
TUGBOAT

Volume 20, Number 4 / December 1999

339 Addresses

General Delivery 341 From the President / Mimi Jett

342 Editorial comments / Barbara Beeton

On being a fossil; Erratum: Mimi Jett’s term of office; Gutenberg: the man
of the millennium; Sebastian Rahtz leaves the TUGboat production team;
International news: Greek, Russian and Vietnamese groups;
Clarification of the CTAN “nonfree” classification;
The origin of the @ sign; Communication by flags

Typography 344 Typographers’ Inn / Peter Flynn

Font Forum 347 TrueType fonts in TEX / Vladimı́r Koutný

348 The semaphore alphabet / Vı́t Zýka

Software & Tools 350 The Paper Path: XML to paper using TEXML / Brian E. Travis

356 A WYSIWYG TEX implementation / Igor I. Strokov

Book Reviews 359 The LATEX Graphics Companion and TEX Unbound— A review of two books /

Bill Casselman

The LATEX Graphics Companion, by Michel Goossens, Sebastian Rahtz, and
Frank Mittelbach; TEX Unbound: LATEX & TEX Strategies for Fonts,

Graphics, & More, by Alan Hoenig

364 Digital Typography, by Donald Knuth / Peter Flynn

Errata 366 The good name of TEX (TUGboat 20, no. 2, p. 93) / Jonathan Fine

366 TUG 99 (TUGboat 20, no. 3) / Christina Thiele

Resources 367 A CTAN search page / Jim Hefferon

Hints & Tricks 367 Hey — it works! / Jeremy Gibbons

370 The treasure chest / Christina Thiele

LATEX 375 LATEX News, Issue 12, December 1999 / LATEX project team

376 Scaled Pictures in LATEX / Bruce Shawyer

Tutorial 378 Book design for TEX users: Part 2: Practice / Philip Taylor

Report 389 Preparation of documents for multiple modes of delivery— Notes from TUG’99 /

Ross Moore

Abstracts 394 Les Cahiers GUTenberg, Contents of double issue 33/34 (November 1999)

395 EuroTEX ’99 Proceedings— Paperless TEX

News &

Announcements

399 Calendar

401 TUG2000— The 21st Annual Conference

Late-Breaking

News

400 Production notes / Mimi Burbank

400 Future issues

Cartoon 340 Download free fonts! / Roy Preston

TUG Business 402 Institutional members

403 Statement of ownership

Advertisements 403 TEX consulting and production services

404 Y&Y Inc.

c3 Blue Sky Research



TEX Users Group

Memberships and Subscriptions

TUGboat (ISSN 0896-3207) is published quarterly
by the TEX Users Group, 1466 NW Naito Parkway,
Suite 3141, Portland, OR 97209-2820, U.S.A.

2000 dues for individual members are as follows:
Ordinary members: $65; $10 surcharge if
payment received after May 1, 2000, to cover
shipment of back issues.
Students: $35; $10 surcharge if payment
received after May 1, 2000.

Membership in the TEX Users Group is for the
calendar year, and includes all issues of TUGboat

for the year in which membership begins or is
renewed. Individual membership is open only to
named individuals, and carries with it such rights
and responsibilities as voting in TUG elections.
Contact the TUG office for information.

TUGboat subscriptions are available to organi-
zations and others wishing to receive TUGboat in a
name other than that of an individual. Subscription
rates: $75 a year, including air mail delivery; $10
surcharge if payment received after May 1, 2000.

Periodical-class postage paid at Portland, OR,
and additional mailing offices. Postmaster: Send
address changes to TUGboat, TEX Users Group,
1466 NW Naito Parkway, Suite 3141, Portland, OR
97209-2820, U.S.A.

Institutional Membership

Institutional Membership is a means of showing
continuing interest in and support for both TEX
and the TEX Users Group. For further information,
contact the TUG office (office@tug.org).

TUGboat c© Copyright 1999, TEX Users Group

Permission is granted to make and distribute verbatim

copies of this publication or of individual items from this

publication provided the copyright notice and this permission

notice are preserved on all copies.

Permission is granted to copy and distribute modified

versions of this publication or of individual items from

this publication under the conditions for verbatim copying,

provided that the entire resulting derived work is distributed

under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute transla-

tions of this publication or of individual items from this

publication into another language, under the above condi-

tions for modified versions, except that this permission notice

may be included in translations approved by the TEX Users

Group instead of in the original English.

Copyright to individual articles is retained by the

authors.

Printed in U.S.A.

Board of Directors

Donald Knuth, Grand Wizard of TEX-arcana†

Mimi Jett, President∗+

Kristoffer Rose∗+, Vice President

Don DeLand∗+, Treasurer

Arthur Ogawa∗+, Secretary

Barbara Beeton
Karl Berry
Kaja Christiansen
Susan DeMeritt
Stephanie Hogue
Judy Johnson+

Ross Moore
Patricia Monohon
Cheryl Ponchin
Petr Sojka
Philip Taylor
Raymond Goucher, Founding Executive Director †

Hermann Zapf, Wizard of Fonts†

∗member of executive committee
+member of business committee
†honorary

Addresses

General correspondence,
payments, etc.

TEX Users Group
P. O. Box 2311
Portland, OR 97208-2311
U.S.A.

Delivery services,
parcels, visitors

TEX Users Group
1466 NW Naito Parkway
Suite 3141
Portland, OR 97209-2820
U.S.A.

Telephone

+1 503 223-9994

Fax

+1 503 223-3960

Electronic Mail

(Internet)

General correspondence,
membership, subscriptions:
office@tug.org

Submissions to TUGboat,
letters to the Editor:
TUGboat@tug.org

Technical support for
TEX users:
support@tug.org

To contact the
Board of Directors:
board@tug.org

World Wide Web

http://www.tug.org/

http://www.tug.org/TUGboat/

Problems not resolved?

The TUG Board wants to hear from you:
Please email to board@tug.org

TEX is a trademark of the American Mathematical
Society.



Only the literate were in a position to concern themselves
greatly with what would happen when the year
dcccclxxxxviiij became a simple m, . . .

Robert Lacey and Danny Danziger
The Year 1000 : What life was like

at the turn of the first millennium

(1999)

COMMUNICATIONS OF THE TEX USERS GROUP

EDITOR BARBARA BEETON

VOLUME 20, NUMBER 4 • DECEMBER 1999
PORTLAND • OREGON • U.S.A.



TUGboat

During 1999, the communications of the TEX Users
Group will be published in four issues. The
September issue (Vol. 20, No. 3) contains the
Proceedings of the 1999 TUG Annual Meeting.

TUGboat is distributed as a benefit of mem-
bership to all members.

Submissions to TUGboat are reviewed by vol-
unteers and checked by the Editor before publica-
tion. However, the authors are still assumed to be
the experts. Questions regarding content or accu-
racy should therefore be directed to the authors,
with an information copy to the Editor.

Submitting Items for Publication

The next regular issue will be Vol. 21, No. 1.
Production and mailing have been delayed; the first
issue for 2000 is expected by July, and the second
should be sent to the printer before the annual
meeting. Deadlines for future issues are listed in
the Calendar, page 399.

Manuscripts should be submitted to a member
of the TUGboat Editorial Board. Articles of general
interest, those not covered by any of the editorial
departments listed, and all items submitted on
magnetic media or as camera-ready copy should be
addressed to the Editor, Barbara Beeton, or to the
Production Manager, Mimi Burbank (see addresses
on p. 339).

Contributions in electronic form are encour-
aged, via electronic mail, on diskette, or made
available for the Editor to retrieve by anonymous
FTP; contributions in the form of camera copy
are also accepted. The TUGboat “style files”, for
use with either plain TEX or LATEX, are available
“on all good archives”. For authors who have no
network FTP access, they will be sent on request;
please specify which is preferred. Send e-mail to
TUGboat@tug.org, or write or call the TUG office.

This is also the preferred address for submitting
contributions via electronic mail.

Reviewers

Additional reviewers are needed, to assist in check-
ing new articles for completeness, accuracy, and
presentation. Volunteers are invited to submit
their names and interests for consideration; write to
TUGboat@tug.org or to the Editor, Barbara Beeton
(see address on p. 339).

TUGboat Advertising and Mailing Lists

For information about advertising rates, publication
schedules or the purchase of TUG mailing lists,
write or call the TUG office.

TUGboat Editorial Board

Barbara Beeton, Editor

Mimi Burbank, Production Manager

Victor Eijkhout, Associate Editor, Macros

Jeremy Gibbons, Associate Editor,

“Hey— it works!”

Alan Hoenig, Associate Editor, Fonts

Christina Thiele, Associate Editor,

Topics in the Humanities

Production Team:

Barbara Beeton, Mimi Burbank (Manager), Robin
Fairbairns, Michael Sofka, Christina Thiele

See page 339 for addresses.

Other TUG Publications

TUG publishes the series TEXniques, in which have
appeared reference materials and user manuals for
macro packages and TEX-related software, as well
as the Proceedings of the 1987 and 1988 Annual
Meetings. Other publications on TEXnical subjects
also appear from time to time.

TUG is interested in considering additional
manuscripts for publication. These might include
manuals, instructional materials, documentation, or
works on any other topic that might be useful to
the TEX community in general. Provision can be
made for including macro packages or software in
computer-readable form. If you have any such items
or know of any that you would like considered for
publication, send the information to the attention
of the Publications Committee at tug-pub@tug.org
or in care of the TUG office.

Trademarks

Many trademarked names appear in the pages of
TUGboat. If there is any question about whether
a name is or is not a trademark, prudence dictates
that it should be treated as if it is. The following
list of trademarks which appear in this issue may
not be complete.
MS/DOS is a trademark of Microsoft Corporation
METAFONT is a trademark of Addison-Wesley Inc.
PC TEX is a registered trademark of Personal TEX,

Inc.
PostScript is a trademark of Adobe Systems, Inc.
techexplorer is a trademark of IBM Research.
TEX and AMS-TEX are trademarks of the American

Mathematical Society.
Textures is a trademark of Blue Sky Research.
Unix is a registered trademark of X/Open Co. Ltd.





TUGboat, Volume 20 (1999), No. 4 341

General Delivery

From the President

Mimi L. Jett

Happy New Year!
Or shall we say New Decade? Some have argued

that we are not really at the beginning of a new
century or millennium, but simply in the last year
of the former. Not so with TUG. We are clearly
coming into the first year of our third decade, quite
an accomplishment for a users group built around a
typesetting language that was written at the onset
of the digital revolution. The future looks bright
for TUG as our growth and stability continue on an
upward path. With a score of years comes some level
of wisdom and maturity, enough at least to carry us
comfortably forward.

Before I leave the subject of the new calen-
dar, may I remind you that TUG has an official
Y2K statement written by Barbara Beeton for TUG-

boat 20, no. 1, p. 45. To summarize, we do not ex-
pect anyone to experience life-altering trauma from
using TEX before or after January 1, 2000. You may
still choose to fill the basement with bottled water
or place a time capsule in concrete, but TEX should
be the least of your worries.

The second half of 1999 was eventful, with the
20th annual meeting in August in Vancouver BC and
EuroTEX in Heidelberg just a month later. Both
conferences were charged with the energy of new
discovery and the joy of sharing. If you were not
able to attend either of these gatherings, I encourage
you to read the proceedings1 to take in the breadth
and depth of new development happening around
TEX. One vital project is the NTS initiative. Orig-
inally started in 1991, this collaboration of great
thinkers has truly developed a New Typesetting Sys-
tem that provides the things we wanted from TEX
but couldn’t have. The presentation in Heidelberg
by Joachim Lammarsch, Jǐŕı Zlatuška, Hans Hagen,
Philip Taylor, and notably Karel Skoupý, laid out
the history, emotions, logic and finally the resulting
success: A complete TEX implementation running
as object based code with Java. Tests showed ex-
act matching files generated through NTS and “old
fashioned” TEX. The importance of NTS is the
power and extensibility it brings. The entire project
has been funded through generous donations from
DANTE, UKTUG, NTG, CSTUG, and others. I am
happy to announce that the TUG Board of Directors
has shown interest in contributing to this important

1 TUGboat 20:3 and EuroTEX’99 books are available from

the TUG office.

project and want to encourage you and your com-
panies or schools to help as well. All donations are
appreciated; please contact zlatuska@muni.cz to
pledge your support. A small investment today will
ensure better tools tomorrow.

Speaking of generosity, my mind is drawn to
Germany, specifically to the community we know as
DANTE. Here is a group of people always ready
to help and support those in need, regardless of
distance or other barriers. The latest gesture of
goodwill from our friends was the donation of an
UltraSparc server for use by the TEXLive develop-
ment team. In addition to the computer, DANTE

arranged for space and access through the Univer-
sity of Mainz, with system administration provided
by Rainer Schoepf. Thank you very much to ev-
eryone who contributed to this wonderful outcome.
The TEXLive CD is one of the premier benefits of
TUG membership; we rely on the help of many peo-
ple to make it possible. This gift from DANTE will
be appreciated around the globe.

Looking forward into the year we have our 21st

annual meeting TUG 2000 to be held at Oxford (UK)
in Wadham College, a lovely place with rich history,
from Saturday, August 12 through Friday, August
18. Bound to be one of the most memorable meet-
ings yet, not only for the incredible venue, but also
the cast of characters is known for high entertain-
ment value. Remember the Poetry Reading in Van-
couver?

In our tradition, when the annual meeting is on
Europe or another continent, any meeting held in
North America will be geared toward training and
workshops in order to serve the needs of our mem-
bers without distracting from the important annual
conference. This coming year we are planning a 3-4
day workshop for beginners and intermediate users
of TEX and associated tools. Once the venue is es-
tablished we will send an email announcement to all
North American members and post it on our web-
site.

As we close this milestone year and prepare to
open the door to the next, I wish to express my
gratitude to everyone in our vast and virtual com-
munity for the work you are doing for the good of
all. Every innovation shared, every patient explana-
tion, and all the humility and kindness makes this a
very nice place to be. Thank you, everyone. Happy
New Year!

⋄ Mimi L. Jett

IBM

T. J.Watson Research Center

P.O. Box 218

Yorktown Heights, NY 10598

jett@us.ibm.com



342 TUGboat, Volume 20 (1999), No. 4

Editorial Comments

Barbara Beeton

On being a fossil

It was with considerable surprise that I read the
kind words from several TUG presidents, past and
present, in the last issue, recognizing my survival in
TUG for 20 years.

The proceedings issue of TUGboat is put to-
gether by the Proceedings Editor (Christina Thiele,
on this occasion), with the ever-present support of
Mimi Burbank, the Production Manager; I get to
relax a bit, although I do try to help out with
copyediting and proofreading. The proceedings
team does keep their Editor informed about what is
being included, the page count, and other important
matters. But this time they snuck this little piece—
three whole pages— right past me.

It has been a truly satisfying experience to
watch TUG develop through the years, and the
most satisfying part has been to meet and work
with so many fine people. To the authors of the
tributes—Pierre MacKay, Nelson Beebe, Christina
Thiele, Michel Goossens and Mimi Jett— I can only
say a heartfelt “thank you”, and I’m pleased and
proud to be able to count them among my friends.

To the perpetrators of this act, I will say
“thank you” as well, and you guys need a good
proofreader. . . (Cincinnati has only one “t”, you
know).

Erratum: Mimi Jett’s term of office

In the above-mentioned article, Mimi Jett’s term of
office was given as 1997–2003 (pp. 313 and 315).
Not quite; the term extends only through the annual
meeting in 2001.

The term of the President, unlike the four-
year Board terms, is only two years. Mimi’s first
term was 1997–1999, and she chose to seek a second
term, through 2001. There is no limit placed by
the Bylaws on the number of terms any officer may
hold, so if Mimi is not completely worn out by the
summer of 2001, it is possible to extend that date,
but we won’t force her into it.

Gutenberg: the man of the millennium

As a year ends, the pundits consult their accumu-
lated wisdom and name the “Man of the Year”.
As the final digit of the year turns to zero, we
are given the “Man of the Decade”, or of the
century. At this year end, a greater span is upon us,
and the designated “Man of the Millennium” has
special meaning for us descendants of ink-stained

wretches—Johannes Gutenberg, purported inven-
tor of movable type, has been ranked first among
the men and women who shaped the past thousand
years.

The use of movable type and the printing press
to make books and other printed material accessible
to ordinary people, not just the rich and high-
born, wrought a basic change in the way knowledge
was communicated and preserved. It can even be
claimed that all later forms of communication have
evolved from this development. Victor Hugo wrote,
in 1831, “The invention of printing is the greatest
event in history. It is the mother of all revolutions.
. . . Thoughts, once printed, are indelible, liberated,
impregnable and indestructible. They soar like a
flock of birds, disperse to the four winds, and are
everywhere at the same time.”

For more information on Gutenberg and his
invention, see the Web page at http://
www.germanembassyottawa.org/news/whatsnew/

bulletins/1999-07-09.0001.html.
The University of Göttingen is preparing a CD-

ROM, “Gutenberg digital”, containing a scanned
reproduction of the Bible along with other related
material. For a preview, visit
http://www.gutenbergdigital/vorversion/.

This is quite a special treat.

Sebastian Rahtz leaves the TUGboat

production team

For five long years, Sebastian Rahtz has been an ac-
tive and valued worker on the TUGboat production
team. It is with real sadness that we see him go. He
will not disappear from the TUG and TEX scene—
his current projects are compilation of TEXLive 5
(he has also been the the driving force behind the
first four editions) and TUG 2000 in Oxford.

Sebastian, thank you, thank you, thank you!
Your competence and good sense will be sorely
missed.

International news: Greek, Russian and

Vietnamese groups

The third issue of “Eutupon”, the newsletter of
the Greek TEX Friends Group, is available to be
downloaded from their Web site: http://obelix.

ee.duth.gr/eft/english/eutupon.html. Several
articles are in English, for those who don’t read
Greek; but even if you don’t, the design of the
newsletter is well worth a look.

CyrTUG, the Russian-speaking group, has in-
augurated a TEX discussion list to be carried on in
Russian. To join the list, send e-mail to
cyrtug-subscribe@vsu.ru.



TUGboat, Volume 20 (1999), No. 4 343

A new TEX group for Vietnamese users has
been formed. Visit their home page at http://

iris.ltas.ulg.ac.be/viettug.
All the TEX groups we know about are listed

on the TUG page www.tug.org/lugs.html. The
president or a convenient contact is listed for each,
along with a link to the group’s home page, if one
exists. If you learn of any new group that hasn’t yet
been listed, please do let us know; send a message to
webmaster@tug.org and to office@tug.org with
an address of someone to contact for more informa-
tion.

Clarification of the CTAN “nonfree”

classification

The June issue of TUGboat carried a note by
Bernard Gaulle entitled “The french package on
and off CTAN” (pp. 91–92); this was accompanied
by editorial commentary regarding the purpose of
the distinction between “free” and “nonfree”. There
seems to have been some misunderstanding of pre-
cisely what is meant.

The categorization “nonfree” in CTAN terms
means nothing more or less than that the license
accompanying a package limits redistribution or use

of the package.
It is the desire of the compilers of the TEXLive

CD-ROM to include only files that can be redis-
tributed without any restrictions, so that the me-
chanics of distribution do not create any undue
administrative burden. (For TEXLive 4, this was
evidenced in the TUG office by the necessity of
telling some prospective purchasers that it was not
permitted to distribute multiple copies, even for
such worthwhile purposes as distributing them free
to a computer science class.) The CTAN manage-
ment have chosen to assist in this effort by making
clear, by location in the archive, the status of all
relevant material. Thus TEXLive 5, which will
accompany the first 2000 issue of TUGboat, will
be free of any restrictions, and can be supplied to
anyone wanting a copy, unlike TEXLive 4, which
could be distributed only to members of TEX user
groups.

The origin of the @ sign

A delightful, well-researched and -written article on
the origin of the @ sign, by Michael J. McCarthy,
appeared on the front page of the November 16 issue
of the Wall Street Journal.

I thought the subject matter would be of in-
terest to TUGboat readers, so I tried to obtain
permission to republish it. This has turned out to
be not a simple task, and ultimately it has proved
impossible. The Journal requires payment for any
republication; the fee requested was $250. In the
commercial world, that would be a mere token, but
it is beyond TUGboat’s (nonexistent) budget for
such items.

Robin Laakso at the TUG office tried her best
to get the fee reduced, but to no avail. Thanks to
her for a gallant attempt.

If you can find a copy of the November 16
Journal, do read the article. You will certainly enjoy
it.

Communication by flags

There are several flag codes still in use in nautical
circles. One is described in this issue in an article
on the semaphore flag code. Another system, the
international flag code, contains a flag for each letter
of the Latin alphabet and for each digit, with a few
additional flags for good measure. These flags are
brightly colored, with easily recognizable patterns;
in addition to its meaning as a letter or digit, each
flag is also assigned a meaning of a specific word or
phrase.

One of these flags, the one representing the
letter Z, has particular significance to our group;
the extended meaning of this flag is “require a tug”.
A drawing by Duane Bibby was commissioned by
the 1999 TUG annual meeting committee to denote
a “TEX Friendly Zone”.

The drawing, with the flag in gorgeous color,
can be downloaded from the TUG Web site:
http://www.tug.org/publicity/tfz_master/.

Retrieve a copy, print it out, and hang it over
your desk to proclaim that you inhabit a

TEX Friendly Zone.

⋄ Barbara Beeton

American Mathematical Society

P.O. Box 6248

Providence, RI 02940 USA

bnb@ams.org



344 TUGboat, Volume 20 (1999), No. 4

Typography

Typographers’ Inn

Peter Flynn
University College Cork

Reversed quotes

I am deeply indebted to the many kind people
on the TYPO-L mailing list who responded to my
query about ’reversed quotes’ and where they came
from (see the list archives). It’s clear that they
do exist as a special feaure in some DTP packages,
and that they are used out of a desire for a much
misunderstood ‘symmetry ‘.

I still think they are an unnecessary and point-
less device, but like the misplaced apostrophe, prob-
ably impossible to stop. When I become dictator of
the planet I’ll be able to act on this:1 until then
I trust in your judgment to point out the evils of
reversed quotes to anyone who uses them.

Vulcan

This package, for which I presented a development
report in Vancouver, has been having deep surgery.
In the months between the start of work and the
TUG meeting, half a dozen other packages were
announced or upgraded which tackled— individu-
ally— several of the tasks vulcan was designed to
deal with.

This is a twofold boost: it means that at
least some other folk in the world thought seri-
ously enough of the problems to want to solve
them themselves; and it means we can now ditch
our half-written or wholly-written patches and just
\RequirePackage the relevant tools: an uninten-
tional triumph of modular development! On the
downside it means unravelling the developmental
code and checking that none of it affects other parts.

All of which is by way of excusing the late non-
appearance of the package on CTAN. The comments
I got in Vancouver have led to a fairly deep-seated
rethink of the way metadata was being handled in
the titling—being one of the biggest parts of the
package—and it’s now being redone in a much more
modular fashion.

WinWord Among the package options for vulcan

which didn’t get much of a mention in Vancouver
there suddenly appeared a new one last April 1st:

1 And on other important matters like the abolition of
brussels sprouts, accountants (with a few honorable excep-
tions), and line dancing.

winword. This is something I had threatened to do
quite separately a couple of years ago, and which I
mentioned on comp.text.tex at some stage, but I
hadn’t expected a colleague to ask about it on that
particular day.

After some discussion in Vancouver I decided to
make this objectionable little item into a package. It
invokes something akin to pslatex with the resizing
of Helvetica and Courier to match the Times x-
height; it implement the most basic built-in styles
of normal.dot, including the wonky spacing on lists
and the horrible superior ordinals; and it turns off
hyphenation and justification. For good measure
it reintroduces the notorious bug in the vertical
spacing of the first lines of paragraphs, which you
probably thought you’d seen the last of.

The net effect is to allow LATEX users to con-
tinue to manage their documents with LATEX, but
to generate printout and PDF files that look exactly
like all the other junk that comes out of wordpro-
cessors. As I mentioned before, it was originally
intended to help a former colleague who was trying
to introduce LATEX by stealth in his organisation,
and needed a temporary cover to avoid being the
odd one out at meetings who submitted documents
with ‘that TEX look’ (incidentally another of the
reasons for the origins of vulcan).

This way, management would remain unaware
that he was subversively ferretting LATEX into the
company, because his documents looked like every-
one else’s, but he could still reformat into a better
style at some future date simply by replacing the
\usepackage command.

So far I have used it for short reports and
similar office documents which I circulate as PDF

files (my refusal to send or acceptWord attachments
is notorious), and no-one has raised an eyebrow as
they presumably believe it to have been done in
Word.

An academic ‘How-To’

As part of a new drive to make life easier for
postgraduates doing theses and academics writing
articles and books in my institution, I have been
concocting a document on how to use LATEX for
academic writing. This is intended as an intro-
ductory text to complement The Not So Short

Introduction to LATEX2ε [1], which is excellent for
users in mathematics and the natural sciences but
covers too much technical ground for users in the
humanities, which is an area of expansion for LATEX
right now. I have new thesis and letter style files
to go with it (actually vulcan partly grew out of the
need to do this, too).



TUGboat, Volume 20 (1999), No. 4 345

However, there are two major holdups: a) the
chapter on fonts needs detailed samples to go with
instructions on how to get additional fonts working;
and b) the chapter on cross-references needs a usable
set of routines and macros for humanities-style
bibliographic citations.

‘Free’ fonts The font sampler is close to finished,
as recent readers of comp.text.tex may have no-
ticed from my occasional grumps about fonts which
are supposed to work but don’t. On one side of the
page I have listed the common everyday typefaces
that by now (I hope) come with every LATEX/dvips

installation. On the other side I list most (perhaps
not all) the other free fonts that are on CTAN,
mostly in METAFONT format. I exclude any for
which outlines or bitmaps are not freely available.

• Computer Modern with all its common variants
(including Dunhill and Fibonacci but excluding
Funny Font, for example).

• the ten typefaces representing the Adobe orig-
inal ‘LaserWriter 35’,2 shrinking Avant Garde
and growing Chancery a little in order to com-
pensate for the widely differing x-heights. It’s
surprising how much this difference otherwise
obtrudes when you stick all the examples close
together like this. The alternative (leaving the
10pt samples as they are) is more ‘correct’ but
in these circumstances would lead to more ques-
tions being asked before the reader is equipped
to deal with them.

• the X Consortium members’ fonts (Utopia,
Charter, Nimbus, Antiqua, and Grotesk). On
my system (Red Hat Linux, using the default
TEX package to which I have of course added
hugely over time) all these were broken as
installed, even Charter. In all cases the dvips

entry was for a PFA file and an encoding which
didn’t exist, which in most cases didn’t match
the .fd file created by fontinst, not did it match
the .tfm and .vf files. I don’t know how this
happened, but I’m glad I found it before the
users did.

• the METAFONT fonts Pandora, Universal, and
Concrete. I’d like to include more METAFONT

text faces but space on one side of A4 is limited.

• In at the bottom come examples of Concrete
and Euler math, done as EPS file because I
haven’t figured out how to have three different

2 Without showing variants, just mentioning they exist—
this is not for typographers: if readers haven’t grasped by this
stage that italics slope to the right and that bold is blacker
and heavier than roman then I need to hear from them.

math encodings available in one file, nor am I
sure I want to.

I have used the phrase ‘Typographia Ars Artium
Omnium Conservatrix’3 for the samples on this
page, rather than strict alphabets, but for the other
typefaces, a quotation relevant to their usage do-
main would be appropriate (so I’m open to sugges-
tions for a phrase to illustrate Punk, for example).

On the other side comes the fun, therefore. I’m
not fond of pigeon-holing typefaces for purposes of
usage beyond simple classifications like serif and
sans-serif. For typographic taxonomy, of course,
there are many useful ways of highlighting the
differences, but they would be inappropriate in a
document aimed at beginners. I have settled for
dividing what is available into ‘collections’, bearing
in mind that scholars approaching the use of LATEX
are likely to be most interested in what is useful for
their field. The classification is not quite arbitrary
but it will do until I find something better, and
it’s incomplete because as I write I’m still working
through CTAN. . .

Germanic Yannis Haralambous’ elegant Fraktur,
Schwabacher, Gothic, and Decorative Initials
all worked fine, as I would have expected, and
I’ve pinched a bit of Goethe and a bit of Caxton
for the sample text.

Historical Ditto Peter Wilson’s fine archaic fonts,
for which he has kindly updated the Ugaritic
(cuneiform). I’ve added the sean-chló (old
Irish) EIAD font in this collection, along with
Rustic, Bard, Uncial, and Ogham. These
required some surgery to the .fd and .mf

files, which was one of my chief problems, not
being well versed in METAFONT. I even added
Tengwar, which I managed to coax into action
some years ago, with some homebrewed macros
which let me typeset a readable transliteration
of ‘Ash nazg durbatulûk. . . ’.

Symbols The problems start when you try to
use the symbol fonts like chess, backgammon,
astronomical signs, cartography symbols, the
BB dingbats, etc. Many of these fonts were
designed for use with plain TEX which loads
fonts slightly differently from LATEX. Because I
was being a good little boy and using or writing
.fd files for each font, they were being loaded
at an explicit 10pt regardless of whether or
not the METAFONT code specified 10pt. As
METAFONT’s default design size is 128pt I was
getting microscopically small characters, and no
amount of fiddling with the METAFONT code

3 ‘Printing, the art which preserves all others’



346 TUGboat, Volume 20 (1999), No. 4

Additional free fonts for use with LATEX

The Histori
al Colle
tion

Cypriot Typographia Ars Artium Omnium Conservatrix

�E�reanna
h N�il aon tinte�an mar do xinte�an f�ein

Etrus
an Tpographia Ars Artium Omnium onseratrix

Linear `B' Typographia Ars Artium Omnium Conservatrix

Phoeni
ian Tpographia Ars Artim Omnim onservatri

Runi
 TYPOGRAPHIA ARS ARTIUM OMNIUM ONSERATRIX

Rusti
 T y p ogra p h i a Ar s Ar t i um Om n i um Cons e rva t r i x

Bard T y p o g r a p h i a A r s A r t i um Om n i um Co n s e r v a t r i x

Un
ial Typographia Ars Artium Omnium Conservatrix
Quenya Ĉ n�̂g d�Rbt̂�l�k, Ĉ n�̂g g��bt̂�l; Ĉ n�̂g Trk̂t̂�l�k, ĝ b�Rz �m�C�i kr��pt̂�l
Ogham ABHMOLDGUVTJESCZINQR

a
o
u
e
i
b
l
v
s
n
h
d
t


q
m
g
j
z
r

Ugariti
 Cuneiform Typgraphia rs rtium mnium nsratri

The Symbol Colle
tion

Chess
snaklbmr

Z
OPOPOPOP

popopopo RMBJQANS
Ba
kgammon

ejej4j
didDdi

h2h
h
bBbgbg
0f�a�f�a�f�

Astronomi
al d e f g h i j k l m n o p q r s t u v w x y z

IPA ABCDEFGHIJKLMNOPQRSTUVWXYZg ABCDEFGHIJKLMNOPQRSTUVWXYZg

Cartography ABCDEFGHIJKLMNOPQRSTUVWXYZab
defghijkmnqs

BB Dingbats ������%.027ABCDEFGJKLMR`dhmo�	
���

The Germani
 Colle
tion

Fraktur Alle� Verg�angli�e i� nur ein Glei�ni� / Da� Unzul�angli�e hier wird'� Ereigni�;

S
hwaba
her Da� Unbes�reibli�e hier wird'� getan / Da� Ewig-Weibli�e zieht un� hinan!

