
TEX and Databases – TEXDBI

K. Anil Kumar
Linuxense Information Systems Pvt. Ltd.
Trivandrum, India
http://www.linuxense.com

anil@linuxense.com

Abstract

Report generation is one of the demanding areas of enterprise computing. It
involves complex database queries, drawing conclusions, making projections and
presenting them in an easy-to-comprehend manner. This paper describes how to
use TEX to deal with the presentation aspects in a productive way.

Introduction

TEX is highly programmable and has a high degree
of consistency in maintaining the structure and lay-
out of the documents generated. Moreover, no other
typesetting system can claim the precision control of
typesetting parameters that TEX does. This makes
TEX a good tool to prepare reports both for print-
ing and for Web publishing. However, TEX lacks one
capability as a report generation tool: it cannot di-
rectly communicate with external systems like data-
base engines. Mostly data for reports reside in data-
base systems and must be retrieved based on rules.
So we are compelled to depend on other technologies
and systems to achieve this. This may also mean
bringing in additional people to get things done.

First, let us have a look at various techniques
for generating reports using TEX which are in use
today.

Ways to Generate Reports Using TEX

We have been using TEX to generate reports using
a variety of techniques. And these techniques can
be classified into two categories: 1) generate TEX
documents using other languages; 2) embed other
languages in TEX documents and use a preprocessor.
Both of these techniques are explained below.

Use Database-enabled Languages to Gener-
ate TEX Documents A Java (for example)1 pro-
gram can create a TEX file with the data retrieved
from a database. We then compile this TEX code to
get a presentable report. The process contains the
following steps:

1 The language could be Perl, C++ or any other with the
capability to interact with a database engine.

1. A TEX programmer prepares a TEX document
that we will call a template. This template con-
tains no useful information itself, though it is a
complete TEX document as far as TEX is con-
cerned. We add the specific data to it, e.g., it
may be a table construct defined with all the re-
quired parameters, but no actual rows of data.
The template only becomes a useful document
when the data is added.

2. This TEX template is handed over to the Java
programmer to write a program, with this tem-
plate hard-coded within it, which will in turn
write a TEX document with the data retrieved
from a database engine.

3. The generated TEX document is compiled to get
the report.
There is one disadvantage with this approach.

It is difficult for a TEX programmer to intervene
to make a change in the report format (i.e., in the
template) after step 2 given above. This is because
the TEX code has already been embedded into the
Java program in a very different form, which doesn’t
make any sense to a TEX programmer at all. There
are only a couple of solutions to tackle the situation:

1. Repeat step 1 and 2 with the modified format
specification; or

2. Have the TEX programmer and the Java pro-
grammer work together on making the required
changes.
In a production environment, where work must

be done very quickly, neither of these approaches are
feasible. To repeat the process all over again is defi-
nitely a bad idea and bringing two groups of people,
as suggested in the second solution, to work on a
problem is difficult to manage and time-consuming.

TUGboat, Volume 23 (2002), No. 1 —Proceedings of the 2002 Annual Meeting 13



K. Anil Kumar

Embed Other Languages in TEX There is a
better approach than this first one. We can em-
bed statements in a database-capable language in
the TEX template. Then through a pre-compilation
process we can execute those embedded code snip-
pets and replace them with the data retrieved from
the database to make a “data-filled” TEX document.

Let us analyze the steps involved in generating
a report this way.

1. As before, a TEX programmer prepares a tem-
plate.

2. This template is handed over to the program-
mer who will embed code snippets required to
retrieve data from the database and fill-in the
template.

3. The template undergoes pre-compilation and
the resulting TEX document is compiled. The
report is ready.
In this approach, even after embedding the code

snippets the TEX template will look like a regu-
lar TEX document and a TEX programmer can still
modify it if there is a specification change. So there
is no need to bring in the other programmer to make
a modification in the report presentation.

