
TEX to HTML Translation via Tagged DVI Files ∗

Michael D. Sofka
Computing Information Services
Rensselaer Polytechnic Institute
Troy, New York 12180-3590
sofkam@rpi.edu

http://www.rpi.edu/~sofkam/

Abstract

This paper describes dvihtml, a program under development for translating a
tagged DVI file into HTML. A common problem when translating TEX into an-
other format is handling unexpected macros. Fortunately, TEX’s macro language
is flexible enough to pass markup information to the DVI file in the form of
\special’s, fonts and small horizontal or vertical movements. Translating the
resulting DVI file thus allows TEX itself to serve as the macro parser for transla-
tion. This technique can be extended for writing smarter DVI viewing programs,
including viewers that can perform common layout editing.

A common typesetting request is the ability to place
copies of books and articles on the Web in HTML,
or to provide files in SGML or common word pro-
cessor format. To aid in this task, many translators
have been written that read TEX or LATEX files and
write the appropriate output. Translators that read
TEX files directly, however have the common limi-
tation of not understanding TEX’s macro language,
or even being fooled by macros that simply redefine
a common command already known to the transla-
tor. Add to this the inconsistency with which some
authors (and typographers under the pressure of a
deadline) code TEX files, and a uniform and univer-
sal translator seems a hopeless task.

TEX authors commonly write new macros that
generate content or important layout not under-
stood by the translator. In order to handle ar-
bitrary macros the translator must be updated, or
new translation tables supplied. Even then, a macro
writer could fool the best translators by redefining
the input syntax to better suit idiosyncratic work
habits. For this reason most TEX translators have
targeted specific input languages, usually LATEX.
This is the method used by LATEX2html and Sci-
entific Word, which are both discussed elsewhere
in these proceedings (Deland, 1998, Moore, 1998).
It is also the method used by IBM Techexplorer,
which understands LATEX and a wide range of TEX’s
∗ I would like to thank Sebastian Rahtz and Eitan Gurari

for their helpful comments on an early draft of this paper. I
would also like to thank my managers at RPI, Gary Schwartz
and Katherine Bursese, for the quiet time at work to finish
this article, and for allowing me attend the Northeast TUG
Conference.

math primitives and plain TEX macros (Sutor and
Dooley, 1998).

Alternatively, one could write a translator that
understood TEX’s primitives and macro language.
This, however, is a daunting task given the many
special cases embodied in TEX’s expansion rules.
Fortunately, a readily available TEX translator ex-
ists which is guaranteed to understand and correctly
interpret any TEX file. The program is, of course,
initex, the TEX executable itself. The only prob-
lem is that the output of TEX is a low-level DVI file
in which most of the high-level document structure
is lost.

Using the \special command and some other
macro tricks, however, TEX can translate a docu-
ment into a “tagged” DVI file. A tagged DVI file
is a DVI file which encodes information about the
higher-order coding which produced the lower-level
DVI output. This tagging, along with the hierar-
chical structure of the DVI file, can be used to cre-
ate HTML or other output according the user spec-
ifications. Depending on the specific restrictions
required by the target language, the tagging need
not even be complete. For example, HTML encodes
headers as:
<H1>LaTeX and Postmodern Typesetting:
Hermeneutics and the Tyranny
of Documentclass Structure.</H1>

with no regard to specific font, size or line breaks.
Indeed, this information should be left to the dis-
play program when standard HTML is the desired
outcome. The only information required in the DVI

TEXNorthEast Conference, March 22 – 24, 1998 214

TUGboat, Volume 19 (1998), No. 2 215

file is a “tag” identifying which characters are in the
header.2

Such is the flexibility of TEX’s macro language,
that the original author coding may not need to be
modified. A LATEX package file, for example, could
redefine common commands to produce tags. The
same package could further redefine primitives and
definition commands so that all new macros will ei-
ther be tagged, or will at the least not interfere with
the translation process. Problem commands which
do not generate content important for HTML dis-
play (such as running heads, page breaks, etc) can
be disabled or tagged and ignored during transla-
tion.

