing layer is the printing of single APL symbols.
The APL front end maps each symbol into a T)$
macro name and produces files to be \input into
I P w documents. The UTJ$ style option ap l . s ty
contains one macro definition for each APL charac-
ter.

APL code is more than just a stream of APL
symbols. The high level formatting layer knows
about functions, operators, arrays, and expressions.
Our APL front end provides special functions for
typesetting these objects. The I P w style option
defines the corresponding environments.

level (1 language / document

formatting elements elements

I~TEX document

style option

symbol

construction

Low

level

formatting

High

Table 1: Layers of the Publishing System

APL

front end

symbol

translation

3 Typesetting APL Symbols

APL

If using a few APL symbols in an ordinary doc-
ument is all you need, you can forget about
the APL front end. Simply adding the op-
tion ap l to your preferred IPT@ document style
(e.g. \documentstyle [12pt ,ap l l {ar t ic le)) en-
ables you to state in your paper, e.g.:

logical

By combining the simple APL symbols 0
and * we obtain the compound symbol @.

The code to produce this statement is:

TUGboat, Volume 11 (1990), No. 4

\begin{quot at ion)

By combining the simple \APL\ symbols
\APLcircle\ and \APLstar\ we obtain the

compound symbol \APLcirclestar.

\end(quot at ion)

In fact, you can typeset all simple and com-
pound symbols of APL2, as we have defined macros
for all of them. Tables 2 and 3, respectively, show
them together with their macro names.

\APLnotgreater 5
\APLnotless 2
\APLomega w

\APLoverbar
-

\APLplus +
\APLquad 0
\APLquery ?

\APLquote
I

\APLrho P

\APLrightarrow +

\APLrightbracket 1
\APLrightparen

\APLrightshoe 3

\APLsemicolon 7

\APLslash 1
\APLslope \
\APLstar *
\APLS~ ile I
\APLt ilde N

\APLt imes x

\APLunderbar -

\APLuparrow t
\APLupcaret A

\APLupshoe n
\APLupstile r
\APLuptack T

Table 2: Simple APL2 Symbols

IBM was the first company to implement APL
but it did not remain the only one. Companies such
as I. P. Sharp and Dyadic Systems have produced
their own versions of the language. These and other
companies, however, introduced only a few symbols
not found in APL2. We have added twenty addi-
tional symbols to the APL2 character set to s u p
port typesetting Dyalog APL, I-APL, Sharp APL,
and APL.68000 (see Table 4).

As you have probably guessed from the names
in Tables 2, 3, and 4 we stick to a naming convention
in order to minimize name clashes with other macro
packages and also help users remembering the macro

\APLcirclebar 8
\APLcircleslope 6)
\APLcirclestar 0
\APLcirclestile @
\APLdelstile T
\APLdeltastile 4
\APLdeltaunderbar - A

\APLdelt ilde 6'

\APLdieresisdot

\APLdowncarettilde Y

\APLdowntackj ot h

\APLdowntackuptack I
\APLepsilonunderbar - E

-
\APLequalunderbar - -

\APLiotaunderbar - 2

\APLleftbracketrightbracket 0
\APLquaddivide El
\APLquadj ot I3
\APLquadquote I3
\APLquadslope

\APLquotedot

m
!

\APLslashbar f
\APLslopebar t
\APLupcarettilde 791

\APLupshoejot f3

\APLuptackjot 7P

Table 3: Compound APL2 Symbols

names. All macro names start with the \APL pre-
fix, followed by the name of the symbol used in the
APL literature. The symbol names for APL2 char-
acters are taken from [IBM 851. For those characters
(cf. Table 4) which are not included in the IBM list
we have invented consistent names. We always use
symbol names, not the name of APL functions these
symbols might represent. The name of a compound
APL symbol is the concatenation of the names of
the simple APL symbols it is created from.

As can be seen in Figure 2 which shows the
character set (the atomic vector UAV) of APL2, not
all APL characters are fancy symbols, and the lan-
guage uses ordinary alphanumeric characters as well.
To allow for a clean interface between the APL front
end and the I4m part of our system, we decided
to define macros for these characters as well. Their
names are constructed as follows:

Each macro name starts with \APL.
For each letter we append the upper or
lowercase letter, if the letter is underlined we
prefix the letter with "u".
Capital letters: \APLA, . . . , \APLZ.

TUGboat, Volume 11 (1990), No. 4

\APLdieresiscircle o
\APLdieresisdel 0
\APLdieresis jot o

\APLdieresisstar -k

\APLdieresistilde ,-d

\APLdieresisuptack T

\APLlef ttack k

\APLnot equalunderbar $

\APLquaddownarrow [5]
\APLquadlef tarrow

\APLquadrightarrow

\APLquaduparrow [TI
\APLrighttack -1

\APLstilebar t
\APLtheta 6'

Table 4: Symbols Used in APL Dialects

Lowercase letters: \APLa, . . . , \APLz.
Underlined capital letters: \APLuA, . . . ,
\APLuZ.
Underlined lowercase letters: \APLua, . . . ,
\APLuz.
For numbers we simply append their names:
\APLzero, . . . , \APLnine.

The tiny numbers in the atomic vector of Fig-
ure 2 correspond to positions for which no print-
able characters are defined by APL2. In case the
APL front end encounters a non rintable charac-
ter, e.g. the one at position 20 in 6 AV, it generates
\APLmiss<ZO). The definition of the macro
\APLmiss determines the printed representation of
this character (the default macro in our style just
prints the corresponding number in style \ t iny) .

Let us close this section with one more example
of typesetting APL symbols:

\APLquaddivide\APLA\ corresponds t o
$AA<-I>$ i n mathematical nota t ion
and \APLcircleslope\APLA\ corresponds
t o $AeITI$.

displays as:

A corresponds to A-' in mathematical nota-
tion and 6) A corresponds to AT.

Figure 2: The Atomic Vector of APL2

4 Typesetting APL Objects

Typing the name of an occasional APL symbol
within a normal text is not a real nuisance to the
author of APL texts. But typesetting a larger piece
of APL code certainly is. Imagine a function named
ATREE, which implements a recursive tree traver-
sal algorithm:

V Z + CLASS-LIST A TREE ROOT ;
DEPTH; LIST ; I ; RECLIST ; SUPERCLASS

[l] Z t , C R O O T

121 -+ (v / (, CROOT) - "CLASS-LIST) /
CYCLIC

[31 I t 2 O T F ~ ~ G E T - M E M ' A C L A S S 1 (

ROOT. ' . SUPERCLASS ')
[41 - + ((o p c i p ' 'I--SUPERCLASS)/O

[51 I t (CCLASS-LIST, CROOT) ATREE"
SUPERCLASS

161 z + ((Z Z Z) = z p z) l z + z , T , I , " ,I
[71 + o
[81 CYCLIC:ZC0pO

V

In order to print just the beginning of the
header of the function, you would have to type:

648 TUGboat, Volume 11 (1990), No. 4

\APLT\APLR\APLE\APLE% In the following we present examples for each of
\APLbr\APLspace\APLR\APLO\APLO\APLT\APLb the cases mentioned above. At the same time, the

examples give us the opportunity to demonstrate
Obtaining the familiar function layout used

Mriations of type style and size.
in APL textbooks would require additional code.
What is more, besides being awkward the whole pro-
cess is error-prone: Almost certainly it will result in
a printout different from the APL code.

Therefore we strongly recommend automatic
translation of APL code. We provide an APL front
end which transforms APL objects into logical docu-
ment elements which can be \input into I P W doc-
uments. This guarantees consonance between the
original APL code and its listing and is also more
convenient.

For all APL language elements we have defined
APL functions and corresponding I P W environ-
ments. Our system supports the typesetting of:

an array displayed by the interpreter,
an array in boxed representation,

0 a function or operator displayed by the built in
APL del-editor (V-editor),
a function or operator displayed by APL's
canonical representation function UCR,
a direct definition of a function or operator,

0 an APL expression input by the user.

Apart from minor modifications we have used tradi-
tional layout conventions for all language elements.
For example, the convention that user input is six
spaces indented can be traced back to the very first
implementation of APL. Another traditional con-
vention states that if a line of APL code does not fit
on a single line of the display, the rest of the code
is wrapped around and continues on the next line.
In some functions this rule may lead to line breaks
in the middle of names. Since APL identifiers can
be up to 255 characters long line breaking within
names cannot be avoided in general.

As you can see, arrays and functions can be
typeset in various ways. For example, the above
listing of the APL function ATREE was printed by
the following APL expression:

' TREE ' PRTEX-FN ' ATREE '

The APL function PRTEX-FN produces the
file tree.tex as output. The APL front end not
only maps each character into the corresponding
7l&X macro but it also produces the line numbers in
brackets and the surrounding I P W environments
in order to guarantee uniform display of functions
throughout the document.

4.1 Typesetting APL Arrays

The interpreter usually displays arrays as text ma-
trices on the screen. For example, the matrix X is
displayed as:

The above printout is typeset by the following
code which is automatically produced by the APL
front end:

Note that the structure of X has been preserved
by automatically enforcing fixed spacing. A closer
examination of the code reveals that we have simu-
lated fixed spacing by boxing each character of the
array (\APLmb does this).

Experienced APL programmers recognize the
structure of X at the first glance: X is a two by two
matrix whose upper left element is a two by two
matrix. However, since the use of nested arrays is
typical for second generation APLs like APL2 and
Dyalog APL, another representation of arrays exists
which shows the structure in a more explicit manner:

Most of the work for typesetting the boxed rep-
resentation of X shown above is done by the APL

TUGboat, Volume 11 (1990), No. 4

function DISPLAY which usually comes with the
APL system (e.g. [IBM 851). Our APL front end
just translates the characters generated by this func-
tion; the same I4W environment is used for both
array representations. We only sketch the code for
the boxed representation:

In order to demonstrate the ease of changing
type styles we have decided to put the generated
code unit into an italics environment. This is the
reason for all letters and numbers in the boxed rep-
resentation being in italics. Otherwise, they would
have been roman.

4.2 Typesetting APL Functions

The following APL function is printed in del-editor
style:

A larger font has been selected by inserting the
generated code into a \Large environment:

\begin(Large)

% FNS MEAN
\begin{APLfns)

\begin{APLfnsline){)(\APLdel)

\APLZ\APLleftarrow\APLM\APLE\APLA\APLN

\APLspace\APLX

\end(APLfnsline)

\beginCAPLfnsline)(\APLleftbracket\APLone

\APLrightbracket)C)

. . .
\end(APLfns)

\end(Large)

The canonical representation of an APL func-
tion is simply a text matrix. Since older APL sys-
tems only provide arrays of uniform datatype and
rectangular shape, padding of short lines with spaces
is performed. In contrast to the del-editor style, the
canonical representation is typeset like an APL ar-
ray with fixed spacing and without line numbering.

For the canonical representation of MEAN a small
typewriter type style was chosen:

You notice immediately that we have used the
I4W commands \small and \tt to produce this
effect:

(\small\tt

% CR MEAN
\begin(APLcr)

\APLmbC\APLZ)\APLmb(\APLleftarrow)

\APLmb(\APLM)\APLmb(\APLE)
\APLmb(\APLA)\APLmb{\APLN)

\APLmb(\APLspace)\APLmbC\APLX)

\APLspace\par

In addition to the del-editor representation and
the canonical representation of an APL function we
provide means for formatting direct definitions of
functions, which are supported by only a few APL
dialects, e.g. I-APL:

This direct definition of a function computing
Fibonacci numbers is due to [Iverson 871 and has
been formatted as follows:

\endCAPLline)

Note, that the APLline environment allows lig-
atures within names.

4.3 Typesetting APL Expressions

Finally, our system enables the user to typeset APL
expressions. The expression

X C 2 2 p (2 2 ~ 2 4) ' A ' ' B ' ' C '

which happens to be the one used to generate the
matrix X (our example for formatting arrays) is
printed by:

% EXPR
\begin(APLbold)\begin&lPLexpr)

\APLX\APLleftarrow\APLtwo\APLspace

650 TUGboat, Volume 11 (1990), No. 4

The environment APLexpr provides the tradi-
tional six space indentation for user input.

4.4 Typesetting User Dialogues and
Workspaces

The above examples demonstrate the usefulness of
the six basic document elements we provide. Besides

being useful on their own, we can combine them to
form higher level units. In the current version of the

APL front end, support for typesetting a dialogue

and an APL workspace listing is included.

A dialogue is a pair of user input and inter-

preter response. We typeset the user input as an

APL expression and the interpreter response as an
APL array. The dialogue

S Y N T A X E R R O R

(l (2 3 1 4
A

was generated by entering the following APL expres-

sion

' E l PRTEX-DIALOG ' (l (2 3 1 4 '

Hopefully, most of the dialogues will not result

in a syntax error as the above one. But automati-

cally typesetting examples with errors is very con-
venient for describing APL's error trapping mecha-

nisms in a text book.

An example for the printout of an APL
workspace would be too space-consuming to be in-

cluded here. It basically is implemented by com-

bining the printout of arrays, functions and opera-
tors intertwined with UTEX sectioning commands.

I P W ' s table of contents considerably increases the

utility of a workspace listing. - -

5 Implementation Details

For symbol construction three internal macros had

to be defined. The first, \QAPLmath, puts a math

symbol into a boxed math environment and ad-
justs spacing. The second, \QAPLmraise, puts a

math symbol into a raised and boxed math environ-

ment and adjusts spacing. The third, \QAPLovly,

simulates backspacing and overstriking on a type-

writer by overlaying two boxes. The quad symbol 0

required special construction in order to enerate

readable compound symbols such as 1, 8 , b . Full
reconstruction was needed only for the APL symbol

1 which is a quad symbol with a short vertical rule.
The first version of this symbol used a single quote

instead of the vertical rule and looked rather awk-

ward.

One disadvantage of our solution is high TEX

memory consumption. We have used \ l e t com-
mands wherever possible in order to cut down mem-

ory usage. Typesetting APL symbols for this text
has cost us approximately 6,800 words of w mem-

ory. Typesetting the workspace of the APL kont
end (32 functions, 11 variables, 23 pages) has cost

a total of 72,800 words of TpX memory with 29,000

words used for the APL symbols. We recommend
TEX with 262,141 words of memory.

APL lines are sometimes too long to be printed
in a single line. When displaying them on the screen,

this problem is usually resolved by wrapping them

to the next lines without adding any hyphen. Thus,

line breaks can occur anywhere in an APL line, in
the middle of APL expressions or even in names. As

we use one macro for typesetting each APL char-

acter, the normal TEX hyphenation algorithm no
longer works.

In the definition of each APL symbol which can-

not be used in an identifier the macro \APLgb is
used, which allows breaks with a penalty of -10. To

achieve line breaks in the emergency case the prepro-

cessor inserts the macro \APLbr into names longer

than 15 characters at regular intervals.

When typesetting APL arrays (cf. Figure 2) . a
fixed spaced font is necessary to preserve its shape.

We imitate fixed spaced fonts by simply putting a

box of fixed width around all characters.

For typesetting bold APL code the special en-

vironment APLbold is defined. It sets \bf and

\boldmath and adjusts the thickness of rules used

in symbol construction.

6 Conclusion

In this paper we have presented our solution to the

APL typesetting problem: An APL publishing sys-
tem consisting of a U m document style option and

an APL front end. No additional fonts are needed.

We have given short examples which demonstrate
the usefulness of this approach. The system has al-

ready been used by the authors to prepare several

TUGboat, Volume 11 (1990), No. 4 651

articles published in APL Quote Quad, the journal
of the APL user community.

METAFONT could be used to improve the print-
ing quality of some symbols (cf. [Hohti, Kanerva

881). However, it would be necessary to create a
whole APL font family (different sizes and type
styles) to obtain the flexibility of our system. We
could incorporate special APL fonts without any
change in the APL front end as soon as they be-
come available.

The APL front end is currently implemented
for APL2 and Dyalog APL and can be obtained
from the authors. Further porting is intended. The
I4W document style option will be submitted to
the Clarkson and Aston archives as well as to the
German server at Heidelberg.

The authors would appreciate comments and
suggestions for the improvement of the style as well
as comments with regard to APL symbols not avail-
able in this style.

References

[Camacho et al. 871 Camacho A., Chapman P., Zie-
mann D. (1987), I-APL Instruction Manual for
PC Clones, I-APL Limited, St. Albans, Herts,
England.

[Dyadic Systems Ltd. 851 Dyadic Systems Limited
(1985), Lynwood Dyalog APL User Guide.
Dyadic Systems Limited, Farnborough, Hamp-
shire, England.

[Falkoff, Iverson 731 Falkoff A. D., Iverson K. E.
(1973) "The Design of APL", IBM Journal of
Research and Development, V17, N4, reprinted
in: Falkoff A. D., Iverson K. E. (1981), A Source
Book in APL, APL Press, Palo Alto.

[Hohti, Kanerva 881 Hohti A., Kanerva 0. (1988),
"Typesetting APL with w", APL Quote
Quad, V18, N3, p13-16.

[IBM 851 IBM Corporation (1985), APL2 Program-
ming: Language Reference, IBM Corporation,
San Jose, California.

[I.P. Sharp 851 I.P. Sharp Associates Lim-
ited (1985), SHARP APL/PC Handbook, I.P.
Sharp Associates Limited, Toronto, Canada.

[Iverson 631 Iverson K. E. (1963), "Formalism in
Programming Languages", ACM Working Con-
ference on Mechanical Language Structures,
Princeton N.J., reprinted in: Falkoff A. D.,
Iverson K. E. (1981), A Source Book in APL,
APL Press, Palo Alto.

[Iverson 871 Iverson K. E. (1987), "A Dictionary of
APL", APL Quote Quad. V18. Nl .

[Knuth 861 Knuth D. E. (1986)) The book,
Computers & Typesetting A, Addison-Wesley,
Reading, Massachusetts.

[Lamport 861 Lamport L. (1986), LAW: A Doc-
ument Preparatzon System, Addison-Wesley,
Reading, Massachusetts.

[Micro APL Ltd. 861 Micro APL Ltd. (1986),
APL.68000 for the Apple Maczntosh, Micro
APL Ltd., London, England.

