
TUGBOAT

Volume 24, Number 1 / 2003
2003 Annual Meeting Proceedings

2 William Adams / Editorial remarks

3 Karl Berry / Welcome to TUG 2003

5 Conference program and delegates

Publishing 10 Pablo Rosell-González / Return to the classics

18 Alun Moon / Digital illumination

23 Abstracts (Daly & Richter, Hagen, Janc, Moore)

Bibliographies 25 Oren Patashnik / BIBTEX yesterday, today, and tomorrow

31 Abstracts (Daly, Hufflen)

Interfaces 32 Richard Koch / TeXShop in 2003

39 Francesco Costanzo and Gary Gray / Creating labeled stand-alone figures in

LATEX using WARMreader and Adobe Illustrator under Mac OS X

50 Kalle Saastamoinen, Jaakko Ketola, Tuukka Kurppa and Liisa Torikka /

Enabling Web access to a database of calculus problems

using LATEX, PHP and LATEX2HTML

53 Luca Padovani / MathML formatting with TEX rules and TEX fonts

62 Abstracts (Gurari, Quirk, Hagen, Hefferon, Lehmke)

Fonts 64 Bogus law Jackowski and Janusz M. Nowacki / Latin Modern: Enhancing

Computer Modern with accents, accents, accents

75 Vladimir Volovich / CM-Super: Automatic creation of efficient Type 1 fonts from

METAFONT fonts

79 Hàn Thé̂ Thành / Making Type 1 fonts for Vietnamese

85 Candy L. K. Yiu and Wai Wong / Chinese character synthesis using METAPOST

94 Abstracts (Adams)

Multilingual

Document

Processing

95 Giuseppe Bilotta / ε-Ω: A step towards the future with a look at the past

97 Alan Hoenig / Makor: Typesetting Hebrew with Omega

105 John Plaice, Paul Swoboda, Yannis Haralambous and Chris Rowley /

A multidimensional approach to typesetting

115 Abstracts (Cho)

Tools 116 Alun Moon / Literate programming meets UML

120 Giuseppe Bilotta / Math in ConTEXt: Bridging the gap with (AMS-)LATEX

122 Abstracts (Bazargan et al., Esser, Lehmke, Popineau, Wierda)

Sociology 124 Gary Gray and Francesco Costanzo / Experiences and lessons learned

teaching LATEX to university students

132 Alexandre Gaudeul / The (LA)TEX project: A case study of open source software

146 Andrzej Odyniec / A Polished TEX story

151 Abstracts (Bibby, Ranade)

News &

Announcements

152 Calendar

c3 TUG 2004 conference / Xanthi, Greece, August 30–September 3, 2004

154 TUG 2005 conference / Wuhan, China, August 23–25, 2005

TUG Business 155 Recognition of support from Apple

155 Institutional members

Advertisements 156 TEX consulting and production services

153 The LATEX Companion, 2nd edition, by Frank Mittelbach et al.

154 Guide to LATEX, 4th edition, by Helmut Kopka and Patrick W. Daly

TEX Users Group

TUGboat (ISSN 0896-3207) is published by the
TEX Users Group.

Memberships and Subscriptions

2003 dues for individual members are as follows:
Ordinary members: $75.
Students/Seniors: $45.

The discounted rate of $45 is also available to
citizens of countries with modest economies, as
detailed on our web site.

Membership in the TEX Users Group is for the
calendar year, and includes all issues of TUGboat

for the year in which membership begins or is
renewed, as well as software distributions and other
benefits. Individual membership is open only to
named individuals, and carries with it such rights
and responsibilities as voting in TUG elections. For
membership information, visit the TUG web site:
http://www.tug.org.

TUGboat subscriptions are available to organi-
zations and others wishing to receive TUGboat in a
name other than that of an individual. Subscription
rates: $85 a year, including air mail delivery.

Institutional Membership

Institutional Membership is a means of showing
continuing interest in and support for both TEX
and the TEX Users Group. For further information,
contact the TUG office (office@tug.org), or see
our web site.

TEX is a trademark of the American Mathematical
Society.

Copyright c© 2003 TEX Users Group.

Copyright to individual articles within this publication

remains with their authors, and may not be reproduced,

distributed or translated without their permission.

For the editorial and other material not ascribed to

a particular author, permission is granted to make and

distribute verbatim copies without royalty, in any medium,

provided the copyright notice and this permission notice are

preserved.

Permission is also granted to make, copy and distribute

translations of such editorial material into another language,

except that the TEX Users Group must approve translations

of this permission notice itself. Lacking such approval, the

original English permission notice must be included.

Printed in U.S.A.

Board of Directors

Donald Knuth, Grand Wizard of TEX-arcana†

Karl Berry, President∗

Kaja Christiansen∗, Vice President

Sam Rhoads∗, Treasurer

Susan DeMeritt∗, Secretary

Barbara Beeton
Jim Hefferon
Stephanie Hogue
Ross Moore
Arthur Ogawa
Gerree Pecht
Cheryl Ponchin
Michael Sofka
Philip Taylor
Raymond Goucher, Founding Executive Director †

Hermann Zapf, Wizard of Fonts†

∗member of executive committee
†honorary

Addresses

General correspondence,
payments, etc.

TEX Users Group
P. O. Box 2311
Portland, OR 97208-2311
U.S.A.

Delivery services,
parcels, visitors

TEX Users Group
1466 NW Naito Parkway
Suite 3141
Portland, OR 97209-2820
U.S.A.

Telephone

+1 503 223-9994

Fax

+1 503 223-3960

Electronic Mail

(Internet)

General correspondence,
membership, subscriptions:
office@tug.org

Submissions to TUGboat,
letters to the Editor:
TUGboat@tug.org

Technical support for
TEX users:
support@tug.org

Contact the Board
of Directors:
board@tug.org

World Wide Web

http://www.tug.org/

http://www.tug.org/TUGboat/

Problems not resolved?

The TUG Board wants to hear from you:
Please email board@tug.org.

[printing date: July 2004]

2003 Annual Meeting Proceedings

TEX Users Group

Twenty-fourth Annual Meeting

Waikoloa, Hawai‘i

July 20–24, 2003

COMMUNICATIONS OF THE TEX USERS GROUP

TUGBOAT EDITOR BARBARA BEETON

PROCEEDINGS EDITOR WILLIAM ADAMS

VOLUME 24, NUMBER 1 • 2003

PORTLAND • OREGON • U.S.A.

Editor’s introduction

William Adams
75 Utley Drive; Camp Hill, PA USA

willadams@aol.com

http://members.aol.com/willadams

As I write this, it has now been very nearly a year
since this conference took place. My apologies for
the lengthy process, but I believe that the final
results are worth the wait. This anniversary confer-
ence provided a unique overview of both the past his-
tory of TEX and related systems, and concrete exam-
ples of its future usage — these proceedings encapsu-
late as much as is possible. More importantly, in ad-
dition to a “mere” recounting of history (“25 Years
of TEX and METAFONT”, “That Pesky Lion...”,
“The spread of TEX in India”, “TEX Heritage
Panel”) or an analysis of what happened and why
and a consideration of the future, (“The (LA)TEX
project: A case study of open-source software”,
“The future of European LUGs”) they capture for
posterity the unique nature of TEX and its sib-
lings and descendants (“The return to the classics”,
“Digital illumination”, “Chinese character synthe-
sis using METAPOST”, “POV-ray: A 3D graphics
tool for TEX”) and the significant impact which
it has had (or will continue to have) on academia
(“BibTEX yesterday, today, and tomorrow”, “Ml-
BibTEX’s version 1.3”, “Enabling web-access to a
database of calculus problems using LATEX, PHP and
LaTeX2HTML”, “XemTEX: An integrated platform
for high-quality scientific typesetting” “Scientific
publishing with pdfLATEX”) and publishing (“Type-
setting nightmares”, “eXaMpLe”, “ERCOTEX”,
“LATEX in real-world math typesetting”) and its
capabilities (“Using TEX to manage IT for a Math-
ematics Congress”, “TEXPower— Dynamic presen-
tations with LATEX”, “A multidimensional approach
to typesetting”, “A new system for typesetting He-
brew with Omega”, “Literate programming meets
UML”), including significant interactions with long-
standing (or awaited) standards implementations
(“MathML formatting with TEX rules and TEX
fonts”, “From LATEX to MathML and beyond”, “Ac-
cents, accents, accents. . . Enhancing CM fonts with
‘funny characters’ ” “Math in ConTEXt: Bridging
the gap with AMS-LATEX”) but to some extent, the
nature of the effort which was necessary to make this
possible (“A Polished TEX story”), and a guide to
how one can make use of all of this (“Web Services

for CTAN”, “Abusing TEX: custom-bib as an exam-
ple”, “Programming dynamic LATEX documents”,
“Creating labeled ‘stand-alone’ figures in LATEX
using WARMreader and Adobe Illustrator under
Mac OS X”, “New features in TEXshop”, “Experi-
ences and lessons learned teaching LATEX to a group
of university students”) or how it’s all made possible
(“The teTEX distribution”, “ε-Ω: A step towards
the future with a look on the past”, “Automatic
creation of efficient Type 1 fonts from METAFONT

fonts”, “dvipdfmx, an eXtension of dvipdfm”).
I would like to thank everyone who worked to

make this conference a success, especially my fellow
presenters, all those who attended, and in particu-
lar Wendy McKay who very graciously invited me
to speak at this conference (and earlier at TUG 2001
in Delaware), and Hans Hagen and Giuseppe Bilotta
who very generously offered a post-conference work-
shop on ConTEXt.

My sincere thanks also to the TUGboat pro-
duction team, including Barbara Beeton, Karl Berry
and, most especially, Mimi Burbank for their work
to produce these proceedings. Karl and Barbara are
both far better editors than I and fixed a myriad
of errors which had slipped past me, while Mimi
managed to create nicely crafted pages in instances
where I’d failed utterly.

Ultimately, that’s what much of the use, pur-
pose and intent of TEX is: a nicely-balanced set of
pages, mise en page, as Greer Allen describes it,
most often in books. I find myself unable to avoid
mentioning here a few books which were of espe-
cial significance to me in my traveling to and from
Hawai‘i: Diver’s Down by Hal Gordon, which was
the first “chapter” book which I read as a youth,
and which instilled in me a desire (now fulfilled) to
visit Hawai‘i, Bridge of Birds by Barry Hughart, a
delightful fantasy which I re-read on the plane ride
over and foisted off on a pair of presenters to make
room for swag; and Calligraphic Type Design in the

Digital Age: An Exhibition in Honor of the Contri-

butions of Hermann and Gudrun Zapf, which should
tide the reader over until my presentation is pub-
lished in the next TUGboat.

Aloha!

2 TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting

Welcome to TUG 2003

Karl Berry
P. O. Box 2311

Portland, OR 97208-2311

USA

karl@freefriends.org

http://freefriends.org/~karl/

Welcome to sunny Hawaii, and greetings from a cold
and rainy Oregon! Thank you all for attending this
conference celebrating TEX’s 25th anniversary. Un-
fortunately I can’t be there with you in person, but
Wendy graciously invited me to give this opening
address via audio tape anyway. I am honored to do
so in my capacity as the next president of the TEX
Users Group.

A silver anniversary conference is a time for
reflection. I first became aware of TEX in 1983,
when I was an undergraduate at Dartmouth Col-
lege. The college had just bought its first Unix sys-
tem (a hot new VAX 11/730), and the computer
science department had just hired a new professor
out of Carnegie-Mellon, and he brought with him a
1/4′′ magnetic tape of software distributions, notably
including TEX. (The only other software I remem-
ber from that tape was Gandalf, a structured editor
for Pascal and other languages.)

Professor Sherman turned me loose, informing
me there was a README file in the top level direc-
tory, and I should read it. I happily started try-
ing to understand how all these crazy .web, .ch,
Makefile’s, and everything else tangled together.
I eventually managed to get things installed, more
or less, since fortunately BSD 4.2 came with a Pas-
cal compiler. We couldn’t actually see any output,
though, since the only output device we had was
a QMS laser printer. (Bitmapped screens were not
even a dream, all our work was on Zenith z19 ter-
minals. At least we’d graduated from yellow-paper
teletypes.) So my next project was to adapt an ex-
isting DVI driver (unfortunately I’ve forgotten which
one). A week or two of hacking later, the first page
we saw was A.U. Thor’s Short Story. Ah, bliss.

The next job was to get the latest version of
tex.web. Dartmouth didn’t have a direct ARPAnet
connection at the time, but it was on CSnet. Pro-
fessor Sherman typed some magic incantantions to
get to his account at CMU, and from there he typed
ftp score.stanford.edu, and what the computer
said back was: Welcome to sunny California. I
turned to him, gaping, and said, what? Really? He

just shrugged, being an old hand at this network
stuff, and said, sure, that computer’s in California.
Wow!!, I said.

Well, that was then and this is now. Here we
are in the 21st century, and as we all know, the
computing world has changed enormously. TUG has
changed and grown, from its beginnings at the de-
veloper conferences at Stanford in TEX’s early days
to an organization with over two thousand members
from about 70 countries. (I’ll be especially sorry to
miss Nelson’s keynote address and the TEX heritage
session at this conference, to learn more about TEX
and TUG’s history.)

During my term as president, I hope to make
TUG more accessible and attractive to TEX users
worldwide, collaborate wherever possible with other
TEX user groups, and serve its current members bet-
ter. We have an excellent infrastructure in place,
both technical (the tug.org server, now located in
Denmark thanks to Kaja Christiansen and Århus
University) and human (our excellent office man-
ager, Robin Laakso), to support any TUG activities.

Some steps along this path have been taken
already. First, TUG was finally given tax-exempt
charitable status, after much effort by Robin, Mimi
Jett, and our lawyer Amy Silliman; this means most
contributions to TUG, at least within the US, are
now tax-deductible. Also, we awarded the first set
of grants from a new TEX Development Fund ear-
lier this year. We were especially grateful to re-
ceive donations to this fund from over 100 indi-
viduals and institutions around the world. We’re
also slowly making progress with getting TUGboat

caught up— we’ve published three issues so far this
year, and are hard at work on more. We continue
to support the annual software distributions of TEX
Live and CTAN (coming soon for 2003!). And, last
but far from least, supporting conferences such as
this one remain a priority.

In the final analysis, though, TUG is whatever
its members and the TEX community make of it. So
if you have any ideas for other activities to under-
take, or changes to propose, please speak up, so we

TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting 3

Karl Berry

can all work together toward our shared goals.
TEX itself has also changed and grown dramat-

ically in 25 years, of course. Despite occasional ru-
mours of TEX’s demise, as far as I can tell such
reports are greatly exaggerated. Its mathematical
typesetting remains unsurpassed, there are always
new projects underway to make the TEX system ever
more powerful and friendly, and most importantly,
new users and programmers still appear with some
frequency. One of the most interesting recent devel-
opments is Mac OS X, based on a Unix kernel, which
is bringing TEX to a large new population of com-
puter users. This conference will dedicate an entire
day to Mac OS X work. All in all, I personally remain
hopeful about TEX, and believe its future remains
promising.

However, since this is a read-only presenta-
tion, I’ll have to ask you to contact me separately
if you have questions, comments, or suggestions.
For the next two years, you can email me as
president@tug.org. I never would have guessed it

on that day in 1983 when I first encountered TEX.
In closing, I’d like to thank Wendy McKay, Pa-

tricia Monohon, Hans Hagen, Robin Laakso, and all
the other volunteers and organizations who made
this conference happen; Malcolm Clark for the great
poster; the Hawaii Tourism Authority; and Addison-
Wesley, Apple, W.H. Freeman, Integre, Kensington,
Math Game House, and RoadTools for their corpo-
rate contributions. Also, the even larger group of
volunteers who have done so much to support TEX
and TUG over the years, including my fellow direc-
tors on the TUG board and the board members of all
the other TEX user groups around the world. Also
my fellow developers, who keep sticking to the de-
tails to make all the software actually work. And
finally, of course, Donald E. Knuth, without whom
the world of typesetting over the last 25 years would
have been quite a different place. Happy birthday
to TEX!

Thank you for putting up with this recording,
and have a great conference.

4 TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting

Organizing Committee

William Adams
Sue DeMeritt
Robin Laakso
Wendy McKay
Patricia Monohon
Anita Schwartz

Program Committee

Hans Hagen
Stephanie Hogue
Jerzy Ludwichowski
Wendy McKay
Ross Moore
Fabrice Popineau
Chris Rowley
Volker Schaa

Sponsors

Addison-Wesley Publishers (UK) Michael Strang
Addison-Wesley Publishers (USA) Curt Johnson

Apple Computer Inc. Brian Frye
Carleton Production Centre (Canada) Christina Thiele

Math Game House Hyejung Kang, Seungoh Ryu
Kensington Technology Group Roma Majumder

Koenig Productions Cici Koenig
Road Tools Jim MacEachern

W.H. Freeman & Company / Worth Publishers Craig Bleyer
Integre: Technical Publishing Company, Inc. Don Deland

PC-TEX Lance Carnes
TEX Merchandising Project Martin Schröder

Y & Y, Inc. Blenda Horn
University of Hawai‘i at Hilo Conference Center Judith Fox-Goldstein

Hawaii Tourism Authority
Hawaii Island Economic Development Board

Grateful acknowledgements

Thanks also to:

The TEX user groups DANTE e.V., GUST, GUTenberg, and NTG for additional speaker support.

Generous individual contributors: Dave Bailey, Greg Black, Daniel Boerner, Harriet Borton,
Malcolm Clark, Daniel Haugland, Stephan Lehmke, Oren Patashnik, Pablo Rosell-Gonzalez,
Bob Styer, Paul Thompson, Donald Tyson, Robert Utter, Alan Wetmore, Glenn Williams,
Camerson Wright.

Malcolm Clark (Menagerie Fleet Captain, Banbury Sailing Club) for the freeware lion drawing.

William Adams, Duane Bibby, Bob Kerstetter and Wendy McKay for putting together the
fund-raising TEX Harvest Appeal.

TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting 5

Participants at the 24th Annual TUG Meeting

July 20–24, 2003, Outrigger Waikoloa Beach Resort

Big Island, Hawai‘i

Adams, William

ATLIS, Camp Hill, PA, USA

Ase, Harumi

ARS System Corporation,
Chiyoda-ku, Tokyo, Japan

Bailey, Dave

Covestic, Inc.,
Albuquerque, NM, USA

Bazargan, Kaveh

Focal Image Ltd,
Exeter, Devon, UK

Bhat, Harish

California Institute of Technology,
Pasadena, CA, USA

Beebe, Nelson

University of Utah,
Salt Lake City, UT, USA

Beeton, Barbara

American Mathematical Society,
Providence, RI, USA

Bibby, Duane

Lake Havasu City, AZ, USA

Bilotta, Giuseppe

Catania, CT, Italy

Brenton, Steven

Long Beach, CA, USA

Capkun, Jozo

Mississauga, Ontario, Canada

Carnes, Lance

Personal TEX, Inc.,
Mill Valley, CA, USA

Cho, Jin-Hwan

Korea Institute for Advanced
Study, Seoul, Republic of Korea

Costanzo, Francesco

Penn State University,
University Park, PA, USA

Daly, Patrick William

Max-Planck-Institut für Aeronomie,
Katlenburg-Lindau, Germany

DeMeritt, Sue

IDA/CCR La Jolla,
San Diego, CA, USA

Doob, Michael

University of Manitoba,
Winnipeg, Manitoba, Canada

Esser, Thomas

FinanzIT GmbH,
Hannover, Germany

Frye, Brian

Apple Computer Inc., USA

Fuchs, David

Palo Alto, CA, USA

Gaudeul, Alexandre

GREMAQ - University of
Toulouse, France

Girard, Michel

LAMBESC, France

Gray, Gary

Penn State University,
University Park, PA, USA

Gurari, Eitan

Ohio State University,
Columbus, OH, USA

Hagen, Hans

Pragma ADE,
Hasselt, The Netherlands

Hàn Thé̂ Thành

University of Education,
Ho Chi Minh City, Vietnam

Hefferon, Jim

Saint Michael’s College,
Colchester, VT, USA

Hoenig, Alan

John Jay College, City
University of New York, USA

Jackowski, Boguslaw

BOP s.c., Gdansk, Poland

Janc, Mirko

INFORMS, Linthicum, MD, USA

Jones, Shannon

Federal Reserve Bank of
Richmond, VA, USA

Kerstetter, Bob

Alt-N Technologies,
Richardson, TX, USA

Koch, Richard

University of Oregon,
Eugene, OR, USA

Laakso, Robin

TEX Users Group,
Portland, OR, USA

Lehmke, Stephan

Universität Dortmund, Germany

Levine, Jenny

Duke University Press,
Durham, NC, USA

Ludwichowski, Jerzy

Nicolaus Copernicus University,
Toruń, Poland

MacKichan, Barry

Poulsbo, WA, USA

McKay, Wendy

California Institute of Technology,
Pasadena, CA, USA

Monohon, Patricia

Ventura, CA, USA

Montpetit, André

Université de Montréal,
QC, Canada

Moon, Alun

School of Informatics,
University of Northumbria, UK

Moore, Ross

Macquarie University,
Sydney, Australia

Padovani, Luca

University of Bologna, Italy

Patashnik, Oren

San Diego, CA, USA

6 TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting

Plaice, John

The University of New South
Wales, Sydney, NSW, Australia

Ponchin, Cheryl

Institute for Defense Analyses,
Princeton, NJ, USA

Popineau, Fabrice

Supélec Campus de Metz, France

Quirk, James

CCS Division, Los Alamos
National Laboratory, NM, USA

Ranade, Ajit

ABN AMRO Bank,
Mumbai, India

Rhoads, Sam

Honolulu Community College,
Honolulu, HI, USA

Roberts, Kim

HK Typesetting Ltd,
Salford, Lancs., UK

Rosell-González, Pablo

Ciudad Universitaria,
Mexico, Mexico

Rowley, Chris

Open University, London, UK

Saastamoinen, Kalle

Lappeenranta University of
Technology, Lappeenranta,
Finland

Schaa, Volker RW

DANTE e.V.,
Darmstadt, Germany

Sestrich, Heidi

Carnegie Mellon University,
Pittsburgh, PA, USA

Smith, Alistair

Sunrise Setting Ltd,
Torquay, Devon, UK

Stenerson, Jon

Las Cruces, NM, USA

Swanson, Steve

Las Cruces, NM, USA

van der Poorten, Alfred J.

ceNTRe for Number Theory
Research, Killara, NSW,
Australia

Volovich, Vladimir

Voronezh State University,
Voronezh, Russia

Wetmore, Alan

Army Research Laboratory,
Adelphi, MD, USA

Wong, Wai

Hong Kong Baptist University,
Kowloon, China

Yiu, Candy L. K.

Hong Kong Baptist University,
Kowloon, China

TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting 7

TUG 2003 Program

the Silver Anniversary— 25 years!

The 24th Annual Meeting and Conference of the TEX Users Group

July 20–24, 2003

Sunday, July 20, 2003

Official opening and welcome

Don Knuth / A message from the Grand Wizard

Karl Berry / Welcome from the TUG president

Keynote presentations

Nelson Beebe / A TEX retrospective

Duane Bibby / That pesky lion: 25 years of TEX and Meta drawings

Talks

Ross Moore / Using TEX to manage IT for a mathematics congress

Jim Hefferon / Web services for CTAN

Thomas Esser / The teTEX distribution

Pablo Rosell-González / Return to the classics

Alun Moon / Digital illuminations

Hans Hagen / Typesetting nightmares

Monday, July 21, 2003

Talks

Oren Patashnik / BibTEX yesterday, today, and tomorrow

Patrick Daly / Abusing TEX: custom-bib as an example

Jean-Michel Hufflen / MlBibTEX version 1.3

James Quirk / Programming dynamic LATEX documents

Stephan Lehmke / TEXPower: Dynamic presentations with LATEX

Luca Padovani / MathML formatting with TEX rules and TEX fonts

Eitan Gurari / From LATEX to MathML and beyond

Hans Hagen / eXaMpLe project

Giuseppe Bilotta / ε-Ω: A step towards the future with a look at the past

John Plaice / Ω, OpenType and the XML world

Peter Flynn / Interfaces to structured text

Ajit Ranade / The spread of TEX in India: The role of outsourced typesetting

Alexandre Gaudeul / A LATEX case study

Panel: TEX Heritage

Barbara Beeton / Chair

Tuesday, July 22, 2003

TUG annual meeting

Talks

Gerben Wierda / TEX on Mac OS X using teTEX and TEX Live
(remote live presentation from the Netherlands)

Richard Koch / New features of TEXShop

Workshop

Francesco Costanzo, Gary Gray / The use of the MarkedObjects plug-in, along with WARMreader
to create LATEX-annotated figures using Adobe Illustrator under Mac OS X.

8 TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting

Wednesday, July 23, 2003

Talks

John Plaice / A multidimensional approach to typesetting

Candy Yiu, Wai Wong / Chinese character synthesis using METAPOST

Jin-Hwan Cho / dvipdfmx, an eXtension of dvipdfm

Kalle Saastamoinen / Creating a Web-based mathematical interface to databases using LATEX,
PHP, and the LATEX2HTML compiler

Stephan Lehmke / ERCOTEX: Yet another database publishing application of LATEX

Alan Hoenig / A new system for typesetting Hebrew with Ω

William Adams / TEX at the end: Ω and Zapfino

Bogus law Jackowski / Accents, accents, accents: Enhancing CM fonts with “funny” characters

Vladimir Volovich / Automatic creation of efficient Type 1 fonts from METAFONT sources

Hàn Thé̂ Thành / Making Type 1 fonts for Vietnamese

Mirko Janc / LATEX in Real-World Math Typesetting

Panel: Fonts

Nelson Beebe / Chair

Thursday, July 24, 2003

Talks

Alun Moon / Literate programming meets UML

Fabrice Popineau / XemTEX: An integrated platform for high quality scientific typesetting

Patrick Daly / Scientific publishing with pdfLATEX

Gary Gray / Experiences and lessons learned teaching LATEX to university students

Kaveh Bazargan / POV-ray: A 3D graphics tool for TEX

Giuseppe Bilotta / Math in ConTEXt: Bridging the gap with AMS-LATEX

Andrzej Odyniec / A Polished TEX story

Jerzy Ludwichowski / The future of European LUGS

Closing ceremony

Friday, July 25, 2003

Workshop: Getting to know ConTEXt

Hans Hagen, Giuseppe Bilotta

TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting 9

Return to the classics

Pablo Rosell-González

Coordinación de Cómputo
Facultad de Ciencias, UNAM

México, D.F.
México
pablo@ciencias.unam.mx

http://hipatia.fciencias.unam.mx/~prosell/

Abstract

When did the width of margins in a page become less important than having
a small number of pages in a book? We have been inundated by badly printed
material since most publishers are now mostly interested in getting as much profit
as possible, leaving the art of publishing aside. The premise of book designers
should be not only to create attractive printed material but also to provide a
pleasant reading experience.

There are quite a few examples of designs that are now considered classics
because they have proven themselves to be aesthetically incomparable. These
designs include:

Ternary canon: 2:3 page proportions where the height of the typographic box
is equal to the width of the page, the left margin is half the right margin
and the top margin is half the bottom margin.

Gutenberg’s Göttingen Bible: same as above but in two columns with a wide
column separation.

Universal scaling: the page is created when the user defines a unit box and
the design takes multiples of three times the unit box; the left margin is the
unit’s box width, the top margin is the unit’s box height, and the right and
bottom margins are twice the unit’s box width and height respectively.

Diagonal and double diagonal methods: the page dimensions and the left
margin are provided by the user and all the other elements are defined in
terms of either a diagonal or using both diagonals.

ISO 216: the typographic box is sized either A5 or A6 depending on the choice
of A4 or A5 paper size, and the left and top margins are half the right and
bottom margins respectively.

2–3–4–6 system: page dimensions and the margin unit are defined by the user,
and the typographic box is adapted to have two, three, four, and six times
the margin unit as left, top, right and bottom margins respectively.

This paper presents classics, the author’s new class which allows the user
to typeset camera-ready books using any of the above designs. This class uses
the calc and geometry packages to create the design, and crop to generate the
crop marks. If classics is used with Hàn Thé̂ Thành’s micro-typographic exten-
sions, the user will get state-of-the-art printed material. Let’s recover centuries
of publishing tradition!

Introduction

Typography and book design are artistic expressions
whose principal goal is to bring the reader the most
pleasant reading experience.

Gutenberg, in the XVth century, used over 280
types, including many ligatures and expanded (or
contracted) characters, to get almost even interword
spaces, and protruding of some left and rightmost
characters (marginal kerning). With these, he ob-

10 TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting

Return to the classics

tained perfectly visual “gray” boxes when printing
his Bible.

Most of these aspects are already achieved by
using (LA)TEX, and the micro-typographic extensions
made by Hàn Thé̂ Thành for pdf(LA)TEX, explained
in [7], complete the picture.

This paper is divided in two sections: the first
contains a brief geometric description of some page
layouts that have proven to be aesthetic and func-
tional. Some variations obtained from them are in-
cluded. The second explains the usage of classics,
a class that allows the user to typeset books using
those page layouts. Some instances of the usage of
classics with protruding characters generated with
pdfLATEX are included.

Classic page layouts

Traditional published works present carefully stud-
ied margin proportions obeying (some of) the fol-
lowing four rules:

1. the diagonal of the typographic box coincides
with the diagonal of the page;

2. the height of the typographic box equals the
page width;

3. the outer margin is twice the inner margin;

4. the bottom margin is twice the top margin.

First approach to the classics Let ABCD be
a page with arbitrary proportions. Consider the
following construction for the type area (figure 1)
which guarantees rules 1, 3 and 4.

Construct diagonals AC and BM , where M is
the midpoint of AD, and O the point of intersection.
Take any point P between A and O. From P draw
the parallel to AB which intersects BM in Q. From
Q trace the parallel to BC which intersects AC in
R. To obtain S, draw parallels from R and P to CD
and AD respectively. Then the rectangle PQRS will
have the same proportions as ABCD. Moreover, O
divides in the same ratio both PR and AC, i.e.,
PR/PO = AC/AO = 1/3.

Of course we want to leave wide enough mar-
gins on our page, so that the area of the typographic
box covers no more than, say, 50%. But if we also
want to follow rule 2 we must restrict the propor-
tions of our page to no less than 1 :

√
2. Table 1

shows some page ratios with the percentage of area
their typographic box occupies if its height equals
the paper’s width (i.e., following rule 2).

2–3–4–6 approach Take a unit u as half the in-
ner margin of any page. If we take 2u, 3u, 4u, and
6u dimensions for the inner, top, outer, and bottom
margins respectively we will get a fairly good typo-
graphic box —this depends, of course, on the width

A

D C

B

O

M

S R

QP

Figure 1: First approach.

Page ratios Documents % of area

1 : 2 — 25%
2 : 3 Gutenberg’s Bible 39.5%
2 : 3 Ternary Canon 44.4%

1 :
√

2 ISO 216 50%
3 : 4 Ghostscript’s archA 56%
1 : 1 — 100%

Table 1: Page ratios and typographic box area.

to height ratio of the page and on the value of u
respect to the width of the page. In most cases (ex-
cept for a 2 : 3 page), the typographic box will not
present the same width to height ratio as the page,
because if w and h represent the width and height
of the page, then the typographic box will be w−6u
in width and h−9u in height. Suppose the page and
type area have the same proportions; then

w

h
=

w − 6u

h − 9u
=

2

3
.

This is, nevertheless, a good method for obtain-
ing interesting asymmetrical results.

Ternary Canon Many medieval and Renaissance
manuscripts and printed books present a 2 : 3 width
to height page ratio whose typographic box not only
follows the four rules mentioned above but also pre-
sents the 2–3–4–6 progression in the margins.

TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting 11

Pablo Rosell-González

Following Van der Graaf’s method, Jan Tschi-
chold [8] published an elegant geometrical way to
obtain such a layout. Take a two-page diagram (see
figure 2), draw diagonals AC and BD which inter-
sect at M , the midpoint of EF ; draw diagonals EC
and ED which intersect BD and AC at G and G′ re-
spectively. Draw GG′ and perpendiculars through
G and G′ to AB which intersect it at H and H ′.
The point of intersection P (P ′) of EG (EG′) and
HG′ (H ′G) is the upper left (right) corner of the
typographic box. Complete the construction as in
figure 1.

A H ′ E H B

GG′

M

CD F

PP ′

Figure 2: Tschichold’s geometric construction for
the Ternary Canon.

The circle in figure 2 simply shows that the
height of the typographic box equals the width of
the page. That the margins are in 2–3–4–6 progres-
sion follows from the fact that the top left corner
of the box divides in 1/9 both the height and the
width of the page. If we fix a unit u which is half
the inner margin then the page will have width 18u
and height 27u, so the inner margin is 2u wide, the
top margin is 3u high. Because the height of the
type area is equal to the width of the page, 18u, the
bottom margin is 27u − (3u + 18u) = 6u. More-
over, as the typographic box is in the same ratio as
the page its width is 12u, thus the outer margin is
18u − (2u + 12u) = 4u.

On the other hand, a much different approach
is given by Raúl Rosarivo [6], who discovered that
creating a 9 × 9 grid on a 2 : 3 ratio page (figure 3,
left), and positioning the typographic box leaving
one column and one row of the grid as inner and
top margins, and two columns and rows as outer
and bottom margins, gives exactly the same position

and proportions for the typographic box to fulfill the
rules and the 2–3–4–6 progression.

Figure 3: Rosarivo’s 9 × 9 grid. At the left, the
ternary canon typographic box in gray. At the
right, Gutenberg’s Bible two column boxes.

In the ternary canon model, the typographic
box will cover only 4/9 (44%) of the area of the pa-
per.

Gutenberg designed his Göttingen Bible of 42
lines using the ternary canon model, but the text
is written in two columns whose separation space
is exactly 2/3 the width of the grid’s cells as shown
in figure 3 (right); each column has 22/3 cell width
covering just (39.5%) of the area of the paper.

Universal scaling Rosarivo extended this concept
to n × n grids, where n is a multiple of 3. Once
divided, the column and the row correspond to in-
ner and top margins, and two columns and rows to
outer and bottom margins. The margin dimensions
are inversely proportional to the number of divisions
made.

Note, however, that if n is not a multiple of 3 we
are still following rules 1, 3 and 4. A quite critical
example is taking a square page and dividing it in a
10× 10 grid. The resulting type area is a 7× 7 box,
filling 49% of the page (see figure 10). Nice, isn’t it?

ISO 216 The ISO A range begins with the A0 sheet,
whose ratio is 1 :

√
2 and has area 1 m2. If we cut

the A0 sheet along the middle of the long side we
obtain a sheet whose ratio is

√
2/2 : 1 = 1/

√
2.

This new sheet, A1, is proportional to the orig-
inal one and has half A0’s area, 1/2 m2. This process
can be continued to obtain proportional sheets with
half the area of the predecessor.

Another range that belongs to the ISO 216 fam-
ily starts with the B0 sheet, whose ratio is again
1 :

√
2 and has area

√
2 m2, i.e., whose width is 1m.

12 TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting

Return to the classics

Name dimensions (mm) area (m2)

A0 841 × 1189 1
A1 594 × 841 1/2
A2 420 × 594 1/4
A3 297 × 420 1/8
A4 210 × 297 1/16

B5 176 × 250
√

2/32

A5 148 × 210 1/32
A6 105 × 148 1/64

Table 2: ISO 216 A range and B5 page dimensions.

It happens that the B range consists of the geomet-
ric means of the A range. For example, the height
of B5 is equal to the square root of the product of
the heights of A4 and A5.

Table 2 shows the dimensions of the A range up
to 6 divisions, and B5, between A4 and A5 in italics.
Figure 4 shows a sketch of the A range.

A1

A2

A3

A4

A5
A6

A7
A8

Figure 4: Subdivisions of an A0 sheet.

What is really important about this system is
that it allows us two things. First, we can make a
complete sheet from, say, 8 physical pages without
having to make unnecessary cuts. Second, we can
reduce the size of the page to its immediate succes-
sor, retaining proportions, using pstops, psnup, or
some other tool; or by means of photographic media.

Let An be the page; then if A(n + 1) is the ty-
pographic box which, as mentioned above, has 50%
the area of the page (not far from the 44.4% of the
ternary canon). If we follow the four rules (as shown
in figure 5) the margin progression will be 2–2

√
2–4–

4
√

2 which is approximately 2–2.828–4–5.657 which
is not very far from the ternary canon’s progression.

A4

A5

A6

Figure 5: A5 as the typographic box of an A4
page (light gray in white), and A6 in A5 (dark in
light gray).

The classics class

The classics class is primarily intended to typeset
books using any of the designs explained in the pre-
vious section, along with some variations of them.

The user invokes classics like any other class:

\documentclass[options]{classics}

The description of options will be divided into
the generic ones which are inherited from the book

class, and the specific ones created for classics to-
gether with the commands (parameters) related to
each page layout.

Generic options The following list shows the op-
tions inherited from book, which do not relate to the
page design whatsoever.

10pt|11pt|12pt For choosing the normal type size.
The default is 10pt.

final|draft Shows (draft) black boxes for over-
full lines or not (final). The final option is
the default.

oneside|twoside For printing on one or both sides
of a page. The default is twoside, which pro-
duces mirrored layouts of even and odd pages.
The oneside option makes even pages the same
as odd numbered ones.

openright|openany For the chapters to begin only
on recto pages (openright) or on any pages
(openany). The default is openright.

onecolumn|twocolumn Specifies if the text box will
be one or two columns per page. The default

TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting 13

Pablo Rosell-González

is onecolumn unless the gutenberg option is
chosen. (See Specific options.)

titlepage|notitlepage If \maketitle is invoked,
by default classics (book) will make a separate
title page, and a separate abstract page, if any.

openbib To format the bibliography in open style.

leqno Formula numbers will be put to the left for
any numbered display math environments.

fleqn Aligns to the left displayed formulae.

As classics is intended specifically to produce
page layouts whose dimensions are not, in general,
standard, book paper size options (letterpaper,
legalpaper, . . .) are not recognized.

Specific options The classics class offers the fol-
lowing options for page layouts in contrast to page
size options of book; ternary being the default.

ternary This layout builds a 2 : 3 width-to-height
page with type area as described in figures 2
and 3. The only parameter users can modify is
\classicswidth (see Parameters) because all
other parameters are absolutely determined.

“ternary” — 2003/2/9 — 1:30 — page 1 — #1

Como aplicación elemental del gas ideal de fermiones consideraremos el pro-
blema de las estrellas de neutrones y las lamadas enanas blancas. Una es-
trella normal como nuestro sol produce energı́a principalmente por la fusión
de núcleos ligeros, como el hidrógeno, a núcleos más pesados, como el he-
lio. La presión térmica proveniente de la energı́a cinética de las partı́culas
constituyentes, más la presión de radiación, se equilibran con la compresión
gravitacional de las masas en atracción, y la estrella mantiene una cierta esta-
bilidad de tamaño o radio

�✂✁
, que es del orden de ✄✆☎✞✝✠✟☛✡✌☞ cm. Al agotarse

este mecanismo de producción de energı́a por fusión, y después de pasar
por una etapa de gigante roja, en que la estrella se enfrı́a y se expande enor-
memente, ocurre la muerte de la estrella que dependiendo de la masa de la
estrella puede terminar como:

Una enana blanca, compuesta principalmente por núcleos de helio-4 (o car-
bono-12 o hierro-56) inmersos en un mar de electrones liberados; el sistema
está a temperaturas entre ✝✠✟✎✍ y ✝✠✟✑✏✠✒✔✓ y densidades entre ✝✠✟✖✕ y ✝✠✟✖✗✙✘✖✚✜✛✣✢✤✚✆✥ .

Una estrella de neutrones, compuesta en un 99% por los neutrones rema-
nentes después de la conversión de los protones y electrones en i, a neutro-
nes por el proceso de decaimiento beta inverso ✦✆✧✩★✎✪✬✫✮✭✯✧✩✰ forzado por
la compresión resultante de la gravedad.

Si la masa es suficientemente alta, la estrella termina como un agujero
negro, en que la contracción gravitacional reduce el tamaño de la estrella a
un lı́mite tal que su velocidad de escape es igual a la velocidad de la luz,
de modo que ni los fotones pueden escapar. Este radio, llamado radio de
Schwartzschild

�✲✱
, definido por ✳✵✴✷✶✸✛ �✲✱✺✹ ✶✺✻✔✼✽✛✣✾ , o bien

�✲✱✸✹ ✾✑✳✵✴✿✛❀✻✤✼ ,
donde ✳ es la constante de gravitación, ✴ y ✶ son las masas de la estrella
y de una partı́cula de prueba, respectivamente. El tipo 1 de cadáver de la
estrella normal con que empezamos ocurre generalmente cuando la masa de
ésta es del orden de magnitud de una masa solar ✴ ✁ , el tipo 2 cuando es diez
veces ✴ ✁ y el tipo 3 cuando es 100 o más veces ✴ ✁ ; al grado que ningún
mecanismo de presión es capaz de contrarrestar la contracción gravitacional.
La figura 47 compara los tamaños relativos de una gigante roja, nuestro sol,
una enana blanca, una estrella de neutrones y un agujero negro. Los radios
de Schwartzschild

� ✱
para cuerpos con la masa de la Tierra o del Sol serı́an,

respectivamente, un centı́metro o tres kilómetros. Una enana blanca tı́pica
con una masa solar ✴ ✁ tiene un radio

�❂❁ ✝✽✟ Km, un poco mayor que el
radio correspondiente de Schwartzschild

�✂✱❃✹✿❄
Km.

El tratamiento que hicimos de la estructura estelar se basa en el modelo
de un gas de fermiones a temperatura absoluta cero y sin interacciones entre
las partı́culas. La función de onda correspondiente es, por lo tanto, un solo
determinante (9.1) compuesto por orbitales que son ondas planas, como en
(9.15–17). Preguntamos si podemos ir más allá del caso del gas ideal, pero
limitándonos todavı́a a la aproximación del determinante único. Esto lle-

\documentclass[palatino,frame]{classics}

Figure 6: The default classics layout.

If the twocolumn option is specified, ternary
becomes the same as gutenberg, but with the
flexibility of changing the column separation
space using \classicscolsep.

Figure 6 shows the ternary design with 42×
63 picas width-to-height page.

�✂✁☎✄✝✆✟✞✝✠☛✡☛✞✝☞✌✁✎✍✑✏✓✒✕✔✕✔✕✖☛✗✎✒☛✗✎✘✙✏✛✚☎✜ ✒✕✢✣✏✥✤✎✦✝✁✕✞✙✚✧✏✓★✩✚

Como aplicación elemental del
gas ideal de fermiones conside-
raremos el problema de las es-
trellas de neutrones y las lama-
das enanas blancas. Una es-
trella normal como nuestro sol
produce energı́a principalmente
por la fusión de núcleos ligeros,
como el hidrógeno, a núcleos
más pesados, como el helio. La
presión térmica proveniente de la
energı́a cinética de las partı́culas
constituyentes, más la presión de
radiación, se equilibran con la
compresión gravitacional de las
masas en atracción, y la estrella
mantiene una cierta estabilidad
de tamaño o radio ✪✬✫ , que es del
orden de ✭✯✮✱✰✳✲✵✴✷✶ cm. Al agotarse
este mecanismo de producción
de energı́a por fusión, y después
de pasar por una etapa de gigante
roja, en que la estrella se enfrı́a
y se expande enormemente, ocu-
rre la muerte de la estrella que de-
pendiendo de la masa de la estre-
lla puede terminar como:

Una enana blanca, compues-
ta principalmente por núcleos de
helio-4 (o carbono-12 o hierro-
56) inmersos en un mar de elec-
trones liberados; el sistema está
a temperaturas entre ✰☎✲✵✸ y ✰✳✲✺✹☎✻☎✼
y densidades entre ✰☎✲✵✽ y ✰☎✲✿✾❀✺❁❃❂❅❄☛❁❇❆ .

Una estrella de neutrones,
compuesta en un 99% por los
neutrones remanentes después
de la conversión de los protones
y electrones en i, a neutrones por
el proceso de decaimiento beta
inverso ❈❊❉●❋✿❍❏■▲❑✱❉◆▼ forzado

por la compresión resultante de
la gravedad.

Si la masa es suficientemente
alta, la estrella termina como un
agujero negro, en que la con-
tracción gravitacional reduce el
tamaño de la estrella a un ĺımite
tal que su velocidad de escape
es igual a la velocidad de la luz,
de modo que ni los fotones pue-
den escapar. Este radio, llamado
radio de Schwartzschild ✪P❖ , defi-
nido por ◗✧❘◆❙ ❂ ✪P❖◆❚❯❙❲❱❨❳ ❂❅❩ , o
bien ✪✬❖❬❚ ❩ ◗✧❘ ❂ ❱☛❳ , donde ◗
es la constante de gravitación, ❘
y ❙ son las masas de la estre-
lla y de una partı́cula de prueba,
respectivamente. El tipo 1 de
cadáver de la estrella normal con
que empezamos ocurre general-
mente cuando la masa de ésta es
del orden de magnitud de una
masa solar ❘❭✫ , el tipo 2 cuando
es diez veces ❘❭✫ y el tipo 3
cuando es 100 o más veces ❘ ✫ ; al
grado que ningún mecanismo de
presión es capaz de contrarrestar
la contracción gravitacional. La
figura 47 compara los tamaños re-
lativos de una gigante roja, nues-
tro sol, una enana blanca, una es-
trella de neutrones y un agujero
negro. Los radios de Schwartzs-
child ✪ ❖ para cuerpos con la
masa de la Tierra o del Sol serı́an,
respectivamente, un centı́metro
o tres kilómetros. Una enana
blanca t́ıpica con una masa solar
❘ ✫ tiene un radio ✪❫❪▲✰☎✲ Km,
un poco mayor que el radio co-
rrespondiente de Schwartzschild
✪✬❖✩❚❵❴ Km.

\documentclass[gutenberg,utopia,frame]{classics}

Figure 7: Page layout for gutenberg option.

gutenberg Same as above but the type area is type-
set in two columns having the column separa-
tion space equal to 2/3 the inner margin.

Figure 7 shows the Gutenberg Bible’s layout.
It is similar to ternary but in two columns sep-
arated by 2/3 the inner margin width.

rosarivo Following Rosarivo’s ideas, the user can
define an n×n grid of whatever page proportion
are desired. By default n = 9, and the page
proportion is 2 : 3.

The command \cellnum is used to change
the value of n, while the width and height of the
paper can be changed using \classicswidth

and \classicsheight respectively.

universal Almost the same as rosarivo, but this
time the user defines the cell dimensions (as
\cellwidth and \cellheight) and n as above.

Note the difference: rosarivo divides the
page once fixed to get the n × n grid, while
universal constructs the page in terms of the
cell and the grid’s dimension. Compare fig-
ures 8 and 9.

Figure 10 shows a 40 × 40 picas square page
whose type area is 28 × 28 picas.

a4|a5|b5 ISO 216 formats. These page layouts are
totally predetermined, except when typesetting
in two columns. If the twocolumn option is se-
lected the default separation space will be equal

14 TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting

Return to the classics

\classicswidth

\
c
l
a
s
s
i
c
s
h
e
i
g
h
t

\
c
l
a
s
s
i
c
s
h
e
i
g
h
t

\c
e
l
l
n
u
m

\classicswidth

\cellnum

Figure 8: Page layout and relevant parameters
for rosarivo option.

\cellwidth× \cellnum

\
c
e
l
l
h
e
i
g
h
t
×

\c
e
l
l
n
u
m

\cellwidth

\c
e
l
l
h
e
i
g
h
t

Figure 9: Page layout and relevant parameters
for universal option.

to the inner margin, but it can be changed with
the \classicscolsep length parameter.

Figure 11 is the A6 type area of the A5 sheet
following the rules described in Classic page
layouts.

2346 The user can define the page proportions and
inner margin with the \classicsinmargin pa-
rameter. The other margins are determined by
multiplying the inner margin by 1.5, 2 and 3.

Figure 12 shows quite an extreme case; it de-
fines a square page with 2–3–4–6 progression
margins creating a wider than higher type box.

ddiagonal This is almost equivalent to Rosarivo’s
method. The user simply sets the page propor-
tions and inner margin. It is precisely our first
approach, shown in figure 1.

The main difference from rosarivo is that
the top inner corner should not divide horizon-
tally (vertically) the width (height) of the page.

diagonal Most free of all. The user can set the page
proportions as well as inner and outer margin
lengths. The only thing that this option pre-
serves is similarity between the type area and
the page.

�✂✁☎✄✝✆ ✞✠✟✡✁✡☛✠☞✝✌✎✍✑✏✝✒✝✒✝✓☎✔✡✏☎✔✡✕✖✍✘✗✚✙ ✓✝✒✛✍✘✜✝☛✣✢✝✤✖✗✥✍✧✦★✗

✩✫✪✭✬✮✪✰✯✭✱✳✲✵✴✵✶✚✯✭✶☎✴✸✷✪✭✹✻✺✼✲✵✺✼✬✮✺✼✹✾✽✠✯✭✲❀✿❁✺✼✲❀❂✾✯✭❃❄✴✵✿❁✺✸✯❅✲❀✿❁✺✛❆❇✺✼❈✠✬✮✴❉✪❊✹✳✺✚❃❋✶✼✪✭✹●❃✣✴✵✿✳✺✼❈✡✯❅❈✠✺✼✬✮✪❊❃❍✺✼✲■✱✳❈✠✪❅❏
❑ ✲❉✺✚✬✖✯✎✿❁✺✥✲▲✯✭❃▼✺✚❃◆✽✣❈✠✺✼✲✵✲✵✯❊❃▼✿❁✺✥✹●✺✼❖❁✽✠❈✣✪❊✹✳✺✚❃★P✰✲▲✯✭❃▼✲▲✯❅✬✖✯❊✿✳✯✭❃★✺✚✹●✯❅✹◗✯✭❃ ❑ ✲▲✯❅✹◗✶✼✯✭❃✚❘★❙▼✹●✯✎✺✚❃◆✽✣❈✠✺☎❏
✲❉✲▲✯❯❚❲❱❅❳✝❨✮❩❅❬●✶☎✪❊✬✮✪✎✹❭❖✳✺✚❃◆✽✣❈✠✪✎❃◆✪❊✲❪✱✳❈✠✪❁✿❁❖●✶✼✺❫✺✼✹✳✺✚❈✣❂❲✷❴ ✯❵✱●❈✣✴✵✹●✶☎✴✵✱●✯✭✲❉✬✮✺✼✹✾✽✠✺❫✱◗✪❊❈❍✲▲✯✮❆❇❖●❃✣✴✚✷✪❊✹✻✿❁✺
✹❄✷❖●✶☎✲✵✺✼✪✾❃★✲✵✴❉❂❊✺✼❈✠✪❊❃✚❛●✶☎✪❊✬✛✪✮✺✚✲❪❜✳✴▲✿❁❈❲✷✪✭❂✭✺✚✹✳✪●❛◗✯✮✹❄✷❖●✶☎✲✵✺✼✪✾❃★✬❝✷✯✭❃★✱❲✺✚❃✠✯✭✿✳✪❊❃✚❛●✶☎✪❊✬✛✪✖✺✚✲❪❜✳✺✚✲❉✴✵✪●❘❡❞❪✯
❢ ❳✣❣☎❤✝✐✳❥❱❦❚❄✽✳✷✺✚❈✣✬✮✴▲✶✼✯❧✱✳❈✠✪❦♠✭✺✚✹✳✴❉✺✚✹✾✽✣✺♥✿❁✺✫✲✵✯❍✺✼✹✳✺✚❈✣❂❲✷❴ ✯❧✶✼✴❉✹❧✷✺☎✽✣✴▲✶✼✯❍✿❁✺♦✲▲✯✭❃❪✱●✯❅❈✣✽✸✷❴ ✶☎❖●✲✵✯❊❃♣✶☎✪❊✹●❃q✽✠✴r✽✠❖✳P✭✺✚✹❁❏
✽✣✺✚❃✚❛✾✬s✷✯❊❃♥✲▲✯ ❢ ❳✣❣☎❤✝✐✳❥❱❦❚✛✿❁✺▼❈✡✯✭✿❁✴▲✯✭✶✼✴✚✷✪❊✹♣❛❊❃✣✺★✺✚t✾❖✳✴✵✲❉✴ ❑ ❈✡✯❅✹✎✶✼✪✭✹✖✲▲✯✎✉✠❱❅❨ ❢ ❳✣❣☎❤✡✐✳❥❱❅❚❵❂❊❈✠✯✈♠❭✴❉✽✠✯❊✶☎✴✵✪✭✹●✯✭✲
✿❁✺✇✲✵✯❊❃❵✬✖✯❊❃✣✯❊❃✥✺✚✹s✯❅✽✣❈✡✯✭✶✼✶✼✴✚✷✪❊✹♣❛♥P①✲▲✯②✺✚❃◆✽✣❈✠✺✼✲✵✲✵✯✻✬✮✯✭✹✾✽✣✴✵✺✼✹✳✺✇❖✳✹●✯②✶☎✴✵✺✼❈✣✽✠✯③✺✚❃◆✽✠✯ ❑ ✴✵✲❉✴▲✿✳✯✭✿s✿❁✺
✽✠✯❅✬✖✯❲④✹✳✪✖✪✖❈✠✯❊✿❁✴✵✪✎⑤⑦⑥❧❛❲t✾❖✳✺❫✺✚❃❄✿❁✺✼✲❪✪✭❈✡✿❁✺✼✹❯✿❁✺✛⑧✮⑨②⑩✸❶✾❷q❸❫✶☎✬✇❘★❹▼✲❺✯❅❂✭✪✭✽✠✯✭❈✠❃✣✺❄✺✸❃q✽✠✺❫✬✮✺✚✶✚✯❦❏
✹✳✴✵❃✣✬✮✪✛✿✳✺❄✱✳❈✠✪❁✿❁❖●✶✚✶☎✴✸✷✪✭✹❻✿❁✺⑦✺✼✹●✺✼❈✠❂◗✷❴ ✯❼✱❲✪✭❈✫❆❇❖●❃◆✴✸✷✪✭✹❪❛❁P✎✿❁✺✚❃✣✱✳❖❧✷✺✸❃♦✿❁✺❋✱●✯❊❃✣✯✭❈♦✱❲✪✭❈❧❖✳✹●✯✥✺☎✽✡✯❅✱●✯
✿❁✺❻❽❅✐r❽✾❩❦❚◗❾❿❣✎❳✣❱➁➀✼❩❅❛➂✺✚✹①t❊❖●✺✛✲▲✯✰✺✚❃◆✽✣❈✠✺✼✲✵✲✵✯✰❃✣✺✛✺✚✹❁❆❇❈✈✷❴ ✯➃P③❃✣✺✮✺☎➄❁✱●✯✭✹●✿❁✺✮✺✼✹✳✪❊❈✣✬✮✺✚✬✛✺✚✹✾✽✣✺✭❛❪✪❭✶✼❖❁❏
❈✣❈✠✺✥✲▲✯➅❨✛➆●❣☎❳✝❾➁❣⑦✿❁✺✛✲✵✯❻✺✚❃◆✽✣❈✠✺✼✲✵✲✵✯➃t❊❖●✺✛✿❁✺✚✱◗✺✚✹●✿❁✴✵✺✼✹●✿✳✪✰✿❁✺✛✲▲✯✎✬✖✯✭❃✠✯❻✿❁✺✛✲▲✯❻✺✸❃q✽✠❈✣✺✚✲❉✲▲✯✎✱✳❖●✺✚✿❁✺
✽✣✺✼❈✠✬✮✴❉✹◗✯❅❈▼✶☎✪❊✬✮✪●➇
❙▼✹●✯✖❣✼❚❲❩❦❚➈❩✥➉✼❬❉❩❦❚➈✉✡❩❦❛❭✶☎✪✭✬✮✱✳❖●✺✚❃◆✽✠✯⑦✱✳❈✠✴❉✹●✶✼✴❉✱◗✯❅✲✵✬✛✺✚✹✾✽✣✺❧✱◗✪❊❈❀✹❄✷❖●✶✼✲❉✺✚✪❊❃■✿❁✺★❜✳✺✚✲❉✴✵✪❅❏❿➊✛➋✂✪❼✶✼✯❅❈✣❏

❑ ✪❊✹✳✪❅❏✡⑩✸➌✎✪✰❜●✴❉✺✚❈✣❈✠✪❅❏q➍❅➎✾➏★✴✵✹✳✬✮✺✼❈✡❃◆✪✾❃❍✺✚✹②❖●✹③✬✖✯❅❈❼✿❁✺✮✺✚✲❉✺✸✶✝✽✣❈✠✪✭✹●✺✚❃⑦✲❉✴ ❑ ✺✼❈✡✯✭✿❁✪✾❃✼➐♣✺✚✲♥❃◆✴▲❃◆✽✣✺✼✬✖✯
✺✚❃◆✽◗✷✯✥✯✥✽✣✺✚✬✮✱◗✺✚❈✠✯❅✽✣❖✳❈✡✯✭❃♦✺✼✹✾✽✣❈✠✺✥⑩✸❶✭➑▼P❯⑩✸❶✭➒✼➓✚➔→P✖✿❁✺✚✹●❃◆✴▲✿✳✯❊✿❁✺✚❃✫✺✼✹✾✽✣❈✠✺✛⑩✚❶✭➣❍P✇⑩✚❶✭↔❍❂✭✬❻↕❦✶✼✬✛➙❊❘
❙▼✹●✯②❣✝❤✝❾➛❳✣❣☎❬➜❬✵❩✰➝❊❣✮❚❲❣✼➆❁❾➛❳✣❱❦❚➈❣✝❤✝❛◗✶✼✪✭✬✮✱✳❖✳✺✸❃q✽✡✯✎✺✚✹➅❖✳✹✻➞❊➞✾➟➠✱◗✪❊❈❄✲✵✪❊❃❍✹✳✺✼❖❁✽✠❈✣✪❊✹✳✺✚❃❍❈✣✺✚✬✖✯❦❏

✹✳✺✼✹✾✽✣✺✸❃❧✿❁✺✚❃✣✱✳❖❧✷✺✸❃✫✿✳✺⑦✲▲✯✛✶☎✪✭✹❭♠❊✺✼❈✡❃◆✴✸✷✪✭✹✎✿❁✺⑦✲✵✪❊❃❡✱✳❈✠✪❅✽✣✪❊✹✳✺✚❃✫P✎✺✚✲❉✺✸✶✝✽✣❈✠✪✭✹●✺✚❃✫✺✼✹➃➡◆❛✳✯❫✹✳✺✚❖❁✽✣❈✠✪✭✹●✺✚❃
✱◗✪❊❈❵✺✚✲✫✱✳❈✠✪❁✶☎✺✸❃◆✪➅✿❁✺✰✿❁✺✚✶✚✯❅✴✵✬✮✴❉✺✚✹❊✽✠✪ ❑ ✺☎✽✠✯✻✴❉✹❭♠❊✺✼❈✡❃◆✪✎➢➃➤➦➥❊➧➩➨➭➫❯➤➲➯②❆❇✪✭❈✠➳✚✯❊✿❁✪➅✱❲✪✭❈❵✲✵✯
✶☎✪✭✬✮✱✳❈✠✺✚❃✣✴✸✷✪✭✹❻❈✠✺✚❃✣❖✳✲❉✽✠✯✭✹❊✽✠✺❼✿❁✺❼✲✵✯✛❂❊❈✠✯✈♠❊✺✚✿✳✯❊✿➵❘
➸❭✴★✲✵✯②✬✖✯✭❃✠✯③✺✚❃✖❃✣❖❁➺◗✶☎✴✵✺✼✹✾✽✠✺✼✬✮✺✼✹✾✽✣✺❯✯✭✲r✽✡✯✳❛❡✲✵✯②✺✚❃◆✽✣❈✠✺✼✲✵✲▲✯➅✽✠✺✼❈✠✬✛✴✵✹●✯➻✶☎✪❊✬✮✪③❖✳✹➼❩✚❽❅➆✝➀✼❣✼❳✣❱

❚❲❣❿❽❅❳✠❱❦❛❺✺✼✹➽t✾❖✳✺✎✲▲✯❯✶☎✪❊✹❊✽✠❈✠✯❊✶✼✶✼✴✚✷✪❊✹✻❂✭❈✡✯✈♠❭✴r✽✡✯✭✶✼✴❉✪❊✹●✯❅✲■❈✠✺✚✿❁❖●✶✼✺✖✺✼✲♦✽✠✯❅✬✖✯❲④✹✳✪➅✿❁✺✖✲▲✯❯✺✚❃◆✽✣❈✠✺✼✲✵✲✵✯✇✯
❖✳✹➾✲❿✷❴ ✬✮✴❉✽✣✺✇✽✠✯✭✲❄t✾❖✳✺✻❃✣❖❝♠✭✺✚✲❉✪❁✶☎✴▲✿✳✯❊✿s✿✳✺➅✺✚❃✠✶✼✯✭✱◗✺❯✺✸❃✖✴❉❂❊❖●✯❅✲❄✯➻✲✵✯①♠❊✺✼✲✵✪❁✶☎✴▲✿✳✯✭✿❝✿❁✺❯✲▲✯①✲✵❖✳➳✭❛
✿❁✺❯✬✮✪❭✿✳✪➽t❊❖●✺❯✹✳✴▼✲✵✪❊❃✛❆❇✪❅✽✠✪✭✹✳✺✸❃✖✱✳❖✳✺✸✿❁✺✼✹❝✺✸❃✣✶✚✯❅✱●✯✭❈✚❘➾➚♦❃◆✽✣✺❯❈✡✯✭✿✳✴❉✪◗❛♦✲✵✲✵✯✭✬✮✯❊✿❁✪❝❳✣❩✭➝❅✐✂❱➪➝❊❣
➶➈✉✡➹❭➘♦❩❦❳✝❾❇➴☎❤✼✉✠➹❁✐➜❬❉➝✰⑤⑦➷✸❛❀✿❁✺✼➺●✹✳✴▲✿❁✪➅✱❲✪✭❈❵➬❫➮✃➱➅↕❦⑤❋➷✖❐❒➱✰❮☎❰✈↕❅➌✳❛➂✪ ❑ ✴✵✺✼✹➪⑤⑦➷✎❐Ï➌❅➬❫➮Ð↕❅❮☎❰❅❛
✿❁✪✭✹●✿✳✺✛➬❒✺✚❃⑦✲✵✯✰✶☎✪❊✹●❃◆✽✠✯❅✹✾✽✠✺✛✿❁✺✛❂✭❈✡✯✈♠❭✴r✽✡✯✭✶✼✴✚✷✪❊✹♣❛➈➮ÑP❯➱Ò❃◆✪❊✹✻✲▲✯✭❃⑦✬✖✯✭❃✠✯✭❃⑦✿❁✺✮✲✵✯➃✺✚❃◆✽✣❈✠✺✼✲✵✲✵✯
P➻✿❁✺❻❖●✹●✯➅✱●✯✭❈◆✽✈✷❴ ✶☎❖✳✲▲✯✇✿❁✺❻✱✳❈✠❖✳✺ ❑ ✯✳❛■❈✠✺✚❃✣✱◗✺✸✶✝✽✣✴✵♠❦✯❅✬✮✺✼✹✾✽✠✺✭❘✻➚♦✲♥✽✣✴✵✱❲✪Ó⑩❻✿❁✺✰✶✼✯❊✿★✷✯❅♠❊✺✼❈❫✿❁✺➃✲✵✯
✺✚❃◆✽✣❈✠✺✼✲✵✲✵✯✻❚❲❱❦❳✝❨✖❩❦❬➈✶☎✪❊✹③t✾❖✳✺✛✺✼✬✮✱❲✺✼➳✚✯✭✬✮✪❊❃⑦✪❁✶☎❖✳❈✠❈✣✺❵❂✭✺✚✹✳✺✼❈✡✯❅✲✵✬✮✺✼✹✾✽✣✺✛✶☎❖●✯✭✹●✿❁✪✰✲✵✯❻✬✮✯❊❃✣✯✰✿❁✺
✷✺✚❃◆✽✠✯❋✺✸❃♦✿❁✺✚✲●✪✭❈✡✿❁✺✚✹✮✿✳✺❍✬✖✯❅❂❊✹✳✴r✽✠❖●✿✖✿❁✺❫➆❁❚➈❩❧✬✖✯✭❃✠✯❼❃◆✪❊✲✵✯✭❈♦➮➽⑥❧❛✾✺✼✲●✽✣✴✵✱◗✪✮➌❋✶☎❖●✯✭✹●✿❁✪❫✺✸❃♦✿❁✴✵✺✼➳

\documentclass[universal,frame]{classics}

\cellwidth4pc

\cellheight4pc

\cellnum10

...

Figure 10: A square page with type area
determined using universal option.

Cropmarks The following options define the kind
of cropmarks to be printed. If any, information
about the document will be printed on top of the
page. It includes the file name, date, TEX page num-
ber, i.e., in case of \frontmatter material, and page
index number, which starts with #1 and is consec-
utively incremented.

camera|frame|nocrop The default is camera. If
the user is playing with the parameters, frame
can give a better idea of the layout. It is useful
to have no crop-marks (nocrop) if printing in
a physical page whose dimensions are equal to
the page defined.

Predefined fonts Finally, some shortcuts for load-
ing Palatino, Times, and Utopia PostScript fonts:

cm|palatino|times|utopia The default option is
cm, but believe me, with palatino, the ternary
canon looks great; and for Gutenberg’s Bible
style, the compactness of utopia is ideal for
the narrowness of the columns.

Parameters The following parameters are used by
all page layout options except for universal, whose
paper dimensions are determined by \cellwidth,
\cellhight, and the grid constructed in terms of
\cellnum.

