Proceedings EuroTEX2005 — Pont-a-Mousson, France

WETO02

Bibliography Styles Easier with MIBIBTRpX

Jean-Michel HUFFLEN

LIFC (FRE CNRS 2661)

University of Franche-Comté

16, route de Gray

25030 BESANCON CEDEX

FRANCE
hufflen@lifc.univ-fcomte.fr
http://lifc.univ-fcomte.fr/ hufflen

Abstract

We emphasise and discuss some methodology about writing bibliography styles
using the nbst language, part of MIBIBTX. Most of the given tricks can also be
applied to developing styles using XSLT, since nbst extends it closely. Last we
show that the organisation of a bibliography style in several files allows modular
decomposition.

Keywords: bibliographies, methodology, bibliography styles, multilingual fea-
tures, BIBIpX, MIBIBTEX, bst, nbst, XML, XSLT.

Résumé

Nous dégageons et argumentons quelques méthodes d’écriture de styles bibliogra-
phiques au moyen du langage nbst de MIBIBTEX. La plupart des conseils donnés
peuvent également s’appliquer au développement de styles en XSLT, le langage
nbst en étant assez proche. Enfin, nous montrons en quoi 'organisation des di-
vers fichiers d’un style bibliographique permet une décomposition modulaire.
Mots-clés : bibliographies, méthodologie, styles bibliographiques, multilin-
guisme, BIBTRX, MIBIBTEX, bst, nbst, XML, XSLT.

Zusammenfassung

Es werden einige Methoden dargelegt und untergesucht, um bibliographische Sty-
les in der Sprache nbst zu schreiben. Da nbst mit XSLT nah verwandt ist, kann
diese Anleitung auch fiir die Programmierung der Styles in XSLT helfen. Am Ende
wird an der Aufteilung der bibliographischen Styles in einzelne Dateien gezeigt,
dass eine modulare Dekomposition moglich ist.

Stichworter: Bibliographien, Methodik, bibliographischen Styles, mehrsprachi-

gen Funktionen, BIBTEX, MIBIBTRX, bst, nbst, XML, XSLT.

Introduction

This article aims to give some methodology about
the development of bibliography styles, that is, spec-
ifications that rule the layout of referemces put in
the ‘Bibliography’ section of a document, these ref-
erences being built from entries located in bibliog-
raphy data bases.

When we started the development of our pro-
gram MIBIBTEX (for ‘MultiLingual BIBTEX") [9], we
were interested in going thoroughly into multilingual
aspects for a bibliography processor belonging to the
programs of TEX’s family and especially, generat-

Bibliography Styles Easier with MIBibTEX
Jean-Michel Hufflen

ing bibliographies as source files for the ITEX word
processor [22], like BIBTRX [26]. More precisely, we
aimed to put into action an ‘extended’ BIBTX with
multilingual features comparable with I TEX’s. An-
other example of such an extension is given by the
babelbib package and the bibliography styles in in-
terface with it [7].

As we explained in [12], we think that such
organisation —adopted for MIBIBTRX’s first version
[9] —leads to complicated bibliography styles, since
the language bst [25], used within BIBTRX, is not
modular: each style is a monolithic program put in

179

WETO02

QINPROCEEDINGS{thys1997,
AUTHOR = {first => Frank,
last => Thys},
TITLE = {Auf der {Spur} des
{Vernichters}},
BOOKTITLE = {Dinoland},
EDITOR = {first => Wolfgang,
last => Holbein},
PAGES = {353--437},
PUBLISHER = {Bastei L\"{ul}bbe},
ADDRESS = {Bergisch Gladbach},
YEAR = 1997,
MONTH = aug,
LANGUAGE = german}

Figure 1: Entry using MIBIBTRX's syntax.

only a single file, so if we would like to add multi-
lingual features, we have to extend each style sepa-
rately. This point and others decided us to develop a
new language, so-called nbst, for ‘new bibliography
styles’, close to XSLT', the language of transforma-
tions for XML? documents. We think that such a
choice is good, since XML becomes a central formal-
ism for document interchange. In particular, using
nbst eases the production of bibliographies for XML
documents: for instance, documents written using
XSL-FO? [37], a language for describing high-quality
print outputs, or DocBook [3§], a system for writing
structured documents.