[The University of Chicago Press 821 University of
Chicago Press (1982), The Chicago Manual of
Style 13th Editzon, The University of Chicago
Press, Chicago, USA.

o Andreas Geyer-Schulz
Department of Applied Computer

Science
Vienna University of Economics

and Business Administration
Augasse 2-6
A-1090 Vienna, AUSTRIA
ANDREASQAWIWUW11.BITNET

o Josef Matulka
Department of Applied Computer

Science
Vienna University of Economics

and Business Administration
Augasse 2-6
A-1090 Vienna, AUSTRIA
MATULKAOAWIWi1.BITNET

o Gustaf Neumann
Department of Management

Information Systems
Vienna University of Economics

and Business Administration
Augasse 2-6
A-1090 Vienna, AUSTRIA
NEUMANNQAWIWUW1i.BITNET

TUGboat, Volume 11 (1990), No. 4

Experiments in w n i c o l o u r - A S L ~ Sub-style for Colour Printers*

David Love

Abst rac t

S L W assumes that colour transparencies will be produced from layers, each printed
in a single colour. This sub-style allows a suitable dvi driver to produce multi-coloured
slides in one go (i.e., using a single layer). It is customisable for PostScript printers
or simpler colour devices like the the HP PaintJet.

1 Introduction

S L W - a version of I 4 m for making slides-supports colours in its output by pro-
ducing 'colour layers', one per colour [I]. It is assumed that these will be copied to
transparencies of the appropriate colour and overlapped to make a composite multi-
colour slide. Colour is valuable on slides, but this means of producing it is inconvenient
and inappropriate if you have a colour printer and a suitable dvi driver for it.

This sub-style for S L W allows all the colours to be produced in one layer. It is
designed for use with colour PostScript printers or others like the HP PaintJet with
suitable dvi drivers, following experiments with these printers at Daresbury. It is
intended to provoke discussion of the use of colour with m, a subject about which
little has been said so far in public, rather than be at all definitive.

2 Approach

Use of colour with TEX is non-standard and has to be done by passing information to
the dvi driver. This could be done in one of two ways:

0 using fonts whose names idenitify them to the driver to be printed in a particular
colour but are otherwise identical to the black version (possibly using virtual fonts

121);
using the \ spec i a l mechanism to tell the driver to change colours.

The second option is easier to implement with an existing driver and allows colour for
objects other than characters i.e., rules,' and has been adopted here. Unfortunately,
existing drivers differ in their \ spec i a l mechanisms and few understand colour ex-
plicitly. However, drivers which allow you to include arbitrary PostScript with a
\ spec i a l have this ability implicitly since colour operators are defined in PostScript
[3]. (Colour gets rendered in shades of grey on a normal laser printer, which can help
with proofing.)

There is a proposed standard for \specials [4] which includes colour information, but
the definition of the t ex t co lo r \ spec ia l is inconveniently related to the dvi stack.
Working with existing PostScript drivers, one has to make some assumptions about
them, as detailed below.

In the case of the PaintJet printer there does not appear to be an existing driver, so
one was produced with a suitable \ spec ia l defined arbitrarily.

3 Pa in t Je t Driver

The Hewlett-Packard PaintJet can print in colour at 180 dpi, which is quite adequate
for making transparencies. A driver for it was produced using the HP Laserjet version
from Beebe's family [5.] as a basis since this has rather similar control sequences. It was
extended to maintain four bitmaps independently, allowing three colours other than
black to be printed. Allowing more colours would make the code more complicated

Tile version 1.2, dated 18/4/90.
\ co lo r s l i de s doesn't work properly with rules-they come out in each layer.

TUGboat, Volume 11 (1990), No. 4 653

\colors

s l i d e

and slower as well as using more memory for the bitmaps. It supports one \ spec ia l
to allow colour changes between black, red, green and blue. A defect is that the result
of overlapping items of different colours is independent of their order in the dvi file,
but this simplifies the driver considerably.

4 Assumptions

The necessary assumptions about the driver are largely isolated in the macros
\specialQcolor and color mi^.^ Suitable changes could quite easily be made to
conform with an eventual standard for \specials or use a different driver.

4.1 Postscript

We assume that a PostScript driver understands \specials of the form

where (code) is arbitrary PostScript from which the surrounding code output by the
driver is not protected. This is appropriate for Rokicki's dvips and ArborText's
DVILASERIPS. We use the RGB colour model [3, $4.81.

4.2 PaintJet or other printer

A non-Postscript printer should understand a special of the form ~color,(colour)),
where (colour) can take the values black, red, green or blue, determining the colour
of all subsequent printing until the next change. The default is assumed to be black.

5 User interface

As well as redefining some internal S L ~ macros, we make some new ones as de-
scribed below.

The default is to assume the use of a PostScript printer. Saying \p sp r in t e r f a l se
changes this to produce output suitable for the PaintJet (or similar printer). This

should be done only in the preamble.

Any colours you use must be declared using \colors (even red, green, blue and
black). They do not need including in the argument of \beginCslide) for use with
\ t ruecolors , but there needs to be some argument, even if it's null.

Like \blackandwhite. \ t ruecolors is invoked from the driver file to process a batch
of slides described in the file given as its argument. It works like \blackandwhite
in that it makes only one layer, but will include the information for the printer to
produce the colours in the dvi file. Notes are not printed by \ t ruecolors .

5.1 PostScript specifics

Before you use a new PostScript colour, you have to define how it is mixed from red,
green and blue. \colormix does this for you. It takes four arguments. The first is
the name of the colour and the others are numeric values for the intensities of red.
green and blue respectively in the mixture. (See the description of RGB in [3].) These
values must lie in the range 0-1 such that 1 is most intense and 0 is no intensity. Thus
you might define yellow by

\colormix{yellow}{O}{l}{l}

You don't need to define red, green, blue or black-they are done already.

You could put blocks of text on a coloured background either by setting them on top
of a suitably-sized rule or by using explicit \specials.

I spell the English way except in code names, where I reluctantly use 'color' for
consistency with existing code.

TUGboat, Volume 11 (1990), No. 4

5.2 Other printers

Only red, green, blue and black are available. Use of \colormix will produce a
warning. Using a non-white background won't work very well with the PaintJet.

5.3 Problem with list environments

A problem occurs if you want the first text in a list environment item to be a different
colour to the label since \ spec ia l s before the text appear in the dv i file before the

label. A way round this is to insert \ leavemode after \item. This sort of problem

may occur in other situtaions.

6 Code

6.1 Driver-independent code

\typeout{SliTeX style option 'truecols' (v. \fileversion\space of \filedate)}

\if@truecol We introduce a new switch to tell us whether we can assume we have true colour
printing capability and unset it initially.

\the@color We keep track of the current colour using \ the@color (to get colours right with
grouping). Initially it's black.

\ifpsprinter This tells us if we're dealing with a Postscript printer (the default) or not.

\truecolors A new \ t rueco lo r s command is defined, which works like \blackandwhite, printing

everything in the file given as its argument in one layer. Thus it must set the \@bw

switch. This slightly unfortunate change to \@bw's meaning makes the alterations
easier.

\@color We modify \@color to take note of the Qt ruecol setting (if @bw is set). If appropriate,
it puts out a colour-changing \ spec i a l using \special@color . We can omit the test

for J, colour change in math mode if we're not depending on invisible fonts.

\def\@color#l{%

\if@truecol \else \@mmodetest \fi % change

\if@bw \@visibletrue

\if@truecol \special@color{#l}\fi % change

\else \@visiblefalse

\@for \Qx@a :=#l\do~\ifx\QxQa\@currcolor\@visibletrue\fi}\fi

\@currsize \@currfont \ignorespaces)

\endslide We ensure that the driver colour is reset to black at the end of each slide by setting

it in \endslide.

\def\endslide{\@color{black)\par\break)

\note We don't want to waste truecolour output on producing notes, which we will if we don't
re-define \note (since Qbw is set by \ t ruecolors) . We just add a test on Otruecol.

\def\note{%

\stepcounter{note)%

\if Obw

\if@truecol \gdef\@slidesw{F)% added

\else

\gdef\@slidesw{T)%

\if @onlynotesw\@whilenum \c@slide > \@donotehigh\relax
\do~\@setlimits\@donotelist\@donotelow\@donotehigh}\ifnm

TUGboat, Volume 11 (1990); No. 4

\colors We re-define \colors to check that we know about those specified. It could, perhaps,

be dispensed with at the cost of incompatibility with standard S L ~ . If we're not

using Postscript only the four pre-defined colours are available.

\def\colors#l{%

\@for\@colortemp:=#l\do{%

\Qifundefined{\@colortemp @mix){% change

\ifpsprinter

\errhelp{You could use I to define it now.)%

\errmessage{You need to use \noexpand\colormix to define

\@colortemp)%

\else

\errhelp{It's safe to carry on.)%

\errmessage{You can only use black, red, green and blue with

this printer, not \@colortemp)%

\expandafter\xdef\csname\Qcolortemp\endcsname{\relax)%

\fi

3 0 %
\expandafter\xdef\csname\Qcolortemp\endcsname

{\noexpand\@color{\Qcolortemp~)%

)% (do)

\ifx\@colorlist\@empty \gdef\@colorlist{#l)%

\else \xdef\@colorlist{\@colorlist,#l)\fi)

\pagestyle Finally we change the default pagestyle since the alignment marks would only be useful
with overlays.

6.2 Driver-dependent code

\colormix The Postscript user can mix new colours in the RGB model using \colormix. It takes

four arguments, the name of the colour (which must then be declared with \colors)
and three real numbers in the range 0-1 describing respectively the intensity of red.

green and blue in the result. The result is to define a macro of the form \(colour)Omix
to be a list of arguments 2-4.

\def\colormix#l#2#3#4{%

\ifpsprinter \else \typeout{Warning: \noexpand\colormix used with

\noexpand\psprinterf alse .)\f i

\color@range~check~#2~\color@rangeQcheck{#3~\color@range@check{#4)%

\expandafter\xdef\csname#1Qmix\endcsname#2 #3 #4))

\color@rangeQcheck We need to check that the numeric arguments of \colormix are in the range 0-1.
Since they're real numbers we convert them to dimensions to test.

\def \color@range@check#l{%

\def\fred{\errhelp{Carry on, but you'll get a Postscript error if

you try to print the results.)%

\errmessage{\noexpand\colormix arguments must be in the

range 0--I))%

\ifdim#l pt < Opt \fred \fi \ifdim#l pt > Ipt \fred \fi)

\special@color This has to change the current colour on the output device to that given as its ar-
gument, but first has to store the current value and make sure it is reinstated at the

end of the current group. (Coloured fonts would avoid the need for this.) Note the

TUGboat. Volume 11 (1990), No. 4

C l inserted at the end of the group to avoid spaces being gobbled afterwards as with
{\red f o o l bar. Probably there's a better way of doing this.

To change colour with Postscript we use a \ spec i a l which will emit code of the form

(red

level)

,(green l e ~ e l) ~ (b l u e l e ~ e l) ~ s e t r g b c o l o r

Perhaps this should be parameterised. The three levels are provided by a macro of the
form \(colour)Gmix which must be defined for each (colour) which is used. It might
be useful to define a white font (RGB=[l 1 11) which could be painted over a coloured

region.

For the PaintJet we output

where (colour) can be black. red, green or blue and we assume that #I is one of

these.

\else \special{color #l)\fi % (\ifpsprinter)
) % (\def\special@color)

\blackGmix Here we define the RGB mixes for the Postscript colours we support initially. These
\redOmix macros need defining for the PaintJet too, so that we can check on colours the user

\blueQmix tries to invoke.

\greenQmix \def\blackOmix{O 0 0) \def\redOmix(l 0 0)

\def\blueOmix(O 0 1) \def\greenQmix{O 1 0)

References

[I] Leslie Lamport. @w: A Document Preparation System; s l i t e x . t e x dated 10
November 1986; s l i d e s . s t y dated 17 January 1986.

[2] Donald Knuth. "Virtual fonts: More fun for grand wizards," TUGboat, 11(1),

1990, p. 13.

[3] Adobe Systems Inc. Postscript Language Reference Manual. Addison-Wesley,
1985, ISBN 0-201-10174-2.

[4] Don Hosek. Proposed DVI \ spec i a l command standard. (See TUGboat, 10(2),

1989, p. 188.)

[5] Nelson H. F. Beebe. "Public Domain T&K DVI Driver Family," TUGboat 8(1),
p. 41.

o David Love
SERC Daresbury Laboratory,
Warrington WA4 4AD, UK
d.loveOdaresbury.ac.uk

TUGboat, Volume 11 (1990), No. 4

Footnotes in a Multi-Column Layout*

Frank Mittelbach

1 Introduction

The placement of footnotes in a multi-column lay-
out always bothered me. The approach taken by
I4m (i.e., placing the footnotes separately under
each column) might be all right if nearly no foot-
notes are present. But it looks clumsy when both
columns contain footnotes, especially when they oc-
cupy different amounts of space.

In the multi-column style option [5], I used page-
wide footnotes at the bottom of the page, but again
the result doesn't look very pleasant since short foot-
notes produce undesirable gaps of white space. Of
course, the main goal of this style option was a
balancing algorithm for columns which would allow
switching between different numbers of columns on
the same page. With this feature, the natural place
for footnotes seems to be the bottom of the page,1
but looking at some of the results it seems best to
avoid footnotes in such a layout entirely.

Another possibility is to turn footnotes into end-
notes, i.e., printing them at the end of every chapter
or the end of the entire document. But I assume ev-
eryone who has ever read a book using such a layout
will agree with me that it is a pain to search back
and forth, so that the reader is tempted to ignore
the endnotes entirely.

When I wrote the article about future extensions
of [6], I was again dissatisfied with the outcome
of the footnotes, and since that article was to show
certain aspects of high quality typesetting, I decided
to give the footnote problem a try and modified the
I4W output routine for this purpose. The layout I
used was inspired by the yearbook of the Gutenberg
Gesellschaft Mainz [I]. Later on, I found that it is
also recommended by Jan White [9]. On the layout
of footnotes I also consulted books by Jan Tschich-
bold [8] and Manfred Simoneit [7], books I would
recommend to everyone able to read German texts.

1.1 Description of the new layout

The result of this effort is presented in this paper
and the reader can judge for himself whether it was
successful or not.2 The main idea for this layout is
to assemble the footnotes of all columns on a page
and place them all together at the bottom of the
right column. Allowing for enough space between
footnotes and text, and, in addition, setting the foot-
notes in smaller type,3 I decided that one could omit
the footnote separator rule which is used in most
publications prepared with m.4 Furthermore, I

decided to place the footnote markers5 at the base-
line instead of raising them as s u p e r ~ c r i ~ t s . ~

All in all, I think this generates a neat layout, and
surprisingly enough, the necessary changes to the
I4m output routine are nevertheless astonishingly
simple.

1.2 The use of the style option

This style option might be used together with any
other style option for I4W which does not change
the three internals changed by f tnright . sty.7 In
most cases, it is best to use this style option as the
very last option in the \documentstyle command
to make sure that its settings are not overwritten
by other options.8

It is unfortunate that the current I4w has no
provisions to make such changes without overwrit-
ing the internal routines. In the new I4W imple-
mentation. we will certainly add some hooks that
will make such changes more easy.

The ftnright option makes use of the values of
\textheight and \skip\footins (the space be-
tween text and footnotes). The values used are
the ones current when ftnright.sty is read in.
If the user wants to change either of them in the
preamble of his document he should call the macro

*. The UTEX style option ftnright which is described in

this article has the version number vl.Oc dated 90/08/24. The

documentation was last revised on 90/10/01.

1. You cannot use column footnotes at the bottom, since

the number of columns can differ on one page.

2. Please note that this option only changed the placement

of footnotes. Since this article also makes use of the doc

option [4] that assigns tiny numbers to code lines sprinkled

throughout the text, the resulting design is not perfect.

3. The standard layout in TUGboat uses the same size for

footnotes and text, giving the footnotes, in my opinion, much

too much prominence.

4. People who prefer the rule can add it by redefining the

command \footnoterule [2, p. 1561. Please note that this
command should occupy no space, so that a negative space

should be used to compensate for the width of the rule used.

5. The tiny numbers or symbols appearing with the foot-

note text; e.g., the '5' in front of this footnote.

6. Of course, this is only done for the mark preceeding the

footnote text and not the one used within the main text where

a raised number or symbol set in smaller type will help to keep

the flow of thoughts uninterrupted.

7. These are the macros \@startcolumn, \@rnakecol and

\@outputdblcol as we will see below. Of course, the option

will only take effect with a document style using a twocolumn
layout (like ltugboat) or when the user additionally specifies

twocolumn as a document style option in the \documentstyle

command.

8. The ltugboat option (which is currently set up as a style

option instead of a document style option which it actually

is) will overwrite the size used in footnotes if it follows the
ftnright option.

TUGboat. Volume 11 (1990), No. 4

\preparef ootins afterwards to reinitialize the foot-
note algorithm, e.g.,

\setlength(\skip\footins)I8pt p l u s 3 p t)

\addtolength(\textheight){lin)

\ p r e p a r e f o o t i n s

This is necessary because the current I4w ver-
sion contains no hook at the \begin(document)
command where we could force an execution of
\preparef oot ins internally.

2 The Implementation

As usual, we start by identifying the current version
of this style file in the transcript file.g

1 \wlog{Style Opt ion: ' \ f i l e n a m e '

2 \f i l e v e r s i o n \ s p a c e <\f i l e d a t e > (FMi))

3 \wlog<Engl ish Documentation

4 \ ~ s p a c e s \ @ s p a c e s \ s p a c e < \docda te> (FMi))

To implement the layout described above, we have
to distinguish between the left and the right column
on a page. For this purpose I4w maintains the
switch \if Qf irstcolumn. When assembling mate-
rial for the left (i.e., the first) column, footnotes
should take up no space, since they are held over
for the second column. In the second column these
footnotes are combined with the ones found there
and placed a suitable distance from the main text
at the bottom of this column.

This means that we have to change certain param-
eters for the insertion \footins when we construct
the second column. The right place to do this is
in the I4m macro \Qoutputdblcol which we are
going to change later on. What settings for the in-
sertion parameters are appropriate? For setting the
first column, \count\f ootins and \skip\footins
should both be zero since footnotes are held over.
while for the second column \count\f ootins should
be1' 1000 and the \skip\footins has to be set to
the desired separation between main text and foot-
notes.

We will allow one column of footnotes (i.e., the
right column) at most, so that \dimen\f ootins has
to equal \t extheight . In principle, it would be pos-
sible to allow for even more footnotes, but this would
complicate matters enormously.11

Since a document usually starts with a left column,
we have to set \count and \skip\footins on top-
level to zero. For this purpose. we define a macro
\preparefootins which will first save the current
value of \skip\footins in a safe place. This saved
value will be used later for the second column. In
this way, it is possible for the user or a designer of

a document style to adjust this parameter without
fiddling with the code of this style file.

5 \def \ p r e p a r e f o o t i n s (%

6 \global\rcolQfootinsskip\skip\footins

7 \ g l o b a l \ s k i p \ f o o t i n s \ z @

8 \ g l o b a l \ c o u n t \ f o o t i n s \ z @

We will also assign \textheight to \dimen

\f ootins to allow the user to change this param-
eter in the preamble.