\classicswidth〈dimen〉 Sets the width of the pa-
per. By default it is set to 42 pc, giving 42 lines

TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting 15

Pablo Rosell-González

�✂✁☎✄✆✁✞✝☎✟✡✠☞☛✍✌✍✌✍✎✆✏✞☛✆✏✞✑✒✠✔✓✖✕ ✎✗✓✘✠✔✙✞✁☎✚✍✛✒✓✘✠✢✜✣✓

✤✦✥★✧✩✥✫✪✭✬✯✮✱✰✳✲✗✪✴✲✆✰✶✵✥★✷✩✸✗✮✹✸✗✧✩✸✗✷✻✺✞✪✭✮✽✼✾✸✗✮✯✿✻✪★❀❁✰✳✼❂✸✶✪✭✮✽✼✾✸❄❃❅✸✗❆☎✧✩✰✱✥✴✷✾✸✖❀❇✲✆✥★✷✽❀❈✰✳✼❂✸✗❆✞✪✭❆☎✸✗✧✩✥✻❀
✸✗✮❉✬✾❆❊✥✴❋✾✮✹✸✗✧✡✪✒✼❂✸●✮✹✪✴❀❄✸✖❀❈✺❊❆☎✸✗✮✹✮✳✪★❀❍✼✾✸✫✷✾✸✖■❂✺❊❆☎✥★✷✾✸✶❀❍❏❑✮✳✪★❀▲✮✹✪★✧✩✪✴✼✾✪★❀❄✸✗✷✯✪★✷✯✪★❀❍❋✾✮✹✪★✷❂▼
✲✗✪★❀✖◆❁❖❄✷✯✪P✸✶❀◗✺☎❆❊✸✖✮✱✮✳✪❑❘❚❙❱❯✍❲✡❳❱❨❂✲✗✥★✧✩✥●✷❩■✾✸✶❀◗✺☎❆❊✥✩❀❊✥★✮❬✬✾❆☎✥❂✼❂■✯✲✆✸❭✸✖✷✾✸✗❆☎✿✽✵❪ ✪✘✬✯❆❊✰✹✷✯✲✆✰✹✬✯✪★✮❫▼
✧P✸✖✷✻✺❊✸✫✬❚✥★❆▲✮✹✪✡❃❅■✯❀❈✰✶✵✥★✷❴✼✾✸✫✷❵✵■✯✲✗✮✱✸✖✥✴❀❍✮✱✰✹✿★✸✖❆❊✥✻❀✗❛✯✲✗✥★✧✩✥✒✸✖✮❝❜✾✰✳✼❂❆❚✵✥★✿✴✸✗✷✾✥✽❛✯✪✡✷❵✵■✯✲✗✮✱✸✖✥✴❀
✧❞✵✪✴❀✩✬✽✸✶❀❊✪✴✼❂✥✴❀✖❛❇✲✗✥★✧✩✥❡✸✗✮✣❜✾✸✖✮✱✰✹✥✯◆❣❢❤✪❥✐❚❯☎❦✍❧✍♠✾♥❙❱❘❡✺✾✵✸✗❆☎✧✩✰✹✲✖✪❴✬✾❆☎✥❱♦★✸✖✷✾✰✹✸✗✷✻✺❊✸♣✼❂✸♣✮✹✪
✸✗✷✾✸✖❆❊✿❚✵❪ ✪q✲✗✰✱✷r✵✸✆✺☎✰✹✲✖✪❴✼❂✸s✮✳✪★❀●✬✯✪★❆❈✺t✵❪ ✲✗■✾✮✳✪★❀✘✲✗✥★✷✯❀❈✺❊✰✱✺❊■✾❏✴✸✗✷✻✺❊✸✶❀✗❛❁✧❣✵✪✴❀✘✮✳✪♣✐❚❯☎❦✍❧✍♠✾♥❙❱❘❡✼❂✸
❆☎✪✴✼❂✰✹✪✴✲✆✰✶✵✥★✷✉❛❩❀❊✸▲✸✶✈✴■✯✰✱✮✹✰✱❋✯❆☎✪★✷s✲✆✥✴✷s✮✳✪❑✇✞❙❱❲❍✐❚❯☎❦✍❧✍♠✾♥❙❱❘✩✿✴❆☎✪t♦❩✰✱✺☎✪★✲✗✰✱✥✴✷✯✪✭✮✽✼❂✸▲✮✳✪★❀①✧✡✪★❀☎✪★❀
✸✗✷②✪✭✺❊❆✞✪★✲✖✲✆✰✶✵✥★✷✉❛✻❏✡✮✹✪✫✸✖❀❈✺❊❆☎✸✗✮✹✮✹✪✫✧✡✪✭✷✻✺❊✰✹✸✗✷✾✸❵■✾✷✯✪P✲✆✰✹✸✗❆❊✺☎✪✫✸✖❀❈✺☎✪★❋✾✰✱✮✹✰✳✼✾✪★✼✒✼✾✸❍✺✞✪✭✧✡✪❚③✷✾✥
✥✡❆☎✪✴✼❂✰✱✥✡④❭⑤r❛✽✈✻■✾✸⑥✸✶❀❄✼❂✸✖✮✉✥★❆✞✼❂✸✗✷q✼❂✸●⑦✩⑧⑩⑨✶❶✻❷◗❸✘✲✆✧♣◆✦❹❍✮❝✪✭✿✴✥✭✺✞✪✭❆✞❀❈✸▲✸✖❀❈✺❊✸✘✧✩✸✖✲✖✪❱▼
✷✾✰✹❀❊✧✩✥❴✼❂✸✡✬✾❆☎✥❂✼❂■✯✲✗✲✗✰✖✵✥✴✷❺✼✾✸✡✸✗✷✾✸✖❆❊✿❚✵❪ ✪s✬✽✥✴❆⑥❃❅■✯❀❊✰✖✵✥✴✷✉❛❤❏❺✼❂✸✖❀❊✬✾■r✵✸✖❀❭✼❂✸✡✬✯✪✴❀❊✪★❆⑥✬✽✥✴❆
■✾✷✯✪❑✸✆✺✞✪✭✬✯✪♣✼❂✸s❻★♠❫❻✴❳✭❘✯❼❽❦✡❯❊❙◗❾✗❳❱❛❉✸✗✷❿✈✻■✾✸✩✮✹✪❑✸✶❀◗✺☎❆❊✸✖✮✱✮✳✪♣❀❈✸✩✸✗✷✾❃❅❆✶✵❪ ✪②❏❥❀❈✸✩✸✗➀❩✬✽✪✭✷✯✼❂✸
✸✗✷✾✥✴❆❊✧✩✸✗✧✩✸✖✷✴✺☎✸★❛✽✥❩✲✗■✾❆☎❆❊✸✘✮✳✪q❲P➁✯❦✆❯✍❼❽❦✣✼❂✸●✮✹✪✒✸✖❀❈✺❊❆☎✸✗✮✹✮✹✪✡✈✻■✾✸P✼❂✸✗✬❚✸✗✷✯✼✾✰✱✸✖✷✯✼❂✥s✼❂✸●✮✹✪
✧✩✪✴❀❊✪✩✼❂✸❭✮✳✪✩✸✖❀❈✺❊❆☎✸✗✮✹✮✹✪●✬✾■✾✸✶✼❂✸❭✺❊✸✖❆❊✧✩✰✹✷✯✪✭❆❄✲✗✥★✧✩✥✯➂

❖❄✷✯✪✩❦✆❘➃❳❱❘➃❳✘➄✆❨✹❳❱❘❚✇✞❳✭❛★✲✆✥✴✧P✬✯■✾✸✖❀❈✺☎✪▲✬✾❆☎✰✱✷✯✲✗✰✱✬✽✪✭✮✹✧P✸✖✷✻✺❊✸❇✬❚✥★❆➅✷❵✵■✽✲✆✮✹✸✗✥✴❀❉✼❂✸①❜✾✸✗✮✹✰✹✥✭▼
➆②➇ ✥✩✲✗✪★❆❊❋❚✥★✷✯✥✭▼✞⑨✶➈❵✥✫❜✯✰✱✸✖❆❊❆☎✥✭▼◗➉✭➊✻➋❉✰✱✷✾✧✩✸✖❆☎❀❊✥✴❀✦✸✗✷✒■✯✷s✧✡✪✭❆r✼❂✸❵✸✗✮✹✸✖✲✍✺☎❆❊✥✴✷✾✸✖❀✦✮✹✰✱❋❚✸✗❆✞✪❱▼
✼❂✥✴❀✖➌❬✸✗✮➅❀❈✰✳❀❈✺❊✸✗✧✡✪s✸✖❀❈✺✽✵✪❑✪✡✺❊✸✖✧✩✬✽✸✖❆☎✪✭✺❊■✾❆✞✪★❀❍✸✗✷✻✺❊❆☎✸s⑨✶❶★➍✘❏❿⑨✶❶★➎✗➏✖➐➑❏q✼❂✸✖✷✯❀❈✰✳✼✾✪✴✼❂✸✖❀
✸✗✷✻✺❊❆☎✸✩⑨✖❶★➒❵❏⑩⑨✖❶★➓❵✿✴✧✒➔✭✲✆✧✩→✭◆

❖❄✷✯✪P❦✍❧✍❼➣❯❊❦✆❨✂❨✹❳✘↔★❦❄❘❚❦✗➁❂❼↕❯❊❙✭❘❚❦✆❧✍❛t✲✗✥★✧✩✬✾■✾✸✶❀◗✺✞✪❄✸✖✷✫■✾✷P➙★➙✻➛➜✬❚✥★❆❉✮✱✥✻❀❤✷✯✸✗■❂✺☎❆❊✥✴✷✾✸✖❀
❆❊✸✖✧✩✪★✷✾✸✗✷✻✺☎✸✖❀➝✼❂✸✶❀❈✬✯■①✵✸✖❀❇✼❂✸❄✮✳✪⑥✲✆✥★✷❩♦✴✸✗❆✞❀❈✰✶✵✥★✷✩✼❂✸❄✮✹✥✴❀❁✬✯❆❊✥★✺❊✥★✷✯✸✖❀➅❏P✸✗✮✹✸✖✲✍✺☎❆❊✥✴✷✾✸✖❀➝✸✗✷✒➞◗❛
✪❍✷✾✸✖■❂✺❊❆☎✥★✷✯✸✖❀❉✬✽✥✴❆➅✸✗✮❩✬✾❆☎✥❩✲✗✸✖❀❊✥▲✼❂✸✣✼❂✸✶✲✗✪★✰✱✧✩✰✹✸✗✷✻✺❊✥❵❋✽✸✗✺☎✪▲✰✱✷❩♦✴✸✗❆✞❀❈✥✦➟❁➠✩➡✴➢❥➤➦➥①➠✡➧
❃❅✥★❆☎➨✖✪★✼✾✥●✬❚✥★❆✣✮✳✪✡✲✆✥✴✧P✬✯❆❊✸✶❀❈✰✶✵✥★✷②❆❊✸✶❀❈■✾✮✱✺☎✪★✷✻✺❊✸⑥✼❂✸❭✮✹✪✩✿✴❆☎✪t♦✴✸✖✼✾✪✴✼❬◆

➩❩✰❩✮✹✪❍✧✩✪✴❀❊✪❍✸✖❀➅❀❊■❂➫✽✲✆✰✹✸✗✷✻✺☎✸✗✧✩✸✗✷✻✺❊✸r✪✭✮✱✺☎✪✯❛t✮✹✪▲✸✖❀❈✺❊❆☎✸✗✮✹✮✹✪❄✺❊✸✖❆❊✧✩✰✹✷✯✪❍✲✗✥★✧✩✥❍■✾✷♣❳✗❻★➁❂➭
❾✗❦✆❯❊❙●❘➃❦➣❻★❯❊❙✭❛★✸✗✷✡✈✻■✾✸✣✮✳✪⑥✲✆✥✴✷✴✺☎❆☎✪✴✲✗✲✗✰✖✵✥✴✷●✿✴❆☎✪t♦❩✰✱✺☎✪★✲✗✰✱✥✴✷✯✪✭✮✻❆☎✸✖✼❂■✯✲✗✸✣✸✗✮❂✺✞✪✭✧✡✪❚③✷✯✥✘✼❂✸✣✮✹✪
✸✖❀❈✺❊❆☎✸✗✮✹✮✹✪●✪✘■✾✷✒✮➯✵❪ ✧✩✰❫✺☎✸❍✺✞✪✭✮➃✈✴■✯✸▲❀❊■s♦★✸✖✮✱✥❂✲✗✰✹✼✾✪✴✼✡✼❂✸❵✸✖❀☎✲✗✪✭✬❚✸❍✸✶❀❇✰✹✿★■✽✪✭✮➃✪✘✮✳✪✘♦★✸✖✮✱✥❂✲✗✰❫▼
✼✾✪★✼✒✼✾✸❍✮✳✪✘✮✹■✾➨★❛❩✼❂✸❍✧✩✥❂✼❂✥P✈✴■✯✸❍✷✾✰❚✮✱✥✻❀❁❃❅✥★✺❊✥★✷✯✸✖❀✦✬✾■✾✸✖✼✾✸✗✷✒✸✶❀❊✲✖✪✭✬✯✪★❆✖◆❉➲❇❀❈✺❊✸❍❆✞✪★✼✾✰✱✥✽❛
✮✱✮✳✪✭✧✡✪★✼✾✥●❯❊❳✴↔❱♠➳❙P↔★❦❄➵➃✇✞➸❩➺❇❳✭❯✍❼✂➻✆❧✗✇☎➸❂♠✂❨✱↔❄④❭➼✶❛★✼❂✸✗➫✯✷✾✰✳✼❂✥❭✬✽✥✴❆➝➽✘➾➪➚q➔✭④❵➼r➶❣➚♣➹✆➘t➔✭➈❂❛
✥❵❋✯✰✱✸✖✷✩④❭➼✣➶➴➈★➽✘➾➴➔❱➹✆➘★❛★✼❂✥★✷✽✼❂✸❄➽➜✸✶❀➅✮✹✪❭✲✗✥★✷✯❀❈✺☎✪★✷✴✺☎✸✣✼❂✸✣✿★❆✞✪t♦❩✰❫✺✞✪★✲✆✰✶✵✥★✷❤❛❱➾➷❏✫➚
❀❈✥✴✷②✮✳✪★❀r✧✡✪★❀☎✪★❀r✼❂✸⑥✮✳✪P✸✖❀❈✺❊❆☎✸✗✮✹✮✹✪●❏②✼✾✸❵■✯✷✯✪✩✬✯✪✭❆❊✺t✵❪ ✲✗■✾✮✹✪●✼❂✸⑥✬✾❆☎■✾✸✗❋✽✪✾❛❂❆☎✸✖❀❊✬✽✸✶✲✍✺❊✰✹♦❱✪❱▼
✧P✸✖✷✻✺❊✸★◆❁➲❇✮❩✺❊✰✹✬✽✥✡⑨✣✼❂✸❄✲✖✪★✼✣✵✪★♦★✸✗❆➅✼❂✸✣✮✳✪❵✸✖❀❈✺❊❆☎✸✗✮✹✮✹✪P❘❚❙✭❯✍❲✩❳✭❨❱✲✆✥★✷✡✈✻■✾✸r✸✗✧✩✬❚✸✗➨✶✪✭✧✩✥✴❀
✥❩✲✗■✾❆☎❆❊✸✦✿★✸✗✷✯✸✗❆✞✪✭✮✹✧P✸✖✷✻✺❊✸✦✲✗■✯✪✭✷✽✼❂✥❍✮✳✪❍✧✡✪✴❀❊✪▲✼❂✸✡✵✸✶❀◗✺✞✪❄✸✶❀❉✼✾✸✗✮❩✥★❆✞✼❂✸✗✷●✼❂✸r✧✩✪★✿★✷✾✰✱✺❊■✽✼
✼❂✸②➁❂❘➃❳⑥✧✡✪★❀☎✪s❀❊✥★✮✳✪✭❆❵➾ ⑤ ❛➃✸✗✮❉✺❊✰✹✬❚✥♣➈s✲✆■✯✪★✷✯✼❂✥s✸✶❀▲✼✾✰✱✸✖➨●♦✴✸✖✲✆✸✶❀▲➾ ⑤ ❏q✸✗✮❝✺❊✰✹✬✽✥
➬ ✲✆■✯✪★✷✯✼❂✥❴✸✶❀✒⑨✶❶★❶♣✥❴✧❣✵✪★❀✘♦★✸✖✲✗✸✖❀P➾ ⑤ ➌❇✪✭✮✦✿★❆✞✪★✼❂✥❴✈✻■✾✸s✷✾✰✱✷✯✿①✵■✾✷❿✧✩✸✖✲✖✪✭✷✾✰✳❀❊✧P✥
✼❂✸❭✬✾❆❊✸✶❀❈✰✶✵✥★✷②✸✖❀✣✲✖✪✭✬✯✪★➨❵✼❂✸⑥✲✗✥★✷✻✺❊❆✞✪✭❆☎❆❊✸✶❀◗✺✞✪✭❆✦✮✹✪P✲✆✥✴✷✴✺☎❆☎✪✴✲✗✲✗✰✖✵✥✴✷✒✿★❆✞✪t♦❩✰❫✺✞✪★✲✆✰✹✥★✷✽✪✭✮➣◆❝❢❤✪
➫✯✿★■✾❆✞✪ ➆ ⑦♣✲✆✥✴✧✩✬✯✪✭❆✞✪q✮✹✥✴❀✫✺☎✪✭✧✡✪❚③✷✾✥✴❀●❆❊✸✖✮✹✪✭✺❊✰✹♦★✥✻❀✫✼❂✸②■✾✷✯✪⑩✿★✰✹✿✴✪✭✷✻✺☎✸✒❆❊✥★➮❈✪✾❛❁✷❩■✾✸✶❀◗▼
✺❊❆☎✥❡❀❊✥★✮➣❛①■✾✷✯✪❡✸✗✷✽✪✭✷✯✪⑩❋✾✮✳✪✭✷✯✲✖✪✾❛①■✾✷✯✪❡✸✖❀❈✺❊❆☎✸✗✮✹✮✳✪⑩✼❂✸q✷✯✸✗■❂✺☎❆❊✥✴✷✾✸✖❀✩❏➱■✾✷✃✪✭✿★■✭➮◗✸✗❆☎✥

\documentclass[a5,frame]{classics}

Figure 11: A5 (148 × 210 mm) page with A6 type
area obtained using a5 option.

of text in both ternary and gutenberg, if the
font size is set to 10 pt.

\classicsheight〈dimen〉 Sets the height of the pa-
per. If height is in terms of \classicswidth,
i.e., if page layout ternary or gutenberg is se-
lected, \classicsheight is ignored.

The following parameters are useful only for the
diagonal and ddiagonal options:

\classicsinmargin〈dimen〉 Sets the length of the
inner margin. For the ddiagonal design, the
outer margin is determined by the inner margin.

\classicsoutmargin〈dimen〉 Sets the length of the
outer margin. This parameter is only used by
the diagonal page layout.

For the universal page layout option:

\cellwidth〈dimen〉 Sets the width of the cell (see
figure 9).

\cellheight〈dimen〉 Sets the height of the cell.

The next parameter is needed by rosarivo (fig-
ure 8) and universal:

\cellnum〈count〉 If rosarivo is chosen, then both
\classicswidth and \classicsheight will be
divided by \cellnum to get the grid.

�✂✁☎✄✝✆✟✞✡✠☞☛✌✁☎✍☎✍☎✄✟✎✝✁✟✎✝✏☞☛✒✑✔✓ ✄☎✍✕☛✒✖☎✗✙✘☎✚✛✑✜☛✣✢✤✑

✥✧✦✩★✪✦✬✫✩✭✯✮✱✰✱✲✔✫✩✲✟✰✴✳✦✩✵✷✶✸✮✱✶✸★✪✶✸✵✺✹✡✫✩✮✼✻✽✶✸✮✼✾✺✫✩✿❀✰✱✻✽✶✴✫❁✮✼✻✽✶❃❂❄✶✸❅✡★✪✰❆✦❇✵✯✶✔✿❈✲✸✦✩✵❉✿✙✰✱✻✯✶✸❅✝✫❁❅✡✶✸★✪✦❇✿❊✶✸✮❋✭✯❅✡✦❁●
❍ ✮❆✶✔★✛✫☞✻✽✶✜✮■✫✩✿❏✶✔✿❑✹✙❅✡✶✸✮✱✮✱✫❇✿❏✻✽✶✜✵❉✶✸▲✽✹✡❅✙✦❇✵✯✶✔✿✤▼✬✮■✫✩✿❏✮■✫❁★✛✫❇✻✯✫✩✿✤✶✔✵❉✫❁✵◆✫✩✿ ❍ ✮■✫❁✵◆✲✸✫✩✿✔❖✤P❏✵❉✫☞✶✔✿❑✹✙❅✡✶✟●
✮❆✮■✫❘◗❚❙❁❯☎❱✪❲❁❳❉✲✟✦❇★✪✦☞✵❨▲✯✶✔✿❑✹✙❅✡✦☞✿❑✦❇✮❩✭✯❅✡✦✽✻✽▲❉✲✸✶❬✶✸✵✯✶✔❅✙✾❚✳❭ ✫✕✭❉❅✙✰✱✵❉✲✟✰✱✭❉✫✩✮❆★✪✶✸✵✺✹✡✶❬✭◆✦❇❅❊✮■✫✪❂❄▲❉✿✙✰✔✳✦❇✵✷✻✽✶
✵❀✳▲❉✲✟✮✱✶✸✦✺✿✤✮✱✰❆✾❇✶✸❅✡✦❇✿✔❪❉✲✟✦❇★❃✦✪✶✔✮❩❫✯✰■✻✽❅❚✳✦✩✾✩✶✔✵✯✦❉❪◆✫✪✵❀✳▲❉✲✟✮✱✶✸✦✺✿✤★❴✳✫✩✿✤✭❚✶✔✿✡✫✩✻✯✦❇✿✔❪❉✲✟✦❇★❃✦✛✶✔✮❩❫✯✶✔✮❆✰✱✦❉❖❛❵❩✫
❜ ❯✙❝✟❞☎❡✯❢❙❣◗❀✹✯✳✶✔❅✙★✪✰■✲✸✫❤✭✯❅✡✦❣✐✩✶✔✵✯✰❆✶✔✵✺✹✙✶❥✻✽✶✧✮✱✫❊✶✸✵✯✶✔❅✙✾❚✳❭ ✫❤✲✸✰❆✵❤✳✶✟✹✙✰■✲✸✫❊✻✽✶❦✮■✫✩✿❩✭❉✫❁❅✙✹✴✳❭ ✲✟▲❉✮✱✫❇✿❧✲✟✦❇✵❉✿♠✹✡✰♥✹✡▲✯▼✩✶✔✵✽●
✹✙✶✔✿✔❪✺★♦✳✫❇✿❥✮■✫ ❜ ❯✙❝✟❞☎❡✯❢❙❣◗❃✻✽✶❏❅✝✫✩✻✽✰■✫✩✲✸✰✔✳✦❇✵❧❪❇✿✙✶✤✶✔♣✺▲✯✰✱✮❆✰ ❍ ❅✝✫❁✵☞✲✸✦✩✵✛✮■✫☞q✡❙❁❱ ❜ ❯✙❝✟❞✝❡✯❢❙❁◗✕✾❇❅✡✫r✐❨✰❆✹✡✫❇✲✟✰✱✦✩✵❉✫✩✮
✻✽✶s✮✱✫❇✿✕★✛✫❇✿✙✫❇✿✜✶✔✵♦✫❁✹✙❅✝✫✩✲✸✲✸✰✔✳✦❇✵❧❪❥▼t✮■✫✉✶✔✿❑✹✙❅✡✶✸✮✱✮✱✫✷★✪✫✩✵✺✹✙✰✱✶✸✵✯✶s▲✯✵❉✫✉✲✟✰✱✶✸❅✙✹✡✫✈✶✔✿❑✹✡✫ ❍ ✰✱✮❆✰■✻✯✫✩✻♦✻✽✶
✹✡✫❁★✛✫❚✇✵✯✦✛✦✛❅✡✫❇✻✽✰✱✦☞①③②❤❪❚♣✺▲✯✶❬✶✔✿❀✻✽✶✸✮❩✦✩❅✝✻✽✶✸✵❘✻✽✶❃④✪⑤✉⑥✴⑦✺⑧♠⑨❬✲✟★s❖✤⑩❏✮❶✫❁✾✩✦✩✹✡✫✩❅✡✿✙✶❀✶✴✿♠✹✡✶❬★✪✶✔✲✔✫❣●
✵✯✰✱✿✙★✪✦❃✻✯✶❀✭✯❅✡✦✽✻✽▲❉✲✔✲✟✰✴✳✦✩✵❷✻✽✶③✶✸✵❉✶✸❅✡✾◆✳❭ ✫❸✭❚✦✩❅✧❂❄▲❉✿❑✰✴✳✦✩✵❩❪✽▼☞✻✽✶✔✿✙✭✯▲❤✳✶✴✿❦✻✽✶❈✭❉✫❇✿✙✫✩❅❦✭❚✦✩❅❤▲✯✵❉✫✜✶✟✹✝✫❁✭❉✫
✻✽✶❷❹❁❡♥❹✺❲❣◗◆❺❻❝☞❯✙❙❽❼✸❲❁❪❾✶✔✵t♣❇▲❉✶❃✮■✫✬✶✔✿❑✹✙❅✡✶✸✮✱✮✱✫✬✿✙✶❃✶✔✵✽❂❄❅r✳❭ ✫❿▼✈✿✙✶✪✶✟➀✽✭❉✫✩✵❉✻✽✶✪✶✸✵✯✦❇❅✙★✪✶✔★❃✶✔✵✺✹✙✶✩❪❩✦❨✲✸▲✽●
❅✙❅✡✶✜✮■✫➁❱❃➂❉❝✟❯☎❺❽❝③✻✽✶❃✮✱✫❷✶✔✿❑✹✙❅✡✶✸✮✱✮✱✫❿♣❇▲❉✶❃✻✽✶✔✭◆✶✔✵❉✻✽✰✱✶✸✵❉✻✯✦✬✻✽✶❃✮■✫☞★✛✫✩✿✡✫❷✻✽✶❃✮■✫❷✶✴✿♠✹✡❅✙✶✔✮❆✮■✫☞✭✯▲❉✶✔✻✽✶
✹✙✶✸❅✡★✪✰❆✵◆✫❁❅❏✲✟✦❇★✪✦❉➃

P❏✵❉✫✛❝✸◗❚❲❣◗➄❲✜➅✸❳❆❲❣◗➄q✝❲❣❪❨✲✟✦✩★✪✭✯▲❉✶✔✿❑✹✡✫③✭✯❅✡✰❆✵❉✲✸✰❆✭◆✫❁✮✱★❃✶✔✵✺✹✙✶❤✭◆✦❇❅✼✵❀✳▲❉✲✸✮❆✶✔✦❇✿❋✻✽✶✤❫✯✶✔✮❆✰✱✦❁●❻➆❃➇➈✦❸✲✸✫❁❅✙●
❍ ✦❇✵✯✦❁●✝⑥✴➉☞✦✬❫❉✰❆✶✔❅✙❅✡✦❁●♠➊❁➋✺➌✤✰✱✵✯★✪✶✸❅✝✿❑✦✺✿❊✶✔✵✉▲❉✵✈★✛✫❁❅❸✻✽✶✪✶✔✮❆✶✴✲☎✹✙❅✡✦✩✵❉✶✔✿③✮❆✰ ❍ ✶✸❅✝✫✩✻✽✦✺✿✸➍❧✶✔✮❥✿❑✰■✿❑✹✙✶✸★✛✫
✶✔✿❑✹◆✳✫✜✫✜✹✙✶✔★✪✭◆✶✔❅✡✫❁✹✙▲✯❅✝✫✩✿❦✶✸✵✺✹✙❅✡✶✜⑥✴⑦✩➎❏▼❘⑥✴⑦✩➏✸➐✔➑➒▼✛✻✽✶✔✵❉✿❑✰■✻✯✫❇✻✽✶✔✿✧✶✸✵✺✹✙❅✡✶❃⑥✔⑦✩➓❊▼s⑥✔⑦✩➔❊✾✩★❷→❣✲✸★❃➣❇❖

P❏✵❉✫✉❝☎❞☎❺↔❯✙❝✟❳✂❳✱❲✬↕❇❝✪◗❚❝✸➂✽❺↔❯✙❙❣◗➄❝☎❞☎❪◆✲✸✦✩★✪✭✯▲✯✶✴✿♠✹✝✫☞✶✔✵➁▲✯✵✷➙❇➙✺➛➜✭◆✦❇❅❀✮✱✦❇✿❊✵✯✶✸▲✽✹✡❅✙✦❇✵✯✶✔✿❊❅✙✶✔★✛✫❣●
✵✯✶✸✵✺✹✙✶✴✿❤✻✽✶✔✿✙✭✯▲❤✳✶✴✿✧✻✯✶③✮■✫❃✲✟✦✩✵❨✐❇✶✸❅✝✿❑✰✴✳✦✩✵☞✻✽✶③✮✱✦❇✿❛✭✯❅✡✦❁✹✙✦❇✵✯✶✔✿✧▼☞✶✔✮❆✶✴✲☎✹✙❅✡✦✩✵❉✶✔✿✧✶✸✵❿➝❑❪✯✫❬✵✯✶✔▲✽✹✙❅✡✦✩✵❉✶✔✿
✭◆✦❇❅✕✶✔✮✧✭✯❅✡✦✽✲✟✶✴✿❑✦➁✻✽✶✬✻✽✶✔✲✔✫❁✰✱★✪✰❆✶✔✵❇✹✡✦ ❍ ✶✟✹✡✫✷✰❆✵❨✐❇✶✸❅✝✿❑✦☞➞❿➟➡➠❇➢➥➤➧➦❘➟➩➨✉❂❄✦✩❅✡➫✔✫❇✻✽✦➁✭❚✦✩❅✕✮✱✫
✲✟✦✩★✪✭✯❅✡✶✔✿✙✰✴✳✦✩✵❷❅✡✶✔✿✙▲✯✮❆✹✡✫✩✵❇✹✡✶❸✻✽✶❸✮✱✫❃✾❇❅✡✫r✐❇✶✔✻✯✫❇✻➭❖

➯❨✰✤✮✱✫✉★✛✫✩✿✡✫✈✶✔✿✛✿✙▲✽➲◆✲✟✰✱✶✸✵✺✹✡✶✸★✪✶✸✵✺✹✙✶❘✫✩✮♥✹✝✫✯❪❛✮✱✫✉✶✔✿❑✹✙❅✡✶✸✮✱✮■✫➁✹✡✶✸❅✡★❃✰✱✵❉✫➳✲✟✦❇★✪✦✈▲✯✵➵❲✔❹❁➂☎❼✸❝✸❯✙❙
◗❚❝❻❹❁❯✡❙❣❪❶✶✸✵➸♣✺▲✯✶☞✮■✫❘✲✟✦❇✵❇✹✡❅✡✫❇✲✸✲✸✰✔✳✦❇✵✷✾✩❅✝✫r✐❨✰♥✹✝✫✩✲✸✰❆✦❇✵❉✫❁✮❋❅✡✶✔✻✽▲❉✲✸✶✛✶✸✮❦✹✡✫❁★✛✫❚✇✵✯✦➁✻✽✶✛✮■✫❘✶✔✿❑✹✙❅✡✶✸✮✱✮✱✫s✫
▲✯✵➺✮❻✳❭ ★✪✰❆✹✙✶s✹✡✫✩✮❀♣✺▲✯✶✷✿✙▲❴✐✩✶✔✮❆✦✽✲✟✰■✻✯✫❇✻♦✻✯✶➁✶✔✿✡✲✸✫✩✭◆✶❘✶✴✿✛✰❆✾❇▲❉✫❁✮❀✫➳✮✱✫t✐❇✶✸✮✱✦✽✲✟✰■✻✯✫✩✻❴✻✽✶❘✮■✫t✮✱▲✯➫✩❪

\documentclass[2346,frame]{classics}

\classicswidth40pc

\classicsheight40pc

\classicsinmargin4pc

...

Figure 12: A 40 × 40 picas page with 2–3–4–6
margins progression and 4 picas inner margin.

If universal is chosen, then the page dimen-
sions are obtained by multiplying \cellnum to
\cellwidth and \cellheight.

Finally, for twocolumn or gutenberg options the
separation space between columns is set by:

\classicscolsep〈dimen〉 This command is analo-
gous to \columnsep of the base classes in LATEX.

The defaults If classics is invoked without options,
i.e.,

\documentclass{classics}

then the option ternary will be the page layout,
10pt the font size, cm the font family, camera crop-
marks, and all book inherited options as described
in the ‘Generic options’ section.

Parameters are initialized in such a way that
whatever page layout is selected, it will look like the
ternary canon:

\classicswidth=42pc

\classicsheight=63pc

\classicswidth = 2/3\classicsheight

\classicsinmargin=56pt

\classicsoutmargin=112pt

\classicsinmargin = 1/9\classicswidth

=
42pc

9
=

42× 12pt

9
= 56pt

\classicsoutmargin = 2\classicsinmargin

16 TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting

Return to the classics

\cellwidth=56pt

\cellheight=84pt

\cellnum=9

\cellwidth = \classicsinmargin

\cellheight = 3/2\cellwidth

\cellnum× \cellwidth = \classicswidth

\cellnum× \cellheight = \classicsheight

\classicscolsep=37.33pt

\classicscolsep = 1/9(type area)

=
2/3\classicswidth

9
.

No matter what page layout option is chosen,
except for the ISO 216 system, if parameters are not
modified, the layout will be the ternary canon, or
Gutenberg’s Bible if twocolumn.

Moral of the story

A wider outer margin is quite useful not only to be

able to hold the book comfortably, but also to be able

to make notes or annotations, and not just for con-

troversial texts.1

1 Hermann Zapf, TUGboat, Volume 22 (2001), No. 1/2.
(However, in the XVIIth century, there was not enough mar-
gin space for Fermat to write the beautiful proof of his last
theorem.)

References

[1] Jorge de Buen Unna. Manual de diseño edito-

rial. Santillana, México, D.F., 2000.

[2] Michel Goossens, Frank Mittelbach, and
Alexander Samarin. The LATEX Companion.
Addison-Wesley, Reading, MA, USA, 1994.

[3] Donald Ervin Knuth. The TEXbook, volume A
of Computers and Typesetting. Addison-Wes-
ley, Reading, MA, USA, 1986.

[4] Leslie Lamport. LATEX: A Document Prepara-

tion System: User’s Guide and Reference Man-

ual. Addison-Wesley, Reading, MA, USA, sec-
ond edition, 1994. Reprinted with corrections
in 1996.

[5] Douglas Martin. An Outline of Book Design.
Blueprint, London, UK, 1989.

[6] Raúl Mario Rosarivo. Divina proporción ti-

pográfica ternaria. Buenos Aires, Argentina,
1948.

[7] Han Thé̂ Thành. Micro-typographic extensions

to the TEX typesetting system. PhD thesis,
Masaryk University Brno, 2000.

[8] Jan Tschichold. Ausgewählte Aufsätze über Fra-

gen der Gestalt des Buches. Birkhäuser, Basel,
Switzerland, 1987. Second printing.

[9] Adolf Wild. La typographie de la Bible
de Gutenberg. Cahiers GUTenberg, 22:5–16,
septembre 1995.

[10] Roberto Zavala Ruiz. El libro y sus orillas.
UNAM, México, D.F., third edition, 1995.

TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting 17

Digital illumination

Dr. Alun Moon

School of Informatics

University of Northumbria

Newcastle upon Tyne, UK

alun.moon@unn.ac.uk

Abstract

Donald Knuth has given us Digital Typography, and through METAFONT, Digital

Calligraphy ; this paper explores how these tools can be used for Digital Illumi-

nation. It follows from my interest as an amateur calligrapher in Celtic artwork.
Two examples of my work are in figures 1 and 2. Compare with a sketch of
an element from the Lindesfarne Gospels in 3 (Bain, 1989, pg. 67), which is the
destination I’m reaching for. This has been a very good exercise in learning to
write macros for METAPOST.

Figure 1: A cartouche with spiral inserts.

Some background

Celtic artwork in Britain covers the period from the
7th century BC through the 7th century AD. Dur-
ing that time examples can be found in stone carv-
ing, intricate metalwork, and, towards the end of
the period, in illuminated manuscripts. The Celtic
monastic scribes produced such masterpieces as The

Book of Kells and The Lindesfarne Gospels. Lindes-
farne itself is about 60 miles north of Newcastle; the
Gospels are thought to have been produced at Jar-
row on the south bank of the Tyne. These show a
highly developed artistic style, with very fine, intri-
cate detail. There are three main styles considered
here: knots, keypatterns, and spirals.

Knots and keypatterns can be drawn from block
elements treated as characters, and large carpet
pages built from these standard elements. However,
the Celtic scribes show a high degree of geometry
and geometrical construction in their work.

A knot can be described as one or more strands
that loop, cross and re-cross many times. Can the

Figure 2: A brooch inspired by elements of the
Tara brooch.

curves be described and then a METAFONT algo-
rithm used to split them up to generate the under–
over–under–. . . pattern?

A keypattern does have a base form that is then
tiled to form the page. The base pattern does have
a simple sequence of numbers that define it. A se-
quence such as (1, 1, 2, 2, 7, 2, 2, 1, 1) gives a pattern

such as This pattern can then be tiled .
Can these simple sequences be used to program

METAFONT to generate larger patterns?
Similarly, spiral patterns can be constructed us-

ing a pair of compasses. How can METAFONT’s ge-
ometrical programming be used as a digital pair of
compasses to create these beautiful patterns?

18 TUGboat, Volume 24 (2003), No. 1 — Proceedings of the 2003 Annual Meeting

Digital illumination

Figure 3: Sketch of a cartouche in the
Lindesfarne Gospels (2 in long).

Knotwork

Interlacing patterns of weaving cords is possibly the
best known and most widely recognised form of Celt-
ic artwork.

Given a set of curves, once the intersections are
known and sorted along the paths, drawing the in-
tersections is easy. For an array of paths p[], two
numeric arrays are needed. One holds the times of
the intersections p[]t[], the other a count of inter-
sections p[]t#. This way p1t3 is the 3rd intersec-
tion on the 1st curve, and p3t# is the number of in-
tersections on the 3rd curve. The intersections can
be found with the intersectiontimes operator in
METAPOST and METAFONT.

A function crossings takes a suffix parameter
and a text parameter. The suffix is the path for
which the crossings are to be found, and the text is
a list of paths to test for (see figure 4).

Intersection times The intersectiontimes op-
erator tends to generate points at the beginning of
the path. To iterate along the path a series of sub-
paths are used. Each one starts just past the last
intersection (time plus epsilon), up to the end of
the path.

There is a small problem using subpaths with
the intersectiontimes operator; the time returned
is the time for the subpath. The path z1..z2..z3..z4

has length 4, while the subpath [.75, 1.25] has length
2. Points have been added to the beginning and end
where there are not points of the original path. The
intersection time on the subpath (ts) can be con-
verted to a time on the full path as follows:

• if ts < 1, use ts to interpolate between the be-
ginning of the subpath (a) and the next point
on the curve (ceiling of a).

• if ts ≥ 1, add it to the last point on the curve
before the subpath (floor a).

For a simple knot the global intersection-times for
one of the paths is shown in figure 5.

vardef crossings@#(text others) =

save lastpt, tmp;

p@#t[0]:=0;

p@#t#:=0;

forsuffixes $=others:

numeric lastpt;

lastpt := epsilon;

forever:

numeric tmp;

(tmp,whatever)=

subpath (lastpt,length(p@#)-epsilon)

of p@#

intersectiontimes p$;

exitif (tmp<=0);

p@#t[incr p@#t#] := if(tmp<1):

tmp[lastpt,ceil(lastpt)]

else:

floor(lastpt)+tmp

fi;

lastpt := p@#t[p@#t#]+epsilon;

endfor

endfor;

sort.p@#t;

enddef;

Figure 4: crossings function.

Drawing the crossings The crossings are drawn
using the erase draw technique, as described in The

METAFONTbook (pg. 113). The erasing segment is
drawn between the midpoints of the sections on ei-
ther side of the crossing point, the line is then drawn
slightly longer. This avoids gaps in the lines where
the erasing began.

Examples With the crossing macros, any knot-
work pattern can be drawn, as long as there are the
paths p[] defined. There is one caveat, each path
must start so that its first crossing is over the path
it crosses. This makes all the crossing times the odd
numbers in the array of times.

The trefoil The trefoil is a simple knot using four
paths (figure 6). Some people claim it symbolises
the Holy Trinity, or wholeness (I like it because it is
the motif used for my wedding).

Border A common theme is a knotwork border,
a simple example is shown in 7 after (Bain, 1989,
pg. 29). Once the paths are specified, application
of the crossings and drawcrossings macros gen-
erate the knots.

Better knots Because a circular pen is used for
both erasing and drawing the lines, there is a limit
to how wide the line can be before the ends of the
strokes become visible.

TUGboat, Volume 24 (2003), No. 1 — Proceedings of the 2003 Annual Meeting 19

Dr. Alun Moon

0.51149

0.71165

1.28835
1.48863

Figure 5: Times for intersection points.

Figure 6: The trefoil.

A better method would be to generate the
points that form the end of each stroke. This can be
combined with the penpos and penstroke macros.
This requires a little more mathematics. Once the
intersection is known, a time on the path is needed
to give a point a given distance from the intersec-
tion.

Keypatterns

Keypatterns are a common border or filling element.
Usually the base element is a C or S spiral, which
is then repeated to fill the space. The edges use a
separate pattern that fills in around the basic shape.

Figure 7: A knotwork border.

Bain (1989) uses a numeric notation to describe the
core patterns, the inspiration for one approach.

S-spiral generation A sequence of numbers such
as (1, 2, 3, 4, 9, 4, 3, 2, 1) defines a curve; each num-
ber is the length of the segment. Each new segment
is drawn at right-angles to the last. Turning anti-
clockwise in the first half, where the lengths are in-
creasing. Clockwise in the second, where the lengths
decrease.

The macro is shown in figure 8. It maintains a
copy of the maximum length drawn, to test whether
to turn clockwise or anti-clockwise.

def keySspiral(text tail) :=

begingroup

save direct,lastpoint,maxlength;

pair direct,lastpoint;

direct := up rotated -90;

lastpoint := origin;

maxlength := 0;

origin

for p=tail: --

begingroup

direct := direct

rotated if (maxlength<=p):

begingroup maxlength := p;

90 endgroup

else:

-90

fi;

lastpoint := lastpoint + direct*p;

lastlength := p;

lastpoint

endgroup

endfor

endgroup

enddef;

Figure 8: S-spiral generator macro.

Tessellated curves The sequence (1, 2, 3, 4, 8, 4, 3,
2, 1) gives a curve that tessellates to fill a region
(figure 9). Typically a blank border surrounds the
keypattern; the clip operator in METAPOST serves
well to form the border.

Programmed variation A curve that can tessel-
late in such a way that it interlocks with itself (fig-
ure 10) can be generated by the sequence (1, 2, 3, 4,
9, 4, 3, 2, 1).

With METAFONT we have a powerful program-
ming tool that can vary the pattern as it is drawn,
in ways that the seventh century scribes could not
easily do. Figure 12 shows the border from figure
10 varying in intensity; figure 11 shows the width of
the line varying.

20 TUGboat, Volume 24 (2003), No. 1 — Proceedings of the 2003 Annual Meeting

Digital illumination

Figure 9: Space-filling keypattern.

Figure 10: Interlocking keypattern.

Figure 12 is also interesting as the scale of the
lengths (and pen width) is 1 pt. It looks fine on a
monitor, but may test the limits of a printer. META-
FONT allows even finer detail, limited only by the
resolution of the printer.

Spirals

Spirals are another signature element of Celtic art-
work. Meehan (1993b) shows how the spiral ele-
ments can be drawn using two, three or four offset
centres and a pair of compasses. METAFONT draws
three point paths (z0..z1..z2) as close to a circular
arc as possible (Knuth, 2000, pg. 128).

Given an initial point, a pair of centres, and a
number of turns, the spiral macro is a very simple
recursive function (figure 13). Although it could be
just as simple with a loop, swapping the centres over
is easier to do with the recursive call.

Figure 14 shows a cartouche inspired by fig-
ure 3. Each pair of spirals is joined by a path con-
necting the outer points. This path really should
follow a common tangent to the two curves forming
the outer end of the spiral. A macro is needed to

Figure 11: Keypattern varying with line width.

Figure 12: Keypattern varying with colour.

def spiral(expr a,b,$)(expr turns) =

$

.. $ rotatedaround(a, 90)

.. $ rotatedaround(a, 180)

if(turns>1):

& spiral(b,a,

$ rotatedaround(a, 180))

(turns-1)

fi

enddef;

Figure 13: Spiral macro.

Figure 14: Cartouche inspired by figure 3.

find the points on the two curves giving the common
tangent.

Some resources

Over the years I have found several books to be of
use. George Bain (Bain, 1989) is often cited as the
key work. He has collected a wide range of mate-
rial from the Gospels, Book of Kells, jewelry, arti-
facts and stone carvings. It doesn’t go into many
of the construction techniques, but is a very good
source of inspiration. Aidan Meehan has produced
a series of books (Meehan, 1993a; Meehan, 1993b),
which give a step-by-step approach and give some
good ideas as to the construction of the geometry.
Sheila Sturrock’s book (Sturrock, 2001) has a differ-
ent approach to building the keypatterns and clearly
shows how the borders develop.

Figure 15: Joined spirals.

TUGboat, Volume 24 (2003), No. 1 — Proceedings of the 2003 Annual Meeting 21

Dr. Alun Moon

Andy Sloss has two books with a radically dif-
ferent technique (Sloss, 1997a; Sloss, 1997b). He
enumerates all possible combinations of crossings,
characterised by the four entry and exit directions
of the two strands. These can then be laid out on a
grid. This would be eminently suitable for conver-
sion to a font (assuming enough characters). Per-
haps a task for the long winter evenings.

Finally

What new Illumination can be produced by a tool as
highly versatile as METAFONT? Can the transfor-
mations in Metafont implement conformal mapping
and be applied to patterns generated as above? Pre-
liminary experiments suggest it can, but the trick is
finding the mapping to use. If the patterns can be
described in a parametric form, can an Escher-like
tiling be achieved where the pattern changes across
the page? Again yes, but finding a shape that scales
and still fits together is difficult.

The so-called “Dark Ages” produced a flower-
ing of the work of Celtic scribes, culminating in the
“Golden Age” of the Scribes’ art. Knuth has given
us tools to usher in a Golden Age of Typesetting
and Digital Illumination.

References

Bain, George. Celtic Art: The Methods of Con-

struction. Constable and Company Ltd, 1989.
ISBN 0 09 461830 5.

Knuth, Donald. The METAFONTbook. Addison
Wesley, 2000.

Meehan, Aidan. A Beginner’S manual. Celtic
Design. Thames and Hudson, 1993a.
ISBN 0 500 27629 3.

Meehan, Aidan. Spiral Patterns. Celtic Design.
Thames and Hudson, 1993b. ISBN 0 500 27705 2.

Sloss, Andy. How to Draw Celtic Key Patterns.
Blandford, 1997a. ISBN 0 7137 2652 0.

Sloss, Andy. How to Draw Celtic Knotwork. Bland-
ford, 1997b. ISBN 0 7137 2492 7.

Sturrock, Sheila. Celtic Spirals and Other Designs.
Guild of Master Craftsman Publications Ltd,
2001. ISBN 1 86108 159 6.

22 TUGboat, Volume 24 (2003), No. 1 — Proceedings of the 2003 Annual Meeting

Abstracts —Publishing

Scientific publishing with pdfLATEX

Patrick W. Daly
Max-Planck-Institut für Aeronomie
daly@linmpi.mpg.de

Arne K. Richter
Copernicus Society
akrichter@copernicus.org

In many areas of science, 20–60% and even more
authors are applying LATEX when submitting their
manuscripts for publication in scientific magazines,
journals or book series. We therefore suggest
that scientific publishers should apply LATEX with
pdfTEX for

1. composing, editing and formatting articles in
any required document class and lay-out;

2. making use of the easy conversion to PDF for
mailing, proof-reading or uploading purposes;

3. taking advantage of PDF for e-publication on
the web and CD, as well as for printing on pa-
per by the print-on-demand or the computer-
to-plate technologies of digital printing.

All these advantages of LATEX+pdfTEX, from
manuscript submission to final production of a jour-
nal or a book, are demonstrated here with examples
from the scientific publications produced by the non-
profit publishing house “Copernicus”.

Typesetting nightmares

Hans Hagen
PRAGMA ADE

It does not take much for users (and customers) to
realize that TEX is a programming language. This
often results in the perception that you can do any-
thing you want, and make people believe that you
can do better than other, less open applications.
Combine this with the fact that developers seldom
admit that something cannot be done, and the in-
gredients of a typographic programming nightmare
are present.

The complication arises from the facts that:

• opposite to desktop publishing applications,
TEX sees a document as a sequence of content

• where TEX-based macro packages tend to or-
ganize fonts and measures, designers follow a
more random path

• where TEX loves structure, authors want to put
any thought on paper, being structured or not,
which results in not only interfering data, but
also in the wish to escape from TEX’s machinery

• one reason for choosing TEX is its ability to
typeset math, and typesetting that often con-
flicts with pure text typesetting

• TEX tries to do its best to typeset beautiful
paragraphs, but frequently a (not producible by
TEX) alternative is considered more beautiful or
adequate

This means that in order to fulfill the needs of
authors and designers, one sometimes has to bend
TEX’s rules and cook up rather complicated macros.
In this presentation I will discuss a couple of last
year’s (typo-)graphical programming nightmares.

TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting 23

LATEX in real-world math typesetting:

NFSS vs. NFNF

Mirko Janc
INFORMS

mirko.janc@informs.org

The New Font Selection Scheme (NFSS) in LATEX
enabled much more flexible managing of fonts. Han-
dling of math fonts and text fragments within math
was also enhanced. However, the available choice
of math fonts is too limited to satisfy standard re-
quirements of many major scientific publishers to set
math in virtually arbitrary fonts.

To meet such requirements for typesetting a
number of major journals and a considerable num-
ber of books that are heavy in math (from the point
of view of typesetting), we developed a strategy of
attacking the problem from two sides at the same
time. A new font-loading scheme, based on NFSS, is
employed in conjunction with custom-adapted math
fonts. Within math, the main focus is on fonts
intended to play the role of the cmmi* fonts from
the Computer Modern family (italic variables plus
Greek). Extensive work on kerning and spacing, as
well as enriching the math font families available,
was the key to allow complex math formulas to be
typeset easily in various font styles and to look good.

An additional twist comes from the common re-
quirement for special styles in section titles, table-
and figure captions, table body, abstract, etc. A typ-
ical example is to require the abstract to be all bold,
section titles to be bold sans-serif, whereas table-
and figure captions should be sans-serif bold-con-
densed. All of those elements can contain formulas.
Setting math in such circumstances can be tricky.
We show that our font scheme, combined with a sat-
isfactory solution to NFNF (Need For New Fonts)
can successfully accomplish the tasks.

A number of samples illustrate this font system
at work. We show a number of other enhancements
within this system, both on the font-loading side and
in the fonts themselves. Some other real-life situa-
tions in math typesetting that tend to be neglected
in academic discussions are also presented.

Using TEX to manage IT for a mathematics

congress

Ross Moore
Macquarie University
ross@maths.mq.edu.au

Just prior to this TUG conference, the ICIAM 2003
congress was held. This was a major interna-
tional congress attracting ≈ 2000 delegates from all
branches of mathematics — mainly applied, but a
good deal of pure mathematics was also represented.

As the author was responsible for the informa-
tion technology aspects of this congress, TEX-related
software served a major role throughout. It was
used, for example, with

• design and production of the congress web-site;

• publicity pages for the invited speakers;

• the abstract-submission process;

• online display of abstracts, in HTML and PDF;

• printed book of abstracts, program and
speaker/subject listings;

• conference volume, with full papers from the
invited speakers;

• slides of abstracts for all talks and minisym-
posia;

• conference CD, with the above items in both
HTML and fully-linked/bookmarked PDF.

In this talk we will look at some of this mate-
rial and discuss the TEXniques used in its production
and maintenance over more than 2 years leading up
to the congress itself. This will include aspects rele-
vant to LATEX, pdfTEX, LATEX2HTML, MathML, and
CGI scripting for web pages.

24 TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting

BibTEX yesterday, today, and tomorrow

Oren Patashnik
San Diego, CA

Abstract

This paper looks back at the last 20 years of BibTEX, and also looks ahead, if not
to the next 20 years, then at least to BibTEX 1.0.

Introduction

BibTEX is the bibliography program designed origi-
nally to accompany Leslie Lamport’s LATEX; it now
works with other incarnations of TEX, too. BibTEX
removes the tedium, and adds some flexibility, in
producing a reference list.1 When BibTEX creates
your reference list, it’s BibTEX, not you, minding
the minutiae like ensuring that your reference-list
entries are in the correct order, that every comma
is in place, and that the information is formatted
consistently across entries. Furthermore, a single,
simple, change of bibliography-style name lets you
convert your reference list from style A, which might
order the entries alphabetically, and spell out jour-
nal names in full, and list all authors as first-name
then last-name, to a completely different style B,
which might order the entries according to their or-
der of mention in the text, and abbreviate journal
names, and invert just the first author’s first and
last names.

This paper is an updated version of a paper [7]
from the 1994 TUG meeting in Santa Barbara. It
gives: a history of BibTEX to the present; the gen-
eral goals for BibTEX 1.0, which will be the frozen
version of BibTEX (just as TEX 3 is the frozen ver-
sion of TEX); some specific new features for achiev-
ing those goals; and the plan for releases of BibTEX
leading up to BibTEX 1.0. Before all that, however,
primarily for those who are unfamiliar with BibTEX,
comes a section that explains its rudiments.

Using BIBTEX

To use BibTEX, you’ll have your bibliographic in-
formation in a bibliography database, and, to make
use of that information, a few (LA)TEX2 commands
sprinkled throughout your (LA)TEX source file.

1 Throughout this paper, the term ‘reference list’ is used
generally to refer to what might also be called a ‘bibliography’
or a ‘list of sources’ or anything similar.

2 The term ‘(LA)TEX’ is used to mean either LATEX or plain
(or other variations of) TEX.

For example in a file mybib.bib (database file
names end with .bib) you might have an entry like:

@BOOK{knuth:tex,

author = "Donald E. Knuth",

title = "The {\TeX}book",

publisher = "Addison-Wesley",

year = "1984",

}

The @BOOK tells BibTEX the entry type. (The bibli-
ography style will instruct BibTEX on how to format
a BOOK entry type.) The knuth:tex is the database
key, which is a sequence of characters to be used as
the symbolic name for this entry. And the rest of
the entry comprises four 〈field〉 = 〈field-value〉 pairs
appropriate for a BOOK entry type. In general you
will have many such entries in a database file; you
might also have multiple database files.

And in your (LA)TEX source file you might have
a citation like

... in the \TeX{}book~\cite{knuth:tex} ...

The \cite command’s argument knuth:tex, called
a cite key, must match the corresponding database
key. (LA)TEX might typeset this \cite command as

. . . in the TEXbook [41] . . .

or

. . . in the TEXbook41 . . .

or

. . . in the TEXbook (Knuth, 1984) . . .

depending on the citation style. LATEX’s default ci-
tation style uses a number in brackets, and for that
citation style, together with an appropriate bibliog-
raphy style, the corresponding reference-list entry
might look like:

41. Donald E. Knuth. The TEXbook. Addison-
Wesley, 1984.

Besides the \cite commands, your (LA)TEX source
file will also have two BibTEX-related commands:

\bibliography{mybib}

\bibliographystyle{plain}

TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting 25

Oren Patashnik

The \bibliography command does two things: It
tells (LA)TEX to put the reference list at that spot in
your document, and it tells BibTEX which file(s) to
use for the bibliographic database, here just the sin-
gle file mybib.bib. The \bibliographystyle com-
mand tells (LA)TEX nothing, but tells BibTEX which
bibliography style to use, here the standard style
plain; bibliography style file names end with .bst,
thus the relevant file is plain.bst in this case.

So with your database file(s) and your (LA)TEX
source file structured appropriately, your citations
are formatted according to the citation style, and
your reference list is formatted according to the bib-
liography style.

To actually produce the typeset document, you
run (LA)TEX, BibTEX, (LA)TEX, (LA)TEX. The first
(LA)TEX run writes, to an .aux file, information for
use by BibTEX —which bibliography style to use,
which database file(s) to use, and which database
entries to include. The BibTEX run reads all that
information from the .aux file, reads the specified
database (.bib) file(s), formats the reference list ac-
cording to the instructions in the bibliography style
(.bst) file, and writes its output onto a .bbl file.
The next (LA)TEX run reads the .bbl file and incor-
porates the reference list into the document. The
final (LA)TEX run fixes the references into the refer-
ence list. Figure 1 shows the files that BibTEX uses.
The .blg file is BibTEX’s log file, in which BibTEX
records any warning or error messages.

To try using BibTEX with LATEX, put the six-
line BOOK entry shown on the previous page into a
file called mybib.bib, and then, into a file called
mypaper1.tex, put these six lines of LATEX:

\documentclass{article}

\begin{document}

The \TeX{}book~\cite{knuth:tex} is good.

\bibliography{mybib}

\bibliographystyle{plain}

\end{document}

Exactly how you run LATEX and BibTEX is system
dependent; on my system I issue four commands:

latex mypaper1

bibtex mypaper1

latex mypaper1

latex mypaper1

To try using BibTEX with plain TEX, create the file
mybib.bib as above, and then put into a file called
mypaper2.tex these seven lines of plain TEX:

\input btxmac

The \TeX{}book~\cite{knuth:tex} is good.

\medskip

\leftline{\bf References}

\bibliography{mybib}

BibTEX

.aux .bst .bib

.bbl .blg

❅
❅❅❘ ❄

�
��✠

✁
✁✁☛

❆
❆❆❯

Figure 1: BibTEX’s input and output files.

\bibliographystyle{plain}

\bye

To run mypaper2 through TEX and BibTEX:

tex mypaper2

bibtex mypaper2

tex mypaper2

tex mypaper2

The file btxmac.tex, which mypaper2.tex \inputs,
contains the macros that make BibTEX work with
plain TEX. Those macros are a standard part of
most TEX distributions, but if they’re not a part of
yours, you’ll have to go fetch a copy.

That’s a brief introduction to BibTEX. The fol-
lowing sources provide further details. Leslie Lam-
port’s LATEX manual [4] explains how to use BibTEX
with LATEX. In particular, section B.1 describes the
.bib-file format in detail. The file btxmac.tex [1]
documents its own use, with or without Karl Berry’s
eplain.tex package (for which the btxmac macros
were originally written). The “BibTEXing” docu-
ment [5], which is distributed along with BibTEX
itself, contains further hints for BibTEX users. The
“Designing BibTEX Styles” document [6], also dis-
tributed with BibTEX, explains the postfix stack-
based language used to write BibTEX bibliography
styles (.bst) files. The LATEX Companion (2nd edi-
tion) [2], by Michel Goossens, Frank Mittelbach,
et al., and Guide to LATEX [3], by Helmut Kopka and
Patrick W. Daly, summarize much of the informa-
tion in the sources above, and describe some of the
tools available for helping with BibTEX. BibTEX’s
standard bibliography styles, like plain, are based
on Mary-Claire van Leunen’s A Handbook for Schol-

ars [9]. That book is worthwhile reading for anyone
wanting to design a bibliography style from scratch.

History

Leslie Lamport patterned LATEX after a document
production system called Scribe [8], written by Brian
Reid in the late 1970s at Carnegie-Mellon Univer-
sity. One of Scribe’s basic tenets was that, to the
extent possible with a computer program, writers
should be allowed to concentrate on content rather

26 TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting

BibTEX yesterday, today, and tomorrow

than on formatting details. Or, as Reid so amusingly
put it:3

Not everyone should be a typesetter.

I think of LATEX as a fairly successful Scribification
of TEX —LATEX is almost as easy to use as Scribe
yet almost as powerful as TEX.

In any case, Scribe had become popular in cer-
tain academic circles, and Lamport decided that, to
make it easy for Scribe users to convert to LATEX, he
would adopt Scribe’s bibliography scheme in LATEX.
But TEX macros alone were insufficient in practice
to do all the things, like alphabetizing, that a bib-
liography processor needs to do; he decided instead
to have a separate bibliography program. That pro-
gram would manipulate the bibliographic informa-
tion in Scribe-like database files according to the
instructions programmed in a special-purpose style
language. The postfix stack-based language he had
in mind was to be powerful enough to program many
different bibliography styles.

My own work on BibTEX started in February
1983. Just for the fun of it, I went back and dug up
the original email:

15-Feb-83 0908

To: OP@SU-AI, tex82@SRI-CSL

Oren,

Leslie Lamport is working on a new

macro package for TeX82, and needs

someone to write a support program

or two. We are volunteering you. His

address is TEX82@SRI-CSL. Why don’t

you get in contact with him, and see

whether his requirements are within

the scope of what you’re willing to do.

This was described as a “three-week project”, and
the first time I gave this talk, at Santa Barbara
in 1994, I compared the “three-week project” to
the “three-hour tour” of the 1960’s American televi-
sion series Gilligan’s Island, in which an afternoon’s
harbor cruise became a shipwreck adventure lasting
years. (Many of us at that TUG conference really
did go on a three-hour harbor cruise.)

This year’s meeting was on the Big Island of
Hawaii, though, and it struck me that there’s an
even better metaphor for my work on BibTEX than
the Gilligan’s Island adventure: I started working
on BibTEX, it turns out, within days of when the
current eruptive phase of Kilauea began, in early
1983. And a volcano aptly describes my work on
BibTEX —a burst of activity, followed by a dormant
stretch. (2004 will be more active than dormant.)

3 — to a Bell Labs Computer Science Colloquium audi-
ence that included some troff true believers

But back to 1983. Over the course of the next
year and a half I implemented Lamport’s basic de-
sign, with a few enhancements. The first working
version of BibTEX (0.41) trudged forth in the sum-
mer of 1984. Lamport wrote, and Howard Trickey
modified, a bibliography style based on Mary-Claire
van Leunen’s suggestions in her Handbook for Schol-

ars [9]. Trickey’s modified version was to become
btxbst.doc, the template for BibTEX’s four stan-
dard styles plain, abbrv, alpha, and unsrt. (By
the way, these are called “standard” styles not be-
cause they are supposed to be some sort of stan-
dard, but because they are in the standard release
of BibTEX.)

The first public release of BibTEX, in March
1985, was version 0.98, for LATEX version 2.08. Sev-
eral upgrades, including one for LATEX 2.09, followed
later that year. Version 0.99, which added many
new features, was released in January 1988; two mi-
nor upgrades followed the next month, but BibTEX
itself has remained unchanged since then. The stan-
dard styles have been unchanged since March 1988.

In 1990 Karl Berry wrote some macros, for use
in his eplain.tex package, that made BibTEX us-
able with plain (and other versions of) TEX. He
and I modified the macros and released them as
btxmac.tex in August 1990, usable with or with-
out the eplain package. Several upgrades followed,
the last in March 1995.

The current versions are: 0.99c for BibTEX it-
self; 0.99b for btxbst.doc (the standard styles’ tem-
plate file — but version 0.99a for each of the four
standard styles); and 0.99k for btxmac.tex.

That’s for the software I’ve worked on. There
has, in addition, been work that others have done
to support BibTEX, especially in the last decade:

• software for the handling of database (.bib)
files (my personal database-handling preference
is the text editor Emacs’s BibTEX mode, but I
don’t recommend that others join the Emacs
religion just for that);

• the amassing of many database files for public
consumption, minimizing the amount of work it
takes to create new entries (Nelson Beebe has
been particularly prolific in that regard);

• software for generating new bibliography styles
automatically, without having to know details
of the somewhat arcane .bst bibliography-style
language (Patrick Daly’s custom-bib/makebst
package has gotten widespread use — more on
this later).

That brings us up to date.

TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting 27

Oren Patashnik

Goals

BibTEX has been very stable for some time now.
Software stability is nice; it helps others build tools
that augment the software. As suggested above,
many tools have grown up around BibTEX. The
popularity of (LA)TEX, however, has taken BibTEX
into places not anticipated, necessitating changes.
Here are some general goals for BibTEX 1.0:

• Easier nonstandard styles: The most frequent
requests I see are for new bibliography styles.
Creating a new bibliography style generally en-
tails programming in the .bst language, which,
for most users, is not an easy task. Patrick
Daly’s custom-bib/makebst package has made
it reasonably easy for ordinary user to create
new bibliography styles; for BibTEX 1.0 the sit-
uation will improve even more.

• More international: BibTEX has spread to the
non-English-speaking world. BibTEX 1.0 will
address associated issues.

• More fields of study: The original BibTEX users
were from the technical world of mathematics
and computer science. The BibTEX 1.0 stan-
dard styles will do more to accommodate those
in other fields, like the humanities.

• Enhanced sharing capabilities: There now ex-
ist huge .bib-file bibliographic databases, some
available to users world wide. BibTEX 1.0 will
make the sharing of those databases easier.

• Better documentation: The BibTEX 1.0 docu-
mentation will be more extensive.

• FroZEN: For even better stability, BibTEX 1.0
will be frozen. As with TEX 3.0, it will be up-
graded for bug fixes only.

Some of the features planned for implementing those
goals appear in the next section.

New features

Over the years I have accumulated a list of new fea-
tures and probable changes for BibTEX 1.0 and its
standard styles. The list below is certainly not ex-
haustive, but it contains the most important items.
Each one listed has a high probability of existing in
BibTEX 1.0.

• Software for generating customized bibliogra-
phy style (.bst) files: In Santa Barbara I had
claimed that there would be a Bibsty program
to do that, similar in spirit to the processing
that creates the four standard styles from the
current template file btxbst.doc, but with lots
more options. That Bibsty program, however,
would partly duplicate what Patrick Daly has

bibliography-style customization

BibTEX

.aux .bst .bib

.bbl .blg

❄

❅
❅❅❘ ❄

�
��✠

✁
✁✁☛

❆
❆❆❯

Figure 2: BibTEX 1.0 input and output files.

done with the custom-bib/makebst package.
So he and I have decided to collaborate for
BibTEX 1.0 on a system that will include the
options of his current code, along with some
things planned for the Bibsty program. This
system will have, among other options, an eas-
ily changed symbolic name for each string that
a bibliography style outputs to the .bbl file
directly (such as ‘editor’ or ‘volume’), making
it easier to, for example, convert bibliography
styles from one language to another. Figure 2
shows how the new style customization system
will fit into the scheme.

• Eight-bit input: Most current BibTEX imple-
mentations can handle 8-bit input; BibTEX 1.0
will guarantee, at a minimum, to support the
character-set conventions of TEX 3. In addi-
tion, BibTEX 1.0 may be able to accommodate
Unicode.

• Multiple bibliographies within a single docu-
ment: Many large documents contain several
bibliographies — one bibliography per chapter
for a book, or one per paper for a conference
proceedings. Several solutions have arisen for
handling such situations, but BibTEX 1.0 will
support multiple bibliographies directly.

• Enhanced sorting: The current BibTEX does
well with English, but doesn’t gracefully han-
dle certain unusual sorting conventions of other
languages, like Hungarian; BibTEX 1.0 will have
more powerful sorting capabilities for handling
them.

• Reference-list back pointers: BibTEX 1.0 will
provide a direct mechanism for indicating in a
reference-list entry where in the text that entry
was cited. This is a useful feature that I sus-
pect will become widespread now that our new
typesetting technology makes it painless.

28 TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting

BibTEX yesterday, today, and tomorrow

• An @ALIAS command: Suppose you have an en-
try in a database file that uses a different data-
base key, say knuth:tex, from the cite key you
prefer, say texbook; this might happen, for ex-
ample, if that entry is in a shared database file.
With BibTEX 1.0 you will be able to keep the
cite key and database key as is, as long as you
put a command like

@ALIAS{texbook = knuth:tex}

somewhere in your database.

• A @MODIFY command: With BibTEX 1.0 you
will be able to create a slightly altered version of
an entry. For example, you might want to add
a note field to an entry in a public database file
without having to repeat in your own personal
database file all the information in that entry:

@MODIFY{laws-of-the-game,

note = "Law~8 discusses restarts",

}

The @MODIFY command’s database key should
match the one from the public database.

• Distinguishing among identical database keys:
If you are using two different database files that
happen to use the same database key for differ-
ent entries, you will be able to specify which
entry you want by using a citation of the form

\cite{filename::database-key}

• A .bib-file extraction mode: BibTEX 1.0 will
have a mode that will let you extract just the
information you need into a small .bib file. For
example if you are submitting a paper to a jour-
nal that wants a .bib file in addition to a .tex

file, but the bibliographic database you are us-
ing for the paper is huge, you can use the ex-
traction mode to put just the entries you need
for the paper into a separate .bib file that you
can then send to the journal.

• A \bibtexoptions (LA)TEX command: Com-
munication from (LA)TEX to BibTEX 1.0 will
improve with this command.

• Extensions to the \cite command: Many ci-
tation styles aren’t handled very gracefully by
(LA)TEX’s current \cite command. BibTEX 1.0
and (LA)TEX will more directly support more
flexible \cite commands.

• Also appeared as: Sometimes a work appears
in two different forms, for example as a journal
article and then later in the author’s collected
works. BibTEX 1.0 will have a mechanism to
handle this.

• Name handling: BibTEX 1.0 will have enhanced
(but upward compatible) name processing, for
example for complicated Spanish surnames, and
for inverted-order Asian names.

• Standard-style changes: There will be lots of
additions to the BibTEX 1.0 standard styles,
allowing many more options.

• New fields: The standard styles will also include
a bunch of fields that are not now a part of
the standard styles, including day, isbn, issn,
keywords, eprint, translator, and url.

• New entry types: There will also be a few new
entry types, including @PERIODICAL and per-
haps @PATENT.

• .bst-language changes: There will be a few mi-
nor (but compatible) changes to the .bst lan-
guage.

• btxmac.tex update: These macros will be up-
dated so that the user interfaces to BibTEX 1.0
from LATEX and plain TEX are as similar as pos-
sible.

• Documentation: The “BibTEXing” and “De-
signing BibTEX Styles” documents [5, 6] cur-
rently distributed with BibTEX are neither as
widely known nor as complete as they could be.
For BibTEX 1.0, the main documentation will
be in a book, and will be much more thorough.
Among other things, it will include a .bib-file
grammar, so that those who are writing tools
to manipulate the database files can make their
software more robust.

Planned releases

2004 will see the release of an updated version of
the btxmac.tex macros. Probably toward the end
of the year will come a bug-fix version of BibTEX
0.99. (There are just a handful of actual bugs to
BibTEX itself, the most annoying being its mishan-
dling of URLs, which didn’t even exist when the cur-
rent BibTEX was released.)

There will be several beta releases of BibTEX
and its standard styles, leading up to 1.0; eventually
one of those beta releases will be declared to be 1.0
and frozen.

Until BibTEX 1.0 is finished, I will skim the
comp.text.tex newsgroup for BibTEX-related post-
ings, so it suffices to post there anything you think
I should see. In general that’s a good place to post
questions about BibTEX —usually someone posts
a useful reply. (Occasionally I’ll reply by private
email.)

TUGboat, Volume 24 (2003), No. 1 — Proceedings of the 2003 Annual Meeting 29

Oren Patashnik

References

[1] Karl Berry and Oren Patashnik. btxmac.tex.
Macros to make BibTEX work with plain TEX;
current version 0.99k, 13 November 1995.

[2] Michel Goossens and Frank Mittelbach, with Jo-
hannes Braams, David Carlisle, and Chris Row-
ley. The LATEX Companion. Addison-Wesley, 2nd
edition, 2004.

[3] Helmut Kopka and Patrick W. Daly. Guide to

LATEX. Addison-Wesley, fourth edition, 2003.

[4] Leslie Lamport. LATEX: A Document Prepara-

tion System. Addison-Wesley, second edition,
1994.

[5] Oren Patashnik. BibTEXing. General documen-
tation for BibTEX users, contained in the file
btxdoc.tex, 8 February 1988.

[6] Oren Patashnik. Designing BibTEX styles. Doc-
umentation for BibTEX style designers, con-
tained in the file btxhak.tex, 8 February 1988.

[7] Oren Patashnik. BibTEX 1.0. TUGboat, 15:269–
273, 1994.

[8] Unilogic, Ltd., Pittsburgh. Scribe Document

Production System User Manual, fourth edition,
April 1984. Chapter 12 and appendices E8
through E10 deal with bibliographies.

[9] Mary-Claire van Leunen. A Handbook for Schol-

ars. Oxford University Press, revised edition,
1992.

30 TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting

Abstracts —Bibliographies

Abusing TEX: custom-bib as an example

Patrick W. Daly
Max-Planck-Institut für Aeronomie
daly@linmpi.mpg.de

Although TEX is essentially a typesetting program,
there are a number of “mis-uses” of it to accomplish
what could be called off-topic programming.

The most complex example of this is no doubt
the fontinst bundle, which creates the .tfm and
.vf metric and virtual font files for PostScript fonts.
Another service routine written in TEX with no .dvi
output is docstrip, which is part of the kernel
LATEX installation, and which is vital for that in-
stallation. Originally docstrip was intended as a
utility to remove comments from installation source
files, but it now contains an even more powerful fea-
ture: it can customize the output code according to
preselected options, and it can combine code from
several source files.

It was this property that I employed to simplify
an old problem with BibTEX: that every publisher
has its own list of arbitrary formatting rules, and
it is not easy to write new .bst files to meet these
demands. Thus I wrote a generalized master bibliog-

raphy style, or .mbs file, originally providing some 50
options for alternative bibliography style points, to
be converted to a .bst file with docstrip. Today,
my merlin.mbs claims well over 100 options.

The more complicated part of the custom-bib

bundle, however, is interfacing with the user to man-
age the myriad choices, and to generate a docstrip

batch file to do the actual conversion. This re-
quired yet another pseudo-program in TEX lan-
guage, makebst, which examines all the available
options in the .mbs file, offers them to the user in-
teractively, prepares the batch file, writes a proto-
col (for future changes of mind), and even runs the
batch file. Without this, merlin.mbs would be to-
tally unmanageable; it tames the wizard.

Such utilities written in the TEX language are
guaranteed to run on all systems where TEX is in-
stalled. Any other programming language would
involve problems of platform compatibilities and
portability. This advantage outweighs the fact that
as a programming language per se, TEX is a monster.

MlBibTEX version 1.3

Jean-Michel Hufflen
Univ. of Franche-Comté
France
hufflen@lifc.univ-fcomte.fr

In October 2000, we started a new implementa-
tion of BibTEX, the bibliography program associ-
ated with LATEX. This implementation is so-called
MlBibTEX (for “Multilingual BibTEX”) because it
includes multilingual features. Multilingual bibli-
ographies can be organised with respect to two ap-
proaches:

reference-dependent approach each reference
of a bibliography section of a document is ex-
pressed using the language of the entry: for ex-
ample, the month name of a reference to a book
written in English (resp. French, German, . . .)
is given in English (resp. French, German, . . .);

document-dependent approach all the refer-
ences of a bibliography section of a document
are expressed using the document’s language,
as far as possible.

