
Mixing TEX & PostScript : The GEX Model

Alex Kostin & Michael Vulis
MicroPress, Inc.
68-30 Harrow Street
Forest Hills, New York, 11375, USA
Phone: 1 (718) 575 1818
Fax: 1 (718) 575 8038

support@micropress-inc.com

http://www.micropress-inc.com

Abstract

VTEX is a (commercial) extended version of TEX, sold by MicroPress, Inc. Free
versions of VTEX have recently been made available, that work under OS/2 and
Linux. This paper describes GEX, a fast fully-integrated PostScript interpreter
which functions as part of the VTEX code-generator.

GEX offers one-pass compilation of text (TEX) and graphics and thus easy in-
corporations of graphics files (.eps) and inline PostScript code (PStricks, PSfrag)
within a document. While it is this graphics support which is of primary interest
to the end users, the presence of the PostScript interpreter within TEX and its
ability to provide feedback to TEX raises interesting questions about mixing text
and graphics in general and leads to new graphics-oriented packages.

This article serves as a short introduction to GEX, seeking to explain the
design issues behind GEX and the extensions which now become possible.

Unless specified otherwise, this article describes the functionality in the free-
ware version of the VTEX compiler, as available on CTAN sites in systems/vtex.

What did GEX come from?

During the early work on the VTEX PDF backend
circa 1998 it became apparent that the only way the
backend can handle PStricks graphics is by incorpo-
rating a limited PostScript interpreter. GEX (which
stands for Graphics EXtensions and is to be pro-
nounced g-e-ks) arose primarily from the author’s
misguided optimism about the amount of work re-
quired. By the time GEX fully supported PStricks,
the code amounted to more than 20,000 lines of C++
code, supported almost the entire PostScript lan-
guage, and even went beyond it. GEX has become
powerful enough to handle not only PostScript files
(.eps) but also the common inline PostScript graph-
ics packages (PStricks, PSfrag, XYpic, or Seminar).
In addition, it has become possible to design new
macro packages with GEX in mind.

While the .eps file and inline PostScript in-
clusion is the main attraction to the end user, this
article has very little to say about it. This is because
from the end-user standpoint, using GEX amounts
to using standard and familiar commands like
\includegraphics or \begin{pspicture} and see-
ing the results appear as expected in the output. In-

stead, we will concentrate on the design issues and
the extensions.

What is GEX ?

GEX is a graphics counterpart to TEX. The basic
design assumes that TEX is responsible for handling
of the text; GEX is responsible for processing the
graphics components of the document. Both TEX
and GEX contribute to the output; since the over-
all handling of the document is TEX’s responsibility,
TEX has overall control.

Usually, but not always, GEX functions within
the TEX \shipout routine and accepts responsibili-
ties which would otherwise be given to a DVI driver.
In more interesting cases, GEX functions during the
TEX formatting phase; when so doing, it is capable
of returning information to TEX and thus influenc-
ing TEX formatting.

Since GEX may exercise subtle influence on TEX
(load fonts, or change TEX registers), GEX is op-
tional in VTEX implementations: the default oper-
ation of the program is with GEX off; it is enabled
by a command-line switch.

TUGboat, Volume 21 (2000), No. 3 — Proceedings of the 2000 Annual Meeting 251

Alex Kostin & Michael Vulis

Of the four primary output modes of the VTEX
compiler (DVI, HTML, PDF, PostScript), GEX is
currently supported with two: PDF and PostScript.
The majority of GEX-related activities are identical
in these two modes. Where a behavioral difference
is desired, a macro writer can use the \OpMode count
primitive (with magic values of 0,1,2 and 10 for DVI,
PDF, PS, and HTML output modes).

In PDF mode, GEX is basically a PS7→PDF com-
piler; in the PS mode, it is a PS7→PS compiler which
reinterprets input PostScript and produces output
similar to what would be produced by printing PDF

to PostScript, albeit faster, often tighter and cleaner.
(One of the benefits of this in comparison with DVI7→
PS drivers is the combination of the fonts and other
resources that are often repeated in included .eps
files.)

While GEX is a PostScript language interpreter,
it is not 100% PostScript; there are subtle design
differences, that while not impeding the ability of
GEX to process standard PostScript code, allow new
applications.

The basic design paradigms

During the design of GEX it has become apparent
that a number of extensions will be needed to be
added to TEX to support the extra functionality.
In all cases, the basic approach was to try to keep
the TEX syntax as close to the standard as possible,
and avoid introducing additional keywords. Most of
the TEX language extensions1 are merely \specials
which are understood and resolved by the \shipout
code in VTEX. Thus, VTEX syntax would not have
new words like \pdfimage or \pdfoutline; these
would be backend \specials. In practice, we did
end up with adding some primitives, but these were
primarily new count and skip registers.