It is necessary to make the assignments above
\global because we are going to use this macro in
the output routine which has an implicit grouping
level to keep the changes made by it local.

Of course, we have to allocate the skip register
that we used above:

Now we have all the necessary tools available to
tackle \Qoutputdblcol. We have to remember that
when \if Qf irstcolumn equals \if true, we are cur-
rently starting to build the second column, i.e., that
the first column is already assembled. Therefore,
the macro will start with the following code:

After changing the switch, we save the first col-
umn (which was placed by preceeding macros in
\Qoutputbox) in the box register \Qleftcolumn.
Since we are inside the output routine, all those as-
signments have to be \global to take any effect.

9. Nico Poppelier suggested omitting the \typeout state-

ments in the production version of the files to avoid showing

all that unnecessary information to the user. While I accept

his criticism as valid, I decided that this information should

a t least be placed into the transcript file to make it easier t o

detect problems arising from the use of older versions. The

command \wlog is a PLAIN TEX command that will write its

argument to the transcript file.

10. A value of 1000 means that there is a one-to-one rela-

tionship between the real size of the footnote and the size

finally occupied by the footnote on the current page.

11. If one likes to allow that the footnote text might start

in the first column occupying also the whole second column,

it is not possible to simply make \dimen\footins larger than

\textheight directly, because this would result in a full left

column (with text) and more than one column of footnotes

which will not fit on the current page. Instead, one has to

make footnotes visible to the page generation algorithm again

a t the moment when a full column of footnotes is assembled,

but we still have some space left in the first column. I t is

a nice enhancement, and, I suppose, it is of some value for

preparing publications in certain disciplines, so here is the

challenge . . .

660 TUGboat, Volume 11 (1990), No. 4

exact. If we have a full column of footnotes, it will
be too high, but this does not matter since we need
it only for an upper bound on the free space available
for floats.

We then reduce the \Ocolht by this amount and
again assign \Qcolroom the value of \Qcolht. If no
footnotes are present, we substract zero, so there is
no harm in doing this operation all the time.

Now, we call another internal I4w macro that will
try to contribute floats to the next column. It will
use the register \Qcolht when trying to build up
a float column, which is the reason for reducing
this register. If it succeeds, it will set the switch
\ i f Of colmade to t rue , otherwise, to f a l se . If no
float column is possible, it will try to place some or
all of the deferred floats to the top or the bottom
of the next column, thereby, using and reducing the
value of the register \@colroom.

Afterwards, we have to restore the correct values
for \Qcolht and \Qcolroom again, but this time,
they may differ, so that we have to \advance both
registers separately by \f tnQamount.

Now, after doing the things depending on the sta-
tus of the \Qdefe r l i s t , we have to incorporate
the left over footnotes in the new column. First
we check whether a float column was produced by
\Qxs ta r t co l or not.

47 \if Of colmade

If so, we do something awful. To make use of
the \@makecol macro, which attaches footnotes to
\box255 and places the result in the box register
\@outputbox, we have to assign \@outputbox (i.e.,
the result of \Qxstar tco l) to \box255.13

If no float column was produced, we reinsert the
held over footnotes so that they can be reconsidered
by the page generation algorithm of m. But it is
necessary to ensure that this operation is done only
when footnotes are actually present.14

Of course, we also have to allocate the dirnen regis-
ter. It will be automatically initialized to zero.

The other internal macro that we have to change
is \@makecol, a macro that is called whenever one
column of material is assembled and column floats
and footnotes have to be added. Again, we have
to distinguish between actions for the first and the
second column.

For the first column. we leave the footnotes in their
box and simply save the contents of \box255 in the
\box register \Qoutputbox.

But if the user erroneously forgot to specify a
twocolumn layout. we will always typeset the first
column. so that the footnotes are never printed.
Therefore we better check for this special case and
output the footnotes on a separate page in an
emergency.15

\ifOtwocolumn \else

\ifvoid\footins \else

\Olatexerr

{ftnright option used in one-column mode)%

{I shipped out the the footnotes on an

extra page. 1%
\shipout\box\footins \fi\fi

\else

When we construct the second column, we must first
check whether footnotes are actually present. If not,
we perform the same actions as before.

But, if footnotes are present, it may be possible that
the whole column consists of footnotes, i.e., \box255
is empty. In this case, there is no use in placing

13. In German, we call this LLfrom the back through the chest

into the eyes".

14. Otherwise, we might get an undesired extra vertical

space coming from \ sk ip\ foot ins , even if there are no foot-

notes on the page.

15. Otherwise, the footnotes are held over forever, prevent-
ing TEX from finishing the document successfully. Instead,

will produce infinitely many empty pages at the end of

the document, trying in vain to output the held over foot-

notes. This problem was found by Rainer Schopf when we

prepared the paper for the Cork conference.

TUGboat, Volume 11 (1990), No. 4 659

Then, we make the footnotes visible to the page
generation algorithm by setting \count\f oot ins
to 1000 (\@m is an abbreviation for this num-
ber) and \skip\footins to its saved value (i.e.,
\rcol@f ootinsskip).

14 \g loba l \cou~~t \ foot ins \@m

15 \global\skip\footins\rcol@footinsskip

We also have to reinsert all footnotes left over from
the first column to make sure that they are reconsid-
ered by the page generation algorithm of rn using
the new values for \count and \skip\f ootins. But
this will be done later in the macro \@start column.

If we have just finished the right column, i.e.,
when \if Qf irstcolumn equals \iff alse, we will
reset the \footins parameters as explained above
using the utility macro \preparef ootins.

16 \else \preparef ootins

Then, we compose both columns in \@outputbox,
combine them with all page-wide floats for this page
(\Qcombinedblfloats), attach header and footer.
and ship out the result (\@outputpage). Finally we
look to see whether it is possible to generate follow-
ing pages consisting only of page-wide floats.12

There is a fundamental flaw in I 4 m ' s output rou-
tine for float columns and float pages: split foot-
notes, i.e., footnotes which are only partly typeset
on the preceding page are not resolved. They are
held over until I4m starts a page (or column) con-
taining text besides floats again. For our current
layout, this would mean, that if I4m decided to
make the right column of a page a float column,
footnotes from the left column would appear on a
later page. A real cure for this problem would be
to rewrite two-thirds of U r n ' s output routine, so I
am leaving this open for the interested reader.

But the problem shows up even if only one float is
contributed to the right column since assumes
that the whole column is usable, whereas some of it
might actually be already devoted to footnotes from
the left column. So we have to change the output

routine at least in the part that contributes floats
to the next column. The macro involved is called
\@startcolumn. The first thing we do is to check
whether any deferred floats exists.

If not, we set the switch \if@fcolmade to false
which says that we did not succeed in making a float
column. Then, we set \Qcolroom to \@colht. The
register \@colht holds the amount of space that is
available for floats, text, and footnotes in one col-
umn, i.e., it equals \textheight minus the space
devoted to page-wide floats. \@colroom is a similar
register which holds the value \@colht minus space
for column floats that are already contributed to the
current column. Of course, both values should be
equal when we start a new column.

If there are floats waiting for a change to be pro-
cessed, the situation is more difficult. In this case,
we have to reduce both \@colht and \Qcolroom
by the amount of space that will be needed for the
footnotes from the left column. So we must check
whether such footnotes are present. As we have not
reinserted them in \@outputdblcol, we can check
the \f ootins box.

36 \if void\f ootins\else

If there are some, we measure the space that will be
occupied by them. This measurement is not really

12. This part is copied directly from the original I4m
macro. Details about the macros used, their interfaces and

meanings can be found in the IAW source code [3].

Puzzle:

Given a simple T@ document containing
only straight text, is it possible for the

editor, after deleting one sentence, to end
up with a document producing an extra

page?

We assume that the deleted text

contains no macros and that the

document was prepared with a standard

macro package like the one used for

TUGboat production.

The answer will be given in the next issue.

TUGboat, Volume 11 (1990), No. 4

any glue (\skip\f oot ins) in front.16 so we have to Individual footnotes are separated from each other
check for this possibility. by approximately a \basel ineskip of the text size.

68 \setbox\@outputbox\vbox This can be specified with the following code:
69 {\ifvoid\@cclv \else 95 {\normalsize

70 \unvbox\@cclv 96 \global\footnotesep\ht\strutbox)

7 1 \vskip\skip\footins\fi
Braces and \global were used to keep the switch to

But in any case, we place the \ footnoterule in
\normalsize local, just in case some weird layout

front of the footnotes even if this macro is not used
starts out with a different text size for some reason.

by this style option.17 This ends the if-statement
testing whether footnotes are present or not. It also
ends the code which differs depending on the column
number.

Now the column floats are added at the top and the
bottom, and the \@outputbox is adjusted to the full
column height so that the glue inside will stretch
in certain situations.18 Again, this code is copied
verbatim from the original source, so I won't dwell
on details.lg

Now we can tackle the remaining small changes to
the standard layout. I decided to use a smaller size
for footnotes but with a slightly larger leading than
usual.20 This means that we have to redefine the
\f ootnotesize macro which depends on options
like I l p t , etc. Fortunately, there is a simple way to
find out the main size of the document: the macro
\ ap t s i ze contains 0, 1, or 2 standing for 10, 11, or
12 points document text size.

Setting footnotes in smaller type and separating
them with sufficient space from the main text allow
us to omit the \ footnoterule normally used.

And finally, a small but nice change, to the mark at
the beginning of the footnote text. We will place it
at the baseline instead of raising it as a superscript.
Additionally, it will get a dot as punctuation.

97 \long\def\@makefntext#l{\parindent lem

98 \noindent\hbox to 2em{)%

99 \llap{$\@thefnmark. \ ; \ ; $}#1}

3 Initialisation

We defined the macro \preparef ootins above, but
we also have to use it to prepare typesetting the first
column. As a default for the separation of footnotes
and text on the second column, we use the following:

loo \skip\footins lOpt plus 5pt minus 3pt

101 \preparef ootins

Of course, this value can be changed later on by the
user as described in the introduction.

16. In fact, it would be a mistake since this glue was not

taken into account when the footnotes where assembled, so it

would produce an overfull box.

17. This decision is certainly open to criticism, since there

is nothing to separate. On the other hand, a rule or some

other ornament in front of the footnotes is part of the design

which should be used consistently throughout a document.

As a last argument in favor of the rule, consider the situation

where I4m decided to place only floats and footnotes into

the right hand column. In this case a separator again seems

adequate. In this situation one can even argue that it is
necessary to put in the \skip\footins.

18. It is an interesting question as to whether the current

layout works well with bottom floats or not. Actually, I would

prefer to place the footnotes below the bottom floats instead

of above, as it is done here. At least when the floats are part
of the document and not puzzles thrown in. But I was too

lazy to implement it because I seldom use floats. If somebody

implements this layout (some parts of this macro have to be

changed) I would be interested in seeing the code and some

sample results.

19. I only changed \dimen128 into \Otempdima which is, be-

sides being faster and shorter, only a cosmetic change. The

use of this hardwired dimen register seems to indicate that

this part of IPQX was written very early and left unchanged
since then: an interesting fact for software archeologists.

20. The sizes used are suitable for high resolution printers

but should be perhaps enlarged for resolutions of 300dpi or

less. On such output devices footnotes of 8pt size are difficult

t o read and look too small.

TUGboat, Volume 11 (1990), No. 4

References

[I] Hans- Joachim Koppitz, editor. Gutenberg
Jahrbuch. Gutenberg-Gesellschaft. Mainz.

[2] Leslie Lamport. BQX: A Document Prepara-
tzon System. Addison-Wesley. Reading, Mas-
sachusetts, 1986.

[3] Leslie Larnport. Latex. tex. February 1990.
IPW source version 2.09.

[4] Frank Mittelbach. The doc-option. TUGboat,
10(2):245-273, July 1989.

[5] Frank Mittelbach. An environment for multi-
column output. TUGboat, 10(3):407-415,
November 1989.

[6] Frank Mittelbach. E - w : Guidelines to future
TJ$ extensions. In Lincoln K. Durst, editor,
TUGboat, l l (3) : 1990 TUG Annual Meetzng
Proceedzngs. pages 337-345, September 1990.

[7] Manfred Siemoneit. Typographzsches Gestalten.
Polygraph Verlag, Frankfurt am Main, second
edition, 1989.

[8] Jan Tschichbold. Ausgewahlte Aufsatze iiber
Fragen der Gestalt des Buches. Birkhauser Ver-
lag, Basel. 1987. Second printing.

[9] Jan White. Graphzc Deszgn for the Electronzc
Age. Watson Guptill, Xerox Press, New York.
1988.

4 Index

All numbers denote code lines where the correspond-
ing entry is used, underlined entries point to the
definition.

Symbols
\@cclv 48,

56, 66, 69, 70
\Qcolht 34,

41, 42, 44, 76
\Qcolroom . . 34, 42, 45
\Of colmadef alse . . 33
\@firstcolumnfalse . .

. 12

\Qf irstcolumntrue . .
. 17

\@latexerr 59
\@leftcolumn . . . 13, 20
\@m 14

\hakecol 4 9 , s
\@makefntext - 97
\@maxdepth 83
\@outputbox 13,

18, 23, 48: 56,
66, 68, 76, 79, 80

\@outputdblcol . . . 11
\@outputpage . . . 24. 28

36-39, 51, 52, 58,
63, 65, 71, 72, 100

\f ootnoterule . . 72, 94
\footnotesep - 95
\footnotesize 84

\f tn@amount 3 7 \preparef ootins
39, 41: 44. 45, 3 -, 5. 16? 101

I
\if @f colmade 27, 47

R
. . .

\rcolQf ootinsskip . .
\ifQfirstcolumn6 , 10, 15 11,55

.3
\if void 36,

51, 58, 65, 69 \savedQfootinsskip . .

o Frank Mittelbach
Electronic Data Systems

(Deutschland) GmbH
Eisenstrafle 56 N15
D-6090 Riisselsheim
Bitnet: pzf 5hzQdrueds2

TUGboat, Volume 11 (1990), No. 4

Abstracts

Deutsche Kurzfassungen der
TUGboat-Artikel
[German Abstracts of TUGboat Articles]

Luzia Dietsche

Makros zum Schreiben von
Kreuzwortratseln (B. Hamilton Kelly,
TUGboat 11(1), S. 103)

Immer ofter erscheinen in Computer Zeitschriften

Kreuzwortratsel zur Unterhaltung der Leser. Fiir
solche Falle hat der Autor die crossword Umge-

bung geschaffen, die zusammen mit I4m verwend-
bar ist. Die Makros bieten die Moglichkeit, sowohl

leere Kreuzwortratsel als auch deren Losung zu set-

Zen. Als zusatzliches Bonbon wird uberpriift, ob das
Gitter des Kreuzwortratsels richtig zusammenpafit.

Die Zukunft von TpjX (S. 488)

In Texas und Cork fanden birds-of-a-feather Sitzun-

gen statt , die die Zukunft von TEX zum Thema

hatten. Daraus resultierten vier Fragen die Be-

treuung und Weiterentwicklung von TEX betreffend,
die an das TUG Board gerichtet waren. Auch

Prof. D. Knuth bekam die Fragen zugeschickt.

Unterzeichnet ist das Papier von 25 Personen aus
7 Landern.

Die Zukunft von T@L und METAFONT

(D. Knuth, S. 489)

D. Knuth bezieht Stellung zu den vier Fragen be-

treff der Zukunft von ?jEX. Er stellt fest, dafi seine
Arbeit an m, METAFONT und Computer Modern

zu einem Ende gekommen ist. Er wird weiterhin
Fehler in m 3.1 und METAFONT 2.7 korrigieren

und die neuen Versionen uber den Hauptserver fiir

TQX zur Verfiigung stellen. Ab dem Zeitpunkt seines
Todes sollen m und METAFONT fiir immer un-

verandert bleiben. Jeder Person ist es freigestellt,

entsprechend den Copyright-Vermerken in Volume

B, D und E die zugrunde liegenden Programme zu

verwenden, solange fur das Ergebnis nicht der Name

m, METAFONT oder Computer Modern verwen-
det wird. D. Knuth wird die Verantwortung fur diese

drei Pakete niemals an jemand anderen abgeben.

Die Weiter- oder Neuentwicklung von Systemen, die

besser zum Setzen von Texten geeignet sind, wird

von ihm begriifit, vorausgesetzt sie bedienen sich
nicht der durch das Copyright geschutzten Namen.

Kommentare zur Zukunft von TpjX und
METAFONT (N. H. F. Beebe, S. 490)

Nelson Beebe zeigt die Stellung der TUG nach der

Veroffentlichung von D. Knuth uber die Zukunft von

m und METAFONT auf, beschreibt die Interna-

tionalitat von w, die Herausforderung durch desk-

top publishing Systeme, die Antwort von TEX dar-

auf und einige Beobachtungen in Bezug auf kom-
merzielle Anbieter. Daraus leitet er notwendige

zukunftige Entwicklungen ab, die durch die Bestim-

mungen von D. Knuth die Namen m, METAFONT

und Computer Modern nicht verwenden durfen und

eventuelle Inkompatibilitaten in Kauf nehmen.

Die Antworten zu den ubungen zu T&X: The
Program (D. Knuth, S. 499)

Nachdem in TUGboat 11, no. 2. pp. 165-170 ver-
schiedene ubungsaufgaben vorgestellt wurden, die

der ,,Grand Wizard of T)$S' seinen Studenten zu

T&X: The Program gestellt hatte, werden nun die
Losungen dazu offenbart. Allerdings sollte man die

Aufgabenstellungen zur Hand haben, da tatsachlich
nur die Losungen abgedruckt sind. Und die sind
ohne Fragen teilweise kryptisch.

Literarisches Programmieren ohne WEB

(J . Fox, S. 511)

In diesem Artikel wird c-we8 (auch no-web) als

Alternative zum System CWEB - Literarisches
Programmieren eingefiihrt. c-ure8 ermoglicht es
einem Software-Entwickler, fiir ein und denselben

Quelltext sowohl t ex (formatieren) als auch cc

(compilieren) aufzurufen, ohne einen zusatzlichen

Praprozessor zu benotigen.

Eine Umgebung, um METAFONT in
Postscript zu iibersetzen (S. Yanai &
D. M. Berry, S. 525)

Hier wird ein Programm beschrieben (mf2ps), das
eine METAFONT Schriftdefinition in eine Definition

fiir dieselbe Schrift in Postscript-Sprache ubersetzt.

mf2ps wurde aus dem Teil des METAFONT Pro-

gramms konstruiert, das die ,,Hullen" der Buch-

staben herauslost; diese ,,Hullen" werden in Post-

Script-Umrisse ubertragen.

