
The (Pre)History of Color in Rokicki's dv i ps

James Lee Hafner
IBM Research Division, Almaden Research Center, K53/802, 650 Harry Road, San Jose, CA 95120-6099, USA

haf ne real maden. i bin. corn

Abstract

In t h s paper I give an abbreviated history of the current scheme for using color
with Rokicki's dvips program up to the end of 1993. The real story begins in
early 1990, when a local user asked if I could add to the fledgling FoilTEX project
support for color to take advantage of our new color printers. This started a major
effort, in collaboration with Tom Rokicki, to find an efficient and simple method
for specifying color in TEX documents.

Introduction our new color printers. (At the time, I was not aware

The \speci a1 command enables you to make
use of special equipment that might be avail-
able to you, e.g., for printing books in glorious
T~XIIicolor.

D. E. Knuth

As the quote above indicates, the grand wizard him-
self expected that color could (would?) be incorpo-
rated into TEX. He expected that this would be done
through the use of \special commands to the dvi
driver. In spite of t h s , not much was done with color
for many years. Even SLITEX, where color is very de-
sirable, was written to handle color in a rather cum-
bersome way.

In t h s paper, I will describe the efforts that went
into the design and development of the current color
support in Tom Roluclu's dvi ps program. I consider
this the prehistory of true color support because only
some of the real color issues were addressed (and
many of these were done via simple hacks). Before
we go into dvi ps's method, let me set the stage.

The availability of color PostScript printers cre-
ated a need for a better method to handle color. In
stepped a number of people, including Leslie Lam-
port who wrote co lor . s t y and Timothy Van Zandt
who wrote PStricks. These all use literal PostScript
commands passed to the dvi driver and then to the
output PostScript file to create color effects. Unfor-
tunately, there are problems with the use of literal
PostScript. Namely, since each page is generally a
self-contained graphics object, color effects on one
page would not readily pass over to the next. Fur-
thermore, effects at the end of a current page might
trickle into the footnotes or page footer. This forces
the use of these color utilities to be limited to very
small parts of documents, e.g., single boxes. On the
positive side, most dvi-to-Postscript drivers handle
these lands of literal PostScript \speci a1 s, so usabil-
ity/portability was not an issue.

My character enters the story in early 1990,
when a local user asked if I could add to the fledgling
FoilTEX project support for color to take advantage of

of the two packages mentioned above.) Using dvi 2ps
and dvi a1 w, I massaged some primitive color sup-
port into these programs but certain obstacles came
immediately to light. For example, in dvi a1 w, large
characters and all rules are placed immediately on
the first pass of the page, and then the graphcs en-
vironment is set up for the main characters. This is
efficient for memory use but not for consistent color.
If one tries to set a large square root sign in color, the
opening check mark is fine but the long rule above
the enclosed formula will always be black. Similar
splits of colors occur for large brackets.

Finally, I came across Rokicki's dvi ps and deter-
mined that this is very well suited for color. Some of
the reasons for this are stated below. This started a
collaboration with Tom about how one could achieve
the desired effects. In the next section I discuss the
relevant issues. Later I talk about the first real at-
tempts at getting at the problem. Finally, we describe
the current system in some detail and discuss some
of the limitations.

The Issues

There were a number of issues that we had to deal
with at three different levels of the process. At the
TEX-level (i.e., for the user macros) we wanted them
to work across formats so that they could be used
in FoilTEX as well as Plain TEX and LATEX, for exam-
ple. We had two somewhat conflicting requirements
at this level as well. We wanted to allow the naive
user to specify colors without having to know a spe-
cific color model (do you know what RGB= (1, .5 , . 2)
will look like? do you even know what RGB stands for
or the notation (1, . 5 , .2)?). At the same time we
wanted enough functionality in the underlying sys-
tem to let sophisticated color experts use a broad
range of color models and effects. Furthermore, the
macros should lend themselves to the kind of effects
one would expect with regards to TEX'S grouping. For
example, it should be possible to nest colors with the
expected results.

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting 201

James Lee Hafner

Eauallv imwortant from our woint of view. A First Pass - .
the macros should be device-independent. In par-
ticular, they should not be written so that only
PostScript printers could handle them. This means
that the \special keywords should not invoke lit-
eral PostScript, but be generic. The transformation
from these generic keywords to the device language
(e.g., PostScript) should be handled by the driver it-
self. As far as I know, at present only dvips and
TeXview on a NeXT handle these \speci a1 s. Hope-
fully, in the next era in this history (see Rokicki's arti-
cle in these proceedings), more drivers will be added
to this list.