After the first version (1.1), Version 1.2 pro-
vided more flexibility about the specification of
names within the fields AUTHOR and EDITOR. For-
matting such names in a bibliography section is eas-
ier, too. These two versions use the bibliography
style language (.bst) of BibTEX and allowed us to
define requirements for a new language for bibliog-
raphy styles. The syntax of this new language is
close to XSL-FO and this language will be used in
Version 1.3. More precisely, the two languages will
coexist in order to ease the transition between “old”
styles and “new” ones. In the paper, we will:

• show how to design new styles with the “new”
bibliography style language (it is completely de-
scribed as an annex);

• explain how the coexistence between the two
languages is organised.

(We expect to publish the full paper in the next
regular issue of TUGboat. Ed.)

TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting 31

TeXShop in 2003

Richard Koch
Mathematics Department

University of Oregon

Eugene, Oregon, USA

koch@math.uoregon.edu

http://www.uoregon.edu/~koch

Abstract

TeXShop is a free TEX previewer for Mac OS X, released under the GPL. A great
many people have contributed code to the project. TeXShop uses teTEX and
TEX Live as an engine, typesetting primarily with pdftex and pdflatex. The pdf
output is displayed using Apple’s internal pdf display code. I’ll discuss recent
changes in the program and plans for the future.

Introduction

I talked about TeXShop at the 2001 TUG confer-
ence. Mac OS X had just been released and still had
quirks; during my talk, the Finder crashed. I typed
option-shift-escape to bring up the Force Quit panel,
restarted the Finder, and continued. After the talk,
an audience member told me “I’m not very inter-
ested in your program. But it’s wonderful that you
could restart the Finder without rebooting!”

A lot has changed since then. The Finder never
crashes, the teTEX/TEX Live distribution is stronger,
lots of pdf bugs have been fixed, and TeXShop has
new features.

What are we talking about here?

In case you don’t work on a Mac or haven’t used
the program, I’ll start with an overview. When
TeXShop first starts, a single window opens for the
source code. This window is shown behind another
window. The “Templates” button on the toolbar is a
pulldown menu naming various pieces of text which
can be added to the document; one of these pieces
inserts starting code for a LATEX document. The de-
fault LATEX template text is shown in blue. Actually
the editor colors all TEX commands blue and these
have come from the template. A beginner would
choose this template and add text in the middle.

32 TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting

TeXShop in 2003

Pushing the “Typeset” button on the toolbar
causes the document to be saved and typeset with
pdflatex. A second window then appears showing
the output. This window has tools to change pages,
change the magnification, and rapidly move to a
later page.

Next to the “Typeset” button is a pulldown
menu labeled “LaTeX”. This menu contains a list of
possible typesetting commands: Plain TEX, LATEX,
BibTEX, ConTEXt. Also included are MakeIndex,
MetaPost, and MetaFont. If one of these is chosen,
the Typeset command will run that program.

I have described the simplest situation. Most
users will open an existing TEX document and then
both the source and preview windows will open side
by side. After adding text to the source, users push
“Typeset” to save and typeset the changed source.
Multiple documents can be open at once.

Printing is straightforward. Select “Print” and
the output will be printed on any inkjet or Post-
Script printer. If the printer handles color, illustra-
tions and text can appear in color.

The Mac OS X landscape

There have been many changes in the Mac world
since 2001. The most important from my point of
view is that bugs in Apple’s pdf code have been
quashed. I know of no outstanding bug.

My bug folder lists the following items, in order
of correction:

• The Window Server Crash Bug. After one early
release of OS X, users sent me illustrations and
complained that TeXShop crashed when it tried
to display them. When I saved these illustra-
tions in a folder and selected one, the Finder
tried to create a thumbnail preview and crashed.
Apple fixed this bug very rapidly!

• The Accent Bug. Certain accented letters dis-
played with the accent displaced to the right
rather than placed over the letter. Documents
with accents printed fine on PostScript printers,
but incorrectly on inkjet printers. This bug was
fixed gradually, and as a result complaints from
European nations gradually narrowed to just a
few countries, and then disappeared.

• The Ghostscript 7 Bug. TeXShop has a sec-
ond typesetting option in which a source file
is typeset with LATEX, the dvi file is converted
to PostScript with dvips, the PostScript file
is converted to pdf by Ghostscript, and this
pdf file is displayed. For a long time, Apple’s
pdf routines ignored most fonts in documents
created by Ghostscript 7 and the user ended

up with a page sparsely sprinkled with letters.
Ghostscript 6 worked fine. This was a seri-
ous bug because NSF preprint repositories often
had Ghostscript 7 pdf files. The bug was fixed
in Jaguar and TeXShop users now use Ghost-
script 8.

• The Large Letter Bug. Large symbols — in-
tegral signs, summation signs, parentheses —
were cut off. Sometimes the top and bottom
would display and the middle would be miss-
ing. Documents with such symbols would print
fine on PostScript printers, but not on inkjet
printers. This important bug was fixed in sys-
tem 10.2.4.

Another significant change is Gerben Wierda’s
rapid improvement of the teTEX/TEX Live installer,
making it easy for users to maintain an up-to-date
TEX distribution. Wierda’s i-Installer is completely
independent of TeXShop and his distribution is used
by most front ends on Mac OS X. I often receive
email complaining that TeXShop doesn’t typeset cor-
rectly. If the email contains an example, I typeset
it from the terminal and usually determine that the
typeset output is exactly as the writer describes. So
I write back “this is not my problem.” If I were more
responsible, I’d look at the source code and try to
find the error.

A final change is that TEX can now be created
on Mac OS X using a great many different programs.
Apple’s release of its own X window system makes
X programs coexist nicely with Aqua programs, so
users can easily use emacs and xdvi. At the Apple
developer conference, I only saw one slide of a sys-
tem running TEX and that fellow was using xdvi.
Many wonderful front ends and tools have been re-
leased; these will be described by other people at the
conference. I’m somewhat selfishly going to describe
only TeXShop, but users should experiment before
settling down with one solution.

Configuring TeXShop

In the course of this talk, I’m going to mention sev-
eral people who have made enormous contributions.
Don Knuth, of course, is responsible for everything
we do; I’ve never met him. Two other people are
here, Thomas Esser who created the teTEX distri-
bution, and Hàn Thé̂ Thành, who created pdftex.
Salute!

TeXShop now has a reasonable help system,
created by Martin Kerz (figure 1). I’ve haven’t been
a great fan of Apple’s Help Viewer because it is slow,
but I expect great improvements soon. Let me show
you the help system because I want to point out one

TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting 33

Richard Koch

Figure 1: TeXShop help system.

feature, the “How do I configure TeXShop?” sec-
tion. I hope users will get in the habit of reading
this section whenever they upgrade the program.

In the “Recommended Preference Changes” sec-
tion, I recommend different window placement de-
faults. When TeXShop is first installed, it is con-
figured to remember the last positions of the source
and preview windows, and use these the next time
TeXShop runs. This only makes sense if you work
with one file at a time; otherwise it is likely that
one of the windows was pulled out of the way before
quitting, and its position may become the position
TeXShop uses when it runs again. It is far more con-
venient to open source and preview windows side-by-
side with fixed dimensions set in advance. To make
this happen, typeset a small file and position the
source and preview windows as you like. Then open
Preferences. For “Source Window Position,” choose
“All windows start at fixed position” and push the
“Set with current position” button. Configure the
Preview window similarly (figure 2).

While I’m dealing with preferences, I’d like to
mention another one. TeXShop now starts config-
ured to automatically convert eps files to pdf and
tiff files to png during typesetting. We made this
change when pdftex dropped support for tiff files.
In the new configuration, the -shell-escape flag is
set for TEX; the flag gives TEX permission to run
other programs during typesetting. The intended
other program converts graphic files, but of course
it could be any program. A few of our users wor-
ried that malicious code could be distributed as TEX
source; I suspect that those users were college teach-
ers with dangerous students. One fix is to remove
the shell-escape flag, which preferences permits. But
there is also a new “Shell Escape Warning” check
box in preferences. If it is set, then the first time

Figure 2: TeXShop window positioning.

a document is typeset during a TeXShop session,
a warning dialog appears allowing the user to turn
off shell escape for that particular document. This
makes it easy to use graphic conversions for your
own source but not for source received in email. In
case you are wondering, I don’t have the flag checked
on my machine. Live dangerously.

TeXShop has a few hidden preferences with no
interface in the preference panel. One causes it to
create a backup file every time a file is saved or type-
set. The configure help section explains how to set
that preference.

File encodings and the power of

programmers in Japan

Internally, Cocoa editors use Unicode. But conven-
tional TEX cannot handle Unicode, so TeXShop con-
verts a file to Unicode when it opens the file, and
converts the Unicode back to something else when
it saves. TeXShop now supports sixteen different
encodings; I don’t recall how many encodings TeX-
Shop supported in 2001 —maybe only one.

Three of these encodings are interesting. The
first is utf-8, which preserves Unicode. I know a lit-
tle about TEX programs which can input Unicode,
but hope to learn a lot more at the conference. To
enter Unicode text, open System Preferences, choose
the International module, and select the Input Menu
tab. Add extra languages by checking the boxes on
the left. A small flag will appear on your menu bar.
To type in English, select the US flag (I suppose
other flags also work); select other flags to input
other characters. Notice that both Arabic and He-
brew are inserted right to left, and notice that lig-
atures work in Arabic, a language in which letters
change shape at the end of a word. (See figure 3.)

34 TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting

TeXShop in 2003

Figure 3: Unicode input.

Utf-8 encoding is slightly tricky because not all
byte strings form legal input. Users sometimes open
a document in utf-8 which they created in another
encoding and just get a blank window because the
conversion routine gave up. TeXShop never writes
to files when they are opened, so the edit window
should just be closed and the file opened with a dif-
ferent encoding. But in a panic, some users try to
typeset the blank window. This is not a good move
because TeXShop writes before typesetting. Users
who often change file encoding should set the hid-
den preference to make backup files as protection
against this sort of error.

A few months ago, a user asked for Russian en-
codings. Further email revealed that there are lots
of Russian encodings in use; TeXShop now supports
five such encodings. Users must deal with more than
one encoding because they receive email. So in ver-
sion 1.30, TeXShop supports selecting the encoding
when a file is opened and when it is saved. When
opening a file, the default encoding will be the one
chosen in preferences, so most users can ignore the
entire matter. If the encoding is changed, then the
default for that one file when it is saved will be the
new encoding.

Students of mine from Japan sometimes report
that their friends have trouble with TeXShop. It
was difficult to get a clear explanation because my
students weren’t TEX users themselves. A year after
learning of the problem, I got a wonderful email from
Seiji Zenitani with a clear explanation and the code
to make TeXShop work. If I understand correctly,
in System 9 Japanese fonts displayed the backslash
character as a Yen symbol, and the Japanese key-
board had a yen symbol on the key which produced
a backslash character. This created no problems for

TEX, of course. But when Unicode was introduced,
it became necessary to separate the two symbols,
and the Japanese keyboard began emitting a real
yen symbol. The Japanese coped with this change
by modifying TEX to use yen instead of backslash
as the TEX control character. I mentioned this to a
colleague with collaborators in Japan, and he said
“yes, the damn yen problem.”

At any rate, Zenitani took care of the problem
and also localized TeXShop in Japanese. It is the
localization I like best! Then around the time ver-
sion 1.27 was to appear, Zenitani wrote me that he
had heard of some smoother routines by someone
else in Japan, who would write me soon. In that
way I made contact with Mitsuhiro Shishikura, the
most powerful programmer I know. Shishikura is a
mathematician. He just told me that he has become
chair of his department and I sent condolences.

Shishikura sent code to simplify TeXShop’s han-
dling of the yen problem. Then he casually men-
tioned that he had added a magnifying glass for the
preview window (this is listed in my 2001 article as
an important missing feature). So TeXShop finally
had a magnifying glass. I was going to show you
the glass below, but screen capture doesn’t show it;
apparently Shishikura’s code is as mysterious to the
Mac as it is to me.

No sooner was Shishikura’s magnifying code in
the program than he invented a Macro editor as
well. I’d like to show you one nice feature of that
editor. TeXShop has hidden preferences to set the
background color of the source window and of the
preview window, but these preferences must be set
in Terminal. Suppose you wish to experiment with
various backgrounds in preview documents. Create
an Applescript macro in the Macro editor using the
following code.

--AppleScript

do shell script "defaults write

TeXShop Pdfbackground_R 0.5"

do shell script "defaults write

TeXShop Pdfbackground_G 0.5"

do shell script "defaults write

TeXShop Pdfbackground_B 0.5"

After executing this command, the background
of the preview window will be gray the next time
you typeset. Don’t get too excited; the background
will not print, but is useful for previewing if your
document has colored text which is difficult to see
against white.

The TeXShop source code has a folder contain-
ing the email Shishikura wrote when he sent these
modifications. It is a model of describing proposed

TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting 35

Richard Koch

changes. Shishikura listed the changes needed in the
nib files, and in each Objective C file. He described
each new feature separately, so I could include some
and not others. This contrasts with code changes
I receive occasionally that are so massive they can-
not be digested. Every source file in the project has
been modified and as far as I can tell, there isn’t a
scrap of remaining code which I wrote myself. More-
over, the interface is completely different. What am
I supposed to do with such a suggestion?

The Preview window

TeXShop won an Apple design award, and after the
ceremony one of Apple’s engineers told me that the
judges complained about TeXShop’s pdf window,
whose design does not follow the design of Apple’s
own Preview program. “Then we learned,” he said,
“that Preview was redesigned in Jaguar with tools at
the top instead of the bottom.” Apparently that pla-
cated the judges. But our victory was incomplete —
in the poster Apple put up after the ceremony, the
TeXShop pdf window was missing! You couldn’t tell
from the poster what TeXShop actually did.

I’d like to show some features of the preview
window introduced since 2001. First, the view can
be rotated so users writing slides with certain pack-
ages view them in correct position.

I have often taught linear algebra. After writ-
ing the code to transform window coordinates and
then testing it and discovering that the window was
transformed God-knows-where, I have new humility.
Any linear algebra course I give in the future will be
error forgiving.

For version 1.30, just released, Shishikura re-
vised the pdf display code, introducing new display
options like scrolling through the entire document
and displaying two pages side by side. He cleaned up
the code tremendously, so pages are centered rather
than displayed in the bottom right of the window
and . . . well, I don’t want to think about the old
code.

Indeed, there are so many new options that a
couple have minor bugs which will be cleaned up

soon. The lesson is that if I always use “Single page”
option and Shishikura always uses the “multipage”
or “double multipage” option, then nobody is test-
ing the “double page” option.

Copy and paste; drag and drop

Shishikura also added the ability to select a portion
of the pdf output and copy it to the clipboard or
drag it to another application or the desktop. This
procedure can be controlled by new preferences or
by menu commands. For example, the file type
of the copy can be pdf, tiff, jpg, png, or pict; the
foreground and background colors of the copied im-
age can be selected in preferences for some of these
types.

Above, for example, is a section of text copied
into a Keynote slide in pdf format. But users work-
ing with Keynote should also consider J. McKenzie
Alexander’s wonderful Equation Editor. See the site
evolve.lse.ac.uk/software/EquationEditor/.

The LaTeX panel

Geoffroy Lenglin created a great symbol panel for
TeXShop. Clicking on a symbol inserts the appro-
priate source code into the document.

I’d like to tell a little of the story of this panel
because it shows that a contributor should not in-
terpret silence as a “no”. Lenglin sent this panel
while I was working on other TeXShop features, so
it didn’t immediately appear. I couldn’t just glue
it in because there were interface features to con-
sider: hiding the panel when the preview display is
active, remembering the Panel position when TeX-
Shop quits, etc. Then tasks at the University inter-
vened and Lenglin heard nothing from me for many
months. When I finally had time, I wrote Lenglin
something like“you may think I’ve forgotten, but
now I’m ready to add the LaTeX Panel.” He replied
“it is good that you wrote, because I have just fin-
ished a masters degree in Aeronautical Engineering
at MIT and this email address will become inactive.
I’m leaving for France.” Whew!

36 TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting

TeXShop in 2003

Figure 4: LATEX symbol panel.

The above quotations are approximate because
I can no longer find those messages in Mail. But I
discovered old email from him containing a French
localization of the help files. They didn’t get into
TeXShop! Apologies. If you write me and I ignore
the email, please write again. And again.

Split window editing, syntax coloring, etc.

There have been other changes. The editing window
can be split so you can view one section of source
while writing another. Various methods have been
added to speed typing; for instance, you can request
that pressing the double quotation key insert the
TEX code for “ ” with the cursor placed between
the quotation marks. Command completion is also
possible; typing part of a word and pushing escape
will cycle through all possible completions, and the
completion can be a complicated phrase which need
not contain the letters originally typed. (However,
this system does not use an existing dictionary, so
words must be added before they are available for
command completion. Improvements to this system
will appear in the future.)

For many months, users complained that when
all windows in TeXShop are closed and another ap-
plication is temporarily active, clicking on TeXShop
in the dock created a new empty source window.
My response was that the Apple Interface Guide-
lines require this behavior. Indeed the behavior is
automatic in Cocoa. Eventually, Gerben Wierda
stumbled across the “applicationShouldOpenUnti-
tledFile” call in the API’s and he wrote: “maybe the

Guidelines require it, but Apple themselves provided
a way to get around the guidelines.” So a preference
item now allows users to control this behavior.

When Jaguar appeared, TeXShop syntax col-
oring slowed way down. Users who let the program
wrap lines and thus create very long paragraphs had
real problems. I spend half of 2002 working on this
problem . . . don’t remind me.

Other changes have been made. The “root file”
design was improved following a user suggestion,
Zenitani fixed the tags menu so several tags can have
the same text, TeXShop can display ps, dvi, jpg, tiff,
pdf, and eps files, converting to pdf when appropri-
ate. The version history file can be consulted for a
full list of changes.

The TeXShop design philosophy

I want to tell you about one of my colleagues. His of-
fice is two blocks from mine, and he sometimes calls
with computer questions. A typical session goes like
this:

I just received email and it contains

tex code. How do I typeset?

Is the code in an attachment?

No. There’s a begin[document] and

then lots of English.

Ah. Copy the source, paste it into a

blank TeXShop window, and hit the

Typeset key.

Wait a minute. Let me get a piece of

paper. OK. Step one. Copy the source...

My colleague learned TEX and he started writ-
ing books. Wonderful books. Mathematicians read
his books even when they are in a different field.

You have a natural question. “He started learn-
ing TEX? How many support calls did that require?”

The answer is none. My colleague immediately
understood the connection between TEX and mathe-
matics; he got a few books, and he proceeded. As for
software, he doesn’t want it to interfere with his life.
Once he learns how to do something, he doesn’t want
to learn a faster way, or upgrade and get more fea-
tures, or find more buttons on the interface. I went
to his office and discovered that he used the orig-
inal TeXShop preferences and his windows opened
at random spots. “I know a better way,” I said, “let
me change that.” “No, no. . . ”

I write TeXShop for colleagues like that. The
highest compliment you can give is “this program is
pretty simple.” I’m happy to add features for ad-
vanced users, but only if they don’t cause beginners

TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting 37

Richard Koch

to say “what’s this button for?” TeXShop should
live in the background. It should be there if it is
needed but it shouldn’t intrude.

The future

When users send suggestions, there is a temptation
to pick those that are easy to do, add lots of mi-
nor features, and ignore the central issues. Let me
concentrate now on two primary requests. I don’t
know how to do either one, so no promises are being
made.

The first request is for an editing option to pro-
vide hard line feeds when the editor wraps text. Tex-

tures works like that; as a user types, the lines wrap;
if the window is later resized, the line feeds remain
and the lines do not reformat to fit the new window
size. Users who request this feature complain that
when they send TeXShop files to friends, the friends
have versions of TEX which cannot deal with long
lines. They also say that some utilities like diff have
trouble with long lines.

People have different typing styles. I am in the
habit of typing a line feed before I come to the end
of a line, so I’m never bothered by these problems.
When users send me files with long, long paragraphs,
I’m surprised. Hard line feeds go against the ba-
sic philosophy of TeXShop because they do some-
thing behind the user’s back. And hard line feeds
are certainly not required by the standard programs
in teTEX/TEX Live.

Of course, it is easy to write a three line C pro-
gram which can convert a TEX source file to a file
whose lines are all short. I’ve sent such programs to
people who’ve written me.

Cocoa doesn’t readily yield up the soft line feeds
is inserts when it formats for the screen. I’ve read
through the text API’s and I don’t see an easy way
to proceed. But a few users are very insistent that
they need those line feeds!

I’ve tried to postpone until the bitter end the
main request by far: synchronicity. With this Tex-

tures feature, a user can click on a spot in the pre-
view and immediately be taken to the corresponding
spot in the source code; conversely the user can click
on a letter in the source code and be taken to that
letter in the typeset preview.

This feature has been implemented by other
TEX preview systems, so in the last few weeks I’ve
been reading about them. I’ve read about source
specials in dvi files, about the src-special flag for
tex and pdftex, about dv2dt, about dvii, vpe, and
srcltx. These things look helpful for a rough version
of Textures synchronization, but I need help. Big
time help.

Very early in the life of TeXShop, a user asked
for synchronization using approximately the follow-
ing words: “and by synchronization I do not mean
that I’ll be happy if it takes me to the same para-
graph; I insist to be taken to the exact corresponding
character in the source! That or nothing.” Gosh!
Intimidating. Blue Sky doesn’t charge money for
nothing.

TeXShop has two typesetting modes. One pro-
duces a dvi file (and uses it to create a pdf); the
other produces a pdf directly. It is possible that
some of the utilities listed above would help with
one method but not the other. If I must choose, I’d
much rather have synchronicity using pdftex than
synchronicity using tex with dvi files.

Perhaps one of you has a complete solution
ready to go; it pays to ask.1 I’d really like to see
a flag in pdftex which causes it to output a separate
file containing this information:

1. the name of the source file; when it changes due
to input statements, the name of the new source

2. for each individual character typeset, the line
number and position within that line of the
character in the source, and the page number
and location in pixels of that character after it
is typeset.

I wouldn’t know how to handle sections of text cre-
ated by macros.

Maybe that is way too much. I’m going to end
with a list of questions.

• Are there utilities on the web which can deci-
pher a dvi file and print a readable list of the
contents, or of part of the contents?

• For example, could such a utility print the lo-
cation of the start of each line, and the position
within that line of the start of each character?

• Are there utilities on the web which can deci-
pher a pdf file and print a readable list of the
contents, or of part of the contents?

• Adobe Acrobat allows users to drag the mouse
and select a portion of text. It allows users to
search a pdf document. How are those tasks
done?

• pdftex has a flag named -src-specials. Is
there a utility which can read a pdf file and
output these source specials?

If you have any answers or information about
these matters, please talk to me during the confer-
ence or write afterwards.

1 Since this paper was written, pdfsync.sty has been

achieved through the efforts of many volunteers. See Jérôme

Laurens’ forthcoming presentation on this at TUG 2004. Ed.

38 TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting

Creating labeled stand-alone figures in LATEX using WARMreader

and Adobe Illustrator under Mac OS X

Francesco Costanzo
Associate Professor

Department of Engineering Science and Mechanics

The Pennsylvania State University

212 Earth & Engineering Sciences Building

State College, PA 16802-1401

USA

costanzo@engr.psu.edu

http://www.esm.psu.edu/faculty/costanzo/

Gary L. Gray
Associate Professor

Department of Engineering Science and Mechanics

The Pennsylvania State University

212 Earth & Engineering Sciences Building

State College, PA 16802-1401

USA

gray@engr.psu.edu

http://www.esm.psu.edu/faculty/gray/

Abstract

In this paper we discuss our experience as Mac users who lived through the tran-
sition that took us from LATEXing with TexturesTM under Mac OS 9 to LATEXing
with teTEX and TEXShop under Mac OS X. For us, the most difficult yet re-
warding aspects of this transition concerned the creation of “stand-alone” figures
containing labels and annotations prepared using LATEX. By “stand-alone” figure
we mean a figure in a given format (usually EPS or PDF), which can be imported
by one of the many graphics import commands available in LATEX.

Around April/May 2001, after our switch to Mac OS X, teTEX and TEXShop,
because of a number of issues concerning font management under OS X, transla-
tion between EPS and PDF formats, as well as issues with TEX fonts in Adobe
IllustratorTM, we could no longer use our old labeling strategy. After some ex-
perimentation, we found a solution using the WARMreader package developed
by Ross Moore and Wendy McKay along with an Illustrator plug-in called
MarkedObjects, created by Tom Ruark. In this paper we will describe why we are
interested in creating stand-alone figures, why we chose to use WARMreader, and
some of the techniques we have developed to create figures. The paper also de-
scribes the use of an AppleScript created by the authors to aid the figure labeling
process.

Introduction

A good number of scientific journals as well as con-
ferences now accept electronic submission of papers.
Often, the instructions provided to authors require
that the figures included in the paper be provided
as files, typically in Encapsulated Postscript (EPS)
format, distinct from the file containing the man-
uscript. Furthermore, depending on the journal,

there is no guarantee that the final paper will be
typeset using LATEX. This means that if one’s so-
lution to including TEX output in a figure relies on
the ability to typeset the manuscript using (LA)TEX,
then trouble may be at hand. Hence, if one wishes
to annotate a figure using LATEX fonts or symbols,
one must be able to create the figure in question in
such a way that the notes and symbols in the figure

TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting 39

Francesco Costanzo and Gary L. Gray

are not generated along with the rest of the text
when the main manuscript file is typeset. In other
words, the annotated figures must be created so as
to be a self-contained or stand-alone file.

In this paper, we will describe how we have
dealt with the creation of stand-alone figures in the
past and the strategies we have developed to ac-
complish this task with the advent of Mac OS X.
In particular, the following two sections will be de-
voted to presenting a history of our approach to the
problem, especially after we started using teTEX and
TEXShop under Mac OS X. In the rest of the paper
we will present examples of how we currently create
annotated figures in the form of a tutorial.

Stand-alone figures before Mac OS X

Before the release of Mac OS X, we used TexturesTM

for LATEXing our papers. As far as the creation of
figures is concerned, Adobe Illustrator has been our
application of choice for many years.

In order to include LATEX fonts into an Illus-
trator figure we were accustomed to simply creating
a temporary LATEX document containing all of the
symbols to be included in the figure. After typeset-
ting the temporary file, we made use of a feature
in Textures allowing us to save the typeset output
in the Adobe Illustrator 88 file format, which, for
all intents and purposes, is the same thing as sav-
ing the output as a PostScript file. Next, we would
open the newly created Adobe Illustrator 88 file in
Illustrator and simply copy the LATEX symbols from
this file into the file containing the figure to be anno-
tated. The precise positioning of the LATEX symbols
within the figure was a trivial matter in that it was
accomplished by simply using the mouse to drag the
annotation objects to their proper location.

The successful outcome of this very simple pro-
cedure relies on the two applications used to carry it
out, namely Adobe Illustrator and Textures, access-
ing and correctly/consistently using the same set of
fonts. By ‘correct/consistent’ use of fonts we mean,
as we understand it, that the applications in ques-
tion use the same font map.

Switching to Mac OS X

Once we switched to Mac OS X, since Textures was
not available under this new operating system and
since we had decided to make a conscious effort not
to rely on the Classic environment,∗ we decided to
adopt the teTEX distribution as our TEX and LATEX

∗In Mac OS X, the Classic environment refers to the run-

ning of Mac OS 9 as a process within Mac OS X so that

pre-Mac OS X applications can be used.

base, and to use TEXShop as our editing and pre-
viewing environment.

This transition felt rather uneventful until we
started dealing with the creation of stand-alone fig-
ures. Our first instinct was to simply try the same
strategy we had always used. Hence, we started by
creating a temporary LATEX document with teTEX
and TEXShop, saved the output as a PostScript file,
opened it in Adobe Illustrator . . . and we discovered
that the LATEX fonts, as seen by Illustrator, had been
translated, for the most part, into garbage. In fact,
not all of the symbols were misinterpreted. Those
that were misinterpreted were primarily, but not ex-
clusively, mathematics and Greek symbols, that is,
most of the symbols we use in our figures.

At first, we thought that this behavior was caus-
ed by the fact that the teTEX fonts are installed in
such a way that they are not available for use by
other applications. Hence, we proceeded to install,
under Mac OS X, the same PostScript fonts used by
Textures under previous versions of the operating
system. These fonts were installed in a location such
that they could now be seen by Illustrator. This
attempt at fixing the problem did not work, thus
leading us to the conclusion that (i) the font map-
ping used by teTEX was different from that seen by
Illustrator in the fonts used by Textures; and (ii)
that our old strategy for labeling any figure was to
be abandoned altogether.†

The search for alternative figure labeling meth-
ods (which took several weeks of unsuccessful at-
tempts) led us to a package called WARMreader de-
veloped by Ross Moore and Wendy McKay (McKay
and Moore, 1999; Moore, 2001). The capabilities
offered by this package will be outlined in the next
section.

The WARMreader package: an overview

We begin this section with a disclaimer: we do not
intend for this article to be exhaustive in its descrip-
tion of the WARMreader package. In particular, we
will limit it to the description of those features of-
fered by WARMreader that are most relevant to the
type of figure labeling we do on a daily basis.

WARMreader allows one to overlay any graph-
ics objects imported in (LA)TEX with labels that can
be defined within the very (LA)TEX file in which
said graphics objects are imported. In this sense,
WARMreader can be thought of as conveniently pro-
viding and extending the facilities that are made

†We tried several other strategies to solve the font map-

ping problem but with no success.

40 TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting

Creating labeled stand-alone figures in LATEX using WARMreader and Adobe Illustrator under Mac OS X

available by packages such as XY-pic (Rose, 1991)
and PSfrag (Barratt, Grant, and Carlisle, 1996).

Roughly speaking, WARMreader overlays given
(LA)TEX expressions at specified locations over the
imported graphics object. The coordinates of the
(LA)TEX labels to be overlaid need to be stored in a
text file with the same name as the graphics file but
with .bb extension. The coordinates in question are
expressed in points and measured with respect to
the lower left corner of the graphics object’s bound-
ing box. Provided that we will come back to a more
precise description of a label’s placement over a fig-
ure, we think that it is important to point out how
the successful and convenient use of WARMreader re-
lies on the user’s ability to generate the labels’ co-
ordinates which, in general, could be a rather time
consuming task.

For Adobe Illustrator users, the process of gen-
erating the labels’ coordinates is greatly facilitated
by the use of the MarkedObjects plug-in, created
by Thomas Ruark at Adobe (cf. McKay, Moore,
and Ruark, 2001). Although we will describe the
use of the plug-in later in various examples, here
we simply anticipate the fact that the use of the
MarkedObjects plug-in allows one to define label
position markers within the figure itself along with
the definition of the label. Furthermore, the use of
the plug-in is such that the required .bb file is cre-
ated automatically, with a complete list of all of the
labels’ markers and the (LA)TEX annotations to be
overlaid onto the figure.

WARMreader and stand-alone figures

By its very nature, the WARMreader package is a
tool that can only be used from within a (LA)TEX
document. This implies that, contrary to what we
stated earlier, the labeled figures one generates are
not stand-alone objects but are objects embedded in
a document. Hence, in order to use WARMreader to
create stand-alone figures one must devise a strategy
to extract the figures from the document containing
them and endow each figure file with the necessary
bounding box information. The strategy we have
adopted is as follows:

1. we create a LATEX document consisting of a sin-
gle page with \thispagestyle{empty};

2. we then import the graphics object, to be an-
notated using WARMreader, into this document;

3. after adding the labels, we typeset the docu-
ment using TEXShop with its settings as shown
in Fig. 1, which displays the Engine tab within
the TEXShop preferences. This step yields sev-
eral files, two of which are of PostScript and

Figure 1: TEXShop Engine tab window.

PDF type, each consisting of a single page with
the annotated figure.

4. At this point we use the ps2epsi command
made available by Ghostscript to turn the Post-
Script file created by dvips into an EPSI file
(EPS file with a bitmap preview);

5. finally, we distill the EPSI file in question using
the epstopdf command.

At the end of this operation we have two files:

(a) an EPS file with the annotated figure and the
proper bounding box information; and

(b) a PDF file with, again, just the annotated figure
with the proper bounding box information.

These files can be treated as graphic objects that
can be imported in any other application supporting
the import operation of images in EPS and/or PDF

formats.

Remarks and a script

The procedure described in the previous section is
not logically complex but it is involved. In partic-
ular, what makes it involved is the combination of
having to carefully position the labels on the fig-
ure and, when everything is in place, having to go
through several command-line instructions in the
Unix terminal under OS X to get the final result.

To facilitate the use of this procedure, both by
ourselves and by our graduate students, we have
created a drag-and-drop AppleScript which makes
the procedure essentially automatic. The only non-
automatic part of the procedure remains the fine-
level adjustment of the labels on the figure or the
nudging, as it is referred to by Wendy McKay and
Ross Moore (McKay and Moore, 1999).

TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting 41

Francesco Costanzo and Gary L. Gray

Hence, to illustrate what we actually do in prac-
tice, we now present an example. This example can
be thought of as a tutorial for the use of the Illus-
trator MarkedObjects plug-in, WARMreader, and the
AppleScript we have created to help make the over-
all process easy to perform. The script in question
has been dubbed WaRMFigToPDF (Costanzo and
Gray, 2002).

Before presenting any examples, we feel that it
is important to clearly identify the basic tools with
which the examples have been created. Here is a
detailed list of the operating environment that we
currently use and under which we know this proce-
dure works:

1. Operating system: Mac OS X 10.2.4;

2. TEXShop: version 1.28, dated January 29, 2003
(the most current information on TEXShop can
be obtained from http://www.uoregon.edu/
∼koch/texshop/texshop.html);

3. teTEX: our current version of teTEX should be
more properly referred to as teTEX + gwTEX∗

and is dated February 10, 2003 (available from
http://www.rna.nl/ii.html);

4. Ghostscript: version 7.05 (available from http:

//www.rna.nl/ii.html);

5. WARMreader: version 1.2, dated July 5, 2001
(downloaded from the official WARMreader web-
site at http://www-texdev.mpce.mq.edu.au/

WARM/WARMhome/);

6. Adobe Illustrator: version 10.0.3;

7. MarkedObjects Illustrator plug-in: release date
of May 6, 2002 (available at http://www.cds.
caltech.edu/∼wgm/WARM/adobe/);

8. WaRMFigToPDF: version 1.0 (can be down-
loaded at http://lpcm.esm.psu.edu/∼gray/

wftpdf.sit).

Example: Labeling the vertices and the

center of a rectangle

This is a simple example in which we start by run-
ning Adobe Illustrator to create a simple rectan-
gle. Once the rectangle is created, the file should
be saved as an Illustrator EPS (EPS) file, as shown in
Fig. 2. For future reference, rectangleFig.eps is
the name we have given to the Illustrator EPS file
used in this example. Figure 3, shows the content of
the Illustrator window, namely a gradient filled rect-
angle. In addition, the figure displays the location of
the Marked Objects Tool, which the MarkedObjects

plug-in places among the Pen Tools.

∗Where we understand that ‘te’ stands for Thomas Esser

and ‘gw’ stands for Gerben Wierda.

Figure 2: Illustrator ‘Save as’ dialog window.

Figure 3: MarkedObjects Illustrator plug-in tool.

Once the figure is created, the labeling pro-
cess is accomplished by selecting the Marked Objects
Tool and creating (by clicking) as many labels as
one wishes to create. In particular, we would like
to create five Marked Objects, one for each vertex
and one for the center of the rectangle. We begin
by placing them in arbitrary locations, as shown in
Fig. 4. Each Marked Object is numbered sequentially
and consists of a ×-symbol with the object’s num-

Figure 4: MarkedObjects objects and layer.

42 TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting

Creating labeled stand-alone figures in LATEX using WARMreader and Adobe Illustrator under Mac OS X

ber appearing as a subscript. The remaining part
of each Marked Object is a string that can be edited
using the Text Tool. The default appearance and
text of these objects can be modified by the user via
the editing of the MarkedObjects preferences. This
can be done after opening the MarkedObjects dia-
log window. This window can be opened via: Win-
dow → SDK Dialogs → Show Marked Objects Dialog.
This results in the appearance of the dialog window
shown in Fig. 5. As can be seen in this figure, the

Figure 5: MarkedObjects dialog window.

MarkedObjects dialog window displays a variety of
pieces of information, including the figure’s bound-
ing box, as well as each label’s text and coordinates.
The MarkedObjects preferences can be edited by
clicking on the triangle-labeled radio-button placed
in the upper right corner of the dialog, as shown in
Fig. 5.

Going back to the description of what happens
once the Marked Objects Tool is used and with ref-
erence to Fig. 4, it should be observed that using
this tool automatically results in the creation of a
new layer, called Marked Objects DO NOT MODIFY.
Furthermore, once the layer is created, any Save
operation performed by the user results in the cre-
ation (and subsequent updating) of a text file that is
placed in the same location as the Adobe Illustrator
file containing the figure. The new file in question
is automatically given the same name as the Illus-
trator EPS file, except for the extension, which is
automatically set to .bb. As far as the labels are
concerned, their creation and editing can be done in
any order desired by the user. In this example, the
labels were first created (by clicking five times at ar-
bitrary locations with the Marked Objects Tool) and
then edited using the Text Tool. Figure 6 displays
the Marked Objects after their text has been edited.

Now that the labels have been created, we can
proceed to placing them at desired locations. In Il-
lustrator, Marked Objects can be moved just like any
other graphics object. When placing labels at de-

Figure 6: MarkedObjects labels.

sired locations, is it useful to keep in mind that the
coordinates that the MarkedObjects plug-in assigns
to a label are the coordinates of the center of the
×-symbol, measured (in points) with respect to the
lower left corner of the bounding box of the figure.
As far as the figure’s bounding box determination is
concerned, by monitoring the information provided
by the MarkedObjects dialog window, it is easy to
see that this calculation disregards the position of
the Marked Objects. Continuing with the labeling
process, in Fig. 7 we can see the labels in their fi-

Figure 7: Marked Objects in their final position.

nal position. The labeling process is now completed
by hiding the Marked Objects Layer (by clicking on
the “eye” in the Layers palette), saving the resulting
Illustrator file, and closing the file in question.

At this point, we have two files in our working
folder: the Illustrator EPS file and its companion
.bb file. Next, we simply drag and drop the Illustra-
tor EPS file onto the AppleScript WaRMFigToPDF.
The outcomes of this operation are:

1. the renaming of the Illustrator EPS file and the
text .bb file via the prepending of the .eps and
.bb, respectively, extensions with the character
string ‘-AI’;∗ and

∗If the original Illustrator file name ends in -AI, the re-

naming does not take place and the newly created .tex file

will have the same name of the Illustrator file without the

-AI ending.

TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting 43

Francesco Costanzo and Gary L. Gray

2. the creation of a LATEX file carrying the original
name of the Illustrator EPS file (with extension
.tex).

Before proceeding any further, a remark of practical
importance must be made. When assigning a name
to an Illustrator file, one needs to keep in mind that,
at least with the current version of Adobe Illustrator
under Mac OS X, long file names are not supported.
The importance of this observation lies in the fact
that the current version of WaRMFigToPDF does
not check whether or not the addition of the string
‘-AI’ is compatible with the Illustrator file name
length requirements. As the reader can imagine, we
have lost more than one long-named Illustrator file
by running WaRMFigToPDF while the file in ques-
tion was still open in Illustrator.

In the interest of completeness, we now report
the content of the .tex file WaRMFigToPDF cre-
ates.
%&latex
\documentclass[10pt]{article}

%%%%%%%%%%%%
% PACKAGES %
%%
%\usepackage[expert]{lucidabr} %
\usepackage{amsmath} %
\usepackage{amssymb} %
\usepackage{amsthm} %
\usepackage{exscale} %
\usepackage[mathscr]{eucal} %
\usepackage{ifthen} %
\usepackage[pdftex]{graphicx} %
\usepackage[dvipsnames]{color} %
\DeclareGraphicsExtensions{.pdf, .jpg} %
%%

% Settings for FC, GLG, MEP books.
%\input{../../../../../Settings/commands}

%%%
% EXOTIC PACKAGES: Figure Labeling within LaTeX %
%%%
\usepackage[all,color,frame,import]{xy} %
\usepackage{warmread} %
\let\xyWARMprocess\xyWARMprocessMo %
\let\WARMprocessEPS\WARMprocessMoEPS %
%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% USEFUL WARMreader COMMANDS %
%%
%\xyMarkedPos{##}*!D(0.00)!L(0.00)% %
%\txt{\rotatebox{90}{yAxis-Title}} %
%\xyMarkedPos{##}*!D(0.00)!L(0.00)% %
%\txt{\includegraphics[scale=x.x]{InsetGraph}} %
%%

\begin{document}
\thispagestyle{empty}
%
\WARMprocessEPS{rectangleFig-AI}{eps}{bb}
%
\begin{xy}
\xyMarkedImport{}

\small

% Marked Point Number: 1
% MarkedPoint:(0.500,0.500) : point(0,0) : 1 %Vertex A
\xyMarkedTextPoints!D(0.00)!L(0.00){1}

% Marked Point Number: 2
% MarkedPoint:(194.314,0.500) : point(0,0) : 2 %Vertex B
\xyMarkedTextPoints!D(0.00)!L(0.00){2}

% Marked Point Number: 3
% MarkedPoint:(194.314,115.964) : point(0,0) : 3 %VertexC
\xyMarkedTextPoints!D(0.00)!L(0.00){3}

% Marked Point Number: 4
% MarkedPoint:(0.500,115.964) : point(0,0) : 4 %vertex D
\xyMarkedTextPoints!D(0.00)!L(0.00){4}

% Marked Point Number: 5
% MarkedPoint:(97.407,58.232) : point(0,0) : 5 %Center O
\xyMarkedTextPoints!D(0.00)!L(0.00){5}

\end{xy}
%
\end{document}

This .tex file is obtained by the use of a simple
template which:

(i) includes the WARMreader package (along with
all the other packages one wishes to include by
default∗);

(ii) properly sets up the xy environment, which
will overlay the graphic image with the LATEX
generated labels;

(iii) includes the graphics file containing the image
to be labeled;

(iv) includes every Marked Object created in Illus-
trator, preceded by a summary of the informa-
tion it carries by default, i.e., stored in the .bb
file.

By default, we have chosen to include the various
Marked Objects by invoking the WARMreader com-
mand \xyMarkedTextPoints. For those users with
an understanding of XY-pic and WARMreader, it is
clear that this is simply a personal choice. Further-
more, it should be noted that every Marked Object is
also accompanied by the syntactical elements D and
L, which allow one to nudge the object’s position in
the vertical and horizontal directions, respectively.
By default the the nudging amount is set to zero.

The LATEX file thus created is ready to be type-
set and the outcome of that typesetting will be,
among other things, two files, one PostScript and
one PDF file. At this point, each of these files pro-
vides a page containing the annotated figure. Fig-
ure 8 displays the content of the working folder after
typesetting the file rectangleFig.tex.

The files rectangleFig.ps and its PDF coun-
terpart are almost the final desired product. The
only feature they lack is a bounding box that prop-
erly encapsulates the figure. As mentioned earlier,
turning the file rectangleFig.ps into an equivalent

∗The AppleScript source, found in the AppleScript Stu-

dio project, needs to be modified in order to change what is

included by default.

44 TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting

Creating labeled stand-alone figures in LATEX using WARMreader and Adobe Illustrator under Mac OS X

Figure 8: Content of the working folder
after typesetting the .tex file created by
WaRMFigToPDF.

EPS file is accomplished by operating on this file via
the Ghostscript command ps2epsi. To be precise,
this operation yields a file of EPSI type. As it turns
out, and as will be discussed in greater detail in the
next to the last section of the paper, the bounding
box computed by ps2epsi is not entirely correct
in that it often causes elements of the figure to be
slightly clipped. Hence, to avoid any unwanted clip-
ping, after creating the rectangleFig.epsi file, we
edit its bounding box so as to enlarge it by one point
in each direction. The EPSI file with the modified
bounding box is given the name rectangleFig.eps.
Finally, this file is turned into a corresponding PDF

file (i.e., named rectangleFig.pdf) by invoking the
Ghostscript command epstopdf.

The AppleScript application WaRMFigToPDF
makes all of the operations just described automatic.
Specifically, once the file rectangleFig.tex is cre-
ated and typeset (i.e., once the working folder con-
tent is that in Fig. 8), one only needs to drop the file
rectangleFig.ps onto WaRMFigToPDF. The out-
come of this operation results in the creation of the
desired EPS and PDF files, along with the deletion
of all the files that are not needed for preserving the
capability of future corrections to the figure. Hence,
in the end, the content of the working folder is that
depicted in Fig. 9. The final labeled figure is shown
in Fig. 10. Clearly, the figure needs some adjust-
ing. Hence, at this point, one can go back into the
working folder and edit the rectangleFig.tex file
to make the due corrections and adjustments. For
example, editing the content of the xy environment
as listed below makes the figure appear as depicted
in Fig. 11.
\begin{xy}
\xyMarkedImport{} \small

% Marked Point Number: 1
% MarkedPoint:(0.500,0.500) : point(0,0) : 1 %Vertex A
\xyMarkedTextPoints!D(-1.50)!L(0.00){1}

% Marked Point Number: 2

Figure 9: Content of the working folder after
WaRMFigToPDF has created the final EPS and
PDF files.

Vertex A Vertex B

VertexCvertex D

Center O

Figure 10: Appearance of the final PDF

stand-alone figure.

% MarkedPoint:(194.314,0.500) : point(0,0) : 2 %Vertex B
\xyMarkedTextPoints!D(-1.50)!L(0.00){2}

% Marked Point Number: 3
% MarkedPoint:(194.314,115.964) : point(0,0) : 3 %VertexC
%\xyMarkedTextPoints!D(0.00)!L(0.00){3}
\xyMarkedPos{3}*!D(1.50)!L(0.00)\txt{Vertex C}

% Marked Point Number: 4
% MarkedPoint:(0.500,115.964) : point(0,0) : 4 %vertex D
%\xyMarkedTextPoints!D(0.00)!L(0.00){4}
\xyMarkedPos{4}*!D(1.50)!L(0.00)\txt{Vertex D}

% Marked Point Number: 5
% MarkedPoint:(97.407,58.232) : point(0,0) : 5 %Center O
%\xyMarkedTextPoints!D(0.00)!L(0.00){5}
\xyMarkedPos{5}*%
!D(0.00)!L(0.00)%
\txt{\rotatebox{45}{\textcolor{white}{Center O}}}

% Marked Point Number: 5
% MarkedPoint:(97.407,58.232) : point(0,0) : 5 %Center O
%\xyMarkedTextPoints!D(0.00)!L(0.00){5}
\xyMarkedPos{5}*%
!D(0.00)!L(0.00)%
\txt{\rotatebox{-45}{\textcolor{blue}{O Center}}}

\end{xy}

Figure 11, along with the LATEX source code
used to generate it, is meant to illustrate the follow-
ing points:

1. as discussed in greater detail later, the default
position of the labels can be adjusted by taking
advantage of the positioning directives D and L;

TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting 45

Francesco Costanzo and Gary L. Gray

Vertex A Vertex B

Vertex CVertex D

C
en

te
r
O

O
C
en

ter

Figure 11: Modified appearance of the
stand-alone rectangleFig.

2. one can use the command \xyMarkedPos, pos-
sibly the most flexible command WARMreader

provides, to make a label out of virtually any
displayable LATEX construct;

3. with reference to the labels originally defined as
‘VertexC’ and ‘vertex D’ and then subsequently
corrected to ‘Vertex C’ and ‘Vertex D’, one can
use the \xyMarkedPos command to correct the
content of the labels directly in the .tex file
that includes the WARMreader package, instead
of, for example, going back to the original Illus-
trator file;

4. regardless of the command used to include a
label, the same label can be included multiple
times with different variations.

On nudging

Although this topic has been already discussed else-
where (see, e.g., McKay and Moore, 1999; Moore,
2001), for the sake of completeness we will now touch
upon how to accurately position labels.

The accurate placement of a label relies on un-
derstanding the exact meaning of the label’s coordi-
nates. To this end, let us be reminded that a label,
being a (LA)TEX object, can be thought of as a box.
Next, with reference to Fig. 12, let w and h be the

Labelh

w

sh

sv

C

H

Figure 12: Elements defining the geometry of a
label.

width and height of the box bounding the label, re-
spectively. Furthermore, let C denote the center of

the label’s box and let H denote the point we will
refer to as the label’s handle. The quantities sh and
sv will be referred to as the horizontal and verti-
cal shifts, respectively. Now that these geometric
descriptors have been introduced, we are ready to
define the meaning of the expression “the label’s co-
ordinates”, as provided by the .bb file — they are
the coordinates of the point H, the label’s handle,
with respect to the lower left corner of the figure’s
bounding box. As such, the label’s handle is always
to be considered a fixed point. The quantities sh and
sv are to be understood as the position coordinates
of H with respect to C. By default, sh = sv = 0,
that is, the center of the box is made to coincide
with the label’s handle. WARMreader commands are
such that one cannot directly specify the values of
sh and sv in some chosen unit. In order to cause sh

and sv to have non-zero values one actually specifies
the value taken on by the ratios 2sh/w and 2sv/h,
respectively.

As an example, consider the position directives
used to specify the position of the label ‘Vertex A’
shown in Fig. 11:

% Marked Point Number: 1
% MarkedPoint:(0.500,0.500) : point(0,0) : 1 %Vertex A
\xyMarkedTextPoints!D(-1.50)!L(0.00){1}

The directives in question are !D(-1.50) and !L(

0.00). The first directive, namely !D(-1.50), indi-
cates that the position of H with respect to C must
be 1.5 times the half-height of the box bounding the
expression ‘Vertex A.’ Furthermore, the vertical po-
sition of H relative to that of C is downward (!D)
and negative (-1.50). Given that the coordinates of
the label’s handle are those of the lower left corner
of the rectangle, as shown in Fig. 7,∗ these instruc-
tions result in a position of the label’s box center 1.5
times the box’s half-height below the box’s handle
while leaving the sh = 0 (since !L(0.00)).

As additional examples, here below we provide
the directives to make one of the corners of the la-
bel’s bounding box coincide with label’s handle:

1. !D(1.00)!L(1.00): the lower left corner of
the label’s box is made to coincide with ‘H;’

2. !D(1.00)!L(-1.00): the lower right corner of
the label’s box is made to coincide with ‘H;’

3. !D(-1.00)!L(-1.00): the upper right corner
of the label’s box is made to coincide with ‘H;’

4. !D(-1.00)!L(1.00): the upper left corner of
the label’s box is made to coincide with ‘H.’

∗Recall that the label’s coordinates are the coordinates of

the center of the ×-symbol.

46 TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting

Creating labeled stand-alone figures in LATEX using WARMreader and Adobe Illustrator under Mac OS X

Discoveries and observations

While trying to understand the failure of our pre-
Mac OS X labeling strategy and while coming up
with an alternative strategy, we have run into a few
interesting quirks that we would like to share.

Illustrator, PDF format, and bounding boxes

The labeling procedure we have outlined starts with
the creation of a figure. As discussed earlier, when
using Adobe Illustrator, this figure must be saved an
Illustrator EPS (EPS) file. Why not save the figure
directly in PDF format? In other words, why not
go through the labeled stand-alone figure creation
process in a full PDF “environment”? The answer
to this question is manifold.

First of all, most of the journals to which we
submit our papers prefer to receive graphics in EPS

format. In other words, it is useful to have the same
figure in both EPS and PDF formats.

Second, while it is possible to save an Adobe
Illustrator file in PDF format, with the current ver-
sion of Illustrator the resulting figure is assigned a
bounding box which, in practice, is as large as the
paper media specified in the Page Setup. . . dialog.
This means that when importing the PDF figure in
the corresponding .tex document for the purpose
of labeling, one is faced with the problem of deter-
mining the true bounding box of this figure.

Finally, once the labeling process is carried out,
the resulting PDF file has, again, a bounding box
equal to that of the page. Thus, again, one would
have to find a way to determine the true bounding
box of the labeled figure, which, in general, is not
the same as that of the figure in the corresponding
Illustrator file. This last problem would need to be
solved even if future versions of Adobe Illustrator
were to provide the possibility of saving a PDF file
with a bounding box limited to that of the figure (as
opposed to that of the page). However, we are not
aware of any facilities (other than the Crop Pages
. . . facility offered by Adobe AcrobatTM) that al-
lows one to determine and edit bounding boxes of
PDF files. Hence, at least for now, the only way for
us to create a figure in PDF format with a proper
bounding box is to create an EPS figure first and
then distill it via Ghostscript.

To clip or not to clip While developing our label-
ing strategy, the calculation of the bounding box of
the labeled figure was performed using the following
Ghostscript command: gs -q -dNOPAUSE -dBATCH

-sDEVICE=bbox. The argument of the command
is the PostScript file generated by typesetting the
.tex file which contains the WARMreader commands.
As strange as it may sound, in one of the Ghost-

script distributions we used, the bbox device was no
longer available. Not certain as to whether or not
this device was going to be made available again,
we decided to rely on the bounding box information
contained in the EPSI file generated by running the
ps2epsi command. What we discovered in doing
so is that the bounding box computed by ps2epsi

is often different from that computed by Ghostscript
(via use of the bbox device). As a matter of fact,
Ghostscript computes both the bounding box and the
high resolution bounding box while ps2epsi only
computes the bounding box of the content of a Post-
Script file. The other behavior we observed was that
whether using the bounding box information com-
puted by ps2epsi or that computed by Ghostscript,
the figures we were extracting from the PostScript
files generated by our procedure were often clipped
around the edges.

In other words, somehow the bounding box as
delivered by ps2epsi (or, although less often, by
Ghostscript) was ever so slightly too small. The
problem was solved pragmatically by enlarging the
ps2epsi generated bounding box by one point in
all directions. However, we never found the time to
identify the source of the ps2epsi and Ghostscript
errors.

Summary of the figure labeling procedure

For convenience, we now summarize the steps in us-
ing WaRMFigToPDF to label figures:

1. Use Adobe Illustrator to create the figure you
wish to label. Save the file, keeping in mind
that:

(a) Illustrator 10 under Mac OS X does not
yet support long file names, and

(b) WaRMFigToPDF will insert -AI into your
filename.

2. Using the Marked Objects Tool in Illustrator,
place the labels in the desired positions and
change the text of those labels to the desired
content using the Text Tool. When you are
done, hide the layer containing the Marked Ob-
jects and then save and close the file.

3. Drag and drop the Illustrator file you have just
created and marked onto WaRMFigToPDF to
create a .tex file with the proper WARMreader

commands. This file is ready to be typeset.

4. Open the resulting .tex file and typeset it using
the ‘TEX + Ghostscript’ setting in TEXShop.

5. Iteratively adjust the positions of the Marked
Objects by editing the .tex source and typeset-
ting.

TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting 47

Francesco Costanzo and Gary L. Gray

6. Once you are happy with the position of the
Marked Objects, close the .tex file and drop
the PostScript file that results from typeset-
ting onto WaRMFigToPDF. This will delete
all unnecessary files and will create an EPS and
PDF file of your marked-up figure, each with
the proper bounding box.

The Future of WaRMFigToPDF

We use gradients rather extensively in our Illustra-
tor work to generate the appearance of depth. We
recently discovered that there can be problems with
gradients in Illustrator EPS files that have been con-
verted to PDF using Ghostscript. Figure 13 shows a

Figure 13: Smooth gradient, produced using
Adobe tools.

simple rectangle that has been filled with blue and
has had a simple radial gradient applied. The radial
gradient starts and ends within the rectangle. The
PDF file shown in Figure 13 was saved out of Illus-
trator 10 as an Adobe PDF file and then cropped
using Acrobat. On the other hand, if instead we
save the file as an EPS file and then use Ghostscript
to convert it to PDF, we obtain the result shown in
Fig. 14. Notice the incorrect color to the left and

Figure 14: Truncated gradient, erroneous result
with Ghostscript.

right of where the radial gradient started and fin-
ished using the Gradient Tool. This appears to be
a problem with Ghostscript and is an issue that we
need corrected for the types of figures we create.

Clearly, if an image is saved out of Illustrator
as a PDF file, there is no problem with the gradi-
ent. Therefore we can “work around” this prob-
lem by working with PDF files rather than with
EPS files. In addition, since the future of LATEX
seems to be heading in the direction of PDF rather

than PostScript, it is our feeling that the future of
WaRMFigToPDF should also be in the direction of
PDF. With this in mind, we have undertaken the
revision of WaRMFigToPDF with the goal of avoid-
ing Ghostscript to create the PDF images we wish to
include in our work. In addition, since some publish-
ers still require the submission of images for papers
in EPS format, WaRMFigToPDF will still automat-
ically create the appropriately marked up EPS file
as part of the process. The general procedure used
by the new version of WaRMFigToPDF will be as
follows:

1. The user will create an image in Illustrator,
mark it up, and save it as both an Illustrator
PDF file and an Illustrator EPS file.

2. WaRMFigToPDF will create the .tex file with
the marked objects embedded and ready for
typesetting.

3. The user will then typset the .tex file and ad-
just the positions of the marked objects in the
usual way. In this step, the .tex file is typset-
ting using TEX + Ghostscript and is reading in
the EPS file. The outcome of this step is Post-
Script file as well as a PDF file that was created
using Ghostscript.

4. The user will then drop the PostScript file on
WaRMFigToPDF and then WaRMFigToPDF
will use Ghostscript to determine the bound-
ing box of the marked up PostScript file. This
bounding box information is then used to cre-
ate a corresponding final EPS file as well as a
final PDF file via a typesetting process that the
user never sees. The PDF is created by type-
setting using pdflatex, reading in the original
Illustrator PDF and setting the viewport by
parsing the Illustrator PDF for the appropri-
ate bounding box information. The bounding
box used for cropping the resulting PDF file is
that which was previously obtained by running
the PostScript file through Ghostscript. This
bounding box is incorporated into the PDF via
the \pdfpageattr command, which has been
included in the .tex file (which the user never
sees).

We should also mention that the new version of
WaRMFigToPDF will still process EPS files as de-
scribed in this paper, but it will also have the new
capability outlined above.

This new version of WaRMFigToPDF should
be available by the time you read this.

48 TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting

Creating labeled stand-alone figures in LATEX using WARMreader and Adobe Illustrator under Mac OS X

References

Barratt, C., M. C. Grant, and D. Carlisle.
“PSfrag”. 1996. Available at http://www.ctan.
org/tex-archive/macros/latex/contrib/

supported/psfrag/.

Costanzo, F. and G. L. Gray. “WaRMFigToPDF”.
2002. Available at http://lpcm.esm.psu.edu/
∼gray/wftpdf.sit.

McKay, W. and R. Moore. “Convenient
Labelling of Graphics, the WARMreader Way”.
TUGboat 20(3), 262–271, 1999. Available at
http://tug.org/TUGboat/Articles/tb20-3/

tb64ross.pdf.

McKay, W., R. Moore, and T. Ruark. “Adobe
MarkedObjects plugin for WARMreader”.
TUGboat 22(3), 188–196, 2001. Available at
http://tug.org/TUGboat/Articles/tb22-3/

tb72moore-warm.pdf.

Moore, R. “What is WARMreader?” 2001. Available
online at http://www-texdev.mpce.mq.edu.
au/WARM/ and http://cds.caltech.edu/
∼wgm/WARM/reader2001.html.

Rose, K. H. “XY-pic”. 1991. Available at http:
//www.ctan.org/tex-archive/systems/mac/

textures/graphics/.

TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting 49

Enabling Web access to a database of calculus problems

using LATEX, PHP and LATEX2HTML

Kalle Saastamoinen, Jaakko Ketola, Tuukka Kurppa and Liisa Torikka
Laboratory of Applied Mathematics

Lappeenranta University of Technology

P.O. Box 20, FIN-53851 Lappeenranta, Finland

Internet: kalle.saastamoinen@lut.fi

Abstract

In this paper, we present work which we have done to provide the material used
in the teaching of calculus to students at Lappeenranta University of Technology.
This procedure can be divided into three separate steps: 1) creation of the
LATEX files, 2) conversion of the base LATEX files to the HTML files, and 3)
implementation of these HTML files in the PHP database. So far, we have stored
hundreds of exercises with hints and solutions on our Web server, in addition to
some theory that we felt is necessary for the students. In this paper we will also
discuss the benefits and future of our functioning Web environment [1].

Introduction

At the beginning of 2002, we initiated an investi-
gation to develop possible solutions for providing
the material used in the teaching of calculus to
students at Lappeenranta University of Technology.
In this paper, we present the complete procedure,
from creation of the LATEX files to a functioning Web
environment [1].

We decided to write the pages in question in the
LATEX language. We also wanted to use database
and network solutions for the final version of these
pages. We chose to use a network solution because
the material, once available on the Internet:

1. is easy to reuse, transform and combine with
other materials,

2. can be easily accessed, at least with fast con-
nections,

3. is accessible 24 hours a day,

4. can be accessed by many users at once, for per-
forming searches on the calculus information.

The students can then study the material that they
feel is the most interesting and then hopefully begin
to carry out their own research and form a view of
mathematics. Therefore we have taken a construc-
tivist approach to the learning process.

The LATEX files, which are entered into a data-
base with all the necessary keywords, form the core
of the solution. Based on the keywords, the database
includes information on where each file is located,
the specific area of mathematics, and whether the
file is an exercise, solution, hint or general infor-

mation. The database alters the user’s view of its
contents by using the keywords that are included in
the above-mentioned base LATEX files.

Any of our lecturers can contribute new mate-
rial to the database by using a very simple inter-
face and LATEX. Lecturers can also easily construct
weekly tutorials and even whole examinations from
the contents of the database. So far, we have stored
hundreds of exercises with hints and solutions on our
Web server, in addition to some theory that we felt
is necessary for the students.

Our lecturers have found that this new interface
saves a significant amount of time and is also flexible
enough for their needs. Student satisfaction with
this new material is also apparent, since the material
is now always available, information is easy to find,
and the material is clear.

Converting LATEX files to a functioning

Web environment

All of our LATEX files are articles or exercises which
are executed by a cover file. Article files include
theory, exercise files include tutorials of different
kinds, and cover files (kuori.tex) are files which
call the previously mentioned document files. Cover
files use math.sty, which includes macro definitions
of mathematical formulas and all other necessary
definitions. DVI files are generated by execution of
a cover file. All of these LATEX files were originally
created by a lecturer, Simo Kivelä, from Helsinki
University of Technology (HUT).

50 TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting

Enabling Web access to a database of calculus problems using LATEX, PHP and LATEX2HTML

Creating LATEX files Base LATEX files, articles and
exercises include categorization which defines the
final destination of the file in our Web environment.
Categorization is done as follows:

• At the beginning there is \begin{Artikkeli}

or \begin{Tehtava}, which defines if the file is
an article or an exercise.

• \tunniste{}: The name of the file, for example
\tunniste{lta179}. (The value comes from
the words Liisa, Torikka, article and the number
of the article.)

• \alue{}: The highest categorization in our
content dictionary; for example \alue{tavdy},
meaning ordinary differential equation.

• \luku{}: The next categorization area, a sec-
tion; for example \luku{2kdy}, meaning sec-
ond order differential equations.

• \kappale{}: The lowest categorization area, a
chapter; for example \kappale {vali}, mean-
ing constant linear coefficient.

• \otsikko{}: The title of the document,
e.g. \otsikko{2ODYvaki lineaariset DY:t},
meaning second order constant linear coefficient
ODE.

• \luonne[]{}: Two arguments which charac-
terize the file, for example \luonne[Matlab]

{teoria}. Here, the first argument, ‘Matlab’,
specifies that you need a computer program
called Matlab to run the issued theory part; the
second argument, ‘teoria’, means theory.

• \kuvaus{}: A short description of what the file
includes.

• \tekija{}: The name of person who typed the
file, for example \tekija{Liisa Torikka}.

• \pvm{}: The date, e.g. \pvm{29.8.2002}.

• \kieli{}: The language, with Finnish as the
default.

• \lahde{}: The original source, for example
\lahde {LTKK/Pekka Jauhon moniste,

kevät 2002}.

• \kayttooikeus{}: Copyrights.

• \lahdekoodi{}: Source code, for example
\lahdekoodi{LaTeX}.

• \laitos[]{}: The level of the material is the
first argument, and the institution name is the
second; for example, \laitos[hard]{LUT}.

• Then come keys to help database searches,
for example \avain[Calculus] {course}; nor-
mally we use many keys to make files easy to
find from our database.

• After these definitions comes the actual article
or exercise.

Figure 1: A view of the add file page.

Figure 2: A view of the starting page of calculus.

All of these files which are written are then
included in the previously mentioned cover file, ex-
ecuted and tested.

Conversion After we have a functioning LATEX file,
let us say abc.tex, we will run a script that uses the
LATEX2HTML translator to install this file into our
Web database. The script is written in Perl and
it transfers the original LATEX file into the package
called abc.tar.gz, which includes the original file
abc.tex along with pieces of converted HTML files.

Adding a file into the database After this, the
package, here named abc.tar.gz, is ready to be
sent into our server using a very simple form; see
figure 1. Once a person pushes a button called Send
a PHP-script does the following things for the file:

• it will be unpacked,

• the contents will be checked,

• the information will be added into the database
and

• HTML-pages will be sent to the right directory.

All this is done based on the information in-
cluded in original LATEX file.

Finalization After all this is done we have our file
in our Web page, where the starting page looks like
figure 2.

A user can perform different searches in our
Web environment. A file which was added can
be found from the categorization, from its place,
or by a text search on a word included in the file
categorization. For example, if we pretend that our
file which we added had something to do with Euler,
we could try to find it by entering the word ‘Euler’

TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting 51

Kalle Saastamoinen, Jaakko Ketola, Tuukka Kurppa and Liisa Torikka

Figure 3: Searching for the word ‘Euler’.

Figure 4: Result of the search for ‘Euler’.

into the search engine as in figure 3 and the outcome
of the search looks like figure 4. This works well, as
long as one can think of an appropriate term for
which to search.

The result from a successful search might look
like figure 5.

Figure 5: Example result document.

Conclusions and future

We have received many positive and very few neg-
ative comments from these pages that we have cre-
ated. Our pages have been used in our normal basic
courses and both lecturers and students have taken
them as their own. We have also done both qual-
itative and quantitative usability testing for these
pages and the results have been very promising.

In the future, we plan to automate the way
in which text will be captured in the pages of, for
example, examinations. This will make our pages
more usable in the context of distance education,
among others. We will also continue developing
these pages with animations and other features.

References

[1] Kalle Saastamoinen, Jaakko Ketola,
Tuukka Kurppa and Liisa Torikka
(2002). “Calculus Web pages”,
http://www.it.lut.fi/mat/virtuaali/matb

52 TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting

MathML formatting with TEX rules, TEX fonts, and TEX quality∗

Luca Padovani
University of Bologna, Department of Computer Science
Mura Anteo Zamboni, 7
40127 Bologna
Italy
lpadovan@cs.unibo.it

http://www.cs.unibo.it/~lpadovan/

Abstract

In this paper we investigate the architecture of a MathML formatting engine based
on an abstraction of the TEX box primitives. This engine is carefully designed
so that the TEX-dependent formatting rules are isolated from the independent
ones and is capable of achieving TEX-comparable output quality when used in
conjunction with TEX fonts. We show how the formatting rules presented in
Appendix G of the TEXbook can be easily adapted for MathML formatting, and
how the semantically-rich MathML markup simplifies the rules themselves.

1 Introduction

The Mathematical Markup Language (MathML [4])
is an XML application for encoding mathematical
formulae. It has two distinct sets of tags: the presen-

tation tags which are used to encode what a formula
looks like, and the content tags which are used to en-
code the “meaning” of a formula. The TEX macros
for math typesetting either represent operators or
identifiers that cannot be typed directly on the key-
board, or they implement the most common layout
schemata for the mathematics. In the context of
MathML presentation, the TEX macros of the first
kind correspond to Unicode [1, 2] characters, hence
they do not have dedicated markup. Macros of the
second kind correspond very closely to MathML pre-
sentation tags, as Table 1 shows. We can thus say
that TEX and MathML presentation encode mathe-
matical formulae at the same level.

Indeed, the issue of formatting MathML docu-
ments using TEX can be addressed simply by pro-
viding a transformation from the MathML markup
to the TEX/LATEX markup,1 and using a TEX imple-
mentation for the actual rendering. This approach,
however, is far from being all-satisfactory. For ex-
ample, the whole rendering process is only feasible
if no interactivity is required, that is, if the render-
ing can be performed off-line as a batch procedure

∗ This work has been supported by the European Project
IST-2001-33562 MoWGLI.

1 Examples of such translation tools are the one devel-
oped at the Ontario Research Centre for Computer Alge-
bra [8], and the XSLT stylesheets by Vasil I. Yaroshevich
http://www.raleigh.ru/MathML/mmltex/.

Layout
Schemata

TEX MathML

Identifiers a,x,\sin,. . . mi
Numbers 0,1,2,. . . mn
Operators +,(,\oint,. . . mo
Grouping { } mrow
Fractions \over, \atop mfrac
Radicals \sqrt, \root \of msqrt, mroot
Scripts _, ^ msub, msup,

msubsup,
mmultiscripts

Stacked
expressions,
lines and braces
above and
below formulae

\buildrel,
\underline,
\overline,
\underbrace,
\overbrace

munder, mover,
munderover

Matrices, tables \matrix, \cases mtable

Table 1: Correspondence of TEX and MathML

layout schemata.

on a static medium (the paper, an image). Also, re-
quiring the large complex TEX system whose overall
purpose goes far beyond math formatting is proba-
bly unreasonable. Furthermore, not every MathML

document can be faithfully converted into the cor-
responding TEX markup—the conversion is more a
good approximation than an accurate rendering.

An alternative approach is to implement a self-
contained MathML formatter that is also capable
of using TEX fonts. However, the use of TEX fonts
at this level requires a good understanding of the
conventions adopted for the metrics of the glyphs
they provide and the extra parameters they have.
The TEX system relies on this knowledge in order
to achieve a very high formatting quality. On the
other side, MathML is a language for publishing and
communicating mathematics on the Web, hence its

TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting 53

Luca Padovani

rather high-level formatting semantics do not make
any special assumptions about the graphic capabili-
ties of the environment in which it is rendered, e.g.,
whether it is a system for quality typesetting on the
paper, a regular computer, or a hand-held device.

