
LATEX And The Personal Database

Bernice Sacks Lipkin
9913 Belhaven Road
Bethesda MD 20817
USA
bslipkin@erols.com

Abstract

Ignoring fixed-size and coded field formats, text databases can be viewed as either
ASCII-delimited or ID-prepended. ASCII-delimited databases reserve a particular
symbol as record delimiter, and another symbol as field delimiter. ID-prepended
databases mark the start of each new field with stylized text unique to that field
type. Personal means that the record can take any form the database owner
desires, from the rigidly-structured, where the informational fields are in the
same order in each and every record in the database, to the totally unstructured
records of ordinary documents.

TADS is a set of integrated programs that manipulate the text in a personal
database. Using TADS, field-specific LATEX instructions can be made an intrinsic
part of an ASCII-delimited database from its inception. To create a bibliographic
data base and incorporate items from the database into manuscript text requires
that the writer do two tasks:

1. Using TADS, the writer creates a customized data entry program that will
prompt for keyboard input to create the field order he wants; e.g., author, title,
journal, etc.. The data entry program writes a skeleton LATEX file, complete with
skeleton commands, one per field. These macro names, which also prepend the
fields in each database record, define font size and shape.

2. In writing a document for publication, the writer alludes to citations in
the document, using whatever phrases he can recall. The allusions are written
within brackets; for example, Smith et al <smith*199?*tadpole*> suggested. . .
Under a script that stacks TADS program modules with the appropriate options,
these allusions are extracted from the document, and serve as wildcard match
words to pull out records in the derivative database. Records are automatically
sorted by number or by Name-Year and the numbers (or Name-Year) substituted
for the allusions in the document. Fields can be rearranged or omitted in the
bibliography; and the accompanying LATEX field macros can be redefined for the
font and style requirements of the particular journal.

Introduction

This paper presents some of the ideas that are ex-
plicated more fully in a monograph in preparation
on human-aided computer manipulation of biblio-
graphic databases.

TADS1 is a set of gofer utilities for text process-
ing. It has no artificial intelligence, no understand-
ing of the meaningfulness of the text that it finds
and manipulates. At the other extreme, in contrast
to data mining, it doesn’t pull out patterns statisti-
cally. It does recognize features of the text. It can
pick out vowels or digits or all the letters of the al-
phabet or all the alphanumerics. It knows the start

of a field from the rest of the field and where fields
are located on disk. It can match words exactly or
find a word in the field or do wildcard matching.
With these simple skills, it does text substitution

1. TADS is an acronym for Text Analysis, Description and
Synthesis. It is the latest reincarnation of a set of text manip-
ulation and string processing programs. Variations of many
of these programs were first written in the 1970s in Sail; the
system was called MaText. A later version called TXT was
written for the Microsoft C compiler and a DOS-Windows en-
vironment. It is documented in String Processing and Text
Manipulation in C, which came with a copy of the source code
for many of the functions on floppy. The book is currently
being revised for a Linux-Unix environment. The programs
now work with any size record.

266 TUGboat, Volume 21 (2000), No. 3 —Proceedings of the 2000 Annual Meeting

LATEX And The Personal Database

and sorts records alphabetically or by class. There’s
even a job called lazyboy sort, where the machine fig-
ures out subclasses by examining the text. It com-
presses records vertically and links files horizontally.
It makes statistical tables by tallying frequencies of
linked words. It has no preconceived ideas about
how to terminate a record or a field; you tell it the
record delimiter, and if the record has more than
one field, the field delimiter. It does insist that you
reserve these marks — usually punctuation marks —
as delimiters; that is, you can’t use them in the body
of the text.

TADS works with the text you give it, what-
ever it is. It works with your personal database,
one that you design. If the input is a flat relational
database — where the number of fields in each record
is the same, the types of information in the sequence
of fields are the same and fields are not subdivided—
it can treat the fields as columns, and do all the find
and retrieve tasks we expect from a search engine
operating on a highly-structured simple database.
But it is just as happy if it is directed to operate on
a semi-structured database, where the first fields are
predictable, and the later fields are unstructured—
clinical notes for example. It can handle hierarchi-
cal fields, which include subfields or even subsub-
fields, a format that truly keeps data that belong to-
gether together. TADS treats ordinary manuscripts
as records, if you declare the period as record delim-
iter. To partition a sentence, declare the comma as
field delimiter. Obviously, not as many operations
can be done on unstructured fields. But you can,
for example, treat an entire book as a single record
and extract all the test phrase that are bracketted
by <> or [] or () or whatever.

In Figure 1, the first example is a flat database
record, one where each field contains a single item
of information. The second keeps all the data on
jobs in one field. It is an example of a hierarchi-
cal database, where the field is subdivided into sub-
fields, and the subfields are partitioned into subsub-
fields. The number of subfields usually vary from
record to record. Subsubfields are generally rigidly
structured because they are usually designed to pro-
vide quantitative results dependent on information
that is ordered in time or in some other dimension.

Adding an unstructured Notes field to the first
record would not affect its processing but would con-
tribute to its functionality. It could act as a re-
minder of the times the consultant was used. The
field could also be made private for evaluations and
assessments by filtering the Notes field out before
the file could be examined publically.

TADS searches are fast, but not as fast as google
or dogpile. Much of what it does is done by com-
mercial database managers. It does, however, have
some nice features. It can handle any size record,
any size field. It operates just on the fields you want
processed. Any and all databases can be read and
modified by you whenever you wish. (Of course, if
you change a file that is searched by way of a TADS-
created index, you will have to— or TADS will have
to —redo the index.) The original database is al-
ways readonly, but TADS can send records that were
modified to one file, records that were unaffected to
another, eventually creating a genealogical tree that,
properly manipulated, does the equivalent of AND,
OR and NOT booleans.