In designing the syntax of the \specials them-
selves, an attempt has been made to avoid depen-
dency on the PDF output mode. This makes them
either applicable or at least safely ignorable in other
operation modes of VTEX (DVI, HTML), not just
in the PDF and PostScript modes, where GEX is
fully operational. Thus, VTEX’s \special never
uses PDF-specific code. While a direct write to the
output is supported (with \special{!=...}, anal-
ogous to \pdfliteral{...} in pdfTEX), it is gen-
erally discouraged.

Finally, wherever possible, the \specials are
screened from the user, mostly by means of extend-
ing the graphicx package.

1 There are also PostScript language extensions in play.

How does it work

The basic model of TEX-GEX interaction is the two
\specials:

• \special{pS:} with the argument con-
taining valid PostScript code

• \special{ps:} with the argument be-
ing a name of PostScript file to include

When the backend sees one of these \specials, it
passes it to GEX for compilation. (In PDF mode,
with GEX off, it is simply thrown out; with GEX on,
it is compiled. In PostScript mode, with GEX off,
the parameter is pasted to the PostScript output, as
in traditional DVI7→PS drivers; with GEX on, it is
re-compiled).

Prior to giving control over to GEX, VTEX up-
dates the information in PostScript’s graphics state
(setting the coordinates for the current point, for
example). Upon the return from TEX, the relevant
parts of the PostScript graphics state are given back
to TEX.

Because of the need to support inline PostScript
packages the information about the current font is
also shared between TEX and GEX. For example,
passing

\special{pS: currentfont setfont}

to the PostScript interpreter is entirely legal (and is
done by PStricks); but the design implication is that
GEX is aware of the currently used TEX font and can
access it by itself. Access may mean actually loading
the font and executing the instructions in the font
file; this would happen, for example, if one writes

\special{pS: gsave currentfont 2
scalefont setfont 0.5 0 0 setrgbcolor
[4 1] 0 setdash (Test stroke) false
charpath stroke grestore}

which yields

Observe that here we use gsave/grestore to
screen TEX (and subsequent PostScript fragments)
from the color and dash changes done in GEX.

Design implications: the font machinery is
to be shared between TEX and GEX; GEX should be
able to load TEX fonts and operate on them.

Solution: Provide all conceivably useful TEX
fonts in Type 1. Extend GEX with command(s) for
loading a font given its TEX name and point size
(the .settexfont PostScript extension which loads
the current TEX font into PostScript at the current
size, as well as the .loadfont extension which allows
GEX to select any TEX font by its name. The second
extension is of use for MetaPost; see below.).

252 TUGboat, Volume 21 (2000), No. 3 — Proceedings of the 2000 Annual Meeting

Mixing TEX & PostScript : The GEX Model

Unresolved issues: The ability to pass fonts
to GEX is currently unsupported on TrueType or
CID fonts (used in CJK PDF generation). Thus, no
font effects are currently possible on Asian fonts2.

Error handling

Unlike in TEX, error correction of PostScript code is
hardly possible. Errors are therefore converted into
TEX-style errors, followed by PostScript-style stack
dumps.

For example, passing the following code to GEX
\special{pS: 1 2 movetoo}

results in
! PS interpreter error, code=21
(Undefined name [movetoo]).

(This assumes, of course, that the movetoo name
has not been previously defined.) GEX errors are
usually fatal; while the TEX portion of the docu-
ment can be compiled through the end, PostScript
compilation is abandoned on the first error. Only
with several common errors, like font unavailabil-
ity, or leaving junk entries on the operand stack (as
explained below), will GEX continue.

Interesting cases

While the above model is sufficient for most cases,
there are unusual situations which arise in specific
cases.

Typesetting text on a curve which is the ac-
tivity of the pst-path component of PStricks pro-
vides one difficulty. In PStricks, this is implemented
by redefining the show operator. In conventional
PStricks, the expectation is that the redefined show
should hack the code which originated in TEX, but
now, after TEX7→DVI and DVI7→PS conversions, the
code has become PostScript. In the VTEX case, we
want PStricks to work within the TEX \output rou-
tine, where there is no PostScript code to hack.

Solution: The VTEX backend senses the re-
definitions of PostScript text output operators like
show; if it detects that show has been changed it
temporary switches to PostScript generating mode;
then passes the output to GEX for recompiling.

A similar situation arises when a TEX macro
package “cuts out” a piece of PostScript code for
reuse or discarding. Both PStricks and PSfrag do
it by inserting a definition around PostScript code
generated by TEX:

/something {
<ps code>
2 see http://www.micropress-inc.com/CJK for additional

information on CJK/PDF support.

} def

Design implications: The TEX backend must
sense when GEX is in such a “definition” mode, and
switch to PostScript generation if needed. In the
above example, upon processing

\special{pS: /something {}

GEX returns back an indicator that it did not fully
handle the operator; only after

\special{pS: } def }

will the TEX backend be allowed to return to normal
processing.

Transfer handling

〈int〉 .enabletransfer A problem which arises
with some .eps images is the use of the settransfer
PostScript and related operators. The problem is
that these operators are used for both device-depen-
dent and device-independent color manipulations.
The first usage is more common and is essentially
for minor color adjustments. In such situations the
best strategy for producing device-independent PDF

files is to disregard the transfer altogether. This is
the default behaviour of GEX (and of the Acrobat
Distiller).