We explain in [17] why MIBIBTEX does not use
XSLT itself, after converting bibliography (.bib) files
into an XML-like format, as programs like BibteXML
[6] or BIB2XML [27] do. However, if we agree to con-
sider an XsSLT-like language for bibliography styles,
we have to rewrite most of the bibliography styles
of BIBIRX, if we want to provide some continuity
with this program. There exists a way to import bst
functions into an nbst program [11], nevertheless it
is obvious that complete rewriting is prefereable, in
order to take as much advantage as possible of this
programming paradigm. We put some methodology
into action to rewrite BIBTzX’s bibliography styles,
we are giving these methods hereafter.

We begin with a small example, in order to il-
lustrate the expressive power of nbst. Second we
show how to design the layout of a reference. We
consider a particular case: the @INPROCEEDINGS en-
try type of BIBIRX —for an article in a conference
proceedings or a story in an anthology —but our

leXtensible Stylesheet Language Transformations.
2eXtensible Markup Language.
3eXtensible Stylesheet Language — Formatting Objects.

180

Proceedings EuroTEX2005 — Pont-a-Mousson, France

<inproceedings id="thys1997" language="german">
<author>
<name>
<personname>
<first>Frank</first><last>Thys</last>
</personname>
</name>
</author>
<title>
Auf der <asitis>Spur</asitis> des
<asitis>Vernichters</asitis>
</title>
<booktitle>Dinoland</booktitle>
<editor>
<name>
<personname>
<first>Wolfgang</first>
<last>Holbein</last>
</personname>
</name>
</editor>
<publisher>Bastei Liibbe</publisher>
<year>1997</year>
<month><aug/></month>
<address>Bergisch Gladbach</address>
<pages>
<firstpage>353</firstpage>
<lastpage>457</lastpage>
</pages>
</inproceedings>

Figure 2: The entry of Figure 1 as an XML tree.

method is easily adaptable to any entry type. Then
we implement our specification. Last, we show how
to organise the different items of a bibliography and
give some advice about the decomposition of an nbst
program into several files. A succint comparison be-
tween bst and nbst statements is given as an annexe,
followed by some complements about writing exter-
nal functions using Scheme — the language used for
developing MIBIBTX [15] — close to the expression
language used as part of DSssSL* [18], the language
of stylesheets of sGML® [8].

What knowledge is required to read this arti-
cle? A basic one about XML, XPath—the language
used to address parts of an XML document—and
XsLT is sufficient to just understand the examples
given hereafter. Good introductions to them are
[29, 30, 34], the ‘official’ references about XPath and
XSLT, issued by the w3c®, are [36, 35]. Concerning

4Document Style Semantics and Specification Language.

5Standard Generalized Markup Language, the ancestor
of xML. Now it has just historical interest.

SWorld Wide Web Consortium.

Bibliography Styles Easier with MIBibTEX
Jean-Michel Hufflen

Proceedings EuroTEX2005 — Pont-a-Mousson, France

<!ELEMENT pages (onepage+ |
(firstpage, (ff | lastpage)) |
pages-verbatim)>

<!ELEMENT onepage %INTEGER;>
<!ELEMENT firstpage %INTEGER;>
<!ELEMENT lastpage %INTEGER;>
<!ELEMENT ff EMPTY>

<!ELEMENT pages-verbatim (#PCDATA)>

<!-- Strictly speaking, ‘4INTEGER;’ is a parameter

entity (cf. [29, pp. 163-164]) standing for parsed
character data (‘4PCDATA’). But we use it for
sake of readability, whenever the content of a
text node is an integer, because DTDs’
formalism does not know this type. ‘£f’ is for
an unspecified number of following pages.