In this paper we investigate how to carefully
design a MathML formatter so as to separate what
is TEX-specific from what is common in every envi-
ronment. We also show how the semantically rich
MathML relieves the author from explicitly tweak-
ing the markup, which is a potentially dangerous
operation in the context of MathML and, more gen-
erally, of documents to be published on the Web, as
there is no guarantee that the tweak will work suc-
cessfully on a different formatter from the one the
author is using.

We have chosen to proceed with our investi-
gation by giving illustrations instead of exhaustive
explanations, leaving to the reader the generaliza-
tion of the cases considered here. Consequently,
some knowledge of MathML and its basic concepts
is highly recommended. We have assumed that the
reader is also familiar with the TEX formatting rules
for mathematics and other TEX concepts described
in Appendix G of The TEXbook [5].

2 MathML formatting

By “formatting a formula” we mean the process that
transforms the formula encoded in some markup
language into a lower-level representation that con-
veys information about the needed glyphs, their size
and their relative position.

Math formatting is always done with respect
to a formatting context which defines, at least, (a)
the (relative) font size at which formatting is occur-
ring; (b) the scripting level—that is the number of
nested scripts at which formatting is occurring; (c)
whether the formula is formatted at display level (in
a paragraph of its own) or inline.

We define the MathML formatting context as
a structure with a number of named fields. We use
the “dot notation” to select a particular field in a
formatting context, thus we will write C.size to de-
note the value of the field size in the context C.
Table 2 shows the main fields of a MathML format-
ting context.2 A TEXnician will recognize that the
MathML formatting context is just a generalization
of the TEX notion of “style”. In fact, the devel-
opment of MathML has been influenced by TEX in
many ways.

2 There can be many different definitions of a MathML

formatting context. The one given here is not complete, but
it suffices for the purposes of the paper.

Name Default Description

size inherited Font size
scriptLevel 0 Number of nested scripts
minSize 8 pt minimum font size that a

script can be reduced to
displayStyle inherited true if formulae must be

formatted in display mode
sizeMult 0.71 Amount by which the font

size is multiplied when the
script level is increased by 1

stretchWidth undefined Horizontal extent the
operator is asked to stretch

stretchHeight undefined Vertical extent (above the
baseline) the operator is
asked to stretch

stretchDepth undefined Vertical extent (below the
baseline) the operator is
asked to stretch

Table 2: Properties of the MathML formatting
context.

Because of the structured nature of MathML

documents, MathML formatting can be expressed
as a recursive function. Say we have a formula en-
coded in MathML like <t> X1 · · ·Xn <t/> where t is
the type of the root MathML element (ranging over
mrow, mfrac, and so on) and the Xi its children,
then the formatting of the formula in a given for-
matting context C, notation [[<t> X1 · · ·Xn </t>]]C ,
can be expressed as a proper combination, or re-
arrangement, of the formatted children Xi each in
its own formatting context Ci:

[[<t> X1 · · ·Xn </t>]]C = ft(C
′, [[X1]]C1

, . . . , [[Xn]]Cn
)

Similarly, formatting of MathML token elements can
also be expressed as a function of the current format-
ting context and of the Unicode characters c1, . . . , cn

that the token is made of:

[[<t> c1 · · · cn </t>]]C = ft(C
′, c1 · · · cn)

In both these cases, the type t of the element
being formatted and the value of attributes may af-
fect the formatting context C and change it into a
different context C ′. For instance, formatting of a
token element that explicitly sets the current font
size (mathsize attribute) will format its characters
in a context C ′ in which the field C ′.size has been
updated accordingly. The complete set of rules for
updating the formatting context C are described in
detail within the MathML specification, and they
basically follow the rules for style changes in TEX (a
concrete example will be given later).

As described in Appendix G of The TEXbook,
TEX scans and processes a logical representation of a
formula (a math list) consisting of items, converting
it into a physical representation (a horizontal list)
made up of regular boxes. Items in the math list
can be of different types, and in many cases they
directly correspond to basic math layout schemata

54 TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting

MathML formatting with TEX rules, TEX fonts, and TEX quality

(like Rad atoms for radicals, Acc atoms for accents,
and generalized fractions). For every item type, Ap-
pendix G defines one or more rules describing in de-
tail how the item is converted in one or more boxes,
ultimately defining how TEX formats mathematical
formulae. Given the strict correspondence between
TEX commands for math typesetting (hence math
list items) and MathML presentation elements, the
same set of rules can be easily adapted for the defi-
nition of the ft functions.

In the following sections we consider in some
more detail the formatting rules for the main cate-
gories of MathML elements and show how they map
on TEX rules.

2.1 Groups

Math lists result from typesetting in math mode.
The content of a math list is typically formatted on
a single horizontal line, with all the items aligned on
their baseline. In this respect a math list is close to
the MathML mrow element. However, mrow is also
fundamental for the following purposes:

• all stretchable operators within the same mrow

element should vertically stretch so as to have
the same height plus depth, unless they are con-
strained in some way either by the markup or
by some limitations of the environment;

• mrow is the main MathML element enabling au-
tomatic line-breaking of long formulae, when
they exceed the available horizontal space for
formatting. Conversely, TEX grouping opera-
tors { } freeze a sub-formula preventing any
line-break in it.

Stretching of operators is done by looking at
the bounding box of the child elements, once they
have been formatted, and then passing adequate in-
formation through the formatting context, the idea
being that operators have to take care of stretching
themselves. This generalized treatment of stretchy
operators relieves all the other MathML elements
from taking into account vertical stretching rules.
In particular, rule 13 (large operators) only applies
when formatting stretchable operators (see the dis-
cussion on tokens that follows), and rule 15e (frac-
tions with delimiters) is never necessary because if a
fraction must have delimiters, they must be explic-
itly encoded inside an mrow element along with the
delimited fraction.

Automatic line-breaking is only affected by the
bounding box of the formatted child elements, pos-
sibly requiring re-formatting of all or some of them.
This can be considered a higher-level formatting is-
sue which does not involve low-level TEX rules.

2.2 Tokens

Tokens are the basic building blocks of every math-
ematical formula. In MathML, tokens are the only
elements allowed to have actual text as content.
The most important token types are mi for identi-
fiers, mn for numbers, and mo for operators. The
first two correspond roughly to Ord atoms in a
math list, whereas the last one is refined in TEX
into different atoms, Op, Bin, Rel, Open, Close, or
Punct. The most remarkable difference is that in
TEX those atoms must be made of exactly one char-
acter, whereas MathML tokens are made of arbitrary
Unicode strings. From the point of view of format-
ting, though, the more general scheme adopted by
MathML does not pose any additional problem, and
it actually simplifies the encoding of non-strictly-
mathematical documents in which identifiers and
operators whose name is longer than one character
are frequent.

The fine-grained classification of operators is
needed in TEX for mainly two reasons: (1) com-
puting the right amount of space around operators;
(2) helping the automatic line-breaking algorithm
with hints on where the formula can be broken.
In particular there is a distinction between unary
operators (Op) and binary operators (Bin) as they
typically have different spacing rules. In properly
grouped MathML markup there is no need for dis-
tinguishing unary (prefix and postfix) from binary
(infix) operators, as their form can be inferred from
their position in the enclosing mrow element.

Rule 14 does not apply any more in general for
if two characters are marked up in different tokens
they should never be kerned or merged into a liga-
ture. This behavior is rather part of the formatting
semantics of the token itself.

Operators are by far the most complicated to-
kens to format, for they may have to stretch ver-
tically or horizontally and are affected by a many
MathML attributes. Assuming that stretching in-
formation is propagated in the formatting context
(C.stretchWidth, C.stretchHeight , C.stretchDepth),
operators can use rule 19 for determining the ex-
act extent they should span, and rule 13 when they
must be formatted in the large form.

2.3 Accents

MathML provides multiple ways of encoding an “ac-
cent”, depending on whether the accent is meant to
be syntactic or semantic. A syntactic accent is sim-
ply part of a name, it has no mathematical mean-
ing. Although it is very rare in mathematics to have
identifiers with accents, the use of explicit markup

TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting 55

Luca Padovani

allows MathML to disambiguate the two cases. Syn-
tactic accents are used following the Unicode rules
for combining characters. Hence, a MathML identi-
fier like

<mi> ȧ </mi>

is typeset as ȧ (the Unicode character U+0307 rep-
resents the “combining dot above” ◦̇).

A semantic accent usually denotes an operation,
like first-order derivative in case of the “combining
dot above”. As such it is marked up as

<mover accent="true">

<mi> a </mi>

<mo> ̇ </mo>

</mover>

even though the formatted result is likely to be the
same as in the previous case. Note how the accent
is explicitly marked up as an operator inside an mo

element. Rule 12 (accents) can handle both accents
combined with a single character and wide accents
combined with arbitrary subexpressions.

Although they cannot be considered proper ac-
cents, horizontal lines extending above or under a
formula are treated in MathML uniformly with all
the other operators. In particular, the MathML

markup corresponding to \underline{a} is

<munder>

<mi> a </mi>

<mo> ̲ </mo>

</munder>

where U+0332 is Unicode combining horizontal line
below. The horizontal stretching rules of MathML

operators require the U+0332 character to stretch to
the width of the base subformula. The symmetric
situation (\overline) is handled similarly, except
that the Unicode character to be used is U+0305.
These two cases are handled by rules 9 and 10.

2.4 Radicals

Formatting of root symbols deriving from msqrt and
mroot elements is handled by rule 11 concerning
Rad atoms.

2.5 Fractions

The mfrac element governs encoding of fractions. In
TEX, alignment of the numerator and the denomi-
nator can be determined by the use of \hfill. In
MathML, it is affected by the value of the attributes
numalign and denomalign. TEX rules for format-
ting fractions are those from 15 through 15d. TEX
provides different commands for typesetting verti-
cal material in a fraction-like manner, depending on
whether one wants a fraction bar (\over, \above)

or not (\atop). MathML handles all such cases by
setting the linethickness attribute.

2.6 Scripts

Scripts are handled in MathML by the elements
msub, msup, msubsup, mmultiscripts and some-
times munder, mover, and munderover. The reason
why munder, mover, and munderover elements have
to do with scripting is that they implement a mech-
anism similar to that determined by the \limits,
\nolimits, \displaylimits commands in TEX.

TEX rules governing the placement of scripts
are those from 18 through 18f. Note that scripts in
TEX are represented as possibly empty fields on any
atom, whereas they are uniformly marked up with
elements in MathML.

2.7 Tables

MathML markup for tables does not involve any spe-
cific font dependency as it is basically a higher-level
formatting problem, compared to formatting of the
other elements.

3 Dealing with TEX dependencies

If we define an environment as the combination of
available fonts, graphic capabilities of the output
medium and user requirements, TEX rules for for-
matting make strong assumptions that are hard to
generalize to environments other than typesetting
math on the paper using a family of TEX fonts [7].
We can summarize TEX dependencies as follows:

• non-standard font metrics (such as, the thick-
ness of the horizontal line in a radical is com-
puted from the height of the radical symbol;
the use of width and italic correction for the
placement of scripts);

• non-standard kerning information (like using
\skewchar for determining the horizontal dis-
placement of accents);

• font-related quantities (the parameters σi and
ξj in Appendix G) whose value cannot be oth-
erwise inferred or computed in general;

• use of boxes of “black ink” (rules) for draw-
ing fraction lines, root lines, joining segments in
horizontal braces, formatting of Unicode char-
acters U+0305 and U+0332;

• built-in TEX constants (see \delimiterfactor

and \delimitershortfall for stretchy opera-
tors, \nulldelimiterspace).

It is not feasible for any environment in which
we might like to format MathML markup to provide
the same set of parameters, or to address specific
formatting issues the same way TEX does. Nor is it

56 TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting

MathML formatting with TEX rules, TEX fonts, and TEX quality

feasible to assume that the set of parameters we have
considered is a superset of all the possible parame-
ters that may ever affect formatting of mathemati-
cal formulae. Nonetheless the list of operations in-
volving dependencies (formatting of tokens, radicals,
scripts, fractions, accents) will be exactly the same
in systems other than TEX. This amounts to saying
that the definition of each ft can be split up into two
components: a gt component that does not depend
on anything that is TEX specific, and an ht compo-
nent that is strictly dependent on TEX. By doing
so we automatically identify two main parts of the
MathML formatter: the set of functions gt which de-
fines the formatting engine — that part which takes
care of all TEX-independent aspects of the format-
ting; the set of functions ht which defines the TEX
device for mathematics — that part which deals with
anything which is (or may be) dependent on TEX
fonts or TEX formatting rules.

Since the set of ft is finite and agreed upon a

priori (the set of math layout schemata is fixed and
relatively stable, being the result of centuries of slow
evolution and convergence to modern notation), the
interface to the TEX-dependent parts is also fixed.
This way when the environment changes —say when
we move to a different family of fonts that does not
adopt the TEX conventions —we need only to re-
instantiate the ht’s with those that are customized
to this new environment but with the same agreed
interface, still sharing the same set of gt’s.

Figure 1 summarizes graphically the entities in-
volved in formatting a fraction element, in particular
the separation of the gmfrac and hmfrac components.

Of course the proposed modular organization
of the formatter makes sense only if the two sets of
functions are both performing non-empty and non-
trivial tasks. But it is clear from Appendix G of
The TEXbook [5] and the intricacies of math format-
ting detailed therein that the TEX-dependent part is
non-trivial. As for the formatting engine part, it has
the following list of non-trivial responsibilities (that
we will not elaborate further here, for the sake of
brevity): the construction of a data structure (typ-
ically a tree) which is suitable for formatting pur-
poses; the implementation of the MathML mecha-
nism for attribute inheritance and evaluation; the
computation of updated formatting contexts; the al-
gorithm for automatic line-breaking of long formu-
lae; the algorithm for table layout.

4 An area model for MathML

The formatting functions ft take objects as argu-
ments and produce a new object as a result. Such
objects, which we will call areas from now on, are a

<mfrac>
N

D

</mfrac>

✲[[·]]C
gmfrac

✲
hmfrac

fmfrac

✄
✄✎

[[N]]C′ , [[D]]C′

❈
❈❖

MathML Formatting

Engine

TEX Graphic Device

Figure 1: Modularization of the formatting
function for the mfrac element.

low-level representation of formatted formulae, and
constitute what we define as the area model of the
TEX device for mathematics (or, in general, any
other instance of it).

From the point of view of the formatting en-
gine, we note that the only thing that matters is the
ability to compute an area’s bounding box, which
is essential for updating the context with informa-
tion about stretchable operators, for the automatic
table layout algorithm and for the line-breaking al-
gorithm. We summarize this by saying that areas
are opaque to the formatting engine.

From the point of view of the ht functions, how-
ever, areas must convey more information. Many of
the formatting rules presented in Appendix G have
dependencies on the kind of areas being combined
(for example, whether they are simple glyphs or ar-
bitrary formatted sub-formulae), and also on the ac-
tual shape of the glyphs the areas are made of. We
summarize this by saying that areas must be trans-

parent to the TEX device for mathematics.
This neat separation of views (opaque vs. trans-

parent) of the area model is crucial in the design of
a modular architecture in that it relegates areas to
the TEX-dependent part of the formatter, the only
requirement for them being that of exporting a very
limited set of operations (namely, the computation
of the bounding box).

In the specific case of formatting using TEX
rules and TEX fonts, the area model can be natu-
rally synthesized as a subset of TEX boxes. Table 3
introduces an abstract notation for the most com-
mon area types needed for math formatting, along
with their corresponding TEX box or primitive com-
mand that achieves the same (or a similar) format-
ting. The reason for not using TEX primitive boxes
directly is that the very same abstract model can
be implemented in a sensitive way depending on the
environment, whereas the TEX box model is obvi-
ously tied to TEX. For example, when formatting a
MathML document that is meant to be interactive,
the resulting areas may carry information about se-

TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting 57

Luca Padovani

Area TEX box Description
G[·] Glyph
Kn \kern Kern with value n;

the kern is horizontal or
vertical depending on
the container it is in

F \hfill

\vfill

Filler area

Rn \hrule

\vrule

Filler rule of thickness n

Sn[α] \raisebox

\lowerbox

Shift α’s baseline by n

H[α1, . . . , αn] \hbox Horizontal group of
areas α1,. . . ,αn

Vk[α1, . . . , αn] \vbox Vertical group of areas
α1,. . . ,αn, where αk is
the reference area that
determines the baseline

Table 3: Area types and their rendering
semantics.

lections, or may have backward pointers towards the
MathML elements that generated them. Such in-
formation is clearly unnecessary when formatting a
static document for printing.

4.1 Example: mfrac formatting

We conclude this section by showing a complete ex-
ample of formatting function, along with the result-
ing area object.

Let’s suppose we are to format a subformula of
the form <mfrac> N D </mfrac> representing the
fraction

N

D
where we may assume, for the sake of generality,
that N and D are metavariables standing for arbi-
trary subexpressions rather than actual identifiers.
Then we have

[[<mfrac> N D </mfrac>]]C = fmfrac(C,α, β)

where

α = [[N]]C′

β = [[D]]C′

and C ′ is such that if C.displayStyle = true then
C ′.displayStyle = false and all the other fields are
the same as in C, whereas if C.displayStyle = false

then C ′.scriptLevel = C.scriptLevel + 1, C ′.size =
max(C.minSize, C.size × C.sizeMult) and the other
fields are the same as in C.

Depending on the value of the numalign and
denomalign attributes the numerator and the de-
nominator may be aligned to the left, to the right,
or may be centered (this is the default). Assuming
they are centered, fmfrac is defined as

fmfrac(C,α, β)

= hmfrac(C,H[F, α, F],H[F, β, F])

= Sa[V3[H[F, β, F],Kd, Rh,Kn,H[F, α, F]]]

which is to be read as follows: the fraction is made
of (from bottom to top) the centered denominator
H[F, β, F], a kern d, the horizontal bar of thickness
h, a kern n, the centered numerator H[F, α, F]. The
reference point of the whole vertical area V coincides
with the reference point of its third child (the hor-
izontal bar). Then, the whole fraction is shifted up
by a so that the horizontal bar is aligned with the
axis of the expression. The quantities a, d, h, and n
are computed by hmfrac following rules 15–15d.

Note how the process is clearly split into a TEX-
independent part (computation of updated format-
ting contexts, alignment of numerator and denomi-
nator) and a TEX-dependent one (exact positioning
of the subparts).

5 How semantics helps formatting

When we speak of “semantics” in the context of
MathML presentation markup, we refer not only to
the presentation tags but also to the following char-
acteristics:

• The use of explicitly encoded, although invisi-
ble, operators such as “invisible multiplication”
and “function application”;

• The use of a more rigid encoding of mathe-
matical formulae, in particular proper group-
ing rules. In practice this amounts to allowing
within the same mrow element at most one kind
of operator, with only a few exceptions (pluses
and minuses within the same mrow are not con-
sidered a violation of the proper grouping rule);

• The use of a dictionary customizing the basic
properties of known operators, such as their
stretchability, whether they are delimiters,
fences, or other kinds of operators, the amount
of space that should normally be around them.

The presence of semantics in the MathML en-
coding of a mathematical expression has often been
associated with the ability to reconstruct a more
semantically-oriented representation of the same ex-
pression. However, such information can also be
exploited for formatting purposes as it allows the
formatter to apply context-sensitive rules that are
logically related to the semantics of the entity being
formatted. This eliminates the need for strange for-
matting rules, special cases, and other oddities that
abound in the formatting rules of TEX markup, and
it also permits a more general and effective format-
ting than TEX allows. In the sections that follow we
consider three specific examples.

58 TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting

MathML formatting with TEX rules, TEX fonts, and TEX quality

5.1 Invisible operators are explicit

The use of explicit markup for invisible operators
has a noticeable impact on the formatter and the
way it operates. As a concrete example let’s con-
sider a typical trigonometric function, say sine, for
which an explicit TEX macro has been designed. De-
pending on the author’s taste or needs, there are two
different ways to typeset the sine of x:

sin x or sin(x)

both of which are encoded using the \sin macro. A
close look at the formatted formulae will reveal that
in sinx there is a little space between the function
name and the argument, whereas there is no space
in sin(x). Although this is indeed very natural,
and yields a nicely formatted formula, the hidden
mechanism that makes this happen is anything but
straightforward. The definition of the \sin macro
is something like the following:

\def\sin{\mathop{\rm sin}}

The key point is the definition of \sin as an
operator. By TEX spacing rules, an operator (Op
atom) followed by a variable (Ord atom) gets some
space after it, but the same operator, when followed
by a delimiter (Open atom), gets no extra space.

In MathML the same expressions would be en-
coded as

<mrow>

<mi>sin</mi>

<mo>⁡</mo>

<mi>x</mi>

</mrow>

or

<mrow>

<mi>sin</mi>

<mo>⁡</mo>

<mrow>

<mo>(</mo> <mi>x</mi> <mo>)</mo>

</mrow>

</mrow>

respectively. The fact that we have an explicit oper-
ator, function application, between the function and
its argument allows the formatter to do something
context-sensitive along the following lines: whenever
formatting of ApplyFunction operator is requested,
look at the next element. If it is an mrow whose first
child is a delimiter then render ApplyFunction as
zero-width space. Otherwise render it as some suit-
able constant space. The difference with TEX is that
this behavior is explicitly associated with formatting
of the ApplyFunction character, and not part of a
more general (but also less clear) scheme for spacing
math atoms. Finally, note that TEX’s mechanism

relies on the \sin function being defined as an “op-
erator,” whereas sin is correctly marked up as an
identifier (for the sine function) in MathML markup.

Without going into the same level of detail, the
reader can easily verify that a similar thing happens
with invisible multiplication, which is in fact invisi-
ble in TEX markup, whereas it is explicitly encoded
as the InvisibleTimes operator in MathML. In
the case of adjacent fractions, just to mention one
specific case, null delimiters with non-null width are
accurately placed so that the fraction bars do not
join together. Correct spacing between math Ord
atoms is also ensured by an accurate use of font
metric information, italic corrections in particular,
which guarantees a very high quality of the format-
ted formula, but contributes in making TEX fonts
and TEX formatting rules mutually dependent.

5.2 Opening and closing delimiters

TEX distinguishes delimiters as opening and closing
depending on their name. (, [, { are examples of
opening delimiters, ⌋, ⌉, 〉 are examples of closing
delimiters. The distinction is carried out at the level
of atoms, where the delimiters are represented by
either Open or Close atoms.

In a properly grouped MathML expression the
distinction is made depending on the position of the
operator rather than its name. In fact, a properly
grouped expression must be an mrow element whose
first and last children are the opening and closing
delimiter, respectively, and the middle child is the
body of the expression.

The operator dictionary that determines the de-
fault value of operator properties, spacing in partic-
ular, is addressed by both the operator’s name and
its form (one of prefix, infix, or postfix). Hence, the
use of properly grouped markup combined with an
operator dictionary provides for greater generality
and flexibility in a formatter for MathML markup.
As a notable side effect, it also disambiguates those
cases in which the opening and closing delimiters
are equal (think of | or ‖), which must be carefully
treated in TEX markup in order to get the spacing
right.3

5.3 The strange case of the solidus symbol

Inline division is typically represented by the / sym-
bol placed very close to its operands. TEX has the
oddity that the / symbol is not treated as an op-

3 TEX also provides for a \mid operator which should be
used for | when it stands as the separator in comprehensive
notation for sets. This case is also simplified in MathML

markup, as in properly grouped markup the | operator would
be correctly treated as an “infix” operator.

TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting 59

Luca Padovani

erator Op, but rather as an ordinary symbol Ord,
so that it gets no space around during the second
phase of formula formatting (rule 20). The visual
effect is that of rendering as 1/2 rather than 1 / 2. In
MathML formatting this trick is no longer necessary,
and the / can be naturally encoded as <mo>/</mo>,
for the spacing around it can be controlled by the
lspace and rspace attributes accepted by every mo

element (their default values can be specified in the
MathML operator dictionary).

6 Conclusions

As MathML is relatively similar to TEX, at least
at some abstract level, most of the TEX formatting
rules can be easily adapted and used for MathML

formatting when TEX fonts are available. However,
doing so in a modular and adaptable way, without
necessarily committing to TEX fonts, is a more del-
icate problem.

In this paper we have surveyed a number of
issues and their possible solutions, ultimately de-
picting the architecture of a formatter for MathML

markup which is capable of exploiting all of TEX’s
finest rules for math typesetting without being tied
at the same time to the TEX fonts. Thanks to the
structurally and semantically rich MathML markup,
the formatter also succeeds in cases that cannot be
handled in a general way by the TEX formatting
rules without the help of the author. This aspect is
particularly relevant because, if the desired render-
ing is not achieved by the TEX rules, the author can
tweak a TEX formula and still be sure that the for-
mula will be rendered the same way on every system
running TEX. On the other hand, since MathML

formatters are not tied to a set of fixed formatting
rules, tweaking the MathML markup can potentially
compromise effective rendering of the formula.

The problem of being adaptable to the format-
ting environment is not just a matter of recognizing
the available fonts and achieving the finest format-
ting with those fonts. TEX formatting rules assume
that the formulae will eventually be printed on pa-
per, or at least displayed on a high resolution screen.
There are contexts in which it is more convenient to
display symbols differently, as to improve editing, in-
teraction, or readability, especially in low-resolution
display such as those used in hand-held devices.

The techniques that we have described in the
paper have been successfully put into practice in two
prototypes, a MathML formatting engine for a rec-
ognizer of hand-written mathematics in hand-held
devices at the Ontario Research Centre for Com-

puter Algebra [9], and the gtkmathview widget4 at
the University of Bologna. The latter tool, in par-
ticular, has been adopted by John Wiley & Sons,
Inc., the publisher, for rendering mathematical for-
mulae encoded in MathML markup while achieving
a quality comparable to that of TEX and using sev-
eral families of TEX fonts.

In a broader perspective, the architecture we
have designed and implemented allows applications
to exploit context dependencies, instead of avoiding
them. As the development of the two prototypes
has shown, the efforts required for implementing the
techniques are negligible when compared to the po-
tential benefits.

References

[1] “The Unicode Standard”, Version 3.0,
Addison Wesley, 2000.

[2] “Unicode Standard Annex #28, Unicode 3.2”,
2002. http://www.unicode.org/unicode/
reports/tr28/

[3] “Extensible Markup Language (XML)
Specification”, Version 1.0, W3C

Recommendation, 10 February 1998.
http://www.w3.org/TR/REC-xml

[4] “Mathematical Markup Language (MathML)
Version 2.0”, W3C Recommendation, 21
February 2001.
http://www.w3.org/TR/MathML2/

[5] D. E. Knuth, “The TEXbook”,
Addison-Wesley, Reading, MA, 1998.

[6] D. E. Knuth, “The METAFONTbook”,
Addison-Wesley, Reading, MA, 1994.

[7] U. Vieth, “Math typesetting in TEX: The
good, the bad, the ugly”, Proceedings of the
EuroTEX Conference, 2001, The Netherlands.

[8] E. Smirnova, S. M. Watt, “MathML to TEX
Conversion: Conserving high-level semantics”,
MathML International Conference, 2002.
http://www.mathmlconference.org/2002/

presentations/smirnova/index.html

[9] L. Padovani, “A Standalone Rendering
Engine for MathML”, MathML International
Conference, Chicago, IL, 2002.
http://www.mathmlconference.org/2002/

presentations/padovani/

[10] L. Padovani, “MathML Formatting”, Ph.D.
Thesis, Technical Report UBLCS-2003-03,
Dept. Computer Science, Bologna, Italy, 2003.

4 See http://helm.cs.unibo.it/mml-widget/ and [10].

60 TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting

MathML formatting with TEX rules, TEX fonts, and TEX quality

Appendix

To conclude, here is an actual example of an equa-
tion in MathML form, and the corresponding output
generated by gtkmathview.

<math display="block"
xmlns="http://www.w3.org/1998/Math/MathML">
<mrow>

<mo>∫</mo>
<mo>⁡</mo>
<mfrac>

<mrow>
<mrow>

<mi>a</mi>
<mo>⁢</mo>
<mi>x</mi>

</mrow>
<mo>+</mo>
<mi>b</mi>

</mrow>
<mrow>

<msup>
<mi>x</mi>
<mn>2</mn>

</msup>
<mo>+</mo>
<mrow>

<mi>p</mi>
<mo>⁢</mo>
<mi>x</mi>

</mrow>
<mo>+</mo>
<mi>q</mi>

</mrow>
</mfrac>

</mrow>
<mo mathvariant="italic">d</mo>
<mi>x</mi>
<mo>=</mo>
<mrow>

<mrow>
<mfrac>

<mi>a</mi>
<mn>2</mn>

</mfrac>
<mo>⁢</mo>
<mrow>

<mi>ln</mi>
<mo>⁡</mo>
<mrow>

<mo>(</mo>
<mrow>

<msup>
<mi>x</mi>
<mn>2</mn>

</msup>
<mo>+</mo>
<mrow>

<mi>p</mi>
<mo>⁢</mo>
<mi>x</mi>

</mrow>
<mo>+</mo>

<mi>q</mi>
</mrow>
<mo>)</mo>

</mrow>
</mrow>

</mrow>
<mo>+</mo>
<mrow>

<mfrac>
<mrow>

<mrow>
<mn>2</mn>
<mo>⁢</mo>
<mi>b</mi>

</mrow>
<mo>-</mo>
<mrow>

<mi>a</mi>
<mo>⁢</mo>
<mi>p</mi>

</mrow>
</mrow>
<msqrt>

<mrow>
<mrow>

<mn>4</mn>
<mo>⁢</mo>
<mi>q</mi>

</mrow>
<mo>-</mo>
<msup>

<mi>p</mi>
<mn>2</mn>

</msup>
</mrow>

</msqrt>
</mfrac>
<mo>⁢</mo>
<mrow>

<mi>arctg</mi>
<mo>⁡</mo>
<mfrac>

<mrow>
<mrow>

<mn>2</mn>
<mo>⁢</mo>
<mi>x</mi>

</mrow>
<mo>+</mo>
<mi>p</mi>

</mrow>
<msqrt>

<mrow>
<mrow>

<mn>4</mn>
<mo>⁢</mo>
<mi>q</mi>

</mrow>
<mo>-</mo>
<msup>

<mi>p</mi>
<mn>2</mn>

</msup>
</mrow>

</msqrt>
</mfrac>

</mrow>
</mrow>
<mo>+</mo>
<mi>c</mi>

</mrow>
</math>

∫

ax + b

x 2 + px + q
d x =

a

2
ln

(

x 2 + px + q
)

+
2b - ap

4q - p2

√ arctg
2x + p

4q - p2

√ + c

TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting 61

Abstracts — Interfaces

From LATEX to MathML and beyond

Eitan M. Gurari
Ohio State University
gurari@cis.ohio-state.edu

LATEX is a high-level authoring language offering a
special attention to mathematics. MathML is a low-
level markup language representation for mathemat-
ics, suitable in particular for machine processing.
Nemeth code, the standard used in North America
for representing mathematics in braille, is a complex
linear notation based on 63 symbols.

In recent years, I have been involved with
the development of the TEX4ht tool for translating
LATEX to hypertext, and of a tool for translating hy-
pertext to braille. The presentation will discuss the
use of LATEX for authoring content for the Web, with
emphasis on MathML production. Lessons learned
from translating LATEX to braille through MathML

will also be considered.

⋄

Programming dynamic LATEX documents

James J. Quirk
Computer & Computational Sciences Division
Los Alamos National Laboratory
quirk@lanl.gov

This talk will present an overview of a co-operative
programming model for generating dynamic LATEX
documents. The basic aim, at least in the area
of computational science where the model was con-
ceived, is to allow researchers to substantiate scien-
tific articles with inline computer simulations whose
code is open to hard scrutiny.

The current implementation (see http://

www.amrita-ebook.org/drink-me) leverages off
pdfLATEX in a sufficiently general manner to be of
interest beyond its specialist origins. And the talk
will describe how TEX is utilized to bring out its
typesetting strengths, while hiding its programming
weaknesses. Thus the material might serve to add
a fresh perspective on the developments needed to
keep TEX relevant in the 21st century.

eXaMpLe

Hans Hagen
PRAGMA ADE

The eXaMpLe project started as an experiment to
bring XML into ConTEXt. When this was accom-
plished, a logical next step was to provide means
to comfortably embed ConTEXt in workflows that
deal with this kind of coding. This effort resulted
in the eXaMpLe framework. This framework offers
ConTEXt users the following benefits:

• remote access to a ConTEXt server by means of
a client–server applications; one can either send
requests by HTTP or drop request in hot folders

• technology to hide the nasty parts of TEX and
related applications behind a user–interface,
which itself is generated by ConTEXt

• an experimental editing environment for XML

documents, either combined with, or not com-
bined with TEX, driven by roles (authors, edi-
tors, reviewers)

The eXaMpLe framework is used by PRAGMA ADE,
as well as its customers, for instance for the follow-
ing:

• interfacing to TEX, Ghostscript and other ap-
plications in the typesetting workflow

• form based editing of letters and other small
documents

• typesetting on demand, based on user require-
ments, from XML databases

• building and maintaining resource libraries (e.g.
graphics)

• generating exams and drill-and-practice docu-
ments, based on user input

In this talk I will demonstrate the tools that are
part of the eXaMpLe framework. I will also discuss
the (XML based) scripting environment that drives
the processes.

62 TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting

Abstracts — Interfaces

Web services for CTAN

Jim Hefferon
St Michael’s College
ftpmaint@tug.ctan.org

The material held in the Comprehensive TEX
Archive Network sites is a great resource, but find-
ing solutions to problems can be hard, especially
for beginners or infrequent TEX users. The emerg-
ing standards of web information services promise
to help. For instance, users looking for a package
with some feature can now go to CTAN and search
Graham Williams’s Catalogue for keywords. How-
ever, currently this is done by hand: you fire up a
browser and click around to enter the information.
This could happen behind the scenes if CTAN fur-
nished the results in some standard format. Web
information services provide that format.

This talk will look at the work done so far, at
plans for the future, and will also solicit ideas for
other services.

(We expect to publish the full paper in the next
regular issue of TUGboat. Ed.)

ERCOTEX: Yet another database publishing

application of LATEX

Stephan Lehmke
QuinScape GmbH
Dortmund, Germany
Stephan.Lehmke@QuinScape.de

http://www.QuinScape.de

In the talk, a database publishing system for paper-
based product presentations using pdfLATEX is pre-
sented which was developed to provide

1. top-quality typography;

2. completely automated document generation;

3. high flexibility for design and specification of
documents from product ‘specsheets’ to com-
plete catalogues;

4. multi-language support;

5. efficient production of very high volumes (num-
ber of documents, number of pages).

While some of the features (typographic excel-
lence, multi-language support, support for high vol-
umes) are provided by pdfLATEX ‘out of the box’
and at most require appropriate tweaking of TEX’s
parameters, to provide the optimal combination
of completely automated document generation and
high flexibility for document design and specifica-
tion, a dedicated system consisting of several macro
packages and document classes was created. The
heart of the system consists of a macro package for
managing a layout grid which is placed behind ev-
ery page. Several pages can be constructed in paral-
lel by placing objects (graphics, text, tables) in the
grid. Grid cells are reserved according to measured
dimensions of the placed objects.

It is possible to inspect the grid of a given page
for free cells and continue construction accordingly.
Text can flow between pages, either on a path which
is calculated automatically, or through a predefined
sequence of grid cells. Objects can be grouped and
the group placed as a composite object (including
the possibility for multi-column placement and page
breaks). Dimensions of objects and groups can be
measured, providing case distinctions for switching
between design variants.

The automated production of a document re-
quires a data record (TEX file in key-value syntax)
and a document description (say, for a product spec-
sheet) formulated in a special document design lan-

guage, where data contents are placed in the grid.
(We expect to publish the full paper in the next

regular issue of TUGboat. Ed.)

TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting 63

Latin Modern: Enhancing Computer Modern with accents, accents, accents

Bogus law Jackowski
BOP s.c., Gdańsk, Poland
B.Jackowski@gust.org.pl

Janusz M. Nowacki
Foto-Alfa, Grudziadz, Poland
J.Nowacki@gust.org.pl

Abstract

The number of (free) fonts prepared with METAFONT is surprisingly small com-
pared, e.g., to what is available in the commercial market in other formats. Well,
perhaps not so surprisingly: METAFONT generates TEX-oriented bitmap fonts
which have not become popular outside the TEX world.

Accepting this irksome situation as a challenge, we have prepared META-
Type1, a package for generating fonts in the PostScript Type 1 format accepted
world-wide. The package makes use of METAFONT’s “sister”, namely META-
POST, and a few other utilities, such as awk and t1utils.

Recently, an opportunity arose to embark METAType1 upon enhancing the
Computer Modern family of fonts with diacritical characters, thus following in
Lars Engebretsen’s footsteps, who also recognized the importance of the problem
and created the AE (Almost EC) collection of virtual fonts. The task turned out
to be fairly complex but well-suited for a fully programmable engine like META-
Type1. We here report on the outcome of the project, i.e., the Latin Modern
family of fonts in the Type 1 format, and share the experiences gathered while
accomplishing the task.

1 Introduction

Accented characters play the rôle of enfants terri-

bles in the world of computers. Anybody who has
to communicate with another computer system in
a language other than English knows that using so-
called “funny characters” is not fun at all.

1.1 Those pesky diacritics

A giant step towards putting some order into the
chaos was the Unicode standard (ISO/IEC 10646)
published ten years ago. Unicode, obviously, does
not remove all the problems from the font play-
ground, and even adds a few new ones (e.g., prob-
lems with the size of font files and with the regis-
tration of non-standard characters and languages).
Nevertheless, one can believe that the world will be-
come a bit better when Unicode turns from the stan-
dard de nomine to the standard de facto.

TEX’s 8-bit (i.e., 256 characters per font) par-
adigm is becoming more and more obsolescent, and
enhancing it with multi-byte character codes seems
inevitable. Such efforts as the Ω Project [11], devel-
oped by John Plaice and Yannis Haralambous, can-

not be overestimated from this point of view. But
the typesetting system itself is only one side of the
coin. The other is the collection of fonts it uses.

Originally, TEX was equipped with the Com-
puter Modern family of fonts (CM) which did not
contain diacritical characters. Those few TEX users
who would need accented letters were supposed to
employ the \accent primitive. The immense popu-
larity of TEX in countries that use lots of diacritical
characters invalidated this presumption. At least
three reasons can be set forth: (1) accented char-
acters do not behave like “normal” ones, i.e., they
interfere with important TEX algorithms such as hy-
phenation and insertion of implicit kerns; (2) the CM

fonts do not contain all necessary diacritics, e.g., an
ogonek accent (used in Polish, Lithuanian, Navajo)
is missing; (3) such diacritical elements as cedilla
and ogonek, when treated as “accents”, overlap with
a letter, which precludes some applications, e.g.,
preparing texts for cutting plotters (see figure 1),
even if outline fonts are used. The lesson is obvi-
ous — the CM family should be extended by a vari-
ety of diacritical letters.

64 TUGboat, Volume 24 (2003), No. 1 — Proceedings of the 2003 Annual Meeting

Latin Modern: Enhancing Computer Modern with accents, accents, accents

In this paper we would like to present our ap-
proach to solving the problem, i.e., the open source
family of fonts, Latin Modern (LM), in the Post-
Script Type 1 format [2], prepared using META-
Type1, a METAPOST-powered package [8] (see sec-
tion 2.4). We believe that the LM family is a de-
cent alternative to the other extensions of the CM

family — we expect it to be a handy collection of
fonts for typesetting in Latin-based alphabets. The
fonts are also equipped with Printer Font Metric

files (*.pfm) and therefore can be used as system
fonts in GUI systems. Finally, they can be used
with the CM metrics (e.g., via psfonts.map), so as
to preserve typesetting of existing documents.

1.2 A gulp of history

Needless to say, the lack of diacritical letters in the
CM family was recognized almost from the very be-
ginning by TEX users who had to struggle with the
typesetting of languages other than English. Only
in 1990, however, during the TUG meeting in Cork,
Ireland, did the international TEX community de-
cide that fonts in the so-called Cork Encoding (EC

or, in LATEX lingo, T1) should be prepared for Eu-
ropean TEX users [6]. The work on EC fonts started
soon after the Cork meeting. Norbert Schwartz de-
signed a prototype, the so-called DC fonts. The work
was then continued by a team led by Jörg Knappen.
The final release of EC fonts was announced in 1997.

It was an important achievement. Neverthe-
less, the Cork Encoding conformed to TEX’s 8-bit
paradigm and therefore was not able to contain all
characters occurring in European languages, not to
mention other Latin-based alphabets, such as Viet-
namese and Navajo.

For a few years, EC fonts were available only in
a TEX-specific bitmap form (pk). Nowadays, with
the advent of electronic publishing, bitmaps are not
acceptable. At least two factors can be pointed out:

Figure 1: The letter Eogonek from Times New
Roman for Windows XP (left), from aer10 (middle),
and from lmr10 (right); only the latter form,
with a single outline, is acceptable in professional
applications.

(1) the scaling of bitmap fonts is troublesome — they
look nice only if their resolution matches the reso-
lution of the device; (2) in many cases, outline fonts
turn out to display much better and, paradoxically,
faster on a screen, e.g., when used in pdf. (Happily,
Adobe Acrobat 6 has improved handling of bitmap
fonts considerably, and non-Adobe programs with
decent results are also available.)

This inspired Lars Engebretsen, who prepared
a set of TEX virtual fonts containing basic diacrit-
ical characters [4]. The virtual fonts could refer to
the excellent outline version of the CM family which
had appeared in the meantime. It had been cre-
ated in 1988 by Blue Sky Research for the American
Mathematical Society in PostScript Type 3 format,
converted in 1990 by Y&Y into the hinted Type 1
format, and released in 1997 for public use by the
AMS. Engebretsen called his collection AE — “Al-
most EC”. His virtual fonts suffer, however, from
the same limitation as TEX does, i.e., the number of
characters is limited to 256. Moreover, as we have
mentioned, superimposing a diacritical element on
a character reveals undesirable features when the
character is stroked rather than filled (see figure 1).

Only recently, automatically traced fonts in the
PostScript Type 1 format, based on the EC fonts,
have been published: Péter Szabó’s Tt2001, Vladimir
Volovich’s CM-super (both in 2001; [14] and [15], re-
spectively), and a newfangled CM-LGC from Alexey
Kryukov (March 2003). Note, however, that Szabó
courteously “recommends the wonderful CM-super
package instead of his own Tt2001”. Indeed, Volo-
vich’s collection contains many more font variations
and covers a broader character set than Szabó’s.
Kryukov’s collection is, in a way, a supplement to
CM-super. The creation of these packages was pos-
sible thanks to a marvelous tool provided by Martin
Weber, namely, autotrace [16].

Volovich’s accomplishment seems to bring to an
end the long-lasting endeavours to introduce diacrit-
ical characters into TEX’s realm. Do we really need
yet another collection of fonts?

2 Another viewpoint

Autotraced fonts, in spite of their many advantages,
have drawbacks. Objectively, the most important
one is perhaps the size of a font. Such fonts are usu-
ally larger than visually similar fonts having care-
fully designed outlines because of a greater num-
ber of nodes in the outlines. Compare, for example,
Volovich’s fairly tidy CM-super fonts with AMS CM

and LM: the number of bytes per character is 260,
200, and 135, respectively. Twice is not too much,
but when many magnifications are included (see sec-

TUGboat, Volume 24 (2003), No. 1 — Proceedings of the 2003 Annual Meeting 65

Bogus law Jackowski and Janusz M. Nowacki

tion 2.1) it makes a difference. Incidentally, the
size of the CM-super fonts can be reduced by circa
10 percent by using a subroutine compression mod-
ule PACKSUBR from METAType1 (actually, it is a
short awk script).

For us, however, more important are arguments
of a rather imponderable nature. We stand firmly by
the conception underlying the TEX and METAFONT

design: every detail, be it a typesetting or a typeface
design, should be controllable and replicable.

This is not the case with autotraced fonts. You
must rely, e.g., on the nodes selected by the tracing
engine. Volovich notes that the FontLab program
(very good but commercial) was used for improving
the fonts, namely, for hinting and reducing the num-
ber of nodes; therefore, the process cannot be easily
repeated somewhere else. In other words, there are
actually no sources for the CM-super family. The
consequence is that tfm files have to be generated
from afm’s (using, e.g., the AFM2TFM program),
which adds further uncontrolled factors. For exam-
ple, one cannot suppress overshoots, i.e., characters
‘o’ and ‘x’ will usually have slightly different heights,
unlike the original CM fonts.

Speaking of the AFM2TFM converter, please
note that unfortunately it cannot produce mathe-
matical fonts. One has to use METAFONT or META-
POST (or manually edit property lists generated by
tftopl or vftovp) in order to exploit such features
as charlist or extensible. Ignoring this aspect
would mean, in our opinion, the waste of the TEX
equipment for mathematics.

Having said this, we would like to emphasize
that we highly esteem the work of Szabó, Volovich,
and Kryukov. Our predilection to another solution
may be regarded as a natural, if not advisable, dif-
ference of viewpoints.

2.1 Too many font sizes

There is one more issue, related indirectly to the
problem of “bitmaps versus outlines”, namely, the
number of font sizes for a given typeface, or more ad-
equately — proportions. Donald E. Knuth, following
the typographic praxis, implemented fonts having
different proportions for different sizes (5, 6, 7, 8,
9, 10, 12 and 17 points). John Sauter attempted
to go even further [13]. He prepared METAFONT

programs that interpolate (and even extrapolate)
Knuth’s font parameters to non-integer font sizes.
We can accept Sauter’s approach as an interesting
experiment, admissible for bitmap fonts. Neverthe-
less, using it for outline fonts is at least controversial.

We believe that, in general, four font propor-
tions would suffice: heading (17 pt), normal (10 pt),

script (7 pt), and second-order script (5 pt, “script-
script”). Because of the well-established tradition,
we cannot refrain from using Knuth’s scheme, but
we would strongly discourage extending it.

For these reasons, we accept with difficulty the
enormous number of different sizes and proportions
present in both the EC and CM-super font families.
This is apparently the inheritance of Knuth’s and
Sauter’s ideas. We would gladly discard most of the
fourteen renditions of a single typeface (in sum, font
sizes 5, 6, 7, 8, 9, 10, 10.95, 12, 14.4, 17.28, 20.74,
24.88, 29.86, and 35.83 points). The series proposed
by Knuth plus the TEX scaled and at operations
provide sufficient means to deal with font scaling in
most applications.

2.2 Too few typefaces

If anything, completely new typefaces are needed.
The number of fonts prepared with METAFONT is
surprisingly small compared, e.g., to what is avail-
able on the commercial market. Well, perhaps not so
surprisingly. As we have already mentioned, META-
FONT generates TEX-oriented pk bitmap fonts which
have not become popular outside the TEX world. In
principle, the conversion of pk bitmaps into Post-
Script Type 1 form is possible, as Szabó and others
have proven. Which does not mean that looking for
alternative tools is impractical.

2.3 Alternative tools

In general, computer tools fall into two classes: vis-
ual (interactive) and logical (programmable). Per-
haps someday the classes will converge and “visual-
and-logical” tools will prevail, but at present, with-
out doubt, interactive tools are in vogue. The ma-
jority of contemporary visual typographic programs
are commercial products. Fortunately, George Will-
iams launched (in 2000) an impressive open source
project, FontForge [17] (originally named PfaEdit).
This font editor is already a powerful tool and, being
extensively developed, it promises even more for the
future, providing an alternative to the proprietary
products. Another interesting visual tool for gen-
erating PostScript Type 1 fonts is Richard Kinch’s
MetaFog [9], which enables visual tuning of META-
POST-generated PostScript files.

Programming tools are not so popular. Are
they to go extinct some day? We hope they will
not. It would be a pity, because in some applica-
tions programmability is better. Fortunately, there
exist people who share our point of view. One of
them is W lodek Bzyl, who found a plausible appli-
cation for the logical approach in typography. His
amazing colour PostScript Type 3 fonts are no mean

66 TUGboat, Volume 24 (2003), No. 1 — Proceedings of the 2003 Annual Meeting

Latin Modern: Enhancing Computer Modern with accents, accents, accents

challenge for those who use visual tools [3].
Fonts are very complex structures. They are

governed by a large set of interdependent parame-
ters, such as character dimensions, font-specific pa-
rameters (italic angle, x-height, typical stems), char-
acteristic shapes (serifs and arcs), not to mention
such technicalities as hints or subroutines. And here
an important aspect of programmability enters. By
definition, programmable tools require sources in a
human-readable text form. A plethora of standard
text processing utilities (awk, perl, grep, diff) can
therefore be employed to crosscheck the consistency
of the data describing the font. This can hardly
be achieved with purely interactive programs — al-
though it should be noted that some interactive ty-
pographic programs have implemented limited pro-
grammability.

2.4 METAType1

We prefer unlimited programmability. Provoked by
the irksome scarcity of fonts prepared using META-
FONT, we contrived another font generating pack-
age, METAType1 [8], based on METAPOST, which
produces results in the widely accepted PostScript
Type 1 format. The package makes use of two sets of
METAPOST macros (the general purpose plain_ex

and the task-oriented fontbase) and a few other
utilities, such as awk (for processing METAPOST

output), t1utils (for converting text data into a
binary form), and mft (for neat proofing). Origi-
nally, METAType1 was developed for DOS; thanks
to W lodek Bzyl, it is also available for Linux.

Some of the first results obtained with META-
Type1 was Donald E. Knuth’s logo font and an
electronic replica of a traditional Polish font, An-
tykwa Pó ltawskiego [7]. (Available from ftp://

ftp.GUST.org.pl/pub/TeX/GUST/contrib/fonts/

replicas). We also used METAType1 for auditing
and enhancing selected fonts from the URW++ col-
lection distributed with Ghostscript.

In 2002, during the TEX meeting in Bachotek,
Poland, representatives of the European TEX user
groups, having discussed matters via email, devised
a proposal for converting the AE virtual fonts into
a more universal PostScript Type 1 format and also
augmenting them with a set of necessary diacriti-
cal characters. Thus the opportunity arose to try
METAType1 on a new, unconventional task. We
took up the gauntlet without hesitation.

3 The Latin Modern family of fonts; or

details, details, details

Our intention was to preserve the AE name, as we
wanted to emphasize the rôle of Engebretsen’s idea

lmb10 lmr17 lmss10 lmssqbo8
lmbo10 lmr5 lmss12 lmssqbx8
lmbx10 lmr6 lmss17 lmssqo8
lmbx12 lmr7 lmss8 lmtcsc10
lmbx5 lmr8 lmss9 lmtt10
lmbx6 lmr9 lmssbo10 lmtt12
lmbx7 lmri10 lmssbx10 lmtt8
lmbx8 lmri12 lmssdc10 lmtt9
lmbx9 lmri7 lmssdo10 lmtti10
lmbxi10 lmri8 lmsso10 lmtto10
lmbxo10 lmri9 lmsso12 lmvtt10
lmcsc10 lmro10 lmsso17 lmvtto10
lmcsco10 lmro12 lmsso8
lmr10 lmro8 lmsso9
lmr12 lmro9 lmssq8

Figure 2: The Latin Modern collection of fonts.

in this enterprise. Soon it became clear, however,
that the differences would be fundamental and that
the change of the name would be necessary in or-
der to avoid confusion. Therefore, we coined the
name “Latin Modern” to foreshadow further devel-
opment — we would like the final version of LM to
comprise as many Latin-based alphabets as possi-
ble, e.g., Vietnamese (which regretfully is not in-
cluded yet).

The collection of AE fonts consisted of 50 fonts,
reasonably selected from the abundance of Com-
puter Modern. We decided to add a variable-width
typewriter font and a few oblique derivatives, arriv-
ing finally at 57 fonts (see figure 2). Observe two
details:

1. We adopted a more regular (although unortho-
dox) font naming convention with respect to
slanted/italic variants: we have used the letter
‘o’ as a suffix for oblique (slanted) fonts and the
letter ‘i’ as a suffix for truly italic fonts. The
8-character limit is preserved.

2. The LM family contains the font lmssqbx8 (i.e.,
the bold version of lmssq8); a corresponding
font occurs neither in CM nor in EC. Actually,
the respective AE fonts (aessq8, aessqi8, and
aessqb8) refer to the fonts lcmss8 lcmssi8,
and lcmssb8. These fonts, added by Pierre A.
MacKay, were meant to be used with SliTEX.
Their regular variants are nearly identical with
Knuth’s cmssq8 and cmssqi8. The only differ-
ence is the capital ‘I’ (see figure 3).

The issue of font names was triggered by the
slanted fonts that we decided to add: what name
should we assign to the oblique variant of lmvtt10?
The name lmvttsl10 did not conform to the Knuth-
ian 8-character scheme, while the name lmvtti10

did not tell the truth. After thinking the problem
over, we could not find the reason why oblique fonts,

TUGboat, Volume 24 (2003), No. 1 — Proceedings of the 2003 Annual Meeting 67

Bogus law Jackowski and Janusz M. Nowacki

Figure 3: The letter I from Knuth’s cmssq8 (left) and
MacKay’s lcmss8 (right).

i.e., the mechanically skewed ones, received the des-
ignator ‘i’ in some cases (e.g., cmssi10) and the des-
ignator ‘sl’ in other (e.g., cmbxsl10), and why the
designator appeared either at the end of the kernel
of the name, as in the mentioned examples, or —
in some cases — immediately after the prefix ‘cm’
(cmsltt10, cmitt10).1 We could either uphold tra-
ditional Knuth’s terminology (but what then should
we call oblique lmvtt10?) or take an opportunity
and introduce some regularity in font naming at the
risk of commencing an incompatibility mess. We
have chosen the latter solution. . .

The issue of an alternative letter ‘I’ necessi-
tated, besides undertaking a decision whether to in-
troduce it or not (we decided to introduce it as a
variant letter), some extra work due to the addition
of variant accented characters and a variant ligature
IJ . The lmssq* fonts became thus somewhat excep-
tional. This is usually undesirable but sometimes
cannot be avoided.

The reader may wonder why we dwell on such
trifles? The answer is simple: it was the mass of
details of this kind that made the work on the LM

family laborious, although individual tasks were rel-
atively simple. In other words, the problem with
details is that each of them, even the tiniest one,
has to be handled somehow — as the amount of de-
tails grows, the job becomes more complex.

Enumerating all dilemmas, technicalities, sub-
tleties or even puzzles with which we had to struggle
is obviously pointless. On the other hand, our work
consisted nearly exclusively of such details — how to
describe such a work? Perhaps the best method is to
let the reader perceive the scent of the battleground
by showing representative examples. Two such ex-
amples we have already indicated. The rest of the
paper presents a few more.

3.1 From PostScript to METAType1 sources

The process of conversion of fonts from PostScript

1 The reason turns out to be that on the original SAIL de-

velopment computer, the file name limitation was 6+3, even

worse than 8+3, and the shorter names were generated by

taking the first 3 and last 3 characters from the longer. The

names for Computer Modern were chosen to be unique after

applying this procedure. Ed.

Figure 4: The optical axis of a glyph does not
necessarily coincide with the geometric center of the
glyph. Compare the corrected placement of the accent
in gcommaaccent (left) with the default one (right).

Type 1 form into METAType1 sources is only mod-
erately relevant since the potential users of the LM

fonts are not expected to repeat this operation any
more. The METAType1 sources are legible and can
easily be modified, if necessary.

We used a stand-alone utility PF2MT1 (belong-
ing to the METAType1 package) for the translation
of pfb+afm pairs from CM fonts into METAType1

code. The virtual AE fonts provided the necessary
information for merging the results of the conver-
sion. awk turned out to be a very convenient tool
for such operations. Thanks to it, the framework of
the LM sources was ready after a few hours; amend-
ing the LM sources took a few months.

3.2 Tuning and augmenting the METAType1

sources of the LM fonts

The main part of the job, although also the sim-
plest one, was adding accents. METAType1 pro-
vides a use_accent operation, similar to the TEX
\accent primitive, that can conveniently be used
for this purpose. By default, use_accent aligns the
centre of an accent with the centre of its accentee
and raises the accent by x− h, where x is the value
of the x-height parameter, and h is the height of the
character. This is the procedure used by TEX for
accenting. Such an algorithm is not always appro-
priate. Occasionally, the position of an accent may
have to be adjusted. The command use_accent

enables an arbitrary shift of both accent and accen-
tee. Moreover, a supplementary glyph axis param-
eter can optionally be specified for each character
(see figure 4).

All in all, adding accented letters was child’s
play. Somewhat more difficult was adding extra
characters.

In the AE family, the characters were brought
together from several different sources. For example:

• aer10: arrow left hook (i.e., faked ogonek);

• cmmi10: less, greater, bar, backslash, braceleft,
braceright, and section.

68 TUGboat, Volume 24 (2003), No. 1 — Proceedings of the 2003 Annual Meeting

Latin Modern: Enhancing Computer Modern with accents, accents, accents

Figure 5: There are two acute accents in LM fonts:
a flattened variant is used for capital letters. This
idea was implemented in PL fonts and then in EC.
In general, the flattening is neither a slanting nor a
rotation.

• cmu10: sterling.

• Some characters were drawn using rules: visi-

blespace; missing characters were marked by a
rule having width and height equal to 1/2 em).

• Others were assembled from components:
Aogonek, aogonek, Eogonek, eogonek.

For Latin Modern, we went even further, and
“borrowed” the characters asciicircum and asciitilde

from cmex10; mu — from cmmi10; dagger, daggerdbl,
and paragraph — from cmsy10.

It is debatable whether borrowing characters is
acceptable. The section sign from cmsy10 is cer-
tainly an alien in a sans serif font. Therefore, char-
acters that seemed to us sufficiently important (sec-

tion, sterling) were programmed from scratch. We
used, of course, appropriate parameters from the CM

driver files, but we did not follow Knuth’s recipe rig-
orously. This might have been done (see the com-
ments on the Euro symbol below). We preferred,
however, our shapes of glyphs. This may evoke some
compatibility-related issues but, anyway, full com-
patibility among CM, EC, and AE fonts cannot be
achieved (see section 3.3).

Actually, some characters were borrowed not
from CM fonts but from their PL counterparts (i.e.,
CM fonts equipped with Polish diacritical letters;
the relevant METAFONT code from the PL fonts was
incorporated into the EC sources). The acute and
grave accents over capital and small letters in PL

fonts differ, namely, accents over capital letters are
flattened — we applied the same approach in the LM

fonts (see figure 5) which is consistent with EC and
inconsistent with CM.

Besides the accented, borrowed and newly pro-
grammed variant characters, a few glyphs had to be
programmed from scratch as consistently as possible
with the CM typeface design. A notable example is a
Euro currency symbol. It looks as though it became
so important recently that Adobe even assigned it
a name beginning with a capital letter (cf. dollar,

Figure 6: Euro symbols from the LM fonts; observe
that a Euro symbol is narrower than the corresponding
letter C (above), but that the stem sizes are preserved.
Unfortunately, there is no slot for a Euro symbol in
the Cork Encoding.

yen, sterling, etc., in the Adobe Glyph List For New

Fonts [1]). We attempted to exploit the METAFONT

code for the letter C — and it worked (see figure 6).
The Euro design is philosophically based on a script
E, not a C ; therefore, our design has a bottom serif
to be more distinguishable from C (many thanks to
Werner Lemberg).

The LM fonts also contain a few idiosyncratic
symbols. We wanted, for example, to have a liga-
ture f k in the repertoire of characters (see figure 7)
because there are several words in Polish contain-
ing the sequence ‘fk.’ They are less numerous than
words with ‘fi’ and ‘fl’ but more than words with
‘ffi’ and ‘ffl’ (which occur exclusively in words of
foreign origin).

Of course there are more candidates for non-
standard ligatures, e.g., ‘fb’, ‘fh’, ‘fj’, ‘ffb’, and
‘ffh’. These groups of letters occur sporadically in
English and German (they are absent from Polish),
and may be included in a future release.

3.3 Compatibility issues

The answer to the question of whether the LM fonts

TUGboat, Volume 24 (2003), No. 1 — Proceedings of the 2003 Annual Meeting 69

Bogus law Jackowski and Janusz M. Nowacki

Pair of characters Ligature

Figure 7: There are several words in the Polish
language that contain the digraph ‘fk’; therefore,
we included the ligature f k (top-right) in the LM
character set for the sake of consistency with native
CM ligatures, such as fl (bottom-right).

can serve as a replacement for CM or EC ones is
obviously ‘no’. First of all, the collection of fonts is
different — LM is a subset of CM (except lmssqb8

and a few oblique derivatives), not to mention EC.
Therefore, not every text typeset with CM or EC

fonts can be re-typeset using LM ones.
On the other hand, it should be noted that LM

fonts are based on the data taken from CM driver
files. Therefore, all relevant dimensions are (or at
least should be) the same in LM and CM fonts within
the accuracy of rounding errors. It is thus possible,
for example, to use existing LM fonts as a replace-
ment for CM in the dvips file psfonts.map— it suf-
fices to prepare appropriate encoding (*.enc) files.

In order to reach this level of compatibility, we
had to add two more characters, namely arrowup

and arrowdown which, somewhat surprisingly, are
present in cmr5, but not in other fonts in the cmr*

series. At the same time, we resisted the tempta-
tion to include a full quiver of other arrows. The
main reason was that arrows are absent from the
basic Cork Encoding (they appear only in the Text

Companion Encoding — see, e.g., the file dcdoc.tex
distributed with the EC sources); moreover, since
PostScript is already involved, various transforma-
tions can easily be applied, if necessary. In the fu-
ture, however, we may change our opinion.

The METAType1 programs for the arrows are
based on METAFONT sources contained in sym.mf.
While adapting the code, we encountered a quan-
dary which is a good example of a seemingly trivial
yet embarrassing detail. It turns out that the ar-
row programs produce questionable results for cer-
tain driver files; namely, the sidebearings disappear!
The arrow programs were perhaps never tested with
all driver files. One could live with this; neverthe-
less, we decided to preserve minimal space at both

Figure 8: The METAFONT program for arrows (in
sym.mf) would produce glyphs stripped of sidebearings
for parameters from cmssdc10 (left); arrows in LM
fonts always have sidebearings (right).

Figure 9: The caron alias hacek accent (the leftmost
box) is slightly lowered in the CM fonts; in the LM
fonts, all accents are aligned horizontally.

sides — the result is certainly more palatable (see
figure 8).

Another quandary is related to accents. For
some inexplicable reason, the caron accent in CM

fonts is lowered in relation to the other accents (see
figure 9). We considered it a fault and decided to
raise all carons appropriately. We thus relinquished
full compatibility between CM and LM families —
although we hope this visual “incompatibility” will
be seen as an improvement.

3.4 The game of names

Among many technicalities related to the represen-
tation of PostScript fonts, we would like to comment
upon only one — the particularly upsetting problem
of character names.

There exists a standard of glyph naming worked
out by Adobe [1], contained in the documents Adobe

Glyph List 2.0 (of 20th September 2002) and Adobe

Glyph List for New Fonts 1.1 (of 17th April 2003).
Regretfully, the standard contains numerous entries
that are at best dubious. We have already scoffed
at the name of the Euro symbol that singularly be-
gins with a capital letter. But this is nothing. The
excerpt from the Adobe Glyph List For New Fonts

concerning characters with commaaccent is really
astounding (see figure 10). Even more astounding
is a part of this story pertaining to Tcedilla and
tcedilla:

• Version 1.1 of Adobe Glyph List mentioned the
characters described as ‘T with cedilla’ and ‘t
with cedilla’ and assigned them names Tcom-

maaccent and tcommaaccent, respectively; the

70 TUGboat, Volume 24 (2003), No. 1 — Proceedings of the 2003 Annual Meeting

Latin Modern: Enhancing Computer Modern with accents, accents, accents

Gcommaaccent; LATIN CAPITAL LETTER G WITH CEDILLA
Kcommaaccent; LATIN CAPITAL LETTER K WITH CEDILLA
Lcommaaccent; LATIN CAPITAL LETTER L WITH CEDILLA
Ncommaaccent; LATIN CAPITAL LETTER N WITH CEDILLA
Rcommaaccent; LATIN CAPITAL LETTER R WITH CEDILLA
Scommaaccent; LATIN CAPITAL LETTER S WITH COMMA BELOW
gcommaaccent; LATIN SMALL LETTER G WITH CEDILLA
kcommaaccent; LATIN SMALL LETTER K WITH CEDILLA
lcommaaccent; LATIN SMALL LETTER L WITH CEDILLA
ncommaaccent; LATIN SMALL LETTER N WITH CEDILLA
rcommaaccent; LATIN SMALL LETTER R WITH CEDILLA
scommaaccent; LATIN SMALL LETTER S WITH COMMA BELOW

Figure 10: An excerpt from the up-to-date Adobe

Glyph List For New Fonts [1]. How sweet. . .

characters that could be described as ‘T with
comma below’ or ‘t with comma below’ were
simply ignored.

• In version 1.2 of the Adobe Glyph List, the
names Tcommaaccent and tcommaaccent were
now assigned both to characters described as
‘T or t with cedilla’ and ‘T or t with comma
below’.

• The up-to-date Adobe Glyph List for New Fonts

says that the most recent change was renam-
ing “[Tt]cedilla back to [Tt]commaaccent”; the
previous version was derived from Adobe Glyph

List 2.0 and one of a few changes was “renam-
ing tcommaaccent to tcedilla and Tcommaac-
cent to Tcedilla”. Note that in the current
version both Tcommaaccent and tcommaaccent

are described as “letter with cedilla”. . .

To untangle the “commaaccent” story a little
bit, we would like to quote a more reliable opinion
from Michael Everson’s web site devoted to Euro-
pean alphabets [5]:

• Concerning Latvian: “The [accented] charac-
ters g, k, l, n, r, G, K, L, N, and R must always
be drawn with a comma below, although these
characters are identified in ISO standards as let-

ters with cedilla. Note particularly the reverse
comma accent used with the latin small letter

g with cedilla.” (Cf. figure 4.)

• Concerning Romanian: “Note that Romanian
uses the characters s with comma below and
t with comma below. In inferior Romanian ty-
pography, the glyphs for these characters are
sometimes drawn with cedillas, but it is strongly
recommended to avoid this practice.”

There were more pitfalls of this kind, not as
ridiculous as the case of the commaaccent, but suffi-
ciently confusing to make this part of the job quite
arduous.

Given such a state of the art, we decided to copy
some glyphs under different names — just in case.

We repeated, e.g., the glyphs scommaaccent, tcom-

maaccent, Scommaaccent, and Tcommaaccent under
the names scedilla, tcedilla, Scedilla, and Tcedilla,
respectively. Altogether, there are approximately
10 duplicated characters per 400-character font.

The duplication of glyphs does not lead to an
enormous inflation of the size of font files because
of a very efficient subroutine packing mechanism
(cf. section 2, p. 66). Actually, a duplicated charac-
ter only increases the size of a font by 30–40 bytes.
This means that 10 duplicated characters would in-
crease a font size by less than 1 percent, as the av-
erage size of an LM font (pfb) is 60 KB.

3.5 Beware of your friends

The basic tools we used (awk, METAPOST, tftopl,
vftovp, t1utils) worked nearly infallibly. Only
once did we meet a truly intricate problem. It was a
bug persistently offered by our friend, METAPOST.

One of the important operations in the process
of font generation is determining the orientation of a
path: anticlockwise-oriented paths are used for fill-
ing, and clockwise-oriented for unfilling. The func-
tion turningnumber in METAFONT and METAPOST

returns +1 and −1 for anticlockwise-oriented and
clockwise-oriented paths, respectively. In META-
FONT it works correctly; in METAPOST, unfortu-
nately, it does not. The bug manifests its presence
even in such trivial cases as the following (see the
top element in figure 11):

path p;

p=(0,10)..controls (5,10) and (10,5)

..(10,0)..controls (10,-5) and (5,-10)

..(0,-10)..controls (-5,-10) and (-10,-5)

..(-10,0)..controls (-10,5) and (-5,10)

..cycle;

This nearly circular 4-node path is evidently clock-
wise-oriented. Nevertheless, METAPOST maintains
that turningnumber p = 0.

We did not analyse the METAPOST source code
as we were not going to fix the bug, but circumvent-
ing it was crucial. The only method that proved to
work was the “straightening” of a path prior to the
application of the turningnumber function; in other
words, each Bézier segment of a path was changed
to a straight line and then the turningnumber func-
tion was applied to the modified path. It works well
enough so far, although the method is not general
(see the bottom two pairs in figure 11) and, more-
over, frequently used straightening slows down the
process of generating fonts.

TUGboat, Volume 24 (2003), No. 1 — Proceedings of the 2003 Annual Meeting 71

Bogus law Jackowski and Janusz M. Nowacki

Original path Straightened path

Figure 11: The operation of straightening a path
typically does not change the orientation of a path
(top); this works around a bug in METAPOST. In
general, however, this may happen — the middle and
bottom pictures show how a non-zero turning number
can be changed to zero and vice versa. The latter
situations, fortunately, are rather unlikely in fonts.

3.6 Encodings

In olden days, there was a one-to-one correspon-
dence between a font name and the name of a font

metric file (tfm). This is not possible any longer. If
there are more characters in a font than 256, as in
CM-super and LM, one has to select a subset of char-
acters and assign codes to every character. Even not
knowing the precise results of combinatorial analy-
sis, one may fancy how many such encodings may
coexist. It seems that there is no choice — metric

files must not use the same name as the basic font,
otherwise a mess is bound to ensue.

One could think of a distinguished (main) en-
coding that would inherit the basic name, but we
would rather equate all encodings. At present, we
supply the Cork, QX, and texnansi text encodings
in the official distribution of the LM fonts.

The Cork encoding does not need further ex-
planation. The QX encoding is actually a “double”
encoding, i.e., there is a fixed collection of characters
and two numberings — one to be used with TEX and
one to be used with GUI systems [12]. It was worked
out a few years ago by the members of the Polish
TEX Users Group GUST as a difficult compromise
between needs and abilities. In a nutshell: the QX

Encoding for TEX is a variant of the Cork Encod-

ing with a few characters exchanged (e.g., gbreve,

Gbreve, uring, and Uring are replaced by Lithua-
nian iogonek, Iogonek, uogonek, and Uogonek, re-
spectively); the QX Encoding for GUI systems is a
variant of the Code Page 1250 (and also includes
Lithuanian characters with ogonek).

Recall that the complete list of the LM font
names is shown in figure 2. The respective tfm file
names are derived by adding prefixes, e.g., cork-

for the Cork Encoding and the prefix qx- for the
QX Encoding. For instance, lmr10 with the Cork

Encoding has the name cork-lmr10 and with the
QX Encoding the name qx-lmr10.