The DVI File

While most TEX users are aware that the output
of TEX is something called a “DVI” file, fewer have
ever had the opportunity to study this file in detail.
Indeed, this task is difficult since the file is binary
and displays poorly in most editors. I suspect this
is one reason various flavors of TEX input files have
been the source language of choice for translation
(the other being the lack of high-level information
within the DVI file).

DVI files, however, are really simple. As de-
scribed in Knuth (1986b) they consist of a series of
1-byte commands and parameters which compactly
describe how characters and rules should be placed
on a page. There are 250 DVI commands in all, but
most are for setting characters and changing fonts.
In addition, many commands come in four flavors
depending on if the parameter is 1, 2, 3 or 4-bytes
long. Full details on the DVI file format, along with
sample code for reading DVI files, can be found in
dvitype.web (Stanford University, 1995).

Depending on how you group the commands
there are about 11 categories of DVIoperation codes
(or op-codes, as they are called). The entire set of
op-codes is shown in Table 1.

There are a few items to note from Table 1.
First, fully 136 of 250 DVI op-codes are used to
print characters, and another 68 are used to select
a font. Likewise, there are 14 horizontal and 14 ver-
tical movement commands. Font definitions, which
provide a mapping between an external font name
and a DVI file font number, take another 4 bytes.
This profligate consumption of op-codes for setting
characters is done for efficiency. The letter ‘G’ in
Computer Modern, for example, can be typeset with
the DVI op-codes

2 There are additional issues such as handling simple math
in a header, and finding correct word boundaries. These are
addressed below.

Category op-codes
Print Character set char0 . . . set char127,

set1, set2, set3, set4,
put1, put2, put3, put4

Select Font fnt num0 . . . fnt num63,
fnt1, fnt2, fnt3, fnt4

Define Font fnt def1 . . . fnt def4
Print rule set rule, put rule
Horizontal right1 . . . right4, w0,
Movement w1 . . .w4, x0, x1 . . . x4

Vertical down1 . . . down4, y0,
Movement y1 . . . y4, z0, z1 . . . z4

Header pre, post, post-post
Page bop, eop
Stack push, pop
Special xxx1, xxx4
Undefined/nop nop, 250–255

Table 1: DVI op-codes by category. Note that 136
commands are used to print characters, another 68
for fonts and 28 for moving within the DVI file.

fnt num0set char71

which is only two bytes in the file. The word “Gen-
tle” can be typeset using a total of 7 bytes, plus three
bytes for a right2 command (one for the command,
and two for the parameter) which kerns between ‘n’
and ‘t’.

Second, there are a number of commands of the
form op〈n〉 where 〈n〉 is the value 1, 2, 3 or 4. For
example, right1, or fnt2. These are variations of
a single op-codes which take a 1, 2, 3 or 4 byte pa-
rameter. TEX tends towards using the more efficient
op-code to represent a value.

Third, the movement parameters w1–4, x1–4,
y1–4 and z1–4 are register commands. They move
the given distance and set the value of the corre-
sponding w, x, y or z register. These register values
can then be recalled using the one byte w0, z0, y0
or z0 commands. TEX tends to use the horizontal
registers for word spaces and kerns, and the verti-
cal registers for movement between lines and para-
graphs.

Fourth, the push and pop commands store and
retrieve the current values of the w, x, y or z regis-
ters and the current horizontal and vertical position
on the DVI page. TEX uses these to slightly optimize
parameter setting. More important for translating
tagged DVI files, TEX outputs push/pop pairs which
correspond to boxes in the original TEX file. This

TEXNorthEast Conference, March 22 – 24, 1998

216 TUGboat, Volume 19 (1998), No. 2

correspondence is not 100%. Particularly, TEX opti-
mizes the output of lines from paragraphs so that
most boxes are removed from common baselines.
But in math-mode and tables most of the boxes re-
main.

Finally, the xxx1 and xxx4 are how TEX out-
puts \special’s to the DVI file. The literal (macro
expanded) text of the \special is placed in the file.
The single parameter of the xxx command is the
length of the special. It is entirely left to the DVI

translator program to interpret what a \special
means, and the macro writer to be sure the con-
tents of a \special are correct, and correctly lo-
cated within the DVI file.