-—>

Figure 3: Excerpt from our DTD: specification of
pages from a journal or book.

MIBIBTX more precisely, all its elements and func-
tions used within path expressions are described in
[13]. On another point, we think that developing
new functions in Scheme by MIBIBTEX’s end-users
is only needed for very specific applications, so re-
ferring to an introductory book such as [32] is suffi-
cient to understand the given examples. MIBIBTEX
has been developed using the fifth revision of this
language [19].

A small example

Let us consider the bibliographical entry given in
Figure 1. Even if it roughly looks like a BIBTRX
entry, we can notice the use of syntactic features
specific to MIBIBTX: a LANGUAGE field”, some key-
words for introducing the different parts of a person
name: ‘first’, ‘last’. All these syntactic features
are described precisely in [13].

If this entry is cited throughout a document,
the corresponding bibliographical reference, to be
put at the ‘References’ section, looks like:

[1] Frank Thys. Auf der Spur des Vernich-
ters. In Wolfgang Holbein, editor, Di-
noland, pp. 353-437, Bergisch Gladbach,
August 1997. Bastei Liibbe.

We got this result by using ‘old’ BIBIRX, operat-
ing on an ‘old’ bibliography (.bib) file. The bibli-
ography style used above is plain.bst, that is, items
are labelled by numbers, and first names are not

7Also used in conjonction with the mlbib package [23] or
the natbib package [7], but in MIBIBTgX, the corresponding
values need not to be surrounded by braces or double-quote
characters.

Bibliography Styles Easier with MIBibTEX
Jean-Michel Hufflen

WETO02

FUNCTION {multi.page.check}
{ ’t := 7 t is given the value of the PAGES field,
% popped from the stack.
#0 ’multiresult := ¥ Le., multiresult « false.
{ multiresult not % While multiresult is
t empty$ not % false and t non-empty,
and % do

{ t #1 #1 substring$ % compare t’s first
duplicate$ "-" = % character with
swap$ duplicate$ "," = % =, ¢, 4
swap$ "+" =
or or

% if success, update multiresult;

{ #1 ’multiresult := }

% if not, update t by removing its head:

{ t #2 global.max$ substring$ ’t := }
if$

}

while$
multiresult % pushed result.

}

Figure 4: How BIBTRX detects that several page
numbers are given.

abbreviated. This reference is supposed to be put
at the end of a document written in English. If
a German-speaking plain bibliography style —e.g.,
dtk.bst, used for the articles of the journal of the
DANTE® group, Die TgXnische Komédie —is cho-
sen, that results in:

[1] Frank Thys: Auf der Spur des Vernich-
ters; in Dinoland (Hg. Wolfgang Hol-
bein); S. 353-437; Bergisch Gladbach;
Aug. 1997; Bastei Liibbe.

so the stylistic differences between these two exam-
ples—for example, ‘. after the author’s name in
English, *” in German and French —shows that the
layout of such references is language-dependent, in
the sense that it is influenced by ‘national’ tradi-
tions.

When MIBIBTEX parses the entry of Figure 1,
the entry is processed as if it was the XML tree given
in Figure 2; in fact, it results in the SXML® repre-
sentation of such an XML tree. We can notice that
this choice allows us to structure information given
in some fields, for example, person names, in the
AUTHOR and EDITOR fields, but also the first and last
pages of a story belonging to an anthology, in the

8 Deutschsprachige Anwendervereinigung TEX e. V.

9Scheme implementation of xmL, described in [20]. See
[15] for more details about its use within MIBIBTEX’s imple-
mentation.