However, in some (fortunately, rare) .eps files
the same operators are used to effect major device-
independent adjustments. An example of such an
adjustment would be to invert a black-and-white
picture; this can be done with the

{ 1 exch sub } settransfer

PostScript code snippet. Disregarding this code will
produce an inverted image. Thus, both Acrobat Dis-
tiller and GEX allow the user to change their be-
haviour. In the case of Distiller, the override is a
global Job option which will apply to all parts of a
document; GEX allows you to override only the han-
dling of an individual image. This is accomplished
with the extension operator

.enabletransfer

With an argument of zero, .enabletransfer dis-
ables processing of settransfer code; a non-zero
argument enables settransfer processing. Figure 1
is an example of a small .eps file that uses transfer
code.

MetaPost support

While GEX can handle MetaPost-generated files, it
is important to state that MetaPost outputs invalid
EPS files. Rather than use the standard fonts or
embed fonts into the EPS, MetaPost merely includes
declarations like

TUGboat, Volume 21 (2000), No. 3 — Proceedings of the 2000 Annual Meeting 253

Alex Kostin & Michael Vulis

Figure 1: To the left the figure included with default settings, on the right the figure after enabling
settransfer.

/cmr10 /cmr10 def

and expects post-processing to find and substitute
the fonts. Instead of such post-postprocessing, GEX
ignores (i.e., processes and discards the result) this
declaration, but requires either explicit loading of
needed fonts via the .loadfont extension

\special{pS: /cmr10 .loadfont}

(using one such command for each required font) or
by enabling of the autoloading feature via the
.autofontload extension

\special{pS: 1 .autofontload}

〈string〉 .loadfont loads the font by its TEX
TFM name into the GEX font machinery and makes
it available to findfont and related operators.
〈int〉 .autofontload If the integer argument is

non-zero, GEX will query the TEX font configuration
files when the findfont operator cannot resolve a
font name. The default is not to load fonts implicitly
and substitute Helvetica.3

These commands must be issued before a Meta-
Post-generated file is actually included.

EPS-specific problems

In the process of testing GEX over many hundreds of
“real-life” .eps files, some common problems have
been discovered. While these are technically bugs in
.eps, they are common enough so workarounds had
to be provided.

The majority of the .eps related workarounds
(as well as many new options) have been incorpo-

3 One of the subtle differences between GEX and Post-
Script is substituting Helvetica rather than Courier for fonts
that are not available; in the author’s opinion Courier is not
a font to be used for any purpose.

rated as new keys to the \includegraphics com-
mand; this provides for an easy end-user interface4.

Leaving entries on the PostScript operand stack
is surprisingly common misbehavior which we have
seen in files generated by many applications. If the
.eps file is sound otherwise, it will be processed cor-
rectly; but an error may occur in handling the Post-
Script code that comes after.

Because of the common nature of this error
(and especially because it causes the error message
to point not to the culprit, but some later PostScript
code), this GEX error is reported TEX-style:
! junk on PostScript stack, 4 items
? h
The PostScript code you just executed
has left some junk on the operand stack.
I’m taking it off; cross your fingers
and pray that this is all to it.

The fix required from the user is to add 4 pops
at the end of the .eps image.

Degenerate matrices Near-degenerate matrix
transforms often cause serious problems with the
Acrobat’s 16-bit computational limit. One can show
that the problem is not solvable correctly in general;
and Adobe Acrobat Distiller would fail on degener-
ate transforms.

The example file
% lwid.ps
0 0 moveto
gsave 100 200 lineto 2 3 scale
1 0 0 setrgbcolor stroke grestore

gsave 200 100 lineto 0.5 0.3 scale
0 1 0 setrgbcolor stroke grestore

4 Special thanks to DC for providing the ability to define
custom keys in graphicx.

254 TUGboat, Volume 21 (2000), No. 3 — Proceedings of the 2000 Annual Meeting

Mixing TEX & PostScript : The GEX Model

Figure 2: Fragment of a sample gears.eps
included with \includegraphics{gears.eps}

gsave 200 200 lineto 0 0 1 setrgbcolor
[0.18672 -0.565306 0.87384 -2.64563 0 0]
setmatrix
stroke grestore

showpage

should produce three lines from the origin. Distiller,
however, will miss the middle line. GEX, on the
other hand, will produce correct output:

Near-degenerate matrices are not a perverted aber-
ration: they tend to be generated by common soft-
ware, such as CorelDraw. The particular set of num-
bers in the source above came from a Corel example.

While GEX does the work correctly in most
cases (the precision limit in PDF guarantees that no
PS7→PDF conversion can work correctly in all cases):
some distortion of the line widths is possible and is
not avoidable.

Level 1 strokeadjust Some graphics applications
(for example, Freehand) output Level 1 PostScript
code which fits the coordinates to an integer grid.
This code, if executed literally, will produce rather
disastrous results with GEX. Figure 2 shows one of
the “real-life” examples.