When the programs were applied to databases
with relatively simple structure — lists of biblio-
graphic citations — I ran into a practical problem
that was not large and interesting but small and an-
noying: the impossibility of picking a font format
that would need no revision. For efficiency, markup
instructions are usually embedded directly into the
database text from the start. This can, however,
produce problems downstream. What if one jour-
nal wants Volume numbers bolded, another wants
them italicized, the next slanted. Redoing font in-
structions can be laborious, especially if you need
to change the markup instruction in only one or two
specific fields in every record, whenever you must
use a different font. Alternatively, it is possible to
maintain a database in unformatted text, adding ex-
act instructions as needed. But this suffers from the
same need to revamp much of the text.

More recently, I’ve started working with the ID-
prepended format. An ideal example is an item from
a MEDLINE download, such as the one shown in Fig-
ure 2. (I’ve omitted the Abstract field.) Keys to the
article are listed individually in the Mesh Heading
(MH) fields. The download format is stylized. Field
names are two-letter, followed by two spaces, a hy-
phen and a space. What is a single hierarchical field
in an ASCII-delimited record is split into individual
fields. Field order is always the same. The Universal
Identifier (UI) is always first. It is always followed by
the author(s), the title, the language, and so forth.

Look at the figure. It is obvious that if you
prepend a backslash to the field ID, substitute a left
brace for the “ - ” and add a right brace at the end
of the field, you have a LATEX macro command with
its text argument, a different macro command for
each type of field. Naturally, you must define this
new command, flesh out the font size and shape.
By defining a macro for each type of field in the
preamble, you can control the print characteristics

TUGboat, Volume 21 (2000), No. 3 —Proceedings of the 2000 Annual Meeting 267

Bernice Sacks Lipkin

Flat field. The record delimiter is !. The field
delimiter is /. They can not be used in the
body of the record. Notice that the end of
the final field is not a diphthong; i.e., it termi-
nates with the record delimiter, not the field
and record delimiters.

ConsultantFile0027/1994/
Smith, John M./electrical
engineering/Ph.D., U
Calif./99 First Street,
Lakeview 11111 WI!

Hierarchical field. The field delimiter is /, the
subfield delimiter is % and the subsubfield de-
limiter is $. Two fields are shown: one simple,
one hierarchical. John Smith may have held
any number of positions, but each position sub-
field has a fixed number of subsubfields, three
in this example — title, university and starting
date.

John M. Smith, Ph.D./
Ph.D.$U. of Calif.$1957%
PostDoc$Yale$1959%
Asst Prof$Yale$1963%
Assoc Prof$Wisconsin$1967%
Prof$Wisconsin$1971/

Figure 1: Two types of database fields.

of the individual fields. This doesn’t solve all the
problems of modifying print appearance on the fly.
But it helps.

The notion of tagging a record with a com-
bined command name and field identifier when it
is added to the database can be applied to ASCII-
delimited records. The format I’m currently explor-
ing is transitional; it has characteristics of both the
ASCII-delimited and the ID-prepended formats. It
still relies on a record delimiter, the ˜, and field de-
limiters, the /, to isolate and partition the record.
This is an example after it was keyed in under a
data entry program designed specifically for these
field types and the fields rearranged.

\ACNUM{DemoFile01}/\NAMEYEAR{Eisthen, 1992}/

\AUTHOR{Eisthen, H.L.}/\YEAR{1992}/\TITLE{Phylo-

geny of the Vomeronasal System and of Receptor

Cell Types in the Olfactory and Vomeronasal Epi-

thelia of Vertebrates}/\PAGES{1-21}/\JOURNAL{Mi-

crosc. Res. Tech.}/\VOLUME{23}/\ISSUE{1}/ / /

/ / /\NOTES{93004928}~

A database is stored in ASCII with prepended
IDs, which are actually LATEX macro command
names. The end of a field in the current version
is redundant: it has both a right bracket that we
need for LATEX anyways plus a field delimiter. In
some files, I’ve eliminated the field delimiter alto-
gether, using the } both for LATEX syntax and field
delimiter. But I won’t do this in a general way un-
til I’ve convinced myself that there’s no interference
with TADS in general, or at least in the major rami-
fications and combinatorics of using its modules in a
sequence to get a particular result. The current for-
mat clearly does not interfere with the programming

jobs that turn a database record festooned with tags
and extraneous information into a well-behaved ref-
erence suitable for publication.

At this point, you are probably thinking BibTEX.
BibTEX is indigenous to LATEX. It has a multitude
of formats, is easy to use and does much of its work
transparently. TADS was not designed as a biblio-
graphic database manager. It has little terminology
specific to bibliography. In fact, it has little termi-
nology. Labeling fields is a major innovation. But it
remains a set of general programs, each with multi-
ple options, that leaves it up to you to work out the
correct sequence of programs and the appropriate
options to do a particular task. Once a database is
created and a map for obtaining the desired result
is drawn— e.g., run dork task 3 with these options,
then run addtext task 4 with these options, and so
forth— it is simple enough to run the job from a
script.

