
TUGboat, Volume 15 (1994), No. 1

to show off. And reader contributions for this col-

umn are still welcome!

o Victor Eijkhout
Department of Computer Science
University of Tennessee at

Knoxville
Knoxville T N 37996-1301
Internet: eijkhoutQcs .utk. edu

Random Bit Generator in

Hans van der Meer

1 Introduction

When I started using w for my collection of exam

questions, the need of a random bit generator arose.

With such a generator it is easy to randomly per-

mute items of multiple choice questions, choose be-

tween different variants, e t ~ .

Since part of my interests are in the field of

cryptography it was most natural to look for a con-

venient source of a random bitstream in that field.

Such a source is provided by shiftregisters, the sim-

plest form of which is the linear variety. Although

not strong enough for direct use in cryptographic

applications, their random properties are neverthe-

less excellent. Furthermore they are easily imple-

mented, a real asset because of W ' s limited abili-

ties in arithmetic. The prime reference for shiftreg-

isters is the famous book by Golomb[l].

2 Linear Shiftregisters

Before describing how such a shiftregister can be im-

plemented in w, it is necessary to have a modest

look a t their construction. The figure shows a small

linear shiftregister. It consists of five so-called stages

So . . . S4 and is therefore called a five-stage register.

Each stage is a memory unit capable of holding one

bit. The values of all the stages together make up

the state of the register; in the figure the current

state S = (11010).

The register is operated in the following way.

At each step the bits in the stages are shifted to the

stage at their left. The bit in stage So is thereby pro-

duced as the output bit. Of course the vacancy left

in the rightmost stage must be filled up. Therefore

all stages which in the figure have an exit at the top

of the stage box, also spawn their bit through this

exit just before the bit migrates to the left. These

exits are called taps. The bits spawned are com-

bined by the exclusive-or operator and the resul-

tant bit fills the rightmost stage. E.g., with taps at

S,,S,,Sk, . . . the mod2 sum S, @ S, @ Sk @ .. . is

formed. Thus the register produces an output bit

and a new state at each operation step. In the ex-

ample the output bit will be a 1 and the next state

s = (10101).

It is easily understood that eventually the bit-

stream must repeat itself. Because an n-stage reg-

ister holds an n-bit quantity it can exist in 2n dif-

ferent states only. Since new states are produced by

a strictly deterministic process, a periodic pattern

of successive states must result. Thus the output

stream will be periodic. Of course it is desirable

that the length of the cycle be as long as possible.

These registers can also be described with a

polynomial in a bit variable x E {0,1}, called the

characterzstzc polynomzal. The example register has

characteristic polynomial

f (x) = 1 + x2 + x5

It turns out that the length of the cycle produced

by a register characterized by a given polynomial

is connected to certain properties of this polyno-

mial. Particularly useful are the so-called primitive

polynomials.1 One is able to show that primitive

polynomials lead to the longest possible period for a

linear shiftregister of a given size. In fact two cycles

are produced: (1) a cycle of period 1 consisting of a

stream of zeroes, (2) a fine random stream of zeroes

and ones of length 2n - 1. The first cycle, the zero

cycle, is not entirely useless as it offers a natural way

for shutting off the random ~ t r e a m . ~

After having explained how a shiftregister

works, it is easy to see why I chose the register based

on

f (x) = 1 + xZ1 + x2*

for the implementation of a random bit generator

in w. It is a primitive polynomial and therefore

has a longest period of 4,194,303 bits-more than

enough for all but the most exotic applications. And

another important fact is that it has only two taps,

Roughly the equivalent of a prime number

among polynomials plus an additional condition.

I am using this stream when typesetting the

full collection of exam questions. The absence of

random shuffling makes it easier to connect the

printed output with the TEX input.

TUGboat, Volume 15 (1994), No. 1

located at the extremities of the register. This sim-

plifies the implementation significantly.

3 Implementation

We are arriving at the implementation of all this

stuff. At last! The simplicity of the implementation

is in part due to the choice of an exponent below 32,

making it possible to represent the complete state

of the register with a single count register. Since

the character Q is used in internal macros, don't

forget the catcode change with \makeatletter or

\catcodei\Q=ll and changing it back afterwards.

\newcount\QSR

Furthermore we need a constant, necessary for han-

dling the case where a 1-bit fills the vacancy in the

rightmost stage. Our choice n = 22 dictates the

value 2" = 2,097,152.

\def\QSRconst{2097152)

Initialization of the stream is done by simply setting

the count register (globally) to the intended start

value. Keeping this value between 1 and 4,194,303

can be left as the responsibility of the user.3

\def\SRset#l{\global\QSR#l\relax)

Each step in the register cycle needs the calculation

of the exclusive-or of the stages having a tap. The

form of the characteristic polynomial chosen con-

fines this to the bits corresponding to xZ1 and xO..

Intricate calculations are therefore not needed. The

value of the tap a t the highest coefficient can be

tested by comparing the register contents with the

constant \QSRconst and jotting down the result in a

scratch register. With \if odd we take a look at the

parity of the state which provides the value for xO.

A division by 2 then conveniently shifts the contents

of all stages one place to the left. We place a 1 in

the highest stage by adding \QSRconst, if there is

an odd number of 1's in the two taps examined. Fi-

nally note that the new status is assigned \global

and that the whole process is enclosed in a group

which localizes the changes to the scratch register.

\def\QSRadvance(\begingroup

% examine value of highest tap
\ifnum\QSR<\@SRconst\relax \countQ=O

\else \countQ=l

\fi

% examine value of lowest tap
\ifodd\QSR \advance\countQ by 1 \fi

% all stages advance
\global\divide\QSR by 2

% place I in highest stage

It is not difficult to write a macro that takes

for its argument the value modulo 4,194,304 but one

has to be careful not to end up with the null cycle.

Production of an output bit and advancing the reg-

ister one step is done by:

\def\SRbit{\QSRadvance

\ifodd\QSR l\else O\fi

}

The bit thus produced can be used in decision mak-

ing. An example is the macro below which chooses

between its first and second argument on the value

of the next output bit of the register. With it we

can write

and effect a random choice between the arguments.

The implementation of \SRtest is

Another application is the permutation of items.

Two items will be randomly interchanged by

Those who are interested in the current value of

the register state can obtain this by looking at the

count register:

References

[I] Golomb, S.W. 1967 Shzft Register Sequences,

San Francisco: Holden-Day.

o Hans van der Meer
University of Amsterdam
Faculty of Mathematics and

Computer Science
Plantage Muidergracht 24

1018 TV Amsterdam
Netherlands
hansmQfwi.uva.nl