The nature of the problem is a bug (or feature)
in the Freehand adjustment code which does not

Figure 3: Same as Fig. 2 included with
\includegraphics[innerscale=4]{gears.eps}

bother to check for the device matrix and assumes
that it corresponds to the output pixel resolution
of 300 dpi or higher (which would imply a device
matrix [4 0 0 4.. ..]). However, the GEX device
matrix is chosen to be an identity, to avoid extra
rounding by TEX’s⇔ GEX’s coordinate translation.
This causes extremely coarse coordinate rounding
(72dpi) in the default case.

GEX’s workaround to this problem consists of
\specials that switches the device matrix to an ap-
propriate one; this is incapsulated in the

innerscale=

option to the \includegraphics.
The corrected picture on Fig. 3 was processed

with innerscale=4.

Level 1 / 2 differences While PostScript Level 2
is supposed to be a superset of Level 1, it is wrong
to conclude that PostScript graphics displayed cor-
rectly on a Level 1 interpreter will appear the same
way (or at all) on a Level 2 interpreter. It is all
too common for .eps files to actually check the in-
terpreter version and then execute totally different
code, depending on the version found.

Both images came from the same PowerPoint-
produced .eps file. Since in this case the end user
might prefer the Level 1 appearance (but in some
other .eps, perhaps in the same document, Level 2
may be required), GEX provides an ability to switch
between Level 1 and Level 2 dynamically. On the
lower level, this is done by the

N .setlanguagelevel

extension operator. Alternatively, the user might
prefer to use the gexlevel option provided for the
\includegraphics command and enter

\includegraphics[gexlevel=N]{paths.eps}

TUGboat, Volume 21 (2000), No. 3 — Proceedings of the 2000 Annual Meeting 255

Alex Kostin & Michael Vulis

Rr

Figure 4: Level 1 appearance

Rr

Figure 5: Level 2 appearance

Feedback to TEX

Since both TEX and GEX operate at the same time,
it is possible to make them share information. While
passing information from TEX to PostScript is triv-
ial and has been done for ages (by putting them in-
side the PostScript language \special, in the case
of VTEX, \special{pS:..}), getting information
back from PostScript is new.

In GEX this is accomplished by PostScript syn-
tax extensions that allow access to TEX \toks reg-
isters within GEX. The three new operators are:

• 〈int〉 〈string〉 .tkread 7→ 〈int〉 〈string〉
where the 〈int〉 parameter should be between
0 and 65535 and designate a TEX token reg-
ister5; the 〈string〉 parameter is the receiving
string. In the output, the integer value is the
new length of the string; the string contains the
contents of the \toks register.

5 Not a typo; the VTEX compiler has larger limits than
other versions of TEX and \toks10000 is legitimate.

Control sequence tokens are converted to spaces
during .tkread; they are counted as one char-
acter for .tklength.

During .tkread a rangeerror may occur if the
\toks register contains more characters than
can be placed into the receiving string; one can
use the .tklength operator to find out how big
the receiving string should be before allocating
it.

• 〈int〉 .tklength 7→ 〈int〉
where the 〈int〉 parameter should be between 0
and 65535 and designate a TEX token register;
the output integer is the length of the contents
of the TEX \toks register.

• 〈boolean〉 〈int〉 〈string〉 .tkwrite 7→
where the 〈boolean〉 argument determines if the
data should be appended to the \toks contents
(true) or overwrite it (false); the 〈int〉 param-
eter is between 0 and 65535 and designates a
TEX token register; the contents of the 〈string〉
parameter will be globally placed into the spec-
ified \toks register.

Token strings produced by .tkwrite contain
only tokens with TEX \catcode 12 (other).

The interface is deliberately kept very general;
It is assumed that a TEX macro writer would unpack
the \toks string as desired.

Here is how one can try to use GEX to generate
a few random numbers:

\def\rand{%
\special{pS: false 100 rand

10 string cvs .tkwrite}%
\the\toks100
}

The numbers are = \rand, \rand, \rand.

The numbers are = 16807, 282475249,
1622650073.

Immediate execution

While the syntax above provides a way to deliver
information from GEX to TEX, the information will
arrive too late to be of much use. This is because
\specials are executed during the page building
(\shipout), when it is too late to use the returned
data. For this reason, the example as written above
will actually not work as specified.

While it is possible to overcome the problem
with usual TEX multi-pass tools (the .aux file), we
chose to instead enhance TEX with the

\immediate\special{...}

256 TUGboat, Volume 21 (2000), No. 3 — Proceedings of the 2000 Annual Meeting

Mixing TEX & PostScript : The GEX Model

form. The semantics here are identical to those
when the \immediate command as used with the
file operations which are already in TEX.

Besides making the example above work, the
immediate form of \special proves very handy in
a number of other cases, for instance:
• setting the background color for a page
• defining a PostScript header file
• thumb generation specials (PDF mode)

These actually cause difficulties for VTEX: a DVI

driver can scan a page ahead to see if such \specials
are present, but the one-pass nature of VTEX com-
pilation requires them to be processed before the
\shipout gets under way; the immediate form solves
exactly this.