One such job is integrating a canonical bibliog-
raphy and manuscript for a particular journal. To
run the programs that do this, you first need to do
two things:

Acquire a database.
To use TADS, you must add at least a record
delimiter or, better still, a record delimiter
and field delimiters, to each record in the file.
That’s it. TADS will extract a list of citations
from a database, alphabetize it, number it, and
substitute the numbers in the manuscript. But
there are advantages to building in LATEX macro
names from the start. This paper describes a
program that writes a data entry program to
supervise the creation of a database from text

268 TUGboat, Volume 21 (2000), No. 3 —Proceedings of the 2000 Annual Meeting

LATEX And The Personal Database

UI - 20002969
AU - Keverne EB
TI - The vomeronasal organ.
LA - Eng
MH - Action Potentials
MH - Afferent Pathways
MH - Animal
MH - Behavior, Animal
MH - Chemoreceptors/chemistry/*physiology
MH - Female
MH - GTP-Binding Proteins/metabolism
MH - Human
MH - Hypothalamus/physiology
MH - Male
MH - Neurons, Afferent/*physiology
MH - Olfactory Bulb/physiology
MH - Pheromones/physiology
MH - Receptors, Cell Surface/chemistry/genetics/*physiology
MH - Signal Transduction
MH - Vomeronasal Organ/anatomy & histology/innervation/*physiology
RN - EC 3.6.1.- (GTP-Binding Proteins)
RN - 0 (Pheromones)
RN - 0 (Receptors, Cell Surface)
PT - JOURNAL ARTICLE
PT - REVIEW
PT - REVIEW, TUTORIAL
DA - 19991105
DP - 1999 Oct 22
IS - 0036-8075
TA - Science
PG - 716-20
SB - M
SB - X
CY - UNITED STATES
IP - 5440
VI - 286
JC - UJ7
AA - Author
EM - 200001
AD - Sub-Department of Animal Behaviour, University of Cambridge,

Madingley, Cambridge CB3 8AA, UK. ebk10@cus.cam.ac.uk
RF - 56
PMID- 0010531049
PID - 7933
SO - Science 1999 Oct 22;286(5440):716-20

Figure 2: An Item from a MEDLINE Download.

TUGboat, Volume 21 (2000), No. 3 —Proceedings of the 2000 Annual Meeting 269

Bernice Sacks Lipkin

entered from the keyboard. It treats the keyed-
in text as arguments to LATEX commands. You
can, instead, add macro commands to an exist-
ing database or to one you download from the
Net or get from a scanned image.

Add allusions to the manuscript.
As you write your manuscript, you tuck snips
of information about particular references in-
side brackets. The program extracts these al-
lusions, bounces them against the bibliographic
database, extracts the matched records, orders
them by accession number or Name-Year, and
substitutes the order tags for the allusions in
the manuscript.

Using TADS, this is the sequence of tasks that
results in a database:

1. Write a file of instruction records. We will call it
Lbiblio.ins, but you name it as you like. Each
instructional record provides the directives to
control the entry of a single field in what will
eventually be a single database record.

2. Run Lquegen. It will use the information in
Lbiblio.ins, together with your answers to its
online questions, to write you a customized data
entry program. We will call the source code
for the data entry program Lbiblio.c. You can
run Lquegen as often as you like, using different
instructional files to develop different styles of
database.

3. Compile Lbiblio.c. You don’t have to be a pro-
grammer. A Make file is provided.

4. Run Lbiblio. It has sufficient flexibility to cre-
ate databases for different scientific disciplines,
each with its own control file, each of which has
the format given it by Lquegen. Actually, if you
know C, you can go into the source code and
make some minor adjustments to change the
format.

5. Lbiblio needs to know where to send the pro-
cessed text. Suppose we call this file Lbib.db.
The first time you run Lbiblio to create records
for Lbib.db, it ships the start of a LATEX file with
a set of commands, one per field, to Lbib.db.
The macro name for a field is based on the
prompt for that field.

6. Each time you run Lbiblio, it will store the val-
ues for the options you choose in the control file,
the TRL file, whose name you specify. In this
example, it’s called Lbib.trl. The TRL file writ-
ten the previous run stores the correct starting
accession number for the current run. And it
keeps a log of each run.

Lbiblio.ins, a file of instructions

Prompts and macro names are specified by giv-
ing Lquegen an Instruction File Lbiblio.ins that de-
scribes the prompt features of the database entry
program as a set of records. Each field that is part
of the record structure in the eventual database re-
quires a separate record in Lbiblio.ins. If there will
be 10 fields in each database record, you need to
write 10 records. Figure 3 has an example of an
instruction file; it has 13 fields in each record.

The delimiters in Lbiblio.ins must be the same
as the ones you will use for the final database. We
use ‘˜’ as the record delimiter and ‘/’ as field delim-
iter. Notice that the record is terminated by ‘˜’, not
‘/˜’

Each Instruction File record must have 5 fields.
You need not fill in all the fields. A field may be
empty, but it must end in a delimiter.

1. FIELD NAME. This must be a single word.
When the data entry program is run, this will
be the main prompt. The field name will also
be the field’s LATEX macro command name, so
only alphabetic characters are acceptable. I’ve
used upper case on the field names, but there’s
no particular reason to do so.

2. EXTRA. This is optional extra prompt text. It
helps conformity, if different people are typing
in the data. It can remind them about punc-
tuation and/or word order. It is reproduced as
written, tabs, spaces, whatever.

3. DEFAULT ANSWER: If you just press ENTER,
this will be the default text. The default answer
is copied to the database as written. You can
override it by typing in text. If you want no
text in the field in some record, type a space
and then press ENTER.