This protocol is admittedly immature. Never-
theless, we do insist on recommending either this
naming scheme or a similar one as a guideline for
TEX users as long as TEX is not capable of handling
multi-byte character codes — or even longer.

3.7 Availability

One final detail: the LM fonts are freely available
at http://www.ctan.org/tex-archive/fonts/lm.
METAType1 is available at http://www.ctan.org/
tex-archive/fonts/utilities/metatype1.

4 Concluding remarks

We would like to emphasize once again that our aim
was not only to provide a new family of fonts, but
to provide it with METAType1 sources that can be
maintained — adjusted, augmented, improved, etc.
While it is rather difficult to write a font program
from scratch, it is relatively simple to modify ex-
isting sources; e.g., as we have mentioned, adding
accented letters is straightforward.

As concerns our plans regarding the LM fam-
ily, we would like to enhance fonts: to extend the
repertoire of characters (first of all by the Text Com-

panion for the EC fonts2), to improve kerning, hint-
ing and shapes of certain glyphs, and, last but not
least, to provide OpenType versions of the LM fonts
for XP trailblazers. We consider, moreover, convert-
ing a few more CM programs from METAFONT to
METAType1, as we would like to eventually dismiss
the borrowed characters (see section 3.1, p. 69).

Before bringing the curtain down, we would like
to draw the reader’s attention to a weak point of our
approach: the CM parameterization has been lost.
The METAType1 sources can be enhanced, but they
cannot be used for producing, say, light or condensed
versions of sans serif fonts. An experiment with
the programming of the Euro symbol and the ar-
rows has shown that converting METAFONT sources

2 This has been accomplished as this TUGboat issue goes

to press.

72 TUGboat, Volume 24 (2003), No. 1 — Proceedings of the 2003 Annual Meeting

Latin Modern: Enhancing Computer Modern with accents, accents, accents

to METAType1 ones without losing the parame-
terization is, in general, possible but rather time-
consuming. It is an open question whether such
a venture, while extremely attractive, is practical.

5 Acknowledgments

The project is supported by European TEX user
groups, in particular by the German-speaking TEX
users group DANTE e.V., the French-speaking TEX
users group GUTenberg, and the Dutch-speaking
TEX users group NTG; and also by the TEX Users
Group — very many thanks to all. We are also grate-
ful to Volker Schaa and Stefan Soko lowski for their
valuable comments concerning the draft version of
the paper.

References

[1] Adobe Solutions Network: Type Technology —

Unicode and Glyph Names, http://
partners.adobe.com/asn/tech/type/

unicodegn.html

[2] Adobe Type 1 Font Format. Addison-Wesley,
1990, http://partners.adobe.com/asn/
developer/pdfs/tn/T1 SPEC.PDF

[3] W lodzimierz Bzyl, The Tao of Fonts. Proc.
of TUG 2002, 4th – 7th September, 2002,
Trivandrum, India, TUGboat 23(1), March
2003, pp. 27 – 40. http://tug.org/TUGboat/
Articles/tb23-1/bzyl.pdf

[4] Lars Engebretsen, AE fonts,
http://ctan.org/tex-archive/fonts/ae/

[5] Michael Everson, The Alphabets of Europe

(ver. 3.0), http://www.evertype.com/
alphabets/

[6] Michael Ferguson, Report on multilingual

activities, TUGboat 11(4), November 1990,
p. 514.

[7] Bogus law Jackowski, Janusz M. Nowacki,
Piotr Strzelczyk, Antykwa Pó ltawskiego:

A Parameterized Outline Font. Proc. of
EuroTEX 1999, 20th – 24th September, 1999,
Heidelberg, Germany, pp. 109 – 141.

[8] Bogus law Jackowski, Janusz M. Nowacki,
Piotr Strzelczyk, METAType1:

A METAPOST-based Engine for

Generating Type 1 Fonts. Proc. of
EuroTEX 2001, 27th – 27th September, 2001,
Kerkrade, the Netherlands, pp. 111 – 119,
http://www.ntg.nl/eurotex/metatyp1.pdf

and http://www.ntg.nl/eurotex/

JackowskiMT.pdf

[9] Richard J. Kinch, MetaFog: Converting

METAFONT Shapes to Contours.

TUGboat 16(3), pp. 233 – 243, 1995.
http://tug.org/TUGboat/Articles/

tb16-3/tb48kinc.pdf

[10] Han-Wen Nienhuys, MFTrace — Scalable Fonts

for METAFONT, http://www.xs4all.nl/
∼hanwen/mftrace/

[11] John Plaice and Yannis Haralambous,
Omega System, http://sourceforge.net/
projects/omega-system/

[12] QX encoding tables for TEX and for

window systems, http://www.gust.
org.pl/fonty/qx-table1.html, http:
//www.gust.org.pl/fonty/qx-table2.html

[13] John Sauter, Building Computer Modern

Fonts, TUGboat 7(3), October 1986, p. 151.

[14] Péter Szabó, TEXtrace,
http://www.inf.bme.hu/∼pts/textrace/

[15] Vladimir Volovich, CM-super Font Package,
ftp://ftp.vsu.ru/pub/tex/font-packs/

cm-super/

[16] Martin Weber, Autotrace,
http://autotrace.sourceforge.net/

[17] George Williams, FontForge: A PostScript

Font Editor,
http://fontforge.sourceforge.net/

A The contents of the Latin Modern

family of fonts, version 0.92

For meticulous readers, we enclose below the com-
plete list of LM glyph names in alphabetic order.
Note that some characters do not occur in all fonts,
e.g, there are no f -ligatures in the typewriter fonts.

In all, there are five classes of character sets:

1. The basic class (527 glyphs); this class
consists of lmb10, lmbo10, lmbx10, lmbx12,
lmbx5, lmbx6, lmbx7, lmbx8, lmbx9, lmbxi10,
lmbxo10, lmr10, lmr12, lmr17, lmr5, lmr6,
lmr7, lmr8, lmr9, lmri10, lmri12, lmri7,
lmri8, lmri9, lmro10, lmro12, lmro8, lmro9,
lmss10, lmss12, lmss17, lmss8, lmss9,
lmssbo10, lmssbx10, lmssdc10, lmssdo10,
lmsso10, lmsso12, lmsso17, lmsso8, lmsso9,
lmvtt10, and lmvtto10.

2. The class ‘ssq’ (538 glyphs); besides the charac-
ters present in the basic class, it contains varI,
varIacute, varIcircumflex, varIdieresis, varIdo-

taccent, varIgrave, varIJ, varImacron, varIo-

gonek, varItilde, and varIvardieresis. The fol-
lowing fonts belong to this family: lmssq8,
lmssqbo8, lmssqbx8, and lmssqo8 (cf. figure 3
and the relevant comments in section 2).

3. The class ‘typewriter’ (512 glyphs); the fol-
lowing glyphs are missing in comparison with

TUGboat, Volume 24 (2003), No. 1 — Proceedings of the 2003 Annual Meeting 73

Bogus law Jackowski and Janusz M. Nowacki

the basic class: f k, ff, ffi, ffl, fi, fl, Germand-

bls, IJ, ij, permyriad, servicemark, suppress,
trademark, varcopyright, and varregistered. The
class consists of lmtt10, lmtt12, lmtt8, lmtt9,
lmtti10, and lmtto10.

4. The class for only lmcsc10 and lmcsco10 (519
glyphs); the following glyphs are missing in
comparison with the basic class: dquoteright,
f k, ff, ffi, ffl, fi, fl, and tquoteright.

5. The class for only lmtcsc10 (510 glyphs); the
set of missing characters is as in class 3 plus
dquoteright and tquoteright.

A.1 Alphabetic list of glyphs in the

Latin Modern family

A a Aacute aacute Abreve abreve Acircumflex

acircumflex Acute acute acute.dup acute.ts1 Adieresis

adieresis AE ae AE.dup ae.dup Agrave agrave althyphen

Amacron amacron ampersand anglearc angleleft

angleright Aogonek aogonek Aring aring arrowdown

arrowleft arrowright arrowup asciicircum asciitilde

asterisk asteriskmath at Atilde atilde Avardieresis

avardieresis

B b backslash baht bar bigcircle blanksymbol born

braceleft braceright bracketleft bracketright breve

breve.ts1 brokenbar bullet

C c Cacute cacute caron caron.ts1 Ccaron ccaron

Ccedilla ccedilla Ccircumflex ccircumflex Cdotaccent

cdotaccent cedilla cedilla.dup cent centigrade

centoldstyle circumflex circumflex.dup colon

colonmonetary comma commaaccent copyleft copyright

csquotedblbase csquotedblright currency cwm

cwmascender cwmcapital

D d dagger daggerdbl dbar dblbracketleft

dblbracketright dblgrave.ts1 dblverticalbar

Dcaron dcaron Dcroat dcroat degree Delta diameter died

dieresis dieresis.dup dieresis.ts1 discount divide

divorced dmacron dollar dollaroldstyle dong dotaccent

dotlessi dotlessj dquoteright

E e Eacute eacute Ebreve ebreve Ecaron ecaron

Ecircumflex ecircumflex Edieresis edieresis

Edotaccent edotaccent Egrave egrave eight

eightoldstyle ellipsis Emacron emacron emdash

endash Eng eng Eogonek eogonek equal estimated Eth eth

Euro euro Evardieresis evardieresis exclam exclamdown

F f f k ff ffi ffl fi five fiveoldstyle fl florin four

fouroldstyle fraction

G g Gacute gacute Gamma Gbreve gbreve Gcaron gcaron

Gcedilla Gcircumflex gcircumflex Gcommaaccent

gcommaaccent Gdotaccent gdotaccent Germandbls

germandbls germandbls.dup gnaborretni Grave

grave grave.ts1 greater guarani guillemotleft

guillemotright guilsinglleft guilsinglright

H h Hbar hbar Hcircumflex hcircumflex hungarumlaut

hungarumlaut.ts1 hyphen hyphenchar hyphendbl

hyphendbl.alt

I i Iacute iacute Icircumflex icircumflex Idieresis

idieresis Idotaccent Igrave igrave IJ ij Imacron

imacron interrobang Iogonek iogonek Itilde itilde

Ivardieresis ivardieresis

J j Jcircumflex jcircumflex

K k Kcedilla kcedilla Kcommaaccent kcommaaccent

L l Lacute lacute Lambda Lcaron lcaron Lcedilla

lcedilla Lcommaaccent lcommaaccent Ldotaccent

ldotaccent leaf less lira logicalnot Lquoteright

lquoteright Lslash lslash

M m macron macron.dup macron.ts1 married mho minus mu

multiply musicalnote

N n Nacute nacute naira nbspace Ncaron ncaron Ncedilla

ncedilla Ncommaaccent ncommaaccent nine nineoldstyle

nomero Ntilde ntilde numbersign

O o Oacute oacute Obreve obreve Ocircumflex

ocircumflex Odieresis odieresis OE oe OE.dup oe.dup

ogonek Ograve ograve ohm Ohungarumlaut ohungarumlaut

Omacron omacron Omega one onehalf oneoldstyle

onequarter onesuperior Oogonek oogonek openbullet

ordfeminine ordmasculine Oslash oslash Oslash.dup

oslash.dup Otilde otilde Ovardieresis ovardieresis

P p paragraph paragraph.alt parenleft parenright

percent period periodcentered permyriad perthousand

perthousandzero peso Phi Pi plus plusminus Psi

published

Q q question questiondown quillbracketleft

quillbracketright quotedbl quotedbl.alt quotedblbase

quotedblbase.alt quotedblbase.ts1 quotedblleft

quotedblleft.alt quotedblright quotedblright.alt

quoteleft quoteleft.alt quoteleft.dup quoteright

quoteright.alt quoteright.dup quotesinglbase

quotesinglbase.alt quotesinglbase.ts1 quotesingle

quotesingle.alt quotesingle.ts1

R r Racute racute radical Rcaron rcaron Rcedilla

rcedilla Rcommaaccent rcommaaccent recipe

referencemark registered registered.alt ring

S s Sacute sacute Scaron scaron Scedilla scedilla

Scircumflex scircumflex Scommaaccent scommaaccent

section semicolon servicemark seven sevenoldstyle

sfthyphen Sigma six sixoldstyle slash space sterling

suppress

T t Tcaron tcaron Tcedilla tcedilla Tcommaaccent

tcommaaccent Theta Thorn thorn three threeoldstyle

threequarters threequartersemdash threesuperior

tieaccentcapital tieaccentcapital.new

tieaccentlowercase tieaccentlowercase.new tilde

tilde.dup tildelow tquoteright trademark twelveudash

two twooldstyle twosuperior

U u Uacute uacute Ubreve ubreve Ucircumflex

ucircumflex Udieresis udieresis Ugrave ugrave

Uhungarumlaut uhungarumlaut Umacron umacron

underscore Uogonek uogonek Upsilon Uring uring Utilde

utilde Uvardieresis uvardieresis

V v varcopyright vardieresis vardotaccent varI

varIacute varIcircumflex varIdieresis varIdotaccent

varIgrave varIJ varImacron varIogonek varItilde

varIvardieresis varregistered visiblespace

W w Wacute wacute Wcircumflex wcircumflex Wdieresis

wdieresis Wgrave wgrave won Wvardieresis wvardieresis

X x Xi

Y y Yacute yacute Ycircumflex ycircumflex Ydieresis

ydieresis yen Ygrave ygrave Yvardieresis yvardieresis

Z z Zacute zacute Zcaron zcaron Zdotaccent zdotaccent

zero zerooldstyle

74 TUGboat, Volume 24 (2003), No. 1 — Proceedings of the 2003 Annual Meeting

CM-Super: Automatic creation of efficient Type 1 fonts

from METAFONT fonts

Vladimir Volovich
Voronezh State University
Moskovsky prosp. 109/1, kv. 75, Voronezh 304077 Russia
vvv@vsu.ru

Abstract

In this article I describe making the CM-Super fonts: Type 1 fonts converted from
METAFONT sources of various Computer Modern font families. The fonts contain
a large number of glyphs covering writing in dozens of languages (Latin-based,
Cyrillic-based, etc.) and provide outline replacements for the original METAFONT

fonts. The CM-Super fonts were produced by tracing the high resolution bitmaps
generated by METAFONT with the help of TEXtrace, optimizing and hinting the
fonts with FontLab, and applying cleanups and optimizations with Perl scripts.

1 The idea behind the CM-Super fonts

The Computer Modern (CM) fonts are the default
and most commonly used text fonts with TEX. Orig-
inally, CM fonts contained only basic Latin letters,
and thus covered only the English language. There
are however a number of Computer Modern look-
alike METAFONT fonts developed which cover other
languages and scripts. Just to name a few:

• EC and TC fonts, developed by Jörg Knappen,
which are the default LATEX fonts for the T1 and
TS1 font encodings and cover many Latin-based
scripts (mainly European).

• EC and TC Concrete and Bright fonts, devel-
oped by Walter Schmidt, which are additional
font families containing the same glyphs as EC

and TC fonts.

• LH Cyrillic fonts, developed by Olga Lapko,
which support the family of T2 font encodings:
T2A, T2B, T2C, X2, and others. They support
the same font families as the original EC fonts,
EC Concrete and EC Bright fonts.

• TIPA (International Phonetic Alphabet) fonts,
developed by Rei Fukui, which support the T3

font encoding. There exist Concrete (CIPA) and
Bright (BIPA) families of the TIPA fonts too.

• FC fonts, developed by Jörg Knappen, which
support the T4 font encoding for African lan-
guages.

• VNR fonts, developed by Cuong Nguyen, Wern-
er Lemberg and Hàn Thé̂ Thành, which support
the T5 font encoding for Vietnamese.

• CBgreek fonts, developed by Claudio Beccari,
which support the Greek font encoding (LGR).

There exist free Type 1 versions of the original CM

fonts, provided by Blue Sky Research, Elsevier Sci-
ence, IBM Corporation, the Society for Industrial
and Applied Mathematics (SIAM), Springer-Verlag,
Y&Y and the American Mathematical Society, but
until not long ago there were no free Type 1 versions
of other “CM look-alike” fonts available, which lim-
ited their usage in PDF and PostScript target docu-
ment formats. The CM-Super fonts were developed
to cover this gap.

Such a conversion from METAFONT to Type 1
fall into one of two general categories. First, base the
conversion on analytic study of the METAFONT out-
put (which may include “patching” the METAFONT

program, analyzing the output of METAPOST, or
similar approaches). Such an approach can give
(potentially) the most accurate results, but I did
not choose to use it, since it is much harder to de-
velop. (There are some commercial translators of
METAFONT to Type 1 which I did not evaluate,
mainly due to their “closedness”, which I wanted
to avoid.) The second, straightforward, approach is
based on tracing the high-resolution bitmaps gen-
erated by METAFONT, and thus obtaining outline
versions of the fonts.

I was considering several approaches to con-
verting the METAFONT fonts to Type 1 format—
it seems that the GNU fontutils package developed
by Karl Berry is capable of this, but it had some
problems with glyph positioning. Since the appear-
ance of TEXtrace, it became very easy to do this.
TEXtrace is a free automatic converter of META-
FONT fonts to Type 1 format, developed by Péter
Szabó. It is based on Autotrace by Martin Weber.

TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting 75

Vladimir Volovich

And, as far as I know, some code was taken from
the GNU fontutils package.

It would be possible to simply generate Type 1
variants of all needed METAFONT fonts (each con-
taining no more than 256 glyphs), but this will have
disadvantages: the total number of files will be truly
vast (several thousands), and also the total size of
these fonts will be much bigger than necessary, be-
cause of glyph duplication: Latin letters (and some
other characters and glyphs) will be present in more
than one font, e.g., the fonts ecrm1000 (T1 encod-
ing), larm1000 (T2A), lbrm1000 (T2B), lcrm1000
(T2C), fcr10 (T4), and vnrm1000 (T5) are all of the
same family and shape (Computer Modern Roman)
and design size (10pt), and will thus duplicate at
least the basic Latin alphabet. Given the total num-
ber of font files (several thousands), such duplication
will give significant overhead.

Thus, it seems natural to try to combine all
fonts which have the same font family, shape and
design size, and differ only by font encoding (set
of supported glyphs) into one SuperFont (the name
comes from Karl Berry’s Fontname package), which
will contain all the unique glyphs from these fonts
just once. Then it is possible to create map files for
dvips, pdftex or other programs which will re-encode
the big Super-fonts into specific 256-character font
encodings, selecting the glyphs needed for a partic-
ular font encoding.

Such an approach is undertaken in the CM-

Super font package: each Type 1 SuperFont includes
all the glyphs from several METAFONT fonts which
have the same font family, font shape and design
size. Currently, only text font encodings are sup-
ported. The name “super” does not imply that this
font collection contains Type 1 variants of all ex-
isting CM look-alike fonts (e.g., there are no glyphs
from math fonts in CM-Super), but that each font
in this collection is a SuperFont supporting many
glyphs, languages, and scripts. These SuperFonts
can be used with other applications as well as TEX.

2 Font encodings, families, shapes, and

names

The New Font Selection Scheme (NFSS) in LATEX
serves as a very good classifying mechanism in the
chaos of various fonts: each font is classified by its
encoding, family, shape and design size. The font
encoding defines the set (and order) of glyphs which
are contained in a font. Currently, the CM-Super
font collection supports glyphs from the following
LATEX font encodings: T1, TS1, T2A, T2B, T2C, X2.
In the near future I’ll try to add support for these
encodings as well: T3, T4, T5, LGR, and others (e.g.,

additional Cyrillic and Latin glyphs which are not
already present in supported encodings).

The original CM fonts used file names such as
cmr10, cmbx12, etc., while their EC analogues use
font names consisting of four letters, the first two
of which are always “ec” while the second two de-
note font family and shape: ecrm1000, ecbx1200,
etc. Design sizes are specified differently in the two
families: EC fonts use a 4-digit scheme, while CM

fonts use two digits. I’ve chosen to use font names
of SuperFonts which follow the scheme used in EC

fonts (with “sf” instead of “ec”, “tc”, etc.), since
the majority of METAFONT fonts included into the
CM-Super package follow this naming scheme (EC,
TC, LH).

Families and shapes currently supported (the
README file in the CM-Super distribution contains a
more detailed list):

1. 29 font shapes supported by EC/TC fonts. Each
font shape comes in 14 font design sizes ranging
from 5pt to 35.83pt (or 11 design sizes for type-
writer font shapes ranging from 8pt to 35.83pt),
giving 23 · 14 + 6 · 11 = 388 font files;

2. 13 font shapes for SliTEX (each comes in one
design size);

3. 14 fonts from Computer Modern Concrete fam-
ily (font file names correspond to the scheme
used in EC Concrete fonts, again with “sf” in-
stead of “ec”);

4. 19 fonts from Computer Modern Bright family
(font file names correspond to the scheme used
in European Computer Modern Bright fonts).

The total number of Type 1 font files included in
the CM-Super package is 434.

Each Type 1 font contains glyphs from sev-
eral METAFONT fonts with the same font shape
and design size. For example, sfrm1000.pfb com-
bines unique glyphs from the following METAFONT

fonts: ecrm1000.mf, tcrm1000.mf, larm1000.mf,
lbrm1000.mf, lcrm1000.mf, rxrm1000.mf (for en-
codings T1, TS1, T2A, T2B, T2C, X2, respectively).
In a future version, this font will also include
glyphs from tipa10.mf, fcr10.mf, vnrm1000.mf,
grmn1000 (for font encodings T3, T4, T5, LGR).

Caps and small caps fonts do not include glyphs
from TC fonts (TS1 font encoding), since there are
no small caps TC fonts (but it may make sense to
include glyphs from the TS1 encoded fonts into these
fonts, for completeness, by duplicating glyphs from
the corresponding non-smallcaps font shapes).

Our approach provides big savings: if we were
making separate Type 1 fonts for each of the above
mentioned METAFONT fonts, we would have 256 ·

76 TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting

CM-Super: Automatic creation of efficient Type 1 fonts from METAFONT fonts

5 + 128 = 1408 glyphs from the five METAFONT

sources mentioned; but sfrm1000.pfb contains only
585 unique glyphs, which includes some glyphs which
were added for the sake of completeness.

The CM-Super fonts come with AFM and INF

files and are thus usable with non-TEX-related ap-
plications as multilingual fonts.

3 Details on making the CM-Super fonts

As mentioned above, CM-Super fonts were made
by tracing the high resolution bitmaps created by
METAFONT. Below is a more detailed description
of this process.

First, I created map files which contain each
font shape per line corresponding to each META-
FONT font which is to be traced. Each map file
contains fonts for some particular font encoding (T1,
TS1, T2A, T2B, T2C, X2). Also there is a map file
for additional glyphs (ellipsis and alternative variant
of the sharp “s”).

Also, for each supported font encoding, I cre-
ated the encoding vector with standard glyph names
following the Adobe Glyph List (AGL) conventions
(a few glyphs absent from the AGL and even from
Unicode were named arbitrarily).

Now we can run the script traceall.sh from
TEXtrace to make Type 1 fonts from each META-
FONT font, using the map files and encoding vectors
made in the previous step.

Now we need to combine these small Type 1
font files into Super-fonts. First, we “disassemble”
them using t1disasm from the t1utils package, to
convert them into plain text format, convenient for
processing. Then we can run a script which com-
bines unique glyphs from the fonts with the same
font shape and design size into one (disassembled)
Type 1 font. The script not only check for unique
names, but also checks that the glyphs with the same
names from different fonts (e.g., the Latin letters)
are represented identically.

Since we combined several Type 1 fonts into one
big font, the FontBBox parameter needs to be fixed.
This is done using the pf2afm PostScript program
from the Ghostscript distribution.

We also fix the isFixedPitch, ItalicAngle, and
Weight values using a script, since TEXtrace doesn’t
set them right. The value of ItalicAngle is extracted
from the TFM file using the Font::TFM perl module.

To make the resulting fonts smaller, we
make some cleanups, like removing redundant “0
hmoveto” from glyph charstrings dictionary, setting
the default font encoding to StandardEncoding, set-
ting the value of lenIV parameter in the private dic-
tionary to 0, etc.

At this point, we have “raw” Type 1 fonts which
should be optimized (which is done later).

Now we gather information contained in the
TFM files (which are generated by METAFONT), and
apply it to PFB files, and also create AFM font met-
ric files. This in itself involves several steps:

• First, we extract kern values from each of the
TFM files, using the script based on the Font::
TFM perl module, and generate the textual rep-
resentation of kerns which is used in AFM file
format.

Then we combine the kern values from indi-
vidual TFM files which correspond to the same
font shape and design size (but differ by font
encoding) into one big kern table. While doing
such combining, we always check that there no
inconsistent kerns (for the same glyph pairs) in
different fonts. A few such inconsistencies were
indeed found.

• Now we’d like to make the glyph widths in the
PFB files use precise (non-integer) values which
better match the values in the TFM files. These
widths are generated using the best approxima-
tion (based on continued fractions) with the de-
nominator not exceeding 107 to fit in 1 byte in
CharStrings (giving space economy), and are
stored using the div operator in CharStrings.
Apparently, such a subtle technique was used
first in the BSR/Y&Y CM fonts.

Again, we combine the exact glyph widths
obtained from different METAFONT fonts into
glyph widths for SuperFonts. And finally, we
fix the hsbw operators in the PFB files to use
the calculated precise glyph widths.

• We extract font parameters (fontdimen values)
from individual METAFONT fonts. They are
converted to the corresponding values like As-
cender, Descender, XHeight, CapHeight which
are stored in the AFM files.

• The ligatures contained in the TFM files are also
extracted and put into the AFM files.

• Finally, glyph bounding boxes are extracted
from the PFB files using pf2afm, and all the
pieces obtained in previous steps are combined
into final AFM files for the CM-Super fonts.

Now it’s time to optimize the PFB files, since they
contain a lot of “junk” control points and do not fol-
low the rules which should be obeyed in good Type 1
fonts. This is the only step which was performed us-
ing commercial software: FontLab, but now it is also
possible to use PFAedit1 which may give comparable

1 This program has since been renamed to FontForge and

is available from http://fontforge.sourceforge.net/. Ed.

TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting 77

Vladimir Volovich

results. The optimization consists of adding nodes
at extremes, removing overlaps in contours, optimiz-
ing contours (removing unnecessary control points,
simplifying the contours), and also autohinting. We
intentionally used only automatic optimization (in
packet mode, without human interaction). The aim
was to use totally automatic conversion of META-
FONT fonts to Type 1 format, automatic optimiza-
tion and hinting, with the best achievable quality of
final Type 1 fonts, to be able to re-generate the fonts
if necessary (e.g., when a new version of original
METAFONT fonts is released). Undoubtedly, there
is room for improvement of this approach, which we
will attempt in future versions of the fonts. After
passing the fonts through FontLab, we perform some
cleanup again by disassembling, processing and re-
assembling back the fonts.

Finally, we create the INF files using a simple
script.

The above description may seem a bit compli-
cated at the first glance, but all steps are performed
by running a few simple Perl scripts. Some of them
may appear to have wider application, so I’ll put
them into the distribution at some point.

4 Related works

Some packages have been developed which may be
useful in conjunction with the CM-Super font pack-
age. First, the type1ec package which is analogous
to the existing type1cm package and makes the EC-
based fonts available at any size (as opposed to the
set of the standard font sizes defined in the default
LATEX font definition files). This will work efficiently
since the CM-Super fonts are vector fonts and will
be preloaded only at the few design sizes scaled ap-
propriately.

The second package, recently developed, is the
cmap package, to be used with pdfLATEX, which
“hooks” into the low-level LATEX font pickup com-
mand to preload the CMap resources for the fonts
which are used in the document. This adds search-
ing and copying capabilities to the PDF files, by
defining the “meaning” (Unicode values) for the

glyphs used in the document. At the moment this
works only for Type 1 fonts, since pdfTEX had been
ignoring the \pdffontattr command for the Type 3
fonts, but this was fixed recently and thus it will
soon be possible to make the files “searchable” even
if the document uses some bitmap fonts.

Both these packages are available on CTAN.

5 Future work

There are many possibilities for improving and ex-
tending the CM-Super package. Unfortunately, I
haven’t had much time recently to work on it, but
hopefully I’ll move forward soon. Some of the ideas
are written in the TODO file in the distribution. Most
important are:

• cover more fonts — support some other LATEX
font encodings: T3 (TIPA), T4 (African writ-
ings, FC fonts), T5 (Vietnamese fonts), LGR

Greek font encoding (CB-Greek fonts), . . . ;

• make the fonts even more efficient (smaller) by
using techniques similar to the ones described in
Thanh’s paper (putting glyphs and accents into
subroutines, and constructing accented glyphs
from them instead of putting the whole defini-
tion of accented glyph into the font);

• make an ultimate step forward to improve the
quality of glyph shapes by using analytic trans-
formation rather than tracing.

6 Acknowledgements

I am grateful to the following people who made this
work possible: Hàn Thé̂ Thành who inspired me to
make a joint talk at TUG 2003 and who gave me
many ideas for improving the package and helped
to understand some mechanisms (in particular, how
to add the CMap entries into font dictionaries into
PDF files); Peter Szabo and Martin Weber and Karl
Berry who made it possible to easily generate Type 1
fonts from bitmaps; Yuri Yarmola from FontLab
for providing a copy of FontLab; William Adams,
Wendy McKay, Robin Laakso and Patricia Mono-
hon for the help with corrections of this article and
friendly help before and during this conference.

78 TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting

Making Type 1 fonts for Vietnamese

Hàn Thé̂ Thành
University of Education

Ho Chi Minh City

Vietnam

hanthethanh@gmx.net

Abstract

In this article I describe how I made the VNR fonts and converted them to Type 1
format. VNR is the Vietnamese version of the CMR fonts, written in METAFONT

based on CMR and EC font sources. Conversion to Type 1 format was done based
on the Type 1 version of CMR produced by Blue Sky, with the help of MetaFog,
FMP, FontLab and a lot of hacking in VNR sources and Bash and Perl scripting.
The result is a set of Type 1 fonts that is similar to the Blue Sky fonts, but also
provide Vietnamese letters with the same quality of outlines and hints.

Vietnamese letters and VNR fonts

Vietnamese is written with Latin letters and a few
more accents in a system called

Quốc Ngữ

(which can be translated to English as “national
language”) developed by the Portuguese mission-
ary Alexander Rhodes. What separates Vietnamese
from other languages typeset with Latin characters
is that some letters in Vietnamese can have two ac-
cents. The total number of accented letters in Viet-
namese (including uppercase and lowercase letters)
is 134. Table 1 lists all lowercase Vietnamese letters.

a á ạ à ả ã
ă ắ ặ ằ ẳ ẵ
â ấ ậ ầ ẩ ẫ
e é ẹ è ẻ ẽ
ê ế ệ ề ể ễ
i í ị ì ỉ ĩ

o ó ọ ò ỏ õ
ô ố ộ ồ ổ ỗ
ơ ớ ợ ờ ở ỡ
u ú ụ ù ủ ũ
ư ứ ự ừ ử ữ
y ý ỵ ỳ ỷ ỹ
đ

Table 1: List of all Vietnamese lowercase letters.

Vietnamese accents can be divided into three
kinds of diacritic marks: tone, vowel and consonant.
Table 2 shows them all with examples.

As Vietnamese letters are identical to Latin let-
ters, it is natural to write VNR as a set of META-

Diacritic mark Example

Vowel

breve băn khoăn

circumflex hôm nay

horn Qui Nhơn

Tone

acute Lái Thiêu

grave Bình Dương

hook above Thủ Đức

tilde dĩ vãng

dot below học tập

Consonant

stroke đã đời

Table 2: List of all Vietnamese diacritic marks.

FONT files which compose the Vietnamese letters
from English letters in CMR sources and appropriate
accents. There were several works on this topic prior
to VNR. The best among them was the package
vncmr by Werner Lemberg, who also created some
basic macro support for typesetting Vietnamese in
LATEX and plain TEX.

As I learnt more about TEX and METAFONT,
I set out to create new VNR fonts, as I was not en-
tirely happy with the accent shapes and positioning
in previous packages. I borrowed many ideas from
the vncmr package and other CMR-based fonts, like
the Czech and Polish version of CMR fonts. It took
about 2 years until the first version was released and
used in practice.

In the beginning I wrote VNR fonts based on
CMR sources. Later, Werner Lemberg and Vladimir

TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting 79

Hàn Thé̂ Thành

Volovich convinced me that it would be better to
switch to EC sources instead of CMR sources. The
two main reasons:

1. it would be easier to include Vietnamese letters
in CM-Super fonts;

2. it would fix some problems in VNR (mainly with
encoding and some missing glyphs).

So I changed VNR to be based on EC, which of
course introduced new problems. The most notice-
able is with naming: Should VNR fonts be named
with an EC-like naming convention (vnrm1000.mf)
or a CMR-like naming convention (vnr10.mf)? In
the end I decided to support both, but the sources
(and thus the glyph shapes) are EC-based. Why not
drop one of them? Because:

1. I wanted to support EC naming, so Vladimir
could include Vietnamese letters in CM-Super;

2. I wanted to support CMR naming, because I
wanted to use the Type 1 version of CMR fonts.
Also, there are many packages which depend on
CMR-style names (such as Texinfo).

I would like to point out that I am not a type
designer and therefore the aesthetic aspect of Viet-
namese letters (regarding accent shapes and posi-
tioning) is open to discussion. What I have done
is heavily based on what I learnt from other Viet-
namese fonts available to me, from the typography
of other languages (mainly Czech and Polish), and
from comments from various people. It’s not to say
that I take no responsibility for VNR fonts. If some-
thing looks bad, it is of course my fault.

It’s good that I can use Vietnamese with

TEX, but I want PDF

PK fonts just look ugly in Acrobat Reader. So I
needed Type 1 fonts. My first attempt was to create
a set of virtual fonts for Vietnamese, which refer
to CMR fonts. Unfortunately, the output simply
doesn’t look good, as many needed accents are not
available in CMR and must be substituted by some
other glyphs.

I also tried to use TEXtrace to generate Type 1
versions of VNR fonts (using both EC and CMR nam-
ing). The result is useable, but the size is too large
and the quality of auto-generated outlines and hints
cannot be compared to Blue Sky fonts. It seemed
a pity to me that I could not use the high-quality
outlines and hints of English letters in the Blue Sky
fonts. So I looked for another method to convert
VNR fonts to Type 1 format.

Reuse is a good idea

The main idea of efficient generating Type 1 format
for VNR fonts is simple:

1. Take the accents from METAFONT sources and
convert them to Type 1 format;

2. compose those accents and the English letters
from Blue Sky fonts to get accented letters.

Thus nothing is new; each step is just a reuse of
existing data.

Use the right tool for each task

The two steps mentioned above can be done prop-
erly, given that we have the right tool for each.

Converting the accents to Type 1 format This
can be done very quickly using TEXtrace, or nearly

perfectly using METAPOST and MetaFog. As I had
an evaluation copy of MetaFog and I wanted the
result to be as good as possible, I chose the latter.

In this step, some glyphs that are needed in
T5 (the Vietnamese TEX encoding) but are miss-
ing in the Blue Sky fonts must also be converted.
The number of glyphs needed for each font is 47, of
which 22 are Vietnamese accents and letters. Ta-
ble 3 shows all the glyphs that need to be converted
to Type 1 format. The vl and vu prefixes stand for
“Vietnamese lowercase” resp. “Vietnamese upper-
case”. At the moment they look identical; however,
they may be changed.

Many of the additional glyphs are available in
the Blue Sky fonts already, but their availability is
not consistent. Each of the additional glyphs listed
here is missing at least in some Blue Sky font. To
get rid of this headache, I chose to convert them all.

47 glyphs is quite a large number for each font,
as the total number of glyphs to be converted is
2585 (47×55). Fortunately, not all of them required
manual correction, and the additional glyphs need to
be converted only once, given that EC sources will
not be changed. So, if I change the VNR sources,
I will have to re-convert only those 22 Vietnamese
accents and letters.

When MetaFog finished and we had the outlines
of the needed glyphs, hints for accents were auto-
generated using FontLab.

Several papers have been published on this topic
so I will not repeat it all here. (See References, Ed.)

In short, using METAPOST and MetaFog gives
the best result, but a lot of manual work is required.
That’s one reason why I didn’t convert all Viet-
namese glyphs but only those that are truly neces-
sary. Why regenerate the English letters when they
already exist in Blue Sky fonts at the high quality?

80 TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting

Making Type 1 fonts for Vietnamese

Vietnamese

accents and letters Additional glyphs

dotbelow quotesinglbase

hookabove guilsinglleft

vlgrave guilsinglright

vlacute quotedblleft

vlcircumflex quotedblright

vltilde quotedblbase

vldotbelow guillemotleft

vlbreve guillemotright

vlhookabove endash

vugrave emdash

vuacute cwm

vucircumflex zeroinferior

vutilde uni2423

vudotbelow quotedbl

vubreve dollar

vuhookabove less

Ohorn greater

Uhorn backslash

ohorn asciicircum

uhorn underscore

Dcroat braceleft

dcroat bar

braceright

asciitilde

sfthyphen

Table 3: List of glyphs that need to be converted
from METAFONT to Type 1 using MetaFog.

Composing the accented letters Composing the
base letters and accents to create accented letters
has two advantages:

1. the base part of the letter will have the outlines
and hints at the same quality as the Blue Sky
fonts;

2. the final size of fonts will be considerably re-
duced, as base letters and accents will be put
into subroutines in the final Type 1 fonts. This
way each glyph is included only once (again,
reuse is good).

The tool used in this step was FMP (Font Ma-
nipulation Package) from Y&Y. This package con-
tains a tool that can create composite glyphs from
existing glyphs in a font. The question is how to

place an accent over a letter exactly like the VNR

sources do. The solution is simple: I added some
hooks into VNR sources, so information about ac-
cent positioning is written to a log file. Then I wrote
some Perl scripts to extract the data from the log
file and use them with the composite tool from FMP.

What about the result?

A rough comparison on average font size gave the
following result:

Blue Sky 25KB
Type 1 VNR (TEXtrace) 70KB
Type 1 VNR (as described herein) 40KB

Compactness is gained thanks to FMP, which
puts all accents and English letters into subroutines
so they can be reused without duplication, as men-
tioned above.

Regarding the quality of outlines and hints of
each accented letter:

• The base part has the the same outlines and
hints as in Blue Sky fonts;

• the accent part has the outlines produced by
METAPOST (and MetaFog), with hints auto-
generated by FontLab.

As the accent shapes are quite simple, the hints
auto-generated by FontLab are quite reasonable. It’s
very hard to do better without a great deal of expe-
rience in manual hinting.

A sample of font vnr10 is shown in figure 1.

Any known problems?

Yes: The VNR sources are EC-based, while the En-
glish letters from Blue Sky are Computer Modern-
based. So it is possible that the Type 1 version of
VNR fonts will have slightly different glyph shapes
from their counterpart generated by METAFONT. I
did some quick comparisons: The difference is only
visible at very high resolution, and can be tolerated
in my opinion. Hopefully nobody will mind, or even
notice.

Related works

I applied a similar method to add Vietnamese letters
into the URW fonts. The result is a package I called
URWVN. Technically, the URWVN fonts are very
similar to VNR:

1. they are very compact; the average size of the
URWVN fonts is 35 KB;

2. the base character of accented letters has the
same outlines and hints as in URW fonts;

TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting 81

Hàn Thé̂ Thành

Chí Phèo

Hắn vừa đi vừa chửi. Bao giờ cũng thế, cứ rượu xong là hắn
chửi. Bắt đầu chửi trời. Có hề gì? Trời có của riêng nhà nào? Rồi
hắn chửi đời. Thế cũng chẳng sao: đời là tất cả nhưng chẳng là ai.
Tức mình hắn chửi ngay tất cả làng Vũ Đại. Nhưng cả làng Vũ Đại
ai cũng nhủ, “Chắc nó trừ mình ra!” Không ai lên tiếng cả. Tức
thật! Ồ! Thế này thì tức thật! Tức chết đi được mất! Đã thế, hắn
phải chửi cha đứa nào không chửi nhau với hắn. Nhưng cũng không
ai ra điều. Mẹ kiếp! Thế thì có phí rượu không? Thế thì có khổ
hắn không? Không biết đứa chết mẹ nào đẻ ra thân hắn cho hắn
khổ đến nông nỗi này? A ha! Phải đấy, hắn cứ thế mà chửi, hắn
chửi đứa chết mẹ nào đẻ ra thân hắn, đẻ ra cái thằng Chí Phèo!
Hắn nghiến răng vào mà chửi cái đứa đã đẻ ra Chí Phèo. Nhưng
mà biết đứa nào đã đẻ ra Chí Phèo? Có trời mà biết! Hắn không
biết, cả làng Vũ Đại cũng không ai biết. . .

Figure 1: A text sample of vnr10.

3. the accent part of accented letters was drawn
manually,1 with hints auto-generated by Font-
Lab.

The aesthetic aspect is open to discussion, as I am
not a type designer. Comments or suggestions are
very welcome.

A sample of Times Roman is shown in figure 2.

Future works

At the moment, VNR and URWVN have only one
version for each accent. Therefore uppercase and
lowercase forms of a letter have the same accent,
e.g. aacute and Aacute have the same shape for the
accent. This should be improved by introducing two
separate versions for each accent, one for uppercase
and one for lowercase. This is important for Viet-
namese, as many letters have double accents, which
causes such letters to be very tall. Uppercase let-
ters should have wider and lower accents than their
lowercase counterparts.

The METAFONT sources of VNR could also be
improved to make the accents look better, especially
for sans serif fonts.

1 More precisely, they were derived from existing glyphs

in URW fonts with manual modification.

Files

• The VNR fonts and vntex are available at
http://vinux.sourceforge.net/vntex

• The URWVN fonts are available at
http://vinux.sourceforge.net/urwvn

• Samples of VNR fonts are available at
http://vinux.sourceforge.net/vntex/

vnfontsample.pdf.gz

• Samples of URWVN fonts are available at
http://vinux.sourceforge.net/urwvn/

urwvnsample.pdf.bz2

Acknowledgments

I would like to thank the following people, without
whom my work would never be finished:

• Werner Lemberg for creating the vncmr package
from which I learnt a lot;

• Tom Kacvinsky for donating a copy of FMP;

• Richard Kinch for creating MetaFog and donat-
ing an evaluation copy;

• Paul Watry for donating a copy of FontLab;

• and William Adams for correcting this paper.

82 TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting

Making Type 1 fonts for Vietnamese

Chí Phèo

Hắn vừa đi vừa chửi. Bao giờ cũng thế, cứ rượu xong là hắn chửi.
Bắt đầu chửi trời. Có hề gì? Trời có của riêng nhà nào? Rồi hắn chửi đời.
Thế cũng chẳng sao: đời là tất cả nhưng chẳng là ai. Tức mình hắn chửi
ngay tất cả làng Vũ Đại. Nhưng cả làng Vũ Đại ai cũng nhủ, “Chắc nó

trừ mình ra!” Không ai lên tiếng cả. Tức thật! Ồ! Thế này thì tức thật!
Tức chết đi được mất! Đã thế, hắn phải chửi cha đứa nào không chửi
nhau với hắn. Nhưng cũng không ai ra điều. Mẹ kiếp! Thế thì có phí
rượu không? Thế thì có khổ hắn không? Không biết đứa chết mẹ nào đẻ
ra thân hắn cho hắn khổ đến nông nỗi này? A ha! Phải đấy, hắn cứ thế
mà chửi, hắn chửi đứa chết mẹ nào đẻ ra thân hắn, đẻ ra cái thằng Chí
Phèo! Hắn nghiến răng vào mà chửi cái đứa đã đẻ ra Chí Phèo. Nhưng
mà biết đứa nào đã đẻ ra Chí Phèo? Có trời mà biết! Hắn không biết, cả
làng Vũ Đại cũng không ai biết. . .

Figure 2: A text sample of Vn Nimbus Roman No9 L Regular.

A Step-by-step description of generating

Type 1 VNR fonts

As an example, vnr10.pfb was generated as follows:

1. Run METAPOST on vnr10.mf to write infor-
mation about accent positioning into a log file;
the result of this step is vnr10.log, containing
precise positioning of accents.

2. Run Perl scripts to extract the needed informa-
tion from the log file and convert it to a format
suitable for use with FMP. The result are two
files, vnr10.ac1 and vnr10.ac2.

The file vnr10.ac1 contains accent position-
ing instructions for letters with single accent.
Those instructions are similar to the CC com-
mands often found in AFM files; they look like:

CC aacute 2 ; PCC a 0 0 ;

PCC vlacute 146 495

CC abreve 2 ; PCC a 0 0 ;

PCC vlbreve 85 495

vnr10.ac2 contains accent positioning instruc-
tions for letters with double accents. As the
composite tool from FMP does not allow com-
positing a letter with two accents, this must be
accomplished in two passes. vnr10.ac1 is used
in the first pass and vnr10.ac2 in the second
pass. The instructions in vnr10.ac2 look like:

CC abreveacute 2 ; PCC abreve 0 0 ;

PCC vlacute 205 631

To make it clear, a character with double ac-
cents is constructed as follows: In the first pass,
the base letter and the first accent is composed
to create a new glyph. In the second pass, this
new glyph is composed again with the second
accent to get the double-accented letter.

3. Run METAPOST on vnr10.mf to generate PS

outlines of glyphs that need to be converted to
Type 1 format; those are listed in table 3.

4. Run MetaFog on the result of the previous step
to convert them to Type 1 format (without hint-
ing). If some glyphs were incorrectly converted,
manual intervention is needed in this step.

5. Autohint the font generated by MetaFog in the
previous step, using FontLab. The result is a
font named vnr10-t5supp.pfa.

6. Process the file cmr10.pfb from the Blue Sky
fonts with a Perl script which removes the div

operator from glyph descriptions. This is neces-
sary because some tools from the FMP package
don’t like fonts containing this operator. The
result is cmr10.pfa (FMP tools work with PFA

format only).
7. Run a Bash script that uses the FMP tools

to compose vnr10.pfb from the constituents

TUGboat, Volume 24 (2003), No. 1 — Proceedings of the 2003 Annual Meeting 83

Hàn Thé̂ Thành

cmr10.pfa, vnr10-t5supp.pfa, vnr10.ac1

and vnr10.ac2. This script does the following:

• remove unwanted glyphs from cmr10.pfa;

• merge cmr10.pfa and vnr10-t5supp.pfa

to get all the glyphs needed for composi-
tion in a single font (FMP requires this);

• compose all letters with single accents, ac-
cording to instructions in vnr10.ac1;

• compose all letters with double accents,
according to instructions in vnr10.ac2.

8. Post-process the resulting vnr10.pfa to add a
few final things, such as the UniqueID, encoding,
font name and the like.

B Step-by-step description of generating

URWVN fonts

The process is similar to the case of VNR fonts.
However, there are two main differences:

1. the accents were drawn manually instead of be-
ing generated from METAFONT sources;

2. accent positioning was also done “manually” in-
stead of being generated from the METAFONT

sources.

As an example, utmr8v.pfb (8v is the abbreviation
suggested by fontname for the Vietnamese encod-
ing) was generated as follows.

1. Open utmr8a.pfa in FontLab and add the Viet-
namese accents, plus some other missing letters:
uhorn, Uhorn, ohorn, Ohorn.

2. Use the program a2ac (written by Petr Oľsák,
with some modifications to fit my needs) to cre-
ate a “rich” AFM file where composite instruc-
tions look like:

CC Ocircumflex 2 ; PCC O 0 0 ;

PCC vucircumflex 194 181 ;

CC Ocircumflexacute 3 ; PCC O 0 0 ;

PCC vucircumflex 194 181 ;

PCC vuacute 116 339 ;

The reason to use a2ac instead of writing
these instructions from scratch is that a2ac

allows generating CC instructions in a clean,
systematic and efficient way; it also allows au-
tomatic generation of kerning information for
newly composed glyphs. The functionality of
a2ac is very similar to the famous fontinst

(with some limitations).

3. Run a script that takes the above AFM file, gen-
erate a virtual font and run TEX (pdfTEX) on a
test file to display how composited glyphs look.
The purpose of this step is to check quickly
whether accent positioning is already good, or
if it needs further improvements. If so, we come
back to the previous step. This allows a very
efficient edit-compile-test-edit cycle.

Why not do accent positioning in FontLab
instead of using a2ac and all this hacking? Be-
cause the latter defines accent positioning in a
precise, consistent and more efficient way. If I
did it in FontLab, there would be some disad-
vantages:

(a) it would take longer;

(b) accents could not be placed consistently;2

(c) if an accent is changed, all must be done
again.

4. When the accent positioning is reasonable, run
a script that uses the FMP tools to compose
accented letters, as in case of the VNR fonts.

5. Post-process the result to fix the same admin-
istrative things.

C References

Richard Kinch, TUGboat 16(3) (1995), “MetaFog:
Converting METAFONT Shapes to Contours”.
http://www.tug.org/TUGboat/Articles/

tb16-3/tb48kinc.pdf

Taco Hoekwater, Bijlage 26, MAPS 20 (1995),
“Generating Type 1 Fonts from METAFONT

Sources”. http://www.ntg.nl/maps/pdf/20_39.pdf

2 Well, they could, but at a very high price.

84 TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting

Chinese character synthesis using METAPOST

Candy L.K. Yiu, Wai Wong
Department of Computer Science,

Hong Kong Baptist University

[candyyiu,wwong]@comp.hkbu.edu.hk

Abstract

A serious problem in Chinese information exchange in this rapidly advancing
Internet time is the sheer quantity of characters. Commonly used character en-
coding systems cannot include all characters, and often fonts do not contain all
characters either. In professional and scholarly documents, these unencoded char-
acters are quite common. This situation hinders the development of information
exchange because special care has to be taken to handle these characters, such as
embedding the character as an image. This paper describes our attempt towards
solving the problem. Our approach utilizes the intrinsic characteristic of Chinese
characters, that is, each character is formed by combining strokes and radicals.
We defined a Chinese character description language named HanGlyph, to cap-
ture the topological relation of the strokes in a character. We are developing a
Chinese Character Synthesis System CCSS which transforms HanGlyph descrip-
tions into graphical representations. A large part of the CCSS is implemented in
METAPOST.

1 Introduction

The rapid advancement of the Internet and the Web
provides an effective means of information exchange.
However, there is a very serious problem in exchang-
ing Chinese documents: the number of Chinese char-
acters that now exist or have ever existed is un-
known. Furthermore, new characters are continu-
ally being created. Therefore, no character set can
encode all Chinese characters.

Even if a character set could encode all Chinese
characters, it is very expensive to create Chinese
fonts using typical methods and a fairly large num-
ber of Chinese characters would be so rarely used
that the expense would be very difficult to justify.

One possible solution to this problem is to cre-
ate an unencoded character according to its compo-
sition of strokes and radicals. Several experiments
along this line were attempted in the past, but none
were very successful. The key reason is that the
composition of the strokes and radicals is very com-
plex, and the previous attempts did not effectively
divide and resolve the complexity. The section on
related works gives a brief survey of some previous
attempts.

Our approach to Chinese character synthesis re-
solves the complexity in two ways. First, we defined
a high-level Chinese character description language,
HanGlyph. It captures the abstract and topological
relation of the strokes. Thus, the character descrip-

tion is compact and can be targeted to a variety
of rendering styles. The section on the HanGlyph

Chinese character description language describes the
language in more detail. Secondly, we use META-
POST as our rendering engine to take advantage of
its meta-ness and the ability of specifying paths and
solving linear equations.

The HanGlyph language is defined based on
many studies of Chinese characters. The section on
the sructure of Chinese characters explains the ba-
sic structure of Chinese characters for the benefit of
readers who are not familiar with them. HanGlyph

defines 41 basic strokes, 5 operators and a set of rela-
tions. A character is built by combining strokes us-
ing the operators recursively. HanGlyph allows the
user to define macros to represent a stroke cluster
which can then be re-used in building more complex
characters.

The CCSS (stands for Chinese Character Syn-
thesis System) takes HanGlyph expressions and ren-
ders the characters. It can be divided into three
parts: a front-end to translate HanGlyph expres-
sions into METAPOST programs, a set of primitive
strokes, and a library of METAPOST macros to im-
plement the operators and relations. By varying the
parameters to these macros, or redefining the basic
stroke macros, Chinese characters in different styles
can be formed. Thus, it can create a variety of dif-
ferent fonts from the same HanGlyph description.

TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting 85

Candy L. K. Yiu, Wai Wong

2 The structure of Chinese characters

Chinese characters, or hanzi, have their roots in a
very long history. A large body of literature on the
study of the written form of Chinese language, dat-
ing from as early as more than 2000 years ago (dur-
ing the Han dynasty) up to now, is available. The
written form of Indo-European languages consists of
around 30 characters. Words are formed using these
characters in a linear fashion. In contrast, written
Chinese language is denoted by tens of thousands of
hanzi. The exact number of hanzi that have ever
existed can never be known.

Many studies have pointed out that each Chi-
nese character is composed from strokes. The num-
ber of strokes in a character varies from one for the
simplest, up to around 50 for the most complex. Un-
like the linear composition of words from characters
in Indo-European languages, the arrangement of the
strokes in hanzi is two-dimensional.

According to the convention of writing Chinese
characters, a stroke is a continuous movement of the
brush over the writing surface without being lifted
up. It is commonly agreed that there are five ba-
sic strokes: (k héng1), (N shù), (� piě),

(z nà) and (Þ diǎn).
In practice, each of these basic strokes has some

variations depending on the position in a character.
For example, the stroke � can have two varia-
tions: (s� pı̀ngpiě) (as the top stroke in C) and

(N� shùpiě) (as the leftmost stroke in �). In
addition, a number of combinations of these basic
movements are considered as strokes because they
are connected in a natural way in writing. For ex-
ample, a (k) followed by a (�) is a single
stroke called (k�� hèngzhépiě). Modern stud-
ies of Chinese characters [1, 9] identified a small set
of around 40 strokes as the basic elements of hanzi.

Although the arrangements of strokes to form
a hanzi is very complex, there are some rules that
guide the formation of characters. Further, some
stroke arrangements are relatively stable and appear
in many characters. Some of these arrangements are
themselves hanzi, for example, å�; some of them
are known as radicals which are used in Chinese dic-
tionaries to index characters, for example, s��.
There are some relatively stable arrangements that
are not hanzi themselves, nor radicals, but appear in
many characters. We will use the term components

to refer to all these kinds of stroke arrangements,

1 The word héng following the hanzi name of the stroke

is in pinyin, a phonetic transcription of Chinese characters.

We hope these pinyin transcriptions can help readers who do

not know Chinese to pronounce the names of the strokes.

while we use a more general term stroke clusters to
refer to any arrangements of several strokes.

Except for a small number of very simple char-
acters, such as º, �, A, which cannot be divided
into component parts, all hanzi can be considered
as compositions of certain components. The ways
of composing hanzi from components are known as
the structure of the character. Many studies, such
as [2] and [8], have identified around 10 different
types of structures if one considers how to compose
a character from only two components. This does
not place serious restrictions, because the composi-
tion process can be performed recursively. Figure 1
illustrates the commonly used structures.

3 Related works

Based on the studies of Chinese characters, several
attempts have been carried out to create hanzi from
a structural composition approach.

Toshiyuki et al [10] proposed a way of describ-
ing Chinese characters using sub-patterns. In princi-
ple, their method is similar to the approach of Han-

Glyph because the underlying theory of character
structure is intrinsic to all Chinese characters.

Dong [11] and Fan [5] reported their work on the
development of a Chinese character design system
which took a parametric approach to create charac-
ters in different styles. Lim and Kim [7] developed
a system for designing Oriental character fonts by
composing stroke elements.

Inspired by the success of METAFONT [6] in
creating latin character fonts, Hobby and Gu [3]
attempted to generate Chinese characters of differ-
ent styles using METAFONT. A small set of strokes
were defined in METAFONT. A small set of radi-
cals were then defined as METAFONT macros by us-
ing the strokes. Characters can then be specified as
METAFONT programs using these macros as build-
ing blocks. By varying some parameters governing
the shapes of the strokes, fonts of different styles
can be generated. However, the research was not
conclusive because they only generated fonts with a
very small character set (128 characters).

Another attempt similar to Hobby and Gu was
done by Hosek [4] who aimed at generating hanzi

from a small sets of components.
A common theme of the works mentioned is the

difficulty of handling the complexity of the struc-
tures and the numerousness of characters. Our ap-
proach handles the complexity by using an abstract
description and a layered CCSS to decompose the
complexity into several sub-problems. On the Han-

Glyph level, we consider strokes as abstract objects.

86 TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting

Chinese character synthesis using METAPOST

10 2 3

4 5 6 7Left−Right:

Top−bottom: Partially−

enclosing:

Cross:Enclosing:

Figure 1: The basic structure of hanzi.

We need to specify only the relative positions be-
tween these abstract objects. On a lower level, we
can work out the outline of the strokes and fine tune
the positions.

Another theme of the works mentioned is that
they are mainly aimed at the design and generation
of character fonts. Our approach can certainly be
applied in font generation. However, a very impor-
tant application area, namely the exchange of Chi-
nese character information, is made possible with
our character description language HanGlyph.

4 The HanGlyph language

Based on the analysis described in previous sections,
we defined a Chinese character description language,
named HanGlyph. The most crucial characteristic of
this language is that it is abstract and it captures
only the topological relation of the strokes that form
a character.

The essential information needed to distinguish
a Chinese character is the arrangement of strokes.
The precise location of each stroke can vary in a
large extent up to a certain threshold, and the char-
acter can still be recognized correctly. For example,
the following two characters, � and ë, comprise
exactly the same strokes and in exactly the same
arrangement. The only difference between them is
the relative length of the two horizontal strokes.
Exactly how much longer a horizontal stroke is in
these characters is unimportant for distinguishing
between them. To recognize the character �, the
threshold is that the upper horizontal stroke must
be shorter than the lower one. Therefore, the Han-

Glyph language does not describe the precise geo-
metric information of the characters.

4.1 The strokes

After studying a number of Chinese linguistic and
graphological works, we selected a set of 41 strokes
as the primitives of HanGlyph. Each primitive stroke
is assigned a Latin letter as its code so that users
can easily write HanGlyph expressions using a stan-
dard qwerty keyboard. Table 1 lists these primitive
strokes.

4.2 The operators and relations

To form a Chinese character, one combines primitive
strokes using operators. Five operators are defined
as listed in Table 2. Figure 1 illustrates the com-
position performed by these operators. Each opera-
tor combines two operands to form a stroke cluster.
This operation continues recursively until the de-
sired character is formed. For example, to describe
the character �, one may first combine two hori-
zontal strokes using the top-bottom operator, then
use the cross operator to add a vertical stroke. The
HanGlyph expression for this character (written in
ASCII characters) is h h=s+. (Note: the expression
is in postfix notation.)

However, with only these operators, some char-
acters, like � and ë mentioned above, cannot be
distinguished. To resolve situations like this, we
can augment the operator with a number of relation

specifiers to describe the operation in more specific
terms. For our sample character �, the proper Han-

Glyph expression should be h h=< s+_ where the
symbol < denotes the relation that the length (i.e.,
the horizontal dimension) of the upper horizontal
strokes must be shorter than the lower one, and the
symbol _ denotes the relation that the two operands
of the cross operator, namely � and , are aligned
at the bottom.

TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting 87

Candy L. K. Yiu, Wai Wong

Table 1: HanGlyph primitive strokes

Stroke Name Code Examples Stroke Name Code Examples

Þ d c;� � p 'º�

æÞ D Ãë± s� P �CÛ

wÞ f
 N� q (�R

�Þ g s}á �� r Hr»

k h �	 z n º'�

k� i ×Û� sz v p�

k�d j þ×� Ð t �S0

k�� k È4¬ ÞÐ U °�

k�N l ¿9, k�� N ù

k�Nd m Y� k��� L ø

kd a ®Í k��d J �Í

N s A-(k�Ð E ¡

N� b q@Ù k�Nd K �

NN c ÛR N�� B ��

NNd w �R N��d C ¬�

NÐ e c9 N�� Q �

Nd S �ø) k�d M ¨±

Nd X ×ü¶ k��� R ÷úÊ

�d Y �#ã �Þ z f

åd W Ã� k�� F PZÛ

kNNd o]à

Table 2: HanGlyph operators

Name Symbol Example

top-bottom
� = �éN

left-right æó | �Ö`

fully enclosing h� @ Þ�ð

half enclosing J�† ^ öO@

cross �Ò + AJ(

†A digit ranging from 0 to 7 should suffix
the half enclose operator to indicate the
direction of the opening.

The following four kinds of relations are defined:

1. Dimension — The relations in this group spec-
ify the relative dimension of the operands, i.e.,
comparing the width and height of their bound-
ing boxes. There are four boolean relations: less
than (<), greater than (>), not less than (!<),
not greater than (!>).

2. Alignment — This specifies how the operands
are aligned. The possible alignments are at top
(‘), at bottom (_), at left ([), at right (]) and
centered (#). More than one alignment can be

added to an operation, for example, to align at
bottom right (_]).

3. Touching — This specifies whether the oper-
ands can touch each other. The possible re-
lations are touching (~) or not touching (!~).
When combining two elements to form a new
character, the strokes next to the interface of
the two elements may or may not touch each
other. In general, if the strokes on either side
of the interface have the same direction, they
will not touch each other, for example, � v.
Otherwise, the strokes may touch each other,
for example, �ø.

4. Scale (/) — This is used to adjust the width
and height of the resulting character after the
operation.

4.3 The HanGlyph macros

It would be very tedious if every character is de-
scribed down to all its primitive strokes. It can be
seen that certain arrangements of strokes are very
common, such as å �, and so on. They are used
to build up characters. We call them components.
HanGlyph allows macros to be defined to stand for
a component. For example, the component å is a
macro with the name ri_4. It is defined in terms of

88 TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting

Chinese character synthesis using METAPOST

1 2

3 4

5
6

7

(a) (b) (c)

Figure 2: Basic stroke macros for the stroke .

another macro sih representing the component ×.
The actual definitions are as below:

let(sih){s i|/h=/}

let(ri_4){sih h@}

With a small number of operators and rela-
tions, and using a postfix notation, the syntax of
the HanGlyph language is very simple. This facili-
tates the development of simple language processors.
Figure 5.4 shows the concrete syntax of HanGlyph.

After defining the HanGlyph language, we have
written descriptions of more than 3755 Chinese char-
acters (the first level characters in the GB2312-80
character set). We found that the HanGlyph lan-
guage is adequate for its purpose, to capture the
topological relation of the strokes.

5 The CCSS

The purpose of the Chinese Character Synthesis Sys-
tem (CCSS) is to render the HanGlyph expressions
into a visual representation. For example, the Han-

Glyph expression h h = < only specifies that there
are two horizontal strokes, one above another, and
the upper stroke should be shorter than the lower
one. It does not tell us about the exact distance
between two strokes. In addition, it does not tell us
exactly how much shorter is the upper stroke than
the lower one.

The task of the CCSS is to determine and cal-
culate the precise geometric information for each
stroke so that a good rendering of characters can
be generated.

The CCSS consists of three modules: basic
strokes, composition operations and a HanGlyph-to-
METAPOST translator. The first two modules are
implemented as METAPOST macros. The transla-
tor is a C program.

5.1 Basic strokes

Each of the 41 basic strokes listed in Table 1 is im-
plemented as a set of three METAPOST macros:

• A Control-point macro defines the control
points, handle points and their properties. For

example, the stroke (k��d héngzhézhégō

u) has six control points and a handle point
as shown in Figure 2(a). The locations of
the points are specified relative to a reference
point. The properties of a control point indi-
cate whether it is a beginning, an end, or a
turning point. These properties will be used
in creating the outline since its shape at differ-
ent types of points will be different, for exam-
ple, the second control point is a turning point,
the outline at this point will have a serif shape.
The properties will also be used in the compo-
sition operations to determine whether certain
transformation and positioning opeartions are
required.

• A Skeleton macro specifies a path passing
through the control points. This path is very
important. Given two points, the path can be
straight or curvy; therefore, this macro traces
out the exact stroke skeleton. Figure 2(b) shows
the skeletal path of the stroke .

• An Outline macro creates the outline for the
stroke. It is defined relative to the control
points and the skeletal path. Figure 2(c) shows
the outline for the stroke .

The first reason for organizing the stroke compo-
sition into three macros is to avoid distortion. In
composition operations, each stroke will be trans-
formed several times before the whole character is
formed. If the stroke including the outline is repre-
sented in one macro, the transformation will distort
the stroke thickness and even the direction in certain
slant strokes.

Another reason is to provide meta-ness and flex-
ibility. This organization provides several levels of
style changes. The first level is to vary the param-
eters of the outline macros. For instance, changing
the stroke thickness parameter will result in charac-
ters of varying stroke thickness. If we change the set
of outline macros, we can create completely differ-
ent font styles, but they may still be recognised as
a family because the locations of control points are
unchanged. More variations can be achieved if the

TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting 89

Candy L. K. Yiu, Wai Wong

(a) (b) (c)

control point macros and the skeleton macros are
also changed. The result will be a completely differ-
ent font family. Figure 3 shows three variations of
the same skeleton. Figure 3(a) is the simple skele-
tal path of the strokes. Figure 3(b) is the outline
with serif. Figure 3(c) is generated by stroking the
skeleton with a pen angled at 25 degrees.

5.2 Composition operations

CCSS implements five operations corresponding to
the five operators defined in HanGlyph. These op-
erations are implemented as METAPOST macros.
Again, the operators in HanGlyph represent abstract
operations, like the Top-bottom operator (=) only
means ‘put an operand on top of another’. It car-
ries no precise geometric information. Given this
abstract instruction, the macro implementing this
operation has to calculate the exact location and
dimension of each operand. The resulting render-
ing should be a well-balanced and well-positioned
arrangement of strokes.

One important task of the composition opera-
tion is to estimate the relative sizes and positions
for its operands so that the result is visually well-
balanced. For example, Figure 4 illustrates two char-
acters having the same radical ((mù) on their left
side. The width of this radical in the first character
�(lı́n) is larger than that in the second character
9 (shù) because the right-hand side of 9 has many
more strokes. We have found that the ratio of the
widths of the two components is proportional to the
ratio of the sums of the lengths of the strokes and
the number of strokes of the components.

HanGlyph expressions may include a number
of relations to augment the operators. The compo-
sition operations need to calculate the exact dimen-
sion and transformation to apply to each operand.
For example, the character º (rén) is composed of
two strokes where the right-hand one is shorter and

Figure 4: The same radical having different
widths.

the two are aligned at the bottom. The composition
operation will first scale the right-hand stroke down
to a default size, and then translate it so that the
bottom lines of the two strokes are aligned to the
bottom of the character box as shown in Figure 5.

Figure 5: A character composed of two strokes
aligned to bottom.

While we are talking about transforming the
strokes, in fact, only the control points and the skele-
tal path are transformed. After all strokes forming
a character have been put at the right position, the
outline is drawn. This avoids the outline being dis-
torted by the transformations.

90 TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting

Figure 3: Variations of strokes having the same skeleton.

Chinese character synthesis using METAPOST

5.3 HanGlyph to METAPOST translation

The front-end of the CCSS is the translator that con-
verts HanGlyph expressions into METAPOST pro-
grams. The current implementation of the trans-
lator puts each HanGlyph expression into a META-
POST figure. Within each figure, the appropriate
sequence of composition operation macros is called
to render the character. The output of the system
is a set of PostScript files.

This implementation provides a simple way to
render the HanGlyph expressions and obtain pre-
views of the characters. It facilitates the fine-tuning
of the composition operations. Future implementa-
tions can streamline the process according to the re-
quirements of the target application. For instance,
a back-end processor can be added to convert the
PostScript output into a particular format, such as
a PostScript Type 3 font.

5.4 The syntax of HanGlyph

Figure 6 shows the concrete syntax of HanGlyph in
an augmented BNF notation.

6 Conclusion

This paper describes an attempt to synthesize Chi-
nese characters from an abstract description. A Chi-
nese character description language known as Han-
Glyph has been defined. A Chinese character syn-
thesis system is being developed. It is implemented
in METAPOST and C, and the output is rendered in
PostScript. The preliminary results show that the
approach is very promising. Some of the characters
generated by the CCSS are shown in Figure 7.

Currently, we are in the process of fine-tuning
the composition parameters. We hope the system is
able to produce visually pleasing characters. There
are many factors that may affect the quality of the
output, for example, the thickness of the strokes,
the allocation of the space occupied by each compo-
nent, and so on. Therefore, a considerable amount
of experimentation is required to detemine a set of
parameters for composing characters.

There are many applications of such a system.
The most important ones are in exchanging Chinese
textual information in an open, heterogenous envi-
ronment, and in Chinese font generation.

References

[1] �ù� (SU Pei Cheng). �A���þã"W�

v (The 20th century research on modern Chi-
nese characters). øwúH> (Su Hai Press),
2001.

[2] �#C (LIU Lian Yuan). "WÓQPË��

(Analysis of the topological structure of Chi-
nese characters). In "W.
wY²úH>

(Shanghai Education Press), 1993.

[3] John Hobby and Gu Guoan. A Chinese meta-
font? TUGboat, 5(2):119–136, 1984.

[4] Don Hosek. Design of Oriental characters with
METAFONT. TUGboat, 10(4):499–501, 1989.

[5] Fan Jiangping. Towards intelligent Chinese
character design. In Raster Imaging and Dig-
ital Typography II (RIDT91), pages 166–176.
Cambridge University Press, 1992.

[6] Donald E. Knuth. The METAFONTbook.
Addison-Wesley, 1986.

[7] Soon-Bum Lim and Myung-Soo Kim. Oriental
character font design by a structured composi-
tion of stroke elements. Computer-aided design,
27(3):193–207, 1995.

[8] �8� (FU Yong He). "WPË�Ë ��

�úZ�v (Basic research on the structure
of Chinese characters and their constituents).

wY²úH> (Shanghai Education Press),
1993.

[9] �8� (FU Yong He). -�áoU� (Chi-
nese information processing). ãqY²úH>

(Guangdong Education Press), 1999.

[10] Sakai Toshiyuki, Nagao Makoto, and Terai
Hidekazu. A description of Chinese characters
using subpatterns. Information Processing So-
ciety of Japan Magazine, 10:10–14, 1970.

[11] Dong YunMei and Li Kaide. A paramet-
ric graphics approach to Chinese font design.
In Raster Imaging and Digital Typography II
(RIDT91), pages 156–165. Cambridge Univer-
sity Press, 1992.

TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting 91

Candy L. K. Yiu, Wai Wong

〈hanglyph〉 ::= 〈expr〉 + (1)

〈expr〉 ::= 〈glyph expr〉 | 〈macro〉 | 〈char〉 (2)

〈glyph expr〉 ::= 〈glyph〉; (3)

〈macro〉 ::= let(〈id〉){〈glyph〉} (4)

〈char〉 ::= char(〈code〉){〈glyph〉} (5)

〈glyph〉 ::= 〈glyph〉〈glyph〉〈opn〉 (6)

| 〈stroke〉

| 〈id〉

〈opn〉 ::= 〈parallel operator〉〈parallel rels〉 (7)

| @〈full enc rels〉

| ^〈dir all〉〈half enc rels〉

| +〈cross rels〉

〈parallel operator〉 ::= = | | (8)

〈dir〉 ::= .(E | S | W | N | e | s | w | n) (9)

〈dir all〉 ::= 〈dir〉 | .(NE | SE | NW | SW | ne | se | nw | sw) (10)

〈parallel rels〉 ::= 〈dimens〉?〈aligns〉?〈touch〉?〈scale〉? (11)

〈full enc rels〉 ::= 〈dimens〉?〈touch〉?〈scale〉? (12)

〈half enc rels〉 ::= 〈dimens〉?〈aligns〉?〈touch〉?〈scale〉? (13)

〈cross rels〉 ::= 〈dimens〉?〈align〉? (14)

(〈align〉 | 〈intercept〉)?〈scale〉?

〈intercept〉 ::= *〈dir〉(〈+int〉(〈real〉?〈int〉?))? (15)

〈dimens〉 ::= 〈comp〉(〈comp〉 | 〈num〉)? (16)

| 〈num〉〈comp〉?

| 〈num〉,〈num〉

〈comp〉 ::= < | > | !< | !> | - (17)

〈aligns〉 ::= 〈align〉〈align〉? (18)

〈align〉 ::= ‘ | _ | [|] | # (19)

〈touch〉 ::= ~〈dir spec〉 ∗ (20)

| !~(〈dir spec〉〈num〉?) ∗

〈dir spec〉 ::= (.〈dir〉) + (21)

〈scale〉 ::= /〈num〉? (22)

〈num〉 ::= 〈int〉 | 〈real〉 (23)

Figure 6: The syntax of HanGlyph descriptions.

92 TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting

Chinese character synthesis using METAPOST

Figure 7: Some characters generated by CCSS.

TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting 93

Abstracts —Fonts

TEX at the End: Omega and Zapfino

William Adams
ATLIS Graphics
willadams@aol.com

The future of type is OpenType (Adobe and Mi-
crosoft’s successor to Apple’s “Royal” font technol-
ogy which was licensed to Microsoft as TrueType),
Unicode, and other extensions of TrueType and the
Type 1 font format such as ATSUI (Apple Typo-
graphic System for Unicode Information). While
TEX has been extended to support other recent for-
mats and standards such as PDF, support for the
new font formats has been limited at best, and in
its most promising incarnation (QuickDraw/GX and
TEX/GX) has withered on the vine, as it were.

Fortunately, for Unicode in TEX we have
Omega, which, coupled with the other strengths of
TEX, can be sufficient to take advantage of new tech-
nologies without explicit support with the proper (or
improper) techniques.

This paper will be an explanation and explo-
ration of this, looking at a specific font and format
(the .dfont ATSUI-enabled version of Zapfino), ar-
guably very nearly a worst-case scenario, and how it
can be dissassembled into individual glyphs in EPS

format and seamlessly stitched back together as an
Omega Virtual Font with a matching Omega Trans-
lation Process to automatically insert ligatures and
swash and variant forms using ASCII markup in an
otherwise ordinary .tex source file which can then
be used in a pre-press ready workflow.

(We expect to publish the full paper in the next
regular issue of TUGboat. Ed.)

94 TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting

ε-Ω: A step towards the future with a look at the past

“A che serve vivere, se non c’è il coraggio di lottare?” (Giuseppe Fava)
“What purpose is living, if you don’t have the courage to fight?”

Giuseppe Bilotta
Dipartimento di Matematica e Informatica
Università di Catania
viale A. Doria, 6
95125 Catania
Italy
gip.bilotta@iol.it

Abstract

In recent times, a topic of increasing relevance in discussions on the future of
TEX has been the number of different extensions to Knuth’s orginal work, and
the possibility of bringing them all together in a single program. In particular, on
the one hand we have the features introduced in ε-TEX which are almost essential
to developers of modern formats (ConTEXt, LATEX3); on the other hand, the
advanced typesetting features present in Ω are of vital importance, especially for
TEX users using non-Latin scripts.

This talk presents ε-Ω, a project whose aim is to provide a stable, fast variant
of Ω supporting the ε-TEX extensions. We will present the short history of the
project (focusing in particular on the reasons behind some debatable choices), its
current status and ideas for the project’s future.

Goals and history of the project

In much the same way as ε-TEX is (was) intended to
fill the gap between TEX3 and NTS, the goal of ε-Ω
is to fill the gap between the current Ω release(s) and
the future ones that promise to have “every feature
everyone wanted”. ε-Ω thus intends to provide func-
tional programs and tools that satisfy more modest
requirements.

The need for a separate branch of Ω arose be-
cause the Ω development was not being responsive to
important requests; ε-TEX extensions were not pro-
vided despite long-time requests, and long-standing
bugs and deficiencies were not being addressed; as
a result, neither of the two available versions of Ω
(1.15 and 1.23) was fully feasible for production use:

• 1.15 because of a major bug affecting day-to-
day usage; this bug prevents Ω 1.15 from trip-
ping correctly;

• 1.23 trips successfully, but is sadly too slow and
bloated (both memory-wise and output-wise)1

to be usable for heavy jobs;

1 This depends on the introduction of a very important
and useful node (info node), but the advancements provided
by it cannot be effectively turned off when not needed.

• Finally, both versions have buggy supporting
utilities (the ones that deal with font-metric
creations, ΩCPs and ΩTPs, etc.).

Therefore, the goal of the ε-Ω project is to pro-
vide a program that:

• has ε-TEX extensions;

• is stable enough (trips correctly);

• is fast enough;

• produces non-bloated DVI code;

• has solid supporting utilities.

My job has been first to choose which Ω to
use as a base, and then to try to merge the ε-TEX
changefile. Luckily, I discovered that the differences
between the two series had very little influence on
the resulting changefiles, which meant I could fo-
cus on working on only one of them and still easily
adapt the final outcome to the other version. Speed
and leanness being two of the main considerations,
I chose to concentrate on the 1.15 series.

Of course, support for ε-TEX multidirectional
typesetting was dropped. A more important and
arguable change was the removal of the SGML/XML

code from Ω: first, since part of it conflicted with
some ε-TEX code (the introduction of the \middle

TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting 95

Giuseppe Bilotta

primitive) and second, since (in the team’s opinion)
the XML feature had a lower priority than merging
ε-TEX. This, making a timely release dictated the
(temporary) removal of the Ω SGML/XML code from
ε-Ω.

A first release of ε-Ω was thus officially made
on December 21, 2002 (and yes, I must confess that
the choice of the day was also dictated by aesthetic
reasons . . .). This release still had the “tripping
bug” that affected the 1.15 series of Ω, but did pro-
vide ε-TEX enhancements for those who needed them
(which for now means essentially ConTEXt users).

Current status

In late April, having a little free time on my hands,
I decided to give ε-Ω a second shot, trying to look
for the code that caused the “tripping bug” that af-
fected the Ω 1.15 series (and its variants): the bug,
which revealed itself with a crash when running the
trip test, affected production use of Ω in many con-
texts where over-/underfull boxes appeared, as well
as causing the disappearance of ligatures, and other
problems.

Since the bug did not affect any other version/
variant of TEX in my possession (including the 1.23
series of Ω), spotting the problem was rather easy by
three-way diff’ing TEX, Ω 1.15 and Ω 1.23. Once the
culprit code was found, the solution was trivial. As
a result, the latest official ε-Ω fully addresses three
of the five target points, and is a good step forward
towards a fourth one (stability).

There still are some known issues. (In particu-
lar, ε-Ω does still not pass trip: if mem bot is set
to 1, glue/skip assignments fail.) At this point, how-
ever, none of the known bugs in Ω itself prevent use
of the program.

Future developments

The focus for the next release is to get closer to the
final goals, by fixing the remaining bugs in the chief
executable. This includes finding and fixing any Ω/
ε-TEX incompatibilities.

The following step will be working on the com-
plementary utilities, making them functional again.
This will then complete the five main goals of the
project. Once these are accomplished, and if deemed
necessary by the Ω status at the time of completion,
a forward-port to the latest Ω branch will be at-
tempted.

Acknowledgements

I wish to thank

• Donald Ervin Knuth, for providing us all with
TEX,

• John Plaice and Yannis Haralambous, for giv-
ing us Ω,

• Peter Breitenlohner and the NTS team, for giv-
ing us ε-TEX,

• Idris Samawi Hamid, Alan Hoenig and Hans
Hagen for pushing me into attempting the
merge and supporting me through the whole
long process,

• Christian Schenk and Fabrice Popineau for
their constant feedback, help and support.

Editorial Note

The name of the project formerly known as ε-Ω has
since been changed to “Aleph” (ℵ).

96 TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting

Makor: Typesetting Hebrew with Omega

Alan Hoenig
City University of New York

ahoenig@suffolk.lib.ny.us

Abstract

It’s relatively easy to typeset a language using a keyboard customized for that
language. A more interesting problem arises when trying to set a ‘foreign’ lan-
guage (say, Russian, Hebrew, or Arabic) using a native keyboard (American, for
example). This leads to the problem of transliteration: how to represent some
language, call it A, using the conventions of a different language B?

This paper concerns the author’s attempted solution to one such problem: to
create quality Hebrew typesetting using the conventions of an English language
keyboard. Apart from the different alphabet, which invokes a different set of
sounds than does its English counterpart, Hebrew can involve as many as two
distinct sets of diacritics, uses special glyph forms (sometimes) at word endings,
and is, of course, typeset from right to left. The solution involves using the
Omega extension of TEX.

Makor, the name for this Hebrew typesetting system, consists of a user man-
ual, fonts from seven distinct font families, and a special set of macros and con-
ventions. Many examples of its use will be shown. All this software is publicly
and freely available.

1 Introduction

We English speakers and readers are lucky— TEX or
its equivalent would have been quite different, and
arguably more difficult to create, had Don Knuth
needed to typeset different scripts with different con-
ventions. I never fully realized this until I turned my
attention to typesetting Hebrew. Today, we all re-
alize how robust TEX is, and how it can be coerced
into doing stuff totally undreamt of by its author,
but certain foreign languages break TEX’s back.

Hebrew, in fact, can not be handled by the orig-
inal TEX. Just in case you’ve never seen Hebrew,
here’s what we expect —at a bare minimum — from
a Hebrew typesetting system; see figure 1 for pure
Hebrew and figure 2 for mixed Hebrew-English text.
(Makor produced these samples, and indeed all ex-
amples of Hebrew in this article.)

Discussing ways in which TEX would fail will
also deepen the a reader’s understanding of Hebrew
(or at least how to typeset it!).

2 Why TEX can typeset Hebrew

Here are some things which are not a problem. First
off, fonts are not a problem. It’s easy enough to
define a Hebrew font for use within a TEX document.

As is well known, Hebrew is an RTL (right-to-
left) language, whereas TEX is an LTR (left-to-right)

typesetter. This is not really a problem at all. Early
on, TEX was extended to handle RTL. These early
versions, TEX--XET and so on, early provided this
capability. In recent years, this RTL-capability has
been subsumed in the various extended TEX’s that
have appeared. Mixed Hebrew/English text should
look something like figure 2.

Hebrew and Yiddish, like other Semitic lan-
guages, demand that certain letterforms be used
only in word-initial and word-final positions. (Ac-
tually, only Yiddish has word-initial glyphs.) We’d
like to design an input convention so that the type-
setting engine makes the decisions as to which let-
terform is appropriate depending on context. This,
too, TEX can handle, by means of virtual fonts.

3 Why TEX can’t typeset Hebrew

So what can’t TEX do? One of the many fascinat-
ing things about Hebrew (and Arabic too) is that
texts normally contain only the consonants of the
words. Vowels are viewed as adjuncts, and are in-
dicated solely by means of diacritical marks rather
than by full-fledged letters. The trouble is, unlike
English diacrits, each Hebrew letter has its own axis
around which we need to (horizontally) center the
vowel mark. So, for example, figure 3 shows two
letters with the same vowel mark. You don’t need
to be a bona fide Hebrew reader to see that vowels

TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting 97

Alan Hoenig

רֹעפzְיבֵל�מHaאֹמץרֶאֶבְיגIzֹaַַּארIבקְיִּוַ:דודייפִֿלעHaַאֹמץרֶאֶבְדודיֿדaֶעֶהֶ°IמםHz°HמHיּוַ
סHנֿ»לוְֹניעֵהzHהkHֲֿ»לIzֹמבְהHנH°םירְִ±עֶוְהHאמֵֿןבֶהֶ°Iמ�:הזֶּהַםֹיּהַדעHzַֹרaֻקzְֿאֶ°יאִעדHַיֿ»לוְ
ן�נֿןבִעַֻ°ֹהי¶ו:הI°¹מלaֶאֵיaְkִימֵיְ�מתְיִּוַםֹיםיִ°לְֹ°HaאֹמaIzרְעַבְהֶ°IמzֿאֶלאHֵרְ±יִינ�aְֵכaְיִּוַ:הIחֽלֵ
דודיה�Hצִרֶ°אֲכ̧�±עֲיּ̧וַלאHֵרְ±יִֿי«נבְויHלאֵ�עמְְ°יִּוַויHלHעויHדHיzֿאֶהֶ°Iמ²מHַסֿי¶כהHמHkְחחַ�ראלHֵמ
םיtְzִֹמּֽהַוIzIzְאHהֿלkHלְ:םינHִפֿלאֶםינHִפדודיֹעHדיְרֶ°אֲהֶ°IמכְלאHֵרְ±יִבְדֹעאיHaִנםHקֿ»לוְ:הI°¹מzֿאֶ
לkIלְ�הHקHזחֲה̧דHיּהַלkIלְ�:ֹצֽרְאַֿלkHלְ�ויHדaHעֲֿלkHלְ�הIערtְַלְםיHִרצְמִץרֶאֶבzְֹ±עֲל̧דודיֹחHלְ°רֶ°א̧
:ל«אHרְ±יִֿלHכינֵיעֵלְהֶ°IמהH±Hערֶ°אֲלֹדHגהַאHרֹמּהַ

Figure 1: Hebrew with vocal diacritics.

Rabbinic Hebrew () does not differ greatly from Biblical Hebrew () in its inflection

of the noun, although the neutralization of final mem and nun means that the masculine

plural is often, as in Aramaic, -�✁✂ . Apart from the more frequent use of the archaic fem-

inine suffix -✄☎
as in ✆✝ ✞✟ ✠✡ ✠☎

‘priest’s wife’ and ☛ �☞✌ ✠✍ ✠☎
‘dumb woman’,  also employs the

suffixes -�✁☎
and -

✎☎
for example ☛ ✄ ✏✑✓✒✍ �✁☎

‘Aramaic’ and ✔ ✄✕ ✏✖✎☎
‘servitude’.  developed

distinctive feminine plural suffixes in -

✒☛✗☎
(Babylonian) or -

✒✁✗☎
(Palestinian), for example✍ ✄✑ ✏✘ ✄ ✏✙ ✒✁✗☎

/
✍ ✄✑ ✏✘ ✄ ✏✙ ✒☛✗☎

‘bath-houses’ and -�✚✁✗☎
, as in

✍ ✄✌ ✏✝ �✚✁✗☎
‘kingdoms’ for 

✍ ✄✌ ✏✝ ✛✁✗☎
, for

nouns ending in -

✎☎
in the singular. Masculine plural forms sometimes differ from those

that would be expected, or are normally found, in , for example,
✡ ✏✜ �✢ �✁✂ from

✡ ✣✜ ✠✢
‘dam-

age’, ✤ ✏✥ ✒✑ �✁✦
from ✤✗✑

‘ox’, ✤ ✏✥ ✒✢ �✁✦
from ✤✎✢

‘market’,
✙ ✏✖✧✒✖ �✁✦

from
✙ ✄✖

‘side’,
✘ ✄ ✏✙ ✒☛ �✁✂ from✘ ✄ ✏✙ �✁ ‘half ’, and ✤ ✏✌✎✘ �✁✂ from ✤ ✒✌ �✁✘ ✄ ‘envoy’. The same is true of feminine nouns, for exam-

ple ☛✗☎ �✚✁✗☎
from ☛✗☎

‘letter (of alphabet)’, ✆✕ ✏✑ �✁☎✗☎
from ✆✕ ✏✑ �✁☎

‘covenant (without plural in

)’, and ☛ �✆✍ ✒✟✗☎
from ☛ ✣✦

‘mother’.

Some masculine nouns take the feminine plural suffix ★✗☎
, for example,

✘ �✩✡✗☎
from

✘ ✣✂
‘favour’, ✆✝ ✏✌ ✒✌✗☎

from
✝ ✏✌ ✒✌

‘rule’, ✆☎ �✁✡ ✞✢✗☎
from ✆☎ �✁✡✗✢

‘baby’,
✘ ✄ ✏✁ ✒✌✗☎

from
✘ ✄✁ �✌

‘army’, ✔ ✄ ✏✁ ✒✑✗☎
from ✔ �✁✑

‘city’, and
✍ ✣✁✍✗☎

from
✍ ✄✁ �✦

‘water’. Similarly, there are some feminine nouns

which take the masculine plural suffix -�✁✦
—

✁✗✡ �✁✦
from

✁✗✡ ✒✟
‘dove’,

✡ ✏✍ ✒✌ �✁✦
from

✡ ✏✍ ✒✌ ✒✟
‘ant’,

and ✆✕ ✣✁✙ �✁✦
from ✆✕ ✣✁✙ ✒✟

‘egg’, for example. Occasionally, both types of plural are evidenced,

as with
✁ ✒✍✗☎
/

✁ ✒✍ �✁✦
from

✁✗✦
‘day’ or ✤ ✒✡✗☎

/ ✤ ✒✡ �✁✦
from ✤ ✒✡ ✒✟

‘year’, with each form having a

slightly different shade of meaning and the ‘feminine’ variant only used with suffixes. In

 we sometimes find plurals of nouns only attested in the singular in , for example

☛ ✄ ✏✕ ✒✑ �✁✦
from ☛ ✣✕ ✠✑

‘limb’, ✆✖ ✏✤ ✒☛ �✁✂ from ✆✖✪✠✤ ✠☛ ‘grass’, and ✆☎ ✏✍ �✖ �✁✦
from ✆☎ ✒✍ �✁✖

‘daily sacrifice’.

Likewise, there are singular forms of nouns only attested in the plural in , for example

☛ �✌ ✏✍✎✫
‘coral-wood’, ✆✕ ✣✁✙ ✒✟

‘egg’, and ✆✕ ✒✙ ✒✌
‘onion’. The dual is used more than in , with

existing forms retained and new ones created, for example
✍ ✄✬ ✏✭✮ ✒✑ ✄✁ �✦

‘scissors’ and ✆✕ ✣✡ ✏✆☎ ✄✁ �✦
‘meanwhile’. (1993: A. S’aenz-Badillos, A History of the Hebrew Language, Cambridge Uni-

versity Press, pp. 188-89.)

Figure 2: Mixed Hebrew/English text.

are positioned in very different places. Actually, the
situation is even worse than that, for each letter con-
tains two such axes, one to be used for vowel marks
appearing below the letter, and another for those
above the letter. In theory, the typesetting engine

has to be able to keep track of axis placements for
each individual letter. (In practice, though, many
letters share the same axis placement.) As far as I
can see, there is no really robust way to encode this
axis information within a Hebrew font.

98 TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting

Makor: Typesetting Hebrew with Omega

רִהִ
Figure 3: Same vowel, different axes.

Speaking of vowel marks, there is a second set of
diacritics we should be concerned with. To be sure,
they are only necessary in Biblical texts, but TEX
typesetters tend to be neurotically completist about
things like these, and so for the sake of completeness,
we’d like our system to contain this capability. (This
alternative set of diacritics provides information on
how to chant the words in the sacred texts.) TEX is
hard enough pressed to typeset normal vowels with-
out worrying about this second set. See figure 4 for
Hebrew containing both sets of diacrits. Even if you
don’t know how to read Hebrew, a quick compari-
son with figure 1 shows which accents belong to the
second set.

Another interesting aspect of Hebrew typogra-
phy is that of alternative conventions. One or two
letters, such as the lamed (with an ‘l’ sound), might
appear in two distinct forms. Also, there are al-
ternative choices for diacritic placement in certain
instances. In addition, the presence or absence of
the vocal diacrits and the cantorial diacrits them-
selves count as alternatives. Since, in the compulsive
manner common to a certain class of TEX users, we
would like to enable an aspiring author to use any
selection of these alternatives with any other, it’s
not clear how a TEX solution for this could arise.
Different fonts? We’d need 24 = 16 for each base
font. Macros? That would involve too much author
markup. Active characters? Way too dangerous. In
my view, no good pure TEX solution exists.

The hitherto unspoken assumption on my part
up to now is that we’re typing at an American key-
board. As a result, we’ll need a really swell input
scheme to lessen the possibility of making typing er-
rors. TEX certainly makes it possible to get, say, the
Hebrew equivalent of ‘l’ by typing l. One problem
involves letters with sounds that don’t occur in En-
glish. To be sure, virtual font virtuosity allows us to
type ch to get the Hebrew letter corresponding to
a throat-clearing gutteral, which is what ‘ch’ corre-
sponds to (in German, at any rate). However there
are additional keyboard entry issues that would re-
quire stretching virtual font definitions to the limit,
so much so as to put them out of the reach of essen-
tially any TEX user. (The Makor manual describes
these keyboard entry conventions.)

Another problem with proper typesetting He-
brew (and Arabic too, for that matter) has to do

with numbers. Oddly enough, numbers appear in
standard LTR order in a Hebrew document. Sup-
pose h_1 and h_2 represent strings of number-free
input which typeset the proper Hebrew text h1 and
h2. Suppose \[and \] are the markup switches that
enter and exit Hebrew typesetting modes. Then, we
expect to be able to enter

\[h_1 12345 h_2\]

in order to typeset the fragment

h212345h1.

TEX, though, will typeset h254321h1. You might
think we could get the proper text if we exit and
enter Hebrew mode before and after typesetting the
number. But think about it — if you do typeset

\[h_1\] 12345 \[h_2\]

what you get is the opposite-of-correct h112345h2.
Of course, you could design, using recursion, a (hy-
pothetical) \HebrewNumber macro to do the job, but
somehow you should expect to be able to key in nu-
meric data in an input file without requiring special
markup.

For these reasons, I have deemed it unrealistic
to aspire to perfect Hebrew typesetting using TEX
or ε-TEX.

4 Omega

Omega is a superset of TEX originally created (and
still being developed) by Yannis Haralambous and
John Plaice. It was developed to handle typesetting
idiosyncrasies in all the world’s languages. I cannot
testify about its success in other languages, but it
does a splendid job with Hebrew.

Although Omega contains TEX (and therefore
all of TEX’s capabilities) at its heart, Omega dif-
fers from TEX in several well-defined ways. I should
mention that as a matter of course, it includes RTL

typesetting.
More significantly, its registers have been ex-

tended to 32-bits, so, for example, it can handle
large Unicode fonts. Next, it includes the capability
of analyzing patterns in the input and modifying the
input stream, before sending this stream to Omega
for typesetting. For example, an Omega text filter
could check input for the string ffi and replace it
by the appropriate ligature. (This is a silly exam-
ple, because TEX’s ligature mechanism already does
that quite nicely.) However, the modifications to
the input stream could also be inclusion of a macro
call, so for the first time in the history of TEX, it’s
now possible to modify the course of typesetting by
means of macros which the typesetting engine itself
inserts for you within the text of your input.

TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting 99

Alan Hoenig

LIBER ESTHER

אHֵהםי�ִרaHדְּהַ׀ר�חַאַא3
✁

לדַּגִּהלֶּ
✂

מֶּהַ
✄

רוְֵ°חַא²ֲלֶ
☎

םֶ±Hיּוַ�ה✟אÁְֵנַיְו̧י✞גHִגאHֲהאH✝zHדמְּהַֿן¹בן✆HמHהzֿאֶ°ֹ
✠

אסְכzִֿאֶ
✡

עַמֵֹ
☛

ל
דaְֵעַֿלkHוaְ:ֹתֽאִר☞ֶ°אֲםי✞ִרÁHהַֿלHכ

✄

מֶּהַי
☎

מֶּהַרעַ�ַ°בְֿרֶ°א²ֲלֶ
✁

םיוִחֲתְַ°¶מ�םי✌עִרIְכ²לֶ
✠

HמHהלְ
✡

²לֶ✟מֶּהַֹ�לֿה�Hצִן✞kֵֿיכִן
Hמ�

✄

kַדֳּרְ
✡

יּוַג:ה¹וחֲתְַ°¶יאI☞לוְע✞ַרkְיִאI☞לי
✄

Iרמְא
☎

עַ�דּמַי✟kHדֳּרHְמל²ְלֶ✞מֶּהַרעַ☞ַ°בְֿרֶ°א²ֲלֶ✝מֶּהַי☞דaְֵעַ�
✠

aֵֹעה�Hתאַ
✡

z✞אֵר
הִיְוַד:²ל¹ֶמּהzַ☞וַצְמִ

✁

ויHלאֵם✌HרמHְאכְ[םרמאa]י
✠

יHוםֹ�י
✡

HמHהלְ�די�גִּיַּוַם✟הֶילֵאֲע✞מHַ°אI☞לוְםֹ
✁

zֹארְלִן
✠

�דמְעַי̧הֲ
✠

י�רaְֵדִּ
kַדֳּרHְמ

✡

HמHהארְ�יַּוַה:י¶ד�היְא�☞הֿרֶ°אֲם✞הHֶלדי☞גִּהִֿי¶כי
✡

kַדֳּרHְמןי�אֵֿיכִן
✡

:הºמחֵן✞HמHהא☞לHֵמּיִּוַֹ✟לה✞וֶחֲתְַ°¶מ�עַ☞רIֵכי
Hניעֵבְז�aִֶיּוַו

✁

דHיחI✌לְ°לִוי
✠

דaַּלְי�kַדֳּרHְמבְ
✡

HמHה°�קaֵַּיְוַי✟kHדֳּרHְמם�עzַֿאֶֹ✞ל�די☞גִּהִֿי¶כֹ
✁

םי✝דִ�היְּהַֿלHכzֿאֶדי✆מְִ°הַלְן
ןֹ°ארHִה°דIֶ✌חבַז:יkºדֳּרHְמם☞עַ°ֹ✞רוְֵ°חַאk☞�zֲלְמַֿלkHבְר✝ֶ°אֲ

✠

Hסינִ°ד�Iֶחֿא�ה
✡

zנְַ°בִן
✠

רְֵ±עֶםי�תְֵ°
✡

²לֶ✞מֶּלַה
ר�פלי�פִהִ°ֹ✟רוְֵ°חַאֲ

✂

ה
✄

Hרֹגּהַא�
☎

HמHהי�נtְֵלִל
✁

�:רºדאֲ°דIֶ☞חֿא�הר✞H±Hעֿםינְֵ°°דIֶ☞חלְ°דIֶ✝חמֵ�םֹ✝ילְ׀םֹ✆יּמִן
ןHמHהרמֶאI✌יּוַח

✠

רוְֵ°חַא²ֲלֶ�מֶּלַ
✡

Hחאֶֿםעַֹ�נְ°יֶ°ֹ
✁

דHרtIמְ�ר✌Hזtֻּמְד
✠

מִּעºַהןי�בֵ
✡

הֶיHzֵדוk�zֶ✟³ְלְמzַֹ�נידִמְלk✞Iבְםי
✍

zֹ�נI°ם
HעֿלHכמִ

✁

²לֶמֶּהַי✌Hzֵדzּֿאֶוְם
✠

ִ±Iעם�Hניאֵ
✡

ט²לֶ�מֶּהַֿלעַֿםאִט:םºחינִּהַלְה✞וIֶ°ֿןיא²ֵלֶ☞מֶּלַוְםי
✡

ֹaִכיHzֵ✞aְדבְאַלH✟עֲוַם±ֶ
✄

zרֶ
Htִלאֲ

☎

כֶֿרכַכִםי
✁

לֹקְ°אsֶסֶ
✠

ידֵיְֿלעַ
✠

kHאHלמְּהַי�ֵ±Iע
✡

ֹ✟דHיל�עַמֵֹ✞תעְבַטzַֿא²ֶלֶ✝מֶּהַרסַ✆Hיּוַי:²ל¹ֶמּהַי☞זֵנְגִּֿלאֶאי✞Haִהלְה
Hנתְיִּו̧

✁

²לֶמֶּהַרמֶאI✌יּוַאי:םי¶ד�היְּהַר☞רIֵצי✞גHִגאHֲהאH✝zHדמְּהַֿן¹בן✆HמHהלְהּ
✠

HמHהלְ
✡

HעHהוH✟²ְלן��Hzנsסֶ✞כֶהַן
☛

ֹ✞בzֹ☞±עֲלַם
�ארHְקּיִּוaַי:³י¹ניעֵבaְֹ☞טּכַ

✂

רItְֵס
✄

מֶּהַי
☎

°ארHִה°ד�Iֶחב²ַלֶ
✁

H°ֹלְ°בִןֹ
✄

םֹיר�H±Hעה
✎

וב
✏

HמHהה��Hצִֿרֶ°אֲֿלkH·כHzֵ�aכיִּוַ
✑

ל�אֶן
הַֿי«נפְרְדְַּ°חַאֲ

✒

חפַהַֿלאֶ·ו²לֶמֶּ
✍

ֹzֲנידִמְֿלעַ׀ר�ֶ°אHנידִמְ�ה�H
✁

םעַירֵ✌H±ֿלאֶוְה
✠

HעHו
✡

הHנידִמְ�ה✌Hנידִמְם
✠

kְzHaHכִ
✡

ם✞HעHום☞עַוְהּ
ֵ°בְֹ✟נֹ°לְכִ

✄

°Iרוְֵ°חַא²ֲלֶ✌מֶּהַם
✠

Hתkְנִ
✡

aְתחְנֶוH✞עַ☞בַטַבְםzַלְ°נִוְגי:²ל¹ֶמּה
✄

רtHִסְחַֹ
☎

םיצHִרHהד�יַבְםי
✎

zֹ�נידִמְֿלHכֿלאֶ
²לֶמֶּהַ

✏

מְִ°הַלְ
✑

הַֿלHכzֿאֶד�בֵאַלְ�ג�Iרהֲלַדי
✒

נַּמִםידִ�היְּ
✄

קHֵזֿדעַוְרעַ
✄

םיִ°Hנוsְ✌טַן
✠

Hחאֶםֹ�יבְ
✡

°דIֶ☞חלְר✝H±Hעה☞H°ֹלְ°בִד
zHכְהַןגֶ�ֶ°zְפַדי:זHaֹֽלם✞HלHלְ°�ר✟Hדאֲ°ד�Iֶחֿא�הר✞H±Hעֿםינְֵ°

✁

aְנּהִלH✌z»דּןHz
✠

Hנידִמְ�ה�HנידִמְֿלkHבְ
✡

םי✟מִּעºַהֿלkHלְי�✞לHגּה
צHִרºהוט:ה¹זּהַםֹ☞יּלַםי✞ִדzִעzֲֹ☞יהְלִ

✍

םי�tִחדְ�✌אצHְיםי
✠

מֶּהַר�aַדְבִ
✡

²לֶ✌מֶּהַוְה✟Hריבִהַן�ַ°�°בְה✞HנתְנH☞zִדּהַו²ְלֶ
ןHמHהוְ

✠

תְ°לH°ְa��ִי
✡

ֹzְהוHִרי☞ע°�°H✞נןHaֹֽkHה:

Figure 4: Typesetting with two sets of diacritic marks; cf. figure 1.

In my opinion, Omega represents a truly sig-
nificant extension to TEX. But I don’t really want
to stand before you as Omega booster. Yannis and
John are forceful and articulate advocates of their
own work, and I encourage the interested author to
explore the large base of Omega literature and to
join the Omega list.

5 Makor

Makor is my name for the system I created for type-
setting Hebrew.

sh^aulOm, ‘Olaum!

°Hלֹע,םֹלHם!
Hello, world!

Figure 5: Makor input and output.

I’m not going to talk about specific methods for us-
ing Makor, nor about any of the underlying tricks I
used in the Makor macros, thereby doing my part to
uphold a longstanding tradition at these meetings of
banning audience-unfriendly discussion. This pack-
age comes with a user manual, mkr2man.pdf, and I
invite interested and masochistic authors to dip into

the macro file makor2.tex and the Omega .otp files
that are part of the package. The package also in-
cludes refcard.tex, which is a reference card for
all Makor conventions; figure 6 displays part of that
for anyone who’s interested.

If you need to typeset Hebrew and quality of
output and ease of input is your concern, here’s why
you should use Makor :

• It’s easy to enter consonants and vowels into a
document. For example, the Hebrew equivalent
of ‘Hello, world!’ might be casually transliter-
ated as shalom, ‘olam!; see figure 5 for the
Makor equivalent input.

• Makor automatically decides if a final form for
a letter is necessary. If you know Hebrew, you’ll
appreciate that you get these forms automati-
cally in figure 5.

• Makor takes care to position the vowel sym-
bols properly with respect to different letters,
as we’ve discussed.

• It’s easy to finagle these and other aspects —
altering placement of a vowel, forcing or sup-
pressing the final form of a letter, and so on.

• Makor adopts the view that the diacrits we’ve
mentioned are part of the logical structure of
the document. It’s a good idea to include them

100 TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting

Makor: Typesetting Hebrew with Omega

Figure 6: Part of the Makor reference card.

TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting 101

Alan Hoenig

Figure 7: Specimens of all Makor fonts.

in the input, even if you don’t want them in the
output, because it makes it easier to proofread
the source document. Consequently, Makor has
a software switch for including or suppressing
these vowel markers.

• The Makor package comes with over twenty dif-
ferent fonts, as you see in figure 7.

• Authors can enter cantorial diacritics (trope)
into the text, as we’ve discussed. See figure 4.

• Makor also supports Yiddish with a separate in-
put convention and special Yiddish characters.

Makor is also Ladino-ready, but as I’ve been un-
able to find a reliable explanation of Ladino ty-
pographic conventions, I have not (yet) imple-
mented a Ladino input scheme. (Ladino bears
a similar relationship to Hebrew and Spanish
as does Yiddish to Hebrew and German. There
are, in addition, other dialects that use the He-
brew alphabet, and Makor could support these
conventions as well.)

• Alternative typographic conventions are sup-
ported, as we’ve already discussed.

102 TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting

Makor: Typesetting Hebrew with Omega

Figure 8: Traditional Hebrew typography from the Talmud.

Figure 9: Another example of complex Hebrew typography.

TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting 103

Alan Hoenig

• Fonts include oddball special characters so that
it’s possible to typeset the Hebrew Bible with
Makor.

• Numbers are entered normally; Makor takes
care to typeset them properly within the He-
brew (that is, the numbers are LTR even though
the surrounding text is RTL).

• Makor understands the conventions of Arab-
TEX, so you can process ArabTEX Hebrew doc-
uments in Makor. This is actually a conse-
quence of Omega’s filtering mechanism. It’s
just a question of prepending to the filter a
sub-filter that translates ArabTEX’s input into
Makor input.

• Makor understands the conventions of BHS, so
you can process Biblia Hebraica Stuttgartensia
in Makor. This downloadable ASCII file con-
tains the full text of the Hebrew Bible, vow-
els, vocal diacrits, and special symbols included,
but using a vastly different input convention
from that of Makor.

• One of Makor ’s fonts allows scholars to typeset
Old Hebrew (see the last line of figure 7).

• Authors and scholars can typeset using the ar-
chaic Palestinian or Babylonian vowel systems.
These were systems of vocal diacritics that died
out of use about one thousand years ago or so.

• When you revise the document, either by chang-
ing your text or altering layout parameters (say,
a column width), these changes automatically
propagate into your text.

• Because TEX is Omega’s underlying typesetting
engine, layouts of arbitrary complexity are pos-
sible. Figures 8 and 9 show some of the complex
Hebrew typography that, over the centuries,
has become traditional.

• All of the versatility that’s part of TEX and of
Omega is always available to the author using
this system.

• . . . And much, much more!

6 Getting Makor

The latest version of Makor is always available from
the CTAN archives. You should find it at

tex-archive/language/hebrew/makor

but this directory may be a bit fouled up. To re-
liably locate the Makor software, simply visit your
local CTAN site, and search for the file mkr2man.pdf.
Then, pick up all the files in that directory and all
sub-directories.

Please feel free to contact me with any questions
or comments about Makor. You can reach me via
email at ahoenig@suffolk.lib.ny.us

104 TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting

A multidimensional approach to typesetting

John Plaice, Paul Swoboda
School of Computer Science and Engineering

The University of New South Wales

UNSW Sydney NSW 2052, Australia

plaice@cse.unsw.edu.au, pswoboda@cse.unsw.edu.au

http://www.cse.unsw.edu.au/~plaice

Yannis Haralambous
Département Informatique

École Nationale Supérieure des Télécommunications de Bretagne

BP832, F-29285 Brest Cédex, France

Yannis.Haralambous@enst-bretagne.fr

http://omega.enstb.org/yannis

Chris Rowley
Faculty of Mathematics and Computing

The Open University, UK

Milton Keynes MK7 6AA, United Kingdom

C.A.Rowley@open.ac.uk

Abstract

We propose to create a new model for multilingual computerized typesetting, in
which each of language, script, font and character is treated as a multidimen-
sional entity, and all combine to form a multidimensional context. Typesetting
is undertaken in a typographical space, and becomes a multiple-stage process of
preparing the input stream for typesetting, segmenting the stream into clusters
or words, typesetting these clusters, and then recombining them.

Each of the stages, including their respective algorithms, is dependent on the
multidimensional context. This approach will support quality typesetting for a
number of modern and ancient scripts. The paper and talk will show how these
are to be implemented in Ω.

Introduction

We propose to create a radically new and practi-
cal model for character-level typesetting of all the
world’s languages and scripts, old and new. This
goal is currently unattainable by any existing sys-
tem, because of the underlying assumption that en-
tities such as script, language, font, character and
glyph are discrete, eternal and unchanging, as is
supposed, for example, in the standards for Uni-
code [20], XML [21] and XSL [22].

The key innovations in this proposal are (a) the
assumption that these entities, their relationships
and the processes (programs) applied to them are all
arbitrarily parametrizable by a tree-structured con-
text, and (b) the explicit manipulation of the com-
plex and dynamic relationships between a (logical)

character stream input and its visual representation
on a particular medium as positioned glyphs.

These innovations lead directly to the concept
of a typographical space that constrains the variance
in the context and effectively embodies a certain set
of processes and customs —as once might have been
practiced in a typesetting workshop— while still al-
lowing parametrization by the context.

Quality multilingual typesetting, as opposed to
quality typesetting of unilingual documents for a
number of different languages, requires the juxta-
position of separate typographical spaces. The sep-
arate spaces encourage the development of special-
ized algorithms to properly support widely different
languages, scripts, and output substrates. The fact
that the same tree-structured context permeates all
of these different spaces ensures that key parameters

TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting 105

John Plaice, Paul Swoboda, Yannis Haralambous and Chris Rowley

can be shared across — or at least have correspon-
dences in— different spaces, thereby ensuring con-
sistency from one typographical space to another.

This approach greatly simplifies a number of
tricky problems when one refers to language and
script. Consider, for example, the English language:
it is a multidimensional complex, varying through
time (Old, Middle and Modern English), space (na-
tional and regional Englishes), and culture (science,
arts, business, diplomacy, etc.). Understanding this
variance is important: just as a simple example,
US English and UK English have different spellings
and hyphenations, and require different rules.

Scripts and their use have evolved similarly. In
the past century, German and Turkish have both
adopted the Latin script (from the Gothic and Ara-
bic scripts, respectively). Chinese is printed, de-
pending on the country, using ‘traditional’ or ‘sim-
plified’ characters; transliteration for Chinese into
the Latin script uses either the Wade-Giles or the
pinyin method. This evolution and diversity means
that documents encoded using one script should,
possibly with the aid of linguistic tools, be print-
able using other scripts. For example, Ω, using a
German morphological analyzer, has been used to
automatically print historical German texts in the
Gothic script [4].

The relationship between character and glyph
has also evolved, in inconsistent ways. A charac-

ter is a unit of information exchange, while a glyph

is a unit of visual information. If we consider, for
example, the glyph æ, used in mediæval, it is consid-
ered to be a ligature — a variant glyph— in English,
while in Danish it is considered to be a character in
its own right. In fact, one of the authors (Haralam-
bous) [3] has shown that glyphs and characters are
not absolutes, but, rather, are fluid concepts depen-
dent on the context.

These relationships become more complex when
we are faced with paleo-scripts from the mediæval
and ancient worlds. For example, there are some-
thing like 200 recognized Indic scripts, all derived
from the Brahmi script. They all have similar—
but clearly not identical— structure and there are
situations in which it is natural to consider them as
separate scripts while in other situations it is easier
to consider them as variants of a single script.

We propose to use a tree-structured context to
describe, to the desired level of precision, the enti-
ties that are being manipulated. This context will
be used to describe (a) how exactly to interpret
the input; (b) the exact format of the output; and
(c) the required processing. The latter should de-
fine how many passes over the input are required,

what linguistic, layout or other plug-in tools should
be used, along with the parametrization for each of
these tools. An example context would be:

<characterset:<Unicode +

encoding:<UTF8>> +

input:<XML + DTD:<TEI>> +

language:<English +

spelling:<Australian> +

script:<Latin>> +

output:<PDF +

viewer:<AcrobatReader +

version<5.0 +

OS:<MacOSX>>>>>

where input and output are called dimensions, and
language:script a compound dimension. The con-
text will be inferred from environment variables, sys-
tem locale, user profiles, command-line arguments,
menu selections, and document markup.

This approach was first outlined in a position
paper written by three of the authors [14], but at
the time we had not understood the importance of
the typographical space. It is the typographical space
that allows us to fix exactly the meanings of char-
acter, glyph, language, script and font. In so do-
ing, we facilitate the construction of modular and
flexible typesetters that allow automatic linguistic
tools to add arbitrary markup to a text before it
is printed, much as a traditional typographer might
have used dictionaries and grammar books before
pouring lead.

To transform the above basic ideas into real,
functional software usable for typesetting real, mul-
tilingual documents is not a trivial task. In this pa-
per, we outline the steps that have led to the current
ideas, and elaborate on problems still to be resolved.

We begin with a quick summary of the TEX
character-level typesetter. Then we explain how the
introduction of ΩTPs and ΩTP-lists in Ω provides a
sophisticated means for adapting TEX’s typesetter
to multilingual typesetting. What Ω offers to the
specialist user is great flexibility in manipulating the
many different parameters needed for high-quality
typesetting of different scripts.

However, this programming flexibility, with its
large numbers of parameters, greatly complicates
the user interface. The answer lies in being able
to explicitly manipulate an active run-time context

that permeates the entire typesetting process. We
describe below how versioned macros, ΩTPs, and
ΩTP-lists have been added to Ω to offer a high-level
interface that a non-specialist user can manipulate
with success.

106 TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting

A multidimensional approach to typesetting

Once such an active context is added to the in-
terface, it becomes natural to incorporate the con-
text into the entire process, and to completely re-
design TEX’s character-level typesetter. We exam-
ine below the initial proposal for such a typeset-
ter, using the typographical space. We conclude by
proposing a number of natural typographical spaces,
along with their relevant parameters.

Computer typesetting, TEX and Ω

For this paper, we define computer typesetting to
be “The production of printed matter by computer,

ultimately to be viewed on some output medium”.
The origins of computer typesetting go back to the
1950s, but it was not until 1982, with TEX [7], that it
became possible to use computer software for high-
quality typesetting of English and mathematics, as
in The Art of Computer Programming [6].

At the character level, TEX can work in text-

mode or in math-mode. In text-mode, characters in
the input file are transformed almost directly into
glyphs (‘pictures’ of characters) in the current font,
and these glyphs are positioned side-by-side ‘on the
baseline’. A font-specific finite-state automaton can
be used to change the glyphs used (by using liga-

tures) and their horizontal placement (by kerning).
The ‘words’ thus typeset are then separated by a
font-specific amount of stretchable inter-word space
(glue) to form the stream of typeset glyphs that is
passed to TEX’s paragrapher. In math-mode, TEX
uses a hand-crafted algorithm to lay out glyphs in
1.5 dimensions (this notation comes from frieze pat-
terns).

The resulting stream of typeset glyphs is fed to
TEX’s paragraphing algorithm [8], which breaks the
typeset stream for a paragraph at optimal— accord-
ing to some acceptability criterion— places to pro-
duce lines of text placed in horizontal boxes. A much
simpler algorithm is used for cutting pages from a
continuous galley of such boxes. All computations
in TEX are based on the width, height and depth
of boxes, and these are derived ultimately from the
same metrics for glyphs in the fonts.

The Ω system [11], developed by Plaice and
Haralambous, is a series of extensions to the TEX
system that facilitate multilingual typesetting. In Ω,
the input character stream is processed by a series
of filters, ultimately generating another character
stream. Once all of the filters are applied, the result-
ing stream is passed to the TEX text-mode typeset-
ter. We have written filters for character set conver-
sion, transliteration, morphological analysis, spell-
checking, contextual analysis, and 1.5-dimensional
layout. The Ω system has been used to typeset al-

phabetic scripts from Europe and the Caucasus, cur-
sive scripts from the Middle East, South Asia and
South-East Asia, and East-Asian ideograms.

With the ΩTP mechanism, one can call many
different filters for many different tasks. It often
happens that some of these filters are only to be used
in a selective manner, which very quickly creates a
combinatorial explosion of new ΩTP-lists, hardly a
favorable situation. This is resolved by introducing
the run-time context of intensional programming,
explained in the following sections.

Intensional programming

Intensional programming [15] is a form of computing
that supposes that there is a multidimensional con-
text, and that all programs are capable of adapting
themselves to this context. The context is perva-
sive, and can simultaneously affect the behavior of
a program at the lowest, highest and middle layers.

When an intensional program is running, there
is a current context. This context is initialized upon
launching the program from the values of environ-
ment variables, from explicit parameters, and pos-
sibly from active context servers. The current con-
text can be modified during execution, either ex-
plicitly through the program’s actions, or implicitly,
through changes at an active context server.

A context is a specific point in a multidimen-
sional space, i.e., given a dimension, the context will
return a value for that dimension. The simplest con-
texts are dictionaries (lists of attribute-value pairs).
A natural generalization is what will be used in this
paper: the values themselves can be contexts, result-
ing in a tree-structured context. The set of contexts
is furnished with a partial order ⊑ called a refine-

ment relation.
During execution, the current context can be

queried, dimension by dimension, and the program
can adapt its behavior accordingly. In addition, if
the programming language supports it, then contex-
tual conditional expressions and blocks can be de-
fined, in which the most relevant case, with respect
to the current context and according to the partial
order, is chosen among the different possibilities.

In addition, any entity can be defined in mul-
tiple versions, (context, object) pairs. Whenever an
identifier designating an entity appears in an expres-
sion or a statement, then the most relevant version
of that entity, with respect to the current context,
is chosen. This is called the variant substructure

principle. The general approach is called intensional

versioning [17].
The ISE programming language [16, 19] was the

first language combining both intensional program-

TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting 107

John Plaice, Paul Swoboda, Yannis Haralambous and Chris Rowley

ming and versioning. It is based on the procedural
scripting language Perl, and it has greatly facilitated
the creation of multidimensional Web pages. Simi-
lar experimental work has been undertaken, under
the supervision of the author Plaice, with C, C++,
Java, and Eiffel. And, when combined with a con-
text server (see Swoboda’s PhD thesis [18]), it be-
comes possible for several documents or programs
to be immersed in the same context.

Structuring the context

We use the same notation to designate contexts and
versions of entities. This section has three subsec-
tions. First, we define contexts and the refinement
relation. Then, we define version domains, which
hold versioned entities. Finally, we define context

operators, which are used to change from context to
context. In the following section, we will show how
all of these are to be used.

Contexts and refinement Let
{

(Si,⊑i)
}

i
be a

collection of disjoint sets of ground values, each with
its own partial order. Let S = ∪iSi. Then the set
of contexts C (∋ C) over S is given by the following
syntax:

C ::= ⊥ | A | Ω | 〈B;L〉 (1)

B ::= ǫ | α | ω | v (2)

L ::= ∅ | d :C + L (3)

where d, v ∈ S.
There are three special contexts:

• ⊥ is the empty context (also called vanilla);

• A is the minimally defined context, only just
more defined than the empty one;

• Ω is the maximally defined context, more de-
fined than all other contexts.

The normal case is that there is a base value B,
along with a context list (L for short), which is a set
of dimension-context pairs. We write δL for the set
of dimensions of L.

A sequence of dimensions is called a compound

dimension. It can be used as a path into a context.
Formally:

D = · | d :D (4)

If C is a context, C(D) is the subtree of C whose
root is reached by following the path D from the
root of C:

C(·) = C (5)

〈B; d :C ′ + L〉 (d :D) = C ′(D) (6)

As with contexts, there are three special base
values:

• ǫ is the empty base value;

• α is the minimally defined base value, just more
defined than the empty base value;

• ω is the maximally defined base value, more de-
fined than all others.

The normal case is that a base value is simply a
scalar.

To the set C, we add an equivalence relation ≡,
and a refinement relation ⊑. We begin with the
equivalence relation:

⊥ ≡ 〈ǫ; ∅〉 (7)

A ≡ 〈α; ∅〉 (8)

Ω ≡

〈

ω;
∑

d ∈ S

d :Ω

〉

(9)

L0 ≡L L1

〈B;L0〉 ⊑ 〈B;L1〉
(10)

Thus, ⊥ and A are notational conveniences, while Ω
cannot be reduced. The normal case supposes an
equivalence relation ≡L over context lists:

∅ ≡L d :⊥ (11)

d :〈B;L + L′〉 ≡L d :
(

〈B;L〉 + 〈B;L′〉
)

(12)

L ≡L ∅ + L (13)

L ≡L L + L (14)

L + L′ ≡L L′ + L (15)

L + (L′ + L′′) ≡L (L + L′) + L′′ (16)

The + operator is idempotent, commutative, and
associative. Now we can define the partial order
over entire contexts:

⊥ ⊑ C (17)

C ⊑ Ω (18)

C 6= ⊥

A ⊑ C
(19)

C0 ≡ C1

C0 ⊑ C1

(20)

B0 ⊑B B1 L0 ⊑L L1

〈B0;L0〉 ⊑ 〈B1;L1〉
(21)

which supposes a partial order ⊑B over base values:

ǫ ⊑B B (22)

B ⊑B B (23)

B ⊑B ω (24)

B 6= ǫ

α ⊑B B
(25)

v0, v1 ∈ Si v0 ⊑i v1

v0 ⊑B v1

(26)

The last rule states that if v0 and v1 belong to the
same set Si and are comparable according to the

108 TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting

A multidimensional approach to typesetting

partial order ⊑i, then that order is subsumed for
refinement purposes.

The partial order over contexts also supposes a
partial order ⊑L over context lists:

∅ ⊑L L (27)

L0 ≡L L1

L0 ⊑L L1

(28)

C0 ⊑ C1

d :C0 ⊑L d :C1

(29)

L0 ⊑L L1 L′

0 ⊑L L′

1

L0 + L′

0 ⊑L L1 + L′

1

(30)

Rule 30 ensures that the + operator defines the least
upper bound of two context lists.

Context and version domains When doing in-
tensional programming, we work with sets of con-
texts, called context domains, written C. There is
one operation on a context domain, namely the best-

fit. Given a context domain C of existing contexts
and a requested context Creq, the best-fit context is
defined by:

best(C, Creq) = max{C ∈ C | C ⊑ Creq} (31)

If the maximum does not exist, there is no best-fit
context.

Typically, we will be versioning something, an
object of some type. This is done using versions,
simply (C, object) pairs. Version domains V then
become functions mapping contexts to objects. The
best-fit object in a version domain is given by:

bestO(V, Creq) = V(best(dom V, Creq)) (32)

Context operators Context operators allow one
to selectively modify contexts. Their syntax is sim-
ilar to that of contexts.

Cop ::= C | [Pop;Bop;Lop] (33)

Pop ::= −− | E (34)

Bop ::= − | ǫ | B (35)

Lop ::= ∅Lop
| d :Cop + Lop (36)

A context operator is applied to a context to trans-
form it into another context. (It can also be used
to transform a context operator into another; see
below.) The − operator removes the current base
value, while the −− operator in Pop is used to clear
all dimensions not explicitly listed at that level.

Now we give the semantics for C Cop, the ap-
plication of context operator Cop to context C:

C0 C1 = C1 (37)

Ω Cop = error (38)

〈B;L〉 [−−;Bop;Lop] = (39)
〈

B;L\(δL − δLop)
〉

[E;Bop;Lop]

〈B;L〉 [E;Bop;Lop] = (40)
〈

(B Bop); (L Lop)
〉

The general case consists of replacing the base value
and replacing the context list. First, the base value:

B − = ǫ (41)

B ǫ = B (42)

B0 B1 = B1 (43)

Now, the context list:

L ∅Lop
= L (44)

(d :C + L) (d :Cop + Lop) = (45)

d : (C Cop) + (L Lop)

L (d :Cop + Lop) = (46)

d : (⊥ Cop) + (L Lop), d 6∈ δL

Context operators can also be applied to con-
text operators. There are two cases:

[Pop;Bop0
;Lop0

] [E;Bop1
;Lop1

] = (47)
[

Pop; (Bop0
Bop1

); (Lop0
Lop1

)
]

[Pop;Bop0
;Lop0

] [−−;Bop1
;Lop1

] = (48)
[

−−; (Bop0
Bop1

);
(

(Lop0
\(δLop0

− δLop1
)) Lop1

)

]

Now that we have given the formal syntax and
semantics of contexts, version domains, and context
operations, we can move on to typesetting.

The running context in Ω

As is usual, the abstract syntax is simpler than the
concrete syntax, which offers richer possibilities to
facilitate input. Here is the concrete syntax for con-
texts in Ω:

C ::= <> Empty context
| ~~ Minimum context
| ^^ Maximum context
| <val> Base value
| <L> Subversions
| <val+L> Base & subversions

val ::= ~ Minimum value
| ^ Maximum value
| string Normal value

L ::= dim:C [+ dim:C]∗

dim ::= string

TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting 109

John Plaice, Paul Swoboda, Yannis Haralambous and Chris Rowley

Here is the concrete syntax for context operations:

Cop ::= C Replace the context
| [] No change
| [valop] Change base
| [Lop] Change subversions
| [valop+Lop] Change base & subs

valop ::= - Clear base
| val New value
| -- Clear subversions
| val+-- New base, clear subs
| --- Clear base & subs

Lop ::= dim:Cop [+ dim:Cop]∗

In Ω, the current context is given by:

\contextshow{}

If D is a compound dimension, then the subversion
at dimension D is given by:

\contextshow{D}

while the base value at dimension D is given by:

\contextbase{D}

This context is initialized at the beginning of
an Ω run with the values of environment variables
and command-line parameters. Once it is set, it can
be changed as follows:

\contextset{Cop}

Adapting to the context

During execution, there are three mechanisms for Ω
to modify its behavior with respect to the current
context: (1) versioned execution flow, (2) versioned

macros, and (3) versioned ΩTPs.

Execution flow The new \contextchoice primi-
tive is used to change the execution flow:

\contextchoice{{Cop1
}=>{exp1},

. . .

{Copn
}=>{expn}

}

Depending on the current context C, one of the ex-
pressions expi will be selected and expanded. The
one chosen will correspond to the best-fit context
among {C Cop1

, . . . , C Copn
} (see the discussion

above of Context and Version Domains).

Macros The Ω macro expansion process has been
extended so that any control sequence can have mul-
tiple, simultaneous versions, at the same scoping
level. Whenever \controlsequence is expanded, the
most relevant, i.e. the best-fit, definition, with re-
spect to the current context, is expanded.

A version of a control sequence is defined as
follows:

\vdef{Cop}\controlsequence args{definition}

If the current context is C, then this definition de-
fines the C Cop version of \controlsequence. The
scoping of definitions is the same as for TEX.

This approach is upwardly compatible with the
TEX macro expansion process. The standard TEX
definition:

\def\controlsequence args{definition}

is simply equivalent to

\vdef{<>}\controlsequence args{definition}

i.e., it defines the empty version of a control se-
quence.

As stated above, during expansion the best-fit
definition, with respect to the current context, of
\controlsequence will be expanded whenever it is en-
countered. It is also possible to expand a particular
version of a control sequence, by using:

\vexp{Cop}\controlsequence

ΩTPs and ΩTP-lists Beyond the ability to ma-
nipulate larger data structures than does TEX, Ω al-
lows the user to apply a series of filters to the in-
put, each reading from standard input and writing
to standard output. Each of the filters is called an
ΩTP (Ω Translation Process), and a series of filters
is called an ΩTP-list.

There are two kinds of ΩTP: internal and ex-
ternal. Internal ΩTPs are finite state machines writ-
ten in an Ω-specific language, and they are compiled
before being interpreted by the Ω engine. Exter-
nal ΩTPs are stand-alone programs, reading from
standard input and writing to standard output, like
Unix filters.

Internal and external ΩTPs handle context dif-
ferently. For external ΩTPs, the context information
can be passed on through an additional parameter
to the system call invoking the external ΩTP:

program -context=context

Internal ΩTPs have been modified so that every
instruction can be preceded by a context tag. Using
the simplest syntax, this becomes:

<<context>> pattern => expression

When an internal ΩTP is being interpreted, an in-
struction is only examined if its context tag (default-
ing to the empty context) is less than the current
running context.

When ΩTPs and ΩTP-lists are being declared
in Ω, the \contextchoice operator can be used
to build versioned ΩTP-lists. With versioned ΩTP-
lists, it becomes possible to define a single ΩTP-list
with n ΩTPs, and each of the n ΩTPs can be acti-
vated with a separate parameter.

110 TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting

A multidimensional approach to typesetting

The versioned interface finally provides a user-
level means for manipulating the large sets of pa-
rameters that must be handled when doing complex
multilingual typesetting. When a transliterator is
needed, the appropriate parameter is set. When a
more complex layout mechanism is chosen, then an-
other parameter is set. When spell-checking is de-
sired, then another parameter is set. And so on.
And the macros and ΩTP-lists adapt accordingly.

Because of the flexibility of the new interface,
it is simpler to suppose that Ω always has an ac-
tive ΩTP-list, and that it changes its behavior as
the text changes its parameters. According to this
vision, then, multilingual typesetting simply means
changing parameters as needed.

The versioned approach also resolves an issue
that has been vexing the authors ever since the Ω
and LATEX projects have been trying to design a
high-level interface for Ω usable by LATEX. The prob-
lem is that a language is not a monolithic, isolated,
eternal and unchanging entity. Versioning of the
macros and ΩTPs allows one to deal with the vari-
ance in language and script, as well as encouraging
the sharing of resources across multiple languages.

Context-dependent typesetting

The existing Ω framework is very powerful, in the
sense that the ΩTPs can make the TEX character-
level typesetter stand on its head to produce amaz-
ing results, without the end-user having to know
what is going on. However, it is hardly a natural
process to take a character-level typesetter designed
for English with its isolated glyphs and occasional
ligatures and then to use it to undertake complex
Arabic typesetting with its numerous ligatures and
floating diacritics.

Far more appropriate is to break up the type-
setting process into separate modules, and to pa-
rameterize each of these with the current context.

In the most general sense, a typesetter is a pro-
gram that transforms a stream of characters into a
stream of positioned glyphs. We can separate out
three themes:

• Atomic typesetting is the transformation of a
(small) fully marked-up stream of characters
into a stream of positioned glyphs. An atomic
typesetter might be used directly by an appli-
cation that prints one or two words at different
points on a computer screen, e.g. by mapping
software to print out a city or river name, or by
a more complex continuous typesetter.

• Continuous typesetting is the transformation of
a (larger) stream of characters into a stream of
positioned glyphs that can be segmented at dif-

ferent points to produce several lines (or other
structures) of typeset text.

• Preparing the input is the process of applying
several programs to a stream of characters to
add additional markup so that the typesetter
can fully do its work.

A continuous typesetter would typically use one or
more atomic typesetters, and might also require in-
put to be prepared.

Below, we give a simple model of a continous
typesetter. It is split into four separate phases:
preparation, segmentation, micro-typesetting and re-

combination. Each of these phases is dependent on
the context, and we write the process, using C++

syntax, as:

stream<Glyph>

typeset(stream<Char> input,

Context context) {

stream<Char> prepared =

input.apply(otp_list.best(context));

stream<Cluster> segmented =

segmenter.best(context)(prepared);

stream<TypesetCluster> typeset =

clusterset.best(context)(segmented);

stream<Glyph> recombined =

recombine.best(context)(typeset);

return recombined;

}

where function.best(context) means that the most
relevant version of function, with respect to context,
is selected. We examine each of the phases in detail.

Preparation

stream<Char> prepared =

input.apply(otp_list.best(context));

The preparation phase in this new approach is sim-
ilar to the current situation in the Ω system. At all
times, there is an active ΩTP-list. This list consists
of individual ΩTP’s, each of which is a filter read-
ing from standard input to standard output. What
is new is that the whole process becomes context-
dependent. First, the most relevant ΩTP-list, with
respect to the context and using the refinement re-
lation over contexts, is the one that is active. Sec-
ond, once chosen, it can test the current context and
adapt its behavior, by selectively turning on or off,
or even replacing, individual ΩTP’s.

The preparation phase works entirely on char-

acters, i.e. at the information exchange level, but
it allows additional typographic information to be
added to the character stream, so that the follow-
ing phases can use the extra information to produce
better typography.

TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting 111

John Plaice, Paul Swoboda, Yannis Haralambous and Chris Rowley

Segmentation

stream<Cluster> segmented =

segmenter.best(context)(prepared);

The segmentation phase splits the stream of char-
acters into clusters of characters; typically, segmen-
tation is used for word detection. In English, word
detection is a trivial problem, and segmentation just
means recognizing ‘white space’ such as the blank
character, Unicode U+020. By contrast, in Thai,
where there is normally no word-delimiter in the
character stream (blanks are traditionally used only
as sentence-delimiters), it is impossible to do any
form of automatic processing unless a sophisticated
morphological analyzer is being used to calculate
word and syllable boundaries. In many Germanic
and Slavic languages, it is also necessary to find
the division of compound words into their building
blocks. These processes are closely related to finding
word-division points, so this should be incorporated
into this part of the process (a very different ap-
proach to that of TEX). The choice of segmenter is
thus clearly seen to be context-dependent.

Cluster typesetting

stream<TypesetCluster> typeset =

clusterset.best(context)(segmented);

During the typesetting phase, a cluster engine pro-
cesses a character cluster, taking into account the
current context including language and font infor-
mation, and produces the typeset output —a se-
quence of positioned glyphs. In many cases, such
as when hyphenation or some other form of cluster-
breaking is allowed, there are multiple possible type-
set results, and all of these possibilities must be out-
put. When dealing with complex scripts or fonts
allowing great versatility (as with Adobe Type 3
fonts), many different cluster engines are needed:
these are selected and their behaviour is fine-tuned
according to the context.

Recombination

stream<Glyph> recombined =

recombine.best(context)(typeset);

The final phase, before calling a higher-level format-
ting process such as a paragrapher, is the recombi-
nation phase. Here, the typeset clusters are placed
next to each other. For simple text, such as the
English in this proposal, this simply means plac-
ing a fixed stretchable space between typeset words.
In situations such as Thai and some styles of Ara-
bic typesetting, kerning would take place between
words. Once again, the recombiner’s behavior is
context-dependent.

Typographical spaces

Given the sophistication of the multiple-phase pro-
cess, and that the choice of segmenter, cluster en-
gine and recombiner are all context-dependent, and
that the actions of each of these, once they are cho-
sen, also depends on the context, this new model
of typesetting engine is potentially much more pow-
erful than anything previously proposed or imple-
mented. However, there remains a key problem in
the type of the function:

stream<Glyph>

typeset(stream<Char> input,

Context context);

In this type declaration, the types Glyph and Char

appear to be normal datatypes, i.e., fixed, unchang-
ing sets, which is not at all consistent with our view
that character and glyph should be perceived as mul-
tidimensional entities.

Really, the sets for character and glyph should
be context-dependent. However, if these basic types
were to continually change, then it would be very
difficult to write any of the algorithms, because one
could never be sure of the ultimate particles, the
atoms, with which one was working.

To resolve this problem, we introduce the typo-

graphical space. This space is designed to constrain
the variance in the context. Within a specific typo-
graphical space, the types for character and glyph
remain fixed. Hence the above type becomes some-
thing like:

stream< Glyph<TS> >

typeset(stream< Char<TS> > input,

Context context);

In a typographical space, certain parameters
are kept fixed, or at least their values are kept within
a certain range. Other parameters may vary at will,
and their values may be manipulated as appropriate
by the algorithms within that space.

Suppose there was a typographical space for
Greek typesetting, including modern and ancient
Greek, literary Greek and colloquial Greek, as well
as other languages that have been typeset using the
Greek alphabet. Then the character datatype would
most likely correspond to a subset of Unicode, aug-
mented by additional characters that were not in-
cluded in the standard. The glyph datatype would
consist of many glyphs, and could contain a number
of precomposed multi-accented glyphs or a smaller
set of isolated glyphs, including accents, that are to
be placed at appropriate places.

The typographical space is a necessary solution
to the problem raised by the existence of multi-script

112 TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting

A multidimensional approach to typesetting

character sets such as Unicode. It is simply infea-
sible to write a single typesetter that will do qual-
ity typesetting of Egyptian hieroglyphics, Japanese
kanji with furigana, Persian in Nastaliq style, and
German using Fraktur fonts.

By creating separate typographical spaces for
these different kinds of situation, we can allow spe-
cialists to build typesetters for the scripts and lan-
guagest that they know best. What is still needed
for quality multilingual typesetting is to define some
basic parameters, or dimensions, that apply across
different typographical spaces, so that it becomes
possible to move smoothly from one typographical
space to another.

Example spaces

We intend to test and validate the model described
above by creating typographical spaces for at least
the following scripts:

• Latin, Greek, Cyrillic, IPA: left-to-right, dis-
crete glyphs, numerous diacritics, stacked ver-
tically, above or below the base letters, liberal
use of hyphenation;

• Hebrew : right-to-left, discrete glyphs, optional
use of diacritics (vowels and breathing marks),
which are stacked horizontally below the base
letter;

• Arabic: right-to-left, contiguous glyphs, contex-
tually shaped, many ligatures, optional use of
diacritics (vowels and breathing marks), placed
in 1.5-dimensions, above and below;

• Indic scripts: left-to-right, 1.5-dimensional lay-
out of clusters, numerous ligatures, applied se-
lectively according to linguistic and stylistic cri-
teria;

• Chinese, Japanese: vertical or left-to-right, of-
ten on fixed grid, with annotations to the right
or above the main sequence of text, automatic
word recognition— in Chinese and Japanese,
“words” use one or more characters, but these
are not visually apparent —needed for any form
of analysis;

• Egyptian hieroglyphics: mixed left-to-right and
right-to-left, 1.5-dimensional layout.

Once these basic spaces are validated, then fur-
ther experiments, viewing language as a multidi-
mensional entity, can be undertaken. Already with
Ω, we have typeset Spanish with both the Hebrew
and Latin scripts; Berber with the Tifinagh, Ara-
bic and Latin scripts; Arabic with Arabic, Hebrew,
Syriac, Latin and even Arabized Latin (Latin script
with a few additional glyphs reminiscent of the Ara-
bic script). The Arabic script can be rendered in

Naskh or Nastaliq or many other styles. Japanese
can be typeset with or without furigana, little anno-
tations above the kanji (the Chinese characters) to
facilitate pronunciation. Some of the corresponding
typographical spaces will be quite interesting.

The objective is to incorporate solutions to all
such problems, currently solved in an ad hoc man-
ner, into our framework; each time, the key is to
correctly summarize the typographical space. With
this key, then the choice of segmenters, clusters en-
gines and recombiners to build, and of how they are
built, is clarified; nevertheless, these algorithms may
remain complex, because of the inherent complexity
of the problems they are solving.

Conclusions

When we have fully developed this model, we will
be able to produce, with relative ease, high-quality
documents in many different languages and scripts.

Furthermore, this new approach of using con-
texts can be used to improve not just micro- but also
macro-typesetting. Rowley, as one of the leaders of
the LATEX3 Project, has worked with closely related
ideas in the context of Mittelbach’s templates for
higher-level formatting processes [2]. Here the par-
ticular instance of a template object that is used to
format a document element will depend on a context
that is derived from both the logical position of that
element in the structured document and from the
formatting of the physically surrounding objects in
the formatted document. Collaboration between the
current authors and other members of the LATEX3
team will lead to many new interfaces that give ac-
cess to the new functionality.

Other examples of the importance of such a
structured context in document processing can be
found in work by Rowley with Frank Mittelbach [10].

Another example of dependence on this visual
context occurs in the use of Adobe Type 3 fonts,
which are designed so that glyphs can be generated
differently upon each rendering (see [1] for a discus-
sion of a number of effects). On another level, the
OpenType standard for font resources [12] allows for
many different kinds of parameters beyond the basic
three of width, height, and depth, such as multiple
baselines, and a much richer notion of ligature. Our
new engine for micro-typography will provide new
capabilities, adaptable to new kinds of parameters,
and increased control. Thus we shall be able to pro-
vide a simple high-level interface that takes advan-
tage of new developments in font technologies.

Finally, this proposed model should be under-
stood as the preparation for a much more ambitious
project, that will deal not just with low-level type-

TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting 113

John Plaice, Paul Swoboda, Yannis Haralambous and Chris Rowley

setting but also with general problems of document
structuring and layout for demanding typographic
designs in a highly automated environment. De-
tailed discussion along these lines has already been
initiated between the Ω and LATEX3 projects, which
look forward to these wider horizons.

References

[1] Jacques André. Création de fontes en typogra-

phie numérique. Documents d’habilitation,
IRISA+IFSIC, Rennes, 1993.