Furthermore, nesting mformation should not
get lost at each new page or other structural break,
nor should the order of the pages matter when pro-
cessing. This of course requires careful handling at
the dnver level. It must track this nesting mforma-
tion and be able to restore state for any speclfic page.
Structural breaks include but are not limited to mar-
gin paragraphs, footnotes, headers and footers.

On the other hand, it is important to note when
deahg with color that different rendering devices
(even if they are POSTSCRIPT devices) can produce
dramatically different perceptual colors on the same
input. For example, on a Tektronix wax printer, green
is dark and rich whereas on an X-display the same
color is much lighter and even phosphorescent. Ide-
ally the driver should be able to customize itself for
t h s dscrepancy, at least on named colors.

Dvi ps's prescanning processes and its ability to
modify its behavior for different printers were ideally
suited to these ends. (Besides, it is well written code
and so easy to dive into to add modifications.)

There is one issue that we did not address. That
is the issue of "floats". By floats, we mean anything
that appears in some place other than at the current
point where TEX encounters it. This includes the ob-
vious floats llke figures and tables as well as the more
subtle issue of footnotes (particularly long footnotes
that might get split across pages) and saved boxes.
The problem here is that color attributes at the time
the float is processed may conflict with color at-
tributes at the time the float is placed in the docu-
ment. For example, a float that is encountered when
text is blue and background is yellow may float to a
page that has a yellow background. There are two
possible approaches to this, namely, the float picks
up the attributes on the page on which it is set or it
takes its attributes (and the surrounding attributes)
with it to the float page. In this case, the float may

In the frrst attempts at addressing t h s problem of
color, we ignored the device-independence of the
\special keywords and attempted to find a solu-
tion that required very minimal (if any) changes to
the original dvi ps code.

We used literal PostScript strings in \speci a1
macros. There were two h d s of macros. Ones that
just set the color state, and another that tried for
nesting. This saved the current color state on the
PostScript stack, set the color and at the end of the
grouping, restored the color state from the stack. For
example,

\def\textRed{%
% s e t color t o Red

\speci a1 ips: 1 0 0 setrgbcolor}}
% save current color

\def\Red#l{\speci a1 {ps : currentrgbcol or}
% s e t color and typeset #1'

\textRed #1
% restore old color

\speci a1 {ps : setrgbcolor}}

To help with changes across page boundaries,
we made a small modification to the bop (Beginof-
Page), eop (EndOfPage), and s t a r t in the header
files. Basically, eop saved the current color, bop re-
stored the color and s t a r t initialized the color on
the PostScript operand stack. Tom suggested that we
do t h s on a separate color stack, an idea we never
implemented because we soon abandoned t h s ap-
proach. We realized that this method was inherently
flawed because it was too much tied to PostScript and
it only worked if the document was processed front
to back with all pages printed. We thought about
storing more of the color stack information in the
PostScript itself, but this still suffered from a nurn-
ber of limitations, not the least of which is the first
one mentioned above.

The Current Scheme

After reahzing that any attempt to do t h s work in
the PostScript code was either doomed or too costly
in terms of PostScript resources, we determined that
it would be best to have dvi ps track everything inter-
nally, primarily during the prescan and then when a
color is changed (either by starting a new color region
or closing one), simply output a "set color" command
in PostScript.

Below are the basic features of t h s scheme.

have a boxed backg;oAd that differs from the main The \speci a1 Keywords. AU color \speci a1 s be-
page on whch it is set. As should be obvious, this gin with the keyword color (with one exception).
problem is very subtle and it is not clear what ap- The "parameters" to this keyword and their desired
proach is the best to take. Some local grouping a la effects are described below:
the current scheme may provide a partial solution to ColorName
the problem using the first approach, though we have Declare the current color to be the specified
not experimented with it at all. color. Furthermore, drop all current color stack

202 TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

The (Pre)History of Color in Rokicki's dvi ps

hstory, and tell the driver to set the new color
state to ColorName (see the section on Header
Files).

Model Parameters
Same effect on the color stack hstory as above.
The new color state wdl have model determined
by Model, e.g., rgb, cmyk, c i e , lab, etc., and
parameters Parameters in that model.

push ColorName
Append or save the current color to the color
stack, set the new color to ColorName.

push Model Parameters
Same as above but build the new color state
from the model and parameters.