4. SUBFIELD: Is this field to be subfielded?
YES/NO.

5. AND: Is this subfielded field to be ANDed?
YES/NO.
The last two fields require explanation. The

database(s) that will be created will be structured
so that each field is the argument of a specific LATEX
command, which operates on the whole field. To
make small changes on the text, the less informa-
tion you store in a field, the better. In Lbiblio.ins,
notice that VOLUME and ISSUE, which usually are
neighbors in a citation, are in separate fields. Unfor-
tunately, we don’t usually write individual authors
and editors in separate fields; and most of the mi-
crovariation in print appearance between journals is
precisely in these two fields. Using subfielding and
\AND is an attempt to solve one problem: does the

270 TUGboat, Volume 21 (2000), No. 3 —Proceedings of the 2000 Annual Meeting

LATEX And The Personal Database

AUTHOR/:[FirstField] (SUBFIELD.) ex:Brown, A.//YES/YES~

YEAR///NO/ NO~

TITLE/: Title of article, NOT of the book//NO/ NO~

PAGES/: Separate with hyphen. Ex: 164-169//NO/NO~

JOURNAL/: Name of Book-Journal. Default:’Tech Manual X234L’/

Tech Manual 234L/NO/NO~

VOLUME/: ’3’ is the default/3/NO/NO~

ISSUE/: TM234L-0ZN-X34523 is the default/TM234L-0ZN-X34523/NO/NO~

ISBN///NO/NO~

EDITOR/: (SUBFIELD.) Name of editor. ex: A.B. Smith//YES/YES~

CITY/: city where book was published//NO/NO~

PUBLISHER///NO/NO~

BPAGES/: number of pages in book//NO/NO~

NOTES/ keywords, code words//YES/NO~

Figure 3: A File of Prompting Instructions

journal want an and before the last author or an ‘&’
or nothing?

A subfielded field is divided into subfields, just
as the record is divided into fields. Each subfield is
terminated by a character you reserve as subfield de-
limiter. Notice that, in the example, the AUTHOR,
EDITOR and NOTES fields are subfielded. When
Lbiblio, the data entry program, prompts for text
in a subfielded field, it repeats the prompt over and
over again, until you press ENTER with no previ-
ous text. Subfielding has different uses — separating
authors to facilitate indexing, separating titles and
subtitles — but its usefulness here is that, with re-
cycling, the program knows when you’ve typed the
last author.

YES in Field 5 requests that the program insert
an \AND before the last subfield in the field (\AND is a
command we define; the user may redefine it later).
It can only be used with subfielded fields. (In this
example, it isn’t used in NOTES.)

Lquegen interprets the records in Lbiblio.ins
and writes out its understanding in a file called, in
this case, Lbiblio.ins.decode. In a Linux-Unix envi-
ronment, you can pause while running Lquegen, read
Lbiblio.ins.decode and compare it to what you wrote
in Lbiblio.ins. This is its analysis for fields 1 and 6
in our example design.

Record [1]:

FieldID = AUTHOR

extra = :[FirstField] (SUBFIELD.) ex:Brown, A.

defaultans = (null)

subfld = YES

AND = YES

Record [6]:

FieldID = VOLUME

extra = : ’3’ is the default

defaultans = 3

subfld = NO

AND = NO

Lquegen, a program that writes programs

Choosing delimiters Conflict between different
programming systems that operate on a database
is almost unavoidable. There is no set of symbols
that are exclusively and universally reserved for pro-
gram instructions, with non-intersecting subsets for
the different programming languages. What is text
in one language is a directive in another. It is a
happiness-making happenstance when the sequenc-
ing of programs is such that while the text is be-
ing manipulated by one programming language, it
is transparent to the others, until it is their turn.
But it takes careful planning to avoid difficulties.
Particularly in choosing delimiters.

First, you don’t want to use a character com-
monly used in the text itself. This lets out the
comma and maybe the colon and semicolon. In-
visible characters are poor choices. Second, the pro-
gram reserves control-X, control-Y, { and }. All
other control characters are OK if LATEX, your ma-
chine, compiler and/or script don’t reserve them.
Records from the database will be formatted by
LATEX, so %, \, & and # are very bad choices. Avoid
$, ^ and backspace, which are used in LATEX math
mode.

Good delimiters for a database that will be
LATEX-processed are: /, *, @, ‘ (octal 140), | (which
prints as a dash), ’ and " (single and double quotes).
The characters = and + are OK if you don’t bring in
arithmetic values.

Adding ID fields It is useful to have a perma-
nent identifier (ID) to tag each of the records in the

TUGboat, Volume 21 (2000), No. 3 —Proceedings of the 2000 Annual Meeting 271

Bernice Sacks Lipkin

database that Lbiblio will prompt you to construct.
Lquegen can add two fields at the end of the fields
designed by the Instruction File (see the example
in the Section on Database Record Format). They
can be transferred to the top of the record by ge-
nio:rearrange, a TADS program that rearranges and
outputs the fields you specify.

An accession number field.
This is an easy way to provide an ID for each
record. The first record in the file is 1, the sec-
ond 2 and so forth. Because you may eventually
be merging several data files, it is a good idea
to have the ID also indicate the source of the
record or some other name that tells you in-
stantly where the record came from. You can
tell Lquegen what text should precede the acces-
sion number when it asks for Leading Charac-
ters; e.g., Molbiol2000: or ClinStudyAA. This
is a permanent tag for the record. It is not
the accession number that is eventually given
to records used by any particular manuscript.