Creating objects in immediate mode

The GEX feedback can be used for many purposes,
some of which can be accomplished by TEX means (if
barely) and some which cannot be. One reason is be-
cause PostScript is a better computational language
than TEX, and the \immediate form of \special
makes it fully available to TEX. trig.sty, for ex-
ample, is one casualty of this approach.

More interestingly, PostScript is more aware
than TEX of the nature of the graphics objects that
are in the document. For example, it is possible to
use GEX to compute the exact locations of the ex-
tremes in a graph and then pass these locations back
to TEX for placing of tags.

To allow development of this type of applica-
tions, we provide some additional machinery:
• It is allowed to have GEX compile and gener-

ate code for graphics objects in the \immediate
mode; this code, however, is written to a mem-
ory stream.

• A memory stream can be frozen and closed with
the \special{ice} command (naturally, an-
other \immediate); when a stream is closed,
its handle is provided in the \pdflaststream
register.
• As graphics are drawn, the placement of the

TEX tags can be computed as well, and reported
to TEX via \toks.
• A stream is placed into the output page with

the \special{!stream ...} command. Here
we do not use the \immediate form, since the
graphics should be emitted and properly placed
during the usual \shipout.
Note: Code emitted prior to the \shipout

cannot go to the output page right away since the
formatting of the output page is not yet known.

Thus, such code is emitted relative to the (0, 0) ori-
gin; during the actual \shipout the code is shifted
to the position of the \special{!stream...} com-
mand.

The technique outlined above has been success-
fully utilized in several new macro packages, includ-
ing vfplot. They, however, use the extensible na-
ture of GEX as well, and it would be prudent to
explain this first.

Extending GEX

While in principle PostScript has as much compu-
tational power as a conventional programming lan-
guage, writing computations in PostScript is much
more time consuming than in, for example, C or Pas-
cal. (Complex PostScript code may also take a long
time to be interpreted.) The .extend operator in
GEX seeks to add the extra power of conventional
programming to GEX. In essence, a user can imple-
ment extra computational (or drawing) abilities in a
compiled dynamic library (DLL for Windows/OS2,
SO for Unix/Linux), then have these abilities avail-
able as new PostScript operators.

We call such addon DLLs GEX plugins.
Syntactically, one writes

(pluginname) .extend

where pluginname refers to the name of a DLL (Win-
dows/OS2) or a shared library (Linux/Unix) which
contains the implementation of new extension oper-
ators. Upon encountering the above line, GEX will

• look for the requested plugin module
• ensure that its version matches the version of

the GEX interpreter
• find out which new operators are implemented

in the library, add their names to the PostScript
namespace, and record the location of their im-
plementation code.

Upon encountering a new operator, GEX calls the
implementation code in the plugin.

GEX API

The GEX Application Programming Interface (API)
represents PostScript internal operators as callback
functions. For example, where a PostScript program
would execute

10 20 moveto

a GEX plugin written in C shall do

GeXi->moveto(10,20);

The C/C++ API is specified in the gexi.h header
file; it generally parallels PostScript drawing opera-
tors.

TUGboat, Volume 21 (2000), No. 3 — Proceedings of the 2000 Annual Meeting 257

Alex Kostin & Michael Vulis

Rather than list the entire API here, we shall
outline its principles:
• GEX API functions call the GEX kernel and are

generally equivalent to PostScript operators.
• GEX API functions return 0 on success, and

the PostScript error number on failure; it is the
plugin’s responsibility to handle the errors.

• GEX API functions cover most PostScript draw-
ing abilities, but not text output. This is be-
cause plugins are not intended to do text for-
matting; this task should be passed over to TEX.
• The GEX API includes functions for working

with the PostScript operand stack.
• An exception to the above is the show() func-

tion which is provided for the purposes of de-
bugging only.

• Just like GEX itself, plugins can talk to TEX;
this is done with the tkwrite(), tkread(), and
tklength() functions.
For example, an extension operator square can

be defined to draw a 10×10 square with C code like
this:
int square(GEXI GeXi) {

double x,y;
if (GeXi->currentpoint(&x,&y)!=0)

return error_nocurrentpoint;
GeXi->lineto(x+10,y);
GeXi->lineto(x+10,y+10);
GeXi->lineto(x,y+10);
GeXi->setrgbcolor(1,0,0);
GeXi->closepath();
GeXi->fill();
return 0; //success
}

This example is, of course, useless: it is so simple
that the task can be accomplished much easier in
PostScript. However, the benefits of C programming
become clear in more complicated cases.