`Gothi
' If it plese ony man spirituel or tem�rel to bye any pye` of two and thre 
omemora
i~o`

De
orative Initials HARALAMBOUS

seemed to fix it. The principal fix was pointed
out by several people: add font_size 10pt#;

to the mode_setup and make sure it is typed
without an equals sign. It finally dawned on me
that I was still using the .tfm files that I copied
from a CD-ROM, when it was suggested I chould
check the .tfms with tftopl, and sure enough,
they still bore the 128pt design size. Removing
the files and letting the system regenerate them
was enough: suddenly everything came to life.

Once I’ve finished the sampler I’ll post the fixes
needed, as well as the source. I need to get it to the

stage where a user can invoke a package and know
that the characters needed will be available, and will
resize to the current context. One of the distinctions
in using these packages is between ‘conventional’
fonts, which are assumed to be something you want
as your body copy (so for example the pslatex

package installs Times, Helvetica, and Courier in

place of the CM defaults); and ‘incidental’ fonts
(with Runic, for example, it is assumed the user
does not want to try and typeset the entire article
in runes, but just use the characters in examples).



TUGboat, Volume 20 (1999), No. 4 347

Bibliographics Humanities bibliographic styles
are significantly different from those used in the
natural sciences. I mentioned what I wanted some
while ago (in-footnote citations with author, title,
year, and page range; with full citations unnum-
bered at the end). I couldn’t find any package to
do them, but I was pointed at camel. This is a
prototype for doing a huge amount of stuff with
citations, and looked very useful. It implements
legal citations as well as appearing to handle most of
what I wanted, but at the time it was alpha software
and it conflicted with a number of other things I was
trying to do.

After a recent brief but understandable diver-
sion to investigate the interestingly named humanbio

(which turned out to be nothing whatever to do with
the humanities, but a package to format references
for the journal Human Biology), I have ended up
writing a spec for what is needed, and I guess I’ll go
hunting for someone who can program .bst files.

References

[1] Tobias Oetiker, Hubert Partl, Irena Hyna,
and Elisabeth Schlegl. The Not So Short
Introduction to LATEX2ε. Technical report,
CTAN, http://www.tex.ac.uk/tex-archive/
info/lshort/english, Feb 2000. Web
document.

⋄ Peter Flynn

University College Cork

Computer Centre, University

College, Cork, Ireland

pflynn@imbolc.ucc.ie

http://imbolc.ucc.ie/~pflynn



TUGboat, Volume 20 (1999), No. 4 347

Font Forum

TrueType Fonts in TEX

Vladimı́r Koutný

TrueType fonts are widely used these days; un-
fortunately, they are not supported by many non-
Windows programs, like TEX. Generally, using fonts

An earlier version of this article appeared in Zpravodaj

(the Bulletin of the Czech-Slovak TEX Users Group) 99/3,
pp. 159–160, in Slovak, with the title “TrueType-fonty v
TEXu”; it has been translated by the author, and appears
here with permission.

different from those written in METAFONT usually
bring some problems with compatibility or platform
dependence. The most common problem is the need
for manual font generation at a specific resolution,
demanded by TEX, or you need a special device
driver for this purpose.

An “easy” solution of all these problems is a
conversion of a font into METAFONT format. Once
the font is converted, you can use it the same way
as regular METAFONT fonts. As long as I wanted to
use some TTFs in TEX some time ago and I didn’t
find any converter, I decided to write my own.

Let’s look at the TrueType fonts first. Each
character is described by its outline, composed of
Bezier curves. Some information used for scaling
is also included. Currently, the converter reads
only the glyph information for a character. The
glyph consists of several closed paths. All paths are
filled using invert-filter, i.e., the area filled twice will
not be filled at all. These paths should not cross
themselves, but, as long as the Windows OS doesn’t
care about that, some fonts are not drawn properly.
This causes problems in METAFONT, which treats
this as an error in the input file. (Actually, this
error can occur only when there is a crossing on
a single path so that a “loop” comes up. The
paths are processed independently by METAFONT,
so crossing of two paths should not cause problems.)
Because of this representation of TrueType fonts,
the conversion program also generates a set of Bezier
curves forming closed paths.

There is also another kind of glyphs, composed
glyphs. These are specified as sets of several other
glyphs, which are transformed and joined together.
Many accented letters are stored in this way in
TrueType fonts.

Different styles of the same font, like bold or
italics, are usually stored as different TTF files.
There are several possible encodings for use in
TrueType fonts, but the one most widely used is
Unicode. Of course not all characters are included
in a TTF file; those unused are mapped to a default
“warning” glyph, usually an empty square. As long
as TEX uses only 256 characters in a single font file,
it might be desirable to create several MF files.

Now to the conversion program. The first
version was based on “The FREE TrueType Font
Engine” written by David Turner, but, because of
some limits of this library (e.g., a 64KB memory
limit), a new one was created, according to the
specification for TrueType Fonts [1].

The conversion itself starts by loading all glyphs
from the TTF file. All characters we want to
export are specified in a single text-file. This file



348 TUGboat, Volume 20 (1999), No. 4

specifies the Unicode number of each character,
together with a character number that will be used
in METAFONT. During the conversion, the program
requires some free space in the working directory
for temporary files, that are automatically removed
at the end. Also, the output file will be written
here, with the name of the original TTF file, but
with an MF extension. Because of this, you should
have write access to the working directory. The
METAFONT output routines were designed by my
schoolmate, Rǐso Královič.

The newly created font file can be used di-
rectly in TEX, maybe preceded by manually running
METAFONT to create a TFM file. Unfortunately,
there are some cases when METAFONT claims errors.
The most common is the “Strange path (turn-
ing number is zero)”— this is the error mentioned
above, caused by “loops” in the outline. Another
reason for this error is the small size of the font,
together with the resolution used for generation.
This happens mostly with decorative fonts with
many details. Possible solutions: use such a font
in bigger size, or use higher resolution.

There are two more aspects we could look at.
The first one is the kerning. In most TrueType fonts,
there are stored kerning values. Normally, kerning is
not supported by Windows, just some specific pro-
grams are capable of doing so. In TEX, the kerning
is something natural, so this kerning information is
quite useful. Therefore, the conversion generates
also ligtables with kerning pairs.

Next, there are usually some ligature charac-
ters in a TTF font. In most fonts there are the
fi (Unicode 0xFB01) and fl (Unicode 0xFB02)
glyphs, as well as some others, like Œ, etc. There
might also be still others, but the problem is that
a regular TrueType font does not contain any infor-
mation about ligatures. So if you know that this
glyph is a ligature xy, then you can use it and write
this ligature by hand into the MF file, but automatic
generation of this kind of ligtables is not working yet.

There is also an extension to TrueType fonts,
called TrueType Open [2]. This extension brings
support for ligatures and also some other improve-
ments, mostly useful for vertical, right-to-left and
similar fonts. These fonts are usually treated as
regular TrueType fonts, ignoring additional infor-
mation. Unfortunately, only a few latin fonts are
in this Open format; I’ve actually found only one
(Tahoma; maybe it is because this font also contains
Greek, Hebrew and Thai characters).

Another possible upgrade of this converter in-
cludes creating a somewhat more user-friendly in-
terface, that will allow the user to select desired

characters interactively by shape, not only by Uni-

code number, together with the possibility to enter
ligature information.

The latest version of the converter can be found
at http://www.ksp.sk/textools, or at http://

www.linxee.sk/ttf. Feel free to report any bugs,
comments or suggestions concerning the problems
described here to my address kluka@hotmail.com.

References

[1] TrueType 1.0 Font Files, Technical Specification,
Revision 1.66, November 1995, Microsoft

[2] TrueType Open Font Specification, Version 1.0,
July 1995, Microsoft

⋄ Vladimı́r Koutný

Osuského 7

851 03 Bratislava, Slovakia

kluka@hotmail.com



348 TUGboat, Volume 20 (1999), No. 4

The Semaphore Alphabet

Vı́t Zýka

History

If a captain wanted to give a passing ship some nav-
igation information, a message about an emergency,
or a report about countries visited, he used to send a
specialist in signalling to a good visible place. This
person took two red-yellow flags, one in each hand,
and sent a message using agreed flag configurations.
One of seven possible positions for each arm meant
a message character. Words and sentences were
separated for better understanding by waving the
flags once or twice in a circle, respectively. This
enabled transmission of more general text than by
the widely used signal flags (where a flag has a
predetermined meaning of a word or a whole sen-
tence), and is faster than using the Morse alphabet.
Among the necessary skills of the receiver was surely

This article originally appeared in Zpravodaj (the Bulletin
of the Czech-Slovak TEX Users Group) 99/3, pp. 157–158,
in Czech, with the title “Semaforová abeceda”; it has been
translated by the author, and is published here with permis-
sion.



TUGboat, Volume 20 (1999), No. 4 349

(aside from excellent reading—which was not usual
considering the level of sailors’ literacy) hawk eyes.
To distinguish the flag position up to a distance of
7 kilometers on a swaying ship was very difficult.

Semaphore was limited to visible transmission
only. With the development of electrical commu-
nication, the Morse alphabet superseded it for the
majority of applications. Try to send a semaphore
character by telegraph! It is not impossible, but
the effective result is far inferior to the result
achieved nowadays in the time of computers and
Internet. While semaphore helped the captain to
send and receive news, nowadays using this alphabet
will probably make communication more difficult.
Consider this:

The opti
al telegraph by Fren
hman
Claude Chappe 
an be 
onsidered as
a forefather of the semaphore. He

onne
ted Paris with Lille by a
$240#km long row of towers. Ea
h
of them had $3# movable arms for
symbol setting.

(The optical telegraph . . . symbol setting.)

The contemporary semaphore alphabet was suggest-
ed by an English Army colonel in 1822. But it was
used for only a very short time in Britain. More use
was made of it by the U.S. Navy during the Civil
War.

The Alphabet Code

Seven positions of arms together give a combination
of 28 signs. The basic alphabet set, which contains
26 characters, is split into six groups, called circles,
in nearly alphabetical order. A circle is a group of
signs for which the flag in the right hand has the
same position.

There is no space in the code for digits, so they
are signalled as the first alphabetic characters, but
in front of the first digit is placed the sign ‘digit
beginning’ $, and following the last digit ‘digit
ending’j. The second special sign for which there is
a free space in the code is the sign of a ‘mistake’ ~.
Its function is similar to the backspace key. The
other signs, e.g. punctuation, are not contained in
the semaphore and have to be communicated by
words.

Alphabet Usage

The font ‘semaf’ was created by METAFONT. It
consists of four shapes in three variants; see table.
You can easily add a new font variant if you know
METAFONT at a basic level. The only thing you
need to do is set the font. You will not see some
special characters in output—only the upper- and

lowercase letters, digits, space, period, and two
special semaphore signs are included. If you need
e.g. ‘!’, you should define:

\def\!{!} \catcode‘\!=13

\def!{ exclamation mark }

% or \def!{{\tenrm \!}}

% or in LaTeX: \def!{{\normalfont \!}}

To include the semaphore font you can use the pre-
-prepared files semaf.tex or semaf.fd for plain TEX
or LATEX2ε users, respectively. The font covers the
IL2 coding table (il2semaf.fd) that doesn’t differ
from Knuth’s OT1 coding in the seven low bits.

A concept of generalized ligatures enables an
elegant solution of the digit typesetting. Beginning
and ending digit signs are therefore included auto-
matically, even without the need to write macros.

Semaphore Alphabet Code

A A O O W W

B B P P X X

C C Q Q

D D R R 1 $1#

E E S S 2 $2#

F F 3 $3#

G G T T 4 $4#

U U 5 $5#

H H Y Y 6 $6#

I I 7 $7#

K K J J 8 $8#

L L V V 9 $9#

M M 0 $0#

N N Z Z mistake ~

Semaphore Logical Arrangement

Circle 1 Circle 2

Circle 3 Circle 4
T

U

Y

mistake

Circle 5 Circle 6 Circle 7



350 TUGboat, Volume 20 (1999), No. 4

Semaphore Font Variants

Variant Roman r Bold bf

Pillar smf Semafor Semafor

Empty smfe Semafor Semafor

Person smfp Semafor Semafor

Variant Monospace tt Slanted sl

Pillar smf Semafor Semafor

Empty smfe Semafor Semafor

Person smfp Semafor Semafor

The most important criterion of a good font is
its legibility. It is true that this is too low in the
case of the semaphore. In spite of this there is at
least one area of usage: semaphore was incorporated
into scout-life for boys and girls, together with its
romantic background of sailors, to improve memory,
perceptions, and coordination.

The font is available from CTAN and at:
http://cmp.felk.cvut.cz/~zyka/zykatex.html

⋄ Vı́t Zýka

Czech Technical University

Faculty of Electrical Engineering

Department of Cybernetics

Center for Machine Perception

Praha 2, 121 35, Czech Republic

zyka@cmp.felk.cvut.cz

http://cmp.felk.cvut.cz/~zyka/

zykatex.html



350 TUGboat, Volume 20 (1999), No. 4

Software & Tools

The Paper Path: XML to paper using

TEXML

Brian E. Travis

Abstract

So, you’ve gotten your valuable information assets de-
scribed in terms of XML schemas (either DTD or some
other form of schema), and you’ve taken the painful
step of converting your information from word processors

and typesetting files into XML that adheres to your new
schema. Now what?

This article describes a path that has many pieces
that must fit together exactly. That’s the down-side.
The up-side, however, is a very powerful XML-to-paper
path that will not cost you a penny, and runs on any
platform that runs Java.

−− ∗ −−

So, you’ve gotten your valuable information assets
described in terms of XML schemas (either DTD

or some other form of schema), and you’ve taken
the painful step of converting your information from
word processors and typesetting files into XML that
adheres to your new schema. Now what?

This article describes a path that has many
pieces that must fit together exactly. That’s the
down-side. The up-side, however, is a very powerful
XML-to-paper path that will not cost you a penny,
and runs on any platform that runs Java.

As part of the information analysis phase of
your project, you probably went through the task
of looking for information hidden in your existing
documents. This meant taking text that was in
italic, for example, and tagging it as an emphasized
phrase, foreign term, bibliographic reference, or le-
gal citation. Your new XML-tagged content is rich in
self-describing information objects, but contains no
information about how to format those objects. For
example, indicating to a formatting engine that a
string of text is to be rendered in an italic font causes
something to happen. That is, the formatting engine
changes the font characteristics for the duration of
the italicized phrase. However, tell a formatting
engine to render something in “foreign phrase”, and
it will probably have a problem.

That is because there is an important piece
missing. Sure, we know it is a phrase expressed in
a language other than the default language being
used in the current document, but we don’t have
information about how it is to be rendered on paper.
We need some kind of mapping to translate from
“foreign phrase” to “italic”. What’s more, we may
even need to do more processing on the object. For
example, we might want to collect all foreign phrases
in the document, along with their translations in
an appendix. We have even more opportunities for
further processing when rendering the information
in electronic form. For example, when creating an
HTML rendering of the document, we may want our
foreign phrase to be underlined and linked to a pop-
up window with the translation. Or, we may want
to build a system that causes a speech synthesizer
to speak the word in its native tongue.



TUGboat, Volume 20 (1999), No. 4 351

This is only one example of processing a single
element in many different ways based on the desires
for information delivery.

So, how do we make the leap from “foreign
phrase” to an italicized string of text with the
translation collected in an appendix? Add to that
the other several dozen elements that need to be
translated into some kind of deliverable.

Pagination Nation

The first thing to consider when putting information
on paper is the page itself. This process is called
“pagination”. Everything in your content must
be rendered somehow on a two-dimensional frame
bounded by the physics of the real world. A page
contains a body area where the rendered text sits,
plus a margin area where navigational information
goes.

In the body of a page, there are blocks of
text that have been rendered using centuries-old
techniques. First, each line is set with text until
it reaches an acceptable length, at which point the
line is ended and the next word starts a new line.
If the word doesn’t reach the acceptable range, and
the next word causes the right margin to be overrun,
the last word must be broken at a place that follows
the rules of hyphenation.

Another task of the pagination program is
making sure each line ends at the same place. This
is called “justification”, and is preferred by some
designers to make the page look symmetrical. This
requires the typesetter to calculate the space left
over at the end of a line, divide it by the number of
spaces between words of that line, and add this new
increment to each space.

These two processes are lumped together in the
typesetting lingo as “hyphenation and justification”,
or “H&J”. H&J is a basic requisite of any typesetting
program, and all programs, from free to $100K+
systems provide this service. Higher-end typesetters
will also do a sophisticated analysis of the page after
it is set in memory. One thing such typesetters
look for is spaces between words that line up from
one line to the next. Putting too many of these
spaces in a row vertically causes an effect known as
“rivers”, that might be distracting to the reader.
Another check these high-end devices perform is
hyphenation analysis. Some page designers don’t
like to see more than two hyphenated lines in a
row. In order to avoid this, the typesetter may
need to reset the page many different times, using
different word- and character-spacing values in order
to eliminate multiple hyphens. Speaking of hyphens,
some typesetters check to make sure there is no
hyphenation between pages or columns. This is

something my third-grade grammar teacher, Miss
Blankenship, would not tolerate.

Once the body area of a page is set, certain
navigational features are placed on the page. The
most common is the page number. The typesetter
must keep track of the page number, and provide
an incremental indicator on each page. This is more
difficult than it looks, once you consider the many
different ways pages can be numbered.

Running headers and running footers provide
further navigational aids to the reader, and give the
document designer a place to show off. Running
headers usually provide some kind of indication of
the title of the chapter, and maybe even the name
of the document. Another type of running head
is called a “dictionary header”. This is a header
that changes depending on the contents of the page
itself. The dictionary header is used in dictionaries,
encyclopedias, and telephone books where the left
header indicates the first entry on the page and
the right header indicates the last entry on the
page. This processing can be time-consuming, but
leads to a better product to which consumers are
accustomed.

All of these formatting conventions have been
developed over a thousand years of page creation.
We all grew up learning to navigate our way around
a page, so these conventions should be followed to
provide your users with a familiar interface.

DSSSL and XSL

First, a little background. All of the techniques
described above are oriented toward the delivery
of information on paper. However, your XML

documents are probably tagged according to each
element’s meaning, not whether it should be itali-
cized or placed in a dictionary header. We need to
map the structure to a page layout. This requires
a lot of decisions, which can be expressed in the
language of the typesetting system.

Each typesetting system, however, has a dif-
ferent way of expressing such information. An ISO

standard called DSSSL (Document Style Semantic
Specification Language) was designed to normalize
all of the rich formatting capabilities into a single
syntax. The goal was to create a non-typesetter-
specific formatting language that could be trans-
lated to any typesetter’s code. The benefits of this
approach are twofold: first, a designer needn’t know
the syntax specifics of a particular typesetting sys-
tem to create pages using that typesetter. Second,
creating stylesheets in a non-vendor-specific syntax
allows a company to change their typesetters at will,
without the costly process of converting from one
syntax to another.



352 TUGboat, Volume 20 (1999), No. 4

DSSSL took ten years to create, and was finally
ratified as an international standard just about the
time that XML was gaining momentum. DSSSL is
based on SGML, and was never really implemented
because software vendors were looking at XML as
a replacement for SGML. The need for a vendor-
neutral typesetting system was still there, however,
so the DSSSL folks started work on a specification
called XSL, the Extensible Stylesheet Language.
XSL was intended to achieve the same goals as
DSSSL, except it was expressed in XML syntax.

XSL uses a transformation process, which con-
verts your XML document into another XML doc-
ument expressed as a set of “formatting objects”.
These formatting objects have element names like
“block” and “character”, with attribute values like
“bold”, and “green”. This formatting object XML

document is exposed to the second XSL step, which
translates the formatting object document into the
codes of a particular typesetter.

This model assures that a designer need only
be concerned with a single way of formatting a
page (the formatting object model), and leaves
the intricacies of the typesetter to each typesetter
vendor. The biggest problem with XSL is that it is
very difficult to express the full range of formatting
options in a single, generic specification. The DSSSL

people took ten years to do it.
XSL is still being developed, but has spawned

another specification called “XSLT” (see Bob
DuCharme’s “XML Linking and Styling: Standards
Status Report”, <TAG> August, 1999). XSLT is
only the first half of the XSL process. XSLT is
designed to provide a generic tree-to-tree transfor-
mation of one document structure to another. Orig-
inally, as I mentioned, this resulting structure was
the one defined by the formatting object schema.
However, XSLT has been generalized to a point
where it can create any arbitrary XML structure,
and even non-XML structures. XSLT is truly a
generic XML processing language.

TEX and LATEX

Now that we have a way of getting our XML doc-
uments into some other form, how do we produce
pages? Simple, use a pagination program. There
are many different pagination systems available
for virtually any price you want to pay. In the
1980s, a computer science professor named Donald
Knuth at Stanford University was working on a
set of textbooks to describe The Art of Computer
Programming. Knuth needed a more sophisticated
way of paginating his document than the current
state-of-the-art paginators were able to do. At that

time, scholarly works were being formatted using
a rudimentary typesetting system called “troff”.
Knuth was a student of the art of typesetting, and
felt that a computer could be taught most of the
mechanics of expressing that art. So, he embarked
on an effort called TEX, which he describes in his
book The TEXbook.

Knuth used TEX to typeset his seminal multi-
volume set of computer science textbooks, which
has become the bible of computer science academia.
Knuth also made the source of his new typesetting
language available to the world to use and improve
upon long before the concept of “open source”
grabbed headlines. It didn’t take long before TEX
became the syntax used to create scholarly and
technical journals. The TEX mathematical syntax
is very powerful, and is used to create technical pa-
pers with an accuracy unrivaled by any commercial
typesetting system.

TEX is a very powerful typesetting language,
with what I think is the best H&J logic available
anywhere at any price. TEX produces beautiful
pages and, because of the many add-ons that people
have created over the years, has great flexibility.

Of course, you need to pay for this power and
flexibility. The cost is learning the terse syntax and
understanding all of the different settings and the
way pages are created.

One of the most successful add-ons to TEX is a
package called LATEX, which provides an easier-to-
use interface to the powerful TEX language. While
TEX has commands for setting the font style to bold
and left-justifying paragraphs, LATEX has directives
that allow you to indicate the title of a document,
or the body of a section. For example, LATEX
uses the \section and \subsection commands
to indicate where such breaks are made. What
happens, however, if you call your structural objects
“chapter”, or “lesson plan” or “appendix”? And
what if your structure doesn’t map directly to those
hard-coded into the LATEX spec? If this is the case,
you need an intermediary translation to indicate the
complex structure-to-structure translation.

Alphabet Soup

IBM, through an effort called AlphaWorks, is work-
ing on a number of projects to support XML and
related standards. The AlphaWorks site makes
available an XML parser, written in Java. On top of
this, they provide, under their Lotus brand name,
a product called LotusXSL. LotusXSL is an XSL

processor that uses the transformation part of XSL

(XSLT) to transform one type of XML to another.



TUGboat, Volume 20 (1999), No. 4 353

Figure 1: Paper chase: XML to Paper using
XML, XSL and TEX

Lotus engineers have created an XML schema
that is designed to express the structure of a paper
document in terms of the LATEX markup language.
They have also created a processor to read this XML

document and transform it to LATEX codes.
The path I am describing has many pieces that

must fit together exactly. That’s the down-side. The
up-side, however, is a very powerful XML-to-paper
path that will not cost you a penny, and runs on any
platform that runs Java.

The map is shown in Figure 1.
The XML document describes our information

in terms of the information itself, not in terms of
some eventual delivery platform. Therefore, we need
to run a transformation step that translates this into
some kind of format that can be interpreted as a two-
dimensional, static form to be rendered to paper.

Translating directly to TEX is difficult because
of the complexity of the TEX typesetting language.
One of the problems is that TEX uses the “<” and
“&” characters to mean certain things. These char-
acters are sacred to the XML parser, and shouldn’t
be used because they might end up being interpreted
as markup characters.

One solution, then, is to transform our XML

document, which describes our information struc-
ture, into another XML document that describes the
desired formatting characteristics of the information
contained therein.

The TEXML system does this by defining an
XML document that provides the full capabilities of
the TEX typesetting language. Actually, the TEXML

system creates documents that can be expressed in
LATEX, the TEX add-on that is used to provide a
high-level interface to TEX.

Structure to Pages

There are many steps involved. In this article, we
will follow a fairly simple document through the
steps required to go from XML to paper.

1. Create a directory to contain all pro-

grams and data.

Select some directory anywhere on your ma-
chine. I will describe all processes in relation
to that root. You should be able to move the
contents of the directory anywhere using the
relative paths explained here.

2. Load the IBM4J parser.

Go to http://www.alphaworks.ibm.com/tech/
XML4J and download IBM’s parser written in
Java. The examples in this article use version
2.0.15 of IBM’s parser. Extract the files to the
xml4j_2_0_15 directory under the directory set
above. If you are using a different version,
you might need to change some environment
variables and batch-file commands.

3. Load the Lotus XSL processor.

Go to http://www.alphaworks.ibm.com/tech/
LotusXSL and download the Lotus XSL proces-
sor. The examples in this article use version
0.18.5 of the XSL processor. Extract the files
to the lotusxsl_0_18_5 directory under the
directory set above. If you are using a different
version, you might need to change some envi-
ronment variables and batch-file commands.

4. Load the TEXML Processor.

Go to http://www.alphaworks.ibm.com/tech/
texml and download the IBM TEXML proces-
sor. The examples in this article use version 1.4
of the TEXML processor. Extract the files to
the TeXML_V1R4 directory under the directory
set above. If you are using a different version,
you might need to change some environment
variables and batch-file commands.

5. Load a TEX Processor.

There are many excellent TEX processors avail-
able for free or by commercial license. Check
the TEX Users Group at http://www.tug.org
for a list of pointers to sites with TEX implemen-
tations. I used the MiKTEX implementation for
this article, which can be found at http://www.
miktex.de/. Most TEX implementations come
with the TEX processor, which will also read
LATEX files. A TEX processor creates a device-
independent (DVI) output file. Most implemen-
tations also come with a program for converting
the DVI to printable forms, like PostScript. The
batch files in this article assume that tex, latex,
and dvi2ps are in the system path, and that



354 TUGboat, Volume 20 (1999), No. 4

there is a program registered to view DVI files.
You might need to change some environment
variables and batch-file commands.

6. Select an XML document as a source.

Create or find an XML document that is suit-
able to transformation. XSL provides a power-
ful engine to transform from any XML structure
to any other. For this example, we picked
a straightforward example. Ours is shown in
Figure 2.

<?xml version="1.0"?>

<bill-o-rights>

<section>

<title>Amendment I (1791)</title>

<para>Congress <emph>shall make no law</emph>

respecting an establishment of religion, or

prohibiting the free exercise thereof; or

abridging the freedom of speech, or of the

press; or the right of the people peaceably

to assemble, and to petition the government

for a redress of grievances.</para>

</section>

<section>

<title>Amendment II (1791)</title>

<para>A well regulated militia, <emph>being

... {rest of bill of rights here} ...

others</emph> retained by the people.

</para>

</section>

<section>

<title>Amendment X (1791)</title>

<para>The powers not delegated to the United

States by the Constitution, nor prohibited by

it to the states, <emph>are reserved to the

states respectively, or to the people</emph>.

</para>

</section>

</bill-o-rights>

Figure 2: XML document to be processed

7. Write an XSL style sheet.

This document is processed using an XSL style-
sheet that transforms it into an XML document
adhering to the TEXML schema. Instead of
using TEX directly, this system uses LATEX,
because it has a higher-level interface. LATEX
requires the creation of environments (env),
commands (cmd), and parameters (parm). The
XSL stylesheet identifies elements in the input
XML document and outputs an XML document
that consists of these env, cmd, and parm
elements, plus some others to create the output

<?xml version="1.0"?>

<xsl:stylesheet

version="1.0"

xmlns:xsl="http://www.w3.org/XSL/Transform/1.0">

<xsl:output method="xml" indent="yes"

encoding="UTF-8" xml-declaration="yes"/>

<xsl:template match="/">

<xsl:apply-templates/>

</xsl:template>

<xsl:template match="bill-o-rights">

<TeXML>

<cmd name="documentclass">

<parm>article</parm>

</cmd>

<cmd name="title">

<parm>U.S. Bill of Rights</parm>

</cmd>

<env name="document">

<cmd name="date">

<parm>1791</parm>

</cmd>

<cmd name="maketitle"/>

<xsl:apply-templates/>

</env>

</TeXML>

</xsl:template>

<xsl:template match="section">

<cmd name="section*">

<parm>

<xsl:value-of select="title"/>

</parm>

</cmd>

<xsl:apply-templates/>

</xsl:template>

<xsl:template match="section/title"/>

<xsl:template match="para">

<xsl:apply-templates/>

<cmd name="par"/>

</xsl:template>

<xsl:template match="emph">

<cmd name="emph">

<parm>

<xsl:apply-templates/>

</parm>

</cmd>

</xsl:template>

</xsl:stylesheet>

Figure 3: XSL Stylesheet to create TEXML

output



TUGboat, Volume 20 (1999), No. 4 355

<DIR> {\LotusXSL}_0_18_5

<DIR> TeXML_V1R4

<DIR> xml4j_2_0_15

4,486 bill-o-rights.xml

1,356 BOR2TeXML.xsl

285 xml2tex.bat

Figure 4: Directory structure

java -cp xml4j_2_0_15\xml4j.jar;

lotusxsl_0_18_5\lotusxsl.jar

com.lotus.xsl.Process -in

%1.xml -xsl %2.xsl -out %1.texml

java -cp TeXML_v1r4\TeXML.jar;

xml4j_2_0_15\xml4j.jar

com.ibm.texml.TeXMLatte

%1.texml %1.tex

latex %1

dvips %1

start %1.dvi

Figure 5: Commands to run all processes

document. The LATEX language is described
by the inventor, Leslie Lamport, in his book,
LATEX: A Documentation Preparation System

User’s Guide and Reference Manual.