Tagging a DVI File

How can information in the DVI file be used to re-
cover high-level coding? The trick is to use TEX’s
superlative macro language to send markup infor-
mation, embedded in the DVI file, to the transla-
tor. The markup information can be indicated in
at least three ways: distance, fonts and \special’s.
Further, much of the marking can be accomplished
by redefining existing TEX macros and primitives,
reducing intervention into the authors coding.

Tagging using distance. One source of tagging
information in a DVI file is the size of horizontal and
vertical movements. TEX use the w and x registers
for movement between words, but the amount of a
move will vary from line to line. Likewise, movement
between lines and paragraphs is accomplished with
the y and z register commands. A typical DVI se-
quence (simplified) representing two lines in a para-
graph is:

push
right3 〈n1 〉fnt num0
set char71set char101set char110right2 〈n2 〉
set char116set char108set char101w3 〈n3 〉
set char114set char101set char97set char100
set char101set char114set char115w0

. . .
pop
y3 〈m〉
push

set charn. . .
pop

That is, each line is nested in a push/pop pair.
Within this pair the w register is used for inter-
word spacing, while a right or the x register is used
for kerns. Each line is separated by a y register
command. In addition, paragraphs are usually sep-

arated by a z register command if \parskip is non-
zero.

The problem is that while words are typically
separated by w register commands, not all w com-
mands are the result of word spaces. When gener-
ating the DVI file, TEX will optimize horizontal and
vertical movements within boxes by using the w, x, y
and z registers. A kern might be a right, or it could
be a x command if a kern of the same amount ap-
pears later in the same line (a frequent occurrence).
The details of this optimization are in Knuth, 1986b.

Fortunately, TEX’s macro language can help us
out. Consider the following TEX code.
\spaceskip=1sp
\xspaceskip=1sp
\hsize=\maxdimen

\baselineskip=1sp
\lineskip=0pt
\lineskiplimit=-16383pt

\parskip=0pt

The first two lines set the value of word spaces to
one scaled point (sp). A scaled point is 1/65536th of
a point, and is the smallest unit that TEX can move.
Under normal circumstances there are no distances
of 1 sp in a DVI file. Typical distances actually found
are measured in at least 1/10 of a point units.

The third line sets the width of a paragraph
to the value of \maxdimen, which is 16383.9999 pt
or about 18.9 ft—longer than a typical paragraph.
The combined effect is to turn off line breaks making
each paragraph a single line, and move exactly one
scaled point between each word.

The next three lines adjusts TEX’s vertical list
building so that one scaled point is placed between
each line (each paragraph) of text. This is accom-
plished by first setting \baselineskip to 1 sp then
turning off other interline glue by forcing TEX to
never use \lineskip glue.

Finally, \parskip is set to 0 pt so that no addi-
tional glue is added between paragraphs. The same
overall effect could be accomplished by setting:
\cs{baselineskip=0pt}
\cs{parskip=1sp}

The sum effect is that one can be reasonably sure
that all 1 sp horizontal movement in the DVI file rep-
resent word spaces, and all 1 sp vertical movement
represents paragraphs. All other movement can be
ignored, unless it to is being used for tagging.3

3 Variations on the above allow for normal hyphenation
and justification, but mark lines and paragraphs with one
and two scaled point vertical movements. Recovering exact

TEXNorthEast Conference, March 22 – 24, 1998

TUGboat, Volume 19 (1998), No. 2 217

A potential problem remains in that a later
macro might be expected to set the \baselineskip,
\parskip or other values, or even restore \hsize
something under 8 inches. Fortunately this can be
prevented with the following commands.
\newskip\junkskip

\let\spaceskip=\junkskip

\let\xspaceskip=\junkskip

\let\baselineskip=\junkskip

\let\lineskip=\junkskip

\let\parskip=\junkskip

\newdimen\junkdim

\let\lineskiplimit=\junkdim

\let\hsize=\junkdim

To be thorough we should also disable vertical and
horizontal movement commands such as \vskip and
\hskip. Care must be taken, however, to ensure the
semantics of such commands otherwise remains the
same.