Eplain (K. Berry, S. 571)

Eplain ist ein Makropaket, basierend auf pla in , das

vom Autor fiir das Buch T&X for the Impatient ent-

wickelt wurde. Der Name steht fur extended plain.
Das Paket ist frei und wird von einer 20-Seiten

starken Dokumentation begleitet.

664 TUGboat, Volume 11 (1990), No. 4

Die IVRITEX Diskussions-Liste (D. Hosek,
S. 578)

Zusatzlich zu den bereits vorhandenen Listen fur
alles, was T@K angeht, wurde IVRITEX einge-
richtet. Diese Liste ist vor allem fur Benut-
zer gedacht, die rnit Hebraisch, Arabisch
oder ahnlichen Sprachen verwenden. Zweiwochig
wird eine Zusammenfassung der Entwicklungen
an die Liste geschickt. Die Liste ist bei
l is tserv9taunivm. b i tne t eingerichtet.

Output Routinen: Beispiele und Techniken.
Teil 111: ,,EinfugungenV (D. Salomon,
S. 588)

Der \insert-Mechanismus wird von vielen Anwen-
dern, die sehr wohl rnit ,,tokenn, Makros oder
Output Routinen umgehen, tunlichst umgangen.
Der Grund dafiir liegt darin, dafi im m b u c h
kaum Erklarungen, geschweige denn Beispiele fur
Einfugungen wie z.B. Fuflnoten gegeben sind. Da-
her ist diese Folge der Artikelreihe der detaillierten
Beschreibung des \insert-Befehls in Verbindung
mit speziellen und einfachen Beispielen gewidmet.

Auch Teil I11 der Serie sollte nicht ohne die bei-
den vorhergehenden gelesen und angewendet wer-
den.

Ein Schema fur die Verwendung von
\parindent (V. Eijkhout, S. 613)

In diesem zweiten Artikel beschreibt Victor Eijkhout
den Mechanismus von Absatzeinruckungen. Zuge-
gebenermafien einfacher als die ~ n d e r u n ~ von Para-
graphabstanden, sollten auch Einruckungen nicht
durch blofies Setzen auf Null beeinflufit werden.
Erneut wird dern Leser eine verfeinerte Handhabung
des Problems dargestellt. Die vorgeschlagene Lo-
sung erlaubt die Verwendung von eingeruckten oder
nicht-eingeruckten Paragraphanfangen ohne den Be-
fehl \noindent.

Ein Schema fur die Veranderung von
\parskip (V. Eijkhout, S. 616)

Viele Anwender von m/IP' bevorzugen ein
Layout, das den Wert fiir Absatzeinruckungen auf
Null und dafur den Wert fur den Paragraphenab-
stand hoher setzt. Dieses Ziel verwirklichen die
meisten durch zwei Zeilen, namlich die Urnset-
zung der beiden Werte in der Praambel. Das 'hat
aber unerwartete Nebenwirkungen auf viele andere
Stellen. Deshalb beschreibt der Autor eine Methode,
die fiir ein ganzes Schriftstuck Gultigkeit hat.

Arbeiten rnit \af terassignment (S. Maus,
S. 612)

Das Primitiv \afterassignment kann u.a. dazu
benutzt werden, urn einer Variablen einen Wert
zuzuweisen und diese Variable danach zu benutzen.
Das hat den Vorteil, dafi T@K bei der Ausfuhrung
eines Befehls, in dern die Variable vorkommt, schon
den zugewiesenen Wert kennt. Besonders im Zusam-
menhang rnit Boxen erweist sich dieses Prinzip als
niitzlich.

Zeilenumbruch in \unhboxed Text
(M. Downes), S. 605

Michael Downes sties im Zusammenhang mit dern
Mechanismus im Zeilenumbruch auf einen Fehler
in den Bibliographie-Makros von amsppt . s ty , der
allem Anschein nach bisher niemandem aufgefallen
war. Hier nun beschreibt er das Problem und die
mogliche Losung, die er zusammen rnit B. Beeton
und D. Knuth gefunden hat.

Wie sichert man Kommandos bei der
Verwendung von \wri te (R. Whitney,
S. 620)

Dieser Artikel ist, genauso wie der nachste, eher
fur die Entwickler von Stylefiles, denn deren An-
wender gedacht. Der \write-Mechanismus stellt
die Moglichkeit zur Verfugung, Informationen fiir
eine spatere Verarbeitung in ein anderes File zu
schreiben. Dabei werden Kommandos, die iiber-
geben werden, sofort ausgefiihrt. Wie man das ver-
hindert, beschreibt Ron Wkitney in sehr kompakter
Form.

Versuche in m n i c o l o r - Ein Stylefile zu
S l i m fur Farbdrucker (D. Love, S. 652)

SL- geht davon aus, dafi farbige Folien aus
mehreren Schichten (von Folien) bestehen, wobei
jede einzelne Schicht in einer eigenen Farbe gedruckt
wird. Der in dern Artikel vorgestellte Stylefile er-
laubt es, zusammen rnit einem passenden .dvi-
Treiber, mehrfarbige Folien in einem einzigen Ar-
beitsgang zu produzieren. Anwendbar ist diese Me-
thode bei Postscript-Druckern, aber auch bei ein-
facheren Ausgabegeraten wie z.B. dern HP Paint
Jet.

Eine Style-Option, um APL zu setzen
(A. Geyer-Schulz, et al., S. 644)

Die Autoren beschreiben die Style-Option apl . s ty ,
rnit der Text zusammen rnit APLCode gesetzt wer-
den kann. Alle Symbole, die in solch einer Umge-
bung benotigt werden, sind vorhanden. Sie sind

TUGboat, Volume 11 (1990), No. 4

der Standard-Schriftfamilie von I 4 W entnommen.

Dadurch werden keine zusatzlichen Fonts notig. Mit
- --

normalen I4W-Kommandos kann die Schriftgrofie

solcher Symbole beeinflufit werden. Durch einen in

APL geschriebenen Praprozessor konnen APL Ob-

jekte automatisch umgewandelt werden.

~berblick iiber EDMAC: Ein p l a i n Format
fiir kritische Textausgaben (J . Lavagnino &
D. Wujastyk, S. 623)

EDMAC besteht aus einer Sammlung von p l a i n
Makros, die es ermoglichen, kritische Textausgaben

traditioneller Art wie es z.B. bei Oxford Classi-
cal Texts. Teubner, Arden Shakespeare oder an-

deren Reihen iiblich ist, zu formatieren. Aufgenom-
men wurde an Grundfunktionen die Moglichkeit

der Numerierung von Zeilen am Rand und mehrere
Zahlungen von Fufi- und Endnoten bezogen auf
die Zeilennummern. Da der interne Arbeitsablauf

von EDMAC gezwungenermafien esoterisch ist. sind

die dazugehorenden Makros relativ einfach gehalten.
Dadurch kann jeder die genaue Form der Ausgabe

selbst bestimmen, die bei verschiedenen Textarten

natiirlich varriiert .

F'ufinoten in mehrsprachigem Layout
(F. Mittelbach, S. 657)

Bei mehrsprachigen Texten stofit der Anwender,

der mehr als eine Fufinote zu setzen hat, un-
weigerlich auf Probleme. Die gangigen Metho-

den der Ful3notenverarbeitung sehen alle mehr oder
weniger schon aus. Frank Mittelbach hat deswe-
gen eine Umdefinition des Ful3notenmechanismus

geschrieben, der die Anmerkungen an das Ende
jeder Seite setzt. Diese Definition pafit auf jede
Eingabe, die die twocolumn-Option benutzt. Der

Code ist zusammen mit den Erklarungen in den Text

eingearbeitet.

Letters

TUG Drug Bug

Jackie Damrau's I 4 m column in the June TUG-
boat left a funny taste in my (if not W ' s) mouth.
What was truly being "shared" here? The simple

macro is really just a Trojan horse for some offensive
axe-grinding about marijuana and cocaine.

I enjoy and TUGboat not just for their

W n i c a l Excellence. but because it's fun to be a
part of an international community of minds who
meet electronically or in print. But the feeling

of community depends on leaving other issues and

"causes" outside the door. Please don't allow

exaple-providers to abuse the channel as a sneaky
means of getting political messages (in this case

U.S. anti-drug propaganda) printed in TUGboat.

Respectfully yours,

Peter C. Akwai

Energy Transfer GmbH
Computer-Systeme & Beratung

Vor der Pforte 14

Postfach 50 11 18

6072 Dreieich, West Germany

Editor's note: We hear you. In the future, we will
look more carefully at the content of examples as

well as at their implementation.

o Luzia Dietsche
Rechenzentrum der Universitat
Im Neuenheimer Feld 293
D-6900 Heidelberg 1

Bitnet: X68'3DHDURZ1

666 TUGboat, Volume 11 (1990), No. 4

Dec 6 - 8 European Publishing Conference,
Netherlands Congress Centre,
The Hague, Holland.
For information, contact Seybold
Publications, U. K. Office
((44) 323 410561).

Jan 7 - 11 Intensive BeginningIIntermed. m ,
University of Houston, Clear Lake,
Texas

Providence College,
Providence, Rhode Island

Jan 7 - 11 Intensive IP-m

Jan 7 - 11 Intensive BeginningIIntermed.

Jan 14 - 18 Advanced m / M a c r o Writing,
California State University,
Northridge, California

Jan 28 - Advanced W / M a c r o Writing,
Feb 1 University of Maryland,

College Park, Maryland

Feb 19 TUGboat Volume 12,
lSt regular issue:
Deadline for receipt of technical
manuscripts.

Feb 20- 22 l o th annual meeting, "Deutsch-
sprachige m-Interessenten" ;
DANTE e.V.: 4th meeting,
Technical University of Vienna.
For information. contact
Dr. Hubert Part1 (Bitnet:
Z3000PAQAWITUW01) or DANTE e.V.
(Bit net: DANTEQDHDURZI)

Mar 19 TUGboat Volume 12,
lSt regular issue:
Deadline for receipt of news items,
reports, etc.

Mar 25 - 29 Intensive I P m , Northeastern
University, Boston, Massachusetts

University of Hawaii at Manoa

Mar 25 - 29 Intensive BeginningIIntermed. TE.X

Mar 25 - 29 Advanced m / M a c r o Writing

Apr 2 - 5 RIA0 Conference on Intelligent Text
and Image Handling, Universidad
Au thoma de Barcelona, Spain.
For information, contact (in the U.S.)
RIA0 '91, Center for the Advanced
Study of Information Systems, Inc.
(CASIS), Ms. M.-T. Maurice, 220
East 72nd Street #10F, New York,
NY 10021; (in Europe) CID, 36 bis
rue Ballu, F-75009 Paris, France.

TUG91 Conference
Dedham, Massachusetts (suburban Boston)

Jul 15 - 18 TUG'S Annual Meeting

Jul 25 TUGboat Volume 12,
Proceedings issue:
Deadline for receipt of news items,
reports (tentative).

Aug 11 TUGboat Volume 12,
2nd regular issue:
Deadline for receipt of technical
manuscripts (tentative).

Sep 10 TUGboat Volume 12,
2nd regular issue:
Deadline for receipt of news items,
reports (tentative).

Sep 23 - 25 6th European T'X Conference
Paris, France. (See page 667.)

Sep 26 GUTenberg'91 Congress, Paris,
France. "Technical and scientific
edition". (See page 667.)

Oct 15 - 16 RIDT 91, The second international
workshop on raster imaging and
digital typography, Boston,
Massachusetts. (See page 668.)

Dec 4 Course about fonts, Paris, France.
Sponsored by GUTenberg.
For information, contact Jacques
AndrC (j a n d r e a i r i s a . i r i s a . f r).

For additional information on the events listed
above, contact the TUG office (401-751-7760) unless
otherwise noted.

Status as of 20 October 1990

TUGboat, Volume 11 (1990), No. 4

Tenth Meeting of the German Speaking
TEX Users in Vienna
First Announcement and Call for Papers

Hubert Partl

The tenth meeting of the German speaking

users group DANTE will be held

0 from February 20 to 22. 1991

at the Technical University of Vienna (Austria).
Wednesday afternoon will be reserved for the gen-

eral assembly of DANTE members only, whereas to

the talks, discussions, and workshops on Thursday
and Friday, attendees from all European and non-

European countries are welcome, too.
The official conference language will be Ger-

man, but talks may also be presented in English.

Proposed topics include all aspects of m . I P m ,

METAFONT, SGML and, of course, European Ian-

guage support.
The technical program will be supplemented by

several non-technical events like a performance of

Mozart's "Magic Flute" by the Vienna State Opera.

an evening at a typical Viennese "Heurigen" wine
restaurant, and a reception in the City Hall.

0 If you want to present a paper or to exhibit a

product, please tell us before December 14,
1990, to the address below.

All DANTE members will be invited individually at

the end of this year.

0 All non-members who would also like to at-
tend the meeting or to receive more informa-

tion about it, should tell us before the end of
December.

The organiser's postal and electronic addresses are:

Dr. Hubert Partl
EDP Center of the

Technical University of Vienna

Wiedner Hauptstrafle 8-10

A-1040 Wien, Austria

e-mail: z3000paQawituw01. bitnet

Alternatively, you may also contact the appropriate
TUG vice president, Joachim Lammarsch, in Hei-

delberg.

Olivier Nicole

Secretary, GUTenberg

The 6th European T)$ Conference will be held in
Paris (France), 23-25 September 1991. It will be

organized by GUTenberg. Suggested topics are

Multi-lingual TfjX

Users groups
Development around m, METAFONT, . . .
Merging of with other systems and

applications

Typographic layout and design

Hypertext and its relationship with
Document markup systems

Font design

Merging of TfjX and graphics

Specialists macros and their applications
Networks related to 2$J

Information can be obtained from

GUTenberg

6th European TEX Conference

B.P. 21

78354 JOUY en JOSAS cedex
France
Phone: +33 1 34 65 22 32

Fax: +33 1 34 65 20 51

E-mail: gutairisa. irisa.f r

GUTenberg '91

The 1991 GUTenberg Congress will be held in
Paris, 26 September 1991. The topic "Technical

and Scientific Edition" has been selected as a theme.
The following topics are suggested for papers.

Special fonts design

B Developments around TEX and L A W
l$$X and graphics

Rasterization and output

Special macro-packages

a Aspects of French language

Information is available from the same source

as for m 9 1 .

Short course on fonts

Gutenberg will also be organizing a short course on
fonts, to be held in Paris, 4 December 1991. For

information, contact (e-mail only):

TUGboat, Volume 11 (1990), No. 4

Call for papers: ' RIDT 91,
The second international workshop on
raster imaging and digital typography

Boston, Massachusetts, 15-16 October 1991

The workshop is sponsored by the University of
Massachusetts at Boston and the IEEE Computer
Society. In addition, the organizers are planning
concurrent one-day tutorials on type design, led
by Hans Meier and Kris Holmes, and on type
rasterization, led by Jacobo Valdes, to be held
before the conference.

Submission deadline: January 15, 1991

Submissions will be refereed by the program
committee. Accepted papers will be collected in
a proceedings that the organizers expect to be
published by Cambridge University Press. Full
papers in English on any of the following or related
topics are welcomed:

measuring type quality
character design, representation and transfor-
mation
shape acquisition and manipulation
color printing
fast rasterization hardware
applications of human vision science to type
design
character generation and recognition
page description languages
anti-aliasing
digital halftone processing
font representations for automatic scan conver-
sion
rasterization algorithms

If you wish to receive guidelines for authors or other
electronic or paper mail about the conference, you
should contact the chair:

Prof. Robert A. Morris, RIDT 90
Department of Mathematics and Computer

Science
University of Massachusetts at Boston
Boston, MS 02125-3393
U.S.A.

telephone: (617) 287-6466
email: ridt91-requestQcs . umb. edu

Other members of the Program Committee
are: Roger Hersch, EPFL (Vice-chair); Debra
Adams, Xerox PARC; Jacques Andr6, IRISA;
Patrick Beaudelaire, DEC PRL; Richard Beach, Xe-
rox PARC; Charles Bigelow, Stanford University;
Bruce Brown, Oracle; William Cowan, University

of Waterloo; Andre Giirtler, Schule fiir Gestaltung;
John Hobby, Bell Laboratories; Ernst Imhof, URW;
Peter Karow, URW; Hideko Kunii, Ricoh; Yoshio
Ohno, Keio University; Theo Pavlidis, SUNY Stony
Brook: Stephen Schiller, Adobe Systems; Richard
Southall, Xerox Europarc; Robert Ulichney, DEC;
Jacobo Valdes, Sun Microsystems; Wang Xuan,
Peking University .

TUGboat, Volume 11 (1990), No. 4 669

BYLAWS
of the TEX Users Group ("TUG")

Article I

PURPOSES, POWERS AND
NON-PROFIT STATUS

Section 1. Purposes. The Users Group (the
"Corporation") has been formed exclusively for
charitable, educational and scientific purposes as
such terms are defined in Section 501(c)(3) of the
Internal Revenue Code of 1986, or the corresponding
provision of any future United States internal rev-
enue law (hereinafter the Internal Revenue Code of
1986), and specifically to identify, develop, operate,
fund, support, promote and encourage charitable,
educational and scientific programs and projects
which will stimulate those who have an interest
in systems for typesetting technical text and font
design; to exchange information of same and as-
sociated use of computer peripheral equipment:
to establish channels to facilitate the exchange of
macro packages, etc., through publications and oth-
erwise; and to develop, implement and sponsor
educational programs, seminars and conferences in
connection with the foregoing and for any lawful
purpose or purposes permitted under the Rhode
Island Non-profit Corporation Act.

Section 2. Powers. The Corporation shall have
the power, directly or indirectly, either alone or
in conjunction or cooperation with others, to do
any and all lawful acts and things and to engage
in any and all lawful activities which may be
necessary, or convenient to effect any or all of the
purposes for which the Corporation is organized,
and to aid or assist other organizations whose
activities are such as to further accomplish, foster,
or attain any of such purposes. The power of the
Corporation shall include, but not be limited to,
the acceptance of contributions in cash, in kind or
otherwise from both the public and private sectors.
Notwithstanding anything herein to the contrary,
the Corporation shall exercise its powers only in
furtherance of exempt purposes as such terms are
defined in Section 501(c)(3) of the Internal Revenue
Code of 1986 and the regulations from time to time
promulgated thereunder.