[2] David Carlisle, Frank Mittelbach and Chris
Rowley. New interfaces for LATEX class de-
sign, 1999. http://www.latex-project.org/
papers/tug99.pdf

[3] Yannis Haralambous. Unicode et typographie :
un amour impossible. Document numérique

6(3–4):105–137, 2002.

[4] Yannis Haralambous and John Plaice. Traite-
ment automatique des langues et composition
sous Omega. Cahiers GUTenberg 39–40:1–28,
2001.

[5] P. Karow. hz-Programm, Mikrotypographie

für den anspruchsvollen Satz. Gutenberg-
Jahrbuch, Mainz, 1993.

[6] D. E. Knuth. The Art of Computer Program-

ming. 3 vol., third ed., Addison-Wesley, 1997.

[7] D. E. Knuth. Computers and Typesetting. 5
vol., Addison-Wesley, 1986.

[8] D. E. Knuth and M. F. Plass. Breaking para-
graphs into lines. Software—Practice and Ex-

perience 11(11):1119–1184, 1981.

[9] Frank Mittelbach and Chris Rowley, 1996.
Application-independent representation of text
for document processing.
http://www.latex-project.org/papers/

unicode5.pdf

[10] Frank Mittelbach and Chris Rowley. Language
information in structured documents, 1997.
http://www.latex-project.org/papers/

language-tug97-paper-revised.pdf

[11] Omega Typesetting and Document Processing
System. http://omega.cse.unsw.edu.au

[12] OpenType. http://www.opentype.org

[13] John Plaice and Yannis Haralambous. Gener-
ating multiple outputs from Omega. EuroTEX
2003 proceedings, TUGboat, 2003. To appear.

[14] John Plaice, Yannis Haralambous and Chris
Rowley. An extensible approach to high-quality
multilingual typesetting. In RIDE-MLIM 2003,
IEEE Computer Society Press, 2003.

[15] John Plaice and Joey Paquet. Introduction to
intensional programming. In Intensional Pro-

gramming I, World-Scientific, Singapore, 1996.

[16] John Plaice, Paul Swoboda and Ammar Alam-
mar. Building intensional communities using
shared contexts. In Distributed Communities

on the Web, LNCS 1830:55–64, Springer-
Verlag, 2000.

[17] John Plaice and William W. Wadge. A new ap-
proach to version control. IEEE-TSE 19(3):268–
276, 1993.

[18] Paul Swoboda. A Formalization and Implemen-

tation of Distributed Intensional Programming.
PhD Thesis, The University of New South
Wales, Sydney, Australia, 2003.

[19] Paul Swoboda. Practical Languages for Inten-

sional Programming. MSc Thesis, University of
Victoria, Canada, 1999.

[20] Unicode Home Page.
http://www.unicode.org

[21] Extensible Markup Language (XML).
http://www.w3c.org/XML

[22] The Extensible Stylesheet Language (XSL).
http://www.w3c.org/Style/XSL

114 TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting

Abstracts —Multilingual document processing

dvipdfmx, an eXtension of dvipdfm

Jin-Hwan Cho
Korea Institute for Advanced Study
chofchof@ktug.or.kr

In this presentation I would like to introduce a DVI

to PDF translator, dvipdfmx (formerly dvipdfm-
cjk), which is an extension of dvipdfm developed
by Mark A. Wicks.

One might ask why we consider a DVI to PDF

translator at this time, since we already have the
powerful TEX software pdfTEX, which generates
PDF results directly from TEX sources without using
the DVI format. It is true for people using languages
which make use of the Latin alphabet (or other 8-bit
character set) that pdfTEX is usually sufficient.

However, the situation is quite different for
those who use Northeast Asian languages (Chinese,
Japanese and Korean; simply CJK) or Unicode using
16-bit characters. The current version of pdfTEX has
no ability to handle 16-bit characters. Even though
a PDF viewer shows 16-bit characters in a PDF file
generated by pdfTEX, the codes are not 16-bit but
8-bit. Thus, extracting and searching those 16-bit
characters is impossible. Furthermore, it is hard to
generate a PDF file with pdfTEX having bookmarks
or text annotations with 16-bit characters.

That is the main reason why I am introduc-
ing dvipdfmx. The DVI driver software, dvipdfmx,
handles 16-bit character using CID-keyed font tech-
nology which is already included in the PDF spec-
ification. Therefore, dvipdfmx works well with al-
most all TEX variants including ASCII pTEX, the
most popular TEX software in Japan, and Omega.
In particular, it is interesting to see a PDF example
containing 16-bit characters from dozens of different
languages, which are extractable and searchable as
a matter of course.

Recently there was revolutionary progress in
developing dvipdfmx, namely when dvipdfmx be-
gan to support ConTEXt. Much of dvipdfmx was
rewritten at this point. At present, dvipdfmx han-
dles many ConTEXt documents containing complex
MetaPost figures (color shading too) and interactive
forms (JavaScript too). I would like to show those
fantastic examples in the presentation.

There are also many features in dvipdfmx

not mentioned above, PDF encryption for example.
More information on dvipdfmx can be found at the
project home page, http://project.ktug.or.kr/
dvipdfmx. The dvipdfmx project is a combination
of the dvipdfm-jpn project by Shunsaku Hirata and
its modified version, dvipdfm-kor, by Jin-Hwan Cho.

TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting 115

Literate programming meets UML

Dr. Alun Moon

School of Informatics

University of Northumbria

Newcastle upon Tyne, UK

alun.moon@unn.ac.uk

Abstract

This work is an ongoing small project to apply the benefits of literate programming

to UML. Literate programming is a powerful tool in that it places the emphasis
on the documentation of the algorithm, and allows the code to be developed
in a logical order. UML is a useful graphical notation to describe features of a
software system. However, it lacks the ability to document the code and algorithm
in detail. This gap can be filled by literate programming. Elements of UML

can usefully enhance the documentation part of a web, with “a picture worth a
thousand words”. Finally the process of tangling a web into a program is applied
to the UML to create a final diagram from fragments throughout the web. The
diagrams are ‘enhanced’ by having TEX available to typeset the text.

1 Introduction

Literate programming is a powerful tool in that it
places the emphasis on the documentation of the
algorithm, and allows the code to be developed in
a logical order. UML (Uniform Modeling Language)
is a useful graphical notation to describe features of
a software system. However, it lacks the ability to
document the code and algorithm in detail. This gap
can be filled by literate programming. Elements of
UML can usefully enhance the documentation part
of a web, with “a picture worth a thousand words”.

METAPOST has been used to develop the graph-
ical part of the system; macros for TEX are included
in the web document. METAFONT has all the geo-
metrical tools to allow a diagram to be built up, and
its equation solving mechanism allows the elements
to be defined in relation to each other. METAPOST

also has facilities for typesetting text, making it the
suitable tool to use.

1.1 No existing packages

Existing packages on CTAN such as PSTricks have
many of the layout tools and arrow decoration need-
ed for UML. This project is in part a learning exer-
cise in writing METAPOST and TEX macro packages.
The TEX components are written for plain TEX, as
this is what CWEAVE produces.

2 Conventions

These tools were developed with Java in mind as
the language. Java and UML feature heavily in the

teaching within the School at Northumbria Univer-
sity. Some form of literate programming may be
introduced to the undergraduates, if only just the
concept of writing documentation, to help empha-
sise design in software engineering.

Although Java allows multiple classes in a
source file, for the purposes of this tool only one
is allowed. Each web file generates one Java file,
which compiles to one class. Multiple classes may
be possible later. This keeps the management of the
diagram elements simple.

3 Design of the macros

The initial set of macros have a slightly object ori-

ented feel about them. Class names are used as
suffix parameters making a readable file. As the dia-
grams become more complex, additional data struc-
tures are used to ease processing by METAPOST.
The TEX macros write material to a .uml file which
is post-processed to create METAPOST input files,
much as an index is processed with makeindex.

3.1 Tangled or Weaved?

Are UML diagrams tangled or weaved? The answer
is a bit of both. They are weaved as they form part
of the documentation, and include TEX material.
They are tangled as the material is defined in the
order of the web file, but has to be rearranged into
a program or hierarchical order.

116 TUGboat, Volume 24 (2003), No. 1 — Proceedings of the 2003 Annual Meeting

Literate programming meets UML

\def\private{$-$} \def\public{$+$}

\def\package{$$}

\def\protected{\sim}

\def\classformatproperties#1{%

\vbox{\halign{##\hfil\cr #1 }}}

% List macros after Knuth in

% The TeXbook, page 378

\def\leftlist#1{%

\def\\##1{\relax##1\cr}%

\vbox{\halign{##\hfil\cr#1}}}

\def\classformatlist#1{\leftlist#1}

Figure 1: TEX macros for class diagram contents.

4 Class diagrams

The TEX and METAPOST macros are shown in fig-
ures 1 and 2.

The METAPOST class is built up as a picture.
The class macro takes three arguments: pictures
for the title, attributes and operations of the class.
These are given as btex. . . etex formatted pictures.
Once all the attributes and operations are known,
the class has a fixed size. The code declares three
points as suffixes to the class name. The pair reg is
a registration point, used to position the class when
finally drawing it. The two pairs top and bot are
points to connect inheritance arrows to. The picture
variable pic holds the picture of the formatted class
for drawing. The points for the inheritance arrows
are a fixed distance from the left edge of the class
only because I prefer to align the edges of the boxes.

The TEX macros are used to format the con-
tents of a class. There is a set of symbols for
the access qualifiers, to allow for easy alignment.
The attributes and operations can be formatted
using the \classformatproperties macro, where
the elements are separated by \cr tokens. The
\classformatlist macro formats a list of elements,
with the list in the form suggested by Knuth in The

TEXbook (Knuth, 2000, p. 378).

4.1 Alignment

The attributes and operations are aligned in a \vbox
using \halign. One of the macros above must be
used. The TEX macros writing the .uml file write
out fragments of METAPOST. If the \halign macro
was used then the # symbol in the template is ex-
panded by \write to ##.

vardef class@#(expr title)(expr attributes)

(expr operations) :=

save x,y;

scantokens("pair " & str @# & " top");

scantokens("pair " & str @# & " bot");

scantokens("pair " & str @# & " reg");

scantokens("picture " & str @# & " pic");

@#pic := nullpicture;

@#reg + right scaled 1cm = @#top;

@#top-z0 = @#bot-z6;

pen ln; ln = pensquare scaled 1pt;

z0 = origin;

x1-x0 = x3-x2 = x5-x4 = x7-x6

= max(width title, width attributes,

width operations, 2cm) + 1pc;

x0 = x2 = x4 = x6;

y0-y1 = y2-y3 = y4-y5 = y6-y7 = 0;

y0-y2 = 1.5pc + height title;

y2-y4 = 1pc + height attributes;

y4-y6 = 1pc + height operations;

addto @#pic doublepath z0--z1--z7--z6--cycle

withpen ln;

addto @#pic doublepath z2--z3 withpen ln;

addto @#pic doublepath z4--z5 withpen ln;

addto @#pic also title shifted (z2+(.5pc,.75pc));

addto @#pic also attributes shifted

(z4+(.5pc,.5pc)-llcorner attributes);

addto @#pic also operations shifted

(z6+(.5pc,.5pc)-llcorner operations);

enddef;

Figure 2: METAPOST code for a class.

4.2 Example

An example class diagram is shown in figure 3, and
the code that generated it in figure 4.

5 Sequence diagrams

The sequence diagram has been developed in a sim-
ple human-friendly form, and a complex machine
form. The simple form allows simple sequence dia-
grams to be drawn. There is a limitation: only one
method per class can be drawn.

Unlike class diagrams where classes can be laid
out on a grid, elements of sequence diagrams affect
not only the position but also the size of other ele-
ments. For this reason the points that form an ele-
ment must be declared before it can take part in the
diagram. Sequence diagrams have three main sec-
tions in the code: declaration, creation and drawing.

6 Modifying CWEB

The original plan was to modify CWEB to work with
Java and UML. This has not been pursued as the
author has learned much more about CWEB. The
modifications if any are likely to be minor, and there
may be a better route using TEX macros or other
tools, for instance:

TUGboat, Volume 24 (2003), No. 1 — Proceedings of the 2003 Annual Meeting 117

Dr. Alun Moon

PNM

+PBM:String
+PGM:String
+PPM:String
∼width:integer
∼height:integer

+getWidth():integer
+setWidth(w:integer)
+getHeight():integer
+setHeight(h:integer)

PBM PGM

−maxgrey:integer

getMax():integer
setMax(m:integer):void

PPM

−maxrgb:integer

+getMaxRGB():integer
+setMaxRGB(max:integer):void

Figure 3: Sample class diagram.

• CWEB produces C++, which is close enough to
Java. A web file using the @s mechanism to
modify the syntax to Java is given in appen-
dix A.

• UML creation can be done largely through TEX
macros via an intermediate .uml file, just as
indexes are produced to be read as a set of
macros, after sorting and cross-referencing.

• By choosing good macro names and calling con-
ventions, a language such as Perl can be very
useful, especially if helpful data is put into com-
ments in the web source and intermediate files.

• A simple sed script (sed -e ’s/^#/\/\//’)
converts the # line pragmas into line comments.
(Can anyone come up with a version of javac
that can make use of the # line pragmas?)

7 Web UML meta-tools

The web meta-tools for UML are currently in a prim-
itive state. Most of the effort is currently on getting
a good set of TEX macros. The METAPOST data
structures are undergoing a major revision which
fundamentally changes the internals of the tools.
Two tools are needed to do the tangling:

• class builder —to collect attribute and opera-
tion lines and write the TEX/METAPOST class
macro.

• sequencer —to arrange the sequences, write
all the sections, declarations, creation, and
drawing.

8 Data structures and macros

The data structures and macro calling conventions
are undergoing a major revision. The macros pre-
sented here work well, but have a limiting simplicity,
especially the sequence diagram, which has the fol-
lowing limitations:

beginfig(0)

class.pnm(btex \bf PNM etex)

(btex \classformatlist{

\\{\public PBM:String}

\\{\public PGM:String}

\\{\public PPM:String}

\\{\protected width:integer}

\\{\protected height:integer}} etex);

(btex \classformatlist{

\\{\public getWidth():integer}

\\{\public setWidth(w:integer)}

\\{\public getHeight():integer}

\\{\public setHeight(h:integer)}} etex);

class.pbm(btex \bf PBM etex)(btex ~ etex)

(btex ~ etex);

class.pgm(btex \bf PGM etex) (btex \classformatlist{

\\{\private maxgrey:integer}} etex)

(btex \classformatlist{

\\{getMax():integer}

\\{setMax(m:integer):void}} etex);

class.ppm(btex \bf PPM etex) (btex \classformatlist{

\\{\private maxrgb:integer}} etex)

(btex \classformatlist{

\\{\public getMaxRGB():integer}

\\{\public setMaxRGB(max:integer):void}} etex);

pnm.reg = origin;

pnm.bot - pbm.top = (0,1in);

ppm.reg - pgm.reg = pgm.reg - pbm.reg = (2in,0);

forsuffixes $=pnm,pbm,pgm,ppm: drawclass$; endfor;

draw pbm.top connect pnm.bot ;

draw pgm.top connect pnm.bot;

draw ppm.top connect pnm.bot;

endfig;

Figure 4: METAPOST code for a class diagram.

• only one call per sequence element can be made;

• each sequence element can be called by only one
other.

This is due to the use of suffix names for the ele-
ments.

8.1 Revised structure

In the revised structure a sequence block would be
referred to as, for instance, l2s3, meaning the third
sequence block down in the second swim-lane. This
makes for nearly unreadable METAPOST code for a
complex diagram, but does allow complex diagrams
to be built by the meta-tools. Losing the name to re-
fer to an element allows no restrictions on the num-
ber of calls to an operation.

118 TUGboat, Volume 24 (2003), No. 1 — Proceedings of the 2003 Annual Meeting

Literate programming meets UML

vardef sequ@#(text call_list) =

@#.n = .5[@#.nw,@#.ne];

@#.s = .5[@#.sw,@#.se];

@#.ne - @#.nw = @#.se - @#.sw = @#.ce - @#.cw

= @#.re - @#.rw = (seq_width,0);

@#.nw - @#.cw = @#.rw - @#.sw = @#.ne - @#.ce

= @#.re - @#.se = (0,seq_width);

@#.nw - @#.sw = (0,whatever);

if (length(str call_list) >0):

@#.ce + (seq_space,0) = call_list.nw;

@#.re + (seq_space,0) = call_list.sw;

else:

@#.ce = @#.re;

fi;

enddef;

Figure 5: Sequence diagram element.

declaresequence.main; declaresequence.bezier;

declaresequence.bernstein; declaresequence.binomial;

declaresequence.fact;

sequ.main(bezier); sequ.bezier(bernstein);

sequ.bernstein(binomial); sequ.binomial(fact);

sequ.fact();

main.nw = origin;

beginfig(0)

pickup pensquare scaled 1pt;

drawsequence.main;

drawsequence.bezier; drawsequence.bernstein;

drawsequence.binomial; drawsequence.fact;

drawarrow main.ce--bezier.nw;

drawarrow bezier.ce--bernstein.nw;

drawarrow bernstein.ce--binomial.nw;

drawarrow binomial.ce--fact.nw;

endfig;

Figure 6: Sequence diagram usage.

9 Teaching

CWEB is being introduced to colleagues in the school
and suggested for use on a Masters in embedded sys-
tems. There are issues in relation to UML as ANSI C

or MISRA C are the preferred choices of language. Is
there a neat way of generating header files without
too much repetition in the WEB source?

Literate programming has also been suggested
as a way to help undergraduate students think about
the design (engineering) of program code, by concen-
trating on the documentation rather than the cod-
ing.

References

Knuth, Donald. The TEXbook. Addison-Wesley,
2000.

A Java web file

% NULL->null

Figure 7: Sequence diagram.

@s null NULL

% Java keywords *not* in CWEB

@s abstract int @s interface int

@s boolean int @s native int

@s byte int @s package int

@s extends int @s strictfp int

@s final int @s super int

@s finally if @s synchronized int

@s implements int @s throws int

@s import include @s transient int

@s instanceof sizeof

% CWEB keywords *not* in Java

@s and variable @s namespace variable

@s and_eq variable @s not variable

@s asm variable @s not_eq variable

@s auto variable @s offsetof variable

@s bitand variable @s operator variable

@s bitor variable @s or variable

@s bool variable @s or_eq variable

@s clock_t variable @s pragma variable

@s compl variable @s ptrdiff_t variable

@s const_cast variable @s register variable

@s define variable @s reinterpret_cast variable

@s defined variable @s sig_atomic_t variable

@s delete variable @s signed variable

@s div_t variable @s size_t variable

@s dynamic_cast variable @s sizeof variable

@s elif variable @s static_cast variable

@s endif variable @s struct variable

@s enum variable @s template variable

@s error variable @s time_t variable

@s explicit variable @s typedef variable

@s export variable @s typeid variable

@s extern variable @s typename variable

@s FILE variable @s undef variable

@s fpos_t variable @s union variable

@s friend variable @s unsigned variable

@s ifdef variable @s using variable

@s ifndef variable @s va_dcl variable

@s include variable @s va_list variable

@s inline variable @s virtual variable

@s jmp_buf variable @s wchar_t variable

@s ldiv_t variable @s xor variable

@s line variable @s xor_eq variable

@s mutable variable

TUGboat, Volume 24 (2003), No. 1 — Proceedings of the 2003 Annual Meeting 119

Math in ConTEXt: Bridging the gap with (AMS-)LATEX

Giuseppe Bilotta
Dipartimento di Matematica e Informatica

Università di Catania

viale A. Doria, 6

95125 Catania

Italy

gip.bilotta@iol.it

Abstract

The core of ConTEXt development is focused on the textual aspects of typography
in TEX: many features are provided that easily compete with and surpass those
of other high-level TEX formats, like LATEX. Progress has been lagging, though,
in the field of mathematical typesetting. This talk presents a work-in-progress
whose final purpose is to provide the features of the most common and powerful
mathematical packages in LATEX (AMS and Nath) in the form of ConTEXt mod-
ules, possibly with the addition of new features in the spirit of interactivity and
graphical richness which is typical of ConTEXt’s textual features.

Introduction

One of the strongest points of ConTEXt is its exten-
sive capability to deal with text documents, which
make it the most appropriate format for nontech-
nical writings. At the same time, this is also one
of its weakest points: the development of text-based
features has been done at the expense of mathemati-
cal capabilities, which have therefore made ConTEXt
less appealing in technical/scientific environments,
where LATEX is still the preferred format. The core
math capabilities in ConTEXt have in fact been for
a long time barely superior to those of plain TEX,
making math cumbersome to type (at least for those
coming from a LATEX background).

At one time, a ConTEXt module (m-math), de-
veloped by Taco Hoekwater, brought to ConTEXt
most of LATEX’s environments, macros, and math-
ematical font capabilities, with additional features
from even more packages (notably breqn). However,
the module made extensive changes to some core
macros, especially font-related ones. Thus, when
ConTEXt underwent a thorough redesign (with a
completely new font loading/selection mechanism,
based on typescripts) the m-math module was effec-
tively broken.

It is the writer’s intention to bring powerful and
easy math back to ConTEXt. In particular, we aim
for:

1. providing the functionality of (AMS-)LATEX and
Nath, with as much ease if not necessarily the
same syntax;

2. providing as much command compatibility as
possible, so that compatible commands/envi-
ronments are achieved with the same or very
similar commands;

3. (low priority) adding new features without
breaking anything, in the spirit of graphics and
interactivity peculiar to ConTEXt;

4. (low priority) ensuring that documents look the
same (or as similar as possible) to those ob-
tained with (AMS-)LATEX when no extra Con-
TEXt features are used (to customize section
headings, itemizations, numbering, etc.).

Project status

The major overhaul that broke the m-math package
also provided the basis for potentially augmenting
ConTEXt’s math capability. Much work has been
done to offer in ConTEXt a symbol set as extensive
as that of LATEX, and basic math environments have
been provided. A new math module (m-newmat) has
been developed, as a placeholder to add new features
as the need arises.

Starting from this base, I’m developing two new
packages: t-amsl, focused on AMS-LATEX compat-
ibility, and t-nath, to bring the ease of use and
power of Nath (a package developed by Michal Mar-
van, presented at the EuroTEX 2001 conference, im-
plementing NAtural maTH notation) to ConTEXt.

Nath is almost fully implemented. This has
been obtained by using the same source as the LATEX

120 TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting

Math in ConTEXt: Bridging the gap with (AMS-)LATEX

package itself, with due adaptation. Some interest-
ing side-effects of the adaptation of Nath to Con-
TEXt were the discovery of a couple of bugs, and
some format-independent work on robustness, both
macro-wise (allowing for example extensible arrows
in the sub- or superscript part of another extensi-
ble arrow) and engine-wise (making Nath aware of
ε-TEX and therefore allowing it to typeset more com-
plex formulas, a job which requires a notably large
number of registers).

Work to date on the AMS macros is much less
extensive: it currently implements some basic en-
vironments (equation alignment and gathering) and
some classic macros like \eqref. It also provides
some non-AMS but important LATEX math environ-
ments like array; some of these may be moved to
the m-newmat module in the future, to leave AMS-
specific macros only in the t-amsl module.

Finally, the module restores (in math mode)
LATEX-style behavior of a few font-selection com-
mands; selection mechanisms for such fonts were
already present in ConTEXt, but they were text-
centric (quod erat demonstrandum) and therefore
cumbersome to use in math mode; t-amsl makes
them again available in math mode as well, with
the familiar \mathcal, \mathfrak, etc. command
interface (as well as \cal, \frak, etc.).

Project future

On the one hand, one might think that there is still
much work to do, (re)implementing all the various
LATEX and AMS-LATEX environments; on the other
hand we should consider the level of compatibility
we actually want between the packages.

As a first step, it is important to provide the
same typesetting power, as easily as or more easily
than in LATEX. For example, the advanced math
typesetting features of Nath make many of the AMS

environments unnecessary. We therefore prefer to
concentrate initially on completing the port of Nath.

After this has been provided, and for the re-
maining needs which are not dealt with by Nath, we
will move to improving command compatibility with
the AMS-LATEX environments, so as to let the transi-
tion from one typesetting environment to the other
be as smooth and painless as possible. If possibly,
aesthetical compatibility will be preserved (or cre-
ated as necessary), to allow ConTEXt-typeset docu-
ments to be usable for standard journal submissions.

When choosing whether to be compatible with
one system or the other, in some cases the LATEX way
of doing things will be abandoned in favour of the
ConTEXt one, when the latter makes more sense or is
easier to manipulate, from the user’s perspective and
in the author’s opinion. For example, for theorem
creation and management the rigid positional con-
figuration options of AMS-LATEX will be abandoned
in favour of the dynamic key/value configuration ca-
pabilities which are standard in ConTEXt; the LATEX
form might still be provided for compatibility, but
this will have a lower priority.

Finally, new features might be included to al-
low typesetting of more “ConTEXtual” math formu-
las: features like interactive formulas (click to cy-
cle through passages), or “hidden” explanatory pas-
sages that display in pop-up windows will be imple-
mented (some of these are already in the works).

TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting 121

Abstracts —Tools

POV-ray: A 3D graphics tool for TEX

Kaveh Bazargan, CV Radhakrishnan,
CV Rajagopal
Focal Image (India) Private Ltd
kaveh@focalimage.com, cvr@focalimage.com,
cvr3@focalimage.com

POV-ray (http://www.povray.org) is a 3D im-
age renderer. TEX is a text typesetting engine.
The two programs have much in common: Freely
available; multi-platform; unrivalled output quality;
text-based input; ability to read and write files; fully
programmable. We will show how these two pro-
grams can work together to make beautiful docu-
ments. In particular, we will concentrate on how
TEX can use POV-ray to add photorealistic embel-
lishments to textual documents.

⋄

The teTEX distribution

Thomas Esser
dvg Hannover, Germany
te@tug.org

This talk is about teTEX. I will explain what teTEX
is, and my role in the development of teTEX and
TEX Live. Some of my own contributions (e.g. con-
figuration tools: texconfig, updmap, fmtutil) are ex-
plained in more detail.

⋄

TEXPower: Dynamic presentations

with LATEX

Stephan Lehmke
QuinScape GmbH
Dortmund, Germany
Stephan.Lehmke@QuinScape.de

http://www.QuinScape.de

In the talk, a bundle of LATEX packages and classes
is presented which provides an environment for de-
signing dynamic pdf presentations, mainly for the
purpose of displaying with a video beamer.

The heart of the bundle is the texpower pack-
age, providing:

1. commands for incremental display of page con-
tents;

2. commands for designing page backgrounds and
‘panels’;

3. commands for navigation helpers.

As the effects provided by texpower are imple-
mented entirely based on the LATEX kernel, with-
out resorting to special effects like PostScript, TEX-
Power is independent of the method of pdf gener-

ation and does not rely on external postprocessors
or such. It is also completely independent of the
document class used, though seminar-based classes
harmonising well with the texpower package are part
of the bundle.

Because of the unique way incremental display
is implemented, it is sometimes harder in TEXPower
than in other similar packages to keep ‘static’ parts
of the page from “moving around” during display. In
fact, almost all pitfalls can be avoided by adhering
to a number of simple design rules, which will be
pointed out in the talk.

The upside of “doing it all in TEX” is the unique
flexibility and customizeability of

• the order in which things are displayed and

• the way in which hidden/appearing things are
displayed.

Concerning the order of display, the full range
of LATEX’s abilities for constructing case distinctions
can be employed.

Concerning the way of hiding and displaying
things, the possibilities range from things just ap-
pearing out of blank space via objects being replaced
by other objects to hidden text being displayed with
dimmed colors and undimming incrementally. Spe-
cial effects such as objects flying around or growing
into place are also possible, limited only by the al-
gorithmic capabilities of TEX (and the performance
of the computer running Acrobat Reader).

TEXPower is currently in a pre-alpha state and
will probably stay that way for some time, but the
development release is quite stable and usable. The
project web site http://texpower.sourceforge.

net gives easy access to updates and communica-
tion with developers.

(We expect to publish the full paper in the next
regular issue of TUGboat. Ed.)

122 TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting

Abstracts — Tools

XemTEX: An integrated platform for high

quality scientific typesetting

Fabrice Popineau
Fabrice.Popineau@supelec.fr

Marie-Louise Chaix
Marie-Louise.CHAIX@edpsciences.org

This talk will describe a project funded by the
French Ministry for Education. This project aims
at building a tightly integrated TEX+XEmacs dis-
tribution which will be distributed to French high
schools. There is a growing demand by mathemat-
ics and physics teachers for a TEX-based solution.
The first target platform will be Windows, Linux
being second. In order to draw as many people as
possible to TEX, even novices, they must be pro-
vided with a package up to the standards of most
word processors: the users will be exposed to only
one application and not to dozens of binaries. An-
other point that keeps many people from using TEX
is not so much the (LA)TEX language itself, but that
maintaining a TEX distribution is difficult and can
be time consuming.

The XemTEX project has been submitted and
accepted for funding to build a free platform that
should be much easier to use than the current ones,
based on the XEmacs editor and a subset of the
current TEX Live distribution. The project will ad-
dress several problems, including creating an en-
hanced XEmacs mode for typesetting TEX docu-
ments, tightly integrating the viewer into XEmacs
and documenting the product. These points will be
addressed in this talk, as well as the current status
of the project, and possibly how to get funding for
such projects.

TEX on Mac OS X using teTEX and TEX Live

Gerben Wierda
Sherlock@rna.nl

Mac OS X is the successor to Mac OS (a.k.a. Mac
OS Classic). Mac OS X is based on a modern open
source Unix foundation (though most Mac OS users
will not be aware of this) and as such is currently the
most widely used desktop Unix. Since it is indeed a
Unix, the famous TEX distribution by Thomas Esser
(teTEX) may be used as a TEX engine.

Mac OS X differs with other Unixes in several
ways. Technically, there are differences most notice-
ably at the file system level, the text format level
and the graphical display level. With respect to the
latter, Mac OS X display technology is entirely based
on PDF, and as such it is a system where pdfTEX is
really “at home”.

But at least as important, there is a difference
between Mac OS X users and users of other Unix
desktops, in that they are generally far less ‘com-
puter literate’ at the technical level. Anything pre-
sented to typical Mac OS users should follow the
motto “it just works” (and without any use of Unix-
level technologies like shells). This includes handling
complexities like updating TEX on a regular basis
without having detailed knowledge of the technical-
ities involved.

Bringing TEX to Mac OS X has therefore been a
complex project with hurdles and pitfalls on many
levels. The talk will present some of these hurdles
and the solutions inspired by them, some of which
are solutions reached at in collaboration with others
or more often entirely created by others.

TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting 123

Experiences and lessons learned teaching LATEX to university students

Gary L. Gray
Associate Professor

Department of Engineering Science and Mechanics

The Pennsylvania State University

212 Earth & Engineering Sciences Building

University Park, PA 16802

USA

gray@engr.psu.edu

http://www.esm.psu.edu/faculty/gray/

Francesco Costanzo
Associate Professor

Department of Engineering Science and Mechanics

The Pennsylvania State University

212 Earth & Engineering Sciences Building

University Park, PA 16802

USA

costanzo@engr.psu.edu

http://www.esm.psu.edu/faculty/costanzo/

Abstract

This paper will describe our experiences and lessons learned while teaching LATEX
to a class of students (undergraduate and graduate students) during the fall 2001
semester at The Pennsylvania State University. This was a one-credit course
taken by 9 undergraduate students (all were juniors or seniors) and 15 graduate
students. We will discuss what material was covered in class, what resources were
used in preparing the material, and what assignments were given to the students.
In addition, we will discuss those materials and assignments that proved to be
useful and those that were not so useful. We will discuss the lessons (both peda-
gogical and LATEX-related) learned by us. In addition, based on our experiences
and feedback provided by the students, we will present those lessons learned by
the students and their recommendations for improving the class in the future.
Finally, we will give our wisdom and recommendations to those instructors who
might wish to teach a similar class at their institution.

Introduction

We supervise the work of both graduate and under-
graduate students in our group at Penn State Uni-
versity (PSU) and are, therefore, frequently read-
ing, correcting, and sharing technical documents∗

with these students. In addition, the work on which
we collaborate with our students is generally turned
into one or more journal publications. Hence, more
often than we would like, we have to face the fact
that almost all students are “brought up” on Micro-

∗When we use the term technical document, we mean a
document with many equations and figures.

soft WordTM and so their first instinct when joining
our group is to use Word for all of their writing.†

While we recognize that reasonably nice out-
put can be obtained with Microsoft Word with the
proper use of its styles, equation editor, text boxes,
and the like, we have found that not only do stu-
dents not know how to use these tools, but they do
not even know that they exist. We could, of course,
either teach them to use these tools or require that
they learn them on their own, but we are rather
enthusiastic users and evangelists of LATEX and are
not interested in translating everything they do in

†Amazingly, they even use Word to draw figures, but that
is a topic for a different paper.

124 TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting

Experiences and lessons learned teaching LATEX to university students

Word into LATEX. In addition, our (rather exten-
sive) experience with Word has been that it does
not handle long documents (such as dissertations)
well, does not handle floats well, is prone to file cor-
ruption, and frequently exhibits behavior that can
only be explained by postulating the existence of su-
pernatural forces. Therefore, we have a substantial
incentive to teach our students how to use LATEX in
their work.

In addition, we are frequently asked by students
who are taking our classes and who see the rather
nice-looking course handouts that we generate us-
ing LATEX, what we used to create the handouts.
When they hear about LATEX and the facility with
which it handles technical documents, many are in-
trigued to learn more. These students have asked
us many times if we would teach a course on how to
use LATEX.

With all of these motivating factors in mind,
the stars finally aligned in the fall 2001 semester
and we had the opportunity to teach a course about
LATEX entitled Technical Documents with LATEX to
a group of graduate and upper level undergraduate
students. In what follows, we will attempt to convey
not only what we taught in the course, but how we
made the decisions to do what we did with the hope
that this may be useful to anyone wanting to teach
a similar course elsewhere.

Class Structure and Organization

The course we taught in the fall 2001 semester was a
one-credit course that met once per week for 75 min-
utes.∗ We met in a classroom in which each student
had a laptop computer with (LA)TEX and with access
to the web. The required text for the course was the
3rd edition of Kopka and Daly’s excellent book on
LATEX (Kopka and Daly, 1999), though we also sug-
gested that each student obtain a copy of Grätzer’s
book that nicely covers AMS-LATEX (Grätzer, 2000).
The course met 7 weeks of our full 15 week semester.

TEX Resources at Penn State At the time the
course was offered, we had recently switched to Mac
OS X as our primary operating system, but our uni-
versity computing labs had not yet done so and were
still running Mac OS 9. We used, and very much
liked, the combination of TEXShop (Koch, 2003) as
a front-end and Wierda’s TEX distribution (Wierda,
2003), so we had to make the decision on what im-
plementation of TEX to have our Center for Aca-
demic Computing (CAC) install in our computing
labs. One of the authors had a little experience with

∗The vast majority of courses at PSU are 3-credit courses
that meet 2–3 times per week for a total of 150 minutes/week.

both CMacTEX (Kiffe, 2002) and OzTEX (Trevor-
row, 2002), and since, at the time, CMacTEX was
available for both Mac OS 9 and Mac OS X, we de-
cided to go with CMacTEX.

Penn State has an extensive system of public
computing labs and we would estimate that approx-
imately 20% of the computers are Mac OS-based and
the remainder are Windows-based machines. Since
neither author had extensive experience with the in-
stallation or use of TEX under Windows, we chose
not to ask CAC to install TEX under Windows since
neither of us was likely to be able to answer any
questions that might come up. We ended up demon-
strating CMacTEX on the first day of class and told
the students that they are, of course, free to install
LATEX on their home or lab computer. We told them
that installations are available for virtually every op-
erating system, though we only had experience with
TEX on Macs, so if they needed help with another
OS, they would have to see our web site for a list of
resources.

Administrative Details In the advertisement for
the class and on the first day of class, we told stu-
dents that we would:

• Give them an introduction to the typesetting
language LATEX through the use of tutorials, ex-
ample documents, and homework assignments.

• Show them how to easily write a professional-
looking dissertation, conference paper, and/or
journal paper. We emphasized the word “look-
ing” because the content is up to them.

• Show them how to create a professional-looking

presentation (such as this) with LATEX.

When we taught the class, we had a combined 19
years of experience with LATEX so it was clear that
we could not teach the students everything we knew
about it. In addition, our experience was almost en-
tirely as LATEX users and not as LATEX programmers
(though this course turned out to be a good excuse
to learn a little about programming in LATEX —more
on that later), so the knowledge we would convey
to the students was going to be of a very practical
nature. Our goal for the course was to get the stu-
dents started and to point them to the numerous
other resources that are available for help with and
information about LATEX.

There were weekly homework assignments and
all homework was to be handed in electronically. In
addition, the students certainly needed to be com-
fortable with a computer.† Therefore, we told the
students that they needed to be able to:

†Contrary to what many of us “old timers” think, many of
today’s undergraduates only know how to surf the web, send

TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting 125

Gary L. Gray and Francesco Costanzo

• move files between computers (i.e., either by file
sharing, ftp, email, or the web);

• download, install, and launch applications (for
those students wanting to install and use TEX
on their personal or lab machines);

• use a text editor.

Grades are a necessary evil in every course, and
this course was no different. The grade for each stu-
dent was entirely based on their homework, which
was 75% of their grade, and their class attendance,
which was 25% of their grade. No exams were given.
We chose to make attendance a significant portion of
their grade because we knew that a lot of the learn-
ing would be done in the classroom and we didn’t
want students to miss out on that. There was weekly
homework and the students always found the next
assignment at the end of the current week’s lecture
(more on the lecture format later). We tried to cre-
ate homework assignments such that each one would
not take more than 2–3 hours to complete. We told
the students that if an assignment was taking them
more time than that, then they were probably head-
ing in the wrong direction and that they should see
us. Despite this, when turning in an assignment,
we would have some students tell us that they had
spent 9 hours on the assignment and they still had
not finished. We can’t emphasize enough that this
behavior seems to be rather common and is, most
certainly, counterproductive. Therefore, it is impor-
tant to stress to the students that they should not
“beat their head against the wall” trying to get these
things done —they should seek assistance.

We created a rather simple web site for the
course where students could:

• find course announcements;

• download the course information as either a
PDF file or the .tex course file;

• download the lectures as either a PDF file or
the .tex course file;

• download the .tex source of a number of sam-
ple documents with some some reasonably com-
plex formatting (e.g., the ad for the course,
the course information, an equation sheet for
a sophomore-level course, etc.); and

• find links to TEX-related resources on the web.

The web site can be found at:

〈http://www.esm.psu.edu/courses/latex-course/〉.

Taking a cue from an old Chicago voting motto, we
told students to “visit it early and visit it often”.

and receive email, and send and receive instant messages.
Even seemingly mundane things like files attached to email
messages will perplex some students.

Finally, we wanted students to take the course
seriously and didn’t want students looking for an
easy one credit. We told the students that they had
to want to be there to learn LATEX and if they were
looking for an easy one credit, then they might like
to find another course.

Class Content

In creating the course material to be presented, we
spent some time looking around on the web to see if
anyone had created a similar course. While there
were several courses that had been created, they
were either in a language other than English or did
not cover as much material as we hoped to do. In
addition, it is generally the case that it is hard to
take someone else’s course notes and use them as
your own. So, we decided to create the course from
scratch, using experience, Kopka and Daly (1999),
and Grätzer (2000) as our guides.

Largely following the order of presentation in
Kopka and Daly, the seven lectures we created were
entitled:

1. Introduction & Basic LATEX

2. Displayed Text

3. Typing Mathematics in LATEX

4. Multiline Equations in AMS-LATEX

5. Graphics & Floats

6. User Customization & Bibliographies

7. The PSU Thesis Package

Introduction & Basic LATEX In the first lecture,
we outlined the course objectives, discussed what
LATEX is and why it is useful for students to know
it, and told the students our expectations of them.
We then covered a section entitled Getting Started

with LATEX, in which we discussed:

• the overall structure of a LATEX document;

• the general structure of LATEX commands;

• environments and declarations;

• characters, words, sentences, and paragraphs;

• quotes, hyphens, and dashes;

• classes, class options, and packages;

• page layout (e.g., headers, footers, margins).

The last part of the first lecture was entitled Putting

it All Together, in which we demonstrated how to
put all the elements discussed previously together
in order to create a typesettable document. Finally,
we demonstrated how to typeset a document and
view the resulting output using CMacTEX. The first
homework assignment consisted of exercises out of
Chapters 2 and 3 of Kopka and Daly.

126 TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting

Experiences and lessons learned teaching LATEX to university students

Displayed Text In the second lecture we talked
about:

• understanding and changing font characteris-
tics (i.e., \emph, font sizing commands, families,
shapes, and series);

• centering and quoting text;

• lists;

• typewriter-like tabs, the tabbing environment;

• boxes (i.e., how TEX defines boxes, \parbox,
\rule);

• tables (we did not cover the booktabs pack-
age (Fear, 2000) as it has been a recent discov-
ery, but we will do so in the future).

The second homework assignment consisted of exer-
cises out of Chapter 4 of Kopka and Daly.

Typing Mathematics in LATEX The first two lec-
tures were largely based on material from Kopka and
Daly (1999), but Lectures 3 and 4 were largely based
on Grätzer (2000). We use AMS-LATEX exclusively,
so we began by telling the students that everything
we would be covering would assume that they had
loaded the following AMS-LATEX packages and op-
tions (American Mathematical Society, 2000).

\usepackage{amsmath}

\usepackage{amssymb}

\usepackage{exscale}

\usepackage[mathscr]{eucal}

We then discussed features of LATEX and AMS-
LATEX that are relevant for inline mathematics and
single-line displayed mathematics. We emphasized
to the students that the mathematics in a document
is part of the narrative and should be punctuated as
such. In addition, we discussed:

• equation numbering;

• arithmetic operations;

• superscripts and subscripts;

• resources for typesetting mathematics (Swan-
son, 1999; Higham, 1998);

• ellipses, integrals, roots;

• text within mathematics;

• delimiters;

• operators;

• math accents;

• spacing with mathematics;

• math alphabets and symbols (e.g., bold math-
ematics); and

• generalized fractions.

The third homework assignment consisted of exer-
cises out of Chapter 5 of Kopka and Daly, but with
the requirement that AMS-LATEX structures be used
when available.

Multiline Equations in AMS-LATEX Again rely-
ing on Grätzer (2000) for source material, we then
presented an entire lecture on displayed multiline
equations using AMS-LATEX. We covered the philos-
ophy behind AMS-LATEX’s multiline equation struc-
tures and then went on to cover each new environ-
ment introduced by AMS-LATEX. We covered:

• grouping formulas and gather;

• splitting long formulas and multline;

• breaking and aligning formulas;

• numbering of formulas, equation tags, and the
subequations environment;

• organization of equations into multiple columns
via the align environment, the flalign envi-
ronment, and the alignat environment;

• subsidiary math environments, that is, split,
aligned, alignedat, and gathered;

• adjusted, multi-column math environments, for
example, matrix, cases, and pmatrix

The fourth homework assignment consisted of two
handouts: the first was two pages from a 1963 pa-
per from a Russian mathematical journal (Melnikov,
1963) and the second was Section 8.5.1 from a book
on numerical linear algebra (Golub and Van Loan,
1989). We asked the students to typeset the pages
we had given them. In the case of the paper from
the mathematical journal, we wanted students to
improve the typesetting of the text and equations
and in the case of the pages from the book on nu-
merical linear algebra, we wanted the students to
simply replicate the layout.

Graphics & Floats The fifth lecture covered the
inclusion of graphics in LATEX via its float mecha-
nism. We covered the:

• graphicx package (Carlisle and Rahtz, 1999)
with its includegraphics command and op-
tions such as:

– scale

– width, height, keepaspectratio

– angle

– bb

• lscape package (Carlisle, 2000);

• importing of graphics and troubleshooting;

• color package (Carlisle, 1999), including the
monochrome, dvipsnames, and usenames op-
tions, and setting the color of a page and text;

• float environments: figure and table.

The fifth homework assignment asked the stu-
dents to create a one-page flyer conveying any mes-
sages or advertising anything they liked. We told

TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting 127

Gary L. Gray and Francesco Costanzo

them that they had learned a fair bit about LATEX,
so they should try and make it interesting and cre-
ative. We also told them that the flyer had to in-
clude some mathematics. In addition to this, the
flyers were to include:

• the use of a background color for the page;

• the tasteful and artistic use of a number of col-
ors for the text;

• the use of at least three different JPEG images
(.jpg), at least one of which must be scaled and
one of which must be rotated.

User Customization & Bibliographies Mate-
rial for this lecture came out of various sections
of Kopka and Daly (1999); in particular, we asked
the students to read Chapter 7, Sections 4.3.6, 8.3.3,
and Appendix B. In regard to customizing LATEX,
we discussed:

• counters: how to set and reset them, and how
to define new counters;

• how LATEX uses lengths and how to: set a length
using either \settowidth or \setlength, de-
fine a new length using \newlength, and add
to a length using \addtolength;

• the creation of user-defined commands, both
with and without arguments, as well as the re-
definition of commands;

• the use of the \input command to read in “boil-
erplate”;

• the scope of commands and environments de-
fined in the preamble versus the scope of those
defined within environments.

With regard to bibliographies, we began by dis-
cussing the basic and simple environment for gener-
ating a bibliography via the thebibliography en-
vironment. In addition, we talked about how one
can change the title of the bibliography using either
\refname or \bibname, depending on the class used.
We also discussed the limitations and disadvantages
of using the thebibliography environment without
the aid of BibTEX. We emphasized that BibTEX
provides a way to use a database of references (via a
.bib file), along with a bibliography style definition
(found in .bst files), to automatically generate bib-
liographies. This is useful for the following reasons:

• one can maintain any number of reference data-
bases and BibTEX will only use those references
it needs; this is especially nice when one uses
many of the same references in several different
documents;

• one can use the same databases of references
and the chosen .bst file will format them au-
tomatically.

We also briefly discussed the natbib package (Daly,
2000) for author-year citations and the use of End-
NoteTM (ISI ResearchSoft, 2002) with BibTEX.

The sixth homework assignment consisted of
exercises out of Chapters 4 and 7 of Kopka and Daly.

The PSU Thesis Package As preparation for this
seventh and final lecture, the authors chose to under-
take their first major LATEX customization/program-
ming project by creating a document class conform-
ing to the Thesis Guide: Requirements and Guide-

lines for the Preparation of Masters and Doctoral

Theses (The Pennsylvania State University, 2002),
which is published by Penn State’s Graduate School.
Among many other things, this guide specifies the
detailed technical requirements that each thesis or
dissertation must satisfy. These requirements in-
clude, among other things, the specification of: line
spacing, font size, front matter, chapter formatting,
margins, page number location, etc. All of these re-
quirements can be rather overwhelming for students
who, while trying to implement them, are also des-
perately trying to actually write their thesis. In ad-
dition, as we are all aware, LATEX can do a wonder-
ful job of removing the tedium of assembling a Title
Page, Table of Contents, List of Figures, List of Ta-
bles, Signature Page, and all the other little things
that must go into a thesis. The class we created,
psuthesis.cls, is heavily documented, should be
relatively easy for individuals at other institutions
to modify, and can be found on one of the pages at
the course web site (Gray and Costanzo, 2002).

Our lecture gave an overview of the thesis class
and an example thesis template illustrating the use
of the thesis class. There was no homework associ-
ated with this lecture.

Lecture Format and Creation

We estimate that each 60–75 minute lecture took us
anywhere from 4–6 hours to prepare. The first two
lectures were prepared as slides, presented as PDF

files, using FoilTEX (Hafner, 1998). We both found
this to be awkward since we had to worry so much
about the amount that went on each slide. It was
also more difficult to show the “natural” behavior
of LATEX since, by their very nature, slides or foils
are heavily modified to use larger fonts, landscape
orientation, etc. Finally, the slide format impeded
us from adding little tidbits and changing the LATEX
source during a lecture since, often times, the ad-
dition or deletion of one or two words would com-
pletely alter the formatting of a slide. Therefore,
we decided to use the standard article class and
create lectures that simply looked like a standard

128 TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting

Experiences and lessons learned teaching LATEX to university students

LATEX article. Before each lecture (sometimes only
a few minutes before, but always before) we would
post the .tex source for the lecture as well as the
corresponding .pdf typeset output on the class web
site. After each lecture, we would re-post the lecture
(source and output), thus incorporating any changes
to the document that took place during the lecture.
Each lecture was presented by connecting a laptop
to an LCD projector and using TEXShop to show the
source and preview.

We tried our best not to take the entire class
time to talk about LATEX since 75 minutes is a long
time to try and focus on someone standing at a com-
puter and showing LATEX source and output. On
the other hand, as most instructors will testify, it
is nearly impossible not to have one’s lecture ex-
pand to fill the available time. Therefore, with only
two or three exceptions, our lectures took the entire
75 minute time period. When we teach this class in
the future, we will unquestionably leave more time
to work with the students in the classroom.

Finally, our experience in other classes in which
we used this same computing environment, that is,
an environment in which each student is at a laptop
that is connected to the Internet, has been that it
was terribly tempting for students to surf the web,
check their email, and/or instant message with their
friends rather than listen to what we had to say.
Therefore, we made it clear from the first day of class
that students were welcome to do all of these things
at the computers, they simply were not allowed to
do it during our class. We found that the students
generally respected our request.

Student Response to the Class

At the end of each semester, it is the policy of our
department to have students anonymously evaluate
the course they are about to complete. In addition
to generic questions about the instructor and the
course requiring numerical evaluations, three addi-
tional questions are asked for which the students
give written answers. These questions are:

Q1. What did you like best about this course?

Q2. What did you like least about this course?

Q3. What suggestions do you have for improving
this course?

Question 1 Ignoring responses such as “LATEX was
explained well by the instructors”, which, while nice,
doesn’t really tell us much, student response to the
first question emphasized:

• the utility of the web site;

• the teaching of LATEX through examples;

• that the course assumed no prior knowledge of
LATEX;

• that LATEX provided an alternative to Microsoft
Word; and

• that they were happy to be learning a skill that
would be useful in their careers.

Question 2 To the second question, we found the
following themes among the student responses:

• there was no instruction on how to use partic-
ular software packages for LATEX;

• there was too much work for a 1-credit course;

• some of the homework took them much too long
to do;

• there were numerous problems with CAC com-
puter labs that prevented them from doing their
homework; and

• the course felt rushed.

Question 3 To the third question, we overwhelm-

ingly heard that:

• we should spread the course out for at least 12
weeks, if not the entire semester;

• the homework should be graded more leniently;

• the class should meet more often so that each
lecture is shorter;

• the homework should be shorter or spread out
more; and

• we should provide help to people with Windows
machines.

So, what conclusions can we draw from these
comments that would allow us to improve the course
the next time we teach it? Well, the responses to the
first question tell us that we should: continue to pro-
vide resources and information via the class web site,
continue to teach using a myriad of examples, and
teach the course at a very introductory level. The
responses to the second and third questions indicate
that:

• too much was taught in too little time and the
course should be spread out over a larger part
of the semester;

• classes should be shorter and meet more often
(this would also allow us to make each home-
work assignment shorter); and

• we should provide additional support for those
students who are having trouble getting TEX to
work on either their own computer or a public
computer.

On the other hand, it has been our experience, that
in all courses that involve computers and program-
ming, students almost invariably find them to be

TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting 129

Gary L. Gray and Francesco Costanzo

more time-consuming than they would like. Thus,
some of the feedback was not unexpected. We do
agree, however, that the course could and should
be spread out throughout more of the semester. In
addition, we will more strongly encourage students
to seek out our assistance rather than beating their
heads against the wall.

The one problem the students were having that
we will have the most difficulty reconciling is the
issue of getting TEX running on either public com-
puters or personal machines. We hope that we can
fix the issue of running TEX on public machines by
using TEXShop along with Wierda’s teTEX-TEXLive
distribution. As for getting students up and running
on their own machines, we will most likely proceed
as we did the first time we taught the course, that
is, we will tell the students that we will only support
the public machines and if they want help on their
personal computers, they will have to seek out help
on the web.

Thoughts for the Future

Based on student feedback, the utility of (LA)TEX for
academic work, particularly at the graduate level,
and our experience teaching this course, we are left
with the question: Is there a place for a course like
this in the university curriculum? There is no ques-
tion that the majority of students in the course, de-
spite thinking it was too much work, expressed a
great deal of enthusiasm for it. In addition, we have
found via a recent follow-up survey of students who
took our class that more than half the students in
the course continue to use what they learned about
LATEX on a regular basis. We did find, however, some
reservations about offering this course on the part
of our department. There were people who felt that
this was not the kind of course that should be offered
at a university for credit. They felt that it should
be offered as an “extra-curricular” activity. Given
the importance of publishing in academia, at least
for graduate students, and the fact that all graduate
students (and many undergraduate students) need
to write a substantial thesis or dissertation during
their tenure as students, we feel that a practically
important course such as this one can be an impor-
tant part of the curriculum.

We welcome the thoughts and experiences of
other instructors in academia on these issues.

Acknowledgements

We would like to thank CAC for providing the li-
censes for CMacTEX. In addition, we would like to
thank all of those students who have provided valu-
able feedback on our Penn State thesis class.

References

American Mathematical Society. “The AMS-LATEX
packages”. Available from CTAN, macros/
latex/required/amslatex/, 2000.

Carlisle, David. “The color package”. Available
from CTAN, macros/latex/required/
graphics/, 1999.

Carlisle, David. “The lscape package”. Available
from CTAN, macros/latex/required/
graphics/, 2000.

Carlisle, David and S. Rahtz. “The graphicx

package”. Available from CTAN, macros/
latex/required/graphics/, 1999.

Daly, Patrick W. “The natbib package”. Available
from CTAN, macros/latex/contrib/natbib/,
2000.

Fear, Simon. “The booktabs package”. Available
from CTAN, macros/latex/contrib/
booktabs/, 2000.

Golub, Gene H. and C. F. Van Loan. Matrix

computations. Johns Hopkins Series in the
Mathematical Sciences; 3. Johns Hopkins
University Press, Baltimore, Md., 2nd edition,
1989.

Grätzer, George. Math into LATEX. Birkhäuser,
Boston, 3rd edition, 2000.

Gray, Gary L. and F. Costanzo. “Penn State
Thesis Class”. Available from http:

//www.esm.psu.edu/courses/latex-

course/lectures.html, 2002.

Hafner, James. “The FoilTEX package”. Available
from CTAN, macros/latex/contrib/
foiltex/, 1998.

Higham, Nicholas J. Handbook of Writing for the

Mathematical Sciences. Society for Industrial
and Applied Mathematics, Philadelphia, PA,
2nd edition, 1998.

ISI ResearchSoft. “EndNote”. Available from
http://www.endnote.com/, 2002.

Kiffe, Thomas R. “CMacTEX”. Available from
http://www.kiffe.com/cmactex.html, 2002.

Koch, Richard. “TEXShop”. Available from
http://darkwing.uoregon.edu/∼koch/

texshop/texshop.html, 2003.

Kopka, Helmut and P. W. Daly. A Guide to LATEX:

Document Preparation for Beginners and

Advanced Users. Addison-Wesley, Harlow,
England, 3rd edition, 1999.

Melnikov, V. K. “On the Stability of the Center
for Time-Periodic Perturbations”. Transactions

of the Moscow Mathematical Society 12, 1–56,
1963.

130 TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting

Experiences and lessons learned teaching LATEX to university students

Swanson, Ellen. Mathematics into Type. American
Mathematical Society, Providence, RI, updated
edition, 1999. Updated by Arlene Ann O’Sean
and Antoinette Tingley Schleyer.

The Pennsylvania State University, Graduate
School. “Thesis Guide: Requirements and
Guidelines for the Preparation of Masters and
Doctoral Theses”. Available from http://www.

gradsch.psu.edu/enroll/thesisguide.html,
2002.

Trevorrow, Andrew. “OzTEX”. Available from
http://www.trevorrow.com/oztex/, 2002.

Wierda, Gerben. “teTEX-TEXLive Distribution”.
Available from http://www.rna.nl/ii.html,
2003.

TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting 131

The (LA)TEX project: A case study of open source software

Alexandre Gaudeul
University of Toulouse

France

alexandre.gaudeul@univ-tlse1.fr

Abstract

The TEX typesetting software was developed by Donald E. Knuth in the late
1970s. It was released with an open source license and has become a reference in
scientific publishing. TEX is now used to typeset and publish much of the world’s
scientific literature in physics and mathematics.

This case study serves as a critical examination of the stylized facts uncovered
in previous studies of other open source software projects, such as GNU/Linux, an
operating system, and Apache, a web server. It is sponsored by CNRS, a French
research agency, and is supported by the University of Toulouse in France and
the School of Information Management and Systems in Berkeley.

The comparison centers on the historical development of the project, the
organization, both formal and informal, that supports it, the motivations of the
developers, and the various dynamics that are at work and influence the project.

The case study explores the economic impact of the TEX software which
is sold through TEX-based commercial applications and used in the typesetting
industry and various institutions. It is an exploration of how the open source
nature of the program made a difference relative to what would have happened
had it been commercial software.

1 Motivation

I have been working for one year now on a case study
of TEX as open source software. Since TEX branched
out into many different projects, this case study is
in fact a sum of case studies about those different
projects, and a reflection on the dynamics of the
whole project. This whole project will be called the
TEX project or simply ‘TEX’. My aim is to pro-
vide some elements to improve the way in which
open source software projects (‘OSSPs’) are man-
aged, and also help policy makers gain a better un-
derstanding of the open source (‘OS’) phenomenon.1

This case study serves as a critical examination of
the stylized facts uncovered in previous studies of
other open source software projects. Some better
known and studied OSSPs are GNU/Linux, Perl and
Apache (an operating system, a programming lan-
guage and a web server, respectively). The TEX

This research paper includes open-ended questions and

projects for future research. This is very much a work in

progress, and no statements here are definitive. I am very

interested in feedback from all participants in the TEX com-

munity, and you are invited to point out my errors, false

opinions and omissions.
1 For simplicity, the difference between free and open

source software will not be dealt with here, and the term

‘open’ will be used.

project differs from those projects: While TEX did
fulfill unmet software needs and was general-purpose
software, its users’ community was not necessarily
technically sophisticated, and the software was not
part of a computing infrastructure. It was indeed
quite specialized (font design, typesetting) and what
is more, had to face intense competition on all sides,
from word processing software to industrial publish-
ing software.

There are few case studies that deal with one
open source software project and try to look at its
functioning in economic terms. In the last few years,
open source software economics has been the subject
of much empirical and theoretical research. That
research relied on an examination of the most well-
known and successful OS projects, or on the study
of limited aspects of open source software, based on
some partial statistical measures like the number of
contributors, lines of codes, bugs or release dates.

This case study tries to go beyond these well-
trodden areas by studying a less well-known software
project, which differs in many ways from those that
have already been studied; it also aims at having a
global vision of its history and functioning so as to
generate new measures of the economic impact of
open source. The conclusions from this study chal-

132 TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting

The (LA)TEX project: A case study of open source software

lenge the consensus built from previous case studies
on open source software (‘OSS’) development. This
case study goes deeper into the complexity of the in-
ternal working of the various TEX projects, and elim-
inates the ‘survivor’ bias present in previous case
studies by going into the TEX project problems en-
countered along the way as much as the successes.

This case study is sponsored by GREMAQ, a
CNRS research group in mathematical economics at
the University of Toulouse in France, and IDEI, a
research institute in industrial economics. A widely
attended conference on the economics of the soft-
ware and Internet industries is held in Toulouse ev-
ery year, and open source software is one important
research area for those two laboratories. This case
study also benefited from the support of the School
of Information Management Systems in Berkeley. I
have worked with Jacques Crémer and Jean Tirole
in France and Hal Varian in the USA, and I thank
them for their advice and suggestions. I also thank
the many TEX developers, maintainers and associ-
ations members who answered my questions with
unflappable kindness.

In the first part of this paper, the theoreti-
cal background to this case study is presented; in
the second part, the choice of TEX as a case study
subject is motivated; and the third and main part
presents some preliminary findings.

2 Research background

There are three main themes in the existing body
of economic literature on open source software.
Economists first tried to explain how people could
collaborate freely and for free and produce in that
way valuable information goods. Some principles
were then expressed for the regulation of such eco-
nomic activity, and finally, tools were devised to
evaluate the welfare impact of OS production.

How do open source software projects work,
and why do they work so? The literature on this
topic builds upon the theory of incentives: the way
somebody is motivated determines what he will do.
Bessen (2002) defined the different categories of par-
ticipants in an OSSP and their motivations. Core de-
velopers are those whose work determines the pace
of the overall development, as other developers’ work
depends on what they do. Satellite developers are
those who build upon the work of core developers
to add features that are geared to special inter-
ests. Other developers make that work available to
the general public by building interfaces to the pro-
gram, maintaining distributions, or reporting prob-
lems with the software. There is generally an organi-
zation that coordinates the work of every developer

and defines some goals for the project. That organi-
zation usually builds around an individual, usually
the initiator of the project but, with time, coordi-
nation and development tasks are shared.

The existence of OSSPs can be explained with
simple economics — OS software is cheaper than pro-
prietary ones, developers want to work on it to de-
velop their reputation and then trade on it in the
job market or to develop an expertise in software
they use professionally. It can also be explained
with other reasons that Richard Stallman of the Free
Software Foundation was instrumental in promot-
ing — free expression of creativity, sense of belonging
in a community, ideological motivations, wanting to
reciprocate the gifts in software codes made by oth-
ers, etc. From a technological point of view, the
birth of OSSPs may have been inevitable: as people
learned how to program and could customize soft-
ware to their own needs, they developed a common
body of work and shared it like general knowledge.

The second theme in economic research on OSS

deals with the economic principles that must inform
their regulation and legal environment. It uses the
theory of organization and public economics to de-
termine how OSSP should be regulated to produce
maximum welfare. There is for example an impor-
tant debate over what license terms are best in what
setting. License terms balance the need for control
over the development of the software versus the pos-
sibility of change under the influence of others, and
balance private incentives versus group incentives:
Proprietary license terms give individual develop-
ers more control over their work, while GPL-type li-
censes reduce individual economic incentives — the
economic surplus generated by software cannot be
appropriated— but may generate higher overall wel-
fare. BSD-type license terms stand in between. The
legal environment also influences the level of in-
novativeness in software design— people may not
want to contribute their best ideas to OSSPs — but
a wider pool of developers who are not concerned
about the acceptability of their ideas to the wider
users’ community may end up generating more orig-
inal ideas. License terms also influence how the wel-
fare will be distributed, as they may favor develop-
ers vs. end-users. Finally, proprietary software fa-
vors efficient coordination in a closed environment at
the expense of keeping development secret to most
people.

The third theme in OSS economics is the inter-
action between not-for-profit and commercial soft-
ware. Industrial economics and game theory ex-
plain how both types of development methods com-
pete and complete, and how commercial firms use

TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting 133

Alexandre Gaudeul

OSS and draw on the OS developers’ community.
The various strategies for making money on OSS

are studied— selling CDs, manuals, developing pro-
prietary software based on OS and using it for pro-
fessional purposes or selling it to the public, selling
advice to OSS users, etc. The efficiency with which
both types of software are developed are compared,
as well as the end-product’s quality and how they
compete on the software market. Because we al-
ready have tools to evaluate the welfare effects of
proprietary software, the comparison between OSS

and proprietary ones gives some leads for the ap-
praisal of their welfare effects.

3 A reference point: GNU/Linux

Before presenting of some preliminary findings, the
main differences between TEX and Linux are out-
lined; this gives a reference point to people who
learned about open source from the example of
Linux. I also motivate the choice of TEX as the sub-
ject of this case study. The TEX project differs in
many important ways from the Linux project. They
were not developed in the same period, TEX has a
much longer history, and they are distributed un-
der different license terms. The TEX project’s size,
evaluated by the number of people who develop TEX
and LATEX, is considerably smaller than the size of
GNU/Linux project; as a matter of fact, GNU/Linux
distributions generally include TEX and LATEX. Fi-
nally, the goals of the projects were different.

Donald E. Knuth developed the TEX system
in the late 70s, before the Internet came to be the
tool it is today for organizing open source communi-
ties. The community surrounding the software went
through many changes over many years, accompa-
nying the evolution in the standards used for pub-
lishing and in the way software developer commu-
nities work. Linux, on the other hand, was started
in the 90s, relied on the existing open source com-
munity, and used tools already developed for the
GNU project and others. The TEX project provides
a long-term view of the history of an open source
software project. Its relatively self-contained devel-
oper community went through several stages in its
development: this study may thus help in predicting
the future of other more recent open source software
projects.

TEX is a medium size software project; it is not
an operating system like Linux, but is still a com-
plete typesetting system with many interdependen-
cies. TEX provides a sufficient level of complexity
to be the subject of a self-contained case study, but
small enough to be studied as a whole. The project
can be understood without relying on catch phrases

and slogans, unlike many studies of Linux.
The communities that grew up around the two

systems were different. TEX was developed by aca-
demics as part of their research programs, publish-
ers who used it for typesetting books and journals,
and developers who provided commercial versions
of the software. Development of TEX was prag-
matic, funded by government research programs and
universities, by its release under proprietary license
terms, or from the revenues of selling CDs and manu-
als. Linux on the other hand drew a community that
was motivated by more abstract, ideological goals —
building an alternative to Microsoft— or by the pro-
gramming challenge — getting to work on an oper-
ating system. Of course, the contrast should not be
pushed too far; independent, ‘amateur’ developers
who were not motivated by profit also contributed
to the development of TEX.

The license under which TEX is distributed is
essentially a BSD type license, while Linux was re-
leased under the GPL. Their license terms made
a difference in the way both software developed;
BSD licensed software must compete with propri-
etary systems based on the same source code. Be-
cause of that higher level of competitive pressure —
and maybe for other reasons too — BSD projects are
usually more disciplined than GPL ones; all OS de-
velopment efforts bear onto the same, coherent dis-
tribution. This guarantees in principle that no de-
velopment effort is wasted and that the OS software
doesn’t split into many incompatible projects.

The LATEX Project Public License thus pro-
moted the creation of a single common TEX distri-
bution; all changes to it must be distributed with
the original distribution. The TEX system was thus
very stable, but it was difficult for newcomers to
integrate and influence the team that decided what
that distribution was going to consist of. There were
times when many competing versions of the same
package existed until one became dominant and a
part of the standard distribution. Therefore, no one
person asserted him/herself as a leader for the TEX
project; its development was the product of the com-
petition between packages, and each package in TEX
remained under the control of one person or of a sta-
ble and limited set of developers.

Modules in Linux drew a more diverse set of
contributions and there was thus the need for a
leader who would coordinate and integrate contri-
butions. D.E. Knuth implemented changes in TEX’s
core (tex.web and the kernel) after consultation
with other developers but essentially alone, as he
took sole responsibility for the TEX core. Linus Tor-
valds, on the other hand, had to integrate changes in

134 TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting

The (LA)TEX project: A case study of open source software

the code that were proposed by others, because any-
one could take the kernel and make his own changes
in it. This is how D.E. Knuth’s authority was built
into the system while Linus Torvalds had to assert
his authority based on his charisma as a leader.

TEX was user-oriented from the beginning; it
was meant to provide an interface between authors
and publishers. People without any programming
background were to be able to learn how to use it.
This is in contrast with Linux or Apache, which
were meant for people with a programming back-
ground. This difference allows one to test whether
OSS can be popular beyond the programming com-
munity. While Linux versions were released very
frequently, the users’ orientation of TEX led its de-
veloper to release new versions of their packages only
after consultations with the user base, and only after
having made sure they would maintain compatibil-
ity with older versions of the software and that they
did not contain serious bugs. The development of
Linux was made in the open while TEX packages
were mostly created in small developers’ groups and
released only after full completion. In both cases,
though, the interface between developers and users
was taken care of by the people who managed the
distributions of the software — those who organize
and classify others’ independent work, make their
code work together, and choose which packages to
include in a standard installation of the software.

4 Some preliminary findings

This part shows you have to be very careful when
writing the initial code of a software project, as it
will influence all future development. Any choice at
this stage should be carefully evaluated using the
lessons from the past.

This part is organized into three main sec-
tions. The first deals with the output from the TEX
OSSP — the software code. Its initial quality influ-
enced its later development. The software’s quality
is evaluated by comparing it to equivalent propri-
etary software. The second section examines the
software development process and its dynamics, and
will focus on its leadership: OSSPs need independent
minded leaders who begin by implementing their
ideas and only then share the result with others.
The third section is a study of the framework in
which the development of the software took place —
it is concerned with the governance and institutional
design of OSSPs. TEX provides a rare example of an
OSSP where users organized to influence the devel-
opment of the software.

4.1 TEX code: Characteristics and quality

4.1.1 Importance of the initial code

There is a conflict between the perfection of the cod-
ing of the initial software and the ease with which it
can be changed afterwards. Knuth wanted to pro-
duce compact software that would run fast and be
devoid of any bugs. He thought a stable system was
preferable to an evolving one. This was justified for
TEX, as it was to become a system used by non-
specialists. The OS development model— ‘release
early and often’— would have led to much confu-
sion in the user community, and to compatibility
problems for those using different versions of TEX.

Knuth’s code was originally organized in mod-
ules but, as it got optimized, the code became very
tightly integrated. Each part became dependent on
each other and the whole began to look monolithic.
The language that was chosen at the beginning (Pas-
cal) soon went out of fashion, and the software’s re-
strictive license terms made it difficult to change, as
changes couldn’t gain official status.

On the other hand, while the software remained
monolithic, TEX82 was a complete reworking of
TEX78 that made many settings parametric instead
of automatic, making powerful macros from TEX’s
primitives possible. This satisfied TEX developers
for a long while, during which the core code re-
mained firmly under Knuth’s control.

This is why it is only quite late in TEX’s de-
velopment that the core’s limitations became ap-
parent, and it became necessary to make it eas-
ier to change, for example by organizing its mod-
ules into libraries. TEX’s license terms are such
that the name “TEX” is reserved, so that Knuth
was able to freeze TEX’s core. This would not have
been a problem — developers always could take the
TEX program and rename it — but since Knuth did
not designate a successor, there was no focal point
on which developers could synchronize. Developers
were not able to change the core, or more to the
point, couldn’t initiate a group dynamic to adopt
the changes they made. This would have required
a long-term commitment, perfect knowledge of the
program and close coordination since any change by
one would affect all the others. It soon became clear
it was not possible to lead such a project with peo-
ple linked only through electronic means; the core
of TEX had to be reworked by a devoted team so as
to make it modular.