181

WETO02

<nbst:template match="pages">
<nbst:param name="beginning"/>
<nbst:param name="ending"/>
<nbst:value-of select="$beginning"/>
<nbst:variable name="onepage-elements" select="onepage">
<nbst:choose>
<nbst:when test="$onepage-elements">
<nbst:choose>

<nbst:when test="count($one-page-elements) = 1"><nbst:text>\bblp</nbst:text></nbst:when>

<nbst:otherwise><nbst:text>\bblpp</nbst:text></nbst:otherwise>
</nbst:choose>
<nbst:apply-templates select="$onepage-elements[1]"/>
</nbst :when>
<!-- Otherwise, firstpage element, followed by either the £f or a last page. -->
<nbst:otherwise><nbst:apply-templates/></nbst:otherwise>
</nbst:choose>
<nbst:value-of select="$ending"/>
</nbst:template>

<nbst:template match="onepage">
<nbst:param name="first-time" select="true()"/>
<nbst:variable name="following" select="following-sibling: :onepage">
<nbst:choose>
<nbst:when test="$first-time"><nbst:call-template name="tie-number"/></nbst:when>
<nbst:otherwise><nbst:value-of select="."/></nbst:otherwise>

Proceedings EuroTEX2005 — Pont-a-Mousson, France

</nbst:choose>
<nbst:if test="$following">
<nbst:text>, </nbst:text>

<nbst:apply-templates select="$following[1]">

<nbst:with-param name="first-time" select="false()"/>

</nbst:apply-templates>
</nbst:if>
</nbst:template>

<nbst:template match="firstpage | pages-verbatim">

<nbst:call-template name="tie-number"/>
</nbst:template>

<nbst:template match="ff">
<nbst:text> \bblff</nbst:text>
</nbst:template>

<!-- Putting a non-breaking space character — -->
<!-- before a small number. -=>

Figure 5: Putting page numbers down in nbst.

PAGES field. Such XML trees are conformant to a
DTD', an excerpt from which being given in Fig-
ure 3. Syntactically, the PAGES field of MIBIBTEX
allows the specification of:

e a single page: {353},
e a range of pages: {353--457},

e the first page of an unspecified number of con-
secutive ones: {353+},

e some enumerated pages: {353,439,519},

10Document Type Definition. A pTD defines a document
markup model [29, Ch. 5|. The bTD we use is a revised version
of what is given in [10].

182

e otherwise, the value associated with this field is
kept wverbatim and becomes the content of the
pages-verbatim element: this content will ap-
pear as it is within any predefined bibliography
style.

The bibliography styles of BIBIRX deal with
these different syntactic forms, as it can be seen in
Figure 4, but this style of programming seems to us
to be some hack.

Figure 5 shows how page numbers can be pro-
cessed using nbst. Many tags and attributes are the
same than in XSLT, except for the namespace used
as a prefix, which is obviously different. We explain

Bibliography Styles Easier with MIBibTEX
Jean-Michel Hufflen

Proceedings EuroTEX2005 — Pont-a-Mousson, France

Entity Character How to produce | Numeric
reference it in BTEX entity
& & \& &
' ’ '
&emdash; — -—— —
&endash; — - –
&eol; q° \newline

> < &#H62;
< > <
&nobsp;b -
" " "

%q’ is a typographic sign for the end-of-line character [2,
§ 2.85]. In nbst, this entity is used to begin a new line within
generated files.

bNon-breaking space character.

Table 1: Entities usable in nbst.

later what the parameters beginning and ending
are precisely, but intuitively, we can guess that they
are strings to be put before and after the page num-
bers. Let us notice the use of wvariables —names
that may be bound to values—and of path expres-
stons in match and select attributes’ values. Us-
ing the following-sibling axis allows us to reach
the subtrees at the right of the current node and
sharing the same parent node, that is particularly
useful to implement loops, in the sense of ‘classical’
programming languages. Putting some enumerated
pages would be done this way if we express it using
a ‘classical’ algorithm:

write(tie-number (first(one-page-elements))) ;
loop
one-page-elements «— rest(one-page-elements) ;
exit when one-page-elements = @ ;
write(",,") ; write(first(one-page-elements)) ;
end loop ;
Figure 5 shows how this algorithm is put into ac-
tion by means of a recursive template, matching the
first element of page numbers not written yet. This
technique is very common in XSLT for iterative algo-
rithms.