Our XSL stylesheet is shown in Figure 3.

The output from the XSL transform is an
XML document that expresses the contents
of the document as a series of environments,
commands, and parameters, along with the text
that is to be displayed according to the param-
eters. A program called TEXMLatte processes
this XML document and creates a TEX input
file. This TEX file is processed by the TEX
processor, which creates a DVI file. The DVI

file is transformed into a PostScript document
with the DVI2PS program, and voila!, you’ve
got paper!

8. Process your files.

As we have seen above, several processes need
to be executed to go from your XML to paper
using the TEX path. You should create a batch
file or shell script that executes each one in
turn to make the process automated. Using
the directory structure shown in Figure 4, your
commands look like those shown in Figure 5.

Notice that all of the paths are relative to the
directory that contains directory structures for
each component. Notice, also, that I have in-
cluded the jarfiles directly in the java call using
the -cp (classpath) command-line argument.
If you have these in your CLASSPATH environ-

<figure>

<verbatim>

<?xml version="1.0" encoding="UTF-8"?>

<TeXML>

<cmd name="documentclass">

<parm>article</parm>

</cmd>

<cmd name="title">

<parm>U.S. Bill of Rights</parm>

</cmd>

<env name="document">

<cmd name="date">

<parm>1791</parm>

</cmd>

<cmd name="maketitle"/>

<cmd name="section*">

<parm>Amendment I (1791)</parm>

</cmd>

Congress

<cmd name="emph">

<parm>shall make no law</parm>

</cmd>

respecting an establishment of

religion, or prohibiting the free

exercise thereof; or abridging the

freedom of speech, or of the press;

or the right of the people peaceably

to assemble, and to petition the

government for a redress of grievances.

<cmd name="par"/>

<cmd name="section*">

<parm>Amendment II (1791)</parm>

</cmd>

A well regulated militia,

<cmd name="emph">

<parm>being necessary to the security

of a free state</parm>

</cmd>

, the right of the people to keep and

bear arms, shall not be infringed.

<cmd name="par"/>

...

</env>

</TeXML>

Figure 6: TEXML document

ment variable, you don’t need to indicate them
here.

9. Check the output.

When the XSL stylesheet shown here is run
against the XML document shown, it produces
the TEXML file shown in Figure 6. When
this document is processed with the TEXMLatte



356 TUGboat, Volume 20 (1999), No. 4

\def\TeXMLmath#1{\ifmmode#1{}\else$#1{}$\fi}

\def\TeXMLnomath#1{\ifmmode\hbox{#1{}}\else#1{}\fi}

\documentclass{article}

\title{U.S. Bill of Rights}

\begin{document}

\date{1791}

\maketitle

\section*{Amendment I (1791)}

Congress \emph{shall make no law} respecting an

establishment of religion, or prohibiting the

free exercise thereof; or abridging the freedom

of speech, or of the press; or the right of the

people peaceably to assemble, and to petition

the government for a redress of grievances.\par

\section*{Amendment II (1791)} A well regulated

militia, \emph{being necessary to the security

of a free state}, the right of the people to

keep and bear arms, shall not be infringed.

\par

...

\end{document}

Figure 7: LATEX document

Figure 8: The final document (shown in YAP DVI

Viewer)

program, the result is a LATEX file shown in
Figure 7. After the LATEX file is processed with
TEX, it can be viewed using a DVI viewer, as
shown in Figure 8. <end/>

⋄ Brian E. Travis
btravis@architag.com



356 TUGboat, Volume 20 (1999), No. 4

A WYSIWYG TEX implementation

Igor I. Strokov

Abstract

A true WYSIWYG editor is implemented by means
of minor modifications to canonical TEX. The
changes include the ability to start compilation from
an arbitrary page and fast reformatting of para-
graphs. The new features provide an immediate
response for editing the typeset preview of a doc-
ument.

1 Conditional compilation

TEX was designed and implemented as a document
compiler (Knuth 1986); that is, one cannot preview
a typeset document before the compilation of its
source file, which means a relatively long response
time between inputing the text and previewing the
result. It does not matter much until one has to
deal with the document’s final appearance, making
numerous source file corrections to achieve better-
looking output. In other programming languages
the problem of acceleration is often resolved by
means of a ‘conditional compilation’, where a com-
piler tries to locate changes in the source text and
perform only that part of the job relevant to the
changes.

The same method evidently could work with
TEX: if, say, a user corrects page 10, then there is
no need to recompile the first 9 pages, as they will
remain the same.1 If one could load the complete
TEX memory stage on the beginning of page 10
then the page of interest could be obtained much
faster. Indeed TEX already does something in this
vein, loading a precompiled format on the job start.
One need only generalize this technique for the
intermediate stages of a TEX run. And here is
where the technical difficulties begin, involving an
account of almost all global variables, arrays, open
file pointers, etc. Besides, one cannot afford to
store all these values, literally, if we’re talking about
ordinary hard disks.

So, let us see how it is done in the WYSIWYG

TEX prototype program with the tentative name
‘TEXlite’. The memory dump is made after every
page completion when the page is thrown out and
the memory is relatively empty. In addition, an
extra dump refers to the beginning of the first
page (after loading all styles or \input files, at the
moment of first switching into horizontal mode). So,

1 Sometimes they will not, for example, if a table of

contents goes at the beginning and the document requires

two runs. This case is discussed below.



TUGboat, Volume 20 (1999), No. 4 357

we have memory stage j + 1 after each j-th page,
plus the initial stage 1 to be dumped. Indeed, every
j-th dump (j ≥ 1) records only the differences to
a basic memory stage k, where k = (j/8) ∗ 8 + 1.
The basic memory stages (whose numbers form
the sequence 1, 9, 17, 25, . . .) in turn are stored as
the differences with respect to memory stage 0,
which occurs just after loading the precompiled
format. Here a precompiled format is handled as
a special case of a memory dump—the only one
made, regardless any other basic memory stage.

The two-level hierarchy of basic memory stages
makes it possible to keep the total number of dumps
space almost linear, with respect to document size.
In fact, close memory stages generally differ less then
distant ones as differences tend to be collected. By
confining the distance between compared memory
stages (to 8 in our case) one can set up a certain
differences limit. Two levels of comparison definitely
slow down memory dumping and reading although
there is the positive effect resulting from smaller
space requirements and fewer disk addressings.

Rough measurements were done on a 535-page
book, TEX: The Program (Knuth 1986). TEXlite
was tested in both canonical TEX and WYSIWYG

modes, where the first case required 24 seconds and
the other 41 seconds. All 536 dumps took 29,280,000
bytes of virtual memory. These values, of course,
indicate plenty of scope for TEXlite optimization.

As the memory stages are dumped, it is known
which line lj in a source file was being read by
TEX on the completion of j-th page. If a user has
edited line l, lj < l ≤ lj+1, then TEX does not
need to recompile the first j pages; it can already
start from j + 1. There is one exception however:
TEX might produce or change some \output files
and wish to read their contents again at the next
run (as happens, for example, with the LATEX com-
mand \tableofcontents). Let the user enter or
correct some TEX clause and press a certain key
to watch the result. TEXlite notices the least line
number lj subjected to changes and retrieves the
corresponding page number j+1. Then it loads the
memory stage j + 1 and starts TEX which behaves
as if it has just processed page j and is going to
continue the compilation. If TEX is not interrupted
by another user demand then it will run until the
end of a document and check whether any \output

files have been updated since the previous run. If
they have, then TEX is run again, this time from
the zero stage.

So, in response of the user ‘recompile’ com-
mand, TEX is run once or twice. Each time it
produces, among others, a page which can be pre-

viewed by the user. Before displaying the page
TEXlite compares its past and present virtual views
and composes a map of changes. This map (which
may be, and usually is, void) helps to both reduce
redraw time and avoid flickers. In practice it means
that a user may enter or edit some consistent TEX
clause and get a very fast (in a split-second) and
precise response regardless of what page number he
is working with. Though there still remains a chance
for a page view to be altered later, the possibility is
small and the change is gentle.

2 WYSIWYG TEX

Although the conditional compilation already pro-
vides significant advantages, it still leaves two ma-
jor problems rooted in a human psychology un-
touched. First, it is wrong to share one’s attention
between two views (source text and typeset docu-
ment). Moreover, most people (all but us TEX users)
do not like programming languages and avoid learn-
ing them despite all the accrued benefits. Thus there
is a certain need to provide a way to work directly
and solely with the typeset view of a document,
leaving intervention in the source file for extreme
cases.

The simplest (and probably only) decision lies
in keeping the back link (the authors of the Mac im-
plementation Textures call it ‘synchronicity’2) from
the typeset document to the source text. The prob-
lem, of course, is rather technical and is resolved in
TEXlite by keeping track of source file characters to
their corresponding memory nodes in a special array.
All operations with memory nodes (including node
lists copying, rebuilding, etc.) address this array as
well. Finally, the information on character locations
in the source text (line and column numbers) is
stored in the typeset pages output (an analog of the
DVI file). Using this information one can synchro-
nize positions in a document view and its source
text. Users may work with the document view and
mark a current position in it with a flashing caret.
Upon performing some editing operation one could
apply a corresponding action to the source text
and initiate the conditional compilation as described
above. On fast machines (starting from a Pentium-
200) this process (compilation of one page) is often
fast enough to achieve no perceptible delay between
pressing a key and obtaining a visible result. How-
ever, one should not relay upon fast machines only.
Besides, there may be various slowing down factors,
such as complex page formatting, slow macros in-
volving vast calculations, etc.

2 See http://www.bluesky.com/sync.html for details.



358 TUGboat, Volume 20 (1999), No. 4

Figure 1: A screen shot of a TEXlite run. A selection in the typeset document window is shown to be
mapped into the source text.

Although any procedure providing a fast and
fairly accurate result will help here, it is better to use
native TEX algorithms for this purpose. Difficulties
in this choice follow from the fact that canonical TEX
does not keep parameters it has used to build boxes
and paragraphs. That is, one could not correctly
rebuild a box or a paragraph from its contents alone.
TEXlite resolves this problem by storing necessary
data in special ‘whatsit’ nodes. It does not take too
much extra space, as many parameters (penalties,
glues, parshape, etc.) remain the same throughout
a document and can thus be omitted. In addition,
TEXlite is more verbatim in its output of typeset
pages as it preserves all the nested lists structure
(however, the common DVI file is also optionally
output).

Let us see what happens when a user edits a
typeset document. First of all, TEXlite decides (with
the aid of ‘whatsit’ nodes) which paragraph, if any,
the current position belongs to. If no paragraph is
recognized (that is, it may happen within \halign)
then only the enclosing box is rebuilt and the
conditional compilation starting from the current
page is initiated. Otherwise, TEXlite locates the
current paragraph and unwraps it back into the hlist
by inserting lost glues and repairing hyphenation
aftermaths. The unwrapped list is subjected to the
changes followed from the user input (one may insert

a character-and-glue node list or delete several nodes
from the current position) and the linebreak routine
is called to rebuild the paragraph and display the
result on the typeset document view. After this
‘emergency repair’ the program enters the source
text, performs parallel changes there and starts the
conditional compilation which runs from the current
page to the end of the document or until the user
presses a key once more. Here the scenario described
in the above section is repeated in detail. If TEX
manages to build the current page before a next key
hit (usually it does) and the new page happens to
be different (usually it does not) from the repaired
one then the view is accurately updated.

3 Implementation

At present TEXlite is implemented under Win32
although without any specific Win32 virtues, which
hamper porting to other platforms, are used. The
program spawns four threads, where the most im-
portant one is TEX, slightly modified in five aspects:

1. It can be interrupted from outside and fall
asleep until an external wake-up command.

2. It dumps its own memory stage after every page
completion.

3. For every paragraph it stores all the data re-
quired to unwrap the paragraph and break it
into lines again.



TUGboat, Volume 20 (1999), No. 4 359

4. It outputs typeset pages in a form of nested lists
along with a common DVI file.

5. It traces the ancestry of nodes in the memory
and in typeset pages from the source text.

Another thread answers for the user interface
(which is more than just bare-bones now) and owns
the source text and typeset document windows (see
Figure 1). Two other threads, running on a higher
priority, do asynchronous mapping and scaling of
typeset pages to the previewer, which allows no
bottlenecks in the path from a user action to a visible
result.

Thus in TEXlite one can edit a typeset doc-
ument in true WYSIWYG mode without address-
ing the source text, at least while dealing with a
narrative text. Still, there are many apparent im-
provements worth adding: language constructions
handled by menu commands or by application of
‘wizards’, linkage of TEX messages to the source text
to allow faster and more intuitive error corrections,
and so on. Further application of the WYSIWYG

mode for TEX also promises some more substantial
benefits whose exploration, however, requires more
extensive efforts.

4 Availability

An alpha release of TEXlite is available by emailing
the author under the condition to report all bugs
and problems to him. A self-contained distribution
of TEXlite takes about 600K bytes.

References

[1] Knuth, D.E. Computers & Typesetting, Vol. B,

TEX: The Program. Reading, Mass.: Addison-
Wesley, 1986.

⋄ Igor I. Strokov

Novosibirsk Institute of Organic

Chemistry

Siberian Branch of Russian

Academy of Science

Lavrentiev avenue 9

Novosibirsk 90, Russia

strokov@nioch.nsc.ru



TUGboat, Volume 20 (1999), No. 4 359

Book Reviews

The LATEX Graphics Companion and

TEX Unbound — A Review of Two Books

Bill Casselman

Michel Goossens, Sebastian Rahtz, and Frank Mit-
telbach, The LATEX Graphics Companion: Illustrat-

ing documents with TEX and PostScript. Addison-
Wesley, Reading, Massachusetts, 1997, ISBN 0-201-
85469-4, 554 + xxv pages, $39.95.

Alan Hoenig, TEX Unbound: LATEX & TEX Strate-

gies for Fonts, Graphics, & More. Oxford Univer-
sity Press, New York, 1998, ISBN 0-19-509686-X
580 + ix pages, http://www.oup-usa.org/docs/
019509686X.html, $35.00 (paper).

It is not easy to incorporate good mathematical
figures in mathematical exposition—which is to
say that the revolution in mathematical typesetting
brought about by Donald Knuth’s invention of TEX
has not yet been matched by one in mathematical
illustration. Curiously, at the same time Knuth
gave us TEX, he also gave us the graphics language
METAFONT, but this has never enjoyed anywhere
near the popularity of TEX itself.

There are many reasons why mathematical
illustration is difficult. One’s first impression is
probably that the main difficulties are simply tech-
nical and that just around the corner will appear
the perfect software tool. It is certainly true that
in spite of the power of modern desktop com-
puters, the technical tools available currently are
either hard to use or of low quality, at least for
mathematical purposes. But I would argue that
the main difficulties are intrinsic to the problem—
that mathematical illustration is a skill requiring
practice and experimentation if not natural talent.
It may be that the awkwardness of the available
tools has established an unnecessarily high threshold
at which one is forced to begin, but I have trouble
imagining that the task will ever be trivial. If one
asks, for example, why the success of TEX has not
been accompanied by success for METAFONT, then
one possible answer is that typesetting (in spite of
appearances!) is essentially a one-dimensional world
where the number of choices is inherently limited.

There are roughly two separate phases to the
technical difficulties of illustration: (1) producing

This review originally appeared in the Notices of the Ameri-

can Mathematical Society, 46:11 (December 1999), pp. 1402–
1406, and appears here by permission.



360 TUGboat, Volume 20 (1999), No. 4

the illustrations, and (2) including them in mathe-
matical papers written in TEX. The second step is
largely distinguished from the first in that it does
not involve the actual content of the illustrations.
The lowest level of technical difficulty encountered
in the second step is getting TEX to recognize the
existence of an illustration, say, by constructing a
box from it. Even this is occasionally frustrating,
since the techniques used depend on the computer
environment, and portability is not guaranteed. But
the second step also frequently involves manipu-
lating illustrations in various simple ways (scaling,
rotating, perhaps coloring) which do not depend
essentially on their content. Actually, the border
between production and display of graphics in TEX
is not so sharp as might first appear, as anyone who
has tried to construct complicated commutative dia-
grams knows from painful experience. The fuzziness
of the boundary is also shown by current practices of
font design. I like to think that one of the unsolvable
philosophical problems of modern times is how to
decide where text ends and graphics begin.

Both of the books under review are concerned
with what might be called the middle ground of
mathematical graphics. They describe in modest
depth a large number of ways to produce illustra-
tions, and include in addition a briefer discussion
of how to manipulate them once they are pro-
duced. Both limit themselves to techniques which
can be used in almost all computer environments
and without serious expense. Neither includes
anything whatsoever on the intellectual process of
making illustrations; neither discusses large com-
mercial programs which one might wish to use to
produce one’s illustrations; and neither discusses
seriously the details of page make-up that might
lead one to abandon pure TEX and take up one of
the commercial programs such as that used by the
AMS, for example, to produce the final version of
the Notices. Both books do, however, touch lightly
on the question of how to produce mathematical
graphics for display on the Internet, and both books
also devote a fair amount of effort to explaining some
aspects of font handling in TEX.

In this review I shall first discuss how the books
handle what I call the second step of mathematical
illustration—the incorporation of graphics already
produced. I will then move on to the first step—
that of producing mathematical illustrations—and
talk about some options not covered in either book.
Because the review weaves together discussion of
both books, I have provided separate descriptions
of the contents of each book in the last section

of the review, together with some closing remarks
comparing the two books.

Manipulating graphics

Once illustrations have been produced, it ought to
be a mechanical process to incorporate them in a
mathematical paper. This is essentially the case, but
the difference between essence and reality can often
be exasperating. Even here difficulties which appear
at first merely technical are occasionally a matter of
something deeper, such as questions of how figures
are to be placed exactly where one wants them.

Hoenig’s book begins with a somewhat discur-
sive introduction to LATEX and other flavors of TEX.
It does not attempt to give details of how to use TEX,
but contents itself with an interesting survey which
does a fairly good job of placing TEX in perspective.
The book by Goossens et al. does nothing like this,
but after all, the same authors have covered this
territory already in the authoritative manual The

LATEX Companion. Well, not quite, because in
this volume as well as the earlier one, Goossens
et al. do indeed restrict their attention to LATEX.
This is probably a blessing for the large number
who use only LATEX, but their book is therefore
of limited use to the more technically sophisticated
readers who would otherwise be attracted to it. The
restriction to LATEX is especially frustrating since
almost all of the advice they give can be paralleled
in any flavor of TEX. However, figuring out the
necessary adjustments in a non-LATEX environment
might take a great deal of time. Those who do
restrict themselves to LATEX will be able to use
the LATEX graphicx package, which contains the
convenient macro \includegraphics. This handles
easily a very wide variety of input, and handles
well the problems of scaling and rotation one might
encounter. Hoenig devotes a few pages to the
LATEX graphics bundle, but Goossens et al. spend a
whole chapter on it, and do a more thorough job.
Here, too, my impression is that this package is
unnecessarily tied to LATEX

1 and that it would not
have been a difficult task for its developers to have
made it available outside the LATEX environment.

In discussing the incorporation of graphics al-
ready produced, both books go on to lengthy dis-
cussions of font handling and to some comparison
of the technical tools necessary for turning graphics
into TEX boxes. Fonts make up, of course, one of the
principal no-man’s lands between graphics and text.
Both books do a reasonably good job of explaining,

1
Editor’s note: This misunderstanding is cleared up in

the Afterword.



TUGboat, Volume 20 (1999), No. 4 361

for example, how to use PostScript fonts instead of
the bit-mapped fonts that are often used currently
by default in TEX. Hoenig spends more than 200
pages dealing with fonts, including a useful survey
of the role of METAFONT in TEX’s fonts, and his is
one of the more interesting and valuable treatments
currently available. Goossens et al. spend much less
space on the topic, but perhaps what they say will
be enough for most users of LATEX. Incidentally, font
problems become more important when one takes up
serious graphics work, because good mathematics
illustration will not avoid labels and other textual
inclusions, and it is not usually trivial to get text
and figures to match well.

The problems of embedding a given graphic in a
given TEX file are not always hard, but at times they
can be formidable. This is largely because there is
a wide variety in the kind of graphics file one wants
to embed. Both books do well at explaining how
to deal with the problem, given the assumptions of
the authors. As I have already said, Goossens et
al. explain primarily the graphicx package available
with LATEX. Like many similar packages, it probably
does not deal with all possibilities, but it does pretty
well at hiding unnecessary complexities in those sit-
uations where it does work. In particular, it makes
available a more or less homogeneous interface to
the low-level programs such as dvips which it calls
on to actually include graphics. The book is slightly
frustrating here because they really do not tell one
what to do if one does not want to use the graphicx
package. Hoenig has the virtue of dealing with all
kinds of TEX, but does not really say much here
except about the package dvips. This is a terrific
program written and maintained by Tom Rokicki,
once a student of Knuth’s. In my experience it
works best in a UNIX environment, where it can be
incorporated easily into a make configuration, but
even in other environments it often offers unique
capabilities. At any rate, anyone incorporating com-
plicated graphics in a paper should realize right from
the start that publishers may have trouble dealing
with them unless they are rendered into portable
PostScript. There are pitfalls here—packages such
as Mathematica are capable of producing stand-
alone PostScript output, but it may take a little
care to get it, since these packages can also produce
semi-complete files which call on a special PostScript
library that may be unavailable to a publisher.
It is best to check portability and completeness
by running pictures through a standard PostScript
interpreter.

Neither of the books under review eliminates
entirely the technical difficulties of incorporating

graphics, but given the intrinsic complexity of the
environment, and given their announced assump-
tions, they do pretty well. Each of them also
includes a few technical gems. I cannot resist
mentioning in some detail the one that I find most
useful, although it certainly might be considered
unduly arcane by many. A common problem these
days, dealt with briefly by both books, is that of
rendering PostScript pictures into bitmap images
(usually .gif files) for embedding into Web pages.
There are certainly several commercial packages
that do this well, if expensively. In the low cost
domain I inhabit, the standard procedure is to use
the workhorse program ghostscript (maintained
by Peter Deutsch and Aladdin) to convert .ps to
a simple but verbose bitmap format, from which
another suite of programs of various kinds can pro-
duce the .gif. The main problem is that the initial
conversion normally takes up an enormous amount
of computer memory, because by default it works on
a whole 8.5′′ × 11′′ page even if the image is quite
small. I suppose I should have thought of it myself,
but I was pleased to read on p. 458 of Goossens
et al. how to insert a PostScript setpagedevice

command into the .ps file like this

<< /PageSize [100 100] >> setpagedevice

in order to shrink the size of the area converted (and
hence stop my computer from spilling out petulant
error messages about running out of memory).

Producing graphics

In contrast to the technical problems mentioned
above, producing the illustration itself is, I believe,
an intrinsically difficult process, even if one dis-
counts the higher intellectual activity required to
get the picture to show what one wants it to. It
does not, perhaps, have to be as difficult as it now
often seems.

Here is a rough list of the options available to a
mathematician who wants to produce mathematical
illustrations:

(1) Commercial drawing program such as
Adobe Illustrator or Corel Draw. Among these,
the most suitable will be those producing vector
graphics, which are uniformly scalable, rather than
bit maps which show obvious defects when resized.
In my experience, these programs are not usually
suitable for mathematics illustrations since one of-
ten wants to exhibit a complicated structure they
cannot easily deal with. There is one extremely
important role which these programs can play in
mathematical graphics, however. The most notori-
ous problem one commonly confronts in this domain



362 TUGboat, Volume 20 (1999), No. 4

is that of embedding mathematical text in pictures.
Of course TEX is the only serious candidate for
producing the text itself, but how does one then
get the text into pictures? It is not difficult to
use TEX and dvips, say, to produce what is called
an encapsulated PostScript (EPS) file containing
just a single label. Nearly all commercial graphics
programs then allow one to import the EPS file into
almost any figure, using a graphical interface for
correct placement. This is certainly in many ways
the most convenient solution to the problem. It
would be great if one of the free PostScript viewing
programs, such as ghostview, allowed one to do
this, but as far as I know none do yet. A recent
release of Java includes a PostScript interpreter as
a demonstration, and it ought not be too difficult a
task to extend it to an EPS-importing tool.

(2) CAD (computer-aided design) programs de-
veloped primarily for engineering and architectural
work. These often rely internally on a true program-
ming language which can give pictures the required
structure. However, they include a lot of capability
which a mathematician will probably never use, and
they are very expensive. It probably would not
occur to most mathematicians to use one of these,
but at least one person I know who does great
graphics work relies almost entirely on AutoCAD.
Their 3-dimensional capability is pretty good.

(3) Mathematical software packages such as
Mathematica, Maple, Matlab. They cost real
money, but they can be used for a variety of purposes
in addition to illustration. My major criticism here
is that they are not quite flexible enough to produce
highest quality pictures in all circumstances, but
after all this is an aesthetic judgment. They can
get one a long way towards great pictures, but if
anyone has to resort to serious programming in one
of these to draw pictures he or she would probably
be better off doing something else.

(4) Real graphics programming. For this, one
might use some of the extensive graphics packages
in C or Java, and then write output in PostScript.
One might even program directly in PostScript,
although it is slow and severely limited in floating
point accuracy. The option of using a production
programming language seems rarely to be seriously
considered by mathematicians. Of course program-
ming is intrinsically difficult, but my own belief is
that the difficulty of programming is not greater
than the difficulties of designing good mathematical
graphics in the first place and that the quality of
output is almost always commensurate with the
work put into it. One other possibility is the
graphics language METAFONT, which both books

under review cover in some detail. I have already
mentioned that METAFONT was designed by Donald
Knuth to accompany TEX, and its use by Knuth in
font design played a crucial role in TEX’s success.
For this reason alone, perhaps, it should occupy at
least a small part of the heart and mind of every
TEX user. In both these books some very elegant
pictures produced by METAFONT are exhibited.
However, I would not advise someone who dislikes
programming to take it up, since it is really a rather
complicated language; nor would I advise someone
who likes programming to take it up, since I think
it would be far more fruitful to take up C or Java
or PostScript. Nonetheless, anyone who uses TEX
extensively will probably find it useful to have at
least a rough idea of what METAFONT is like, and
each of these books offers a brief chapter on the
topic. Both books also discuss PostScript, but more
as an adjunct to printing rather than a feasible way
to produce pictures in the first place. They share
also an apparent aversion to ghostscript, a freely
available PostScript interpreter which I have found
to be convenient and even invaluable.

(5) Several packages enabling one to do graphics
more or less from within TEX. Both books cover
a number of these. They generally have one great
virtue pretty much missing from all of the options
(1)–(4), which is that they enable one to include
TEX text inside the pictures they produce, and often
without a lot of fuss. In my opinion all but one of
the packages discussed in these books suffer from
extremely low versatility and quality, however. The
exception is the PSTricks package developed by
Timothy van Zandt and Denis Girou, which comes
with most free TEX distributions. This is essentially
a TEX interface to PostScript. If explored in depth
it can do nearly anything that basic PostScript
can, although I myself find the basic PostScript
environment more pleasant. The great advantage of
PSTricks is that it includes a large library of built-
in routines that can produce spectacular effects. It
also deals better than most with the problem of
embedding mathematical text in figures.

One unfortunate but unavoidable fact is that
no single tool does all tasks. It is not clear to me
that one single tool ever will.

Summary

These two books have much in common, but they
have their differences, too. It might make a compar-
ison easier if I summarize the contents of each.

The book by Goossens et al. opens with a
chapter summarizing how to use graphics in LATEX.
Chapter 2 describes the package of tools, such as



TUGboat, Volume 20 (1999), No. 4 363

graphics and graphicx, that are bundled with
LATEX. Chapter 3 describes METAFONT and a de-
rivative program called METAPOST, a METAFONT-
like interface to PostScript. Chapter 4 is concerned
with PSTricks. Chapter 5 describes the package
Xy-pic, which is a simple graphics language entirely
embedded in TEX itself. Chapters 6–8 describe
packages adapted to special areas such as chemistry,
music and games. Chapter 9 deals with the simple
use of color in both drawings and text. Chapter
10 is concerned with how to use PostScript fonts,
and Chapter 11 is a brief survey of other aspects of
PostScript.

The book by Hoenig opens with a general
description of TEX and LATEX. Chapter 2 tells
how to obtain packages from the Internet. Chapter
3 is about METAFONT, and Chapter 4 describes
the special features of LATEX, as opposed to other
flavors of TEX. Chapter 5 covers the relations
between TEX and other commonly used computer
tools such as text editors and extensions of TEX
that allow hyperlinks. Chapters 6–10 deal with
fonts. Hoenig’s treatment of graphics, with which
the second half of the book is concerned, begins
with a general discussion in Chapter 11. Chapter
12 discusses TEX-based graphics tools, Chapter 13
covers METAFONT and METAPOST, and Chapter
14 deals with PSTricks. (Thus Hoenig’s Chapters
11–14 overlap closely with Chapters 1–4 of Goossens
et al.) The final chapter is about a package mfpic,
which is a TEX interface to METAFONT.