You may, if you wish, make all the accession
numbers the same size. If you say you want
a minimum width of 6, say, the program will
pad each accession number with zeros to make
it 6-digit wide. (You can write a lot of records
before you overflow a 6-digit width.) If you use
the default, the program won’t pad the number.
It will use the actual length.

A Name-Year ID field.
The program can construct an ID field using
the name of the senior author and the year of
the publication. You will need to tell it the
fields where these items of information are to
be found. Actually, Lquegen only knows that
it is to use the text of the first field up to the
comma by default; or up to whatever size you
stipulate. It uses all the text of the second field.
Case can be set for the name: set all letters up-
percase, set all letters lowercase, or leave case
as is.

The style of the ID will depend in part on
the text you tell the program to insert between
the two items; e.g., Smith2000, Smith:2000,
Smith,2000, Smith, 2000, Smith:-2000. Or you
can put a large piece of fixed text between the
name and year. And, if you wish, you can select
a width, so that the name is chopped or padded
to conform.

You can also vary the appearance of the records
when they are finally ensconced in the database file.
You can start each field on a separate line, if you
wish. And you can set line width. If the text you

type in has no space (at least 1 complete word)
within the requested line width, the program will
add a hyphen to the end of the line prior to out-
putting it, and will alert you to the hyphen by caus-
ing the bell to ring.

Lbiblio, a data entry program

By the time you type in the last answer, Lquegen
has written you the C source code for a data entry
program called, in this example, Lbiblio. You com-
pile it by running a make file that comes with the
program:

make FILE=Lbiblio

Once compiled, Lbiblio is immediately ready to act
as a prompter for text data that you enter through
the keyboard and to do housekeeping chores such as
adding LATEX macro names and record/field delim-
iters.

Initializing the data entry program The pro-
gram needs some specific information before it can
start its work. These values can be declared as a set
of options on the command line when Lbiblio is run.
The minus sign is the signal that the next letter is
an option. There is no space between the option and
the value. Options are separated by spaces. There
is no input file.
OPTION VALUE MEANING

-h YES or NO Want extra information?
-o 〈filename〉 The output database file
-q integer Starting accession number
-t 〈filename〉 The Control-Log (TRL) file

-h Is initialization help wanted?
If the answer is YES, the program provides
short essays at the start of the run. The de-
fault is NO.

-o The name of the output file.
If the file doesn’t exist, the program will cre-
ate it, otherwise it will append to the file; it
never overwrites existing text. So it is possi-
ble to come back time and again to the same
file to add references. Or you can use the same
program, if it is general enough, as most bib-
liographic records are, for databases from dif-
ference scientific disciplines, each in a separate
database file. There is no default. If the pro-
gram is creating an output file, it prepends a
LATEX skeleton file, which includes one macro
in the preamble for each field in a record. The
macro definitions can be modified to meet the
font requirements of any particular journal or
document structure. The skeleton LATEX file is
shown in Figure 4.

272 TUGboat, Volume 21 (2000), No. 3 —Proceedings of the 2000 Annual Meeting

LATEX And The Personal Database

-q The next accession number.
It is assumed you will be adding to the database.
To anticipate, it is a convenience that you can
direct the program to get the value from the
control file. But you can also write it on the
command line.

-t The name of the TRL file.
Whenever the program is run, it writes the cur-
rent values of the options to the TRL file, so that
it can read them the next run. The program
also records other data: how many records were
created, the date and time, and characteristics
of the data entry program: line width, accession
number width, the file delimiters, which fields
are subfielded, and so forth.

There are various ways to start the program.
If you just write the name of the program on the
command line, you will be in Interactive mode. This
is the simplest way to jumpstart the program, but it
takes the most time. If you use the command line,
the options can be written in any order.

Interactively. Just type the name of the program;
i.e.,

Lbiblio

The program will query you for the values of the
options. The very first time you run the pro-
gram, there is no Control File, so you need to
name it interactively. If there is no file with the
name of the database, the program will create
it. And any time you want to start a brand new
database with a new TRL file, run the program
interactively.

From the command line. Type the options di-
rectly on the command line; for example,

Lbiblio -hn -oqmolbiol.db -q40 -tmolbiol.trl

means you don’t want extra explanation, the
database file is called qmolbiol.db, the TRL file is
called molbiol.trl and the first record you write
this run will have 40 as its accession number. If
there is no file with the name of the database,
the program will create it.

From the Control File. Type the name of the
control file option on the command line as the
only option; for example,

Lbiblio -tmolbiol.trl

will use the values stored in molbiol.trl the pre-
vious run. The accession number will be cor-
rect, because at the end of a session, the pro-
gram writes the starting accession number for
the next session to the TRL file. The TRL file

also maintains a permanent record of the pre-
vious data entry sessions that involve the data
entry program, the database and the TRL file.
You can call some of the values from the TRL

file and override other TRL file values by giving the
parameters new values on the command line; for ex-
ample,

Lbiblio -tmolbiol.trl -hy

requests that all the previous options, those stored
in molbiol.trl, be used, except this time, you’d like
some help.

You can maintain several databases on different
subjects, each with its own database file and its own
TRL file.

What the data entry program does

? prompts for the necessary information for the
field, using the prompt text from the Instruc-
tion File

? writes the predefined default answer for the field
(if there is one) to the database, if you press
ENTER. You can override the default answer
by writing in other text. To get an empty field
in a field that has a default answer, type a space
and then press ENTER.

? adds the specified record and field delimiters to
each record.

? ignores any record and field delimiters typed in
the body of the record

? adds the subfield delimiter to subfielded fields.
It adds the \AND command to subfielded fields,
if that was requested.