POP
Take previous color off the color stack and tell
the driver to use this for the new color state
(used for closing of group).

There is one additional color special keyword.
This is background. It is used with either the options
ColorName or Model Parameters to tell the driver to
set the background color of the current page and
subsequent pages.

Some things to note about this system. First, it
is completely generic, with no reliance on PostScript.
Second, it assumes that some color names are known
to the driver or are defined in the output file. For ex-
ample, in PostScript, dvi ps could predefine Red to
be 1 0 0 se t rgbco lo r or 0 1 1 0 setcmykcolor.
(In fact it uses the latter.) The user might also be able
to use the drivers' literal strings mechanism to pre-
define their own color names. T h d , there are two
types of color settings. The first is just a "set color
and forget the stack." The other "push"es the current
color on the stack, sets a new color, and (presumably
at the end of a group) "popWs the last pushed color off
the stack to restore. This is the basic nesting mecha-
nism. It is limited only by the resources dvi ps uses.
Fourth, the parsing of the flags is in a hierarchical
order. First comes the co lor keyword to indicate a
color special. Next is either a known color name or
a color model. After the color model are the param-
eters for the chosen color. This is in slight contrast
to PostScript itself which is more stack oriented and
expects the parameters first. We felt that if the driver
didn't understand a particular model it should recog-
nize this in the order it parses the \speci a1 string.

This functionality of being able to specify the
model and parameters allows sophisticated color
users a simple option to get special effects.

Header Files. As mentioned above, we assume that
a certain set of color names is already known ei-
ther to the driver internally or is passed to the out-
put file for the printer interpreter. In dvips t h s
is done in the second manner via the co lo r .pro
header file. Ths is prepended automatically to the
output stream as soon as any color special is en-
countered. In this file, two thmgs are defined. First,

the PostScript command setcmykcolor is defined
in terms of se t rgbcolor in order that the output
can be processed by some old PostScript interpreters,
i.e., ones that do not recognize this function. More
precisely, this is done only if the current interpreter
requires a definition for t h s function. Other color
models could also be defined here if necessary. Sec-
ond, the predefined color names are defined in terms
of the CMYK (Cyan, Magenta, Yellow, Black) color
model. The reasons for this choice are that most
color printers use this physical model of printing.
Ths is a subtractive color space as opposed to the
additive color (RGB - Red, Green, Blue) of most dis-
plays. Another reason is that I had a good template
for matching color names to parameters in the CMYK
color space for a particular printer.

These colors are only conditionally defined in
co lo r . pro. If they are known by the userdi c t , then
no new defmtion is added. The reason for t h s is that
a particular device might need to have different pa-
rameters set. Dvi ps's configuration file mechanism
can then easily be used to customize the color param-
eters for a particular device by inclusion of a special
device header file.

I emphasize at t h s point the dstinction between
physical device and output data stream. The latter is
PostScript or HPGL or PCL or some such. The former
is the actual physical device. These devices can vary
widely even under the same data stream. An analogy
is the difference between a write-whte or a write-
black printer and the need for finely tuned bitmap
fonts for each. They may both be PostScript printers,
but they print differently. The driver should be able
to compensate for the physical characteristics of a
given device, if at all possible. -

The Color Macros. The color macros, defined in

the style file colordvi . s t y , come in basically two
flavors. One kind sets a new color by issuing a
\speci a1 {color ColorName} or \speci a1 {col o r
Model Parameters}. The second is a combination of
pushes, sets and pops for nested local colors. Fur-
thermore, there are user definable colors of both
types, where the user declares the color model and
the parameters. Finally, there is a \background
macro for setting the background color. For exam-
ple, the revised version of the \textRed and \Red
macros defined above are:

% s e t co lor t o Red
\def\textRed{\special {color Red}}

% save cu r r en t co lo r and s e t Red
\def\Red#l{\special {color push Red}

% typese t # 1 and r e s t o r e o ld co lo r
1 \speci a1 {color pop}}

These are described in more detail in Hafner
(1992) as well as in the documentation for dvi ps and
for FoilTEX. Note, that these macros are completely
device independent, hence the name of the style file.
The macros are all in plain TEX form, so that they can

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting 203

James Lee Hafner

be used in any format or macro package. In other
words, they are not WX specific.