Pre-compilation is the major disadvantage of
this approach. Every time to generate a report one
has to pre-compile the document and then run the
TEX compiler to get the report. Moreover, the TEX
coder either has to learn a database capable lan-
guage or he/she has to depend on someone who
knows it.

Enable TEX to Communicate with External
Systems This approach will enable TEX to commu-
nicate with external systems like database engines
to retrieve information to typeset reports directly.
There is no need to depend on other languages and
there is no pre-processing involved. This approach
has two advantages:

1. A TEX programmer can prepare reports by him-
self/herself without depending on another lan-
guage programmer.

2. Development cycle is faster. Changes can be
incorporated in the TEX document directly and
run the TEX compiler; and it is done!

How to Enable TEX to Talk to Database
Engines?

A running TEX compiler is a process2. For a pro-
cess, communicating with the external world means
communicating with other processes, either running

2 That is, an operating system process which can be iden-
tified by a process ID.

on the same computer or on a different computer in
the network. TEX has no built-in interprocess com-
munication facility but they are commonly provided
via the following mechanisms:

1. Writing to a file using \write16.

2. Executing a shell command using \write18.

3. Reading in a file using \input.

4. Writing to terminal using \write15.

We are limited to these mechanisms for I/O ca-
pabilities with TEX.

Any modern operating system supports named
pipes3 and sockets for communication between two
arbitrary processes. Files are also a way of passing
data to the external world. However, considering the
I/O capabilities of TEX, communication with sockets
does not seem feasible and so the option is either files
or named pipes.

Files or Named Pipes? We can make TEX to
write to a normal disk file and instruct an external
system to read from it. This is a simple way of ex-
changing data between two arbitrary processes. It
is quite simple to understand, and very easy to im-
plement. But the downside is that it is very difficult
to synchronize communication and it can become
out of control in certain situations. Named pipes or
FIFOs are better in this area.

Named pipes, also known as FIFO structure,
can be effectively used with TEX for interprocess
communication. For TEX, a named pipe will appear
as a regular file. When TEX writes to this file, the
operating system stores the data in a buffer and then
it can be read by the other program. For the read-
ing program, data will appear in the order it was
written. Also the reading process will be blocked
till the other party writes to it. Similarly, the writ-
ing process will be blocked until the other process
starts reading it 4. This will provide the required
synchronization for the “conversation.”

Hence TEX can write and read from a named
pipe to talk to another process and that process can
do the same. Thus, it becomes possible for TEX to
communicate with another process and the architec-
ture discussed in this paper for database communi-
cation is built upon this idea.

3 A named pipe, also known as FIFO (first-in-first-out), is
similar to device files in Unix/Linux. They have a disk inode
(and a file name) and hence can be accessed by any process.
As the name implies, with FIFO the first byte written into it
will be the first byte read from it.

4 Here we assume that the named pipe is opened in block-
ing mode. If the named pipe is opened in nonblocking mode
the read will return whatever bytes are available (perhaps
none).

14 TUGboat, Volume 23 (2002), No. 1 —Proceedings of the 2002 Annual Meeting



TEX and Databases – TEXDBI

A TEX Abstraction for Database
Communication: A Middle Layer

Interprocess communication and named pipes are
far beyond the interest of a TEX programmer and it
is definitely a bad idea to suggest a TEX programmer
to use all these things while doing TEX coding! So
a good implementation of this idea should provide
a TEX-like abstraction of the mechanisms discussed
above. This abstraction should have the least pos-
sible learning curve and should adhere to standard
TEX coding conventions.

An n-Tier Architecture Here we are going to
make TEX to talk to a database engine. At the
top there is the TEX compiler and at the bottom
there runs a database engine. And in between we
introduce two components: one component gives a
TEX abstraction of the systems beneath and the sec-
ond component bridges the TEX abstraction and the
database engine. These two components together
are called TEX-DBI.

TEX Abstraction of a Database Operation

Querying a database involves opening a connection
to the database, passing an SQL query, retrieving
the result and finally closing the result object and
then the database connection. A LATEX package can
be used to define a set of macros to do all these jobs
on behalf of the TEX programmer.