? writes out the full record to the database file
with the specified line width

? writes out the record as a paragraph or writes
each field to a separate line

? appends a stylized and padded Accession Num-
ber field to the record, if this was requested
in Lquegen. This permanent accession number
should not be confused with the numberings
that will be given to records in the file that
contains the citation list for a particular manu-
script.

? appends a Name-Year ID field to the record,
using the name of the senior author and the year
of publication, if this was requested in Lquegen.

? writes a LATEX header to the top of a newly-
created database. The header includes a com-
mand macro definition for each field in the
record, where the macro name for that field is
the user-specified prompt in the first field of
Lbiblio.ins. And it prepends the same macro

TUGboat, Volume 21 (2000), No. 3 — Proceedings of the 2000 Annual Meeting 273

Bernice Sacks Lipkin

\documentclass[10pt,letterpaper]{article}

\usepackage{alltt}

\usepackage{multicol}

\usepackage[dvips]{graphicx}

\usepackage{color}

\usepackage{boxedminipage}

\usepackage{pandora}

%PAGE/PARA LENGTHS

\flushbottom

\parindent=0pc

\setlength{\baselineskip}{14pt}

\setlength{\parskip}{13pt}

%PAGE STYLE

\setlength{\textheight}{7.4in}

\setlength{\textwidth}{5.5in}

\setlength{\oddsidemargin}{1in}

\setlength{\evensidemargin}{1in}

%HEADERS/FOOTERS

\pagenumbering{arabic}

\setcounter{page}{1}

\pagestyle{myheadings}

\markboth{}{Demo Bibliographic Database}

\newcommand{\etal}[1][et al.]{\textit{#1}}

\newcommand{\AND}[1][and]{\textup{#1}}

\newcommand{\AUTHOR}[1]{\textup{#1}}

\newcommand{\YEAR}[1]{\textup{#1}}

\newcommand{\TITLE}[1]{\textup{#1}}

\newcommand{\PAGES}[1]{\textup{#1}}

\newcommand{\JOURNAL}[1]{\textup{#1}}

\newcommand{\VOLUME}[1]{\textup{#1}}

\newcommand{\ISSUE}[1]{\textup{#1}}

\newcommand{\ISBN}[1]{\textup{#1}}

\newcommand{\EDITOR}[1]{\textup{#1}}

\newcommand{\CITY}[1]{\textup{#1}}

\newcommand{\PUBLISHER}[1]{\textup{#1}}

\newcommand{\BPAGES}[1]{\textup{#1}}

\newcommand{\NOTES}[1]{\textup{#1}}

\newcommand{\ACNUM}[1]{\textup{#1}}

\newcommand{\NAMEYEAR}[1]{\textup{#1}}

%ATTENTION: Before you process the file

%through Latex, make sure there is an

%\end{document} after the last reference.

%Remove any \end{document} in the body of

%the file.

\begin{document}

Figure 4: The Top of the Database File.

name to the start of that field in each citation
in the database. See Figure 4.

What the data entry program does not do
Aside from adding the \AND command, the program
does not modify the text you key in. On the other

hand, as you key in text, you can use your own
macros to reduce typing time and errors: macro
names for long journal names, an alias for an au-
thor with a long and difficult name. As an example,
I’ve included a \etal command (see Figure 4), be-
cause it is usually italicized. And it is inconvenient
to format it after the fact.

In general, unless you write for a single journal,
it’s almost impossible to write a canonical style for
names. One strategy is to adopt a style that works
fairly well for the journals in which you publish.
LastName-Initial is more common than LastName-
FullFirstName, so it’s fairly safe to use that style.
It doesn’t, of course, prevent the need for small
polishings: one journal wants last name, just ini-
tials; another wants last name, followed by initials
with periods. I use periods, because they are eas-
ier to erase than to add. Science uses an Initials-
LastName format, which makes alphabetizing on
the field difficult. You can, however, alphabetize
on the NameYear field. If you publish often in
both in a Science-style journal and in one that uses
LastName-Initial, it might be worthwhile keying in
author fields in both versions. Depending on where
you send the article, you will use one or the other
field in the final List of References.

If you plan on making microadjustments to the
AUTHOR field in Emacs or some other text proces-
sor, it is a good idea to customize your data entry
program to write each field in the record to a new
line. You then search on the command name.

What you can do in response to a prompt
Create the citation fields, one by one. In

our example, once the program is initialized, it will
ask a series of questions for each citation, where
a citation can be a reprint, a book or a technical
publication. The typed responses will be confined
to separate fields. Answers may be of any length,
including zero length; i.e., the field can be empty,
but the program will add a field or record delimiter.
Depending on the Instruction File, a field can be
simple; i.e., the prompt is displayed and you type in
text. Then the prompt for the next field is displayed.
Alternatively, a hierarchical field prompt can be dis-
played, where the prompt is repeated again and
again, each time defining another subfield. To stop
a subfield and/or a field, don’t type any text— just
press ENTER.

Jump between fields in the record. You
can jump between fields in the record by typing ˆY
(control-Y). ˆY+6 or ˆY6 will jump forward 6 fields.
ˆY-2 will jump back 2 fields. You can not jump out
of a record. If you jump forward some large number,

274 TUGboat, Volume 21 (2000), No. 3 —Proceedings of the 2000 Annual Meeting

LATEX And The Personal Database

you will land in the last field of the record. If you
jump backward some large number, you will end up
in the first field of the record. It is not advisable
to jump from a subfielded field; it can mess up the
record.