It will be apparent from this outline that the
books overlap quite a bit, that Hoenig addresses
a wider range of questions than Goossens et al.,
and that Goossens et al. are more specifically con-
cerned with graphics questions. Given that they are
addressing a somewhat narrow range of problems,
both of the books under review do a fairly good
job of explaining relatively simple solutions to the
problems they do address. For those who use LATEX
exclusively, and are not interested in large-scale
graphics production and font management, the book
by Goossens et al. will be enough for most purposes.
Hoenig’s book is a more enjoyable read, and suggests
more distant journeys. The book by Hoenig, it
seems to me, also provides more examples of figures
useful to mathematicians.

Some other remarks: (1) In both books the
figures of highest quality and interest were generally
produced by PSTricks. The value of this package
is perhaps not as clear as it would be if the books
were to spend less time on less capable programs.
(2) Presumably because it works only in a UNIX

environment, neither book covers xfig (although

Goossens et al. have a misleading reference to it,
implying it is for some reason suitable only for
computer scientists). (3) The book by Goossens
et al. has not one but three separate indices. This
eccentric and interesting organization is useful for
some purposes, but none of the three qualifies as a
traditional subject index, and this is occasionally
annoying. (4) Both books lamentably seem to
accept and encourage the current and widespread
prejudice against doing serious programming in or-
der to produce illustrations, but this is undoubtedly
realistic in the current mathematical climate.

One final remark is that much of the most
technical content of these books would be convenient
to have in one public source on the Internet. This is
especially true since this sort of information changes
rather rapidly. For example, although Hoenig refers
briefly to the CM fonts in PostScript form made
available by Blue Sky Research, his reference is out
of date, and Goossens et al. do not refer at all to
them. This sort of thing is, of course, inevitable
given the practices of traditional publishing.

References

The programs dvips and PSTricks are available at
any of the CTAN archives. Some good sources of
documentation are

http://www.tug.org/dvipsk/

http://www.tug.org/applications/PSTricks/

index.html

http://www.radicaleye.com/dvips.html

PostScript versions of mathematics fonts are
indispensable for any serious integration of math-
ematical graphics and text. The Blue Sky fonts and
a few others are available now from the AMS at

http://www.ams.org/index/tex/

type1-cm-fonts.html

One source of useful technical information on
TEX in general is the journal of the TEX Users
Group, TUGboat. Information about it (and about
TEX in general), including how to access some
articles on line, can be found at

http://www.tug.org

There are many sources for the programming
graphics language PostScript on the Internet. A
huge list can be found at

http://www.geocities.com/SiliconValley/

5682/postscript.html#OTHER

One reference of interest to mathematicians
might be the text I have been using for several
years to teach an integrated course on geometry and
programming. This text is available at



364 TUGboat, Volume 20 (1999), No. 4

http://sunsite.ubc.ca/DigitalMathArchive/

Graphics/text/www/index.html

An extensive account of what Mathematica
can do with graphics, which is of interest even if
one does not use Mathematica, is contained in the
book Mathematica Graphics, Tom Wickham-Jones,
Springer-Verlag, 1994.

For some of us, one of the most striking con-
tributions of Donald Knuth is the observation that
typography is of mathematical interest, in the sense
that solving difficult technical problems in typogra-
phy requires mathematical methods. The closest ap-
proximation to Knuth’s style in the field of computer
graphics is perhaps the column Jim Blinn’s Corner

published regularly in the IEEE journal Computer

Graphics and Applications. Several of these columns
have been collected together in A Trip Down the

Graphics Pipeline (1996) and Dirty Pixels (1998),
both written by Jim Blinn and published by Morgan
Kauffmann. Blinn’s home page is at

http://research.microsoft.com/~blinn/

default.htm

Afterword

Note to the reissue in TUGboat:
Since the original publication of this review

in the American Mathematical Society Notices, it
has been called to my attention that although both
books here under review indicate strongly that the
graphicx package is tied to LATEX, this is not in fact
the case. A version for use with plain TEX should
be available at any of the CTAN archives.

It has also been called to my attention that I
might have mentioned the package psfrag, which
helps embed TEX labels in PostScript figures. It
is not in my view a perfect program, but it is
nonetheless impressive. The original version was
written, apparently, in perl, but the current version
has been written in TEX itself. As Hoenig says
of another program in his book, in this program
you can see TEX do things it may never have been
intended to do (although who of us can presume
to read the mind of Don Knuth?). Reading the
source for psfrag might bring a shudder to any
programmer who values readability and flexibility
highly, but of course it trades these virtues for
another—namely, portability.

One of the referees of the original article
claimed that my advice to use ‘raw’ PostScript for
drawing mathematical pictures was in some way a
betrayal of the highest standards of mathematical
elegance. I would like to say with even more
emphasis here that in my view good mathematical

graphics requires an input of mathematical con-
cepts. Programming directly in PostScript, if a
reasonable library is at hand, suits admirably, and
can without doubt produce the best possible output.
I have used it for this purpose for several years, and
have managed even to teach my techniques over the
years to hundreds of mathematics undergraduates.
Almost everyone who has tried it has come away
quite pleased.

Finally, the last line of the original review has
been misinterpreted as saying that my home page
is at microsoft.com. Nothing is further from the
truth, and that line has been changed in this version.

⋄ Bill Casselman

Mathematics Department

University of British Columbia

Vancouver, Canada V6T 1Y4

cass@math.ubc.ca

Book review: Digital Typography

Peter Flynn

Donald Knuth, Digital Typography. CSLI Publica-
tions, Stanford, CA, 1998, 1-575586-010-4.

Over two decades of METAFONT, TEX, and LATEX
have left the world with a wealth of material about
to the digital nature of type, typography, type-
setting, and type design related to these systems.
However, although the standard manuals [1, 2, 3]

This illustration appears on page 1 of Digital Typography,
and is used here by permission. The file contains this note:
“Fake woodcut I picked up somewhere in early 80s. If
anybody can identify the source, I’ll gladly give credit. . .

-- Don Knuth



TUGboat, Volume 20 (1999), No. 4 365

mention some of the topics where they are imme-
diately relevant, and over half of them have been
printed in TUGboat at some stage, a lot of the
material is not part of the actual programs or
their documentation. Instead, it forms part of the
background or history of TEX and friends: some of it
is transient, being posted to newsgroups or mailing
lists; some is anecdotal; and some has probably even
reached the status of myth.

I am therefore particularly pleased to be able
to review this book by Knuth himself, which not
only describes the development of METAFONT and
TEX but sets out many of the fundamental principles
of digital type design and typography, and explains
those aspects of the theory and practice which
underpin the programs and affect how they get used.

The book is arranged in 34 chapters, each being
an article or note on a specific topic. The subjects
covered range wide over the field, from the internal
details of the algorithms for breaking paragraphs
into lines to a simple way to do diagonal fractions
for weights and measures in cooking. Along the way
we are treated to dissertations on the design of the
letter S; the origins of the Euler, Concrete, and Punk
fonts; typesetting tricks like flowing text around an
image; the use of fonts in Indian script and in right-
to-left languages; digital half-tones; the real origins
of the first drafts of TEX; and Knuth’s views on the
past and future of his creations, taken from Q&A
sessions with users (see the Table of Contents on
page 365).

The old Army phrase, ‘on parade, on parade;
off parade, off parade’, can just as well be applied to
mathematicians and computer scientists: this book
is Knuth off-duty. The formal papers and articles
are mixed with teaching notes and recipes, diary
entries and interviews. His lucid, fluent, and exact
prose makes it a pleasure to read, and the occasional
diversions give us an insight into some of the byways
Knuth explored on his journeys from drafts and
early ideas to finished programs and fonts. Along
with the æsthetics there is some programming (I had
to dust off what Pascal I once knew!), and of course
some mathematics, so designers and programmers
alike will find plenty to read—as will every user.
Much of it is not tied to TEX, and the developers
of less competent systems would do well to read the
book to see where they are going wrong.

The first two chapters deal with a little typo-
graphic history and the demands that mathematics
places on typography (the original reason for TEX’s
existence). Chapters three and four explain in great
detail how paragraph formatting works: not line by
line but by treating the paragraph as a whole. In
chapters five to nine we have a series of useful macros
(in plain TEX; but LATEX equivalents exist in almost

every case) covering a variety of small formatting
needs. Chapters 10 and 11 handle some internal
details of TEX and WEB.

From chapter 12 to chapter 20 we are deep
in fontland, on letter design, the meta-ness of
METAFONT and the lessons it teaches, and the
design and use of math fonts. Chapters 21–23 may
come as something of a surprise: half-tones and the
digitization of angles are unusual topics in books on
typography, and yet they are very welcome because
they explain clearly the problems of rasterization:
fitting the dots when the dots won’t sit in a line.

The historical chapters 24–26 contain probably
the least-known material: Knuth opens his diary on
the days when he was designing and nurturing TEX.
As Tom Lehrer says, some of you may have had
occasion to run into mathematicians, and to wonder
therefore how they got that way [4]. . . the labor of
love expressed in these chapters may go some way
towards explaining it!

Chapter 27 contains another small diversion:
the bitmaps for the canonical icons for TEX and
friends. Chapter 28 explains how Knuth got from
computing into typesetting. From chapter 29 to 33
we find the future: in a series of question-and-answer
sessions at conferences, Knuth explains his views
on how things happened and where they go from
here. Finally, he begins the process of winding down
on TEX, as the number of new errors discovered
asymptotes to zero.

I have found this book a wonderful source of
both information and knowledge. Whether you’re
new to type or you’ve been using it for 20 years or
more, there’s something here you didn’t know. Go
and buy it now.

Here is the table of contents:

1. Digital Typography

2. Mathematical Typography

3. Breaking Paragraphs Into Lines

4. Mixing Right-to-Left Texts with Left-to-Right
Texts

5. Recipes and Fractions

6. The TEX Logo in Various Fonts

7. Printing Out Selected Pages

8. Macros for Jill

9. Problem for a Saturday Morning

10. Exercises for TEX: The Program

11. Mini-Indexes for Literate Programs

12. Virtual Fonts: More Fun for Grand Wizards

13. The Letter S

14. My First Experience with Indian Scripts

15. The Concept of a Meta-Font

16. Lessons Learned from METAFONT



366 TUGboat, Volume 20 (1999), No. 4

17. AMS Euler—A New Typeface for Mathematics

18. Typesetting Concrete Mathematics

19. A Course on METAFONT Programming

20. A Punk Meta-Font

21. Fonts for Digital Halftones

22. Digital Halftones by Dot Diffusion

23. A Note on Digital Angles

24. TEXDR.AFT

25. TEX.ONE

26. TEX Incunabula

27. Icons for TEX and METAFONT

28. Computers and Typesetting

29. The New Versions of TEX and METAFONT

30. The Future of TEX and METAFONT

31. Questions and Answers, I

32. Questions and Answers, II

33. Questions and Answers, III

34. The Final Errors of TEX

References

[1] Donald E. Knuth. The METAFONTbook.
Addison-Wesley, Reading, MA, 1986.

[2] Donald E. Knuth. The TEXbook. Addison-
Wesley, Reading, MA, 2nd edition, 1986.

[3] Leslie Lamport. LATEX, a document preparation

system. Addison-Wesley, Reading, MA, 2nd
edition, 1994.

[4] Tom Lehrer. Lobachevsky. In Tom Lehrer

Revisited. Reprise Warner, Burbank, CA, 1959.

⋄ Peter Flynn

Computer Centre, University

College, Cork, Ireland

pflynn@imbolc.ucc.ie

http://imbolc.ucc.ie/~pflynn



366 TUGboat, Volume 20 (1999), No. 4

Errata

The good name of TEX

Jonathan Fine

Editor’s note: The letter written by Mr. Fine to
the editor, published in TUGboat 20, no. 2, p. 93, in-
advertently had a missing \ before an % sign, thereby
rendering the next to the last sentence unintelligible.
The second paragraph:

<quote>

The author of TEX, Donald Knuth, has made
it perfectly clear that he does not object to anyone
revising TEX (or METAFONT) just as long as the
resulting program is called something else. How-
ever, he also says “nobody is allowed to call a sys-
tem TEX or METAFONT unless that system conforms
100have specified in the manuals to the TRIP and
TRAP tests.”

</quote>

should correctly read:

The author of TEX, Donald Knuth, has made
it perfectly clear that he does not object to anyone
revising TEX (or METAFONT) just as long as the
resulting program is called something else. However,
he also says “nobody is allowed to call a system TEX
or METAFONT unless that system conforms 100% to
my own programs, as I have specified in the manuals
to the TRIP and TRAP tests”.

TUG 99

Christina Thiele

The TUG99 Conference was organized by several
committees working together and independently, a
point which was perhaps not clearly indicated the
proceedings issue, TUGboat 20, no. 3, (pp. 156–57).

In addition to the Program Committee (co-
chaired by Anita Hoover and Stephanie Hogue),
which included the Proceedings Committee, there
was a Conference Committee, co-chaired by Patrica
Monohon and Susan DeMeritt. This latter commit-
tee took care of all the pre-conference site research
and visits, made the arrangements with the univer-
sity (rooms, meals, banquet, etc.), put together the
registration package material (mugs, T-shirts, the
printing and binding of the preprints etc.), and in
particular took care of the budget to make the con-
ference a financial success, so that for future con-
ferences there would be a pocket of funds available
to facilitate planning, and pay for the advance pur-
chases of materials and services without individuals
having to put stresses on their own personal reserves
while waiting for reimbursement.

Our thanks to Wendy McKay for bringing these
details to our attention.



TUGboat, Volume 20 (1999), No. 4 367

Resources

A CTAN Search Page

Jim Hefferon

A Comprehensive TEX Archive Network (CTAN) site
is a big place. Keeping track of what files are where,
even just in the LATEX subtree, and of what those
files do, is a big job. Recently I (and others; see
below) have added a resource— a web page— that
you can use to find what you want.

1 An Offer of Help

One thing that this page will do for you is what
you’d think it would do: locate files by name. The
other day I needed cwebmac.tex. I went to http://

tug.ctan.org/CTANfind.html, submitted the file-
name, and was rewarded with a results page such
that clicking on the filename downloaded the file.
Besides the file I asked for, also shown on that page
is some more information, the surrounding directory
and the file’s date, so that I can decide among (pos-
sible) multiple choices. There are also links to down-
load the entire directory packaged as a zip file or as
a tarred and gzipped file.

By the way, my download wasn’t made from
tug.ctan.org but rather from my favorite CTAN

mirror. The first time I used CTANfind, before see-
ing the results page I got a page that asked me to
select the mirror. That’s how the system found out
my preference. How that preference is remembered
is that when I selected a mirror, my browser got a
cookie with the information in it. Now, every time
that I go to this same CTANfind page, the browser
presents this cookie and the information is used in
the generated results.

Another thing that this page will do for you is
to help answer questions like, “Is there an already
written solution to . . . ?” That’s because it has the
ability to search Graham Williams’s wonderful Cat-
alogue1 of information on TEX and LATEX. For in-
stance, one of the things I struggled with first in
trying LATEX was to have a letter place the closing
on the left. If only I had CTANfind— searching the
Catalogue for ‘letter’ gives perhaps two dozen re-
sponses, at least one of which, block, does the job.

There is one more thing that this tool can do
for you. A design target for this page was that from
it you could quickly answer half of the questions
from a day’s comp.text.tex. So included at the

1
in \help\Catalogue\catalogue.html on CTAN

end are a few links, to the UK TUG FAQ, to the
Short Introduction to LATEX, etc., that seem to me
to be the most often referenced.

I hope that you find this tool useful.

2 A Request For Help

Here are the technical details: Behind the web page
are two CGI scripts that in turn rely on data files
generated as cron jobs (the programs are in Perl 5).
These were written to be easily set up at other sites.
If you are a CTAN mirror and you are willing to try
hosting your own version then joshua.smcvt.edu/

ctan/install_search.shtml should make installa-
tion on any UNIX system straightforward; no editing
of Perl source.

Having a version of CTANfind running on each
continent would be great (although Antarctica might
be tough!). Right now, you can go to tug.ctan.

org/CTANfind.htmland joshua.smcvt.edu/ctan/

CTANfind.html in the USA, and www.tex.ac.uk/

CTANfind.html in England.

3 With a Little Help From My Friends

The net can be such a fine place. A number of people
let me steal, err . . . , borrow their ideas (some of
which they were patient enough to explain to me
at length first). I’d particularly like to thank Karl
Berry, Robin Fairbairns, and Graham Williams.

⋄ Jim Hefferon

Department of Mathematics

Saint Michael’s College

Colchester, VT 05439, USA

tex@joshua.smcvt.edu

http://joshua.smcvt.edu/

hefferon.html



TUGboat, Volume 20 (1999), No. 4 367

Hints & Tricks

“Hey — it works!”

Jeremy Gibbons

Welcome again to “Hey — it works!”, a column
devoted to (LA)TEX and META tips and tricks. This
issue is devoted to a single topic, a sequel to an
earlier article on creating ornamental rules: we show
how to construct ornamental boxes out of individual
symbols.
Please note that I have moved. My new contact

details are given at the end of this article. Unfor-
tunately, mail is not being forwarded from my old
address; I apologize profusely for any inconvenience



368 TUGboat, Volume 20 (1999), No. 4

that this may have caused. This column is be-
ing archived at http://users.comlab.ox.ac.uk/
jeremy.gibbons/hiw/.

Ornamental boxes

In this column in TUGboat 19:4, Christina Thiele
showed how to produce ornamental rules con-
structed from ordinary characters:

∗∗∗∗∗∗∗∗∗∗∗∗∗∗

It is also fun to generate ornamental boxes out of
ordinary characters:

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗
∗
∗
∗
∗
∗

shake the yoke of
inauspicious stars

∗
∗
∗
∗
∗
∗

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

This article shows how. We start off with a simple
macro, and elaborate on it in stages.

First attempt: a single symbol

Our first attempt constructs an ornamental box out
of copies of a single symbol, as in the example above.
The macro \boxitA takes two arguments: the con-
tents to be boxed, and the symbol (in fact, any
horizontal material) that will be used to surround
it. The first step is shift these two boxes vertically,
if necessary, so that they have zero depth.

\def\boxitA#1#2{{%

\setbox0=\hbox{#1}% the box contents

\setbox0=\hbox{\raise\dp0\box0}%

\setbox1=\hbox{#2}% the ornament

\setbox1=\hbox{\raise\dp1\box1}%

Unfortunately, Christina’s elegant use of leaders
doesn’t work as well for boxes as it does for rules; we
have to achieve the same effects manually. We com-
pute precisely how many instances of the symbol are
required, horizontally and vertically, to exceed the
dimensions of the contents; call these two numbers
m and n. Each number is the size of the contents
divided by the size of the symbol, rounded up to the
nearest integer; we round upwards by first adding
the size of the ornament less one.

\count0=\wd0 \advance\count0 by \wd1

\advance\count0 by -1 \divide\count0 by \wd1

\count1=\ht0 \advance\count1 by \ht1

\advance\count1 by -1 \divide\count1 by \ht1

The dimensions of the contents may not be exact
multiples of the size of the symbol, so we wrap the
contents in the smallest enclosing box with such
dimensions:

\setbox0=\hbox to \count0\wd1{%

\hfil\vbox to\count1\ht1{%

\vfil\box0\vfil}\hfil}%

Finally, we construct the ornamental box, withm+2
instances of the symbol at the top and bottom, and
n+ 2 instances at the left and right:

\hbox{\vbox{\offinterlineskip

\hbox{\copy1%

\duplicate{\count0}{\copy1}%

\copy1}

\hbox{\vbox{\duplicate{\count1}{\copy1}}%

\copy0%

\vbox{\duplicate{\count1}{\copy1}}}

\hbox{\copy1%

\duplicate{\count0}{\copy1}%

\copy1}

}}%

}}

Here, the macro \duplicate generates a given
number (its first argument) of copies of a given text
(its second argument):

\def\duplicate#1#2{{% #1 copies of #2

\count2=#1%

\loop

#2%

\advance\count2 by -1

\ifnum \count2>0 \repeat}}

For example, the box at the start of this article was
generated by the code

\boxitA{\begin{tabular}{c}

shake the yoke of \\

inauspicious stars

\end{tabular}}

{$\ast$}

Second attempt: multiple symbols

The first attempt gave the general idea; however, it
would be nice to be able to use different symbols for
the four edges and the four corners. In this second
attempt, we provide such a facility. However, for
simplicity we assume that all eight symbols are the
same size. For example:

ց ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ւ
→
→
→

bring me my

arrows of desire

←
←
←

ր ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ տ

As before, we start by making the contents and
all eight of the symbols sit on the baseline:

\def\boxitB#1#2#3#4#5#6#7#8#9{{%

% contents TL T TR L R BL B BR

\setbox0=\hbox{#1}% the box contents

\setbox0=\hbox{\raise\dp0\box0}%

\setbox1=\hbox{#2}% #2 to #9 the ornaments

\setbox1=\hbox{\raise\dp1\box1}%

\setbox2=\hbox{#3}%

\setbox2=\hbox{\raise\dp2\box2}%

\setbox3=\hbox{#4}%

\setbox3=\hbox{\raise\dp3\box3}%

\setbox4=\hbox{#5}%

\setbox4=\hbox{\raise\dp4\box4}%

\setbox5=\hbox{#6}%

\setbox5=\hbox{\raise\dp5\box5}%

\setbox6=\hbox{#7}%



TUGboat, Volume 20 (1999), No. 4 369

\setbox6=\hbox{\raise\dp6\box6}%

\setbox7=\hbox{#8}%

\setbox7=\hbox{\raise\dp7\box7}%

\setbox8=\hbox{#9}%

\setbox8=\hbox{\raise\dp8\box8}%

(It would be nice to do this with a loop, but
unfortunately you cannot use a counter to access
a macro parameter.) Then we compute the number
of symbols required, horizontally and vertically, and
pad the contents accordingly:

\count0 = \wd0 \advance\count0 by \wd1

\advance\count0 by -1 \divide\count0 by \wd1

\count1 = \ht0 \advance\count1 by \ht1

\advance\count1 by -1 \divide\count1 by \ht1

\setbox0=\hbox to \count0\wd1{%

\hfil\vbox to\count1\ht1{%

\vfil\box0\vfil}\hfil}%

Finally, we construct the ornamental box, taking
care to use the correct symbol for each position:

\hbox{\vbox{\offinterlineskip

\hbox{\copy1%

\duplicate{\count0}{\copy2}%

\copy3}

\hbox{\vbox{\duplicate{\count1}{\copy4}}%

\copy0%

\vbox{\duplicate{\count1}{\copy5}}}

\hbox{\copy6%

\duplicate{\count0}{\copy7}%

\copy8}

}}%

}}

In order to use this macro, we need a means
of making all eight symbols the same size. The
macro \resizeW solves this problem: it yields its
first argument, but centred in the width of its second
argument. (Fortunately, all eight arrows are the
same height, so no vertical adjustment is necessary.)

\def\resizeW#1#2{{% #1, but to width of #2

\setbox0=\hbox{#2}%

\rlap{\hbox to \wd0{\hfil#1\hfil}}%

\phantom{\box0}%

}}

Then the box constructed out of eight arrows can
be generated by

\boxitB{\itshape

\begin{tabular}{c}

bring me my \\

arrows of desire

\end{tabular}}%

{\resizeW{$\searrow$} {$\searrow$}}

{\resizeW{$\downarrow$} {$\searrow$}}

{\resizeW{$\swarrow$} {$\searrow$}}

{\resizeW{$\rightarrow$}{$\searrow$}}

{\resizeW{$\leftarrow$} {$\searrow$}}

{\resizeW{$\nearrow$} {$\searrow$}}

{\resizeW{$\uparrow$} {$\searrow$}}

{\resizeW{$\nwarrow$} {$\searrow$}}

Third attempt: different shapes

A little reflection suggests that there is no need for
all eight ornaments to be the same size; all that is
required is for those symbols that will be aligned
together to have matching sizes in the appropriate
dimension. Thus, if we call the four edge symbols
t, b, l and r, and the four corner symbols tl, tr,
bl and br, then:

• tl, l, bl should have the same width;
• t, b should have the same width;
• tr, r, br should have the same width;
• tl, t, tr should have the same height;
• l, r should have the same height;
• bl, b, br should have the same height.

The only change required to the macro is to make
sure the appropriate symbols are used when it comes
to computing the number of symbols required:

\def\boxitC#1#2#3#4#5#6#7#8#9{{%

% contents TL T TR L R BL B BR

\setbox0=\hbox{#1}% the box contents

...

\count0 = \wd0 \advance\count0 by \wd2

\advance\count0 by -1 \divide\count0 by \wd2

\count1 = \ht0 \advance\count1 by \ht4

\advance\count1 by -1 \divide\count1 by \ht4

\setbox0=\hbox to \count0\wd2{%

\hfil\vbox to\count1\ht4{%

\vfil\box0\vfil}\hfil}%

...

}}

Now it is possible to dispense with the resizing; we
can write simply

\boxitC{\itshape

\begin{tabular}{c}

bring me my \\

arrows of desire

\end{tabular}}%

{$\searrow$}{$\downarrow$}{$\swarrow$}

{$\rightarrow$}{$\leftarrow$}{$\nearrow$}

{$\uparrow$}{$\nwarrow$}

to generate

ց↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓ւ
→→→→→→→

bring me my

arrows of desire

←←←←←←←
ր↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑տ

Knotwork

Sadly, there is a shortage of good symbols for creat-
ing such ornaments; not many typographic elements
come in eight different orientations! However, there
is nothing to stop you designing your own symbols:



370 TUGboat, Volume 20 (1999), No. 4

CBBBBBBBBBDAAA
wreathe iron pokers

into true-love knots

AAA
EBBBBBBBBBF

This ornamental box uses a font of six different
knotwork components:

C D E F B A
(the top and bottom edges use the same symbol,
as do the left and right edges). The designs are
based on those in the book Celtic Knotwork Designs

by Sheila Sturrock (Guild of Master Craftsman
Publications, 1997).

⋄ Jeremy Gibbons

Oxford University Computing

Laboratory

Wolfson Building, Parks Road

Oxford OX1 3QD, UK

jeremy.gibbons@comlab.ox.ac.uk

http://www.comlab.ox.ac.uk/

oucl/people/jeremy.gibbons.

html



370 TUGboat, Volume 20 (1999), No. 4

The Treasure Chest

CTAN, the Comprehensive TEX Archive Network, is
a huge beast! And the TEX community is constantly
feeding the creature with new packages and fonts
and implementations and tools and utilities . . . to
the point where it seems impossible to know what’s
available and even then, where it’s to be found.

So, in an effort to try and show you the rich-
ness of the feast available at the Archive, this edition
of the Treasure Chest column will focus on a new
component—a quarterly inventory of new packages.
And while it’s true that there are search mechanisms
on the web for CTAN, not everyone has time to
browse with their browser. We’d like this column
to become another means of letting TEX users find

out about new or upgraded packages, as well as con-
tinuing (in future editions) to feature packages that
deal with specific topics.

It also seemed only logical to include an over-
view of CTAN’s structure, as well as a few tips on
how to try and identify packages that may well prove
invaluable to your work: the trouble with a rich re-
source is that it’s very hard to digest, and CTAN

certainly can prove frustrating when you want to
find a solution now !

Another new feature (end of the column) will
be a list of upgrades to packages already described in
past editions of this column so that you can confirm
that you have the latest versions at your disposal.

So, let’s start with some CTAN pointers, some
notes on its structure, and then plough on into the
inventory.

CTAN pointers

If you haven’t visited CTAN or aren’t sure there’s
anything there for you, here are some points to keep
in mind.1. If you’re getting TUGboat, you’ve also been

getting periodic updates of the CTAN holdings
on a CD-ROM (produced by DANTE). Track
it down if it’s not on your shelf and use it as
a quick way to access and examine packages.
Of course, it’s only a ‘snapshot’ but it already
contains a massive quantity of material; if you
find something you like, then all you need do is
check CTAN periodically for any upgrades.

2. The easiest way to access CTAN itself is to use
your web browser and head to www.tug.org,
and then follow the links to CTAN (middle of
the opening page, middle column, under ‘Soft-
ware’). Remember to add the useful pages to
your booksmarks!
The ftp links to the three backbone servers are
there, as well as links to mirror sites around the
world, and also to some handy search engines.

3. Some packages are contained within a single
file while others may require several files to be
fetched and then processed correctly. It’s best
to read any readme file to make sure you pick
up all that’s needed.
Process the files on your machine, move the

resultant files to where the instructions tell you,
and then print up the documentation and put
it in a binder. No point in having it somewhere
in e-form if you prefer making notes by hand.

4. There are lots of ways of doing (almost) the
same thing, so if one package doesn’t quite work
for you (provided you’ve done the right things
to install it) it’s quite likely that another pack-
age is lurking somewhere. The Treasure Chest



TUGboat, Volume 20 (1999), No. 4 371

column is one small attempt at bringing pack-
ages to the fore, mainly with reference to a gen-
eral topic: headings, or floats, or special layouts
(critical editions, linguistics, music, etc.), and
so on. If you can’t find what you’re looking
for, a post to one of the newsgroups or lists can
often dislodge a suggestion or two.

5. Another source of information on packages is
the UK TUG’s FAQ, also available via the TUG

webpages.
6. You should also make a note that a directory

may have a further misc/ directory; this is often
where very small packages are stowed.

7. And remember: it’s often likely that a layout
problem you’re encountering has stumped some-
one else too, to the point where they sat down,
solved their problem, and then decided to make
their work available to the whole community.
If you’re able to find your solution via CTAN,

take a moment and send a thank-you note to
the developer— they’ll surely appreciate the ac-
knowledgment.

CTAN and its subtrees

The top of the CTAN tree is tex-archive. The table
on the next page shows the 16 subtrees (at present)
and the purpose of each.

It helps to become familiar with these general
categories so that you don’t waste time looking for
something in an unlikely subtree. For example, ma-
terial related to BibTEX is found in the main subtree
biblio/bibtex/contrib/, and not down in macros/
latex/contrib/supported/.

To help you navigate around the archive and
locate files there are some excellent webpages— I’d
recommend bookmarking these two:

• index.html, found in tex-archive, lists the
intent of each sub-tree

• In the above-mentioned HTML document, go
to ‘Help’, and click on the ‘catalogue’, which
is Graham Williams’ ‘The TEX Catalogue On-
line’, which provides incredible options for lo-
cating and accessing packages old and new. The
Brief Index (300K) has a short description of
each entry and a link to the full entry.