Tagging using fonts. A second method of send-
ing tagging information to the DVI file is by fonts.
There are two ways a font can be used to indi-
cate output format: name and size. For exam-
ple, in a particular document the font Palatino at
16 point might only be used in one-heads. This is a
clear indication that during translation all 16 point
Palatino and intervening rules should be set within
<H1>/<H2>.

What if the design includes a three head in
10 point Optima, but 10 point Optima is also used
for figure captions. How can the two be distin-
guished based only on fonts? One method would be
to increase the font size by one scaled point. The dif-
ference between Palatino at 655360 sp and Palatino
at 655361 sp is will have no discernable affect on ap-
pearance, but they will be two different fonts in the
DVI file.

There are two drawbacks to using fonts to tag
markup information. First, it uses more fonts. TEX
has a limit of 256 fonts per DVI file, so any method
that makes extensive use of fonts will need to care-
fully select which fonts are actually loaded and used.
Second, each font can only carry one tag. Setting,
for example, \it\bf will result in only the bold-
faced font being used.

Tagging using specials. Nearly any tagging in-
formation can be included in a DVI file by using
TEX’s \special command. The \special com-
mand causes TEX to out insert the literal, macro
expanded argument, into the DVI file as an xxx1

word boundaries would be more difficult, but the resulting
paragraphs would be legible and formatted by TEX.

or xxx4 command, depending on the length of the
string. This is among the more heavily used and
abused features of TEX since specials are used for
all rotation, color, figure inclusion and PostScript
commands.

The major disadvantage of specials is that they
require DVI interpreters which understand the spe-
cific specials used—interpretation of specials is out-
side the purview of TEX. As a result, there appeared
a number of drivers which understood only specific
sets of specials. Some of these drivers were commer-
cial or were used internally by typography compa-
nies, and made use of \special’s which were not in
general use. Others were freely available, but as a
result lagged behind in the special sets accepted.

In 1997 Tom Rokicki (Rokicki, 1994) proposed a
set of specials to be supported by his dvips program.
This was recomended with modification by the TUG
Technical Working Group on DVI Driver Implemen-
tation and Standardization Issues(Rokicki, 1995).
While the proposed standard has inherent flexibility,
it cannot be used for all \special needs. Specifi-
cally, it doesn’t cover markup tagging, and its stack
scheme doesn’t allow for DVI file re-writing (as de-
scribed below). It does, however, propose a standard
method of writing non-standard macros which will
be followed in dvihtml. See Sofka (1995) for more
details of the standardization process.
Delimited tags. In principle, markup via the
\special primitive is easy. To mark a section, for
example, would require:4

\catcode‘\@=11

\let\t@gsection=\section

\def\section#1{%

\special{::tag begin(section)}%

\t@gsection{#1}%

\special{::tag end(section)}}

\catcode‘\@=12

assuming the macro \section had previously been
defined.

The \let primitive is used to preserve the true
definition of \section. The new definition is same
as the old, except \special places tags around it.

The :: identifies the special as being experi-
mental according to the draft standard. The type of
special is a “tag”, which means it is providing high-
level information for an interpreter. The begin and
end indicate that the high-level element is delimited
by two specials. section is the name of the tag.

4 My examples are in plain TEX to keep them simple. The
same can be done in LATEX by suitably redefining basic gen-
erator macros such as \@startsection, \new@command, etc.

TEXNorthEast Conference, March 22 – 24, 1998

218 TUGboat, Volume 19 (1998), No. 2

Block scoped tags. Not all tag-able elements can
be delineated using begin and end markers. Some-
times the the range of an element is implicit in the
coding, but not explicitly marked. For example,
when processing:
$$ABCE\over DEFG$$

“ABCD” is in the numerator, while “DEFG” is in
the denominator. It would be awkward to require plain
TEX users type

$$\special{::tag begin(numerator)}

ABCE

\special{::tag end(denominator)}

\over

\special{::tag begin(denominator)}

DEFG

\special{::tag end(denominator)}$$

when inputing math—even if suitable shorthand
tagging macros were defined. However, a tag can
be inserted into the scope of the numerator and
denominator by redefining the \over primitive as:
\def\tag#1{\special{::tag block(#1)}}