Jumping forward to the last field is useful when,
as in the example database template, you’ve essen-
tially completed the citation for an article and want
to skip the BOOK questions. You can’t jump past
the record, because the program does its housekeep-
ing in the final field of the record, including chopping
a clumped record into lines of the width specified in
Lquegen.

Jumping back repeats previous prompts. When
the program jumps back, it does not erase the inter-
mediate fields. It just starts prompting from what-
ever field it has jumped to. If used judiciously, this
feature lets you recycle a cluster of fields. It is a
way of creating ID-prepended fields, such as those
in the MEDLINE download in Figure 2. However,
the record is no longer well-structured as an ASCII-
delimited file.

Stop the program. Type ˆX to stop the pro-
gram. It will stop immediately. The best place to
stop the program is at the prompt to the first field,
so that the previous record has been completely pro-
cessed. If you stop in the middle of a record, you will
lose some text, and the record will be incomplete.

Database Record Format Next is an example
of two database records that were keyed in under
the control of Lbiblio, which was itself created using
the example instruction set. The first has a sin-
gle author and no subfields; the second one has a
subfielded AUTHOR field. Notice that the fields be-
tween the ISSUE and NOTES fields are blank. They
don’t apply to a journal article, so you would want
to skip to NOTES. The number in the NOTES field
was taken from the MEDLINE ID for the article.
NOTES is also a good place to store the authors’
first names, for the few times some publication will
request full first names. And it can be utilized as a
depository for keywords that can later be used for
cross-indexing citations and sorting them by subject
matter. The NOTES field can also serve to indicate
the physical location of the reprint, editorial com-
ments, and so forth. The two last fields were added
by the program. Records are stored as shown. For
publication, fields will be extracted, rearranged and
beautified, using available TADS routines.

\AUTHOR{ Eisthen, H.L. }/ \YEAR{ 1992 }/

\TITLE{ Phylogeny of the Vomeronasal System

and of Receptor Cell Types in the Olfactory

and Vomeronasal Epithelia of Vertebrates }/
\PAGES{ 1-21 }/

\JOURNAL{ Microsc. Res. Tech. }/

\VOLUME{ 23 }/

\ISSUE{ 1 }/ / / / / /

\NOTES{ 93004928 }/
\ACNUM{DemoFile01}/
\NAMEYEAR{Eisthen, 1992} ~
\AUTHOR{ Freitag, J. @ Ludwig, G. @ Andreini,

I. @ Rossler, P. @ \AND Breer, H. }/
\YEAR{ 1998 }/ \TITLE{ Olfactory Receptors in

Aquatic and Terrestrial Vertebrates }/
\PAGES{ 635-650 }/

\JOURNAL{ J. Comp. Physiol. }/

\VOLUME{ 183 }/

\ISSUE{ 5 }/ / / / / /

\NOTES{ 99056834 }/ \ACNUM{DemoFile04}
/\NAMEYEAR{Freitag, 1998}~

Writing The Manuscript

This is a short manuscript that illustrates the tech-
nique for writing allusions, using ordinary wildcard
syntax: a ? allows any single letter in the ? posi-
tion; a * allows any amount of text or no text to
intervene between the two neighboring text phrases.
The spelling error in the last line is deliberate.

Phylogeny of vertebrate pheromonic sensory
systems is complicated by the proximity and
similarity of the adjacent but distinct olfactory
system [@??sthen*vertebrate*olfactory]. The
presence of sex pheromone systems in gold-
fish and the anatomic analogies of distinct
olfactory systems [@Dulka*sex*pheromone]
clearly establish both the antiquity and
the complex olfactory/brain relationships
that seems to characterize most if not
all vertebrates [@??sthen*microsc], [evolu-
tion@vertebrate@olfact]. The hypothesis that
the Class II receptors are specialized for recog-
nizing volatile odorants is questionable since
some fish, e.g. Latimeria, possess both classes
[Freitag*aquatic*vertebrate]. The presence or
absence of an accessory olfactory bulb is not
in and of itself sufficient to affirm or deny
a functional vomeronasal system in a given
species [@bhatnag?r*diversity*mammalian],
[bhatnag?r*bats*phylogenetic]. Attempts to
infer the form of the earliest vertebrate phero-
nomic structures by comparative anatomy of
hagfish and lamprey are made difficult in that

TUGboat, Volume 21 (2000), No. 3 —Proceedings of the 2000 Annual Meeting 275

Bernice Sacks Lipkin

the necessary physiologic data on these forms
are not available [sennsory biology].˜

All the text phrases must be found in the ci-
tation for a match, so an allusion is intrinsically a
boolean AND. A difficulty with this technique is
that the text phrases that make up any wildcard
match word must be sequential. This is fine only
if you remember the exact field sequence. So there
is an alternate wildcard format: an @ prepends the
word. The @ syntax tells the machine to match
each phrase in the allusion from the beginning of
the field.

I’ve elected to use square brackets, but any
bracket pair will do to delimit the allusions. An
option in dork:keepbracketedtext leaves the empty
brackets in the manuscript, when it strips the text
from the brackets. So the square-bracket format is
good for Name-Year tags.

For a number tag, I’d still use the square
bracket but I would write ([〈text〉]), and use
the option that deletes the text brackets; the
square bracket would be deleted, not the parens.
([@??sthen*vertebrate*olfactory]) might eventually
be written as (6).