If you have a favorite tool, let me know and we’ll
mention it in a future edition.

Packages posted to CTAN

Notes to keep in mind:

1. Packages are listed in the month of the latest
upgrade; that is, if a version is posted in Oct.
and a new version in Dec., only the newer one
will be listed.

2. Monthly entries are in alpha-order, for easier
reference.

3. Unless otherwise stated, packages are located
in:

macros/latex/contrib/supported/

However, there are two main branches under
contrib/: supported/ and other/. The de-
fault used here is supported, and where other
is the location, its path will simply be noted as
.../other/, to cut down on path length.

October 1999

bibunits: A package to provide multiple references in
one document (upgrade to v. 2.1 provides compat-
ibility with overcite and natbib, and makes cite

more robust).

cmactex: in nonfree/systems/mac/

Upgrades: Two files, doc.sit.bin and texmflib.

sit.bin, are replacements and contain minor cor-
rections to existing archives. Pdftex14c.sit.bin

is the Macintosh port of v. 0.14c of pdfTEX.

comment: in .../other/

A package to selectively in/exclude pieces of text:
the user can define new comment versions, and each
is controlled separately (upgrade to v. 3.6).

ctib4tex: in language/tibetan/

ctib4tex contains “Tibetan for TEX and LATEX 2ε”,
a package using a modified version of Sirlin’s Ti-
betan font. The great advantage of this Tibetan
implementation is that all consonant clusters are
formed by TEX and METAFONT. No external pre-
processor is needed.

dotlessi: in .../supported/bezos/

Dotlessi provides dotless i’s and j’s for use in any
math font (\mathrm, \mathsf, etc.).

easy: A family of packages for equation environments,
block matrices, tables, vectors, and customising
bibliographies.

epmtfe: in systems/os2/

EPM TEX Front End is an integrated TEX environ-
ment for OS/2, based on the EPM editor. Some
support was added for using the TEX Front End
with VTEX/2 and for viewing PDF files (upgrade
to v. 2.5).

fonteinf.pdf: in info/german/

This is a translation into German of tipos.pdf,
kindly made by Thomas Ruedas.

geometry: This package provides an easy and flexible
user interface to customize page layout. It im-
plements auto-centering and auto-balancing mech-
anisms so that users have only to give the least
description for the page layout (upgrade to v. 2.2).

gloss: gloss is a package which allows the creation of
glossaries using BibTEX (upgrade to v. 1.4).

hyperref: This package is used to emend cross-referenc-
ing commands in LATEX to produce some sort of
\special commands. Upgrade v. 6.67 is a stabiliz-
ing release, committing all the small test enhance-
ments made over the last few months. This includes



372 TUGboat, Volume 20 (1999), No. 4

CTAN sub-trees

biblio/ systems for maintaining and presenting bibliographies within documents typeset using
TEX

digests/ collections of TEX mailing list digests, TEX-related ‘electronic magazines’, and indexes,
etc., of printed publications

dviware/ printer drivers and previewers, etc., for .dvi files

fonts/ fonts written in METAFONT, and support for using fonts from other sources (e.g., those in
Adobe Type 1 format)

graphics/ systems and TEX macros for producing graphics

help/ FAQs and similar direct assistance; the catalogue

indexing/ systems for maintaining and presenting indexes of documents typeset using TEX.

info/ manuals and extended how-to information; errata for TEX-related publications, collections
of project (e.g., LATEX and NTS) documents, etc.

language/ support for various languages

macros/ TEX macros; several directories have significant sub-trees:

macros/context/ the Context distribution

macros/generic/ macros that work in several environments

macros/latex/ the LATEX distribution and contributed matter

macros/plain/ Donald Knuth’s example macro set

support/ TEX support environments and the like

systems/ TEX systems; organised by operating environment, but also including:

systems/knuth/ Donald Knuth’s current distribution

systems/generic/ Complete systems that can potentially operate in more than one operating
environment

tds/ the TEX Directory Structure standard (the output of the TUG TDS working group)

tools/ tools of use for the archive maintainers (including mirrors of the source of the compression
tools the archives use)

usergrps/ information supplied by TEX user groups

web/ ‘Literate Programming’ tools and systems

For your information, the following names are found along with the 16 subtrees under tex-archive
but are symbolically linked to one of the actual subtrees:

archive-tools --> tools/

bibliography --> biblio/

dante --> usergrps/dante

documentation --> info/

languages --> language/

restructuring the source tree, putting test files and
documentation in their own directories.

mathsPIC: in graphics/pictex/

MathsPIC is a DOS filter program for use with
PICTEX (v. 1.8f). There is a 37-page manual in
.tex, .dvi, and .ps formats.

pdfscreen: This package helps to redesign the PDF out-
put of your normal documents fit to be read in a

computer monitor while retaining the freedom to
format it for coventional printing.

pdfslide: This is a package for use with pdfTEX, to
make nice presentation slides.

pitthesis: This is a LATEX 2ε document class package
for writing theses at the University of Pittsburgh,
PA.



TUGboat, Volume 20 (1999), No. 4 373

pstoedit: in support/

pstoedit converts PostScript and PDF files to other
vector graphic formats so that they can be edited
graphically.

rtf2latex2e: in support/

rtf2latex2e converts Rich Text Format files to
LATEX 2ε. It runs on Mac, UNIX, Linux, and Win
(upgrade to v. 0.263).

tipos.pdf: in info/spanish/

Describes (in Spanish) the large variety of types of
files for fonts (tipo means ‘font’ in Spanish).

topfloat: A package to move any type of float material
to the top of the page.

November 1999

bizcard: A package for typesetting business/visiting/
calling cards (upgrade to v. 1.1).

ccfonts: A package and some of the necessary .fd files
to use the Computer Concrete fonts with LATEX.

expressg: in graphics/metapost/contrib/macros/

This METAPOST package provides facilities to as-
sist in drawing diagrams that consist of boxes, lines,
and annotations. Particular support is provided for
creating EXPRESS-G diagrams.

latex2rtf: in support/

latex2rtf is a translator program that translates
LATEX text into the RTF format used by several text
processors, including Microsoft Word and Word for
Windows (patches to v. 1.8a). The distribution is
made for use within the MS-DOS window of Win95
and Win3.11, but all sources can be compiled on
UNIX computers having GCC compilers.

makefonts: in fonts/utilities/

The package contains shell scripts which cause .pk

files to be generated (upgrade to v. 2.0).

merlin: in .../supported/custom-bib/

Part of the custom-bib package for generating cus-
tomized BibTEX styles from a generic file by means
of the docstrip program that is part of the LATEX
installation (upgrade to v. 4.00).

Metafp.ps: in info/

A PostScript article entitled “Some Experiences in
Running METAFONT and METAPOST.”

multirow: Bug fixes to multirow.sty, and new package,
bigdelim, an application of multirow for delimiters
inside arrays and tabulars.

parskip: in .../other/misc/

Package to be used with any document class at any
size, which produces the following paragraph lay-
out: zero \parindent and non-zero \parskip. The
package is no more than a quick fix; the proper way
to achieve effects as far-reaching as this is to create
a new class.

permute: The permute package inputs, outputs and
composes permutations (upgrade to v. 0.12).

qbibman: in biblio/bibtex/utils/

qbibman is a graphical front-end to BibTool based
on the Qt library.

rmligs: in support/

This is a program for removing incorrectly used lig-
atures from LATEX documents. This version is in-
tended for German-language texts only.

scrnger: in .../supported/koma-script/contrib/

The Koma-Script packages seek to implement Eu-
ropean rules of typography and paper formats, as
documented in Tschichold. scrnge adds support
for the language ngerman to the current versions of
scrlettr.cls and scrdate.sty.

snapshot: This package helps users obtain a list (a
‘snapshot’) of the external dependencies of a LATEX
document, in a form that can be embedded at the
top of the document. Such a dependency list makes
it possible to arrange that the document be pro-
cessed is always with the same versions of every-
thing, in order to ensure the same output.

Songbook: The package provides a core set of functions
for the production of songbooks (upgrade to v. 3.1).
See also: cyberus.ca/~crath/Misc/Songbook/.

TeEncontreX: in documentation/spanish/

Documentation that attempts to collect and cen-
tralize all the available data about TEX so that
anyone can find information in one place. People
can add new articles (very easily) to the database.
All its contents may be found at ctv.es/USERS/

irmina/TeEncontreX.html.

December 1999

aeguill: A package intended to add French guillemets
to the ae package. The guillemets are built with
the wncyr fonts (by default), or with either the lasy
fonts or the EC fonts (upgrade to v. 0.97).

bakoma: in nonfree/systems/win32/

Upgrade of BaKoMa TEX (v. 2.21). For more in-
formation about changes: .../win32/bakoma/dst/

changes.html.

BibTool: in biblio/bibtex/utils/

BibTool allows the manipulation of BibTEX files
in a way that goes beyond the possibilities — and
intentions — of BibTEX (upgrade to v. 2.44).

braket: in .../other/misc/

Macros for Dirac bra-ket <|> notation and sets
{|} (update). Fixed and expanding sizes provided.
This minor revision will use ε-TEX’s \middle prim-
itive if it is available.

calxxxx: in .../other/

calxxxx.tex prints a card-size calendar for any
year, AD or BC, with Gregorian or Julian leap rules
(useful for years before the adoption of Gregorian
rules).

contour: The package generates a colored contour a-
round a given text in order to enable printing text
over a background without the need for a color box
around the text (upgrade to v. 1.03).

dichokey: The package can be used to construct di-
chotomous identification keys (used especially in



374 TUGboat, Volume 20 (1999), No. 4

biology for species identification), taking care of
numbering and indentation of successive key steps
automatically. Run the example file!

dvii: in dviware/

dvii (.dvi file information utility) is a utility writ-
ten in C that extracts information from a TEX .dvi

file (upgrade to v. 0.27).

extsizes: in .../other/

This package provides two classes: extarticle and
extreport, which allow for documents with a base
font of size 8–20pt.

fotex: in macros/

Package used to process XSL formatting objects
when serialized as XML by an XSL processor (pack-
age updates).

grverb: in languages/greek/package-babel/

This package addresses the issue of writing both
Latin and Greek verbatim text, particularly useful
for computer listings and, more generally, in com-
puter science-related texts. A public domain font is
used by both the command and the environment.
The font conforms to the ISO-8859-7 encoding for
the Greek language.

jadetex: in macros/

Package used to process the output of the Jade
DSSSL processor in its TEX mode (package up-
dates).

lgrind: in support/

LGrind is a source code pretty-printer; it converts
program text from many languages into LATEX.
This new version features a Python mode (upgrade
to v. 3.64).

ltx2x: in support/

The ltx2x program (written in C) replaces LATEX
commands in a document by user-defined strings.
In essence, LATEX tags can be replaced by other
kinds of document tags (e.g., HTML/SGML or RTF)
or can be removed altogether (deTEXed). The pro-
gram also has an unsophisticated pretty-print ca-
pability (upgrade to v. 0.92).

matlabweb: in web/

A literate programming system for the Matlab lan-
guage. Similar to CWEB, created with a slightly mod-
ified version of the Spider system. Can be used with
plain TEX or LATEX, the latter with help from the
webfiles package.

miktex: in systems/win32/miktex/1.20

MiKTEX is a free TEX distribution for Windows 9x
and Windows NT. The latest release is 1.20, to be
found in the 1.20 sub-folder.

nestquot: in .../other/

Quotes that change between double and single ac-
cording to their nesting level.

passivetex: in macros/

Shared macros for JadeTEX and FOTEX, include
the XML parser and UTF8 handler (written by
David Carlisle), and all the general support for
characters in Unicode (package updates).

psrip: in support/

A Perl script that extracts images from PostScript
files.

rcs.patch: in .../rcs/contrib/

A patch for the rcs package, which utilizes the in-
clusion of RCS-supplied data in LATEX documents.

refcheck: refcheck.sty is intended to check refer-
ences. It looks for numbered but unlabelled equa-
tions, for labels not used in the text, for unused
bibliography references (upgrade to v. 1.6).

texshell32: in systems/win32/

This program is a free shell for the typesetting sys-
tem TEX. It runs under Windows 95, 98 and NT

(upgrade to v. 0.61).

ut-thesis: A class file for formatting documents ac-
cording to the School of Graduate Studies’ (SGS)
guidelines (07/97) for theses at the University of
Toronto (upgrade to v. 1.8).

webfiles: in web/

A LATEX package for inclusion of several CWEB

and/or Spidery WEB documents in a single LATEX
document.

Tour package upgrades

acronym: New version: 1.4, dated 2000/02/09.
The package is for: acronyms, mottos, topical quo-
tations; full and short versions; auto-generation of
acronym listing (TUGboat 20,1).

epigraph: New version: 1.5, dated 2000/02/20.
The package is designed for typesetting epigraphs
— pithy quotations often found at the start (or end)
of a chapter (TUGboat 20,1).

hanging: New version 1.1, dated 1999/05/01.
The package provides facilities for defining hang-
ing paragraphs and hanging punctuation (TUG-

boat 20,1).

paralist: New version: 1.9, dated 2000/03/05.
The package provides itemized and enumerated
lists that can be typeset within paragraphs, as para-
graphs and in a compact version (TUGboat 20,1).

soul.sty: New version: 1.3, dated 1999/05/15.
The package provides hyphenate-able letterspacing,
underlining, and some variations on each (TUG-

boat 19,4)

⋄ Christina Thiele
15 Wiltshire Circle
Nepean, Ontario
K2J 4K9 Canada
cthiele@ccs.carleton.ca



LATEX News
Issue 12, December 1999

LPPL update

Since the release of the LATEX Project Public Licence
version 1.1, we have received a small number of queries
which resulted in some minor changes to improve the
wording or explain the intentions better. As a
consequence this release now contains LPPL 1.2 in the
file lppl.txt and the previous versions as
lppl-1-0.txt and lppl-1-1.txt.

fixltx2e package

This package provides fixes to LATEX2ε which are
desirable but cannot be integrated into the LATEX2ε

kernel directly as they would produce a version
incompatible to earlier releases (either in formatting or
functionality).

By having these fixes in the form of a package, users
can benefit from them without the danger that their
documents will fail, or produce unexpected results, at
other sites; this works because a document will contain
a clear indication (the \usepackage line, preferably
with a required date) that at least some of these fixes
are required to format it.

Outcome of TUG ’99 (Vancouver)

The slides from the tug’99 presentation we gave on a

new interface for LATEX class designers are available
from the LATEX Project website; look for the file
tug99.pdf at:

http://www.latex-project.org/talks/

Please note that this document was intended only to
be informal “speaker’s notes” for our own use. We
decided to make them available (the speaker’s notes as
well as the slides that were presented) because several
people requested copies after the talk. However, they
are not in a polished copy-edited form and are not
intended for publication.

Prototype implementations of parts of this interface
are now available from:

http://www.latex-project.org/code/

experimental/

We are continuing to add new material at this
location so as to stimulate further discussion of the
underlying concepts. As of December 1, 1999 the
following parts can be downloaded.

xparse Prototype implementation of the interface for
declaring document command syntax. See the .dtx files
for documentation.

template Prototype implementation of the template
interface (needs parts of xparse).

The file template.dtx in that directory has a large
section of documentation at the front describing the
commands in the interface and giving a ‘worked
example’ building up some templates for caption
formatting.

xcontents Interface description for table of contents
data (no code yet). Coding examples have been
thoroughly discussed on the latex-l list.

xfootnote Working examples for generating footnotes,
etc. Needs xparse and template.

All examples are organised in subdirectories and
additionally available as gzip tar files.

Please remember that this material is intended only
for experimentation and comments; thus any aspect of
it, e.g., the user interface or the functionality, may
change and, in fact, is very likely to change. For this
reason it is explicitly forbidden to place this material on
cd-rom distributions or public servers.

These concepts, as well as their implementation, are
under discussion on the list LATEX-L. You can join this
list, which is intended solely for discussing ideas and
concepts for future versions of LATEX, by sending mail to
listserv@URZ.UNI-HEIDELBERG.DE containing the line

SUBSCRIBE LATEX-L Your Name

This list is archived and, after subscription, you can
retrieve older posts to it by sending mail to the above
address, containing a command such as:

GET LATEX-L LOGyymm

where yy=Year and mm=Month, e.g.

GET LATEX-L LOG9910

for all messages sent in October 1999.

LATEX News, and the LATEX software, are brought to you by the LATEX3 Project Team; Copyright 1999, all rights reserved.



376 TUGboat, Volume 20 (1999), No. 4

LATEX

Scaled Pictures in LATEX

Bruce Shawyer

Three years ago, I wrote macros to extend the pic-
ture environment, to allow for the automatic re-
sizing of the picture. It behaved almost exactly like
the picture environment, and was used thus:

\begin{scalepicture}{n}(xlen,ylen)

[(xlcorner,ylcorner)]

% picture commands

\end{scalepicture}

Here

1. “n” is the percentage of a “full picture”. A “full
picture” is one that fills up the line, leaving a
small margin on each side, and has n = 100;

Exactly as in the picture environment:

2. “xlen” is the coordinate length needed across
the breadth of the picture (must be a positive
integer);

3. “ylen” is the coordinate length needed across
the height of the picture (need not be an inte-
ger);

4. “(xlcorner,ylcorner)” are the coordinates of the
bottom left hand corner of the picture. If these
are (0, 0), then this can be omitted.

The reason for this macro is to eliminate the need to
calculate the \unitlength, and to enable pictures
to be re-sized easily.

Thanks to comments from A.S. Berdnikov,
O.A. Grineva and S.B. Turta, in TUGboat, Vol. 17,
#2, pp. 229-232, 1996, I changed the macro to use
\hsize and not \textwidth for the calculation, and
so it works properly inside minipages and in tabular
paragraph mode, etc.

However, there were two problems with changing the
percentage number that required further attention:

1. The size of the font remained the same, no mat-
ter the percentage of a “full picture”;

2. The positions of the labels usually needed ad-
justments.

I have tried to address both these problems and now
have a working version, available from CTAN under
the name fullpict.sty.

1. I have created a new environment:

\begin{scaledpicture}{n}(xlen,ylen)

[(xlcorner,ylcorner)]

% picture commands

\end{scaledpicture}

This addresses the font size problem in the
following way: for a normal line of text, such a
North American 8.5×11 paper, or European A4
paper, with full page or standard article style,

Percentage number Font size

< 39 \tiny

≥ 39 and < 49 \scriptpsize

≥ 49 and < 59 \footnotesize

≥ 59 and < 74 \small

≥ 74 \normalsize

2. Within minipages and in tabular paragraph
mode, the choice of the font size is further ad-
justed to reflect the smaller size of the picture.

3. Also, the placing of labels can be helped with
the commands:

(a) \cput(a,b){label}—put centered at the
point (a, b).

(b) \eput(a,b){label} — put to the east
(right and centered) of the point (a, b).

(c) \nput(a,b){label} — put to the north
(above and centered) of the point (a, b).

(d) \wput(a,b){label} — put to the west
(left and centered) of the point (a, b).

(e) \sput(a,b){label} — put to the south
(below and centered) of the point (a, b).

(f) \neput(a,b){label}— put to the north-
east of the point (a, b).

(g) \nwput(a,b){label}— put to the north-
west of the point (a, b).

(h) \swput(a,b){label}— put ro the south-
west of the point (a, b).

(i) \seput(a,b){label}— put to the south-
east of the point (a, b).

4. If you want a more accurate placement of the
label, or to use a different radius from the de-
fault, make use of the command
\angleput{degrees}[radius](a,b){label}.

Here, degrees represents the angle from the
positive direction of the x–axis (may be pos-
itive or negative), and the optional [radius]
allows multiplication of the default radius (1)
by radius (may be positive or negative).



TUGboat, Volume 20 (1999), No. 4 377

It may be of interest to note that, instead
of using a circle for the placement of points,
a polygon with 24 sides was used. This made
the calculations considerably easier, using lin-
ear functions instead of trigonometric functions.
This becomes noticeable, only for larger values
of radius. It seems unlikely that such values
would be used in practice.

These are used in the diagrams illustrated be-
low:

33%

A

B

C

D

50%

A

B

C

D

66%

A

B

C

D

c ew
n

s

ne
se

nw
sw

Geographic positions

♣OOOOOOOOOOOOOOOOOOOOOOOO

24 points at distance zero — 15 degree intervals

♣ O
O
OO

OOOOOOO
O
O
O
OOOOOOO

OO
O

24 points at distance 2.2 — 15 degree intervals

♣ O

O

O

O

O

O
O

OOOOO
O

O

O

O

O

O

O

O

O

O

O
O

O
O O O O O

O
O

O

O

O

O

36 points at distance 10 — 10 degree intervals

♣ OOO
OOO
OOO
OOO
OOO
OOO
OOO
OOO
OOO
OOO
OOO
OOO
OOO
OOO
OOO
OOOO

OOOO
OOOO

OOOO
OOOOOO

OOOOOO
OOOOOOOOOOOOOO

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
OOOOOO

OOOOOO
OOOO
OOOO
OOOO
OOOO
OOO
OOO
OOO
OOO
OOO
OOO
OOO
OOO
OOO
OOO
OOO
OOO
OOO
OOO
OOO

360 points at distance 13.5 — 1 degree intervals

The environment scaledpicture automatically
centers the picture. If you do not want it centered,
use the environment Scaledpicture. These macros
are incorporated in fullpict.sty, which is avail-
able from CTAN tex-archive/macros/latex/contrib/

supported/fullpict/, or by anonymous ftp from

isthmus.math.mun.ca

directory /pub/crux.

Please report any bugs or criticisms to me.

⋄ Bruce Shawyer

Department of Mathematics and

Statistics

Memorial University of

Newfoundland

St. John’s, NF

Canada A1C 5S7

bshawyer@math.mun.ca



378 TUGboat, Volume 20 (1999), No. 4

Tutorial

Book Design for TEX Users

Part 2: Practice

Philip Taylor

Every book will have one figure that cannot be
seen from its point of reference.

Abstract

In the predecessor to this paper,1 three fundamental con-
cepts of uniformity, information and structure were in-
troduced, and general guidance given on each of them.
In this paper, more practical advice is given, specifically
in two areas: guidance on actual dimensions, propor-
tions and layout; and guidance on implementing some
of the ideas through the medium of the TEX language.
Finally, some difficult (and even insoluble) problems in
layout are discussed.

−− ∗ −−

1 How big is a book?

Just as we are all familiar with the general concept
of a book, we are also familiar with practical upper-
and lower-bounds on its size; a book that measures
3 centimetres by 2 centimetres is of as little use to
most of us as a book measuring 3metres by 2metres.
Looking at my bookshelves as I write, and ignor-
ing only those volumes whose dimensions lie beyond
the 3 σ points of the distribution, I can safely sug-
gest that the majority of ‘normal’ books lie in the
range 18 cm × 10 cm to 35 cm × 25 cm. In terms of
more traditional printers’ units (picas), we can re-
express this range as 42 pc × 24 pc to 80pc × 64 pc
(in all cases I have approximated rather than taking
any exact measurements). What is more interest-
ing, however, is the aspect ratio of each these books:
almost without exception they are in portrait orien-
tation rather than landscape. Why should this be?

There are, I suggest, two answers to this; one in-
tensely practical, the other slightly theoretical. The
practical answer is easily demonstrated: take any
book that is not in portrait orientation (i.e. one that
is in landscape orientation), hold it in one hand and
attempt to open it: if the book is small, or tends to

This is the second part of a talk delivered to a sofsem meeting
in Hrdonov (Czech Rep.). It is reprinted with permission
from the sofsem Organizing Committee, Masaryk University,
Brno, Czech Republic.
Keywords: Design, typography, layout

1 Book Design for TEX Users; Part 1: Theory; see TUG-

boat 19:1, March 1999, pp. 65–74.

square rather than being overtly landscape, it will
be reasonably stable in the hand, but if it is large,
or markedly landscape in aspect ratio, it will tend
to fold back on itself as the centres of gravity of the
two halves fall outside the span of the opened hand.
For certain classes of book (i.e. those intended to be
read from a desk or lectern, or perhaps opened on
the reader’s lap), this is of little consequence; but
for those books which are most likely to be read
whilst being held in the hand (which includes the
vast majority of books published), such instability
would render them almost unreadable, and there-
fore such combinations of size and aspect ratio are
generally avoided.

The theoretical reason hearkens back to mate-
rial covered in the predecessor to this paper, and is
concerned with the optimal length of line. In that
paper it was suggested that between 40 and 70 char-
acters per line is the target, with the ideal some-
where near the upper end of that range. Given that
most normally sighted people can read without diffi-
culty 9 point to 12point typefaces at the normal dis-
tance associated with reading books, but find any-
thing much smaller somewhat difficult to read (and
tend to regard anything much larger as ‘insulting’, in
the sense that it appears to have been intended for
children), this suggests that most books will tend
to have a measure somewhere in the approximate
range 12 picas to 30picas, but will tend to cluster
nearer the upper end of that range. When we com-
pare this with the range of book sizes cited above,
these figures seem reasonable; the smallest book en-
countered was 24pc in width, measured across the
cover, whilst the largest was 64pc, similarly mea-
sured. Allowing for trimmed pages fitting comfort-
ably inside the cover, and ‘sensible’ margins (as yet
to be defined), we find that the smallest book has
a measure of 17 pc whilst the largest has a measure
of 48 pc (and is set in an abnormally large font; it
would be more usual to find a book of this size set
in double-column format). Clearly there is a reason-
able correspondence between theory and practice.

In practice, some sizes are more ‘desirable’ than
others; traditionally, books were printed in a re-
stricted range of sizes, and some of the terms used
are still extant today; examples include ‘quarto’, ‘fo-
lio’, etc. Others, for example ‘elephant’ and ‘royal’
have fallen into disuse, and there is today far greater
freedom in choosing the final size of a book. How-
ever, practical realities intrude here, as everywhere
else, and ultimately the printer will have to pro-
duce the pages of the book by sub-dividing a much
larger sheet of paper; as such large sheets of paper
are produced in a fixed range of sizes, it is obvious



TUGboat, Volume 20 (1999), No. 4 379

that some final page sizes will result in much less
wastage than others, and such sizes are therefore to
be preferred; your printer will give you advice on
‘ideal’ page sizes if asked, and will almost certainly
tell you if your preferred size leads to gross wastage.

In determining the dimensions of a book, there
are essentially three variables: the overall area of
the text, including headers and footers; the mar-
gins; and the trimmed dimensions of the final page.
Clearly at most two of these can be arbitrarily de-
termined, and the third must follow by the simple
rules of arithmetic and geometry. In practice one
tends (if given total freedom) to determine the final
page size and the text area first, and then to cal-
culate the margins based on the difference; but in
so doing it is important to remember that the mar-
gins are just as important as every other element of
the made-up page, and cannot simply have arbitrary
size. ‘Sufficient, but not too much’ is an excellent
axiom to bear in mind when determining the size of
margins; for example, a small book whose trimmed
width is 23 pc might have an outer margin of 3 pc
and a measure of 17 pc; the actual inner margin will
therefore also be 3 pc, but the perceived inner mar-
gin will be somewhat less, as some portion of it is
taken up by the binding. In general, the thicker the
book the greater the apparent loss of inner margin,
but binding technique is even more significant, and
a well bound thick book may lose less space on the
inner margin than a poorly bound thin book.

As the overall dimensions of the book increase,
so may the margins; but they do not increase in
direct proportion to the increase in page size: rather,
if anything, they increase quite slowly, perhaps in
proportion to the square root of the increase in page
size, or to its logarithm. Once again, ‘sufficient but
not too much’ is the key.

So far we have concentrated on the inner and
outer margins, and it is worth pointing out before
considering the top and bottom margins that, if
symmetric perceived margins are required, this in-
herently requires asymmetric actual margins; but
the asymmetry alternates between verso and recto
pages. That is, in order to allow for the binding
loss, the right margin on the verso page and the left
margin on the recto page must each be increased
by the binding loss. This is achieved automatically
in the ‘book’ style of LATEX, but plain TEX users
will need a modified output routine. In order not to
need any knowledge of the existing output routine,
the following code hooks into the \shipout primi-
tive, and can therefore be used in conjunction with
any output routine, no matter how complex, unless

it, too, adjusts \hoffset on the fly (in which case
more sophisticated code would be required).

\newdimen \rectohoffset

\newdimen \versohoffset

\def \bindingloss {2 pc}

%%% adjust to suit actual book

\let \Shipout = \shipout

%%% need an alias so as to steal primitive

\let \then = \relax

%%% just syntactic sugar (sorry, Kees!)

\rectohoffset = \hoffset

\advance \rectohoffset by \bindingloss

\versohoffset = \hoffset

\advance \versohoffset by -\bindingloss

\def \shipout

{\ifodd \count 0

%%% can’t use \pageno in LaTeX

\then

\hoffset = \rectohoffset

\else

\hoffset = \versohoffset

\fi

\Shipout

}

Before considering actual dimensions for the ver-
tical margins, it is worth considering the simpler
question of proportion, and here, as in many ele-
ments of book design, two schools of thought ob-
tain: the first would advocate that the top mar-
gin should be less than the bottom, the second just
the converse! The argument in each case is based
on visual balance: those who would place the text
block asymmetrically towards the top of the page
claim that, visually speaking, it ‘sinks down under
its own weight’, whilst the alternative school claim
that unless it is set asymmetrically towards the bot-
tom of the page, it makes the page look top-heavy
and therefore unstable. My own belief is that once
the effects of head- and footlines are considered, the
two schools can to a certain extent be reconciled;
if, however, there are no head- and footlines, then
my sympathies incline more towards the ‘lower-is-
better’ school than towards its opponents.

The reason for considering the head- and foot-
lines whilst discussing the margins is that whereas
the left and right margins are what I will term ‘sim-
ple’ (that is, they each occupy a single band of white
space), the top and bottom margins are effectively
composite: there is white space above the headline,



380 TUGboat, Volume 20 (1999), No. 4

white space below the headline, and similarly white
space above and below the footline (if present; if not,
then the bottom margin is simple). But in terms
of visual density, the footline is usually very light
— frequently no more than an unornamented page
number — whilst the headline is frequently quite
dense (see the predecessor to this paper for a fuller
discussion on the possible contents of a headline).
The effect of this is that the two lower margins are
perceived by the eye/mind as being a single band of
white space, whilst the two upper margins are per-
ceived as separate entities. The eye/mind therefore
takes the sum of the two bottom margins as repre-
senting the white space at the bottom of the page,
whilst more or less ignoring the lower of the two up-
per margins and seeing only the upper component
as representing white space.