\catcode‘\@=11

\let\t@gover=\over

\def\over{\tag{num}\t@gover\tag{den}}

\catcode‘\@=12

$${ABCE \over EFGH}$$

This is output in the DVI file roughly as:
push

set char65 . . .
xxx1 〈16 〉::tag block(num)

pop
right4 〈n〉
down3 〈m〉
putrule〈a〉〈b〉
down3 〈m〉
push

xxx1 〈16 〉::tag block(den)
set char69 . . .

pop

Note that the contents of the numerator and denom-
inator are each contained within a push/pop pair.
The block type of ::tag affects the entire block
within which it is contained.5

Nested tags. The ::tag specials can be nested.
For example, a tag for italic text (assuming this
were not indicated using a font) might be nested
within the tag for a section. There is an ambiguity,

5 There is an annoying rule between the two tags in this
example. If rules are being translated, this one can be re-
moved by redefining \over using the \atop. If the rules used
in \over need special treatment they can be set with a 1 sp
width using \above.

however, when a delimited tag and a block tag in-
teract. How, for example, should the following be
interpreted?
push

xxx1 〈17 〉::tag begin(list)
set char71set char101 . . .
xxx1 〈18 〉::tag block(quote)
set char108set char111 . . .
xxx1 〈15 〉::tag end(list)

pop

Is the quote contained within the list, or the list
within the quote? When the order of application
matters, the resulting output will be different for
each interpretation.

By default this will be resolved by assuming
that block tags are delimited by begin/end tags, as
well as push/pop pairs. That is, internally, dvihtml
or other ::tag aware translator should convert the
above into:
push

xxx1 〈17 〉::tag begin(list)
xxx1 〈18 〉::tag begin(quote)
set char71set char101 . . .
set char108set char111 . . .
xxx1 〈16 〉::tag end(quote)
xxx1 〈15 〉::tag end(list)

pop

Why does the end() tag specify the element be-
ing ended? Wouldn’t a simple end with no argument
be enough to end the current tag? Unfortunately no.
The problem is TEX’s asynchronous output routine.
This means that in the middle of a paragraph of
quoted material you may suddenly find yourself in
the middle of page layout. The result is the following
sequence in the DVI file:
push

xxx1 〈18 〉::tag begin(quote)
set charn1 . . . nx

pop
xxx1 〈15 〉::tag end(page)
pop
eop
bop〈c0, . . . , c9, p〉
right3 〈4736286 〉
push
xxx1 〈17 〉::tag begin(page)
push

set charnx+1 . . . nz
xxx1 〈16 〉::tag end(quote)

pop

TEXNorthEast Conference, March 22 – 24, 1998

TUGboat, Volume 19 (1998), No. 2 219

If the output routine were also tagging elements
(e.g., top of columns, crop-marks, running head, and
so on), they would all appear between and inter-
laced with the quote. Explicite end statements with
matching parameters helps the above be rewritten
as:

push
xxx1 〈18 〉::tag begin(quote)
set charn1 . . . nx
xxx1 〈16 〉::tag end(quote)

pop
xxx1 〈15 〉::tag end(page)
pop
eop
bop〈c0, . . . , c9, p〉
right3 〈4736286 〉
push
xxx1 〈17 〉::tag begin(page)
push

xxx1 〈18 〉::tag begin(quote)
set charnx+1 . . . nz
xxx1 〈16 〉::tag end(quote)

pop

The problem is knowing exactly where in the
DVI file to insert matching begin and end tags.
There are at least three ways to resolve this. The
first is the method shown above, which uses ex-
plicit tags in the output routine to delimit pages and
columns. All that is necessary for correct rewrite is
inserting
textend tags at the same nesting level as the match-
ing begin, but before the end of page is marked.
Likewise for begin tags at the top of the page. The
assumption is that all begin/end pairs should per-
fectly nest in the rewritten DVI file.

A second method of resolving this problem, ap-
plicable only to a translator, is to redefine macros so
that page breaks do not occur at inopportune times.
For example, setting spacing and paragraph param-
eters as given above guarantees that page breaks will
not occur in the middle of a paragraph. By further
defining \output to be simply \ other interrupted
tags can be reconstructed. Alternatively, the tech-
niques discussed in Appendix D of Knuth (1986a)
can be used to signal the output routine about bad
break points.