Section 3. Non-Profit Status. The Corporation
shall be nonprofit and shall not have or issue

shares of capital stock, and shall not declare or
pay dividends. No part of the net income or profit
of the Corporation shall inure to the benefit of
any member, director, officer, or other individual.
or to the benefit of any organization not qualified
for tax exemption under Section 501(c)(3) of the
Internal Revenue Code except as permitted by
law. No substantial part of the activities of the
Corporation shall be carrying on propaganda, or
otherwise attempting to influence legislation (except
as otherwise provided by Internal Revenue Code
Section 501(h)), or participating in. or intervening
in (including the publication or distribution of
statements), any political campaign on behalf of any
candidate for public office. Upon the dissolution
of this organization, assets shall be distributed for
one or more exempt purposes within the meaning
of Section 501(c)(3) of the Internal Revenue Code
or corresponding Section of any future Federal
tax code, or shall be distributed to the Federal
Government. or to a state or local government, for
a public purpose.

Article I1

OFFICES

The Corporation will have offices at such places
both within and without the State of Rhode Island
as may from time to time be determined by the
board of directors.

Article I11

MEMBERS

Section 1. Constitution. The members of the Cor-
poration will be such persons, natural or legal, who
will meet such qualifications and requirements (in-
cluding without limitation payment of initiation fees
and dues) as from time to time may be established
by the board of directors. The board of directors
will be the sole judge of the qualifications of the
members and its determination as to whether a per-
son is or is not a member will be final. The board
of directors may, in its discretion, create different
classifications of members and prescribe different
rights, privileges, qualifications or requirements for
each class.

670 TUGboat, Volume 11 (1990), No. 4

Section 2. Place of Meetings. All annual meetings

of the members and all special meetings of the
members called by the president or the board of

directors will be held at such place, either within or

without the State of Rhode Island, as will be stated
in the notice of meeting.

Section 3. Annual Meetings. Meetings of the mem-
bers will be held in conjunction with TUG con-

ferences. Such conferences will normally be held
annually; otherwise, an annual meeting of the mem-

bers will be held on the first Monday of August in
each year if not a legal holiday in the place where it

is to be held, and, if a legal holiday, then on the next

day following which is not a legal holiday, beginning
at 10:OO a.m. or at any other time designated in

the notice of the meeting. At each annual meeting,

the members will transact such business as may

properly come before the meeting. In the event
of the failure to hold said annual meeting at any

time or for any cause, any and all business which
might have been transacted at such meeting may be
transacted at the next succeeding meeting, whether

special or annual.

Section 4. Special Meetings. A special meeting of
the members, for any purpose or purposes, may be

called by the President or by the Board of Directors.
Any such call will state the purpose or purposes of

the proposed meeting.

Section 5 . Notice of Meetings. Written notice of
each annual or special meeting stating the place,

day and hour of the meeting (and the purpose or
purposes of any special meeting) will be given by

or at the direction of the president. the secretary

or the person or persons calling the meeting to
each member entitled to vote at such meeting not

less than ten nor more than sixty days before the
meeting. Business transacted at any special meeting

of members will be limited to the purposes stated
in the notice of the meeting or any written waiver

thereof.

Section 6. Quorum. Fifty (50) members present in

person, will constitute a quorum at all meetings

of the members. If, however, such quorum will
not be present at any such meeting, the members

entitled to vote thereat will have power to adjourn

the meeting from time to time, without notice other

than announcement at the meeting, until a quorum

will be present. At such adjourned meeting at
which a quorum will be present any business may

be transacted which might have been transacted at

the meeting as originally called. If adjournment is
for more than thirty days. a notice of the adjourned

meeting will be given to each member entitled to

vote at the meeting. When a quorum is present at

any meeting, the vote of the holders of a majority
of the votes entitled to be cast and present in

person will decide any question brought before such

meeting, unless the vote of a greater number is
required by law. A voice vote will normally be
considered sufficient for business actions. A show

of hands may be requested when the outcome is in
doubt.

Section 7. Access to Document. Nothing in these
bylaws shall be construed to limit the access of
TUG members to TUG documents. Members

requesting copies of any TUG document may be

charged a reasonable copying fee and members
requesting publications or mailing lists presented

to the public for sale may be charged the same

fee as the general public. Members requesting
copies of documents to be used in performance of

TUG related duties may request that the copying
fee be waived. TUG documents include, but

are not limited to: contracts, Board minutes,
Executive Committee minutes, Finance Committee

minutes, office procedure manuals, IRS filings. and

written communications from or to the TUG office.

This section does not authorize the release of any
information that federal or state law protects from
disclosure.

Article IV

DIRECTORS

Section 1. Powers. The affairs of the Corporation

will be managed by the board of directors.

Section 2. Number. The number of directors will

be not more than thirty. Under very special
circumstances, particularly deserving individuals

may be designated as permanent honorary members
of the Board, without vote, and without being

included in the number of members specified in this
section.

Section 3. Composition. The Board of Directors will

consist of the Finance Committee, Site Coordina-
tors, Wizards and other active members nominated

by the Board of Directors.

Section 4. Honorary Members. The Grand Wizard,
Donald E. Knuth, and the Wizard of Fonts, Her-

mann Zapf, are designated as permanent honorary

members of the Board.

Section 5. Non-elected Vice Presidents. The leaders

of other ?QX user groups may be appointed to the

TUGboat, Volume 11 (1990), No. 4

Board with the title of vice president. An increase
in the number of members on the Board shall be

made as appropriate.

Section 6. Election and Term. The first board of

directors will be appointed by the incorporator.

Thereafter, the Board of Directors shall have the

power and responsibility to appoint and to remove

its own members, except as provided in Section 8 of

this Article, and each director appointed will hold
office for a term of two (2) years and thereafter until

his successor is appointed and qualified (unless there

will be no successor as a result of a decrease in the

number of the board of directors). Directors may

be reappointed for successive terms. Directors need
not be members of the Corporation or residents of

the State of Rhode Island.

Section 7. Meetings. The board of directors may
hold meetings, both regular and special, either

within or without the State of Rhode Island. The
first meeting of each newly elected board of directors

will be held at such time and place as will be

specified in a notice delivered as hereinafter provided
for special meetings of the board of directors. or

as will be specified in a written waiver signed by

all of the directors. Regular meetings of the board

of directors may be held without notice at such

time and at such place as will from time to time

be determined by the board of directors. Special
meetings of the board of directors may be called by

the president on two days' notice to each director,

either personally or by mail or by telegram. Special

meetings will be called by the president in like
manner and on like notice on the written request

of two directors. Meetings of the directors may be

held by means of a telephone conference circuit and
connection to such circuit will constitute presence

at such meeting.

Section 8. Vacancies. Any vacancy occurring on the
board of directors may be filled by the President. A

director appointed to fill a vacancy will be appointed

for the unexpired term of his or her predecessor in
office. Any place on the board to be filled by reason

of an increase in the number of directors may be

filled by the President for a term of office continuing

only until the next appointment of directors.

Section 9. Quorum. At all meetings of the board of

directors, twenty-five (25%) percent of the number
of directors fixed pursuant to Section 2 of this

Article will constitute a quorum for the transaction

of business, and the act of a majority of the directors

present a t a meeting at which a quorum is present

will be the act of the board of directors, unless the

act of a greater number is required by the Rhode
Island non-profit corporation act or by the articles

of incorporation.

Section 10. Directors' Consent Vote. Any action
required or permitted to be taken at a meeting of

the board of directors or of any committee thereof

may be taken without a meeting if a consent in

writing, setting forth the action so taken, will be
signed by two-thirds of all directors or two-thirds of

all the members of such committee, as the case may

be. Members may use standard mail, electronic

mail, or facsimile to cast a written vote. However,

such action shall not be effective until the entire
board or committee is notified by standard mail of

the names of the members voting in favor of the

action.

Section 11. Committees of Directors. The board of

directors may, by resolution adopted by a majority

of the board, designate one or more committees,
including an executive committee, each committee

to consist of two or more directors appointed by the

board. The board may appoint one or more direc-

tors as alternate members of any committee, who

may replace any absent or disqualified member at

any meeting of the committee. Except as otherwise

provided by the Rhode Island non-profit corpora-
tion act or these bylaws, any such committee, to

the extent provided in the resolution, will have

and may exercise all the authority of the board of

directors; provided. however, that in the absence or

disqualification of any member of such committee
or committees, the member or members thereof

present at any meeting and not disqualified from

voting, whether or not he or she or they constitute a
quorum, may unanimously appoint another member

of the board of directors to act at the meeting in

the place of any such absent or disqualified member.
Such committee or committees will have such name

or names as may be determined from time to time

by resolution adopted by the board of directors.
Each committee will keep regular minutes of its

proceedings and report the same to the board of

directors when required.

Section 12. Site Coordinator. The Site Coordinator

will provide coordination for information about

TEX, Metafont and other systems for typesetting

technical text or font design with respect to a

specific computer architecture and will provide

technical direction for the future growth of w,
Metafont, and/or other systems for typesetting
technical type or font design.

TUGboat, Volume 11 (1990), No. 4

ARTICLE V

COMMITTEES

Section 1. Executive Committee. There will be
established an Executive Committee which will con-
sist of the President, the elected Vice President, the
Secretary and the Treasurer of the Corporation. It
will be the responsibility of the Executive Commit-
tee to adopt interim procedures and policies when
necessary on behalf of the Corporation, subject to
the ultimate approval of the Board of Directors.
The Executive Committee will have authority over
all personnel matters of the Corporation and will
report to the Board.

Section 2. Finance Committee. There will be estab-
lished a Finance Committee which will consist of
the Executive Committee and two other members
qualified in financial affairs chosen by the Board of
Directors. In order to ensure continuity, the outgo-
ing President will remain a member of the Finance
Committee for one year following the expiration of
the term as President. Newly elected officers will
join the Finance Committee between the time of
election and the time at which they assume office
(midnight, December 31). The Finance Committee
will be responsible for supervising the management
of all funds of the Corporation.

Section 3. Planning Committee. There will be
established a Planning Committee responsible for
establishing, with approval by the Board, TUG'S
strategic goals for recommending to the Board a
three- (or more) year strategic plan to implement
these goals. Members of the Planning Committee
will be appointed by the President with the approval
of the Board.

Section 4. Nominating Committee. Prior to the
annual meeting, a Nominating Committee will be
appointed by the Board for the purpose of suggest-
ing candidates to fill those offices. This committee
shall nominate at least one member to fill each office
up for election.

Section 5. Ad Hoc Committees. The Board of
Directors may from time to time, by resolution
adopted by a majority of the Board, appoint one or
more Ad Hoc Committees to perform such functions
as may be designated in said resolution.

Article VI

NOTICES

Section 1. How Delivered. Whenever under the pro-
visions of the Rhode Island non-profit corporation

act or of the articles of incorporation or of these
bylaws written notice is required to be given to any
person, such notice may be given by mail, addressed
to such person at his or her address as it appears
in the records of the Corporation, with postage
thereon prepaid, and such notice will be deemed to
be delivered, if mailed, at the time when the same
will be deposited in the United States mail. Notice
may also be given by telegram or personally to any
director.

Section 2. Waivers of Notice. Whenever any notice
is required to be given under the provisions of
the Rhode Island non-profit corporation act or the
articles of incorporation or these bylaws, a waiver
thereof in writing, signed by the person or persons
entitled to such notice. whether before or after the
time stated therein, will be deemed equivalent to
the giving of such notice. Attendance of a person
at a meeting will constitute a waiver of notice of
such meeting. except when the person attends a
meeting for the express purpose of objecting to the
transaction of any business because the meeting is
not lawfully called or convened.

Section 3. Specification of Business. Neither the
business to be transacted at, nor the purpose of,
any meeting of the members of the Corporation
or of a committee of the board of directors of
the Corporation need be specified in any written
waiver of notice except as otherwise herein expressly
provided.

Art icle VII

OFFICERS

Section 1. Number. The officers of the Corporation
will be a president, a vice president, a secretary, and
a treasurer. The board of directors may from time
to time elect or appoint such other officers including
more vice presidents and assistant officers, as it may
deem necessary. Any two or more offices may be
held by the same person with the exception of the
offices of president and secretary.

Section 2. Eligibility for Nomination. Any active
member in good standing may be nominated for
office. Said member must accept the nomination
before being placed on the ballot.

Section 3. Nomination Procedure. The Nominating
Committee will nominate at least one member
to fill each office up for election. In addition, any
member may have his name placed in nomination by
submitting a petition to the Nominating Committee

TUGboat, Volume 11 (1990), No. 4 673

at least thirty (30) days prior to the election signed
by two (2) other members in good standing.

Section 4. Election and Term. The first officers of
the Corporation will be appointed by its incorpora-
tor or by the initial board of directors. Thereafter,
the officers will be elected by the general mem-
bership in accordance with the election procedures.
The initial term of office of the officers shall be
as follows: vice president, one year; president and
secretary, two years; and treasurer, three years.
Thereafter, each officer will be appointed or elected
for a term not to exceed two years. The term of
office will begin on January 1 of the year following
election. Each officer will be elected to serve until
his or her successor will have been elected and
will have qualified or until his or her earlier death,
resignation or removal as hereinafter provided. Any
officer may be removed by the board of directors
whenever in its judgment the best interests of the
Corporation will be served thereby. Such removal
will be without prejudice to the contract rights, if
any, of the person so removed. Election or appoint-
ment of an officer will not of itself create contract
rights.

Section 5 . Election Procedures. All elections will be
conducted by secret ballot. The candidate receiving
the most votes will be elected. The requirement for
a secret ballot may be waived by the President for
an election for any office in which there is only one
candidate.

Section 6. President. The President will preside at
meetings of the General Membership, the Board of
Directors and the Executive Committee.

Section 7. Vice President. The Vice President will
serve in the absence of the President and will
undertake other administrative duties as designated
by the President.

Section 8. Secretary. The Secretary will maintain
the records of the Corporation and see that all
notices are duly given in accordance with the pro-
visions of these Bylaws or as required by law. The
Secretary will also conduct Corporate correspon-
dence.

Section 9. Treasurer. The Treasurer will serve as
chief financial officer and in general, will perform
all of the duties incident to the office of Treasurer
and such other duties as from time to time may
be assigned to him by the President or Board of
Directors.

member to serve out the remainder of that term.
When the office of the President becomes vacant,
the Vice President will become President for the
remainder of the President's term and will then,
as President, appoint a member to serve as Vice
President.

Section 11. Signing of Instruments. All checks,
drafts, orders, notes and other obligations of the
Corporation for the payment of money, deeds, mort-
gages, leases, contracts, bonds and other corporate
instruments may be signed by such officer or offi-
cers of the Corporation or by such other person or
persons as may from time to time be designated by
general or special vote of the board of directors. -

Section 12. Voting of Securities. Except as the
board of directors may generally or in particular
cases otherwise specify, the president or the trea-
surer may on behalf of the Corporation vote or take
any other action with respect to shares of stock or
beneficial interest of any other corporation, or of
any association, trust or firm, of which any securi-
ties are held by the Corporation, and may appoint
any person or persons to act as proxy or attorney-
in-fact for the Corporation, with or without power
of substitution, at any meeting thereof.

Article VIII

EXECUTIVE DIRECTOR

Section 1. Duties. The Board of Directors shall
select and employ an Executive Director who shall
be responsible for the general administration of the
Corporation's activities.

Section 2. Immediate Supervision. The Executive
Director shall work under the immediate direction of
the Executive Committee. The Executive Director
shall attend meetings of the Executive Committee,
the Finance Committee, and the Board of Directors,
but shall not be a member of any of these bodies.
The presiding officer of any of these meetings may
request the absence of the Executive Director.

Article IX

SEAL

The corporate seal will have inscribed upon it the
name of the Corporation and such other appropriate
language as may be prescribed by the Rhode Island
non-profit corporation act or from time to time by
the board of directors.

Section 10. Vacancies. When an office becomes
vacant for any reason, the President will appoint a

TUGboat, Volume 11 (1990), No. 4

Article X

FISCAL YEAR

The fiscal year of the Corporation will be determined

by the board of directors and in the absence of such

determination will be the calendar year.

Article XI

INDEMNIFICATION

Section 1. Agreement of Corporation. In order to

induce the directors and officers of the Corporation
to serve as such, the Corporation adopts this Article

and agrees to provide the directors and officers of
the Corporation with the benefits contemplated
hereby.

Section 2. Acceptance of Director or Officer. This

Article will apply, and the benefits hereof will be
available, to each director and officer of the Corpo-

ration who executes and delivers to the Secretary

of the Corporation a written statement to the effect
that the director or officer accepts the provisions

of this Article and agrees to abide by the terms

contained herein.

Section 3. Definitions. As used herein, the following
terms will have the following respective meanings:

"Covered Act" means any act or omission by

the Indemnified Person in the Indemnified Person's

official capacity with the Corporation and while

serving as such or while serving at the request of
the Corporation as a member of the governing body.

officer, employee or agent of another corporation,
partnership, joint venture. trust or other enterprise.

"Excluded Claim" has the meaning set forth in

Paragraph 6, hereof.
"Expenses" means any reasonable expenses in-

curred by the Indemnified Person in connection with

the defense of any claim made against the Indem-

nified Person for Covered Acts including, without
being limited to, legal, accounting or investiga-

tive fees and expenses (including the expense of

bonds necessary to pursue an appeal of an adverse

judgment).
"Indemnified Person" means any director or

officer of the Corporation who accepts election or
appointment as a director or officer and agrees to

serve as such in the manner provided in Paragraph
2 hereof.

"Loss" means any amount which the Indemni-

fied Person is legally obligated to pay as a result of
any claim made against the Indemnified Person for

Covered Acts including, without being limited to.
judgments for, and awards of, damages, amounts

paid in settlement of any claim, any fine or penalty

or. with respect to an employee benefit plan, any
excise tax or penalty.

"Proceeding" means any threatened, pending

or completed action, suit or proceeding, whether

civil, criminal, administrative or investigative.

Section 4. Indemnification. Subject to the exclu-

sions hereinafter set forth, the Corporation will
indemnify the Indemnified Person against and hold

the Indemnified Person harmless from any Loss or
Expenses.

Section 5. Advance Payment of Expenses. The
Corporation will pay the Expenses of the Indem-
nified Person in advance of the final disposition

of any Proceeding except to the extent that the

defense of a claim against the Indemnified Person is
undertaken pursuant to any directors' and officers'

liability insurance (or equivalent insurance known

by another term) maintained by the Corporation.
The advance payment of Expenses will be subject

to the Indemnified Person's first agreeing in writing

with the Corporation to repay the sums paid by
it hereunder if it is thereafter determined that the

Proceeding involved an Excluded Claim or that the
Indemnified Person was otherwise not entitled to

indemnity under these Bylaws.