We must now attempt to summarise the pre-
ceding discussion and to come up with some firm
recommendations. In general the space above the
headline is significantly greater than the space be-
low, and is of the same order of magnitude as the
mean of the left and right margins (assuming for the
moment that these are not exaggerated; discussion
on exaggerated margins occurs later in this section).
The space below the headline is fairly small: perhaps
1 pica or thereabouts. At the bottom of the page,
the situation is reversed: there is relatively little
space above the footline, but rather more space be-
low. But here caution must prevail: if we were to
leave the same space above the footline as below the
headline (e.g., 1 pica), we would overconstrain the
page makeup process, for although any page could
still run one line light, it could not run one line
over without interfering with the footline (or, worse,
displacing the footline vertically downwards); it is
therefore necessary to leave additional white space
above the footline on a normally made-up page, so
that an overrun of a single line can be permitted in

extremis. Thus a gap above the footline of perhaps
2 picas is appropriate, with an additional margin of
3 or 4 picas below. Bear in mind that these figures
represent only a first-order approximation, but that
only relatively small adjustments would be needed
for a fairly wide variation in page size.

All the discussion on margins up to this point
has reflected a fairly traditional, orthodox and con-
servative perspective. But the size and symmetry of
margins is one of those areas in which avant garde

designers feel obliged to express their individuality.
Until the advent of the so-called ‘DTP revolution’,
most books had conservative margins of the order of
magnitude suggested above; but at about the time
when DTP was becoming widespread, a new gener-

ation of designers suddenly found the need to adopt
quite enormous margins, sometimes out of all pro-
portion to the other material on the page.2 The
reasons for this sudden interest in wide margins are
probably quite interesting, but I suspect not well
understood. I can think of several possible reasons:
(1) Each generation of designers feels obliged to ex-
press its creativity in some overt manner; simply to
follow the guidance of its predecessors is felt at best
to be pastiche, and at worst plagiarism. (2) The
liberating effect of what I will term ‘Design through
DTP’3 allowed designers to experiment with designs
that might previously have been consigned to the
dustbin, either because the wasteful nature of their
extremes became only too apparent as real paper
models were made of the design, or because the
time which elapsed between the creation of a de-
sign and its first physical realisation allowed the de-
signer time for retrospection; many, I am sure, toned
down their own excesses during this cooling-off pe-
riod. (3) Many of the realisations of these designs
were accomplished using early DTP systems, which
were themselves fairly limited in their page makeup
ability; having large margins into which oversize el-
ements could flow allowed the designers additional
flexibility to work within the constraints of the DTP
system.

But there is a fourth consideration, quite in-
dependent of the DTP revolution, which may also
dictate the use of large margins, and this final dis-
cussion on margins concentrates solely on the page
makeup problems associated therewith. Text, ta-
bles, graphics, equations and formulæ all have dif-
ferent, and sometimes conflicting, requirements —
text, as we have seen, will normally fit best into a
measure somewhere in the range 12 pc to 30 pc; ta-
bles possessing multiple columns may well not fit
into such a restricted measure, a problem that also
can affect complex graphics (which although gener-
ally scalable can become illegible if over-reduced);
equations and formulæ may also require a measure
well in excess of 30 pc if they are not to be split over
more than one line. With the exception of equa-
tions and formulæ, the problems are not insoluble,

2 It is a sad reflection of our times that this also occurred
during a period when awareness of the ecological effects of
the loss of the world’s forests was becoming increasingly
widespread; thus on the one hand we had the environmen-
talists urging us to save trees, whilst on the other we had
a generation of designers apparently hell-bent on destroying
the world’s forests purely to provide large asymmetric white
borders for their books. . .

3 by which I mean the use of an Apple Macintosh or sim-
ilar system to produce an on-screen mock-up of a proposed
design without any need for a physical realisation to become
available.



TUGboat, Volume 20 (1999), No. 4 381

or even difficult: where it is known in advance that
a measure well in excess of 30 pc will be required,
the text can be set in two columns whilst overwidth
tables and graphics can be allowed to span both
columns; as tables and graphics are generally re-
garded as ‘floating’ entities (that is, they can mi-
grate in the text without causing the reader diffi-
culty, as reference to them is almost invariable by
name or by number rather than by implicit physical
association), they can appear on a page in their own
right, or at the top or bottom of the page on which
they are referenced, without interrupting the flow of
the text. But equations and formulæ (and similar
entities, such as program fragments and algorithms)
frequently cannot be allowed to float: the author
will almost invariably write the text on the assump-
tion that the equation/formula will always occur
exactly where it does in the manuscript, and will
simply allow his or her text to ‘fall through’ to the
equation or formula; if such an equation/formula is
overlong and cannot be wrapped, then both columns
of the two-column text will need to be interrupted,
to the great inconvenience of the reader, for it will
not necessarily be at all apparent whether the text
is to be read up to the equation/formula and then
continued below in the same column, or the text is
to be read up to the point of the equation/formula
and then continued from the top of the next col-
umn. Worse, if the equation/formula occurs not in
the first column of text but the second, as the reader
progresses down the first column he/she is suddenly
stopped dead in his/her tracks by a completely ir-
relevant equation/formula; not only does the reader
now not know from where to continue, he/she also
does not know why the interruption occurred in the
first place. Only on reading down the second column
does the reason for the interruption become clear.

Therefore, in such works, an alternative ap-
proach is required, and one such approach is the use
of oversized margins: the text is set to a fairly wide
single-column measure, but the trim dimensions of
the page are such as to allow the longest equation or
formula to extend out into the (usually right) mar-
gin as necessary. The designer is then faced with
another problem: how to justify to the reader the
presence of these margins on pages where no such
equations or formulæ occur. It is by no means un-
usual to find section heads pushed out into the mar-
gins in these circumstances, nor to find marginal
notes which might otherwise occur as foot- or even
endnotes. Anything which can justify the presence
of the anomalous margin is regarded as fair game!

Finally gutters: the internal ‘margins’ that sep-
arate columns from each other in multi-column for-

mats. Generally speaking, a gutter should be no
wider than the mean of the left and right margins;
if anything, it can be somewhat narrower. Some de-
signers prefer to divide their gutters vertically by a
narrow rule; I would tend to avoid this unless rules
were used elsewhere in the design. Here, as in many
places, the desire for uniformity provides excellent
guidance.

2 The elements of a book

Having established guidelines for the overall dimen-
sions of our book, it is now appropriate to consider
the various elements which make up that book. At
the most superficial level (and ignoring the covers,
spine and dustjacket), a book consists of the front

matter (also referred to as ‘prelims’), the text, and
the back matter or end matter (the last is clearly
ambiguous, as a book has two ends, but tradition-
ally ‘end matter’ is used in preference to the less
ambiguous ‘back matter’).

The front matter is composed of such elements
as the half and full title pages; the copyright and
cataloguing-in-publication data page; a table of con-
tents (and sometimes other analogous tables); and
perhaps a preface. Also frequently included in the
front matter (particularly with the advent of the
DTP revolution, since which we have all become far
more aware of typefaces and typography in general)
is a ‘colophon’, which strictly speaking should oc-
cur as the very last element of the book, but now
more usually occupies space on the copyright and
cataloguing-in-publication page; the colophon con-
tains details of the typefaces and leading used, and
may also give details of designer, printer, etc.

Amongst the end matter are found appendices;
one or more indexes; a bibliography (if such is not
associated with each chapter, or if an overall bibli-
ography is desired as well as one per chapter); and
perhaps a glossary or similar.

Finally, the text is composed of the body of the
book; usually divided into chapters, it may also be
divided at a higher level into parts.

It is fair to say that the boundaries between
these three zones are not entirely rigid: an author
may choose to regard a preface as a part of the text,
rather than as a part of the front matter, and this
will need to be reflected in the page numbering, as
we shall see. Similarly some writers may regard their
appendices as forming a part of the text; this may
affect their page numbering but is less likely so to do.
Indeed, an author may choose to write a preface, a
prologue, an introduction, a conclusion, an epilogue,
and one or more appendices; the designer and author



382 TUGboat, Volume 20 (1999), No. 4

will need to liaise carefully to ensure that each is
appropriately classified.

The primary reason for this division concerns
page numbering: front matter is traditionally num-
bered in roman style, using lower-case roman nu-
merals (i, v, x, l, c, d, m) which are often set as
dropped folios, whilst the text proper is usually num-
bered using arabic numerals (0, 1, 2, 3, 4, 5, 6, 7, 8,
9). Appendices and other end matter usually con-
tinue in the same sequence and style as the main
text, but it is permissible to re-start the number-
ing for the appendices and prefix the page number
with an letter ‘A’; if this latter course is taken, the
index (assuming that the index forms the very last
element of the end matter) will need to have un-
numbered pages, as it would clearly be inappropri-
ate to continue using ‘A’-style numbering whilst it
would be equally inappropriate to resume the main
numbering scheme. Fortunately indexes are not re-
quired to be self-referential (although I confess to
once padding out an index that would otherwise not
balance with an entirely spurious reference to ‘loop,
infinite’, whose sole page number was that of the
entry for ‘loop, infinite’ in the index. . . ).

There are also conventions as to which elements
are required to occur recto, which verso, and which
require to be preceded or followed by a blank page.
A typical book might be numbered as followed (re-
member that odd numbers indicate recto, whilst
even numbers indicate verso):

1. half title;
2. blank;
3. full title;
4. cataloguing-in-publication, copyright,
colophon;

5. preface to the edition;
6. general preface;
7. ditto, continued;
8. blank;
9. table of contents;
10. ditto, continued;
11. glossary;
12. blank;
1 first chapter.

Of these, the half and full titles are required to occur
recto, (whence the blank page between, which also
affords a nice contrast to the complexity of the full
title page); the copyright and c-i-p page frequently
occurs on the reverse of the full title page; the pref-
ace is not required to start recto, but it may be the
designer’s wish that it should so appear; the table
of contents is normally recto, as here; the first chap-
ter invariably opens recto, and except in the most

casual of styles all subsequent chapters must open
recto as well. The page number of the first chapter
page could equally well have been ‘13’; it is a design
decision as to whether to continue the numbering se-
quence from the prelims or whether to start afresh
with the main text.

There are fewer conventions concerning the end
matter, but it would be normal for the first ap-
pendix to start recto; subsequent appendices may
start recto or verso as necessary; and the index would
also normally start recto.

3 Laying out the pages

Although by far the majority of pages in a book are
‘normal’ pages, it makes a certain amount of sense to
start by considering the opening chapter pages, since
these contribute a great deal to the book’s visual
identity and allow a fair degree of artistic licence in
their creation. (It is also fair to say that one can
waste an enormous amount of time trying to design
them!)

When designing one’s first book, it is by no
means uncommon for people to align the main chap-
ter header (be it ‘Chapter 1’ or ‘Introduction’) with
the top of a normal page. For some books, particu-
larly those with with very short (less than two pages)
chapters, this makes enormous sense, for otherwise
one can run to far more pages than are strictly neces-
sary (there are also æsthetic reasons why such a de-
sign is to be preferred in these circumstances). How-
ever, the vast majority of books have chapters whose
page count often runs into double figures, and for
such books it is customary (although not essential)
to start the opening chapter heading some way down
the page. Typically a quarter to a third of the page
depth may be reserved for the above-heading space.

There next comes the question of what to put
in the heading. If chapters are numbered, one has
to decide between ‘Chapter 1’, ‘One’, ‘1’ or some
similar variant; and if named, whether to also num-
ber or just to use the name (and if one uses both
names and numbers, then which numbering style to
use). It is thought that ‘Chapter 1’ is a little old-
fashioned, but I do not hold to this view. If both
numbers and names are used, and if just the ara-
bic number is chosen, then there is also the option
of placing the two on the same line, perhaps sepa-
rated by a colon and the space of the line; if they
are put on separate lines, then it is customary for
the number line to precede the name line.

Next the question of font: in which font(s) are
these headings to appear? In almost all cases, a
large bold font will be used, but ‘large’ is very much
in the eye of the beholder; it is probably safe to say



TUGboat, Volume 20 (1999), No. 4 383

that LATEX uses rather larger fonts for this purpose
than more conservative designers might choose. The
use of a sans serif font for such headings is most
certainly justifiable, but not essential.

Placement: should the headings be centered
or ranged left (or even ranged right)? Generally
speaking, centered headings are either slightly old-
fashioned or are more suitable for works in the arts;
modern scientific publications frequently adopt a
ranged-left theme which runs throughout the book,
including headings such as these. Ranged-right
probably shrieks avant garde, but cannot be dis-
counted on that score; if used, there should prob-
ably be other elements in the design which echo the
ranged-right theme, or there should be a contrasting
ranged-left theme to balance. If an epigram is used,
it is probably better to have the headings ranged
left and the epigram ranged right, as the converse
would over-emphasise the epigram to the detriment
of the chapter title.

There is another element to placement which
also requires discussion: is the white space above the
heading to be regarded as belonging to the heading
or to the page? By this I mean the following: if the
chapter title normally occupies n lines (typically one
or two), but a pathologically long title for a partic-
ular chapter requires one or more additional lines,
from where should the space for these lines be taken?
Should the title be allowed to extend up the page,
encroaching on the reserved white space, or down

the page, displacing the starting point of the main
text downwards? Neither is ideal, but if authors in-
sist on writing pathologically long titles, one or other
solution must be taken. Although the following is
not cast in stone, it is perhaps worthy of consid-
eration: if the opening chapter page starts with a
line containing only the number of the chapter (or
with the word ‘Chapter’ followed by the number),
then that should always occur in the same vertical
position (and thus the main text will get displaced
downwards); but if the page starts with the title of
the chapter, then that title may be allowed to ex-
tend upwards, thereby ensuring that the main text
always starts at exactly the vertical position on the
page.

And rules: should the headings be set off from
the text by a horizontal rule? Here we probably
need to return to the theme of uniformity: if rules
form a recurring theme throughout the book, then
a rule between heading and text is probably fine; if
not, then it may seem intrusive.

Finally, before leaving the subject of opening
chapter pages completely, it might be worth reca-
pitulating on the advice given in the predecessor to

this paper concerning running heads and folios: gen-
erally speaking, a running head has no place on an
opening chapter page; the white space above the
title should merge imperceptibly into the top mar-
gin. This means that the folio, if normally on the
outer edge of the running head, must (on an open-
ing chapter page) either be omitted completely, or
must be relegated to the footline. Omitting the fo-
lio is highly undesirable, as it renders the table of
contents virtually useless (and also reduces the use-
fulness of the index, if any entry in the index refers
to an opening chapter page); the solution is therefore
to set the page number as a dropped folio, centered
in the footline. Sometimes such folios are given a lit-
tle additional ornamentation, for example en-dashes
on each side set off by a thin space; although this
convention is taken directly from typewriter prac-
tice it does, in the opinion of the present author,
render the folio a little more obvious, and therefore
has something to commend it.

Having completed opening chapter pages, the
next most significant element in the design of the
book is the normal text page; such pages usually
make up over 90% of the book, and it is therefore
worth expending considerable effort ensuring that
they look ‘right’. We have already dealt with mar-
gins, gutters, head and footlines, so we may concen-
trate on the text proper, and in particular on the
fonts and leading to be used.

4 Fonts and leading

As suggested above, the text will normally be set
in a 10pt serif font, often on a 12pt leading (here,
at least, plain TEX gives sensible defaults, except
in the excessive measure used). There appears to
be a widespread belief that Times Roman is the
font of choice, yet this font, designed as it was for
use in the exceptionally narrow measure of newspa-
per columns, has little to commend it apart from
widespread availability. The font is too narrow for
the generous measure of most books, and if it must

be used can benefit enormously from being anamor-
phically scaled by a factor of 24/25 in the vertical
direction. Such scaling, whilst anathema to purists,
converts the somewhat narrow letterforms of Times
Roman into rounder, softer, shapes, and enables a
near optimal combination of font size and leading
to be used on measures up to 27 pc and beyond.
11/12.5 Times Roman, when anamorphically scaled
by a factor 24/25, yields 10.56/12 which in the opin-
ion of the present author results in a highly readable
text.

But far better than anamorphically scaling
Times Roman is to select a font which already



384 TUGboat, Volume 20 (1999), No. 4

has the appropriate properties (rounded letterforms,
suitability for use with wide measures, etc.); exam-
ples are legion, but amongst the most obvious can-
didates are Baskerville, Bembo, Caslon, Garamond,
and Palatino. To be avoided are fonts which are
highly idiosyncratic: it is to be remembered that the
sole purpose of the font is to convey information; if
the reader is distracted by the idiosyncratic nature
of the font, information transfer will be less than
optimal and the book’s value reduced as a result.

It may be worth digressing at this stage to dis-
cuss briefly one particular book which I first en-
countered on being asked to review it, Knuth’s 3:16

Bible Texts Illuminated. My first reaction on open-
ing this book was to ask myself rhetorically “why
on earth did he set it in Computer Modern?”. I was
familiar with Computer Modern from the Comput-

ers and Typesetting quintology, and had, of course,
set much of my own material in Computer Modern
whilst learning about TEX; but I had reached the
point where I felt that other fonts had much more to
offer, and had not, for some time, typeset anything
in Computer Modern at all; it therefore came as a
nasty shock to find a book on Bible Study typeset
entirely in Computer Modern, particularly by some-
one whose opinions I value so greatly.

And yet, the strange thing is that having read
no more than half a dozen pages of 3:16 I suddenly
discovered that I was no longer seeing the font at all;
it had, to all intents and purposes, ceased to exist
as a typeface, and become purely a medium for the
communication of facts. Now Computer Modern,
based as it is on Monotype 8a, is not everyone’s ideal
font; and particularly when rendered on low resolu-
tion devices such as laser printers can be quite un-
pleasant indeed, with the thin strokes breaking up or
disappearing completely and the thick strokes some-
how seeming out of proportion. Yet when rendered
on a high resolution typesetter, the contrast between
thick and thin contributes much to the æsthetics of
the font, and the overall effect is to yield an unin-
trusive design, pleasantly devoid of idiosyncrasies,
which suppresses its own personality and allows the
information to shine through. Perhaps there is no
such thing as a bad font; what we perceive as bad
may simply be a good font used inappropriately, or
rendered using inappropriate technology.

But to return to the question of design, and in
particular to the design of the normal text pages of a
book. Having selected our primary font and leading,
we will need to select appropriate variants of that
font for particular purposes (we may also need to se-
lect one or more other fonts for special purposes, but
as a general rule the fewer fonts used in a document,

the better the document will be). For emphasis, and
for foreign words and phrases within the text, it is
customary to use an italic variant of the font; the use
of bold for emphasis is to be strongly deprecated,
with such fonts being reserved for headers and sim-
ilar. Italics may also be used for book titles, for the
names of ships, and for other analogous entities. It
goes without saying that underlining, too, has no
place in the running text of a book, and very little
place anywhere else either; just as the use of bold for
emphasis is an artifact of early word-processing sys-
tems (which were incapable of italics and therefore
had to create an alternative convention for achiev-
ing stress), underlining is an artifact of handwritten
and typewritten text, and has no place in a typeset
document.4

If it is necessary to stress a word or phrase
within a longer structure that is already being type-
set in italics, it is customary to revert to a roman
font for the stressed section; but the present author
can find no reason why in these circumstances the
stressed section should not be set in bold italics, if
such a font variant is available (and with the ad-
vent of PostScript fonts, such variants are usually
to be found); if the bold stressed section is being
compared or contrasted with another section of text
in the book which is physically nearby, then it may
be necessary to set that section too in bold italics,
even if it occurs in a context in which italics are not

being used; in that way, the reader will be given ap-
propriate typographic cues as to which two sections
are being compared or contrasted.

Italics (which are a highly stylised variant of a
font) should not be confused with slanted or oblique

variants, both of which involve no original design
but result from a simple geometric transformation
of the roman form of the font. Whereas italics
and oblique forms both have an honourable ancestry
(oblique normally being reserved for sans serif fonts
whilst italics are normally a variant of a serif form),
slanted fonts appear to be another artifact of the
DTP revolution. In the opinion of the present au-
thor they have little to offer in the way of æsthetics,
and even though they are sometimes used where it is

4 Of course, like almost every rule, these rules too admit of
exceptions, and it would be a brave author indeed who wrote
that every instance of underlining, or of the use of bold within
running text for emphasis, was categorically wrong; the most
that can be said is that generally speaking such (ab)uses are
regarded as infelicitous or inappropriate, and that should the
designer none the less decide to adopt such a convention, he
or she should be aware of the ‘rules’ that are being flouted,
and take a conscious decision to flout them rather than simply
being unaware of their existence.



TUGboat, Volume 20 (1999), No. 4 385

deemed desirable to differentiate typographically be-
tween two entities which would otherwise both have
to be rendered in italics, as a general rule I would
caution against their use. Designers have managed
for centuries to convey considerable amounts of in-
formation without having recourse to slanted fonts;
it is to be hoped that future generations of design-
ers will conclude that they represent no more than
what Fowler might have termed ‘elegant variation’,
and are therefore a luxury without which we can all
happily do.

It is sometimes necessary, particularly in books
on linguistics or other subjects in which language
is both used and discussed, to differentiate typo-
graphically between the two uses. Sometimes simple
quotations marks will suffice; sometimes italics; but
there are also times when both of those forms are
already reserved for other typographic differentia-
tion, and some third form is needed to clarify which
text is being discussed and which text is performing
the discussion. In these circumstances (and in very
few others), it is justifiable to introduce a new font
which may be used as a part of the running text.
If the main text is set in a serif font (as it almost
invariably will be), then a second serif font would
not be suitable; even though two serif faces may
be as different as chalk and cheese, the risk of con-
fusion is still too great (and the æsthetic clash too
severe) to permit two distinct serif faces to appear
in juxtaposition. The second font must therefore be
a sans serif face, chosen to blend in with, whilst
being clearly differentiable from, the main text face.
The second font will need to be matched for weight
(visual density), ex-height and caps-height; and be-
cause of the variation in the semantics of design size,
will probably need to be loaded at a fractional size.

5 Headings

The motto for the predecessor to this paper was
“There can never be too little space below headings,
only too much!”, and in those few words can be sum-
marised the bulk of the received wisdom concern-
ing headings. As previously pointed out, a heading
must be tied to the text with which it is associated,
and that text is invariably the text which immedi-
ately follows. Headings are frequently hierarchical
in nature, and lower-level headings are more closely
bound to the following material than higher-level;
thus the white space which separates low-level head-
ings from the text is usually less (and never more)
than the white space which separates higher-level
headings and text. In the limiting case, the head-
ing is run in, that is to say literally forms a part
of the text and does not occupy a line in its own

right. For run-in headings, it is essential that the
author be consistent in usage, since such headings
can either participate in the grammar of the text
or remain a distinct grammatical entity; in the for-
mer case it is customary to indicate the extent of
the heading by a change of font (italics, or bold, or
even caps and small caps), but by no extra horizon-
tal white space or punctuation; for headings which
are grammatically distinct from the text which they
introduce, a change of font is also indicated, but
punctuation (e.g. a colon) or additional white space
(e.g. one quad) is also frequently used. Such a head-
ing might be set off by as little as 1 ex additional
white space from the preceding text, and certainly
by not more than one blank line.

At the next level in the hierarchy, the heading
usually occurs on the immediately preceding line,
and occupies a line in its own right. It is not set off
by any additional vertical white space, but simply
separated from the text by the normal leading for
the paragraph. Again a change of font is indicated,
and the font options applicable to run-in heads are
equally applicable here, although the use of caps and
small caps would be unusual. The extra vertical
white space above the heading is of the same order
of magnitude as for run-in headings.

A level higher and perhaps a larger font is in-
dicated. Assuming a base setting of 10/12, a 12 pt
font might be suitable for such a heading. If a bold
font has been used for any lower level, then this font
too must be bold, otherwise ambiguity will result
(the same is true at all levels in the hierarchy: once
a bold font has been used at a lower level, bold fonts
must be used at all higher levels. In the same way,
no font used in a higher level heading may be smaller
than a font used in a lower level heading; it may be
the same size, but only if it is bold and the lower
level is not, or if there is other clear typographic in-
dication of the hierarchy). Above such a heading a
little extra white space might be allowed, perhaps
between one and one-and-a-half blank lines.

Beyond this point, simple extrapolation is suf-
ficient: as we move up the hierarchy, headings get
bigger, bolder, more distinctive. The white space
below them may increase, but only very slightly;
the white space above increases, but not to ridicu-
lous limits. Anything in excess of three blank lines
is almost certainly excessive, and two blank lines are
normally more than sufficient.

At this point it is appropriate to consider the
implications of the above set of rules on TEX im-
plementations. In order to allow successful page
makeup in TEX, it is customary to allow the vertical
white space associated with headings to be flexible



386 TUGboat, Volume 20 (1999), No. 4

(i.e., ‘rubber lengths’, in LATEX’s quaint terminol-
ogy); but TEX has two quite distinct rules when
dealing with flexibility: if a dimension is given a
negative flexibility (i.e., is allowed to shrink), then
TEX will take advantage of the stated shrinkability
if necessary to achieve optimal page makeup, but
will never attempt to shrink it by more than the
permitted amount; however, if a dimension is given
positive flexibility (i.e., is allowed to stretch), then
TEX will first of all take advantage of that flexibility
to achieve optimal page makeup, and if that flexi-
bility is insufficient, will continue to stretch it un-

til optimal page makeup has been achieved, even if
this involves stretching it by many times its stated
stretchability. Of course in these circumstances TEX
issues a warning, but by then it is too late: the evil
deed has been done.

The implications of this behaviour for success-
ful implementations of design are quite severe: TEX
must never be given positive stretchability to use
if it is required to exercise any automatic con-
trol over the upper bound by which white space
will be stretched; shrinkability can be used, but
TEX is noticeably asymmetric in this respect, and
whereas \vfil and its friends can be used to
pad out underfull pages whilst preventing embed-
ded ... plus $n$ pt constructs from contribut-
ing white space, there is no equivalent which can
be used to negatively pad pages whilst preventing
... minus $n$ pt constructs from shrinking (the
reason is that TEX will not allow what it terms ‘in-
finite glue shrinkage’ to occur in unrestricted hor-
izontal or vertical modes). Thus there are severe
problems in inhibiting TEX from taking excessive
advantage of permitted flexibility, and in the end
only careful observation of the log file, and manual
intervention where TEX has exceeded its brief, will
be sufficient to keep matters under control.

But recalling for a moment the discussion on
grid-based layouts which took place in the predeces-
sor to this paper, it will be appreciated that simply
preceding and following header lines by \vskip com-
mands will not necessarily have the desired effect.
A far more satisfactory method of placing head-
ers, whilst ensuring that they occupy an integral
number of blank lines (i.e. an integral multiple of
\baselineskip) relies on a technique which I refer
to as a ‘pseudobox’: this is a TEX construct which is
in reality a box whilst behaving like glue; the follow-
ing code fragment illustrates the technique in use.

\newbox \headerbox

\newdimen \headerheight

\newdimen \headerdepth

\def \header #{\afterassignment \afterheader

\setbox \headerbox = \vtop}

\def \afterheader {\noindent

\aftergroup \reallyafterheader}

\def \reallyafterheader

{\headerheight = \ht \headerbox

\headerdepth = \dp \headerbox

\advance \headerheight by \headerdepth

\headerdepth = \headerheight

\ht \headerbox = 0 pt

\dp \headerbox = 0 pt

\advance \headerheight by 0.5\baselineskip

\divide \headerheight by \baselineskip

\multiply \headerheight by \baselineskip

\ifdim \headerheight < \headerdepth

\advance \headerheight by \baselineskip

\fi

\vskip 0 pt

\box \headerbox

\vskip \headerheight

\noindent

\ignorespaces

}

If this code is used to typeset a large bold
header within the text of this paragraph, as in
\header {\Huge Header}, the effect should be to
leave the remainder of the paragraph set on its nat-
ural grid;

Header
whether or not it has achieved this effect is left
to the reader to see! Perhaps a brief explanation
of the code is in order, as so far as the author is
aware the technique has not previously been pub-
lished. The \header macro takes no parameter,
but the terminal hash of its parameter list causes
it to require an open brace to immediately follow
its use; on the assumption that the open brace
is the open brace of a brace-delimited parameter
(which it should be, if the macro has been prop-
erly used), the macro sets \headerbox to a \vtop

containing the parameter. However, an additional
token is introduced into the \vtop just prior to
the parameter by means of the \afterassignment,
that token being \afterheader. This token it-
self expands into three further tokens, \noindent
(to prevent the parameter from being indented
within the box), \aftergroup (to allow the fol-
lowing token to be expanded not within the
box but outside it, once it has been set), and
\reallyafterheader, which is the macro that does
all the real work. Thus the combined effect of the
\afterassignment and the \aftergroup is to in-
hibit any indentation of the parameter, and to cause



TUGboat, Volume 20 (1999), No. 4 387

\reallyafterheader to be expanded once the box
has been set. \reallyafterheader commences its
work by saving the height and depth of the box
in which the header has been set, and then com-
putes their sum; the height and depth are set to
0 pt. Using Knuth’s algorithm from A15.8, the com-
bined height+depth is rounded to the nearest inte-
gral multiple of \baselineskip, and if the result of
this rounding is less than the original sum, a further
increment of \baselineskip is added. The result
of this computation is the smallest integral multiple
of \baselineskip within which the entire contents
of the box can be set. A vertical skip of 0 pt is car-
ried out (to force TEX into vertical mode), and then
the box is typeset (remembering that it has zero ap-
parent height and depth, and therefore occupies no
space), after which a further \vskip of the calcu-
lated integral multiple of \baselineskip is carried
out to leave room for the contents of the box whilst
not disturbing the regularity of the baseline grid,
Finally \noindent and \ignorespaces ensure that
the first paragraph following the header is typeset
correctly.