Finally, it is possible to reconstruct the orig-
inal nesting of the begin/end pair by merging all
intervening push/pop pairs nested at the same level
as the interrupted tags. This method works, how-
ever, only if it is assumed that push/pop pairs and
begin/end perfectly nest—a condition that requires

careful macro writing since TEX has no way of en-
forcing the rule.

All three of the methods are used in dvihtml.
Macro and simplification will be used when possible,
tag nesting will be encouraged and nesting rewrites
will be used whenever it can simplify the coding.
The goal is a minimal re-write of author macros, so
the translator must make use of all the information
available in the DVI file.
Overriding scope. There are times when it may
be necessary to override the default scope of a ::tag
special (for example, if a block tag should be moved
outside of a delimited tag. This can be done using
the scope() option, which takes a single parame-
ter indicating what the scope for the current tag
should be. There are special cases for global scope
and page scope, to affect the entire DVI file or the
page on which the tag appears. stack specifies the
current push/pop pair. Otherwise, the parameter
should be label of a delimited tag which encloses
the new tag at any level.
What about alignments? The alignments com-
mands used by TEX present a mixed bag of difficul-
ties. Redefining & and \cr to provide block-level
tagging is trivial, but this breaks the \halign align-
ment template. While scanning the alignment tem-
plate TEX is expecting category 4 characters to in-
dicate tabs, and a real \cr (or \endline, which is
defined in virtex) to end the template. So, while
pre-defined math alignments such as \eqalign can
be handled via:

\def\tag#1{\special{::tag block #1}}

\catcode‘\&=\active

{\catcode‘|=4\gdef&{\tag{AMP}|}}

\catcode‘\==\active

\def={\tag{EQ}\char‘\=}

\def\cr{\tag{CR}\endline}

$$\eqalign{A&=B\cr

B&=D}$$

This same code breaks any future \halign at-
tempts. Tagging alignment entries requires some-
thing slightly more convoluted. An example of how
to do this is in figure 1, which redefines \halign so
that & is a tab character while the template is being
scanned, but is an active character while the body
of the alignment is being read. The active character
inserts tag specials.

Dvihtml and Tagged DVI Files

An outline of the proposed tagging \specials is in
figure 2.

TEXNorthEast Conference, March 22 – 24, 1998

220 TUGboat, Volume 19 (1998), No. 2

\catcode‘\@=11

\def\tag#1{\special{::tag block #1}}

\def\makebraceother{\catcode‘\{=12 }

\def\makebracenormal{\catcode‘\{=1 }

\def\maketabactive{\catcode‘\&=\active}

\def\maketabtab{\catcode‘\&=4 }

{\maketabactive \catcode‘|=4\gdef&{\tag{lamp}|\tag{ramp}}}

\let\t@ghalign=\halign

% Remove the { from \halign

{\makebraceother \catcode‘[=1 \catcode‘]=2

\gdef\@halign{[\makebracenormal\@@halign]}

% Collect alignment template and call halign primitive

\def\@@halign#1\cr{\t@ghalign\bgroup#1\cr\global\maketabactive}

% set catcodes and start halign

\def\halign{\makebraceother\maketabtab\@halign}

\catcode‘\@=12

Figure 1: Redefining \halign so that & is category code 4 (tab) while the alignment template is being
read, but active characters while the body of the \halign is read. The above introduces a potential
problem in that & remains active between \halign’s. This is okay for most macros built using \halign
because the alignment template was read when the macro was defined. This macro also breaks plain
TEX’s tabbing macros.

The dvihtml translator understands these spe-
cials, and uses them to re-write the DVI file so that
hierarchical information is preserved, and tagging
applied to the appropriate elements. It will op-
tionally write out a new DVI file, or a translated
tagged output file (HTML by default). Translation
is guided by a configuration file specifying conver-
sions for horizontal and vertical movements, fonts
and ::tag specials. By default, tags labels will be
converted verbatim so that in the absence of addi-
tional information the ASCII output file will have
intelligible markup. A sample dvihtml configura-
tion file is in figure 3.