Let us focus on the texts generated when these
templates are invoked, more precisely, on the con-
tent of the nbst:text tags: we notice the use of ad-
ditional XTEX commands, for example, \bblp (resp.
\bblpp) for one (resp. several) pages. These names
originate from bibliography styles generated by the
makebst program [3] in interface with the babel pack-
age [24, Ch. 9], and are language-dependent. For
example, the \bblp command is expanded in ‘p.’
for ‘page’ in English and French, in ‘S.” for ‘Seite’ in
German. How to organise them is shown in [14, § 2].

Bibliography Styles Easier with MIBibTEX
Jean-Michel Hufflen

WETO02

<nbst:template match="lastpage">
<nbst:value-of
select="concat (’&endash;?,.)"/>
</nbst:template>

<nbst:template match="lastpage"
language="french">
<nbst:value-of select="concat(’-’,.)"/>
</nbst:template>

Figure 6: Default and language-dependent
templates.

Special characters can be denoted by entity refer-
ences, like in XML [29, pp. 48-49]. MIBIBTX knows
more predefined character entities than XML —e.g.,
‘&endash;’, used in Figure 6 — they are summarised
in Table 1: for each, we give its name, the corre-
sponding character, the way to produce it in I TEX
if this character is special'!, the decimal number
coding it w.r.t. Unicode [33].

Now let us introduce the main difference be-
tween XSLT and nbst. When a range of pages is
to be given, an en-dash character'? should be put
between the first and last page numbers. More pre-
cisely, this is the convention for most European lan-
guages, including English. But in documents writ-
ten in French, this character tends to be replaced
by a single minus character (‘-’). In our style, this
character is put by the template processing the last
page number. Figure 6 gives two version of this tem-
plate: a default version, without the language, and
another version, suitable for the French language.
This language attribute does not exist in XSLT; in
nbst, a template with it has higher priority than the
same template without.

Style for a entry type

As we can read in [24, § 13.6.3], introducing small
changes in a bibliography style written using the
bst language is quite easy. Writing the whole of a
style is a worthwhile exercise: we have to know what
has been pushed onto the stack handled by BIBTRX,
what we can pop from it, possibly after applying the
duplicate$ function when this value is needed af-
terwards by the program. This language is not mod-
ular, we have to take care of such questions from a

11MlBIBTEX uses it only when the mode attribute of the
nbst:output element (cf. Figure 12) is LaTeX. For example,
the element:

<nbst:text>The Bull & the Spear</mbst:text>

produces ‘The Bull \& the Spear’ (resp. ‘The Bull & the
Spear’) if the mode is LaTeX (resp. text).
12That is, a dash as wide as the ‘n’ letter.

183

WETO02

Proceedings EuroTEX2005 — Pont-a-Mousson, France

<inproceedings> ::=
"\bibitem{" <id> "}9" <authors> <title> <in-eds-booktitle> [", " <volume-number-series>]
[*, " <pages>] <date-etc> ["\newblock " <note> "."] "qq" ;
<authors> ::= <name-list> ".9\newblock "
<editors> ::= <pname-list> ", \bbled, " if |<name-list>| =1 |
<name-1list> ", \bbleds, " if |<name-list>|>1 ;
<name-list> ::= <name> {", " <name>} [", \bbland\ " <name> | " \bbletal"]
<title> ::= change-case(t) (<string>) ".9\newblock "
<booktitle> = "\emph{" <string> "
<in-eds-booktitle> ::= "\capitalize\bblin " [<editors>] <booktitle> ;
<volume-number-series> ::= "\bblvol" <tie-number><yoiume> " \bblof \emph{" <series> "}" |
"\bblno" <tie-number>«umer> " \bblin " <series> ;
<pages> ::= "\bblp" <tie-number(s)> if |<tie-number(s)>|=1 |
"\bblpp" <tie-number(s)> if |<tie-number(s)>| >1 ;
<tie-number (s)> ::= <non-breaking-space-character> <number(s)> if <number(s)> < 3 |
" " <pumber(s)> if <number(s)> >3 ;
<date-etc> = [", " <address> ", "] <date> [". " <org-pub>] ". " |
[*. " <org-pub>] ", " <date>
<org-pub> ::= [<organisation> ", "] <publisher> ;
‘... is for the number of elements of a list, ¢...” for the length of a string. Cf. Table 1 about the ‘9’ sign.