As for the color names, we used most of the
names from the Crayola crayon box of 64 colors with
a couple of additions and some deletions. Adhtions
were the named Pantone colors not already included
(e.g., RubineRed) and a couple of other well-rendered
colors which we named ourselves (e.g., RoyalBlue).
Deletions were mostly for colors that did not render
well on our printers. In particular, the new fluores-
cent colors were eliminated. We chose these color
names over, say, the X11 colors for a couple of rea-
sons. First, we originally tried the X1 l colors but they
suffered from bad rendering on all devices tested.
They just did not match their names (at least to me
on my display or printer). Second, we could match
the crayon names to the Pantone tables for a par-
ticular printer, and so give an approximate Pantone
match to the color names as well as a good set of pa-
rameters. This information could (should?) be used
at printer setup time to fine tune the parameters
of the predefined colors to nearly match a Pantone
(via special header files as mentioned above). In this
way, output devices can be approximately calibrated
to produce similar and expected results. The color
names were also very descriptive of the actual color
and very familiar to (at least) the North American
TEXies. So, naive users have some idea of what to ex-
pect from certain color macros.

Tracking the Color Stack. The color stack or history
is tracked by dvi p s in an internal structure. During
the prescan which always goes from front to back on
the dvi file, the color stack is tracked and a snap-
shot is taken at the beginning of every page. Dur-
ing the output pass, regardless of what pages are
being processed, the driver knows the state of the
stack at the beginning of every page. First one out-
puts both the background color (if necessary) and the
top color on the color stack (i.e., the current color
active at the beginning of the page) for the page be-
ing processed. Then color pushes just augment the
color stack. Color pops just drop colors off the stack.
Skipped pages are handled in the same way. T h s
tracking 'keeps everything consistent from page to

page.

The only remaining issue is how other struc-
tural problems, llke margin paragraphs, headers and
footers, itemize tags, floats and the like deal with
color changes. Other than floats, these can be han-
dled with simple redesign of the basic macros that
deal with these page layout areas. Namely, they sim-
ply need to protect themselves with some local color
macros. Unfortunately, most formats were written
before t h s issue of color came up, so certain prob-
lems can arise. As far as I know, FoilTEX is the only
format that has the color macros integrated into it.
For example, the header and footer macros have their
regions wrapped in a local color command that de-
faults to the root color of the document. So, for ex-
ample, if the root color is blue, and there is some
green text that gets split across page boundaries,
then the text will resume green at the beginning of
the next page and furthermore, the footer of the cur-
rent page and header of the the next page will still be
set in blue.

The mechanism described here is basically a
hack to deal with these problems. A more structural
approach at the driver level will be described by Tom
Rokicki. At the user level, there is now some color
support (e.g., \normal co lor and the color package
by David Carlisle) in the new version of I4QX that is
designed to help deal with some of these problems
in the context of existing drivers. It should be noted
that the user interface in the color package is very
different from the one we have presented.

Concluding Remarks

The story doesn't end here, of course. We don't claim
to have solved all the problems (there are still many)
nor to have provided the functionality that a profes-
sional publisher might want (refer to the paper by
Michael Sofka on that point). The next era in the story
is for Tom Rokicki to write (see his paper in this pro-
ceedings). Hopefully, Rokiclds new developments
will provide a basis for a very powerful mechanism
for setting color and one that can be easily integrated
into plain TEX and the next generations of W X (and
other formats).

Acknowledgements

The Remaining Issues. We have discussed almost We thank Tom Rokicki for his comments on this pa-

every issue that was raised in the beginning. These per as well as for h s acceptance of support for color

included the simplicity of the macros themselves so in dvi p s and his continued interest in the subject.

they can work with any format, can be used by naive Thanks also to Sebastian Rahtz for the invitation to

users with simple and generally recognizable names participate in this session.

(Crayola crayons), still fully support arbitrary color
models (if the driver can handle them), and their in- References

the particular Output data stream' we
Hafner, James L., "FoilTEX, a BTEX-like system for

also discussed, in our implementation in dvi ps, how
typesetting foils", TUGboat, 13 (31, pages 347-

nesting and crossing of page boundaries are handled
in a clean way. Furthermore, the implementation also

356, 1992.

can be easily customized for device-dependent dif-
ferences. even within the same data stream.

2 04 TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