Section 6. Exclusions. The Corporation will not be

liable to pay any Loss or Expenses (an "Excluded
Claim") :

(a) With respect to a Proceeding in which a

final non-appealable judgment or other adjudication

by a court of competent jurisdiction determines that
the Indemnified Person is liable to the Corporation

(as distinguished from being liable to a third party)

for: (i) any breach of the Indemnified Person's duty
of loyalty to the Corporation or its members; (ii)

acts or omissions not in good faith or which involve

intentional misconduct or knowing violation of law;
or (iii) any transaction from which the Indemnified

Person derived an improper personal benefit; or
(b) If a final, non-appealable judgment or other

adjudication by a court of competent jurisdiction

determines that such payment is unlawful.

Section 7. Notice to Corporation; Insurance.

Promptly after receipt by the Indemnified Per-

son of notice of the commencement of or the threat

of commencement of any Proceeding, the Indem-
nified Person will, if indemnification with respect

thereto may be sought from the Corporation under
these Bylaws, notify the Corporation of the com-

mencement thereof. Failure to promptly notify the

TUGboat, Volume 11 (1990), No. 4 675

Corporation will not adversely affect the Indem-

nified Person's right to indemnification hereunder

unless and only to the extent that the Corporation is
materially prejudiced in its ability to defend against

the Proceeding by reason of such failure. If, at the

time of the receipt of such notice, the Corporation

has any directors' and officers' liability insurance

in effect, the Corporation will give prompt notice
of the commencement of such Proceeding to the

insurer in accordance with the procedures set forth
in the policy or policies in favor of the Indemnified

Person. The Corporation will thereafter take all the
necessary or desirable action to cause such insurer

to pay, on behalf of the Indemnified Person, all Loss

and Expenses payable as a result of such Proceeding
in accordance with the terms of such policies.

Section 8. Indemnification Procedures. (a) Pay-
ments on account of the Corporation's indemnity

against Loss will be made by the Treasurer of

the Corporation except if, in the specific case, a

determination is made that the indemnification of

the Indemnified Person is not proper in the cir-

cumstances because such Loss results from a claim

which is an Excluded Claim. If the Corporation so
determines that the Loss results from an Excluded

Claim (although no such determination is required

by the Corporation hereunder prior to payment of
a Loss by the Treasurer), the determination shall

be made:
(i) By the Board of Directors by a majority

vote of a quorum consisting of directors not at the
time parties to the Proceeding; or

(ii) If a quorum cannot be obtained for pur-

poses of clause (i) of this subparagraph (a), then
by a majority vote of a committee of the Board of

Directors duly designated to act in the matter by

a majority vote of the full Board (in which desig-
nation directors who are parties to the Proceeding

may participate) consisting solely of three or more

directors not at the time parties to the Proceeding:

or

(iii) By independent legal counsel designated:

(A) by the Board of Directors in the manner
described in clause (i) of this subparagraph (a),

or by, a committee of the Board of Directors

established in the manner described in clause (ii) of

this subparagraph (a), or (B) if the requisite quorum
of the full Board cannot be obtained therefor and a

committee cannot be so established, by a majority
vote of the full Board (in which designation directors

who are parties to the Proceeding may participate).

If made. any such determination permitted to be

made by this subparagraph (a) will be made within

60 days of the Indemnified Person's written request

for payment of a Loss.

(b) Payment of an Indemnified Person's Ex-

penses in advance of the final disposition of any
Proceeding will be made by the Treasurer of the

Corporation except if, in the specific case, a de-

termination is made pursuant to Paragraph 8(a)

above that indemnification of the Indemnified Per-
son is not proper in the circumstances because the

Proceeding involved an Excluded Claim.

(c) The Corporation will have the power to
purchase and maintain insurance on behalf of any

Indemnified Person against liability asserted against
him or her with respect to any Covered Act, whether

or not the Corporation would have the power to

indemnify such Indemnified Person against such
liability under the provisions of this Article. The

Corporation will be subrogated to the rights of

such Indemnified Person to the extent that the

Corporation has made any payments to such In-
demnified Person in respect to any Loss or Expense

as provided herein.

Section 9. Settlement. The Corporation will have

no obligation to indemnify the Indemnified Per-
son under this Article for any amounts paid in

settlement of any Proceeding effected without the

Corporation's prior written consent. The Cor-
poration will not unreasonably withhold or delay

its consent to any proposed settlement. If the

Corporation so consents to the settlement of any
Proceeding, or unreasonably withholds or delays

such consent, it will be conclusively and irrebut-

tably presumed for all purposes that the Loss or
Expense does not constitute an Excluded Claim. If

the Corporation reasonably withholds its consent
solely on the ground that the Proceeding constitutes

an Excluded Claim, the Indemnified Person may

accept the settlement without the consent of the

Corporation. without prejudice to the Indemnified
Person's rights to indemnification in the event the

Corporation does not ultimately prevail on the issue

of whether the Proceeding constitutes an Excluded

Claim.

Section 10. Rights Not Exclusive. The rights pro-
vided hereunder will not be deemed exclusive of any

other rights to which the Indemnified Person may be

entitled under any agreement, vote of disinterested
directors or otherwise, both as to action in the In-

demnified Person's official capacity and as to action
in any other capacity while holding such office, and

will continue after the Indemnified Person ceases to

serve the Corporation as an Indemnified Person.

TUGboat. Volume 11 (1990), No. 4

Section 11. Enforcement. a) The Indemnified Per-

son's right to indemnification hereunder will be

enforceable by the Indemnified Person in any court

of competent jurisdiction and will be enforceable

notwithstanding that an adverse determination has

been made as provided in Paragraph 8 hereof.

(b) In the event that any action is instituted

by the Indemnified Person under these Bylaws, the

Indemnified Person will be entitled to be paid all

court costs and expenses, including reasonable at-

torneys' fees, incurred by the Indemnified Person

with respect to such action, unless the court deter-

mines that each of the material assertions made by

the Indemnified Person as a basis for such action

was not made in good faith or was frivolous.

Section 12. SeverabiIity. If any provision of this

Article is determined by a court to require the

Corporation to perform or to fail to perform an act

which is in violation of applicable law, this Article

shall be limited or modified in its application to

the minimum extent necessary to avoid a violation

of law, and, as so limited or modified, this Article

shall be enforceable in accordance with its terms.

Institutional
Members

The Aerospace Corporation,
El Segundo, California

Air Force Institute of Technology,
Wright-Patterson AFB, Ohio

American Mathematical Society,
Providence, Rhode Island

ArborText, Inc., Ann Arbor,
Michigan

ASCII Corporation, Tokyo, Japan

Aston University,
Birmingham, England

Belgrade University, Faculty of
Mathematics, Belgrade, Yugoslavia

Section 13. Successor and Assigns. The provisions

of this Article will be (a) binding upon all succes-

sors and assigns of the Corporation (including any

transferee of all or substantially all of its assets)

and (b) binding on and inure to the benefit of the

heirs, executors, administrators, and other personal

representatives of the Indemnified Person.

Amendment. No amendment or termination of this

Article will be effective as to an Indemnified Person

without the prior written consent of that Indemni-

fied Person and, in any event, will not be effective

as to any Covered Act of the Indemnified Person

occurring prior to the amendment or termination.

Article XI1

AMENDMENTS

The power to alter, amend or repeal the bylaws or

to adopt new bylaws will be vested in the board of

directors by affirmative vote of the directors in the

manner provided in these bylaws.

Brookhaven National Laboratory,
Upton, New York

CERN, Geneva, Switzerland

Brown University, Providence,
Rhode Island

California Institute of Technology,
Pasadena, California

Calvin College, Grand Rapids,
Michigan

Carleton University,
Ottawa, Ontario, Canada

Carnegie Mellon University,
Pittsburgh, Pennsylvania

Centre Inter-Rkgional de Calcul
~ lec t ron i~ue , CNRS, Orsay, France

College of William & Mary,
Department of Computer Science,
Williamsburg, Virginia

Communications Security
Establishment, Department of
National Defence, Ottawa, Ontario,
Canada

DECUS, L&T Special Interest
Group, Marlboro, Massachusetts

Department of National Defence,
Ottawa, Ontario, Canada

Digital Equipment Corporation,
Nashua, New Hampshire

Edinboro University of
Pennsylvania, Edinboro,
Pennsylvania

Elsevier Science Publishers B.V.,
Amsterdam, The Netherlands

Emerson Electric Company,
St. Louis, Missouri

Environmental Research Institute
of Michigan, Ann Arbor, Michigan

T U G b o a t , Volume 11 (1990), NO. 4 677

European Southern Observatory,
Garching bei Munchen,
Federal Republic of Germany

Fermi National Accelerator
Laboratory, Batavia, Illinoas

Fordham University, Bronx,
New York

General Motors Research
Laboratories, Warren, Michigan

Geophysical Company of Norway
A/S, Stavanger, Norway

GKSS, Forschungszentrum
Geesthacht GmbH, Geesthacht,
Federal Republic of Germany

Grinnell College, Computer
Services, Grinnell, Iowa

G T E Laboratories,
Waltham, Massachusetts

Harvard University, Computer
Services, Cambridge, Massachusetts

Hatfield Polytechnic, Computer
Centre, Herts, England

Hewlett-Packard Co.. Boise. Idaho

Hughes Aircraft Company, Space
Communications Division, Los
Angeles, California

Hungarian Academy of Sciences,
Computer and Automation
Institute, Budapest, Hungary

IBM Corporation, Scientific
Center, Palo Alto, California

Institute for Advanced Study,
Princeton, New Jersey

Institute for Defense Analyses,
Communications Research
Division, Princeton, New Jersey

Intevep S. A., Caracas, Venezuela

Iowa State University, Ames, Iowa

The Library of Congress,
Washington D. C.

Los Alamos National Laboratory,
University of California,
Los Alarnos, New Mexico

Louisiana State University,
Baton Rouge, Louisiana

Marquette University, Department
of Mathematics, Statistics
and Computer Science,
Mzlwaukee, Wisconsin

Massachusetts Institute
of Technology, Artificial
Intelligence Laboratory,
Cambridge, Massachusetts

Mathematical Reviews, American
Mathematical Society, Ann Arbor,
Michigan

Max Planck Institut
fiir Mathematik, Bonn,
Federal Republic of Germany

Max Planck Institute Stut tgart ,
Stuttgart, Federal Republic of
Germany

McGill University, Montre'al,
Que'bec, Canada

Michigan State University,
Mathematics Department,
East Lansing, Michigan

National Cancer Institute,
Frederick, Maryland

National Research Council
Canada, Computation Centre,
Ottawa, Ontario, Canada

Naval Postgraduate School,
Monterey, California

New Jersey Institute of
Technology, Newark, New Jersey

New York University,
Academic Computing Facility,
New York, New York

Nippon Telegraph & Telephone
Corporation, Software
Laboratories, Tokyo, Japan

Northeastern University, Academic
Computing Services, Boston,
Massachusetts

Norwegian Pulp & Paper Research
Institute, Oslo, Norway

Pennsylvania State University,
Computation Center,
University Park, Pennsylvania

Personal m, Incorporated,
Mill Valley, California

Princeton University, Princeton,
New Jersey

Promis Systems Corporation,
Toronto, Ontario, Canada

Peter Isaacson Publications,
Victoria, Australia

Purdue University, West Lafayette,
Indiana

Queens College, Flushing,
New York

RE/SPEC, Inc., Rapid City,
South Dakota

Rice University, Department of
Computer Science, Houston, Texas

Rogaland University,
Stavanger, Norway

Ruhr Universitat Bochum,
Rechenzentrum, Bochum,
Federal Republic of Germany

Rutgers University, Hill Center,
Piscataway, New Jersey

St. Albans School: Mount
St. Alban, Washington, D. C.

Sandia National Laboratories,
Albuquerque, New Mexico

SAS Institute, Cary,
North Carolina

I. P. Sharp Associates, Pa10 Alto,
California

Smithsonian Astrophysical
Observatory, Computation Facility,
Cambridge, Massachusetts

Software Research Associates,
Tokyo, Japan

Sony Corporation, Atsugi, Japan

Space Telescope Science Institute,
Baltimore, Mary land

Springer-Verlag, Heidelberg,
Federal Republic of Germany

Stanford Linear Accelerator Center
(SLAC), Stanford, California

Stanford University, Computer
Science Department,
Stanford, California

Stefan Ram, Programming and
Trade, Berlin, Federal Republic of
Germany

Syracuse University,
Syracuse, New York

T U G b o a t , Volume 11 (1990), No. 4

Talaris Systems, Inc..
San Dzego, California

TECOGRAF Software,
Milan, Italy

Texas A & M University,
Department of Computer Science,
College Station, Texas

Texcel, Oslo, Norway

TRW, Inc., Redondo Beach,
California

Tufts University, Medford,
Massachusetts

T V Guide, Radnor, Pennsylvania

TYX Corporation,
Reston, Virginia

UNI-C, Aarhus, Denmark

Universidad Sevilla, Sevilla, Spain

Universidade de Coimbra,
Coimbra, Portugal

Universiti degli Studi Milano.
Istituto di Cibernetica, Milan, Italy

University College, Cork, Ireland

University of Alabama,
Tuscaloosa, Alabama

University of British Columbia,
Computing Centre, Vancouver,
British Columbia, Canada

University of British Columbia,
Mathematics Department,
Vancouver, British Columbia,
Canada

University of Calgary, Calgary,
Alberta, Canada

University of California,
Division of Library Automation,
Oakland, California

University of California, Berkeley,
Computer Science Division,
Berkeley, Cal ifo~nia

University of California, Berkeley,
Space Astrophysics Group,
Berkeley, California

University of California, Irvine,
Department of Mathematics,
Irvine, California

University of California, Irvine,
Information & Computer Science,
Irvine, California

University of California, Los
Angeles, Computer Science
Department Archives, Los Angeles,
California

University of California,
San Diego, La Jolla, California

University of Canterbury,
Christchurch, New Zealand

University of Chicago, Computing
Organizations, Chicago, Illinois

University of Chicago,
Chicago, Illinois

University of Crete, Institute of
Computer Science, Heraklio, Crete,
Greece

University of Delaware,
Newark, Delaware

University of Exeter, Computer
Unit, Exeter, Devon, England

University of Glasgow,
Department of Computing Science,
Glasgow, Scotland

University of Groningen,
Groningen, The Netherlands

University of Illinois a t Chicago,
Computer Center, Chicago, Illinois

University of Kansas,
Academic Computing Services,
Lawrence, Kansas

University of Maryland,
Department of Computer Science,
College Park, Maryland

University of Maryland a t
College Park, Computer Science
Center, College Park, Maryland

University of Massachusetts,
Amherst, Massachusetts

UniversitC de MontrCal,
Montre'al, Que'bec, Canada

University of Oslo,
Institute of Informatics,
Blindern, Oslo, Norway

University of Oslo,
Institute of Mathematics,
Blindern, Oslo, Norway

University of Ottawa,
Ottawa, Ontario, Canada

University of Salford,
Salford. England

University of Southern California,
Information Sciences Institute,
Marina del Rey, California

University of Stockholm,
Department of Mathematics,
Stockholm, Sweden

University of Texas a t Austin,
Austin, Texas

University of Vermont,
Burlington, Vermont

University of Washington,
Department of Computer Science,
Seattle, Washington

University of Western Australia,
Regional Computing Centre,
Nedlands, Australia

University of Wisconsin,
Academic Computing Center,
Madison, Wisconsin

Uppsala University,
Uppsala, Sweden

USDA Forest Service:
Wash,ington, D. C.

Vereinigte Aluminium- Werke AG ,
Bonn; Federal Republic of Germany

Villanova University,
Villanova, Pennsylvania

Vrije Universiteit,
Amsterdam, The Netherlands

Washington State University,
Pullman, Washington

Widener University, Computing
Services, Chester, Pennsylvania

John Wiley & Sons, Incorporated,
New York, New York

Worcester Polytechnic Institute,
Worcester, Massachusetts

Yale University, Computer Center,
New Haven, Connecticut

Yale University, Department of
Computer Science, New Haven,
Connecticut

TUGboat, Volume 11 (1990), No. 4

Production Notes

Barbara Beeton

Input and input processing

Electronic input for articles in this issue was received
by mail and on floppy disk.

Authors who had written articles previously for

TUGboat typically submitted files that were fully

tagged and ready for processing with the TUG-
boat macros - tugboat . s t y for plain-based files

and l tugboat . s t y for those using I P W . (The
macros - see the Authors' Guide, TUGboat 10,
no. 3, pages 378-385-have been installed at

l ab rea . s tanf ord . edu and the other archives, and
should be retrieved by prospective authors before

preparing articles; for authors who do not have

network access, the TUG office can provide the
macros on diskette.)

One article. by Yanai and Berry (p. 525) was
prepared with ditroff and submitted as camera copy.

About two-fifths of the articles, and about half

the pages in this issue are Articles in
which no, or limited, coding was present were
tagged according to the conventions of tugboat . s t y
or l tugboat . s t y as convenient. Most articles

tagged according to the author's own schemes were

modified sufficiently to permit them to be merged

with the rest of the stream. Especial care was taken

to try to identify macro definitions that conflicted
with ones already defined for TUGboat.

Several articles, in particular the Answers to

Exercises for m : The Program (p. 499) used

the experimental enhancement of the p l a i n TUG-
boat macros that permits changing the number of

columns in mid-page. When time permits, this will
be cleaned up and made available via the archives.

The following articles were prepared using

U r n .

- Nelson Beebe, From the President. page 485.

- The future of m, page 488.
- Nelson Beebe, Comments on the future of

and METFIFONT, page 490.
- Jim Fox. Webless literate programming,

page 511.

- Don Hosek. the Output device column,

page 545, and two announcements (pages 570
and 578).

- Barbara Beeton, A proto-TUG bibliograpy,
page 573.

- Joachim Lammarsch, IBM VM/CMS site

report, page 578.

- Victor Eijkhout, all contributions, pages 572.

605, 613, 616.
- Lohn Lavagnino and Dominik Wujastyk,

Overview of EDMAC, page 623.

- all items in the I4W section, pages 644 ff.
- Luzia Dietsche, German abstracts, page 663.

Output

The bulk of this issue was prepared on an IBM PC-

compatible 386 using P C m and output on an
APS-p5 at the American Mathematical Society us-

ing resident CM fonts and additional downloadable

fonts for special purposes.

Output for the article by Yanai and Berry
(cited above) was prepared on a VariTyper VT600

and submitted as camera copy; some illustrations

were prepared on an Apple Laserwriter (300 dpi)
and on a Linotronic 100 (1270 dpi).

Figures for two articles were prepared by the
authors on 300 dpi laser printers: the Output

routines tutorial by David Salomon (p. 588), Ap-

ple Laserwriter, and A previewer by Harold
Stokes. HP LaserJet.