PieChart

The first GEX plugin was the PieChart plugin. The
implementation consists of
• piechart.[dll|so], the extension library.
• piechart.sty, a matching LATEX 2ε style, to

shield the interface details from the end user.
The code below shows how the end user may be
using the plugin; a TEXnically minded person might
also want to examine the sources which are available
together with the GEX API description.
%% Define some colors
\definecolor{lightyell}{rgb}{1,1,0.75}

LATEX 2e
Plain TEX
AmSTEX
LATEX 2.09
Other

Figure 6: Shares of TEX dialects

\definecolor{peach}{cmyk}{0,0.50,0.70,0}
\definecolor{orange}{cmyk}{0,0.61,0.87,0}
\definecolor{navyblu}{cmyk}{0.94,0.54,0,0}

\begin{center}
Shares of \TeX\ dialects:\par
\fbox{\begin{PieChart}[rt]{1.8in}
\PieSlice{lightyell}{65}{\LaTeX\ 2e}
\PieSlice{green}{20}{Plain \TeX}
\PieSlice{navyblu}{10}{AmS\TeX}
\PieSlice{yellow}{4}{\LaTeX\ 2.09}
\PieSlice{orange}{1}{Other}
\end{PieChart}}
\end{center}
%%

A sample PieChart produced by this extension is
shown in Figure 6.

Vchart

While PieChart is simple enough that it can be im-
plemented in TEX/inline PostScript, its descendant,
Vchart, breaks the barrier.

The Vchart package implements several formats
of business graphs. Like PieChart, it is a combina-
tion of a plugin and a macro package.

To structure the user input, Vchart provides
several environments. One defines the colors:
\definecolor{c1}{rgb}{.565,.592,1}
\definecolor{c2}{rgb}{.565,.184,.373}
\definecolor{c3}{rgb}{1,1,.753}

the headers:
\begin{header}{sides}
\entry[fillcolor=c1]{West}
\entry[fillcolor=c2]{East}
\entry[fillcolor=c3]{South}
\end{header}

\begin{header}{ABCD}
\entry{A}\entry{B}\entry{C}\entry{D}

258 TUGboat, Volume 21 (2000), No. 3 — Proceedings of the 2000 Annual Meeting

Mixing TEX & PostScript : The GEX Model

\end{header}

and the data:

\begin{datatable}{example}
20.4 & 27.4 & 90 & 20.4 \\
30.6 & 38.6 & 35.6 & 31.6 \\
45.9 & 46.9 & 45 & 43.9 \\
\end{datatable}

and applies the \DrawGraph command.
The first graph in the series below has been

produced with

\colorbox{grbkcolor}{%
\DrawGraph{graphdata=example,
graphtype=column,width=100pt,
height=70pt,rowheader=sides,
colheader=ABCD}}

The other graphs differ only in the graphtype=
setting. The separation of data from the actual com-
mand allows to produce different charts from the
same values.

Vfplot

The most powerful GEX plugin designed so far is Vf-
plot. The name stands for the Visual Function Plot;
Vfplot converts functions given as formulas into the
plots within the document. Unlike the facilities of-
fered by standard plotting tools (MathCad or Mat-
Lab), Vfplot was specifically designed with TEX in
mind; the plots it produces are visually compatible
with the TEX document (plots use the document
fonts and TEX-formatted text).

Like the plugins mentioned above, Vfplot comes
with a comprehensive macro package (vfplot.sty
for LATEX 2ε and vfplot.tex for Plain TEX) which
screens the plugin details from the end user.

Samples of inputs to Vfplot and its outputs are
shown in figures 8, 9, and 10.

Vfplot and PSfrag

In principle, plots similar to Vfplot’s can be also be
achieved using a standalone math plotting system
(like MatLab) in conjunction with the PSfrag pack-
age. The basic advantage of Vfplot is that the plot
is an integral part of the TEX document; it can be
changed by changing the plot code within a TEX
file directly, or employing the Visual plot editor (see
below). PSfrag, on the other hand, is essentially a
write-once format, which requires a separate pro-
gram for making the plot and additional manual
work in setting the substitution tags.

However, PSfrag also has an advantage of being
more portable; Vfplot (and plugins in general) are
VTEX-specific.

Graph Type/type Result

Column graph/
graphtype=column

0
10
20
30
40
50
60
70
80
90
100

A B C D

Bar graph/
graphtype=bar

A

B

C

D

0 10 20 30 40 50 60 70 80 90 100

dots and lines/
graphtype=dots

0
10
20
30
40
50
60
70
80
90
100

A B C D

Radar graph type/
graphtype=radar

0
20
40
60
80
100

Doughnut graph type
graphtype=doughnut

Figure 7: Sample Vchart output. Notice that
Vchart does not have a piechart type of graph;
but a pie, after all, is just a degenerate doughnut.