This task was taken up by the NTS team, but
it took too long to deliver a finished product. When
NTS was finally delivered, it was not used except for
experimental purposes. This shows the importance

TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting 135

Alexandre Gaudeul

of getting things right in the first place; by the time
the program had been rewritten, most TEX users
and developers had preferred to base their future
use of TEX on other, less ambitious, alternatives,
such as pdfTEX.

In summary, independent development of the
program was delayed because TEX evolved into a
monolithic program that was intended to become
a standard in publishing and was developed in a
closed academic setting. While Knuth’s objectives
were realized, subsequent development was difficult,
in a new setting where TEX users and developers
had to coordinate through electronic means and the
OSS developer community was established around
concepts and tools different from those of the first
TEX implementors. The TEX program had to be
translated into the now-ubiqitious C programming
language, and when the rewriting of the core into a
modular structure proved impossible, the efforts had
to be directed towards helping TEX users manage
the TEX legacy by making it compatible with the
new typesetting standards.

On the other hand, it is not clear that TEX
could have been developed from the beginning in
an OS fashion. While the core did not get changed
in an OS way, the program did attract a lot of in-
dependent development, notably on LATEX. That
TEX’s core was not developed strictly according to
OS paradigms could be evidence that OSS develop-
ment methods are only appropriate when a base
product has already been completed but are diffi-
cult to put into practice for the base product. It is
also possible this was due to the nonexistence of an
organized OSS developer community at the time.

4.1.2 Impact of TEX on innovation and
welfare, and evaluations of quality

In this section, the quality of the software from var-
ious points of views — users, developers, and com-
puter science researcher— is compared with com-
peting proprietary software.

There was no software even remotely up to the
standards of TEX when it was developed.2 The gen-
eral program used at that time for typesetting was
called ROFF, a text formatting language/interpreter
associated with Unix, and for a long time there was
some competition between the partisans of ROFF

and TEX. The main competing software for the ca-
sual user is now Microsoft Word. Even though Word
is WYSIWYG while TEX is not, and the audience is
therefore very different, the two compete because

2 With the exception of a couple of very expensive, pro-

prietary systems, e.g., Penta. Ed.

TEX saw itself as a potential standard for document
exchange. The main competing software for type-
setting of complex mathematical documents in the
publishing industry is 3B2. Adobe Framemaker and
QuarkXPress are also popular alternatives.

A frequently asked question is whether OSS re-
places proprietary software and whether it under-
mines innovation by imitating proprietary compa-
nies. In the case of TEX, it is quite clear which way
the inspiration went. Some aspects of TEX were imi-
tated, for example the equation editor in MS’s Word
and TEX’s hyphenation and justification algorithm
in Adobe’s InDesign. Other commercial software
eased the use of TEX by adding a graphical user
interface and porting it to other platforms —this is
the case of Personal TEX’s PCTEX, the first IBM PC-
based TEX system, or of MacKichan Software’s Sci-
entific WorkPlace which integrates TEX and Maple.
It is TEX which inspired commercial development
much more than the reverse.

It is also not clear whether commercial and OS

products complement or substitute for one another.
There are examples of dual use, some typesetting
firms using TEX internally and delivering the fin-
ished product with 3B2. There are also examples
of users and firms switching back and forth between
OS and proprietary software. TEX Live, for exam-
ple, did take some business from commercial imple-
mentations, especially since it is easier to maintain
using Linux based network management software.
The competition is very rarely frontal, and few TEX
projects see themselves as ideologically opposed to
commercial software. TEX did take the place of
other commercial software though, but while it re-
placed obsolete proprietary typesetting software at
the AMS, it also inspired other proprietary software
(principal concepts, line breaking algorithm, syntax)
and it paved the way for getting typesetting software
in the hand of the users instead of that of the type-
setter. It initiated a new workflow in publishing.
Additionally, some of the first people to use TEX
did not see commercial software as an alternative
and TEX was a way for them to obtain functionality
not present in (affordable) commercial software.

Finally, the development of TEX was encour-
aged by potentially competing commercial software.
Hàn Thé̂ Thành received a scholarship from Adobe
to develop the pdfTEX program; this was in the in-
terest of Adobe as it wanted to gain more general
acceptance for its software and was also a way to
encourage exchanges with the OS community. The
competition between OS and proprietary software is
based on subtle mechanisms that are deserving of
further study.

136 TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting

The (LA)TEX project: A case study of open source software

While a comparison of the welfare generated by
TEX with that which would have been generated by
a proprietary program may appear to be a futile aca-
demic exercise, TEX was developed as an alternative
to commercial software that was used by the AMS in
its publishing section, and the AMS did ponder what
was the best option: wait for commercial software
to be released that would fit their need, or give the
impulse to a new, open source, software. The com-
parison between TEX and a hypothetical equivalent
commercial software can be made in terms of inno-
vation, responsiveness to users’ needs, pace of devel-
opment, capacity to integrate into existing systems
and the efficiency with which the software is devel-
oped.

Proprietary software is sometimes out of touch
with users, as developers are not users. But in OS,
developers are sophisticated users, which means the
software may not be at the reach of the average
user. As far as OSS is a tool for average users
whose needs are not fulfilled by proprietary firms,
then its development may be as misdirected as that
of closed-source software, although in other ways.
However, the development of TEX and LATEX was
made after consultation with professionals from the
publishing industry and meetings with the AMS —
the first sponsor and user of TEX. In the summer of
’79, Barbara Beeton of the AMS and Michael Spi-
vak —both of whom went on to important positions
in the TUG organization and others — spent time
in Stanford developing TEX macros to test TEX ca-
pabilities for such AMS requirements as generating
indexes. Their work led to a series of suggestions for
improvements, and to the AMS giving its backing to
the project.

The LATEX3 project members also consulted
with the AMS and various TEX user groups, pub-
lishers such as Addison-Wesley and Elsevier, and
got support from companies, some that sold TEX-
based software — Blue Sky Research, TCI Research,
PCTEX —but also Digital Equipment Corporation,
Electronic Data Systems, etc. David Rhead gath-
ered the wishes of users from email discussion on
the LATEX discussion list. Those wishes were mainly
about the page layout specifications and the user-
interface design, things that are of primary concern
to users and not so much to developers. This close
collaboration with professionals in the typesetting
and publishing industry, which can be illustrated in
many other examples, goes against the view that
OSS that is too geared towards specialist use will
not be successful (Schmidt and Porter [2001]).

It is often said that the pace of improvements is
quicker in OSSPs. Improvements in proprietary soft-

ware are not released frequently, since there is a cost
to doing so, and their owners want the improvement
to be valuable enough for existing users to buy it.
But with OSS, it is difficult to coordinate the user
community on the most recent improvement; this is
a problem as the software is used for collaborative
work, and people want stability. In the case of TEX,
the solution was to design standards for the classifi-
cation of packages and requiring new packages to be
distributed with older, approved ones so as to guar-
antee the availability of a complete working set of
packages to users.

Standards are difficult for proprietary software
firms to adhere to because they want to protect their
user base — prevent it from switching —and also be-
cause the source is closed, so that it is difficult to
create applications linked to it. However, software
firms that propose development platforms to pro-
grammers are also interested in the promotion of
their platform, and usually are able to establish and
maintain them as a standard. OS projects on the
other hand generally find it difficult to coordinate
on a standard. While this may not be a problem
because OS is usually platform independent, it is dif-
ficult to keep code operational when there are con-
stant changes to the underlying operating system
and compiler platform (Torzynski [1996]).

While the sharing of information may be done
less efficiently in OS projects than in proprietary
firms, the pool of information that can be shared is
expanded. Many contributors to TEX would prob-
ably never have worked in a commercial firm, and
even when they were hired in commercial firms, such
as Elsevier, they continued contributing their im-
provements to the wider community. Overall, if it
is possible to prove that OS developers would not
be able to do what they do in a closed environment
and that what they do would not be done by propri-
etary software, then OSS is beneficial. As an OSSP

develops however, it can grow to come into competi-
tion with closed source: there is competition at the
fringe, when users could use both.

The situation is complicated by the fact that
some proprietary software may be based on OS and
compete with pure proprietary software. Some work
would need to be done to compare publishing firms
that use OS software (Hans Hagen’s Pragma ADE

in the Netherlands, B. Mahesh’s Devi Information
Systems in India) versus firms that use proprietary
software. There is a difference in the nature of up-
front cost, maintenance efforts, level of support, pos-
sibility of improvements, capabilities, etc.

TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting 137

Alexandre Gaudeul

4.2 The process

4.2.1 Dynamics of the project

Various forces direct the development of TEX, due to
the different concerns, objectives and priorities of its
developers who come from different fields and make
use of TEX in different ways. Over time, with the
user base changing and the software’s environment
evolving, different types of priorities have emerged:
in the first period, Knuth’s own objective was to de-
velop software that could do mathematical typeset-
ting by computer that was worthy of the best man-
ual typesetting tradition. Then, when he felt his
objective was achieved, the AMS wanted to make
this instrument available to the wider mathemati-
cal community, and sponsored the development of
AMS-TEX and its subsequent merging with LATEX.

Later on, the objective of the subsequent core
developer teams was to make use of new computer
capacities and make TEX more easily extendable
with the use of new programming tools (Ω, NTS),
while also establishing a standard LATEX to pre-
vent forking— LATEX2ε by the LATEX3 team. At the
same time, some work was necessary in making TEX
able to produce not only pdf and html documents,
but also Framemaker and Word documents. The
work on making TEX compatible with proprietary
standards was first done by commercial companies.
Among the priorities, keeping up with competitors’
functionality, such as Adobe or WordPerfect, does
not seem to have been important, as TEX develop-
ers advocated the use of free source fonts instead
of commercial fonts, and mark-up-based document
writing instead of Word-like WYSIWYG programs.
There are, however, some open source projects try-
ing to achieve greater user friendliness — David Kas-
trup’s preview-LATEX package to ease editing, LyX, a
document processor using LATEX in the background,
GNU TEXMacs, inspired by TEX and GNU Emacs,
etc.

Competition between different development
philosophies also worked to determine what works
and what doesn’t and which way the overall project
had to go. An illustration is the difference in philoso-
phy between the NTS project and pdfTEX: the NTS

team wanted to keep compatibility with the initial
version of TEX, while totally rewriting the code —
rewrite the WEB Pascal program into the Java pro-
gramming language. pdfTEX, on the other hand,
was based on the C implementation, less general-
ized in scope, but easier to work on (Taylor [1998],
Hàn Thé̂ Thành [1998]).

4.2.2 Limits of the project

Does the OS development process or the specific OS

institutions that support development put limits on
the growth and success of open source software?

Growth and success are important because even
if the software functions in accordance with the
stated aims of the project initiator and the initial
user community, it will quickly become obsolete and
useless, even to those same people, if it is not main-
tained to keep up to date with the changing software
environment. This can justify changing the aims of
the software’s community, even in ways not to the
advantage of the project initiators, if that can make
the software more attractive to new developers.

The pace of development slowed over time.
The graph represents the number of bugs found by
Knuth in the core program through time. After
TEX82 was released, Knuth stopped implementing
general user requests, except for allowing 8-bit input
in 1989. Since the whole TEX system refers back to
the core of TEX, its pace of development is indicative
of what is happening in the wider TEX community.

There is however a difference between develop-
ment and diffusion. As the software’s main tree de-
velopment is blocked, it can still be adapted to new
platforms, translated, and people trained to use it.
Nonetheless, it is still true that it will be more diffi-
cult to diffuse if there is nobody ready to make the
necessary tinkering in the software code to permit
adaptation to new usage.

The diffusion of TEX can be evaluated by look-
ing at the number of requests for support in TEX-
related newsgroups, the number of TUG members,
and the number of academic papers written with
TEX. While postings to the English-speaking news-
group reached a plateau— probably because most
questions were already answered in English and ref-
erenced in FAQs! — newsgroups in other languages
attest to the vitality of the international growth of
the user base.

There are some technical limits to the develop-
ment of an OSSP, and those are different from those
that limit the growth of proprietary software. Those
limits are due to coordination problems in the devel-
opment and support. Initial choices in the software
programming are hard to change because that re-
quires more coordinated effort over a longer period
of time than most OSSPs are able to provide. This
means a project can get stuck with outdated stan-
dards. There is also difficulty in keeping the original
programmers to remain committed to the project.

There are only a limited number of people who
may use the software, even if it tries to broaden

138 TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting

The (LA)TEX project: A case study of open source software

Cumulative number of bugs in TeX by day of discovery.

0

100

200

300

400

500

600

700

800

900

1000

3
/1
0
/7
8

9
/1
0
/7
8

3
/1
0
/7
9

9
/1
0
/7
9

3
/1
0
/8
0

9
/1
0
/8
0

3
/1
0
/8
1

9
/1
0
/8
1

3
/1
0
/8
2

9
/1
0
/8
2

3
/1
0
/8
3

9
/1
0
/8
3

3
/1
0
/8
4

9
/1
0
/8
4

3
/1
0
/8
5

9
/1
0
/8
5

3
/1
0
/8
6

9
/1
0
/8
6

3
/1
0
/8
7

9
/1
0
/8
7

3
/1
0
/8
8

9
/1
0
/8
8

3
/1
0
/8
9

9
/1
0
/8
9

3
/1
0
/9
0

9
/1
0
/9
0

3
/1
0
/9
1

9
/1
0
/9
1

3
/1
0
/9
2

9
/1
0
/9
2

3
/1
0
/9
3

Figure 1: The bugs of TEX.

Number of postings to TeX newsgroups by months.

0

1000

2000

3000

4000

5000

6000

7000

Feb-

90

Jul-

90

Dec-

90

May

91

Oct-

91

Mar-

92

Aug-

92

Jan-

93

Jun-

93

Nov-

93

Apr-

94

Sep-

94

Feb-

95

Jul-

95

Dec-

95 96

Oct-

96

Mar-

97

Aug-

97

Jan-

98

Jun-

98

Nov-

98

Apr-

99

Sep-

99

Feb-

00

Jul-

00

Dec-

00

Oct-

01

comp.text.tex de.comp.text.tex fr.comp.text.tex Total newsgroups

May May

01

Figure 2: Monthly postings to TEX-related newsgroups.

TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting 139

Alexandre Gaudeul

its appeal. The software progressively reaches all
of its intended audience, or is supplanted by other
software for that audience.

Some aspects of the software’s basic concept are
difficult to change, for example its typesetting mark-
up language, and this put limitations to its appeal.
The concept becomes fatally obsolete, even if it
made sense when it was first thought up. Here, other
mark-up languages appeared (MathML), and other
typesetting engines did not necessitate as much
learning— Microsoft Word is less powerful than TEX
but has a more gradual learning curve — or were
more tightly integrated with new standards and nec-
essary capabilities — Adobe’s InDesign to produce
pdf files or to use Quark XPress document files.
The ConTEXt and pdfTEX projects were attempts
to broaden the capabilities of TEX to keep them up
to date with what was necessary for online publish-
ing. TEX was oriented toward printing, and was not
able to easily provide the kind of interactive color
complex documents with figures needed for online
publishing. It is also based on a document exchange
standard (DVI) that has never achieved the popu-
larity of the pdf format. The pdfTEX and ConTEXt
projects thus had to make changes in TEX’s concep-
tion to adapt it to new needs. Other projects made
TEX XML-compatible.

In summary, TEX was at first in the forefront
of mathematical publishing, but then had to adapt
and borrow concepts from new and popular soft-
ware projects — and this process met with some re-
sistance. The number of people who were interested
in those improvements was limited to a fringe, and
they found it difficult to advertise their projects be-
yond the people who already were using TEX.

Finally, the OS organization imposes some lim-
its: the originator is ready to support only a lim-
ited number of people; Knuth had other priorities,
the writing of his monumental series The Art of

Computer Programming. TEX was in fact originally
meant only to typeset those books.

Limited explicit mechanisms (interface specifi-
cations, processes, plans, staffing profiles, reviews),
extensive reliance on implicit mechanisms (personal
relations, customs and habits) and on one-to-one
interactions in small teams (communications only
mechanism), mean that the development process did
not scale easily. Choosing an OS development pro-
cess put limits on some areas of the software’s de-
velopment.

4.2.3 Leadership

There is a need for a leader in an OSSP. The produc-
tion of an OSS cannot be described as being peer-

based. Patterns in the history of the projects re-
lated to TEX provide lessons on what constitutes
good leadership in an OSSP because they provide
a broad sample extended though time. The reason
for the projects’ successes and failures, which can
only be determined through time, can thus be ana-
lyzed. The most effective type of leadership seems
to consist in first developing independently some im-
plementation of an original idea and only releasing
it into the public when it is already well advanced.
Projects that began by announcing their goals with-
out backing their ideas with some implementation
generally failed because other developers contested
their technological decisions or couldn’t contribute.
There is therefore a limit to the power of consen-
sus building and cooperative development; it is fre-
quently better to go it alone and then ask for help
once the project is well along.

Knuth’s leadership was characterized by a
heavy involvement in the beginning and the choice
to leave later development to others. That leader-
ship style was very successful for the beginning of the
software’s development, but the desire to preserve
some stability in the program produces the danger
of impeding its development. This could have led to
forking if the community built around TEX had not
been so cohesive.

Although there is a need for a leader, there also
are problems in coordinating on one leader. An ex-
ample of a successful leader was Hàn Thé̂ Thành,
who initiated the pdfTEX project to directly out-
put pdf files from TEX. This is seen as a successful
project because Thành released his work only after
having done the preliminary groundwork, and was
then able to let other developers take the initiative
in applying and enhancing his work. The Omega
project encountered problems because, while it com-
municated its goals early, and implemented innova-
tive ideas to enhance the multi-lingual capabilities
of TEX, it did not at first attract developers beyond
the initiators and had problems convincing the TEX
community it would one day become fully imple-
mented. That project was first presented in 1995
and it is only now that it is gaining momentum and
being supported by the TEX community.

A large part of the difference between those two
projects is often attributed to the leadership style of
their initiators; the fact that the Omega developers
did not deliver on their claims rapidly made the es-
tablished leaders in the TEX community doubt that
project was worth getting involved in. As we will
see below, however, the main difference between the
two projects was perhaps not the difference in the
way they were led and in the ability of its program-

140 TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting

The (LA)TEX project: A case study of open source software

mers, but in the acceptability of the project to the
existing developers and users. The pdfTEX project
did encounter some resistance at its beginning from
people who thought other ways to generate pdf files
from TEX input were preferable, but the importance
of the ultimate goal was not in question. This was
not the case of the Omega project.

In short, a project leader will be seen as a good
leader depending on whether he is allowed to work
within the existing system. If he is not accepted
and does not get the support of other developers,
then his project may end up badly in a self-fulfilling
prophecy. A project will find it difficult to thrive
if it doesn’t get the support of the establishment,
so that most successful projects will serve the needs
of existing users and developers, and not those of
potential newcomers.

The most consistent leadership was given by
organizations: the AMS, which ensured that TEX
served the mathematical community, and TUG,
which ensured it was user-friendly. The AMS was
the main leader of TEX’s development. It provided
financing for a user group, made propositions to de-
velopers, and gathered them to establish objectives.
The involvement of the AMS was thought out well
in advance, as they wanted to become involved in
helping to develop a document preparation system,
instead of waiting for a commercial system to be pro-
vided to them. They needed a system that was com-
patible with most hardware, simple, flexible, and
cheap; it was to run on mainstream computers. The
AMS, as well as other TEX sponsors, were conscious
that there was competition between the various pos-
sible uses of the software. Because of limited human
resources, the product’s development could not be
led in the way each constituency would like.

There was therefore a need to define an allo-
cation process for development resources. This is
how the AMS decided to sponsor the development
of a modern system based on TEX that would fit
its own use (AMS-TEX), and also sponsored TUG.
Its role was to form a group of people who would
be able to use the tools recommended by the AMS.
The AMS couldn’t hope that academics would use
the TEX system if it didn’t also provide them with
the means and training to do so. This sponsoring
by the AMS had an impact on the development of
TEX that went far beyond the means involved be-
cause it served as a signal to other sponsors that
TEX was a valuable project that would ultimately,
willy-nilly, be a complete system. This is why TUG

also attracted sponsorship from various hardware
companies and universities. The AMS progressively

lowered its financial contribution to TUG and it is
interesting to note that TUG’s revenues and mem-
bership declined after the release of the final version
of TEX in 1990. It would be interesting to look fur-
ther into the impact AMS’s support had on TUG,
and the influence TUG had on TEX’s development.

Leadership was also provided by users and me-
diated by user group organizations. This part ex-
poses the many initiatives coming from the TEX
users. The identification that is often made between
users and developers is not correct, as even users
who are not developers have an impact on the de-
velopment. An OS project is not led through a com-
petition mechanism where the best project wins, it
is led by the user who is ready to devote time and ef-
fort to the project toward a defined goal, in this case
the goal of an association distinct from the TEX com-
munity. TEX had no purpose of its own, but TUG

did have a mission statement: To be a meeting place
for users and developers, of course, but also to use
that central position to serve the aims of its spon-
sors. TUG served as a meeting point between users
and developers of TEX, the two not being exclusive.
Articles in TUGboat were often written by users ex-
plaining the use they made of TEX in their respective
fields, and outlining the problems they encountered.
The various uses of the program led to various pulls
(queries to developers) and pushes (independent de-
velopment) on the program. The problem was then
to harness those, integrate interesting contributions
into the main distribution, and not have dead-ends.
This was done by encouraging independent develop-
ers to work with the core developers so as to attain
compatibility with the existing TEX system.

Users wanted to protect their investment in the
software. Given the weight of legacy, there was re-
luctance on the part of the user community when
faced with changes in the TEX system. Indeed, many
of them had written their own modifications of TEX
to fit their own use, and were not willing to aban-
don those in favor of a new system that would pro-
vide only minor improvements to them; multilingual
typesetting for example was of no use to most users
but requires extensive changes. There was no need
for change for most users, as any change they needed
could be done with macros — even though the TEX
macro language itself led to very complicated and
badly structured programs. It was very difficult to
attract older users on an alternative, and indeed,
the main hope for some developers who pursued
changes to TEX came from new users in non-Latin
countries — the Omega project. New categories of
users who did not have the same legacy issues suc-
ceeded in breaking the status quo. Various user con-

TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting 141

Alexandre Gaudeul

TUG revenues and membership by year

$0

$100,000

$200,000

$300,000

$400,000

$500,000

$600,000

$700,000

$800,000

19
82

19
83

19
84

19
85

 (B
ud

ge
t)

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

D
o

ll
a
rs

0

500

1000

1500

2000

2500

3000

3500

4000

4500

M
e
m

b
e
rs

Total revenues Total expenses Members

Figure 3: TUG’s revenues and membership.

stituencies, or categories of users, had different re-
quirements: The Europeans came to adopt LATEX,
while the Americans used TEX, because LATEX had
not reached a sufficient stage of development to be
interesting to them at the time they adopted the
TEX system. The American organization had been
built under the lead of typesetters, publishers, soft-
ware companies and university institutions who were
interested in mathematical publishing, while the Eu-
ropean groups were led by individual users, some-
times active in universities or educational publish-
ing. Many of those users’ needs were not satisfied by
the user group based in the US. This is how many
initiatives were made in some European LUG before
being accepted by the main organization.

For example, while the US organization had an
established TEX tape distribution system, and while
American developers knew each other well enough to
coordinate development on a one-to-one basis or in
conventions, the European users saw the need for a
TEX code central repository. This was realized by a
group of volunteers at Aston University in the UK,
which made it possible for users to download the
latest developments in the TEX system. This group
inspired the development of a package classification
system, the TEX Directory Structure, which served
as the model for TEX distribution everywhere; this
common system facilitated the installation of the

TEX system. That initiative led to the creation of
the CTAN archives in 1990, which drew contribu-
tions from the American organization too.

Another example of user-led initiatives is the
initiative by the Netherlands LUG to develop and
distribute 4AllTEX in 1993, a TEX distribution on
a CD that was intended to be of use to an end
user with no programming background. While the
Netherlands LUG could not possibly have taken up
the task of delivering a complete user-friendly distri-
bution, it gave the impetus to a wider concerted ef-
fort, the TEX Live project. TEX Live adopted many
of the ideas in the 4AllTEX distribution— choice of
programs, organization of packages, and more.

The tensions between TEX constituencies trans-
late not only in user initiatives, but also in different
objectives for groups of developers. There was a
conflict between pursuing a standardization of LATEX
that would fit most users’ needs and allow easy in-
terchange of documents between all users, and going
forward without an overriding concern for compati-
bility, to serve the needs of larger classes of users.

4.3 The framework: The TEX rules and
culture, and how they evolved

The TEX rules and culture differ from those of other
communities, first due to the license terms, but also
because Knuth gave authority to some lieutenants

142 TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting

The (LA)TEX project: A case study of open source software

to act on his behalf. Initiators, like Knuth or Lam-
port, effectively blocked development until pressure
built up to a convincing expression of collective
choice, when for example users and developers came
to Knuth with requirements for TEX82 or TEX90.
That strategy did succeed in reducing the workload
on the initiators and in reducing unnecessary de-
velopments, but it did not encourage independent
development.

The development of the software became more
and more decentralized because of two effects. The
first one is that the program became more complex,
and the number of specialized programs linked to it
rose — programs to make figures, indexes, national-
izations of the software, programs to translate TEX
input into outputs other than DVI, various inter-
faces, various rewriting of the software into other
programming languages, etc. The second one is that
technology made it possible to coordinate projects
one-to-one through electronic means, instead of all
contributions going though a central body which
then reflected it to all after having filtered the noise
(errors, unwanted developments, etc.).

For example, the way submission of changes to
the TEX software were made evolved through time.
There is a contrast between new systems and older
ones. For TEX, bugs were submitted to Knuth via
filters, people who had to make sure the submission
was valid. Changes in the software were suggested
to Knuth, who then determined how those changes
were to be embodied in the software. In the LATEX3
project team, developers exchanged code via private
e-mail and met person to person to discuss changes.
Of the newer project, some like MikTEX were listed
on Sourceforge, and used all the tools now available
to coordinate OS projects — CVS files, central repos-
itory —and many, like preview-LATEX, accepted con-
tributions by totally unrelated volunteers.

One important part of the TEX community’s
culture was that it tried to develop user-friendly
software based on OSS. This makes TEX a different
case than other well-known OSSPs that have been
studied before (Apache, Linux), and will help to de-
termine if OSS can be user-oriented, a mass-market
product. From the beginning on, the program was
intended to be used by non-programmers: secre-
taries, researchers, . . . In fact, one of its main ‘sell-
ing’ points at the beginning was how easy it was to
install and learn; the syntax was meant to be natu-
ral, and Knuth wrote a complete manual for the pro-
gram at the same time as he developed it. Even the
programming language was meant to make the cod-
ing easy to understand; the coding was documented
along the way using a language and a method, lit-

erate programming, developed by Knuth.
Also, TEX was developed with non-program-

ming concepts in mind, i.e. concepts that were of
no use for the greater programmers’ community. In-
deed, TEX was meant to be a translation of the best
typesetting practices into a programming system.
This served the needs of the typesetters, the pub-
lishers, the academics, but not those of the typical
programmer who is not involved in typesetting. TEX
came from the lucky coincidence of one person hav-
ing the need for better typesetting and the ability
to follow up on that need.

The problems that have been classically invoked
to say that OS programming could not produce user-
friendly, mass-market programs are that it cannot
generate a good user interface, that a users’ orien-
tation requires a different turn of mind than that of
OSS developers, that it is not possible to coordinate
developers efficiently enough in an OSSP so as to
release a fully functional pre-packaged product, and
finally, that OSSP developers do not have the means
or the will to communicate with end-users.

A good user interface requires a lot of work and
is time consuming but is not needed by somebody
who already is able to use the software. Ulterior
(profit) motives must come into play: this is where
commercial organizations have a role, at least until
the OS organization is strong enough to be able to
produce an easy to install and use program. This
is what happened in the TEX community, where
commercial implementations of TEX appeared in the
mid-80s and provided the only user-friendly alterna-
tive during at least 10 years. MikTEX was the most
popular open source user-friendly interface to TEX,
but worked with Windows only, and it is only with
the release of the first TEX Live distributions that a
complete easy to install TEX distribution was made
available for Linux.

There were also individual OS initiatives to
make the software easier to use; preview-LATEX and
TEXview provided graphical interfaces. Other col-
lective initiatives were driven by ideology; LyX is
such an attempt at providing a convenient TEX in-
terface. All those encountered difficulties in pro-
viding an interface that would work with all differ-
ent possible and ever-changing installations of TEX.
They were surprisingly loosely coordinated with the
core group of TEX developers, maybe because the
development of those interfaces cannot possibly take
account of all the changes in the core program, so
that they were based on older versions; their de-
velopment thus didn’t necessitate close coordination
with leading core developers.

A stable user-level platform was needed because

TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting 143

Alexandre Gaudeul

TEX documents had to be easy to share for it to be
considered a standard and adopted widely. There-
fore a core product had to be defined, to which other
things were added and with which they had to be
compatible. This is where a central authority, and
defining limitations in what will be supported or not,
came into play. The LATEX3 team played that role
by defining a ‘core’ LATEX package, defined as what
the core team thought it had the time to maintain.
The TEX Live distribution helped in focusing en-
ergies by defining what would be distributed more
widely to the end-users, thus guaranteeing to devel-
opers that their work would have some impact in
the user community.

5 Conclusion: Work to be done

While many participants in the TEX community
were interviewed, and a large documentation on the
TEX system and the history of its development was
gathered, that knowledge still has to be organized in
a systematic way. Some salient features will be fur-
ther developed; for example, a more careful analysis
of the determinants in the success of an OSS sub-
project could be made. This would allow a better
definition of quality, leadership and support in an
open source environment.

6 Bibliography

6.1 (LA)TEX related articles

Bodenheimer B. [1996] “Questions souvent
posées sur (LA)TEX”, Cahiers GUTenberg, 23 April
1996.

Clark M. [1989] “Olde Worlde TEX”,
TUGboat 10(4), 1989 Conference Proceedings.

Gaudeul A. [2003] “The (LA)TEX project: A
case study of open source software”, Working
Paper, January 2003.

Hàn Thé̂ Thành [1998] “The pdfTEX
program”, Cahiers Gutenberg, 28–29 March 1998.

Knuth D.E. [1989] “Notes on the Errors
of TEX”, TUGboat 10(4), 1989 Conference
Proceedings.

Knuth D.E. [1989] “The Errors of TEX”,
Literate Programming, CSLI Lecture Notes, no.
27, 1992.

Knuth D.E. [1989] “The new versions of TEX
and Metafont”, TUGboat 10(3), October 1989.

Knuth D.E. [1991] “The future of TEX and
Metafont”, TUGboat 11(4), January 1991.

Knuth D.E. [1998] “The Final Errors of TEX”,
Digital Typography, CSLI Lecture Notes, no. 78,
1999.

Lammarsch J. [1999] “The History of NTS”,
EuroTEX ’99 Proceedings.

LATEX3 Project Team [1997] “Modifying
LATEX, ” TUGboat 18(2), June 1997.

Mittelbach F. and C. Rowley [1997] “The
LATEX3 project”, TUGboat 18(3), 1997 Conference
Proceedings.

Skoupy K. [1998] “NTS: A New Typesetting
System”, TUGboat 19(3), 1998 Conference
Proceedings.

Taylor P. [1996] “A brief history of TEX” in
“Computer Typesetting or Electronic Publishing?
New trends in scientific publications”, TUGboat
17(4), October 1996.

Taylor P. [1997] “Présentation du projet
ε-TEX”, Cahiers Gutenberg, 26 May 1997.

Torzynski M. [1996] “Histoire de TEX sous
DOS et Windows à l’ENSP de Strasbourg”, Cahiers
Gutenberg, 25 November 1996.

Advogato interview with Donald E. Knuth
[2000] http://www.advogato.org/article/28.
html.

Interview with Leslie Lamport [2000]
“How LATEX changed the face of Mathematics”,
DMV-Mitteilungen, January 2000.

LATEX Project Public License at http:
//www.latex-project.org/lppl.html.

The TEX Users Group (TUG) at http:
//tug.org.

The LATEX3 project at http://www.
latex-project.org.

NTG TEX future working group [1998] “TEX
in 2003”, TUGboat, 19(3), 1998 Conference
Proceedings.

6.2 General articles on open source

Anderson R. [2002] “Security in Open versus
Closed Systems—The Dance of Boltzmann, Coase
and Moore”, Working Paper.

Behlendorf B. [1999] “Open Source as a
Business Strategy”, Open Sources, O’Reilly editors

Benkler Y. [2001] “Coase’s penguin, or, Linux
and the Nature of the Firm”, Yale Law Journal,
112, October 2001

Bessen J. [2002] ‘OSS: free provision
of a complex public good’, http://www.
researchoninnovation.org/.

Bezroukov N. [1999] “Open Source Software
Development as a Special Type of Academic
Research (Critique of Vulgar Raymondism)”, First
Monday, 4(10), October 1999.

Brady R., R. Anderson and R. Ball [1999]
“Murphy’s law, the fitness of evolving species,
and the limits of software reliability”, Cambridge

144 TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting

The (LA)TEX project: A case study of open source software

University Computer Laboratory Technical Report
no 471, September 1999.

Crowston K. and B. Scozzi [2002] “Exploring
the strengths and Limits of OSS Engineering
Processes: A Research Agenda”, Second Workshop
on Open Source Software Engineering, 24th
International Conference on Software Engineering,
Orlando, USA, May 25, 2002.

Dalle J.-M. and N. Jullien [2001] “Open
Source vs. Proprietary Software”, Working Paper,
October 2001.

Dalle J.-M. and N. Jullien [2002] ‘OS vs.
proprietary software’, http://opensource.mit.
edu/.

Dalle J.-M., P. David and W. Steinmueller
[2002] “An agenda for integrated research on the
economic organization and efficiency of OS/FS

production”, Working Paper, October 2002.
Gaudeul A. [2003] “Open Source Software

Development Patterns and License Terms”,
Working Paper, February 2003.

Ghosh R. and V. Prakash [2000] “The Orbiten
Free Software Survey” at http://orbiten.org.

Halloran T.J. and W.L. Scherlis [2002] “High
Quality and Open Source Software Practices”,
Position Paper, Second Workshop on Open
Source Software Engineering, 24th International
Conference on Software Engineering, Orlando,
USA, May 19, 2002.

Hann I.-H., J. Roberts, S. Slaughter and
R. Fielding [2002] “Delayed Returns to Open
Source Participation: An Empirical Analysis of the
Apache HTTP Server Project”.

Hertel, G., S. Niedner and S. Herrmann [2002]
“Motivation of software developers in open source
projects: An Internet-based survey of contributors
to the Linux kernel”. Research Policy, July 2003,
vol. 32, iss. 7, pp. 1159–1177(19).

Hippel E. [2002] “Open Source Software
as horizontal innovation networks — by and for
users”, MIT Sloan School of Management WP

No. 4366-02.
Johnson J.P. [2000] “Some Economics of Open

Source Software”, http://opensource.mit.edu/,
December 2000.

Kuan J. [2002] “Open Source Software as
Lead User’s Make or Buy Decision: A Study
of Open and Closed Source Quality”, 2002 OSS

Conference, Toulouse, http://www.idei.asso.
fr/.

Kuwabara K. [2000] “Linux: A Bazaar at the
Edge of Chaos”, First Monday, 5(3), March 2000.

Lakhani K. and E. von Hippel [2000] “How
Open Source software works: ‘Free’ user-to-user
assistance”, MIT Sloan School of Management
Working Paper 4117, May 2000.

Lerner J. and J. Tirole [2000] “The Simple
Economics of Open Source”, NBER Working
Paper 7600.

Lerner J. and J. Tirole [2002] “The Scope of
Open Source Licensing”, Draft, 2002.

Mockus A., R. Fielding and J. Herbsleb
[2000] “A case study of open source software:
The Apache Server”, International Conference on
Software Engineering, pp. 263–272, 2000.

Mockus A., R. Fielding and J. Herbsleb
[2002] “Two case studies of open source software
development: Apache and Mozilla”, Working
Paper.

Mustonen M. [2002] “Why do firms support
the development of substitute copyleft programs?”,
Working Paper, October 2002.

Mustonen M. [2002] “Copyleft—the economics
of Linux and other open source software”, Working
Paper.

Nakakoji K. et al. [2001] “Toward Taxonomy
of Open Source: A Case Study on Four Different
Types of Open Source Software Development
Projects”.

Peyrache E., J. Crémer and J. Tirole [2001]
“Some reflections on Open Source Software”.

Pressman R. [1997] “Software engineering”,
4th edition, Mc-Graw-Hill editors.

Schmidt D.C. and A. Porter [2001]
“Leveraging Open Source Communities to
Improve the Quality & Performance of Open
Source Software”, Position Paper, First Workshop
on Open Source Software Engineering, 23rd
International Conference on Software Engineering,
Toronto, Canada, May 15, 2001.

Scotchmer S. and P. Samuelson [2002] “The
Law and Economics of Reverse Engineering”, Yale
Law Journal, April 2002.

Silverman D. [1999] “Doing Qualitative
Research: A Practical Handbook”, Sage.

Varian H. [1993] “Economic Incentives in
Software Design”, Computational Economics,
6(3–4) pp. 201–17, 1993.

OSS conferences in Toulouse [2001, 2002,
2003], http://www.idei.asso.fr/Commun/
Conferences/Internet/

GNU General Public License at http:
//www.gnu.org/copyleft/gpl.html

TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting 145

A Polished TEX story
∗

Andrzej Odyniec
MacroSoft S.A.

ul. Chrościckiego 49

02–414 Warszawa

Poland

anody@macrosoft.pl

Abstract

Years ago, the birth of TEX put us, Poles, on the horns of a dilemma: how do
we reconcile TEX’s beauty with our attachment to the peculiarities of the Polish
language— its multifaceted inflection, a plethora of diacritics and last but not
least the prevailing typographical rules?
Whatever the thinking was, enough of us became determined to make The

Lion at home in Poland.
This paper presents the story and the people of the 25 adventurous years

of the Polish TEX polishing to not only our but also—we hope—many of our
European friends’ benefit.

In the beginning

Once upon a time there was a lovely Princess. She
lived in the highest room of the tallest tower in
a castle guarded by a terrible fire breathing Dragon.
Many a brave knight tried—oh no, this should be
a different story!
Not so long ago there was Professor Janusz Bień

who was the first to typeset a Polish text using TEX.
The text looked more or less like this:1

∗ Translated into English by Jerzy B. Ludwichowski, Nico-
laus Copernicus University, ul. Gagarina 7, 87–100 Toruń,
Poland, Jerzy.Ludwichowski@uni.torun.pl. Drawings by my
son, Jędrzej Odyniec.
1 Written by Julian Tuwim, a famous Polish poet. (Dzieła,

Tom III, Jarmark rymów, Czytelnik 1958, s. 343: Nowe
a skuteczne rymy; footnote on p. 643: First printed in a sec-
tion edited by Tuwim Cicer cum caule, czyli Groch z kapustą,
of “Problemy” 1949, nr 10.) Originally it was typeset in plain
TEX and luckily contained only one eogonek—I don’t know
how Professor Bień went about it then. There is an interest-
ing story the author gave with this poem: It happened that we
fell in love with a Polytechnic student, a beautiful albeit un-

fortunately a very serious girl. We started flooding her with

poems. To no avail. She mocked our heart—card, vain—

plain, tears—hers rhymes. We then came up with an idea

which opened the heart of our physicist, mathematician and

future engineer. Our poem was. . .

Dlaczego sobie Pani ze mnie kpi,
Cierpieniom moim niech nadejdzie kres,
Siła mojej miłości równa się π
Pomnożone przez

√

√

√

√

2(P +Q)(L2 + a2) +Gy2

g[2(P +Q)a+ Cs]

which translates2 to:

Oh, You do deride me, why
Let my sufferings go away
The power of my love is equal to π
Multiplied by

√

√

√

√

2(P +Q)(L2 + a2) +Gy2

g[2(P +Q)a+ Cs]

There is some charm in this poem. Did Julian
Tuwim really express his love through this formu-
la? Was his love bigger than the love of TEX many
a Pole has devoted their professional life to? Many of

2 By Andrzej Odyniec and Jerzy B. Ludwichowski.

146 TUGboat, Volume 24 (2003), No. 1—Proceedings of the 2003 Annual Meeting

A Polished TEX story

us still think that our encounter with TEX has a ro-
mantic note to it, or perhaps a sense of an adventure
or a fairy tale.3

Pioneers’ time When thinking of old, pioneering
times, of our adventures with great computers, great
programmes and great people I cannot forfeit the
impression that similar things happened before.

When I close my eyes, I find myself in the times
of great sailors and imagine a big brigantine with
sails full of wind. When looking closer, I see a big
Lion on a galleon under the bowsprit and the crew
on the deck lovingly scrubbing it to shine as polished.
When I look up, I see the Polish white-red flag flying
on the main mast. That is why my story will again
and again recall this picture.

The first expedition In the old times one had to
use “square” monies4 to pay for computing time.
To get computing time officially one would need to
obtain scientific approval and be allocated those—
huge for a private pocket— square sums. Unfortu-
nately, Janusz Bień was unable to spark sufficient
interest in the Polish science community. And the
times were difficult—martial law ruled. Therefore

3 My eldest son is almost the same age as TEX. Perhaps
some day he will become an architect but even now he re-
members the day when I took him to the computing center
to show a computer doing calculations on a separate story of
a huge building guarded by a fire breathing Dragon, oops, no,
not again. A few years ago he recognized the same computer
in the Museum of Technology. He still can talk as endlessly
about this day as he can about old sailing ships.
4 The relation of “square” monies to normal, “round”

money was such that “square” money did not exist in a mate-
rial or visible form. It was only transferred between state com-
panies and the right to manage it was issued to individuals as
a kind of recognition or favor from the Communist rule. To be
suspected of “improper management” of such monies usually
meant an end to one’s career or sometimes even freedom.

the knowledge of TEX could only be extracted from
Stanford University Computer Science Department
reports and the TUGboat bulletins.
Jan Madey was the pioneer of an overseas ex-

pedition and thus the first skipper of the ship with
the Polish banner and The Lion at the galleon.

Recently Professor Madey made the headlines
as the coach of the winning team of Warsaw Univer-
sity in the ACM International Collegiate Program-
ming Contest 2003. The picture shows him and his
team receiving laurels during the Beverly Hills, Cal-
ifornia, finals (photo by David Hill).
It was he who invested his own money and in

1983 brought to Poland the first tape with TEX ver-
sion 0.8.5

Back home This of course was not the end of the
story but rather its beginning. Heavy fights on al-
most all fronts had to be won: porting of the Pascal
compiler written at the Institute of Computer Sci-
ence Foundations of the Polish Academy of Sciences
to the VM operating system of the IBM 370/148
mainframe, and extending the compiler to the state
where it could compile TEX (done by Piotr Carlson).
The IBM 3287 graphic printer output was done by
Hanna Kołodziejska. It was she who inherited fur-
ther adaptation work from Piotr Carlson.
All this was only possible thanks to the then

Head of the Computing Center of the Informatics
Institute, Dr. Sc. Stanisław Waligórski, a kind6 and
far-sighted man who got interested in TEX. It was
he who allocated machine time in the Computing
Centre under his command. It was he who made it
possible for Hanna Kołodziejska—on the suggestion
of Professor Bień—to work for many months on the
Polish language hyphenation patterns.

5 It should be noted that 20 US dollars was worth an av-
erage monthly salary in Poland.
6 I personally had the pleasure to experience his kindness

when he later was my dean.

TUGboat, Volume 24 (2003), No. 1—Proceedings of the 2003 Annual Meeting 147

Andrzej Odyniec

Professor Bień also proposed the first, quick and
dirty, method of adding Polish ogoneks to ‘a’ and ‘e’,
a thing Donald Knuth somehow omitted in the fever
of the battle. And so in April 1985 the four-liner by
Julian Tuwim was typeset with TEX 0.8 and several
months later version 1.1 arrived from Stockholm.
The next planned step was to install TEX at

the then biggest civil computing center in Poland:
the Computing Center of Warsaw University, where
the RIAD 60 (an IBM 370/165 Russian made clone)
ruled, later replaced by a BASF machine (again an
IBM copy). I worked there at the time and observed
from a distance the TEX JOBs. It all ended with
a series of publications,7 as we were all taken by
surprise by the microcomputer era.8

LEX and MEX

Before the world was taken by wordmania TEX had
been used in Poland since 1987 to typeset many pub-
lications and books in various areas, even in Braille.

Many a bright man decided to join the crazy
crew polishing the deck of the ship named TEX to get
it to the Polish language harbour with any amount
of spit and polish required. We Poles have something
in our veins that drives us always towards Poland,9

therefore it would be futile to try to enumerate all
those who have been polishing TEX’s deck. In 1987

7 E.g., Janusz Bień, Hanna Kołodziejska, TEX for RIAD
computers. In: Dario Lucarella, editor, Proceedings of the first
European Conference on TEX for Scientific Documentation,
Como, Italy, pages 133–140. Addison-Wesley, Reading, Mass.,
16–17 May 1985. Thus we were represented at the first Euro-
pean TEX Conference.
8 Based on Janusz S. Bień, Co to jest TEX?, Instytut

Informatyki Uniwersytetu Warszawskiego, Warszawa 1988,
http://www.mimuw.edu.pl/~sbien/publikacje/cttex90.pdf
9 Already in the early 16th century, Mikołaj Rej, the first

outstanding Polish writer, advocated the use of the Polish
language—as opposed to Latin— for writing by saying that
other nations should know that Poles are not geese, that they
have their own language: “A niechaj narodowie wżdy postron-
ni znają, iż Polacy nie gęsi, iż swój język mają.”

Bogusław Jackowski and Marek Ryćko, both look-
ing for a decent typesetting tool, took the steering
wheel of the TEX craft. They were taking turns at
the watch of TEX and Metafont even before the
“eight bit era”. And thus in 1989 we had the first
fitting of a Polish TEX with a set of plain macros
under the name LEX

10 and the CM family of fonts
augmented with the Polish ogonek under the shy
name of p1 (not yet even pl).

It is worth
mentioning that until then no typographically cor-
rect ogonek existed in TEX for the ‘ą’ and ‘ę’ glyphs.
There were various attempts to solve this, even by
using the French cedilla.
The result was that ei-

ther the shape was not right,
or the direction of the ogonek
was wrong or one could not
bear looking at it or one could
not bear reading it. To keep
it short—a surgery on TEX’s
ogonek was required.11 The
first operation on the ogonek
by Jacko and Marek turned it
right, which is. . . right.12 The
slash notation was also intro-
duced on this occasion (/a, /c, /e, /l, /n, /o, /s,
/x, /z) to cater to at least some portability of texts.
It is still used by some.
During the polishing Jacko got hurt by some

splinters in the deck. As the Admiralty used to com-
pensate for splinters, he received an “acknowledg-
ment” in writing for TEX, in 1989, at $327.68 and
another one, in 1994, for Metafont. The Admiral-

10 The legend has it that there were three brothers, fa-
thers of the Slavic tribes: Lech, Czech and Rus. The name
of our forebear—Lech— is pronounced almost as Donald
Knuth wants TEX to be pronounced except of course that
‘L’ replaces ‘T’.
11 Let it be known that “ogonek” is a “small tail” in Polish.
12 “Let them have an outstanding left, I have an outstand-

ing right, I jump from the right.”, Włodzimierz Wysocki,
A high jumper’s song, from the Polish translation by Woj-
ciech Młynarski.

148 TUGboat, Volume 24 (2003), No. 1—Proceedings of the 2003 Annual Meeting

A Polished TEX story

ty—except for these formal written “acknowledg-
ments”—was not overly talkative.
In the beginning not only the ogonek posed

problems. It also was not clear what codes should
be assigned to our Polish glyphs. And even when
the third version of TEX gave us eight bits of in-
put, we had by then a dozen or so ways of placing
the Polish glyphs in the upper half of code pages.
The most popular was Mazovia, a standard created
by Poles themselves to reconcile our needs with the
need to use western European glyphs.
When I met Marek and Jacko a little bit later,

they were scrubbing the TEX deck day and night.
They wanted it to become available even under the
proverbial thatched roof,13 but the situation was
such that all modern Poles were using the Mazovia
encoding. It became apparent that it would be im-
mensely difficult to popularize TEX without adapt-
ing it in such a way that it would accept eight bit
Polish language texts. Thus MEX

14 and LAMEX came
into being.
With them, the shape of ogonek got its final

polish. A world renowned typographer, Roman To-
maszewski, helped to achieve this.
There are still some who use the Mazovia en-

coding, although Microsoft has buried it under the
852 and 1250 code pages, and the Internet added an-
other layer with ISO 8859-2. What would the world
look like without TCX? Luckily, at the EuroTEX
conference in Cork, the Polish diacriticals have been
given the best available places—provided they did
not interfere with other nationalities’ diacriticals. . .

The need for good taste aka GUST

Oh, if we had GUST15 before the “cork expedition!”
But we finally understood with the help of Malcolm
Clark, who had been talking Marek and Jacko into
it, that without our own user group, i.e., our own
Admiralty, we will always be perceived as pirates on
the TEX ocean.
The birth of GUST integrated Polish TEX

users—all able crew began scrubbing the deck in
concert now. Apart from that, the regular com-
munication enabled by Internet made our voices
heard where necessary, sometimes against the will

13 “To get something under the thatched roofs”—make it
available to everybody.
14 Standing (a little) for Mazovia–TEX but some would say

Macrosoft–TEX (Macrosoft, a company which harboured the
then most active crew). Besides, it means moss when pro-
nounced similarly to how Don Knuth wants to pronounce
TEX. The MEX package was awarded the President of the
Upper Silesian branch of the Polish Computer Society prize
at the Softarg fair in 1992.
15 Not incidentally, “gust” is Polish for good taste.

of some neighbouring nations.16 And when the cap-
ital of Poland was moved by GUST to Toruń—the
town of Copernicus—neither Warsaw nor Gdańsk
resented it.

Polish fonts

Polish fonts is the activity where such passionates
as Janusz “Uhlan” Nowacki from Grudziądz and
our unwavering captain Bogusław “Jacko” Jackow-
ski found their destiny. GUST was also able to sub-
sidize to some extent the public domain work, to
which undoubtedly the fonts belong. The first thing
to do was supplement the CM fonts in Adobe Type 1
format with Polish diacriticals—DC fonts later in-
herited those outlines as the source of Polish char-
acters.
But this was not all, by far. We began yearning

for a font which our fairy tales and legends had been
typeset in: the Antykwa Toruńska. Our beloved Uh-
lan miraculously persuaded the then still living au-
thor, Zygfryd Gardzielewski, to make available his
original drawings and meticulously turned them into
Type 1 outlines.
Jacko and Uhlan, supported by Piotr Strzel-

czyk, all united into the JNS team with the aim to
overcome the Cork problem by looking for a way
to place the 18 Polish diacriticals where we needed
them. It was the beginning of the QX font layout.
An attempt at the digitization of yet anoth-

er font we are attached to because the obituaries
of our grandfathers and fathers were typeset with
it—Antykwa Półtawskiego—had to be even more
systematic as it required reconstructing the font be-
cause no original design drawings were preserved. It
is now publically available.17

The TCX battle

Some of our neighbours were convinced (and pos-
sibly still are) that Poles are a messy nation and
that they should be taught order because “order
must be.” As they themselves in a democratic way

16 Recalls Marek Ryćko: In Cork there was a moment when
representatives of poor countries (those without the Internet)
were invited to a place where various TEX bits and pieces
were copied onto diskettes. It was a nice thing that we were
catered for, but the joy quickly turned into rage when we
found out, that at the same time the other boys had a meeting
during which there was the final voting on the encoding for
the extended CM family of fonts, now known as the “Cork
encoding”. The encoding was arrived at with the use of email
communication then unavailable to us. It is unsuitable for
Polish but, e.g., catered for the German needs.
17 Jackowski, B. “Antykwa Półtawskiego: a parameterized

outline font”, Proceedings of the EuroTEX’99 Conference
“Paperless TEX”, Heidelberg, Germany, September, 1999.

TUGboat, Volume 24 (2003), No. 1—Proceedings of the 2003 Annual Meeting 149

Andrzej Odyniec

finally got rid of diacriticals from their own lan-
guages, they could not understand that we Poles
have 9 × 2 = 18 of them and that because of the
order imposed on us by various foreign authors we
are forced to place them in various places. The most
difficult part was to convince them that we are at-
tached to our ogonek, and on top of it all we like
plain TEX, which makes it difficult to reconcile both
things with the 852, 1250, ISO 8859-2, as well as
Mazovia, code pages. We were being pointed to in-
putenc in LATEX2ε without taking into account the
difficulties of this method.
And then, in 1995, the animators of the GUST

Bulletin, Włodek Bzyl and Staszek Wawrykiewicz
found in the code of Web2c a novelty: a piece of code
by Karl Berry—an encoding handler called TCX.
This was something we liked. Perhaps too much. It
looked like we were asking for the moon and at the
same time created a storm in which TCX took the
role of the Flying Dutchman by alternately showing
up and disappearing. TCX needed polishing and at
the same time those who likened this approach to
dirty hacking tricks had to be nagged and nagged
and nagged again.

The TCX battle ensued with salvos exchanged
now and then. Masts and ports were broken. The
fierce email war was eventually won by Włodek
Bzyl, Staszek Wawrykiewicz and Marcin Woliński.
Thanks to them even very old Polish texts now com-
pile easily.

TEX Live

No battle and no expedition would succeed without
a boatswain. And it’s no mean boatswain we have on
board. It is StaW18 who knew from the very begin-
ning where what is and what fits what— i.e., what
and where should be installed for TEX et al. to func-
tion properly, and whom to shout at if things are not
as they should be.
He was the master of distributions and servers.

He was also one of those who initiated the good
GUST. And last but not least it was he who has

18 Staszek Wawrykiewicz.

been issuing orders more understandable then those
by the Admiralty.19

After the victorious battle which made TCX fa-
mous far and wide,20 his keeping clean of our deck
made him famous among others hence today you
will not find a teTEX, fpTEX nor MikTEX without
Staszek’s fingerprints.
Captains visit ships’ decks but boatswains are

there always, thus it is plainly impossible to list ev-
erything for which StaW deserves credit. We are
happy that the TEX world appreciates what he does
and wants to work with him. In Poland TEX is aLive
mainly thanks to his efforts. His arduous work makes
every new deckhand feel at home aboard TEX. And
as Staszek has now become the ambassador to CTAN,
I rest assured about the future of TEX archives.

PLATEX

LAMEX disappeared with LATEX 2.09. There was no
good reason for fixing the base code to adapt it to
the Polish language. This could now be done in the
form of a package. Then again our good GUST did
bear fruit. Mariusz Olko started with the PoPolsku
package in 1994. In 1997 the package began morph-
ing into PLATEX and its author into Marcin Woliński.
Thanks to their work publications made with

LATEX have the desired polished look and feel with
all 18 Polish diacriticals. And letters written in the
Polish language really look Polish and not English
or German.
Today this package gives TEX the position it

deserves. Many young people reach for it especially
when tired of the schizophrenia induced by word-
mania. Moreover, the package lives and is constant-
ly being updated. The GUST discussion list attracts
many novice users who enter their adventurous path
with PLATEX.

A new generation is being born to live on the
clean, scrubbed and polished TEX deck. Using the
GUST discussion list it seeks the old sea dogs’ advice
which they patiently give over and over again along
with the tips and tricks of the sailors’ world whose
waters were first charted by Professor Madey.

19 Starting from the translation of Michael Doob’s “Gen-
tle Introduction to TEX” through translating WinShell up to
polishing Eitan Gurari’s TEX4ht into sync with ISO 8859-2.
20 External TCX translation tables have been introduced

into all distributions based on Web2c and later into the
MikTEX distribution. Now TCX is handled by pdfTEX, ε-
TEX, Metafont and MetaPost which ensures the presence
of national glyphs on the screens, in the log files, contents
tables, indexes and the like. Thanks to TCX, TEX handles
national characters in the same way in formats like plain,
ConTEXt, LATEX, eplain, or AMS-TEX. This approach has
been accepted by many users, not only in Poland.

150 TUGboat, Volume 24 (2003), No. 1—Proceedings of the 2003 Annual Meeting

Abstracts —Sociology

That pesky lion, or about that lion,

or how a lion came to be

Duane R. Bibby
Lake Havasu, AZ

drbibby@ctaz.com

Slide show and talk includes early rough sketches
of TEX, Meta, and associated offspring plus other
obscure drawings and sketches.

(One sketch is below; a few of the others are
scattered throughout this issue — enjoy! Ed.)

The spread of TEX in India: The role of

outsourced typesetting

Ajit Ranade
ABN AMRO Bank, India
ajit.ranade@abnamro.com

Unlike in many other countries, the spread of TEX
in India was strongly catalysed by the increasing
outsourcing of typesetting, especially by publishers
of scientific journals and books. Users from Indian
academic institutions played a marginal role in the
initial push of TEX in India. Indeed the Indian TEX
Users Group, now five years old, was the result of the
initiative of a commercial typesetting outfit. The
outsourcing momentum continues to be strong, fu-
elled by newer standards and technologies such as
XML, and the demand for documents that can be
disseminated across different media, such as e-books
and internet. There is now a critical mass of TEX
users across different vendors, who depend on TEX
for their livelihood.

But there are significant challenges to harness-
ing this critical mass and make TEX even more wide-
spread. Skills spillover outside of typesetting ven-
dors seems to be inhibited by commercial consider-
ations. Training remains an underdeveloped area,
especially since the user base in academic institu-
tions is still small.

However, the exciting development of Indic TEX
with a simultaneous increase in literacy and reader-
ship of vernacular press offers an opportunity for a
much bigger scope for TEX in India, given the low
cost that TEX implies for publishing. In this paper
we analyse these trends, and identify the challenges
and opportunities for the greater deployment of TEX
in India.

TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting 151

2004

May 20 –
Jul 7

In Flight: A traveling juried exhibition of
books by members of the Guild of
Book Workers. Emory University,
Atlanta, Georgia. Sites and
dates are listed at http://

palimpsest.stanford.edu/byorg/gbw.

Jun 11 – 16 ALLC/ACH-2004, Joint International
Conference of the Association for
Computers and the Humanities,
and Association for Literary and
Linguistic Computing, “Computing
and Multilingual, Multicultural
Heritage”, Göteborg University,
Sweden. For information, visit
http://www.hum.gu.se/allcach2004/

or the organization web site at
http://www.ach.org.

Jun 14 GUTenberg Journée LATEX, Paris,
France. For information, visit
http://www.gutenberg.eu.org/

manifestations/gut2004/.

Jun 24 – 29 2nd International Conference on
Typography and Visual Communication:
Communication and new technologies,
Thessaloniki, Greece. For information,
visit http://www.uom.gr/uompress/.

Jul 5 –
Aug 6

Rare Book School, University of
Virginia, Charlottesville, Virginia.
Many one-week courses on topics
concerning typography, bookbinding,
calligraphy, printing, electronic texts,
and more. For information, visit
http://www.virginia.edu/oldbooks.

Jul 16 –
Aug 28

In Flight: A traveling juried exhibition
of books by members of the Guild of
Book Workers. Columbia College,
Chicago, Illinois. Sites and
dates are listed at http://

palimpsest.stanford.edu/byorg/gbw.

152 TUGboat, Volume 24 (2003), No. 1

Calendar

Jul 19 – 22 Practical TEX 2004, San Francisco,
California. A user-oriented conference
sponsored by TUG. For information, visit
http://www.tug.org/practicaltex2004/.

Jul 20 – 24 SHARP Conference (Society for
the History of Authorship,
Reading and Publishing),
Lyon, France. For information, visit
http://sharpweb.org/.

Jul 21 – 25 TypeCon2004, “Type High”,
San Francisco, California.
For information, visit
http://www.typecon2004.com/.

Aug 2 – 6 Extreme Markup Languages 2004,
Montréal, Québec. For information, visit
http://www.extrememarkup.com/extreme/.

Aug 8 – 12 SIGGRAPH 2004, Los Angeles,
California. For information, visit
http://www.siggraph.org/calendar/.

Aug 14 – 17 International Conference on Computing,
Communications and Control Technologies,
University of Texas, Austin, Texas.
For information, visit http://

www.iiisci.org/ccct2004/website/.

Aug 16 – 20 Seybold San Francisco, San Francisco,
California. For information, visit http://

www.seybold365.com/sf2004/.

TUG 2004

Democritus University of Thrace,

Xanthi, Greece.

Aug 30 –
Sep 3

The 25th annual meeting of the TEX
Users Group, “XML and Digital
Typography”. For information, visit
http://www.tug.org/tug2004/.

Sep 8 – 10 IUC26, the 26th Internationalization
and Unicode Conference:
“Internationalization for an Expanded
European Union”, San Jose,
California. For information, visit
http://www.unicode.org/iuc/iuc26/.

Status as of 1 July 2004

For additional information on TUG-sponsored events listed here, contact the TUG office
(+1 503 223-9994, fax: +1 503 223-3960, e-mail: office@tug.org). For events sponsored
by other organizations, please use the contact address provided.

An updated version of this calendar is online at http://www.tug.org/calendar/.
Additional type-related events are listed in the Typophile calendar, at

http://www.icalx.com/html/typophile/month.php?cal=Typophile.

Sep 13 –
Oct 29

In Flight: A traveling juried exhibition
of books by members of the Guild of
Book Workers. Columbus College
of Art & Design, Columbus, Ohio.
Sites and dates are listed at http://

palimpsest.stanford.edu/byorg/gbw.

Sep 30 –
Oct 3

Association Typographique Internationale
(ATypI) annual conference,
“Crossroads of Civilizations”,
Prague, Czech Republic.
For information, visit
http://www.atypi.org/.

Oct 2 – 3 Oak Knoll Book Fest XI, New Castle,
Delaware. For information, visit
http://www.oakknoll.com/.

Oct 9 First meeting of GuIT (Gruppo
utilizzatori Italiani di TEX), Pisa, Italy.
For information, visit
http://www.guit.sssup.it/

GuITmeeting/2004/2004.en.html.

Oct 18 – 19 Third Annual St. Bride Conference,
“Bad Type”, London, England.
For information, visit http://

www.stbride.org/conference.html.

Oct 28 – 30 ACM Symposium on Document
Engineering, Milwaukee, Wisconsin.
For information, visit
http://www.documentengineering.org.

Nov 11 –
Dec 31

In Flight: A traveling juried exhibition
of books by members of the Guild of
Book Workers. Boston Public Library,
Boston, Massachusetts. Sites
and dates are listed at http://

palimpsest.stanford.edu/byorg/gbw.

Nov 15 – 19 XML Conference & Exposition,
“XML – From Syntax to
Solutions”, Washington, DC.
For information, visit http://

www.xmlconference.org/xmlusa/.

2005

Mar 7 – 11 EuroTEX 2005, Metz, France.
For information, visit http://

www.gutenberg.eu.org/eurotex2005/.

Jul 31 –
Aug 04

SIGGRAPH 2005, Los Angeles, California.
For information, visit
http://www.siggraph.org/calendar/.

TUG 2005

Wuhan, China.

Aug 23 – 25 The 26th annual meeting of the TEX
Users Group. For information, visit
http://www.tug.org/tug2005/.

TUGboat, Volume 24 (2003), No. 1 153

The LATEX Companion has long been

the essential resource for anyone using

LATEX to create high-quality printed

documents. This completely updated

edition brings you all the latest informa-

tion about LATEX and the vast range of

add-on packages now available—over

200 are covered. Like its predecessor,

The LATEX Companion, Second Edition

is an indispensable reference for anyone

wishing to use LATEX productively.

For more information, visit:

www.awprofessional.com/

titles/0201362996

Frank Mittelbach and Michel Goossens

with Johannes Braams,

David Carlisle, and Chris Rowley

ISBN: 0-201-36299-6

Available at fine bookstores everywhere.

The LATEX
Companion

Second Edition

The LATEX
Companion

Second Edition

154 TUGboat, Volume 24 (2003), No. 1

TUG 2005 Announcement and Call for Papers

TUG 2005 will be held in Wuhan, China, during August 23–25, 2005. CTUG
(Chinese TEX User Group) has committed to undertake the conference affairs, and
now announces the call for papers.

Why go to China for TUG 2005?

For fun!

This is the first TUG conference to be held in China. Wuhan is close to the
birthplace of Taoism and the Three Gorges Reservoir. China is also the birthplace
of typography in ancient times, and is simply a very interesting place to go.

For keeping up with the community!

The TEX community in China has been growing over the years. China is one of
the few countries in the world which has heavily applied free software (including
TEX, GNU/Linux, and more) in industry. The rich human resources and the
creative TEXhackers have become a part of the engine driving the global TEX
community. TUG’05 is a good opportunity to meet them.

For your future!

The growing market is ready to use your expertise. Many libraries, publishing
houses, and scientific organizations in China are eager to use your TEX expertise.

Please submit abstracts for papers to tug2005@tug.org. For more information
about TUG 2005, please visit: http://tug.org/tug2005

Helmut Kopka and Patrick W. Daly

In this completely revised edition, the authors cover the

LATEX2ε standard and offer more details, examples,

exercises, tips, and tricks. They go beyond the core

installation to describe the key contributed packages

that have become essential to LATEX processing. Guide

to LATEX, Fourth Edition, will prove indispensable to

anyone wishing to gain the benefits of LATEX.

Guide to LATEX
Fourth Edition

ISBN: 0-321-17385-6

Guide to LATEX
Fourth Edition

For more information, visit: www.awprofessional.com/titles/0321173856

Available at fine bookstores every where.

The TEX Users Group gratefully acknowledges Apple Computer’s generous contributions,

especially to the Pra�ical TEX 2004 and TUG 2003 Conferences.

�ank y�.

The Apple Store in San Francisco is located at One Stockton Street, San Francisco, CA 94108

�This was typeset with the TEX variant XƎTEX created by Jonathan Kew using the Apple System fonts

H T by Jonathan Hoefler, Z by Hermann Zapf and S by Matthew Carter.&

http://www.apple.com/retail/sanfrancisco http://scripts.sil.org/xetex

1

2

1 2

Institutional

Members

American Mathematical Society,
Providence, Rhode Island

Banca d’Italia,
Roma, Italy

Center for Computing Science,
Bowie, Maryland

CNRS - IDRIS,
Orsay, France

CSTUG, Praha, Czech Republic

Duke University,
Chemistry Library,
Durham, NC

Florida State University,
School of Computational Science
and Information Technology,
Tallahassee, Florida

IBM Corporation,
T J Watson Research Center,
Yorktown, New York

Institute for Advanced Study,
Princeton, New Jersey

Institute for Defense Analyses,
Center for Communications
Research, Princeton, New Jersey

KTH Royal Institute of
Technology, Stockholm, Sweden

Masaryk University,
Faculty of Informatics,
Brno, Czechoslovakia

Max Planck Institut
für Mathematik,
Bonn, Germany

New York University,
Academic Computing Facility,
New York, New York

Princeton University,
Department of Mathematics,
Princeton, New Jersey

Siemens Corporate Research,
Princeton, New Jersey

Springer-Verlag Heidelberg,
Heidelberg, Germany

Stanford Linear Accelerator
Center (SLAC),
Stanford, California

Stanford University,
Computer Science Department,
Stanford, California

Stockholm University,
Department of Mathematics,
Stockholm, Sweden

University College, Cork,
Computer Centre,
Cork, Ireland

University of Delaware,
Computing and Network Services,
Newark, Delaware

Université Laval,
Ste-Foy, Québec, Canada

University of Oslo,
Institute of Informatics,
Blindern, Oslo, Norway

Uppsala University,
Computing Science Department,
Uppsala, Sweden

Vanderbilt University,
Nashville, Tennessee

Ogawa, Arthur

40453 Cherokee Oaks Drive
Three Rivers, CA 93271-9743
(209) 561-4585
Email: arthur ogawa@teleport.com

Bookbuilding services, including design, copyedit, art, and
composition; color is my specialty. Custom TEX macros and
LATEX2ε document classes and packages. Instruction,
support, and consultation for workgroups and authors.
Application development in LATEX, TEX, SGML, PostScript,
Java, and C++. Database and corporate publishing.
Extensive references.

Veytsman, Boris

2239 Double Eagle Ct.
Reston, VA 20191
(703) 860-0013
Email: borisv@lk.net

I provide training, consulting, software design and
implementation for Unix, Perl, SQL, TEX, and LATEX. I

have authored several popular packages for LATEX and
latex2html. I have contributed to several web-based

projects for generating and typesetting reports.
For more information please visit my web page:
http://users.lk.net/~borisv.

156 TUGboat, Volume 24 (2003), No. 1

TEX Consulting & Production Services

The Unicorn Collaborative, Inc., Ted Zajdel

115 Aspen Drive, Suite K
Pacheco, CA 94553
(925) 689-7442
Email: contact@unicorn-collab.com

We are a technical documentation company, initiated in
1990, which strives for error free, seamless documentation,
delivered on time, and within budget. We provide high
quality documentation services such as document design,
graphic design and copy editing. We have extensive
experience using tools such as FrameMaker, TEX, LATEX,
Word, Acrobat, and many graphics programs. One of our

specialties is producing technical manuals and books using
LATEX and TEX. Our experienced staff can be trained to

use any tool required to meet your needs. We can help you
develop, rewrite, or simply copy-edit your documentation.
Our broad experience with different industries allows us
to handle many types of documentation including,
but not limited to, software and hardware systems,
communications, scientific instrumentation, engineering,
physics, astronomy, chemistry, pharmaceuticals,
biotechnology, semiconductor technology, manufacturing
and control systems. For more information see our web
page: http://www.unicorn-collab.com.

The information here comes from the consultants
themselves. We do not include any information we know to
be false, but we cannot check out any of the information;
we are transmitting it to you as it was given to us and do

not promise it is correct. Also, this is not an endorsement

of the people listed here. We have no opinions and usually
no information about the abilities of any specific person.
We provide this list to enable you to contact service
providers and decide for yourself whether to hire one.

The TUG office mentions the consultants listed here to
people seeking TEX workers. If you’d like to be included, or
run to a larger ad in TUGboat, please contact the office or
see our web pages:

TEX Users Group

1466 NW Naito Parkway, Suite 3141
Portland, OR 97208-2311, U.S.A.

Phone: +1 503 223-9994
Fax: +1 503 223-3960

Email: office@tug.org

Web: http://tug.org/consultants.html

http://tug.org/TUGboat/advertising.html