The output devices used to prepare the ad-

vertisements were not usually identified; anyone
interested in determining how a particular ad was

prepared should inquire of the advertiser.

Coming Next Issue

Babel

Johannes Braams describes Babel, a multilingual
style-option system for use with IPQX's standard
document styles.

Network sources of =ware

Peter Flynn provides an exhaustive list of network

sites from which TJ-$ and its relatives and friends

can be retrieved by server or FTP.

Invisibility using virtual fonts

Sebastian Rahtz proposes an alternate method for

generating "invisible" fonts as used by S L ~ .

This method makes it possible to use the standard
Postscript fonts in place of Computer Modern.

Publications for the TEX Community

Available now:

1. VAX Language-Sensitive Editor (LSEDIT)

Quick Reference Guide for Use with the LATEX Environment and

@TEX Style Templates by Kent McPherson

2. Table Making - the INRSTEX Method by Michael J. Ferguson

3. User's Guide t o the l d x T ~ X Program by R. L. Aurbach

4. User's Guide to the GIoTEX Program by R. L. Aurbach

5. Conference Proceedings, TEX Users Group Eighth Annual Meeting,

Seattle, August 24-26, 1987, Dean Guenther, Editor

6. The P~CTEX Manual by Michael J. Wichura

7. Conference Proceedings, TEX Users Group Ninth Annual Meeting,

Montrkal, August 22-24, 1988, Christina Thiele, Editor

8. A Users' Guide for TEX by Frances Huth

9. An Introduction t o LATEX by Michael Urban

10. LATEX Command Summary by L. Botway and C. Biemesderfer

11. First Grade TEX by Arthur Samuel

12. A Gentle lntroduction t o TEX by Michael Doob

13. METAFONTware by Donald E. Knuth, Tomas G. Rokicki, and

Arthur Samuel

Coming soon:

14. A Permuted Index for TEX and LATEX by Bill Cheswick

TEX Users Group
P. 0. Box 9506

Providence, R. 1. 02940, U.S. A.

T& Users Group 1991 Membership Form

Request for Information

The Users Group maintains a database and
publishes a membership list containing informa-
tion about the equipment on which '@X is (or will
be) installed and about the applications for which
rn is used. This list is updated periodically and
distributed to members with TUGboat, to permit
them to identify others with similar interests. Thus.
it is important that the information be complete
and up-to-date.

Please answer the questions below, in particu-
lar those regarding the status of 7&X and the hard-
ware on which it runs. (Operating system informa-
tion is particularly important in the case of IBM
mainframes and VAX.) This hardware information
is used to group members in the listings by com-
puter and output device.

If accurate information has already been pro-
vided by another TUG member at your site. indi-
cate that member's name and the same information
will be repeated automatically under your name. If
your current listing is correct, you need not answer
these questions again. Your cooperation is appre-
ciated.

0 Send completed form with remittance
(checks, money orders, UNESCO coupons) to:

TJ@ Users Group
P. 0. Box 594
Providence, Rhode Island 02901, U.S.A.

0 For foreign bank transfers
direct payment to the TEX Users Group,
account #002-031375, at:

Rhode Island Hospital Trust National Bank

One Hospital Trust Plaza
Providence, Rhode Island 02903-2449. U.S.A.

General correspondence
about TUG should be addressed to:

Users Group
P. 0. Box 9506
Providence. Rhode Island 02940-9506, U.S.A.

Name:
Home []

BUS 1 Address:

I I
TUGboat back volumes 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
Circle volume(s) desired: v. 1 v. 2 v. 3 v. 4 v. 5 v. 6 v. 7 v. 8 v. 9 v. 10 v. 11

$18 $50 $35 $35 $35 $50 $50 $50 $50 $75 $75 1 I

Qty

Issues of TUGboat will be shipped via air service outside
North America. TOTAL ENCLOSED:
Quantity discounts available on request. (Prepayment in U.S. dollars required)

Membership List Information

1991 Membership/TUGboat Subscription (Jan.-Dec.)

Ordinary: [] $45.00
Students: [] $35.00 (photocopy of student ID required)

Institution (if not part of address): Date:

Amount

Title:
Phone:
Network address:

[] Arpanet [] BITnet

[] CSnet [] uucp
[] JANET [] other

Specific applications or reason for interest in W :

My installation can offer the following software or
technical support to TUG:

Please list high-level users at your site who would not
mind being contacted for information; give name, address, and
telephone.

Status of TEX: [] Under consideration
Being installed
Up and running since: -

Approximate number of users: -

Version of m:
[] Pascal

I I C
[] other (describe)
From whom obtained:

Hardware on which is used:
Operating Output

Computer(s) system(s) device(s)

Revised 11/90

TvX Users G r o u ~ 1991 Institutional Membership Form

Each Institutional Member is entitled to:

- designate up to 7, 12 or 30 individuals to receive TUG-
boat subscriptions, depending on category of member-
ship chosen; named individuals will be accorded full
status as individual TUG members;

- reduced rates for TUG meetings/courses for all staff
members, and for rental/purchase of videotapes:

be acknowledged in every issue of TUGboat published
during the membership year.

Instructions: Attach a list of the names and addresses
of individuals to whom you would like TUGboat sub-
scriptions mailed, to include answers to the questions on
both side of this form-as approrpiate, in particular those
regarding the status of TEX and the computer(s)/operat-
ing system(s) on which it runs or is being installed. (For
IBM and VAX, especially, the operating system is more
relevant than model.) It would be particularly useful if
you could provide this information as it relates to each in-
dividual or group using the same hardware. Please make
as many copies of this form as needed or contact the TUG
office for additional copies.

Send completed form with remittance
(checks, money orders. UNESCO coupons) to:

T@ Users Group
P. 0. Box 594
Providence, Rhode Island 02901, U.S.A.

For foreign bank transfers
direct payment to the TEX Users Group.
account #002-031375, at:

Rhode Island Hospital Trust National Bank
One Hospital Trust Plaza
Providence, Rhode Island 02903-2449, U.S.A.

General correspondence
about TUG should be addressed to:

Users Group

P. 0. Box 9506
Providence, Rhode Island 02940-9506, U. S. A.

Institution/Organization: Principal contact:

Phone:

Membership List Information

Institution:

Amount Qty

Principal contact:
Phone:
Specific applications or reason for interest in 7&X:

Issues of TUGboat will be shipped by air service outside
North America. TOTAL ENCLOSED:

(Prepayment in U.S. dollars required)

1991 Institutional Membership (Jan.-Dec.)

Category A (incl. 7 subs.): educational $435; non-ed. $535; add'l subs. $40/ea.

Category B (incl. 12 subs.): educational $635; non-ed. $735; add'l subs. $40/ea.

Category C (incl. 30 subs.): educational $1260: non-ed. $1360; add'l subs. $35/ea.

TUGboat back volumes 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
Circle volume(s) desired: v. 1 v. 2 v. 3 v. 4 v. 5 v. 6 v. 7 v. 8 v. 9 v. 10 v. 11
Indiv. issues $18.00 ea. $18 $50 $35 $35 $35 $50 $50 $50 $50 $75 $75

This installation can offer the following software or
technical support to TUG:

Please list high-level users at your site who would not
mind being contacted for information; give name, address. and

telephone.

Date:
Status of Tj$: [] Under consideration

[] Being installed

[] Up and running since: -
Approximate number of users: -

Version of TQX:
[] Pascal

[I C
[] other (describe)
From whom obtained:

Hardware on which is used:
Operating Output

Computer(s) system(s) device(s)

Revised 11/89

Another first from ArborText!

irt ual Fonts

We have added built-in support to

Preview and DVILASER

which makes it easy to use the new

multilingual features of TEX 3.0.

Future enhancements will provide

a standard set of virtual fonts based on

coding conventions adopted at TEX 90.

A
TEX 3.0 and support software is

Y available now for DEC/Risc-Ultrix, Sun, Apollo,
and HP9000 (300 & 400).

p w 3.0 is a newly enhanced version
for the IBM PC.

535 W \i\lilllam S t , Ann Arbor, MI 48103, (313) 996-35n6, FAX (313) 990-3573

For fast answers to common T f l questions, you need . . .

TEX for the Impatient
a practical handbook for

new and current TEX users

by Paul W. Abrahams
with Karl Berry and Kathryn A. Hargreaves

ar, concise, and accessible, this handy reference manual is organized
easy retrieval of information. Thoroughly indexed and carefully
designed, Q X for the Impatient is packed with explicit instructions,
useful tips, and a wealth of witty and illuminating illustrations.

omplete descriptions of TEX commands, arranged for
lookup either by function or alphabetically

Clear definitions of essential TEX concepts,
collec,ted in a separate chapter so that the
command descriptions remain brief and accessible

. Explanations of common error messages and
advice on solving problems that frequently arise

A collection of useful macros

/ 3
@X for the Impatient is for busy people

o have discovered the unmatched benefits of TEX, but
o lack the time to master its intricacies. It is for

everyone-new user to expert-who needs a quick
reference guide to TEX.

Available now from

TEX Users Group
P. 0. Box 9506
Providence, RI 02940, USA
Phone (401) 75 1-7760
FAX: (401) 751-1071
MastercardIVisa, checks and money orders accepted

TUG Members . $25
Regular price . . . $27

Shipping in US: $3/copy
Outside US: $8/copy air

For TEX Users,, , ,
New Services and Prices from

Computer Composition Corporation

We are pleased to announce the installation of several
new output servicesnow available to TEX users:

1. High Resolution Laser Imaging (1 200 dpi) from Postscript diskette
files created on either Mac- or PC-based systems.

2. High Resolution Laser Imaging (960 dpi) from DVfmagnetic tape or
diskette files using a variety of typefaces in addition to the Computer
Modern typeface family.

3. High quality laser page proofs at 480 dpi.

4. NEW PRICING for high resolution laser imaging:

a. From Postscript text files in volumes over 400 pages $2.00 per page

b. From Postscript text files in volumes
between 100 & 400 pages . $2.25 per page

c. From Postscript text files in volumes below 100 pages . . $2.40 per page

d. From DVI files in volumes over 400 pages $2.15 per page

e. From DVI files in volumes between 100 & 400 pages $2.30 per page

f . From DVI files in volumes below 100 pages $2.45 per page

NOTE: DEDUCT $1.00 FROM THE ABOVE PRICES FOR HIGH QUALITY
LASER PAGE PROOFS.

5. All jobs shipped within 48 hours.

Call or write for page samples or send us your file and
we will image it on the output unit of your choice.

Publishing Companion@ translates

WordPerfect

IN ONE EASY STEP!

With Publishing Companion, you can publish documents using T@ or bT with little or no
TEX knowledge. Your Wordperfect files are translated into TEX or bT$ fi p es, so anyone using
this simple word processor can immediately begin typesetting their own documents!

Publishing Companion translates EQUATIONS, FOOTNOTES, ENDNOTES, FONT STYLES,
and much more!

. Retail Price $249.00
. Academic Discount Price $199.00

For more information or to place an order, call or write:

30 West First Ave, Suite 100
Columbus, Ohio 43201

(614)294-3535
FAX (614)294-3704

TYPESET QUALITY WITH THE EASE OF WORD PROCESSING

9009-9

WYSIWYG ->

View your equation as
you create it. Then
insert into your TEX
document with one
command.

TFX Edition ONLY $129.00
~rofessional Edition $199.00
Shipping: $4 (U.S.A.), $25 (Canada). $35 (Overseas)
VISA, Mastercard and University and Government P.O.'s accepted

30 West First Avenue KTALE C O I U ~ ~ ~ S , Ohio 43201
C O M M U N I C A T I O N S = (614) 294-3535

FAX (614) 294-3704

T u r b o w Release 3.0 soft-
ware brings you the latest TEX 3.0
and METAFONT 2.0 standards:
preloaded plain w, B T S ,
A @ - W and AM-UT@, and
plain METAFONT interfaced to
CGA/EGA/VGA/Hercules graph-
ics; TRIP and TRAP certification;
Computer Modern and UT$ fonts,
and printer drivers for H P LaserJet
Plus/II/IIP, H P DeskJet, Postscript,
and Epson LQ and FX dot-matrix
printers. This wealth of software runs
on your IBM P C (MS-DOS or OS/2),
UKIS, or VAX/VMS system.

Best-selling Value: Turbo-
'I?@ sets the standard for power
and value among '&$ implemen-
tations: one price buys a complete,
commercially-hardened typesetting
system. Computer magazine recom-
mended it as "the version of l?$ to
have," IEEE Software called it "in-
dustrial strength," and thousands of
satisfied users worldwide agree.

T u r b o w gets you started quickly,
installing itself automatically under
MS-DOS, and compiling itself auto-
matically under UNIX. The 90-page
User's Guide includes generous exam-
ples and a full index, and leads you
step-by-step through installing and
using Tf$ and METAFONT.

P o w e r Fea tures : Turbo-
TEX breaks the 640K memory bar-
rier under MS-DOS on any IBM-
compatible P C with our virtual mem-
ory sub-system. Even without ex-
~ a n d e d memory hardware, you'll

have the same sized 7&X that runs
on multi-megabyte mainframes, with
plenty of memory for large docu-
ments, complicated formats, and
demanding macro packages (like
PIC% and AM-UT$2.0) that
break other 'QX implementations.
On larger computers, TurboQX runs
up to 3 times faster in less memory
than the Stanford Pascal distribution.

S o u r c e code: Order the Turbo-
TEX source in portable C, and you
will receive more disks with over
85,000 lines of generously commented
'I#, T u r b o w , METRFONT, and
printer driver source code, including:
our WEB system in C; PASCHAL, our
proprietary Pascal-to-C translator;
and preloading, virtual memory, and
graphics code. T u r b o w meets C
portability standards like ANSI and
K&R, and is robustly s or table to a
growing family of operating systems.

Availability & Requi rements :
Turbo'l$,X executables for IBM PC's
include the User's Guide and require
640K and hard disk. Order source
code (includes Programmer's Guide)
for other machines. Source compiles
with Microsoft C 5.0 or later on the
PC; other systems need 1 MB mem-
ory and a C compiler supporting
U N I X standard 110. Media is 360K
5-114'' P C floppy disks; other formats
at extra cost.

Upgrades: If you have Turbo-
Tf$ Release 2.0, you can upgrade
the executables for only $40. If YOU

have the source distribution, upgrade

both executables and source for $80.
Or, get either applicable upgrade free
when you buy the AP-?IF)(fonts (see
facing page) for $200!

No-risk t r i a l offer: Examine
the documentation and run the P C
T u r b o w for 10 days. If you are not
satisfied, return it for a 100% refund
or credit. (Offer applies to P C exe-
cu tab le~ only.)

F r e e Buyer ' s Guide: Ask
for the free, 70-page Buyer's Guide
for more details on T u r b o w and
dozens of 'l$,X-related products: pre-
viewers, 'I?@-to-FAX and w - t o -
VenturaIPagemaker translators, op-
tional fonts, graphics editors, pub-
lic domain TEX accessory software,
books and reports.

O r d e r i n g T u r b o w

Ordering Turbo'QX is easy and deliv-
ery is fast, by phone, FAX, or mail.
Terms: Check with order (free media
and ground shipping in US), VISA,
Mastercard (free media, shipping ex-
tra); Net 30 to well-rated firms and
~ u b l i c agencies (shipping and media
extra). Discounts available for quan-
tities or resale. International orders
gladly expedited via Air or Express
Mail.

T h e K i n c h C o m p u t e r C o m p a n y

PUBLISHERS OF T U W O ~

501 S o u t h M e a d o w S t r e e t
I t h a c a , N e w York 14850 U S A

Telephone (607) 273-0222
F A X (607) 273-0484

AP-T~T~X Fonts Avant Garde Bold

Avant Garde %tue
Avant Garde Dem~told

=-compatible Bit-Mapped Fonts

Identical to
Adobe Postscript Typefaces

Bookman Light
If you are hungry for new TEX fonts, here is a feast guar-
anteed to satisfy the biggest appetite! The AP-TJ$ fonts

serve you a banquet of gourmet delights: 438 fonts cov-
ering 18 sizes of 35 styles, at a total price of $200. The
AP-lJ.ijX fonts consist of PK and TFM files which are ex-
act W-compat ib le equivalents (including "hinted" pix-
els) to the popular Postscript name-brand fonts shown
a t the right. Since they are directly compatible with any
standard implementation (including kerning and liga-
tures), you don't have to be a expert to install or use

Demibdd BOO kman Italic

C o u r i e r

C o u ri e r Oblique

Cour ie r ~ d d

C o u r i e r %iue
them. Helvetica

-- -

Helvetica Oblique When ordering, specify resolution of 300 dpi (for laser
printers), 180 dpi (for 24-pin dot matrix printers), or 118
dpi (for previewers). Each set is on ten 360 KB 5-114"
PC floppy disks. The $200 price applies to the first set
you order; order additional sets at other resolutions for
$60 each. A 30-page user's guide fully explains how to
install and use the fonts. Sizes included are 5, 6, 7, 8, 9,
10, 11, 12, 14.4, 17.3, 20.7, and 24.9 points; headline styles
(equivalent to Times Roman, Helvetica, and Palatino, all

in bold) also include sizes 29.9, 35.8, 43.0, 51.6, 61.9, and
74.3 points.

Helvetica

Helve fica EkUe

Helvetica Narrow
- -

Helvetica Narrow Obilque

Helvetica Narrow Bold

Helvetica Narrow Zque

Schoolbook ~~","X"tuv

Schoolbook /2centuv

Schoolbook iZCemuv

Schoolbook
NewCmtury
Bdd Italic

The Kinch Computer Company

501 South Meadow Street

Ithaca, New York 14850
Telephone (607) 273-0222

FAX (607) 273-0484

Palatino R m n

Palatino italic

Palatino Bold

Palatino 2;
Helvetica, Palatino, Times, and New Century Schoolbook are t.rademarks of
Allied Linotype Co. ITC Avant Garde, ITC Bookman, ITC Zapf Chancery,
and ITC Zapf Dingbats are registered trademarks of International Typeface
Corporation. Postscript is a registered trademark of Adobe Systems Incorpo-
rated. The owners of these trademarks and Adobe Systems, Inc. are not the
authors, publishers, or licensors of the AP-T)$ fonts. Kinch Computer Com-
pany is the sole author of the AP-TEX fonts, and has operated independently
of the trademark owners and Adobe Systems, Inc. in publishing this soft-
ware. Any reference in the AP-TEX font software or in this advertisement to
these trademarks is solely for software compatibility or product comparison.