Following are the macros that we defined in the
implementation of this idea.
\begin{tex-dbi}[host=xx.yy.zz,%
dbname=sampledb,uname=anil,passwd=mypw]

This will initialize a database transaction for the
session5. There can be more than one transaction
per session but they are not supposed to overlap.
Here is a description of the parameters:
Parameter Meaning
host Name of the computer running

the database engine
dbname Database name
uname Database username
passwd Database password for the speci-

fied username

\texdbiexec{"select * from employee"}

This macro passes the SQL statement to the un-
derlying database engine. The TEX macro is not
responsible for checking the accuracy of the SQL

5 Or current pass of compilation.

given; it just passes the statement to the underlying
system.

\texdbicount{}

This macro returns the number of rows (possibly
zero) resulting from the query. This value may be
used as the limiting value for a loop or just to check
whether the query returned successfully.

\texdbinext{}

The result object exposes only one row at a time
of the possibly several rows returned by the query.
This macro moves an imaginary pointer through the
result set, making each row current in turn. When
a new result is obtained the imaginary row pointer
doesn’t point to any row; a call to this macro then
sets the pointer to the first row returned.

\texdbivalue{field_name}

This macro returns the specified field of the current
row. field name should match the name of the field
specified in the SQL statement6.

\end{texdbi}

This macro ends a database session. The connection
will be closed and the underlying component will be
ready to start a new transaction.

Normally, these macros are called in the se-
quence given above. \texdbinext{} can be called
as many times as the number returned by the macro
\texdbicount{}. \texdbivalue{} can be called
with appropriate parameters as many times as re-
quired after each call to \texdbinext{}.

The Bridging Component The TEX macros
described in the above section communicate with
this component through a named pipe as described
earlier. It is called a bridging component because it
connects TEX and the database engine. The commu-
nication between the bridging component and the
database engine itself happens through a TCP/IP
or Unix domain socket.

The request in the TEX code will be passed to
the bridge by the macros through the FIFO and
these requests are translated to equivalent JDBC or
ODBC commands (or in some other format required
by the mechanism being used by the bridging com-
ponent) as the case may be. The results from the
database engine obtained by the bridge is written
back to the FIFO for the TEX macros to read.

6 This rule is enforced by the underlying bridging compo-
nent which makes use of JDBC, ODBC or similar mechanisms
to transact with a database engine, as described next.

TUGboat, Volume 23 (2002), No. 1 —Proceedings of the 2002 Annual Meeting 15



K. Anil Kumar

Adding Session Capability to Make the
Middle Layer a True Multi-user System

It is also possible for this system to support sessions,
thus making it a true multi-user system. A Web
server session-ID-like mechanism can be employed to
identify each request and thus to communicate with
multiple TEX compilation sessions simultaneously.

An alternative to this session-ID approach is to
use session-specific FIFOs: TEX macros can create a
FIFO through a shell command and the name of the
FIFO can be passed to the bridging component as
part of the transaction initiation request. The rest
of the transaction can happen though that FIFO.

If multiple concurrent sessions are supported,
only one middle layer is enough to support multi-
user enterprise needs.

Conclusion

Enabling TEX to communicate with a database en-
gine will eliminate the need to involve other lan-
guages to generate quality reports. A TEX program-
mer can easily learn and use the TEX macros defined
by the TEX-DBI system. Development life-cycle will
be shorter and the process will be completely in the
hands of a TEX programmer.

An implementation of this concept can be found
at: http://www.linuxense.com/oss/texdbi/.

References

[1] Knuth, Donald E., 1986, The TEXbook, Addison-
Wesley.

[2] Bovet, Daniel P. & Cesati, Marco, 2001, Under-
standing the Linux Kernel, O’Reilly.

16 TUGboat, Volume 23 (2002), No. 1 —Proceedings of the 2002 Annual Meeting