A real-life instance of this code would require
parameterisation to indicate the level of header,
from which it could ascertain (by means of a look-
up table) how to distribute any required additional
space around the header; in addition, it would en-
able ragged-right setting within the header box, and
would need to deal correctly with a header im-
mediately followed by another header (the spacing
should not be additive). Many other refinements are
possible.

6 Paragraphs

In trying to make practical recommendations for
real-life book design, it is necessary to alternate be-
tween those entities which occur fairly rarely (open-
ing chapter pages, headers, etc.) and those which
form the bulk of the book (regular pages, para-
graphs, etc.). Here we consider material which
makes up the vast bulk of the book, to wit the
paragraph.

Fortunately the ‘rules’ for paragraphs are fairly
straightforward, but as so many examples may be
seen which either blatantly ignore the rules or are
simply unaware of them, some discussion is nonethe-
less necessary. It should be noted, however, that
these rules are inherently culturally based, and I am
advised by one eminent French authority5 that the
rule stated below concerning the first paragraph of

5 Bernard Gaulle, past and future President of GUTen-
berg, the French-speaking TEX Users’ Group.

any new section would be incorrect were it to be
applied to material published in French.

• The first paragraph of a new section is not in-
dented. This rule is so often more honoured in
the breach than in the observance that I some-
times wonder whether its existence is widely
known at all. For reasons entirely unclear to
me, LATEX whilst doing its best to honour this
rule indents abstracts, which seems to me at
best inconsistent and at worst inexcusable. I
am very pleased to see that these proceedings
avoid that error.

• A paragraph is either indented, or is set off by
vertical white space from preceding material. It
is normally considered infelicitous to do both;
it is a gross error to do neither. The reason
why the latter is so severe a crime is that if
paragraphs are neither indented nor set off by
vertical white space, then any text in which a
paragraph just happens to end flush with the
right margin will be followed by a paragraph
whose existence can barely be guessed at. There
will be no typographic clues to indicate that a
new paragraph has started.

• The leading and font within a paragraph are
uniform. This may seem to go without say-
ing, but if a document is set with the minimum
leading necessary for unadorned text, then an
accented capital letter may well be enough to
force down the entire line on which it occurs.
In such circumstances either the leading must
be increased for the entire document, or spe-
cial steps taken to conceal the height of the ac-
cented letter (whilst ensuring that it does not
unfortunately co-incide with a descender from
the line above). By ‘uniform’, when applied to
the font, I do not suggest that every glyph in the
paragraph must be set in the same font; clearly
there may be a need for italics, or even for a
sans serif font at points, as indicated above.
But all the glyphs within the paragraph should
appear uniform, and must therefore come from
closely related or well chosen fonts. For exam-
ple, the first phrase of each paragraph in a book
may be set with an initial full cap and then
small caps; provided that these blend in with
the main text font, there can be no objection to
this. Similarly the first letter of the paragraph
may be a dropped cap; provided that it too
blends in with the main text font, that is a per-
fectly valid design decision (and sometimes very
stylish, if I may express a personal opinion).



388 TUGboat, Volume 20 (1999), No. 4

• A paragraph should not end with only a part-
word on the last line. Assuming that hyphen-
ation is permitted at all (which it will need to
be if fully justified text is specified), then the
last line of a paragraph should end with at least
one full word and preferably more. Plain TEX’s
(and LATEX’s) setting for \parfillskip do not
encourage this; a more felicitous setting might
be \parfillskip = 0 pt plus 0.7\hsize,
which encourages longer last lines at the ex-
pense of setting some such lines slightly loose.

7 Graphics, figures, and

other ‘floating’ entities

Although there is much more that can (and should)
be said about book design in general, I feel that
there is one area which must be treated before I
close, and that is the whole area of insertions, or as
LATEX terms them, ‘floats’. These are, in some gen-
eral sense, graphic entities, although they may turn
out to be purely textual in content. What really
typifies them, however, is that they are invariably
indirectly referenced; that is, they are referenced by
the author in terms of see Fig. 1 or See Table 2.4,
rather than being implicitly referenced by position
in the text as in, for example, as shewn below. By
virtue of the indirect nature of their reference, they
can be physically remote from the point of refer-
ence, but one of the major skills of page makeup is
the careful placement of such entities. The cardinal
rule for these insertions is that they must be capa-

ble of being seen from the point of reference. One of
the little appreciated strengths of TEX is how well it
carries out this task for footnotes, which are a very
simple instance of insertions; if you look carefully
at TEX-set material which has many footnotes, you
will probably be surprised at the number of times
that a footnote reference occurs on the very last line
of the page (before the footnotes themselves appear,
that is). If you have not thought about this problem
before, you may casually remark to yourself “that’s
lucky; another line and the footnote marker and its
text would have appeared on different pages”. But
now try to find an instance where that has hap-
pened; try as you might, I suggest that you won’t.
And that surely suggests that it is more than luck
that causes that particular juxtaposition of footnote
marker and start of footnotes to occur so regularly,
so reliably, and so consistently. And of course it is

more than luck; all the while that TEX is accumulat-
ing material in galleys, it is carefully tracking how
much space is occupied by footnotes and how much
by the main text; and as soon as the combination
of the two exceeds the available space on the page,

TEX knows that it must cut the galley at or near
that point and start a new page.

Now footnotes are, as I said, a particularly sim-
ple instance of such insertions; no-one minds if the
text of a footnote is started on its page of reference
but continued on the next (no-one but a pedant,
that is). But figures, tables, graphics, etc., are a
very different kettle of fish; they are essentially in-
divisible entities, and can therefore either appear on
a given page or not appear on that page; there are
no half measures which would allow a part of the
figure/table/graphic to appear, and the remainder
to appear on the next page.

So now put yourself in the position of TEX, this
time not accumulating text and footnotes, but ac-
cumulating text and (say) figures. TEX continues to
accrete material in its galley as before, and encoun-
ters a reference to a figure; say that the page is only
a third full. If the figure is less than two-thirds the
depth of the page, there is no problem: TEX simply
adds the figure to the list of things that appear on
that page and carries on. But now let there be a
second figure reference, maybe two-thirds down the
page: TEX looks to see how big the figure is, and
discovers it needs a half a page to itself. What does
TEX do? The first choice is trivially ruled out; you
can’t have the reference to the figure followed by
the figure, because (a part of) the figure would fall
off the bottom of the page. OK, what’s the next
choice? Remember that the figure can float. So,
let’s try floating the figure to the top of the page
on which it was referenced: no problem there, the
figure appears at the top of the page, pushing the
textual material material down. Some of the tex-
tual material will fall off the bottom of the page, of
course, because we already know that we have 2/3
of a page of text, and 1/2 of a page of graphics, so
1/6 of a page of text falls off the bottom. But that’s
no problem, because textual material can normally
be split at almost any point: so TEX chooses the
nearest valid breakpoint and carries the remaining
material over to the next page.

Then what happens? Well, think about what
is on the material that has been carried over: the
reference to the figure that caused the trouble in the
first place! So now we have the figure on page n, and
the reference to the figure on page n+1. If n+1 ≡ 1
(mod 2) (sorry, if n+1 is odd!), then there is no real
problem, for the reference to the figure occurs on the
recto half of the spread, and the figure itself occurs
on the verso half of the spread, so all is well. But
if n+ 1 is even, then all h@ll breaks loose: because
the figure is on the recto half of a spread, and the
reference to the figure is on the verso half of the



TUGboat, Volume 20 (1999), No. 4 389

next spread; and when the reader finally encounters
the reference to the figure, the figure itself can no
longer be seen. And no matter what TEX were to
do in those circumstances, it would not be able to
solve the problem without assistance.

So there are some problems in page makeup
that simply cannot be solved by näıvely applying
rules; rules are all very well, but eventually the time
will come when the author’s text and the rules of
design are simply incompatible, and in those cir-
cumstances you will have little option but to liaise
with the author and attempt to persuade him or
her to re-write the offending portion of the text. If
the author is dead, and the text is cast in tablets of
stone, then you will have to do a lot of work by hand,
maybe setting a whole series of paragraphs one line
looser than ideal, just to force a reference onto a
more appropriate page. But when you’ve done it,
and the finished book is printed, and you look at it
and know that there are no further improvements
that you could have made, then a great warm glow
will fill your body and you’ll know that it’s all been
worthwhile. Good luck!

⋄ Philip Taylor
The Computer Centre,
Royal Holloway and Bedford New College,
University of London,
Egham Hill, Egham, Surrey TW20 0EX,
United Kingdom.
P.Taylor@Vax.Rhbnc.Ac.Uk



TUGboat, Volume 20 (1999), No. 4 389

Report

Preparation of Documents for Multiple

Modes of Delivery—Notes from TUG’99

Ross Moore

Background

As the theme of the TUG’99 meeting concerned
preparing documents for Web-based delivery, and
the TEX-related tools recently developed for this
purpose, it had been suggested1 that it would be
nice to apply some of these tools to the preprints for
the meeting, in order to show off the effectiveness of
these tools. As no single person had the expertise
in all of pdf TEX, LATEX2HTML and TEX4ht, nor the

1 by Mimi Burbank

time required to do the necessary work, the idea
was largely ignored. Also there was the problem of
obtaining appropriate versions of the manuscripts,
some of which were still undergoing editing revi-
sions, so were not yet finalised.

For some time I’ve been routinely preparing
mathematical course materials for paper (via LATEX)
and in HTML, using LATEX2HTML. Recently I started
using pdf TEX as well, and organise the manuscripts
to process seamlessly with all three tools, while
exploiting the best features of each. Having some
time available, working on a proceedings collection
in PDF seemed like an appropriate thing to do, and
could provide valuable experience for similar work
in the future.

There are two main tasks here:

• Prepare a PDF version of each paper.

• Somehow combine the papers, using active hy-
perlinks, to present as if part of a unifying
electronic document.

As each task separately requires some amount of
editing within each author’s manuscript, I wanted to
develop a method which would minimize the number
of times each file need be manually edited. It was
felt that any decisions concerning styles and layout
should be able to be applied to all the preprints,
without any need to make edits in the individual
files. To a large extent this was achieved. The
results of this work can be viewed at http://www.

tug.org/TUG99-web/program.pdf which has links
to .pdf files for the papers, in the directory http:

//www.tug.org/TUG99-web/pdf/.
Below I describe the techniques developed, and

lessons learned. Some of these lessons and tech-
niques are doubtless known already to experienced
LATEX and TEX users; others are new and can surely
be refined to become even more useful. I’m writ-
ing this article with hindsight2, after the TUG’99
meeting has concluded; indeed some of the work
on individual preprints was done on returning home
after the meeting. Advice is given, to help authors
simplify the tasks of editors, which in turn leads to
reducing the time required for a publication to be
prepared.

Preparation Notes

The main issues for creating PDF, as distinct from
DVI, versions of papers submitted for a proceedings
(or any other) volume relate to

A. bookmarks—navigation to sections, subsections,
figures, etc.;

2 . . . and at the request of Christina Thiele



390 TUGboat, Volume 20 (1999), No. 4

B. active internal hyperlinks for citations and cross-
references;

C. active hyperlinks to external URLs mentioned
in the paper, and/or other papers in the same
proceedings set;

D. incorporation of included graphics.

Of course, also of relevance is:

E. how the papers, as individual .pdf files, will be
linked back to a common document which serves
as a wrapper, including a Table-of-Contents with
active hyperlinks to each paper.

Since most of the submissions for TUG’99 were
prepared using LATEX, and the hyperref package al-
ready provides an automatic solution to issues A and
B (provided the author has used \label, \ref and
\cite appropriately) it was decided to use pdf TEX,
via the pdflatex command, and hyperref for all
the papers. This includes the papers originally
submitted as TEX source, rather than LATEX, for
which there would necessarily be some extra editing
required. Thanks to Sebastian Rahtz and other
authors, the packages and drivers to tackle issues C
and D were already available, so it was not necessary
to write any complicated macros to implement these
effectively.

To obtain a consistent style across all the
papers, and to ensure that the same packages are
available for handling citations, URLs, graphics
etc. it was decided to use a common “driver” file,
implemented as follows.

• Each submitted paper was stored in a separate
subdirectory, along with any styles, graphics
and bibliography files. (This structure was
already in place, due to earlier phases of the
editing process.)

• A common file, called TUG99pdf.pre was lo-
cated in the common parent of these subdi-
rectories. This file would be \input at the
beginning of each job. This file contains the
\documentclass command, and commands to
load suitable packages. Parts of its contents will
be described in due course.

• For each paper a “mini-driver” file was made, to
load TUG99pdf.pre and subsequently \input

the author’s original source (or rather, the
current version available in the editing process).
This file was named e.g. rowley.ltx, where
the current source revision is rowley5.ltx. It
is this mini-driver file that is actually typeset,
to produce rowley.pdf and auxiliarly files.

For example, the mini-driver for most of the LATEX
submissions was as follows:

\input ../TUG99pdf.pre

\input{\jobname\revisionLevel.ltx}

Notice that the name of the paper to be processed
does not occur explicitly within this file. It is
constructed from \jobname and \revisionLevel

(set to 5 within TUG99pdf.pre). Thus it is sufficient
to have a single file tug99art.ltx within the parent
directory. Then rowley.ltx is just a symbolic link
to ../tug99art.ltx.

For those authors that chose to use the Harvard
style of citation, there is a similar mini-driver, called
tug99harv.ltx, with contents:

\PassOptionsToClass{harvardcite}{ltugproc}

\input ../TUG99pdf.pre

\input{\jobname\revisionLevel.ltx}

Notice the use of \PassOptionsToClass, to ensure
that appropriate code is used when \documentclass

is subsequently encountered.
To prevent \documentclass being run twice in

the same job, the file TUG99pdf.pre concludes with:

\renewcommand{\documentclass}[2][]{}

\let\usepackage\RequirePackage

\let\newcommand\providecommand

This way packages loaded from within the author’s
source do not cause conflicts (e.g. with options or
drivers) when already loaded from TUG99pdf.pre

or from ltugproc.cls. Similarly by forcing the
use of \providecommand, instead of \newcommand,
within the author’s manuspript, name-clashes are
avoided when the author tries to define a command-
name that is already available. Indeed the author’s
attempt is ignored completely, so that a consistent
style is maintained across all the submitted papers.
For example, \DVI is defined by ltugproc.cls to
expand to \acro{dvi}, however an author may
try to define \newcommand{\DVI}{\texttt{dvi}}.
Using \providecommand, the author’s attempt is
ignored, so that any adjustments to the expansion
of \acro will be applied in this paper also.

Advice to Authors: Get into the habit of
using \providecommand for stylistic markup, when-
ever it is conceivable that your document may be-
come part of a journal issue or edited volume.
Reserve use of \newcommand for text-replacements
or macros that are guaranteed to be specific to your
own manuscript.
Similarly, use \RequirePackage whenever possible,
rather than \usepackage, as this allows easier in-
tegration of your source with packages and styles for
the journal or edited volume.



TUGboat, Volume 20 (1999), No. 4 391

This use of a driver-file has effectively imple-
mented Kaveh Bazargan’s idea3 of using two differ-
ent class files. An author uses ltugproc.cls while
preparing his/her manuscript, while the editors use
whatever class is requested from TUG99pdf.pre. For
the record, TUG99pdf.pre starts as follows:

\PassOptionsToPackage{pdftex,colorlinks,

linkcolor=blue,citecolor=magenta}{hyperref}

\documentclass{ltugproc}

\RequirePackage[latin1]{inputenc}

\RequirePackage{url}

\RequirePackage{html}

\RequirePackage{graphicx}

\RequirePackage{enumerate}

\RequirePackage{alltt}

...

Notice that the hyperref package is not explic-
itly requested, since it will be loaded automatically
from the html package, available with the most
recent revisions of LATEX2HTML, when the processing
is being done by pdf TEX.

Bookmarks. Automatic bookmarks are created for
section and subsections, and also (optionally) for
figures and tables, which provides a useful alterna-
tive to a Table of Contents, and List of Figures,
etc. However, only plain text is allowed for the text
of the active hyperlink in the bookmark window.
This means that section headings cannot contain
styled text, or mathematics, unless an alternative
simplified optional argument is supplied. Similarly
an optional argument should be provided for com-
plicated, or long, figure captions.

Advice to Authors: Get into the habit of
providing optional arguments to section titles and
figure/table captions, if only as a comment to be used
if required. For example:

\section

%[pdfTeX and LaTeX] % uncomment if needed

{\pdfTeX{} and \LaTeX}

...

Internal Hyperlinks. LATEX’s \label and \ref

mechanism translates directly into active hyperlinks
in the PDF document when the hyperref package has
been loaded. Similarly \cite commands produce
active links to the bibliography listing, at least
with some of the available packages for formatting
citations and bibliographies. Patrick Daly’s natbib

package is generally the best to use, and is fully sup-
ported by hyperref for pdf TEX (and LATEX2HTML).
The Harvard style of citation is also supported by
natbib by loading it with an optional argument:

3 in this volume

\usepackage[nharvard]{natbib}

so there is no excuse for the die-hards not to use it.

Advice to Authors: Learn to use LATEX’s
symbolic \label–\ref mechanism, if you don’t al-
ready do so. With electronic documents processed by
either pdf TEX or LATEX2HTML, the cross-references
will become active hyperlinks, which are far more
useful than a number or other passive marker.
Similarly learn to use natbib for the bibliography and
citations.

External Hyperlinks. The best package for for-
matting URLs is undoubtedly Donald Arseneau’s
url.sty, which can be used with either LATEX or TEX.
It is supported by both hyperref and LATEX2HTML,
to create active hyperlinks in PDF and HTML doc-
uments respectively.

A common practice among authors is to typeset
URLs using \texttt or {\tt .....}. This is visual
markup, not logical markup, and should be avoided
within the body of the document. It is better
to use a LATEX-like notation: \myurl{...} even
if the definition is just \def\myurl#1{{\tt #1}}.
This allows an editor to load url.sty and insert a
single line: \let\myurl\url into the preamble of
the document to make the hyperlinks active.

There are two quite common errors with URLs.
Firstly, don’t forget the http:// at the start, or
ftp://, or whetever else is appropriate. Acrobat
Reader, or a Web-browser, interprets www.tug.org

as a relative URL, resulting in an error.
If a relative reference is indeed intended, e.g.

to a directory relative to the author’s home-page,
then make sure that a valid URL to the home-page
is provided within the document preamble. The
syntax used by hyperref for this is

\hyperbaseurl{http://www.tug.org}

Even if your document doesn’t use hyperref, it is
useful to include such a line, commented-out, where
it can be easily found by the journal editor.

The second common pitfall is in using a no-
tation such as: CTAN/macros/latex/supported .
While any TUGboat reader will understand exactly
what is meant, the resulting hyperlink will fail in
a browser, since it will be assumed to be a relative
URL. If you really wish that string to be displayed,
mark it up as:

\texttt{CTAN/}\url{macros/latex/supported}

and provide a valid \hyperbaseURL, such as:

ftp://ctan.tug.org/ctan

Advice to Authors: Read and understand
the issues discussed in the preceding paragraphs.



392 TUGboat, Volume 20 (1999), No. 4

Another type of active hyperlink can be very
effective in an electronic document. For example,
every mention of “Adobe Acrobat” or perhaps just
the first, can be a hyperlink to the download page
to obtain the latest version of the software. Such
links are especially useful in bibliography listings,
where they can provide a direct link to an electronic
version of a cited paper, or to a preprint archive,
or a publisher’s Web site. Commands for this are
\href from hyperref and \htmladdnormallink from
html.sty .

Included Graphics. Using pdf TEX to create the
PDF files, it is not possible to include PostScript
graphics directly. Instead they must first be con-
verted to PDF, then these can be included as part
of the job. The conversion can be done using either
Ghostscript, or with Acrobat Distiller. A Perl script
epstopdf, by Sebastian Rahtz and Thomas Esser,
creates the correct command for Ghostscript, after
having first read the %%BoundingBox comment to
establish the correct size for the translated image.
Alternatively the script ps2pdf uses Ghostscript to
convert full pages to full PDF pages; if this is more
than what is required, it should still be possible
to crop the image when it is included in the PDF

document. For PostScript files which are not EPS,
or for which there is no %%BoundingBox comment,
then Ghostscript can create a valid EPS version,
prior to using epstopdf.

As for including the image within the docu-
ment, the best LATEX command to use is the version
of \includegraphics from the graphicx package.
Its optional argument is flexible enough to be able to
do anything that is possible with other commands,
such as \psfig or \epsfbox . Furthermore, with
\includegraphics it is not necessary to include the
.eps suffix with the filename, since this is the default
when a graphics file of this type exists. Similarly
when pdf TEX is used, the default is .pdf, or .jpg

when there is no appropriate .pdf file in the search
paths. Hence the codeline

\includegraphics[scale=.5]{myimage}

suffices to include the correct version of the graphic,
either myimage.eps with DVI, or myimage.pdf or
myimage.jpg with the PDF version.

Advice to Authors: Check all Encapsulated
PostScript graphics for correct %%BoundingBox in-
formation. Load the graphicx package and become
acquainted with the possibilities available with the
optional argument to \includegraphics. Also look
at the \DeclareGraphicsRule command, if .jpg or
other graphic formats are to be used.

Proceedings Issues

For the individual papers to appears as are of a
collection, such as a Journal or Proceedings volume,
each paper must contain some things that can only
be provided by the editor(s); for example, page num-
bers and running-heads or footers. For a collection
of .pdf files, there also needs to be navigation back
to a document which provides an overall Table-of-
Contents, or other unifying material.

The driver and mini-driver setup makes it very
easy to do this, with minimal editing within the
individual manuscripts. Firstly the driver assigns
a code-number to each job. This is done within
TUG99pdf.pre by TEX code that loops through all
the values for \jobname until it finds a match with
the current document, as follows:

\newcount\jobCode

\let\thisJobNum\relax

\edef\thisJobName{\jobname}

\edef\thisJobName{\meaning\thisJobName}

\loop\advance\jobCode by 1\relax

\getAuthorName{\the\jobCode}%

{\ifx\authorName\emptyJob

\gdef\thisJobNum{0}\fi

\edef\testjob{\authorName\revisionLevel}%

\edef\testjob{\meaning\testjob}%

{\ifx\thisJobName\testjob

\xdef\thisJobNum{\the\jobCode}%

\else \ifx ...

\else ...

\fi\fi\fi}}\relax

\ifnum\jobCode >50 \let\thisJobNum\emptyJob\fi

\ifx\thisJobNum\relax\repeat

where the ... denotes extra code that copes with
authors having written two or more papers. Notice
the technical trick of using \meaning, to overcome
differences in the category codes of letter-tokens in
the expansions of for \testjob and \jobname . The
macro-name \thisJobNum holds the required code-
number after exiting from the loop, else is \relax

if there has been some mistake (termination being
guaranteed by the arbitrary maximum value of 50
for \jobCode).

The value for \authorName is supplied via:

\def\authorName{}

\def\getAuthorName#1{\edef\authorName{%

\ifcase #1\relax\or

fulling\or

ion\or

...

panelC\else\fi}}

in which the authors are listed within the \ifcase

in the order that the talks were given, or will appear
within the proceedings, or whatever other order is
most convenient.



TUGboat, Volume 20 (1999), No. 4 393

Now page-numbers or other things can be ob-
tained from similar \ifcase listings; e.g.

\def\getTalkPage{\edef\authorPage{%

\ifcase\thisJobNum ???\or % something is wrong

1001\or %fulling

1006\or %ion

1015\or %lovell

...

1158\else

\fi}}

This is particularly convenient, as it is no longer
necessary to set the page-number explicitly within
each author’s file, as was being done previously.

Similarly, the date and time scheduled for each
talk were recorded in TUG99pdf.pre:

\def\getTalkDate{\edef\authorDate{%

\ifnum\thisJobNum=0 ??? % something is wrong

\else\ifnum\thisJobNum<10\relax Monday, 16%

\else\ifnum\thisJobNum<15\relax Tuesday, 17%

\else\ifnum\thisJobNum<25\relax Wednesday, 18%

\else\ifnum\thisJobNum<33\relax Thursday, 19%

\fi\fi\fi\fi\fi}}

\def\AM{\noexpand\,am}

\def\PM{\noexpand\,pm}

\def\getTalkTime{\edef\authorTime{%

\ifcase\thisJobNum ???\or % something is wrong

% Monday

8.30\AM\or

9.00\AM\or

...

...

3.45\PM\else

\fi}}

This information was inserted automatically into the
footer of each paper. Furthermore, the footer was
made as an active hyperlink to the daily schedule,
within program.pdf . Thus program.pdf serves as
the wrapper, apparently combining all the papers
into a single volume. A little bit of arithmetic was
programmed to correlate the value in \thisJobNum

with symbolic \label names used for anchors in
program.pdf .

A significant advantage of using the driver file in
this way is immediately apparent. Suppose the order
of the papers is changed, a paper is withdrawn, or
the page-lengths are modified. It is only necessary
to make suitable adjustments within the driver file;
the author’s manuscripts need not be changed at all.

To TEX or not to TEX4

Several papers for TUG’99 were submitted using
TEX, rather than LATEX. These were among the
most troublesome to prepare for PDF. It is not
difficult to adjust definitions of \title and \author

4 with apologies to Fred Bartlett [sic].

to cope with a different syntax. For example, a mini-
driver tug99tex.ltx copes with the rudimentary
book-keeping:
\input ../TUG99pdf.pre

\let\latextitle = \title

\let\latexauthor=\author

\let\latexaddress=\address

\let\latexnetaddress=\netaddress

\def\title *#1*{\latextitle{#1}}

\def\author *#1*{\latexauthor{#1}}

\def\address *#1*{\latexaddress{#1}}

\def\netaddress *#1*{\latexnetaddress{#1}}

\def\article{\begin{document}\maketitle}

\def\endarticle{\end{document}\endinput}

\def\head #1\endhead{\section{#1}}

\def\subhead #1\endhead{\subsection{#1}}

\def\subsubhead #1\endhead{%

\noindent\textbf{#1}\ignorespaces}

\let\entry=\bibitem

\input{\jobname\revisionLevel.tex}

\end{document}

What is more difficult is to adapt or edit markup
commands used within the body of the manuscript
(in particular \item and \itemitem), or commands
used for visual, rather than logical, effect.

Advice to Authors: Please use LATEX. . .

It is not an issue of pride as to whether an
author can typeset beautiful pages himself/herself,
or that the default LATEX styles are ugly. Rather,
it is imperative to recognise that the author is not
in control of the ultimate page-layout and style
in which his/her words will be typeset. LATEX’s
main strength lies in the use of logical markup
constructions within the body of the manuscript.
This way the author’s desires or intentions can be
expressed, even when the implementation may be
deficient or lacking altogether. Use XML, we can
hear Sebastian saying.5

Advice to Authors: . . . at least use LATEX-
like markup syntax in the body of the document.

The need for logical markup is even more
imperative with the possibility of different types
of output: author’s manuscript on paper, printed
preprint version, printed proceedings volume, elec-
tronic version in PDF and/or HTML. For example,
the electronic interpretation of \url is very differ-
ent, and much richer, than the interpretation for
paper. Figures and tables should always be floated,
no matter how much you detest using this for your
own publications; layout is the editor’s problem, not
the author’s.

5 He is not wrong; we just don’t yet have enough robust
tools or the experience with it to make this a convenient path
to follow.



394 TUGboat, Volume 20 (1999), No. 4

LATEX, through its use of packages, already
has well-defined markup conventions for just about
everything that might appear in a manuscript. To
not take advantage of this means that editors, in
trying to give the richest possible interpretation for
the particular medium, may not fully understand
an author’s intentions. This can result in outright
errors, or delays in publication while an attempt
is made to gain clarification. Instructions like “no
macros” (which is clearly ludicrous for a journal
about TEX-related things) really mean “don’t worry
about the formatting, but logical markup is quite
OK, provided we can change the definition to impose
our own styles”. Since the latter is too hard to
enunciate, and yet harder still to quantify, it usually
comes out as “no macros” which is then largely
ignored.

⋄ Ross Moore

Macquarie University

NSW 2109, Australia

ross@maths.mq.edu.au



394 TUGboat, Volume 20 (1999), No. 4

Abstracts

Les Cahiers GUTenberg

Contents of Double Issue 33/34
(November 1999)

Michel Goossens, Éditorial : XML ou la
démocratisation du web [Editorial: XML or, the
democratisation of the web]; pp. 1–2

The editor sets the scene for the arrival of XML: the
realization towards the end of 1996 that there was a very
real need to bring consistency and transparency to web
page markup across all web browsers. Within two years
(10 Feb. 1998) XML emerged, addressing three critical
issues raised by Jon Bosak (Sun Microsystems), who
also chaired the XML working group: extensibility of the
markup, sufficient depth of structures being marked, and
validation of the markup. Bosak’s article (in English)
can be found at xml.com/pub/w3j/s3.bosak.html.

The remainder of the editorial relates these points
to the articles: the specification itself is reproduced in
a very useful format (French on left-hand pages, the
definitive English text on the right). To be read along
with the specification is a very thorough introduction,
written by Michel Goossens. Together, these provide a
very useful tool to the French-speaking user, as so much
terminology is being either invented from scratch or

new precise meanings assigned old familar words. Such
pairings are indispensable to those who must work in
both languages — or those who must translate from one
into the other!

The specification covers 90 pages, the introduction
another 124. And this double issue has still more: a
comparison between SGML and XML, an introduction
to Document Object Models (interfaces for XML doc-
uments), generating MathML in Omega, a program to
generate MathML-encoded mathematics, and finally, the
issue closes with a translation of the XML FAQ (v.1.5,
June 1999), maintained by Peter Flynn.

In all, over 300 pages devoted to XML.

Michel Goossens, XML et XSL : un nouveau
départ pour le web [XML and XSL: A new venture
for the Web]; pp. 3–126

Late in 1996, the W3C and several major soft-
ware vendors decided to define a markup language
specifically optimized for the Web: XML (eXtensible
Markup Language) was born. It is a simple dialect of
SGML, which does not use many of SGML’s seldom-
used and complex functions, and does away with
most limitations of HTML. After an introduction
to the XML standard, we describe XSL (eXtensible
Stylesheet Language) for presenting and transform-
ing XML information. Finally we say a few words
about other recent developments in the XML arena.