In the case of LATEX files, a package can be writ-
ten which redefines the standard commands to pro-
duce tagged output. Plain TEX is, of course, trickier
since there is no way of knowing in advance what an
author will call a macro. Adding a couple \special
calls, however, is relatively easy and by default the
translation will pick up changes in font size, para-
graphs, simple math, etc, without needing to know
the individual macros which produced the DVI file.

Smart DVI Viewers

The approach of translating a tagged DVI file was
been used in at least two private translators (Rahtz,

1995, Sofka, 1993). It is also the approach used
by TEX4ht (Gurari, 1997b, Gurari, 1997a), which is
used to author hypertext documents. The method
is robust, and it is hoped that a pseudo-standard set
of tagging \special’s will encourage macro writers
to voluntarily pre-tag their code.

Once a DVI file is tagged, however, a number of
additional translation possibilities arise. For exam-
ple, complex page layout is notoriously difficult us-
ing TEX. Usually, by the time a book is printed, the
source code is filled with hard-coded page-breaks,
\vskip’s to balance columns, and so on. For some
designs, all glue stretch is removed to prevent TEX
from “fixing” layout attempts. This is tedium at it’s
worst.

On the other hand, the actual task—moving a
block of text a couple points up or down, or cutting
and pasting a figure—are trivial in WYSIWYG en-
vironment. The typographer knows exactly what he
or she wants to do, the difficulty is conveying that
information to TeX. What if the DVI viewer knew
how to edit TEX files? What if there were a way to
go from the image on the screen to the source file
that generated the image?

TEXNorthEast Conference, March 22 – 24, 1998

TUGboat, Volume 19 (1998), No. 2 221

::tag := 〈tag〉 [scope(〈scope〉)]
| line: 〈file:lineno〉

〈tag〉 := begin(〈label〉) 〈op-codes〉 end(〈label〉)
| block(〈label〉)

〈label〉 := [,a-z,A-Z,0-9] | 〈quoted-string〉
〈scope〉 := global | page | stack | 〈label〉
〈quoted-string〉 := "〈printable ASCII 〉"
〈op-codes〉 := 〈any DVI op-codes〉

Figure 2: Specials recognized by dvihtmlfor
tagging a document.

Translate fonts to bold, italic, etc.
font cmit10: scope(<I>, </I>);
font cmb10: scope(,);

font cmr17 at 28pt:
insert(header,

scope(<TITLE>, </TITLE>)),
scope(<H1>, </H2>);

...

hdimen 1sp: translate(" ");
vdimen 1sp: translate(<P>);
...

tag section: scope(<H1>, </H1>);
tag subsection: scope(<H1>, </H1>);

tag enumerate: begin();
tag enumerate: end();

tag list_item: translate();
...

Figure 3: Sample dvihtml configuration file.
The elements are choose to display the range of
translation possibilities.

\nopagenumbers

\def\sb#1{\special{before #1}}

\def\sa#1{\special{after #1}}

\gdef\numberlines{\special{line: \jobname:\number\inputlineno}%

\immediate\write-1{line: \jobname:\number\inputlineno} }

{\catcode‘\^^M=\active%

\gdef\startnumbering{\catcode‘\^^M\active \let^^M=\numberlines}%

\global\let^^M=\numberlines} % this is in case ^^M appears in a \write

\startnumbering

Misc paragraph: This is a normal line ending, while

this line ends with the macro \TeX

and this one ends with a hyphenated-

word broken across lines. This last line%

ends with a \%.

Figure 4: Macro to number input lines in the DVI file. Note that this macro modifies TEX’s end-of-line
semantics slightly.

TEXNorthEast Conference, March 22 – 24, 1998

222 TUGboat, Volume 19 (1998), No. 2

This style of editing has been dubbed “two-
view” by Kenneth Brooks (Brooks, 1988). In a two-
view editor both the source language and the WYSI-
WYG image can be modified with changes being re-
flected in both views. This approach is used in Lilac
(Brooks, 1991), which uses a non-TEX boxes-n-glue
language to typeseting (short) documents. Brooks’
choice of language was to avoid TEX global scoping,
lack of key-words, and modifiable syntax. Contrast
Lilac with Blue-Sky’s Lightning TEXtures(Hampson
and Smith, 1992), which repeatedly reads the entire
TEX file from the beginning while the user types.
Inbetween these two extremes, Chen, Harrison, and
Minakata (1988) and Harrison (1989) have discussed
some of the problems associated with incremental
formatting in the VorTEX project.