LaserJet and DeskJet are trademarks of Hewlett-Packard Corporation. T)$
is a trademark of the American Math Society. T u r b o w and A P - w are
trademarks of Kinch Computer Company. Prices and specifications subject to
change without notice. Revised October 9, 1990.

Times Roman

Times

Times BOM

Times :%
Medium

Zapf Chancery Italic

Svmbol A@TIYAIIO

Z a ~ f Dingbats

690

Public Domain T@

The public domain versions of TEX software are available from Maria Code - Data Processing

Services by special arrangement with Stanford University and other contributing universities. The

standard distribution tape contains the source of TEX and METAFONT, the macro libraries for

A M S - w , UTEX, S l i w and HP TI-$, sample device drivers for a Versetec and LN03 printers,

documentation files, and many useful tools.

Since these are in the public domain, they may be used and copied without royalty concerns. A

portion of your tape cost is used to support development a t Stanford University.

Compiled versions of TEX are available for DEC VAXIVMS, IBM CMS, IBM MVS and DEC

TOPS systems. Systems using a standard format must compile TJ$X with a Pascal compiler.

Order Form

TEX Distribution tapes: Font Library Tapes (GF files)

- Standard ASCII format - 300 dpi VAXIVMS format

- Standard EBCDIC format - 300 dpi generic format
- Special VAXIVMS format Backup - IBM 382013812 MVS format

- Special DEC 20lTOPS 20 Dumper format - IBM 3800 CMS format

- Special IBM VMICMS format - IBM 4250 CMS format

- Special IBM MVS format - IBM 382013812 CMS format

Tape prices: $92.00 for first tape, $72.00 for each additional tape. Postage: allow 2 lbs. for each

tape.

Documents: Price $ Weight Quantity

W b o o k (vol. A) softcover . 30.00 2 -
?'E;X: The Program (vol. B) hardcover 44.00 4 -
METRFONT book (vol. C) softcover 22.00 2 -
METRFONT: The Program (vol. D) hardcover . . . 44.00 4 -
Computer Modern Typefaces (vol. E) hardcover 44.00 4 -
UTEX document preparation system 30.00 2 -
WEB language * 12.00 1 -
w w a r e * . 10.00 1 -
B i b W * . 10.00 1 -
Torture Test for TEX * . 8.00 1 -
Torture Test for METAFONT * 8.00 1 -
METAFONTware * . 15.00 1 -
Metamarks * . 15.00 1 -

* published by Stanford University

Orders from within California must add sales tax for your location.

Shipping charges: domestic book rate-no charge, domestic priority mail-$1.50/lb, air mail to

Canada and Mexico-$2.00/lb, export surface mail (all countries)-$1.50/lb, air mail to Europe,

South America-$5.00/lb, air mail to Far East, Africa, Israel-$7.00/lb.

Purchase orders accepted. Payment by check must be drawn on a U.S. bank.

Send your order to: Maria Code, DP Services, 1371 Sydney Drive, Sunnyvale, CA 94087
FAX: 415-948-9388 Tel.: 408-735-8006.

Wi th TEXPIC Graphics language? you wil l have the
tools t o make graphics for yOurTEX documents.

TEXPIC is now available from Bob Harris at:

L-----J

MICRO PROGRAMS INC
251 Jackson Avenue, Syosset NY 11 791

Telephone: (516) 921 1351.

+TUG Boat Volume 10, No. 4, Page 627
1989 Stanford Conference Proceedings

Anew and unique seruice from the Printing Division of the Oldest Press in the World

The CAMBRIDGE service that lets you and your publisher decide how you.

mathematical or scientific text will appear.

Monotype output in Times and Helvetica as well as a complete range of

Computer Modern faces from your TEX keystrokes

For details contact

T E C H N I C A L A P P L I C A T I O N S G R O U P C A M B R I D G E U N I V E R S I T Y P R E S S
U N I V E R S I T Y P R I N T I N G H O U S E S H A F T E S B U R Y R O A D C A M B R I D G E C B 2 2 B S E N G L A N D

T E L E P H O N E (0 2 2 3) 3 2 5 0 7 0

TEX FOR THE 90's

Are you still
struggling with

Move on to scalable
fonts:
Save megabytes of storage-entire VTEX fits on

one floppy.

Instantly generate an); font in any size and in any

variation from 5 to 100 points.

Standard font effects include compression, slant,

smallcaps, outline. shading and shadow.

New: landscape. New: scalable graphics.

Discover the universe of MicroPress Font Library

professional typefaces: not available from any

other TEX vender.

List price $399 Introductory offer $299

Includes the VTEX typesetter (superset of TEX), 10 scalable

typefaces. WIEW (arbitrary magnification on EGA, CGA. VGA,

Hercules, AT&T). U S E R (HP Laserlet). VPOST (Postscript),

VDOT (Epson, Panasonic, NEC. Toshiba. Proprinter, Star. Deskjet)

and manuals.

Introductory offer expires on January 1, 1991. S/H add $5.
COD add Sj. WordPerfect Interface add S100. Site licenses

available. Dealers' inquiries welcome. Professional typefaces

available for older implementations of TEX.

MICRO
I

MicroPress Inc.

68-30 Harrow Street, Forest Hills, NY 11375

PRESS Tel: (718) 575-1816 Fax: (718) 575-8038

- VTEX I S a trademark of McroPress Inc Olhe! Products rnertloned are traoemarxs o l their respecl~ve cornpanles

The American Mathematical Society can offer you a basic TEX publishing service. You provide the
DVI file and we will produce typeset pages using an Autologic APS Micro-5 phototypesetter. The low
cost is basic too: only $5 per page for the first 100 pages; $2.50 per page for additional pages, with a
$30 minimum. Quick turnaround is important to you and us . . . a manuscript up to 500 pages can
be back in your hands in just one week or less.

As a full service TEX publisher, you can look to the American Mathematical Society as a single source
for all your publishing needs.

For more information or to schedule a job, please contact Regina Girouard, American Mathemat-
ical Society, P.O. Box 6248, Providence, RI 02940 or ca11401-455-4060 or 800-321-4AMSin the
continental U.S.

Vaiiable Symbois, the company dedicated to giving you the
tools to experience the fuilpower of Mathematica, brings you
3 new ways to mastei Mathematica When you want to be a
more pioficient Mathematica user call us at 415-843-8701

Mathematica Training
Hands-on workshops for 5-20 people at introductory,
~ntermediate, and advanced levels taught by Varlable Symbols
staff, including Nancy Blachman Cameron Smith, ?nd Eran
Yehudal. Our clients include Argonne, Boeing, Boston
Unrversity, Genentech, Howard Un~versity, Lawrence
Livermore, MITRE, Shell Development, Stanford Univers~ty,
Xerox, and Wolfram Research, lnc.

Mathemafica Uuick Reference
This reference defines all Mathernat~ca built-in funct~ons,
options, aliases, and special forms; $9 95.

Mathematica Help Stack
Hypercard-based Macintosh help system that was developed
by Robert Campbell categorizes bu l l - in objects and prov~des
visual representation
of many functions lor , ' &] ~ ~ [~ ~ ~ ~ ~ l

/ 4 Variable Symbols, lnc ,Vbl -- P 0 Bor 9013
V + Berkeley CA 94709-0013
siMB0.5 Telephone 415-843-8701 C

Index of Advertisers

American Mathematical Society

ArborText

Blue Sky Research

Cambridge University Press

Computer Composition

DP Services

K-Talk Communications

Kinch Computer Company

Micropress, Inc.

Micro Programs, Inc.

Users Group

Variable Symbols, Inc.

Supplement, Page 1 : Bugs in Computers & Typesetting 21 September 1990

Bugs in Computers & Typesetting

21 September 1990

This is a list of corrections made to Computers & Typesetting, Volumes A-E, since the last

publication of the Errata and Changes list (25 March 90). Corrections to the softcover version

of The W b o o k are the same as corrections to Volume A; corrections to the softcover version of

The METRFONTbook are the same as corrections to Volume C.

Page A124. lines 18-21 19/5/90)

Floating insertions can be accommodated as a special case of split insertions, by making
each floating topinsert start with a small penalty, and by having zero as the associ-
ated \f loatingpenalty; non-floating insertions like footnotes are accommodated by
associating larger penalties with split insertions (see Appendix B).

Paae A165, lines 2-3 (8113190)

Type the formula zTMx = 0 x = 0, using as few keystrokes as possible.
(The first '0' is roman, the second is bold. The superscript 'T' is roman.)

Page A317, line 17 (5/17/90)

Page A321, lines 16-17 (8/13/90)

18.6. $\bf\bar x-(\rm T)Mx=(\rmO)\iff x=O$. (If you typed a space between
\rm and 0, you wasted a keystroke; but don't feel guilty about it.)

Pane Exiii, replacement for last four lines . . (4/30/90)

rn "AMS Euler-A new typeface for mathematics" by Donald E. Knuth

and Hermann Zapf, Scholarly Publishing 21 (1989), 131-157. T h e s tory of a
design project that helps bridge the gulf between mathemat ics and art.

rn "Meta-Marks: Preliminary studies for a Pandora's Box of shapes" by

Neenie Billawala, Stanford Computer Science report 1259 (Stanford, California,

July 1989)' 132 pp. Lavishly illustrated s tudies i n parameter variation, leading
t o the design of a n e w typeface called Pandora.

Supplement, Page 2 : Changes to the Programs and Fonts 21 September 1990

Changes to the Programs and Fonts

21 September 1990

TEX

Changes subsequent to errata publication, 25 March 90:

----------- Here I draw the line with respect to further changes

390. Uninitialized nullfont parameters (found by Lance Carnes, 11 May 90).

Qx module 552

hyphen-char [null-f ont] : =I1-" ; skew-char [null-f ont] :=-I ;

QY
hyphen-char [null-f ontl : =I1-It; skew-char [null-f ontl : =-I;

bchar-label[null-font] :=non-address;

font-bchar[null-font] :=non-char; font-false-bchar[null-font] :=non-char;

Qz

391. Disable \write{\the\prevgraf) (B. Jackowski, July 1990).

Qx module 422

begin nest[nest-ptr]:=cur-list; p:=nest-ptr;

while abs (nest [p] .mode-f ield) <>mode do decr (p) ;

scanned-result (nest [p] .pg-f ield) (int-val) ;

end

QY

if mode=O then scanned-result(O)(int-val) {Iprev-graf=Ol within \.{\\write)}

else begin nestlnest-ptr]:=cur-list; p:=nest-ptr;

while abs (nest [p] .mode-f ield) ovmode do decr (p) ;

scanned-result (nest [p] .pg-f ield) (int-val) ;

end

Qz

392. Report correct line number when buffer overflows (George Russell).

Qx module 538

begin if input-ln(cur-file,false) then do-nothing;

firm-up-the-line;

if end-line-char-inactive then decr(1imit)

else buffer[limit]:=end-line-char;

first:=limit+l; loc:=start; line:=l;

QY
begin line:=l;

if input-ln(cur-file,false) then do-nothing;

firm-up-the-line;

if end-line-char-inactive then decr(1imit)

else buffer [limit] : =end-line-char ;

first:=limit+l; loc:=start;

Qz

393. (I sincerely hope that there won't be any more)

Supplement, Page 3 : Changes to the Programs and Fonts 21 September 1990

METAFONT

Changes since 25 March 1990.

----------- Here I draw the line with respect to further changes

555. Don't try system area if an area was given (see tex82.bug number 312;

found by Jonathan Kew, May 1990)

Qx

pack-f ile-name (cur-name ,MF-area, cur-ext) ;

if a-open-in(cur-file) then goto done;

QY
if cur-area="" then

begin pack-file-name(cur-name,MF-area,cur-ext);

if a-open-in(cur-file) then goto done;

end;

Qz

556. Report correct line number when buffer overflows (CET, Jul 90)

Qx module 794

begin if not input-ln(cur-file,false) then do-nothing;

firm-up-the-line;

buffer[limit]:="%"; first:=limit+l; loc:=start; line:=l;

QY
begin line:=l;

if input-ln(cur-file,false) then do-nothing;

firm-up-the-line;

buffer [limit] :="%"; first :=limit+l; loc:=start ;

Qz

557. (I sincerely hope that there won't be any more)

Computer Modern fonts

Changes since 25 March 1990.

No current changes.

TEX Users Group Membership List - Supplement

November 1990

This supplementary list, compiled on 15 October 1990, includes the names of all persons who
have become members of TUG or whose addresses have changed since publication of the last
membership list update, as of 15 May 1990 and bound into TUGboat Vol. 11, No. 2. Total
membership: 145 institutional members and 3,789 individuals affiliated with more than 1,500
colleges and universities, commercial publishers, government agencies, and other organizations
throughout the world having need for an advanced composition system.

The following information is included for each listing of an individual member, where it
has been provided:

Name and mailing address

Telephone number

Network address

Computer and typesetting equipment avail-
able to the member, or type of equipment

on which his organization wishes to (or
has) installed TEX

Title and organizational affiliation, when Uses to which TEX may be put, or a general
that is not obvious from the mailing address indication of why the member is interested

in TJ-iJX

CONTENTS

Board of Directors, Site Coordinators and
members of TUG Committees 2

Addresses of TUG Members, additions and changes
from 15 May 1990 through 15 October 1990 4

TEX consulting and production services for sale 15

Recipients of this list are encouraged to use it to identify others with similar interests? and, as
TUG members, to keep their own listings up-to-date in order for the list to remain as useful
as possible. New or changed information may be submitted on the membership renewal form
bound into the back of a recent issue of TUGboat. Comments on ways in which the content
and presentation of the membership list can be improved are welcome.

This list is intended for the private use of TUG members; it is not to be used as a source of
names to be included in mailing lists or for other purposes not approved by TUG. Additional
copies are available from TUG. Mailing lists of current TUG membership are available for
purchase. For more information, contact Ray Goucher, TUG Executive Director.

Application to mail at second-class postage rate is pending at Providence, RI and additional
mailing offices. Postmaster: Send address changes to the TEX Users Group, P. 0 . Box 9506,
Providence, RI 02940, U.S.A.

Distributed with TUGboat Volume 11 (1990), No. 4. Published by

TEX Users Group

P. 0 . Box 9506

Providence, R.I. 02940-9506, U. S. A.

November 1990 TEX Consulting and Production Services M-15

TEX Consulting and Production Services

North America

AMERICAN MATHEMATICAL SOCIETY
P. 0. Box 6248, Providence, RI 02940; (401) 455-4060
Typesetting from DVI files on an Autologic APS Micro-5

or an Agfa Compugraphic 9600 (Postscript).

Times Roman and Computer Modern fonts.

Composition services for mathematical and technical

books and journal production.

ANAGNOSTOPOULOS, Paul C.
433 Rutland Street, Carlisle, MA 01741; (508) 371-2316
Composition and typesetting of high-quality books and

technical documents. Production using Computer

Modern or any available Postscript fonts. Assistance

with book design. I am a computer consultant with a

Computer Science education.

ARBORTEXT, Inc.
535 W. William, Suite 300, Ann Arbor, MI 48103;

(313) 996-3566

Typesetting from DVI files on an Autologic APS-5.

Computer Modern and standard Autologic fonts

QX installation and applications support.

w - r e l a t e d software products.

ARCHETYPE PUBLISHING, Inc.,
Lori McWilliam Pickert

P. 0. Box 6567, Champaign, IL 61821; (217) 359-8178
Experienced in producing and editing technical journals

with QX; complete book production from manuscript

to camera-ready copy; T@ macro writing including

complete macro packages; consulting.

THE BARTLETT PRESS, Inc.,
Frederick H. Bartlett

Harrison Towers, 6F, 575 Easton Avenue,

Somerset, NJ 08873; (201) 745-9412

Vast experience: 100+ macro packages, over 30,000 pages

published with our macros: over a decade's experience

in all facets of publishing, both rn and n o n - w :

all services from copyediting and design to final

mechanicals.

DOWNES, Michael
49 Weeks Street, North Smithfield, RI 02895;

(401) 762-3715

Instruction in AMST@. AMS-IPQX, plain Q X , and

advanced macro writing. Custom documentstyles

Consulting: advanced mathematical typesetting

topics; tuning mathematics fonts: rn getting the

most out of '!$X in a production environment.
Troubleshooting.

HOENIG, Alan
17 Bay Avenue, Huntington, NY 11743; (516) 385-0736
rn typesetting services including complete book

production: macro writing; individual and group

QX instruction.

KUMAR, Romesh
1549 Ceals Court, Naperville, IL 60565; (708) 972-4342
Beginners and intermediate group/individual instruction

in w . Development of TEX macros for specific

purposes. Using TEX with FORTRAN for

custom-tailored software. Flexible hours, including

evenings and weekends.

OGAWA, Arthur
920 Addison, Palo Alto, CA 94301; (415) 323-9624
Experienced in book production, macro packages,

programming, and consultation. Complete book

production from computer-readable copy to

camera-ready copy.

QUIXOTE, Don Hosek
440F Grinnell, Claremont, CA 91711; (714) 625-0147

Complete line of Q X , I P W , and METAFONT services

including custom style files, complete book

production from manuscript to camera-ready copy;

custom font and logo design; installation of customized

rn environments; phone consulting service; database

applications and more.

Call for a free estimate.

RICHERT, Norman
1614 Loch Lake Drive, El Lago. T X 77586;

(713) 326-2583

macro consulting.

W N O L O G Y , Inc., Amy Hendrickson
57 Longwood Ave., Brookline, MA 02146:

(617) 738-8029.

rn macro writing (author of M a c r o w) ; custom macros

written to meet publisher's or designer's specifications;

instruction.

Outside North America

=WORKS Pty. Ltd. (Alex Warman)
251 Moray Street, South Melbourne, 3205; Australia;

61 3 690 6023; Fax: 61 3 6994482

High resolution typesetting services from DVI files.

Consulting and setup of production typesetting

systems, especially automated typesetting from

databases. w software for many computer platforms,
training and support.

TREVORROW, Andrew

1-3-37 5th St., Habsiguda. Hyderabad 500007, India

TpX and Postscript programming services. Experience in

VAX/VMS, UNIX and Macintosh environments.

Author of DVItoVDU, PSPRINT and O z m .

Prepared to travel anywhere!

Information about this service can b e obtained f rom the Users Group office,

P. 0. Box 9506, Providence, RI 02940, (401) 751-7760, Fax: (401) 751-1071.

Forty faces of Computer Modern

designed by Donald Knuth

published In Adobe Type 1 format

compatible with

Adobe Type hlanager

and all PostScript printers

$345.00 Educational $195.00

LIacintosh or MS-DOS

Blue Sky Research

534 Southwest Third Avenue

Portland. Oregon 97204 USA

(800) 622-8398. (503) 222-9571

F.4X (503) 222-1643