Figure 7: How to put information about a story included into an anthology.

function to another, and the use of only global vari-
ables reinforces this monolithic way of programming.
So, the best method for rewriting a style wholly is to
express it using a grammar, according to a reverse
engineering'® approach. That is, studying bst styles
in order to deduce such a grammar. Of course, such
modelling can also be done from documents giving
rules for bibliographies’ layout, such as [1, § 10] or
[2, §§ 15 & 16].

Figure 7 gives all the possible texts for refer-
ences generated by BIBTEX, using a ‘plain’ style and
derived from entries being @INPROCEEDINGS type.
We do not consider cross-referencing (|22, § B.1.4],
[24, § 13.2.5]), not implemented yet in MIBIBTEX.
These possible texts are expressed with a formalism
close to EBNF™, that is:

e for each non-terminal symbol, enclosed like an
XML tag, the expression following the ‘: :=" sign

13 According to the terminology used in Software Engin-

nering:

e re-engineering consists of transforming a program
written using an ‘old’ language into a new program in a
more modern language: for example, deriving a C pro-
gram from source files written in FORTRAN;

e reverse engineering is the process of analysing soft-
ware in order to recover its design of specification.

As stated in [31, Ch. 34], reverse engineering is part of soft-
ware re-engineering process, in the sense that allows better
understanding of a system.

4 Extended Backus-Naur Form. Readers unfamiliar with
this formalism can refer to [4] for an introduction. DTD syntax
originate from it.

184

and terminated by ‘;’ states how it can be ex-
panded,;

e the ‘|’ sign means an alternative, ‘[...]" is
for an optional part, ‘{...}’ for zero or more
occurrences of its content;

e expressions enclosed by two double quote char-
acters are texts to be put: let us recall that they
are part of KTEX input.

Since this grammar does not model texts to be
parsed, but texts to be generated, we do not have
to be conformant with conditions related to pars-
ing, as that would be the case for a language to
be interpreted or compiled. In fact, most of our
non-terminal symbols are fields’ names of MIBIBTpX
(e.g., <title>) or simple types (e.g., <string>).
There is some language abuse — for example, the use
of functions (e.g., change-case!®)—but we think
that such a specification is precise and gives a good
overview of the texts to be generated.

So, we are given precise information about the
order in which fields’ values should be placed. As
specified in the file plain.bst, we keep the occur-
rences of the \newblock command, used when the
bibliography is to be ‘open’— by means of the open-
bib option of the \documentclass command — that
is, each block starting on a new line [24, § 12.2.1].
On another point, some keywords, hard-wired in
this file, are replaced by multilingual commands of
IXTEX. By the way, let us remark that we are able

15 Analogous to the namesake function in BiBTEX [25].

Bibliography Styles Easier with MIBibTEX
Jean-Michel Hufflen

Proceedings EuroTEX2005 — Pont-a-Mousson, France

<nbst:template match="inproceedings">
<nbst:call-template name="common-pre"/>
<nbst:variable name="comma-space"
select="2, 2"/>
<nbst:apply-templates select="author"/>
<nbst:apply-templates select="title"
mode="inproc"/>
<nbst:call-template name="in-eds-booktitle"/>
<nbst:call-template
name="volume-number-series">
<nbst:with-param name="beginning"
select="$comma-space"/>
</nbst:call-template>
<nbst:variable name="pages">
<nbst:apply-templates select="pages">
<nbst:with-param name="beginning"
select="$comma-space"/>
</nbst:apply-templates>
</nbst:variable>
<nbst:call-template name="date-etc">
<nbst:with-param name="previous"
select="$pages"/>
</nbst:call-template>
<nbst:apply-templates select="note">
<nbst:with-param
name="beginning"
select="’&eol;\newblock ’"/>
<nbst:with-param name="ending"
select="2.""/>
</nbst:apply-templates>
<nbst:call-templates name="common-post"/>
</nbst:template>