A tagged DVI file offers another intermediate
approach. Tags can be inserted into the DVI file to
aid two-view editing. For an extreme example, con-
sider the macro in figure 4, which inserts a \special
into the DVI file at the end of each input line. A
two-view editor could count input lines to find the
TEX code that produced the DVI output. An exam-
ple of the viability of this approach can be seen in
Asher (1992), who used specials to mark pagination
points within a DVI file, and the push/pop structure
of the DVI file to find good breakpoints within para-
graphs. The resulting file was processed, paged and
printed automatically.

The problem of efficiently parsing TEX’s input,
however, will require the cooperation of macro writ-
ers and users. It would be nice, for example, if
in LATEX3 all the relevant state information could
be inferred by the environment nesting, and com-
mands which altered expansion or redefined control-
sequences were unavailable to the user. This would
greatly reduce the amount of processing required by
a two-view TEX editor. The goal for dvihtml, be-
yond document conversion, is to serve as a testbed
for using tagged DVI files in smarter, if not true two-
view, TEX editing systems.

References

Asher, Graham. “Inside Type & Set”. TUGboat
13(1), 13–22, 1992.

Brooks, Kenneth P. A Two-View Document Editor
with User-Definable Document Structure. Ph.D.
dissertation, Stanford University, 1988.

Brooks, Kenneth P. “A Two-View Document Edi-
tor”. Computer 24(6), 7–19, 1991.

Chen, Pehong, M. A. Harrison, and I. Minakata.
“Incremental Document Formatting”. In Pro-
ceedings of the ACM Conference on Document
Processing, page 93–100. ACM, NY, 1988.

Deland, Donald. “WYSIWYG LATEX” 1998. work-
shop presented at TEXNorthEast conference,
March 1998.

Gurari, Eitan M. “A Demonstration of TeX4ht”.
1997a. URL: http://www.cis.ohio-state.
edu/~gurari/tug97/tug97-h.html.

Gurari, Eitan M. “TeX4ht: TeX and LaTeX for
Hypertext”. 1997b. URL: http://www.cis.
ohio-state.edu/~gurari/TeX4ht/mn.html.

Hampson, Steve and B. Smith. “A High Perfor-
mance TEX for the Motorola 68000 Processor
Family”. TUGboat 13(3), 269–271, 1992.

Harrison, Michael A. “News from the VorTEX
Project”. TUGboat 10(1), 11–15, 1989.

Knuth, Donald E. The TEX Book. Addison-Wesley,
Reading, MA, 1986a. TEX version 3.0, 1994, 14th
printing.

Knuth, Donald E. TEX: The Program. Addison-
Wesley, Reading, MA, 1986b. Reprinted with
corrections May, 1988.

Moore, Ross. “Making Web Sites using
LATEX2HTML” 1998. Workshop presented
at TEXNorthEast conference, March 1998.

Rahtz, Sebastian. “Another Look at LATEX to SGML

Conversion”. TUGboat 16(3), 315–324, 1995.
Rokicki, Tomas G. “Driver Support for Color in

TEX: Proposal and Implementation”. TUGboat
15(3), 205–212, 1994.

Rokicki, Tomas G. “A Proposed Standard for Spe-
cials”. TUGboat 16(5), 395–401, 1995.

Sofka, Michael D. “dvitag Users Guide”. 1993. In-
ternal document, Publication Services, Inc.

Sofka, Michael D. “DVI Driver Implementation and
Standardization Issues.”. 1995. URL: http://
www.rpi.edu/~sofkam/dvi.html.

Stanford University. The DVIype processor. Stan-
ford University, 1995.

Sutor, Robert S. and S. S. Dooley. “TEX and LATEX
on the Web Via IBM Techexplorer”. TUGboat
19(2), 157–161, 1998.

TEXNorthEast Conference, March 22 – 24, 1998