TUGboat, Volume 21 (2000), No. 3 — Proceedings of the 2000 Annual Meeting 259

Alex Kostin & Michael Vulis

\begin{plot}[legend=rt]{x-axis=MyAxis1,y-axis=MyAxis2,plotfill=CoorFill0}
\function[linetype=MyLine1]

[minlimit=-3.14,maxlimit=3.14,level=0,hatching=FunHatch,fill=FunFill]
{x/2+sin(x)+cos(x^2) | x in [-5,5]}{$+{x\over 2}+\sin x+\cos x^2$}

\end{plot}

-10.0

-5.0

0.0

5.0

10.0

−π π−2π 2π

+x
2 + sinx+ cosx2

Figure 9: Vfplot drawing: Color Map

\begin{plot}{
x-axis=SineXAxis, % use a predefined axis
y-axis=SineYAxis,
gapsfill=Sunset2 % use a predefined

% gradient stretch
}
\function[linetype=MyLine]{sin(t)}{}
\end{plot}

y = sin(x)

0.0

0.2

0.4

0.6

0.8

1.0

0 π/4 π/2 3π/4 π

Figure 8: Vfplot drawing: 1D Plot

We, therefore, support exporting Vfplot envi-
ronments into .eps/.inc file pairs; the .eps file
contains the plot itself, while an .inc file contains
a PSfrag wrapper for it.

Vfplot Visual Frontend

While it entirely possible to create Vfplot input “by-
hand”, the number of possible parameters is so large
that a Visual frontend becomes useful. Such a fron-
tend currently exists under Windows only; its func-
tionality includes abilities to

• edit plot environments within TEX documents.

• visually manipulate all possible options of such
environments:

• instant preview of the plot:

260 TUGboat, Volume 21 (2000), No. 3 — Proceedings of the 2000 Annual Meeting

Mixing TEX & PostScript : The GEX Model

\begin{plot3d}{x-axis=AxX,y-axis=AxY,
z-axis=AxZ,isolines=false}

\function[x-numpoints=60,y-numpoints=60,
uppersidefill=MyFill3,
lowersidefill=MyFill2,lineoff]

{ (1-x)^2+100*(y-x*x)^2 | x in [-1.5,1.5];
y in [-0.5,1.5]}

\end{plot3d}

1.51.00.50.0-0.5-1.0-1.5 X-axis

10−2

10−1

1

10

102

103

Z
-a

xi
s

1.5

1.2

0.8

0.5

0.2

-0.2

-0.5

Y
-axis

Figure 10: VFPlot drawing: 3D Plot. The Rosenbrock function, z = (1− x)2 + 100(y − x2)2

TUGboat, Volume 21 (2000), No. 3 — Proceedings of the 2000 Annual Meeting 261

Alex Kostin & Michael Vulis

as well as somewhat slower full plot. (The in-
stant preview does not expand TEX notation).

• export plots in many bitmapped formats.
• export plots as .eps, or .eps together with a

PSfrag header (.inc).

Image processing

One important place where GEX differs from ordi-
nary PostScript is the image handling. In “normal”
PostScript, image is a primitive operator. By de-
fault, it is the case in GEX as well; however, image
is implemented as a combination of two new exten-
sion operators:

.loadimage does the unpacking and produces an
image object on the operand stack.

.produceimage emits the image object to the out-
put stream.

Thus, one can define

/image {.loadimage .produceimage} def

without changing the way image operates.
Similarly, imagemask and colorimage use

.loadimagemask for the unpacking of the
imagemask data

.loadcolorimage for the unpacking of the
colorimage data

and are internally defined as

/imagemask{ .loadimagemask
.produceimage} def

/colorimage{ .loadcolorimage
.produceimage} def

By itself, this adds nothing. However, it opens a
door for inserting a new operator between the two
components of image:

/image {.loadimage myfilter
.produceimage} def

Such an operator can manipulate the image data in
memory.

A filtering operator as defined above cannot be
written in PostScript — there is no image data type
in the PostScript language; and from the point of
view of the PostScript processor, image is just an
int. A curious user can see this by trying
/image {.loadimage pstack

.produceimage} def

However, image filters can be easily implemented via
plugins.

Two plugins have been developed to perform
image manipulations:

TransBit can alter the color model of the image.
One of the applications is to convert color (RGB or
CMYK) images to grayscale for printing purposes.
TransBit functionality also covers the brightness and
the contrast of the image.

Degrade downsamples the image; this can be used
to decrease (often, greatly) the size of the resulting
output file.

Both plugins take additional parameters. For ex-
ample, if we want to brighten an image by 10 units,
we would issue
\special{pS: (transbit) .extend}
\special{pS: save}
\special{pS: /image {.loadimage

(toBright 10) transbit
.produceimage } def

\includegraphics{mypic.eps}
\special{pS: restore}

The save/restore pair is needed to restore the
original definition of image.

The functionality of both plugins has been in-
corporated in the \includegraphics command, so
the end user will merely write
\includegraphics[brightness=10]{mypic.eps}

Note: The graphicx package automatically
loads the required plugins upon seeing keys that are
implemented in plugins.

Non-PostScript images

Although the above functionality applies to images
stored within PostScript code (like the ones pro-
duced by jpeg2ps), we can easily extend it to the
bitmapped image files.

The idea here is to be able to load image files
into the GEX/PostScript environment; this is done
with the .readimage extension operator. This op-
erator takes a string argument with the image file
name and converts it to an image object on the Post-
Script operand stack; such an object can be followed

262 TUGboat, Volume 21 (2000), No. 3 — Proceedings of the 2000 Annual Meeting

Mixing TEX & PostScript : The GEX Model

up by a .produceimage or by imaging filter(s), and
then by a .produceimage.