Figure 8: Building a reference from an
inproceedings element: program using nbst.

to capitalise the result of such a command when
it begins a sentence, by means of the \capitalize
command'®. As far as possible, we consider that a
sign of ponctuation terminates the written form of a
field —for example, the list of authors, ended with
a period —but it is not always possible: as another
example, the specification of page numbers may be
followed by a comma if there is an address, by a
period if there is an organisation name. In such a
case, the sign of ponctuation is specified before the
non-terminal symbol it opens in Figure 7.

16This command is not predefined in IATEX, it can be de-
fined as follows:

\def\capitalize#1{Y
\def\Capitalize##1{\uppercase{##1}}
\expandafter\Capitalize#1}

cf. [21] for more details about \expandafter and the defini-
tions of TEX commands.

Bibliography Styles Easier with MIBibTEX
Jean-Michel Hufflen

WETO02

<nbst:template match="title" mode="inproc">
<nbst:apply-templates match=".">
<nbst:with-param name="emf"
select="false()"/>
<nbst:with-param name="retain-capitals"
select="false()"/>
</nbst:apply-templates>
</nbst:template>

Figure 9: Putting titles down.

Now the role of the two template parameters
beginning and ending, occurring in Figure 5 is
explained. Their use is systematic, as it can be
seen in Figure 8, that ‘implements’ our specifica-
tion. More generally, we can notice that writing
this template matching inproceedings elements is
direct, once we got a grammar for such references.
If we consider Figure 7, the layout for an element
(e.g., <author>) is implemented by a template with
a match attribute; if we implement a non-terminal
symbol grouping the layout of several elements (e.g.,
<in-eds-booktitle>), a named template does that.
The named template common-pre opens a reference,
by putting the \bibitem command [24, § 12.1.2],
whereas the common-post template closes it. Both
may used to insert multilingual directives, for ex-
ample, the otherlanguage environment of the babel
package [24, § 9.2.1].

Let us mention a last point about signs of ponc-
tuation: several consecutive ones may conflict. In
practice, such a case occurs when a period is to be
put after a string ending with an exclamation or
question mark, or with a period belonging to an ab-
breviation. BIBTRX solves this case by means of its
function add.period$ [25], provided that the string
has not been popped yet. In XSLT and nbst, a string
is output by means of the value-of element, un-
less it is processed within a template that becomes
the content of a variable. Thereby the result of this
template can be memoized and reused later. Let us
look at Figure 8: the string result of invoking the
template matching the pages element becomes the
value of the pages variable, which is passed to the
named templates date-etc.

Refining the way to process title elements,
let us remark that it depends on the entry type:
within the bibliography style plain.nbst, they are put
down using italic characters for an entry type being
type @BOOK, written using roman characters without
quotation marks if this type is @ NPROCEEDINGS. In
this last case, we process such an element with a

185

WETO02

<nbst:template match="title">
<nbst:param name="emf" select="true()"/>

<nbst:param name="quotedbf" select="false()"/>

Proceedings EuroTEX2005 — Pont-a-Mousson, France

<nbst:param name="retain-capitals" select="true()"/>

<nbst:param name="ending" select="’.&eol;\newblock’"/>

<nbst:if test="$quotedbf"><nbst:text>\begin{bblquotedtitle}</nbst:text></nbst:if>
<nbst:if test="$emf"><nbst:text>\emph{</nbst:text></nbst:if>