[Author’s abstract]

As mentioned in the editorial, this article is intended
to be read in conjunction with the actual specification,
provided later in the same issue.

Sarra Ben Lagha, Walid Sadfi and
Mohamed Ben Ahmed, Comparaison
SGML-XML [An SGML-XML Comparison];
pp. 127–154

The media hype surrounding the eXtensible
Markup Language (XML) Leads us to hope that
future Web documents will be better structured
and easier to re-use. The XML specification, which
addresses the wish of the Web community to have a
language more flexible than HTML without necessar-
ily adopting the rigidity and complexity of SGML,
is considered a step forward since it incorporates
technical advances of both the HTML and SGML

worlds. In the present article we explain the dif-
ferences (improvements) between XML and SGML.
Since each XML document is by construction a valid
SGML document, we review the basic principles of
both standards and present a detailed comparison
of XML and SGML. [Authors’ abstract]



TUGboat, Volume 20 (1999), No. 4 395

François Role and Philippe Verdret, Le
Document Object Model (DOM) [The Document
Object Model (DOM)]; pp. 155–171

The present article gives an overview of the
Document Object Model (DOM), a hierarchy of
standard interfaces proposed by the W3 Consor-
tium. It allows application programs to access
the structure of XML documents and manipulate
their content. We start with a brief theoretical
description of the DOM. Then we have a look
at a few use cases expressed in three languages
(Java, Perl and JScript). The parallel treatment
in these three languages should allow you to get
an idea of the functionality offered by the DOM, as
well as emphasize its programming language–neutral
character. At the end of the article we discuss the
present limitations of the DOM and its foreseeable
future evolution. [Authors’ abstract]

Yannis Haralambous and John Plaice,
Produire du MathML et autres *ML à partir d’Ω :
Omega se généralise [Generating MathML and
other *MLs from Ω: The Generalization of
Omega]; pp. 173–182

Nowadays, the Omega typesetting system not
only lets you generate typographically excellent doc-
uments in many scripts, but you can also use it to
transform the input of your Omega files into SGML.
In particular, mathematics expressions will be trans-
lated automatically into MathML while through a
redefinition of the LATEX macros any kind of SGML

tags can be obtained, thus turning the editor into a
powerful system. [Authors’ abstract]

Benjamin Jennes and Raphaël Marée, Un
compilateur d’expressions mathématiques générant
du MathML [A compiler to generate MathML

from mathematical expressions]; pp. 183–190
In this article we look at the problem of pub-

lishing mathematical expressions on the Web. We
present a solution based upon the use of compiling
techniques and the MathML language. After a
general description of the approach, we describe the
different stages of the compilation with the help of
an example. We conclude with a discussion of the
advantages and limitations of maje, the program we
have implemented. [Author’s abstract]

The W3 Consortium, La spécification XML

[The XML specification]; pp. 191–280
This document contains the original English

(odd-numbered pages) and French translation (even-
numbered pages) of the eXtensible Markup Lan-
guage (XML) “recommendation” v.1.0 (www.w3.
org/TR/1998/REC-xml-19980210) by the W3 Con-
sortium, dated 10 February 1998.

The French text may contain errors not present
in the original, due to the translation effort. Thus,
the English text is the definitive version.

The following people worked on the translation:
Patrick Ion, Samira Cuny, Alain La Bonté, Nicolas
Lesbats, and François Yergeau.

An HTML file of the translation (along with
other material) can be found at http://babel.

alis.com/web_ml/xml/.
[Translation of opening paragraphs]

Peter Flynn, Foire aux questions XML [An
XML FAQ (v.1.5, June 1999)]; pp. 281–311

This document contains the most Frequently
Asked Questions about XML—along with the an-
swers. The FAQ attempts to provide users, develop-
pers and others with an entry level of information
but in no way is it part of the XML standard itself.

[Translation of French résumé]

This translation was provided by Morgane le Bihan and
Dreves Ewen. The original English-language version can
be obtained in various formats from www.ucc.ie/xml, as
well as being “available in oil-based toner on flattened
dead trees” — Peter’s humour still in fine form!

−− ∗ −−

Articles from Cahiers issues can be found in Post-
Script format at the following site:
http://www.gutenberg.eu.org/pub/gut/

publications/publis.html

[Compiled by Christina Thiele]

EuroTEX ’99 Proceedings
Paperless TEX

The EuroTEX ’99 Conference took place in
Heidelberg, Germany, 20–24 September 1999. It
was organized by the University of Heidelberg,
represented by the Institute of Psychology and the
University Computing Center. Günter Partosch

and Gerhard Wilhelms, Words from the
Editors; pp. 1–2

Paper-less TEX

Jacques André and Hélène Richy, Paper-less
editing and proofreading of electronic documents;
pp. 3–16

This paper describes a system for editing and
proofreading electronic documents with a pen-in-
terface: with the help of a mouse, or, better, an



396 TUGboat, Volume 20 (1999), No. 4

electronic stylus on a display tablet, an author may
indicate how he wants to edit his text (e.g. cross-
line words to delete them, underline to compose in
italics, etc.). There is no learning step: however,
there is a dictionary of simple and natural drawings
which are easy to remember. [In] this way, some
natural gestures allow a comfortable interface for
correcting digital documents.

This prototype is based on studies on ergon-
omy of editing signs, localization into a structured
document, sign recognition in an editing context,
and modeling of correcting commands. The pen-
interface is integrated within Amaya, the W3C
interactive Web editor, for correcting Web pages.
A version for correcting structured documents is
experimented upon within a structured editor.

Hans Hagen, The NTG MAPS bibliography—
from SGML to TEX to PDF; pp. 17–39

A few years ago the NTG decided to put their
MAPS volumes on the internet in the PDF file
format. At about the same time, it was decided
to build the associated bibliography, in such a way
that it could be used to produce both an HTML and
PDF document.

Recently the MAPS bibliography has been con-
verted to a proper XML document source. In the
process the descriptions were made as consistent
as possible. The XML source was used as input
for a PDF document with extensive browse and
search options. This PDF file, along with the
MAPS articles, is provided to NTG members as an
additional service.

In this article, the electronic NTG MAPS will
be presented and the specific characteristics of the
production process will be explained. Also, some of
the complicating aspects will be discussed. I assume
that the reader is familiar with SGML and TEX. The
focus will be on the interfacing between SGML, TEX
and PDF.

Hans Hagen, Which way are we heading?—
In search for the holy grail; pp. 40–49

Is TEX really out-of-date? Are we making a
fool out of ourselves when we stick to using TEX?
Does TEX gain the attention it deserves? In this
paper I will elaborate on these questions. The oral
counterpart of this paper will be illustrated with
some examples.

Heiko Oberdiek, PDF information and
navigation elements with hyperref, pdfTEX and
thumbpdf; pp. 50–68

The PDF format offers additional possibilities
for information and navigation through paperless
on-line documents. This paper shows how the

navigation features bookmarks and thumbnails can
be created automatically or manually by powerful
packages like hyperref and thumbpdf. The problems
and solutions are described that arise from convert-
ing TEX strings to the PDF ones used in the general
document information or in the outlines.

Kristoffer Rose, Towards an XML DTD

for LATEX—Technical Workgroup initiative for
reformulating LATEX as an XML application;
pp. 69–70

We propose the creation of a working group
with the goal of making it possible to process LATEX
documents in XML.

Sergey A. Strelkov, Testbed for Preparation
of a Russian Patent Document in XML Format;
pp. 71–85

An experimental technology for Russian patent
document preparation in XML is described. For
this purpose the special draft XML PatDoc DTD

is used. This technological DTD is the analog of
the subset SGML DTD of the World Intellectual
Property Organization (WIPO) Standard ST.32.
This compound XML document may contain math-
ematical expressions and chemical formulae which
are presented by reference to the appropriate files.
The paper patent document image is stored in
TIFF format. Chemical formulae are simultaneously
stored in one of these formats: mol, cml, wmf, gif,
eps. Images of mathematical expressions are stored
in the formats gif or eps, and are placed at the
end of the document in the codings: Plain TEX,
MathType, MathML. The components of the patent
documents are typed in MS-Word 97 (Windows
NT 4.0 or Windows 95). MathType is used to
type the mathematical expressions; ISIS/DRAW—
for the chemical formulae. The compound rtf file
is converted to an xml file with PatDoc DTD using
these programs: rtf2xml, OmniMark LE 4.01, TEX4ht,
MiKTEX, NSGMLS, SGMLpm, IE 4.01, msxsl.cab. The
programs are glued using VBA macros for Word 97
and a set of Perl scripts.

Anselm Lingnau, TkDVI: DVI Previewing with
Tcl and Tk; pp. 86–100

Application-level scripting is a powerful method
for structuring software. This paper introduces
TkDVI, a TEX DVI previewer based on the Tcl/Tk
scripting language and graphics toolkit. After a
brief introduction to Tcl/Tk, we present the design
and major components of the previewer, pointing
out the specific advantages gained by using Tcl/Tk.
A number of extensions and future projects are also
discussed.



TUGboat, Volume 20 (1999), No. 4 397

Matthew Baker, Visualization of
electrophoresis gels using TEX; pp. 101–108

This paper describes a TEX system for creat-
ing interactive PDF files to visualize electrophore-
sis data. A Perl program processes greyscale
electrophoresis images, segmentations derived from
these images and computed numerical data to cre-
ate a hyperlinked document in TEX. This paper
describes the steps involved.

Fonts

Alexander Berdnikov, Fonts for paperless
TEX: How to make them?; pp. 109–116

‘Paperless’ TEX requires TEX fonts to be in
Type 1 format rather than in METAFONT format.
While METAFONT is still the most flexible tool for
designing fonts, direct conversion of .mf files into
Type 1 or TTF binary files is still not a routine
procedure. We will discuss what can be done in
this area to make it the standard procedure for any
user.

These problems are discussed:

1. What ‘standard’ ways of MF to PFB conversion
exist now and what are the limitations of these
tools?

2. What are restrictions for the METAFONT source
to be converted into PFB using the ‘standard’
converting routines?d

3. Is there some technology which enables to cre-
ate METAFONT and Type 1 fonts in a parallel
manner?

4. Is there some chance that someday a freeware
universal tool like METAPOST or pdfTEX will
appear to make such conversion easy and flexi-
ble, or to organize the parallel design of MF +
PFB in a comfortable style?

Bogus3law Jackowski, Janusz M. Nowacki

and Piotr Strzelczyk, Antykwa PóVltawskiego:
a parameterized outline font; pp. 117–141

There have been several attempts to gener-
ate outline fonts from a METAFONT or META-
POST source. It looks as if such an approach
has necessitated manual tuning. The aim of this
paper is to share our experiences with preparing
a replica of a traditional Polish type, Antykwa
PóVltawskiego (PóVltawski’s Antique) as a META-
POST “metasource”, i.e., in such a way that a
variety of outline instances (Type 1) of the font can
be generated on the fly.

Karel Ṕı̌ska, Fonts for Neo-Assyrian
Cuneiform; pp. 142–154

This paper presents TEX and PostScript fonts
for typesetting cuneiform (Akkadian, Hittite, Old

Persian, and Ugaritic) in a form similar to script
of the Neo-Assyrian period. The fonts have been
developed in the Type 1 font format; fonts for
Syllabary A were also created in METAFONT.

Taco Hoekwater, An extended maths font set
for processing MathML; pp. 155–164

In the autumn of [1998], work started on a new
set of mathematical fonts that are intended to cover
the full range of characters included in MathML as
well as those included in the proposals for maths
extensions in the next version of Unicode.

This paper presents the first result of that work:
A new Times-compatible maths fonts set consisting
of about 1500 symbols and a few alphabets, along
with a collection of TEX macros to use them.

These fonts are donated to the public domain
by Kluwer Academic Publishers and are available in
both METAFONT source and Adobe Type 1 formats.

Alexander Berdnikov and Olga Lapko,
Old Slavonic and Church Slavonic in TEX and
Unicode; pp. 165–196

The characteristic features of Cyrillic (Old Sla-
vonic and Church Slavonic) writing systems are
analyzed and compared. The old numbering rules
and the difference between the canonical orthodox
Church Slavonic and ‘old believer’ Church Slavonic
are considered as well. It is shown that Old
Slavonic and Church Slavonic differ strongly, and
should at the very least be considered as two well
distinguished dialects of the same writing system.
An analysis of the current state of the Unicode
04xx encoding page shows that it is not sufficient
to represent the Old Slavonic and Orthodox Church
Slavonic writings adequately. The project of T2D
encoding which enables the representation in TEX of
out-of-date Bulgarian texts (from the middle of the
19th century till 1945), Russian texts (1703–1918
and emigrant literature) and Church Slavonic/Old
Slavonic texts, is described.

Maths

Richard W.D. Nickalls, mathsPIC—A filter
program for use with PICTEX; pp. 197–210

This article presents an overview of the maths-
PIC utility for the PICTEX drawing engine. MathsPIC
facilitates the drawing of mathematical diagrams by
allowing the manipulation of points by name rather
than by coordinates. Some familiarity with the PIC-
TEX package is assumed.



398 TUGboat, Volume 20 (1999), No. 4

Valentin Zaitsev, Andrew Janischewsky and
Alexander Berdnikov, Russian typographical
traditions in mathematical literature; pp. 211–227

Although the general Russian typographical
traditions are already reviewed in several publi-
cations, the specifics of mathematical publication
and mathematical formula presentation in Russian
books and journals is still not described in full detail.
This paper describes the traditions of mathemat-
ical publications and, especially, the characteristic
features of the style and the graphical forms of
the mathematical symbols used in mathematical
notation. The ways in which these specifics can be
implemented in TEX are discussed briefly as well.

New Typesetting System (NT S)

Joachim Lammarsch, The history of NT S;
pp. 228–232

Beginning in 1991, a project was initiated by
DANTE e.V. to design and construct a successor
to TEX. This overview discusses the historical and
political framework in which the project has been
taking place.

Hans Hagen, Some NT S thoughts; pp. 233–240
There are already several extensions to TEX,

including ε-TEX and pdfTEX, and the re-implemen-
tation of the Pascal source of TEX in Java is nearly
complete. Some thoughts are presented concerning
how the next steps should be coordinated to en-
sure consistency and continuity, and what features
needed for contemporary document production are
not now well supported and should be provided.
Since the present TEX implementations do their job
well and reliably, there is time for the NT S team
to approach their task carefully, since we are talking
about life-ling tools.

Jiř́ı Zlatuška, NT S: Programming languages
and paradigms; pp. 241–245

Developments in computer software and hard-
ware since TEX’s creation have changed the ground
rules and rendered many assumptions obsolete. This
essay presents the considerations and discussion that
informed the decision to use Java as the language in
which the NT S is being implemented.

Karel Skoupý and Philip Taylor, The
implementation of NT S; pp. 246–260

This paper addresses the actual implemenation
of NT S; it is intended to provide the reader as
much detail as can reasonably be accommodated in
a paper intended to appear in the Conference Pro-

ceedings. A considerably more detailed version will
eventually be available as an accompaniment to (or
possibly integrated in) the JavaDoc documentation
which will accompany the released version of NT S.

Miscellaneous

Edrmuthe Meyer zu Bexten and
Jens Hiltner, LATEX: Das Satzsystem für
sehgeschädigte Studierende [LATEX: The text
processing system for visually handicapped
students]; pp. 261–280

There are many blind and visually handicapped
people in the Federal Republic of Germany who
would like to go to university. Especially in the
natural and technical sciences, mathematics is very
important. The question is, how can mathematics
be made more understandable for these students?
Computer assisted mathematical writing systems for
the blind have been conceived for many years, but
they have also shown a variety of problems. In
the new center for blind and visually handicapped
students of the Fachhochschule Gießen-Friedberg,
a different direction is being taken, by using the
globally recognized and accepted program LATEX.

Michael Piotrowski, Jens Klöckner and
Jörg Knappen, Is LATEX2ε markup sufficient for
scientific articles?; pp. 281–289

The markup of the standard article class is
compared with the requirements of several standard
SGML DTDs (majour, docbook, iso12083), con-
centrating on header information (author/address
markup) and bibliographic information.

W3lodek Bzyl, Detection and correction
of spelling errors in marked-up documents;
pp. 290–307

This paper discusses the problem of detecting
and correcting spelling errors in marked up docu-
ments. We divide the problem into three separate
tasks and propose solutions to all of them. Based
on this division, a simple system that provides the
ability to deal satisfactorily with any TEX markup
is presented. It is the first system of which the
author is aware that is able to deal with multilingual
documents.

Appendix

Author index; pp. 308–312

[Compiled by Barbara Beeton]



1999

Dec 11 NTS talk by Hans Hagen, Masaryk
University, Brno, Czech Republic.

Dec 13 Tutorial, “All the nice things we can
do with pdf(TEX)”, Hans Hagen,
Masaryk University, Brno,
Czech Republic. To attend, register with
secretary@cstug.cz.

2000

Feb 7 TUGboat 21 (1), deadline for technical
submissions.

Feb 7 – 11 Seybold Seminars Boston/
Publishing 2000, Boston, Massachusetts.
For information, visit http://

www.seyboldseminars.com/Events.

Feb 21 TUGboat 21 (1), deadline for reports and
news items.

Feb 23 Johannes Gutenberg’s 600th Birthday!
Born 23 February 1400

Feb 27 –
Mar 2

XTECH 2000, the XML Developers
Conference: “Looking back, going
forward”, San Jose, California.
For information, visit
http://www.gca.org/attend/

2000_conferences/xtech_2000/.

Mar 8 – 11 DANTE 2000 and 22nd meeting,
Technische Universität
Clausthal-Zellerfeld, Germany.
For information, visit http://

dante2000.itm.tu-clausthal.de/.

Apr 1 –
Jun 11

Exhibition, “Sumner Stone, Calligraphy
and Type Design in a Digital Age”,
Ditchling Museum, Ditchling,
Sussex, UK. For information, visit
http://www.letteringtoday.co.uk/.

Apr 11 TUGboat 21 (2), deadline for technical
submissions.

TUGboat, Volume 20 (1999), No. 4 399

Calendar

Apr 30 –
May 2

BachoTEX2000, 8th annual meeting of
the Polish TEX Users’ Group (GUST),
“TEX on the turn of the 20th
century”, Bachotek, Brodnica Lake
District, Poland. For information, visit
http://www.gust.org.pl/.

May 9 TUGboat 21 (2), deadline for reports and
news items.

May 10 – 12 GUTenberg 2000, “LATEX et XML :
coopération pour l’internet”, Toulouse,
France. For information, visit
http://www.gutenberg.eu.org/manif/

gut2000/gut2000.html.

May 19 – 21 Typography Forum, “Navigation
durch Text Bild Raum”,
Museum der Arbeit, Hamburg,
Germany. For information, visit
http://www.forumtypographie2000.de.

Jun 1 – 3 Society for Scholarly Publishing,

22nd annual meeting, Baltimore,
Maryland. For information, visit
http://www.sspnet.org.

Jun 12 – 16 XML Europe 2000, Palais des Congrès
de Paris, France. For information,
visit http://www.gca.org/attend/

2000_conferences/europe_2000/.

Jun 15 NTG 25th Meeting, Rijksuniversiteit
Groningen, The Netherlands. For
information, contact ntg@ntg.nl.

Jun 16 – 18 TypeCon 2000, Westborough,
Massachusetts. For information, visit
http://www.typesociety.org.

Jun 21 – 23 Typo[media]2000, “Links to
Minds, Mainz, Germany.
Linotype’s design conference;
for information, visit
http://www.typomedia.com.

Status as of 15 March 2000

For additional information on TUG-sponsored events listed above, contact the TUG office
(+1 503 223-9994, fax: +1 503 223-3960, e-mail: office@tug.org). For events sponsored
by other organizations, please use the contact address provided.

Additional type-related events and news items are listed in the Sans Serif Web pages,
at http://www.quixote.com/serif/sans.



Jul 21 – 25 ALLC-ACH 2000: Joint International
Conference of the Association for
Literary and Linguistic Computing,
and Association for Computers
and the Humanities, Glasgow,
Scotland, UK. For information, visit
http://www.ach.org/.

Jul 23 – 28 SIGGRAPH 2000, New Orleans,
Louisiana. For information, visit
http://www.siggraph.org/calendar/.

Aug 12 – 18 TUG2000— The 21st annual meeting of
the TEX Users Group, “TEX enters a
new millennium”, Wadham College,
Oxford, UK. For information, visit
http://tug2000.tug.org/.

Aug 28 –
Sep 1

Seybold San Francisco, San Francisco,
California. For information, visit
http://www.seyboldseminars.com/Events.

Sep DK-TUG, 2nd Annual General
Meeting. For information, visit
http://sunsite.auc.dk/dk-tug/.

Sep 11 – 12 PODDP ’00: 5th International
Workshop on Principles of Digital
Document Processing, Munich,
Germany. For information, visit
http://www.cs.uwm.edu/~poddp00.

Sep 12 TUGboat 21 (3), deadline for reports and
news items.

Sep 13 – 15 DDEP00: 8th International
Conference on Digital Documents
and Electronic Publishing, Munich,
Germany. For information, visit
http://www11.in.tum.de/DDEP00.

Sep 19 TUGboat 21 (4), deadline for technical
submissions.

Oct 17 TUGboat 21 (4), deadline for reports and
news items.

Oct 20 – 21 MathML and Technologies for Math
on the Web, Urbana-Champaign,
Illinois. For information, visit
http://www.mathmlconference.org.

Nov 17 – 19 Conference: Eric Gill & St. Dominic’s
Press, University of Notre Dame,
Notre Dame, Indiana; three concurrent
exhibitions of Gill’s and related work will
be held in the University museums
and library. For information, visit
http://www.nd.edu/~jsherman/gill/.

Dec 3 – 7 XML 2000/Markup Technologies 2000,
Washington, DC. For information,
visit http://www.gca.org/attend/

2000_conferences/XML_2000/.

400 TUGboat, Volume 20 (1999), No. 4

Late-Breaking News

Production Notes

Mimi Burbank

Once again, the issue is late due largely to cir-
cumstances beyond our control. In January of
2000, SCRI was “transmogrified” into the School
of Computational Science and Information Technol-
ogy (CSIT) at Florida State University, and some
adjustments have been needed.

For the first time, all of the articles in this
issue were submitted as LATEX files. Ten different
packages were required, and when attempting to
run all files as one source document, I had a 300i

stack overflow. I removed from the main file the
most likely culprit— the article using the html and
hyperref packages—with the desired effect. Most
of the articles used the graphicx package, and several
files using epsf.sty were recoded to use graphicx. As
a result, I wound up with four different PostScript
files: two from LATEX source and two from plain
TEX source.

The problem which prompted me to attempt to
run all of the LATEX files as one job had to do with
the vertical spacing of documents. I was able to
“knit” files together much better when processing
them as a single job. Curiously enough, when
an article was removed from the unified file, the
vertical spacing was completely different. We will
definitely be experimenting with this more in the
future.

Output. The final camera copy was prepared at
CSIT on a Sun Enterprise server running Solaris
7.0, using the TEX Live 4 setup, which is based
on the Web2c TEX implementation version 7.3 by
Karl Berry and Olaf Weber. PostScript output,
using outline fonts, was produced using Radical
Eye Software’s dvips(k) 5.85, and printed on an HP
LaserJet 4000 TN printer at 1200dpi.

Coming In Future Issues. The March 2000 issue
will contain the TEXLive 5 CD-ROM, and we hope
to have the latest update on XΥMTEX, the macro
package for drawing chemical structural formulae by
Shinsaku Fujita. The Treasure Chest will include
not only more package tours, but also the inventory
of packages posted to CTAN during the first quarter
of the year 2000.

⋄ Mimi Burbank
CSIT, Florida State University,

Tallahassee, FL 32306 – 4120
mimi@csit.fsu.edu



TUG 2000 Wadham College, Oxford, UK
August 13th–16th, 2000

The 21st Annual Conference of the TEX Users Group will take place at Wadham College, Oxford, between

Sunday 13th August and Wednesday 16th August 2000. Tutorials will be given on the 17th and 18th August.

The Location

Oxford is a small, pleasant city with an internationally famous

university. The city is full of ancient buildings, beautiful gardens,

libraries and bookshops. The conference will be held in Wadham

College, a traditional college (founded 1613) in the centre of the city.

Oxford is easily reached from London, and is a good starting point for

visiting much of southern England.

The Conference

The conference will feature talks

on all aspects of TEX and its

relationship to both traditional

and electronic document

preparation and processing.

The Annual General Meeting

of the TEX Users’ Group will be

held during the period of the conference.

We expect the cost to a typical delegate to be about £300, including

accommodation and meals; cheaper accommodation and bursaries will

also be available.

The conference chairman is Sebastian Rahtz (Oxford University

Computing Services) and local organisation is led by Kim Roberts

(Oxford University Press).

Dates and Contacts

15th January 2000 Proposals for papers

31st January 2000 Acceptance of papers

15th February 2000 Publication of booking form and prices

31st March 2000 Delivery of papers for refereeing

31st May 2000 Delivery of final papers

General enquiries: tug2000-enquiries@tug.org

Paper submissions: tug2000-papers@tug.org

Sebastian Rahtz

OUCS

13 Banbury Road

Oxford OX2 6NN, UK

Tel: +44 1865 283431

http://tug2000.tug.org/



Institutional

Members

American Mathematical Society,

Providence, Rhode Island

CNRS - IDRIS,

Orsay, France

College of William & Mary,

Department of Computer Science,

Williamsburg, Virginia

CSTUG, Praha, Czech Republic

Florida State University,

Supercomputer Computations

Research, Tallahassee, Florida

Hong Kong University of

Science and Technology,

Department of Computer Science,

Hong Kong, China

IBM Corporation,

T J Watson Research Center,

Yorktown, New York

ICC Corporation,

Portland, Oregon

Institute for Advanced Study,

Princeton, New Jersey

Institute for Defense Analyses,

Center for Communications

Research, Princeton, New Jersey

Iowa State University,

Computation Center,

Ames, Iowa

Kluwer Academic Publishers,

Dordrecht, The Netherlands

KTH Royal Institute of

Technology, Stockholm, Sweden

Los Alamos National Laboratory,

University of California,

Los Alamos, New Mexico

Marquette University,

Department of Mathematics,

Statistics and Computer Science,

Milwaukee, Wisconsin

Masaryk University,

Faculty of Informatics,

Brno, Czechoslovakia

Max Planck Institut

für Mathematik,

Bonn, Germany

New York University,

Academic Computing Facility,

New York, New York

Princeton University,

Department of Mathematics,

Princeton, New Jersey

Space Telescope Science Institute,

Baltimore, Maryland

Springer-Verlag Heidelberg,,

Heidelberg, Germany

Stanford University,

Computer Science Department,

Stanford, California

402 TUGboat, Volume 20 (1999), No. 4

Stockholm University,

Department of Mathematics,

Stockholm, Sweden

University of Canterbury,

Computer Services Centre,

Christchurch, New Zealand

University College, Cork,

Computer Centre,

Cork, Ireland

University of Delaware,

Computing and Network Services,

Newark, Delaware

Universität Koblenz–Landau,

Fachbereich Informatik,

Koblenz, Germany

University of Oslo,

Institute of Informatics,

Blindern, Oslo, Norway

University of Texas at Austin,

Austin, Texas

Università degli Studi di Trieste,

Trieste, Italy

Uppsala University,

Computing Science Department,

Uppsala, Sweden

Vanderbilt University,

Nashville, Tennessee

Vrije Universiteit,

Amsterdam, The Netherlands



Information about these services can be obtained

from:

TEX Users Group

1466 NW Naito Parkway, Suite 3141

Portland, OR 97209-2820, U.S.A.

Phone: +1 503 223-9994

Fax: +1 503 223-3960

Email: office@tug.org

URL: http://www.tug.org/

consultants.html

North America

Hargreaves, Kathryn

135 Center Hill Road,
Plymouth, MA 02360-1364;

(508) 224-2367; letters@cs.umb.edu
I write in TEX, LATEX, METAFONT, MetaPost, PostScript,
HTML, Perl, Awk, C, C++, Visual C++, Java,
JavaScript, and do CGI scripting. I take special care
with mathematics. I also copyedit, proofread, write
documentation, do spiral binding, scan images, program,
hack fonts, and design letterforms, ads, newsletters,
journals, proceedings and books. I’m a journeyman
typographer and began typesetting and designing in 1979.
I coauthored TEX for the Impatient (Addison-Wesley, 1990)
and some psychophysics research papers. I have an MFA in
Painting/Sculpture/Graphic Arts and an MSc in Computer
Science. Among numerous other things, I’m currently doing
some digital type and human vision research, and am a
webmaster at the Department of Engineering and Applied
Sciences, Harvard University. For more information, see:
http://www.cs.umb.edu/ kathryn.

Loew, Elizabeth

President, TEXniques, Inc.,
675 Massachusetts Avenue, 6th Floor,
Cambridge, MA 02139;
(617) 876-2333; Fax: (781) 344-8158
Email: loew@texniques.com

Complete book and journal production in the areas of
mathematics, physics, engineering, and biology. Services
include copyediting, layout, art sizing, preparation of
electronic figures; we keyboard from raw manuscript or
tweak TEX files.

Ogawa, Arthur

40453 Cherokee Oaks Drive,
Three Rivers, CA 93271-9743;
(209) 561-4585
Email: Ogawa@teleport.com

Bookbuilding services, including design, copyedit, art,
and composition; color is my speciality. Custom TEX
macros and LATEX2ε document classes and packages.
Instruction, support, and consultation for workgroups and
authors. Application development in LATEX, TEX, SGML,
PostScript, Java, and ßC++. Database and corporate
publishing. Extensive references.

TUGboat, Volume 20 (1999), No. 4 403

TEX Consulting & Production Services

Outside North America

DocuTEXing: TEX Typesetting Facility

43 Ibn Kotaiba Street,
Nasr City, Cairo 11471, Egypt
+20 2 4034178; Fax: +20 2 4034178
Email: main-office@DocuTeXing.com

DocuTEXing provides high-quality TEX and LATEX
typesetting services to authors, editors, and publishers.
Our services extend from simple typesetting and technical
illustrations to full production of electronic journals. For
more information, samples, and references, please visit our
web site: http://www.DocuTeXing.com or contact us by
e-mail.