The end-user interface is again trivial. For ex-
ample:

\includegraphics[colorspace=grayscale 16]
{picture.gif}

will load the picture.gif file into GEX, and convert
it to a 16-color (4-bits) grayscale using the TransBit
plugin.

TransBit example

The examples in this and subsequent sections show
the same image, macaw.jpg, processed with differ-
ent \includegraphics keys. The original picture
appears in the middle of the first example. Trans-
Bit related keys are brightness, contrast, and
colorspace; these keys force the image processing
via .readimage, followed by a plugin application.

Sample code

\includegraphics[width=1.3in,
contrast=-0.3]{macaw.jpg}

\includegraphics[width=1.3in,
contrast=0]{macaw.jpg}

\includegraphics[width=1.3in,
contrast=+0.3]{macaw.jpg}

results in

contrast=-0.3

contrast=0

contrast=+0.3

Color model conversion would be, in particular,
of use when the document is to be eventually printed
on paper. For example, type
\includegraphics[width=1.3in,

colorspace=bw]{macaw.jpg}
\includegraphics[width=1.3in,

colorspace=grayscale 16]{macaw.jpg}
\includegraphics[width=1.3in,

colorspace=grayscale 256]{macaw.jpg}
to produce

colorspace=bw

colorspace =

grayscale 16

colorspace =

grayscale 256

Color space conversion to grayscale also often
substantially reduces the size of the output.

Degrade example

The Degrade plugin is triggered by the degrade key
of \includegraphics; degrade=1 corresponds to no
downsampling.
\includegraphics[width=1.3in]{macaw.jpg}
\includegraphics[width=1.3in,

degrade=0.6]{macaw.jpg}
\includegraphics[width=1.3in,

degrade=0.4]{macaw.jpg}

\includegraphics[width=1.3in,
degrade=0.3]{macaw.jpg}

\includegraphics[width=1.3in,
degrade=0.2]{macaw.jpg}

\includegraphics[width=1.3in,
degrade=0.1]{macaw.jpg}

TUGboat, Volume 21 (2000), No. 3 — Proceedings of the 2000 Annual Meeting 263

Alex Kostin & Michael Vulis

degrade=0.6

degrade=0.4

degrade=0.3

degrade=0.2

degrade=0.1

The transformations given above usually result
in a drastic decrease of the size of the output. A
minimal TEX source file which consists of a solo
\includegraphics with different degrade= coeffi-
cients will result in PDF files of decreasing sizes:

Coeff. File Size

Uncompressed Flate-Compressed
1.0 1,278,158 1,029,377
0.6 459,780 392,863
0.4 204,804 181,256
0.3 115,908 104,714
0.2 51,970 47,932
0.1 13,952 13,242

Note: Downsampling can also be accomplished
by means of the Discrete Cosine Transform; this
is triggered by the dct and dctquality keys for
\includegraphics. For photo-quality images this
often leads to better results.

Color stack issues

The color package offers two distinct ways to main-
tain color: rely on the color stack in the backend
(usually, a DVI driver), or — when such a stack is
not available — emulate it within TEX.

As turns out, with GEX neither approach is
fully adequate. The color stack within TEX is gen-
erally incapable of preventing color leaks from one
page to another; but full use of the backend color
stack is not possible since GEX already implements
the full PostScript graphics state stack (GSS). While
the GSS saves colors, it also saves the current point.
This breaks some of the PStricks sub-packages, such
as pst-text or pst-path.

The workaround used in GEX is to support both
TEX and backend color stack approaches:
• vtex.def provides a macro \if@colorstack;

when true, the color style uses the GSS stack;
when false, color emulates the color stack
with TEX means.

• By default, \if@colorstack is true; the driver
color stack is used.
• Environments like pspicture are redefined to

set \if@colorstack to false; this assures that
PStricks are not broken.

Credits & Acknowledgements

The VTEX/GEX system itself was written by Michael
Vulis. Most of the supporting macro packages were
written by Alex Kostin. Vchart was written by Kir-
ill Lebedev. Other plugins quoted in the article have
their respective authors.

The authors wish to express thanks to
• Walter Schmidt and Taco Hoekwater for extra-

ordinary efforts in making the freeware versions
of VTEX possible.

• Denis Girou and Timothy van Zandt for coop-
eration and help in cleaning bugs in PStricks
and Seminar which made their use with GEX
possible.

• David Carlisle for providing an extendable ver-
sion of the Graphics package which makes a nat-
ural interface to GEX features possible.

• Heiko Oberdiek for outstanding efforts in mak-
ing sure that Hyperref manages all the multiple
modes of VTEX.

• Many end users who discovered and reported
bugs in GEX — thank you all — and please send
more.

264 TUGboat, Volume 21 (2000), No. 3 — Proceedings of the 2000 Annual Meeting