If an entire manuscript is to be searched for
allusions, add a single, unique record delimiter at the
end. The file can now be described to the program as
a single-fielded single record. Size is not critical for
journal articles. But one could encounter problems
if you were to treat an entire book as a single record.
However, I’ve dummied up a 7 megabyte record by
repeating a real book several times. No problems
were encountered.

Linking Database and Manuscript

Various TADS modules come into play. This is the
general plan. Recall that the input file is always con-
sidered read only. Any modifications are reflected in
the file where the processed records are shipped.

Using dork:keepbracketedtext, the allusions are
stripped out and reappear in some output file, one
per line,

The allusions become a list of wildcard match-
words that finder compares to records in a single
database or in a database that is a virtual merge of
records from several databases.

What constitutes a good allusion? The answer
is tautological: a good allusion is one that is suffi-
cient to attract the reference you want and only the
reference you want. In practice, these are some of
the types of errors that are encountered when the
Citation Allusion (CA) in the Manuscript (MSS) is
pitted against the Citations List (CL) in the source
database.

1. The citation is multiply listed in CL.
2. The citation is not listed in CL.
3. The citation is incorrectly written in CL.
4. The CA is incorrectly spelled in MSS.
5. The CA informational items are incorrectly con-

catenated.
6. The CA is inaccurate and retrieves no citation

from CL.
7. The CA is so general it retrieves multiple cita-

tions.
8. There are multiple CAs to the same reference.

Depending on the circumstances, the citation is
not retrieved or unrequested citations are retrieved
or a correct citation is repeated.

You can increase the probability of accurate
retrieval by utilizing LATEX macro names. Instead of
writing @199?*green*pheromone*goldfish, you would
write @\date*199?*\author?green*\title{phero-
mone*goldfish. But some people object to doing this
while in the throes of creative writing.

The next step —checking the allusions agains
the retrieved citations — is crucial. And it requires
your participation. finder ships copies of the ci-
tations it matches to a file. The key, i.e., the al-
lusion that identified the bibliographic reference is
prepended as a field to the citation.

If the number of citations extracted equals the
number of CAs, it may mean we have no error. On
the other hand, sources of error could balance out so
that the number of CAs equals the number of cita-
tions. So we can not rely on counting the number of
citations and simply comparing this to the number
of CAs.

TADS can present the original list of allusions
and the list of citations in ways that facilitate com-
parison of the lists. genio:rearrange will split off the
allusions field to a separate file, so the original list
of allusions and the allusions prepended to the re-
trieved citations can be compared. alp sorts lists
alphabetically; using any of the fields as key. squish
eliminates duplicates. Spelling errors may have to
be corrected ‘by hand’. When you are sure the cor-
rected allusions and citations correspond in a one-
to-one fashion, hand the text back to TADS. The
program tags the final list of retrieved citations in
an orderly sequence. You make two separate choices:

1. You chose between listing the references by first
appearance in the manuscript or in alphabeti-
cal order. The same choice applies if you list
references by chapter in a book.

2. In either case, you choose whether to number
the records sequentially or by Name-Year ID.

276 TUGboat, Volume 21 (2000), No. 3 —Proceedings of the 2000 Annual Meeting

LATEX And The Personal Database

The order tag — accession number or Name-
Year ID — is substituted for the allusions in the man-
uscript. This is done in four steps.

1. The citations can be left in the order in which
they appear in the manuscript. Or they can be
alphabetized using alp. If they are alphabet-
ized, it is usually by author field or by Name-
Year ID.

2. If ordering is by Name-Year ID, the order was
done in the previous step. You will, however,
need to add a final letter to the ID, if there is
more than one publication by the senior author
for that year. Alternatively, addtext:acnum can
add an accession number to each record. The
accession number becomes the first field in the
expanded record.

3. genio:rearrange creates a derivative database of
records, each with two fields: the allusion and
the accession number (or Name-Year). The al-
lusion and number are now considered a sub-
stitution pair. The entire file of records has
become a list of substitution pairs.

4. addtext:sbstitute brings in the file of substitu-
tion pairs and substitutes accession numbers or
Name-Year IDs for allusions in the manuscript.
The List of Citations needs to be dressed up

for publication. genio:rearrange extracts particular
fields in each record in the order you specify. Case
can be modified on a per field basis. Revamping
the macro definitions in the preamble will take care
of the general appearance of the font. A beautify
program addtext:mssformat substitutes commas for
(sub)field delimiters, periods for record delimiters.

Bernice Sacks Lipkin

Currently, this step usually calls for some small ad-
justments in the text — such as adding or removing
commas and periods in the AUTHOR field, adjust-
ments that are not easy to make globally. I work
in Emacs, using the macro name to get to the right
field per record and make changes locally —chang-
ing case, deleting periods and transposing words,
using Emacs commands. Writing the fields in the
records on separate lines simplifies the work consid-
erably.

The list of references is appended to the manu-
script, \end{document} is inserted, and the manu-
script is ready.

Conclusion

In dealing with a database you have designed your-
self, there are non-trivial advantages to prepending
a field name that is also a LATEX macro:

1. A prompting program instills style conformity
in the records of the database and reduces tran-
scription errors.

2. You can design a canonical record style across
multiple databases.

3. You can manipulate font size and shape by field
by redefining the field macro in the preamble.

4. You can use field names as part of a wild-
card search of the database to reduce errors
in matching an allusion to the correct (read
wanted) record in the database.

5. To effect small text changes while in a text edi-
tor such as Emacs, you can get to the right field
by searching on the field name.

TUGboat, Volume 21 (2000), No. 3 —Proceedings of the 2000 Annual Meeting 277