<nbst:variable name="title-put">
<nbst;choose>

<nbst:when test="$retain-capitals"><nbst:apply-templates/></nbst:when>

<nbst:otherwise>

<nbst:apply-templates select="node() [1]">

<nbst:with-param name="retain-capitals" select="false()"/>
<nbst:with-param name="no-left-lowercase" select="true()"/>

</nbst:apply-templates>

<nbst:apply-templates select="node() [position() > 1]1">
<nbst:with-param name="retain-capitals" select="false()"/>

</nbst:apply-templates>
</nbst:otherwise>
</nbst:choose>
</nbst:variable>
<nbst:value-of select="$title-put"/>

<nbst:if test="$emf"><nbst:text>}</nbst:text></nbst:if>
<nbst:if test="$quotedbf"><nbst:text>\end{bblquotedtitle}</nbst:text></nbst:if>

<nbst:call-template name="adjoin-sign">

<nbst:with-param name="the-string" select="$title-put"/>
<nbst:with-param name="ending" select="$ending"/>

</nbst:call-template>
</nbst:template>

Figure 10: Putting titles down (continued).

mode attribute, as shown in Figure 9. The tem-
plate matching title elements without any mode —
cf. Figure 10—allows us to define parameters for
ruling the layout and give them default values used
when we display the title of a book:

e emf: if true, use italic characters;

e quotedbf: if true, use language-dependent quo-
tation marks, provided by the bblquotedtitle
environment (cf. [14, § 2]);

e retain-capitals: if false, converting the title
to lowercase except at the beginning;

e ending: the string to be put after the title. The
named template adjoin-sign prevents conflict
between the last character of the title and the
value of ending.

As shown in Figure 9, this template with the mode
attribute set to inproc only consists of passing suit-
able values to the general template of Figure 10.
Processing titles according to this inproc mode can
be redefined for the French language, using French
quotation marks, or the German language, using
italic characters, as written in Figure 11.

186

Core of a style

When MIBIBTEX builds an XML-like tree with all the
entries to be processed, this tree is rooted by an el-
ement so-called mlbiblio. Figure 12 gives the root
element of our ‘new plain’ bibliography style and
shows how to process all the entries. Opening the
thebibliography environment [24, § 12.1.2] is done
by the named template put-preamble, which may
put additional KTEX definitions, especially those in-
cluded in BIBTEX’s preambles [24, § 13.2.4]. Sym-
metrically, the putpostamble template closes the
bibliography.

We can also see how entries are sorted before
they are dispatched according to their type. Like
the namesake element of XSLT, the first occurrence
specifies the primary sort key, the second occurrence
the secondary sort key, used for elements left un-
sorted, and so on. The first occurrence could have
been specified by:

select="author/name[1] /personname/last"

that is, sorting entries w.r.t. the family name of
the first author, but that would discard organisation

Bibliography Styles Easier with MIBibTEX
Jean-Michel Hufflen

Proceedings EuroTEX2005 — Pont-a-Mousson, France

<nbst:template match="title" mode="inproc"
language="french">
<nbst:apply-templates match=".">
<nbst:with-param name="emf"
select="false()"/>
<nbst:with-param name="quotedbf"
select="true()"/>
</nbst:apply-templates>
</nbst:template>

<nbst:template match="title" mode="inproc"
language="german">
<nbst:apply-templates match=".">
<nbst:with-param
name="ending"
select="";&eol;\newblock’"/>
</nbst:apply-templates>
</nbst:template>

Figure 11: Putting titles down w.r.t. French and
German styles.

names as authors. The solution we put in Figure 12
consists of concatenating three strings related to the
first author, two of them being always empty:

e the family name, if this name is for a person,

e the sort key of an organisation name, if given,

e the organisation name itself, if the sort key has
not been given.

For first authors that are organisation names,
only the first occurrence of the nbst:sort element
is of interest, the others do nothing. When sort-
ing entries w.r.t. names is finished, we sort w.r.t.
years, then months. This last sort order can seem
to be some hack since it uses the interface with
Scheme functions (cf. § B), but let us recall that
programming such a sort order is very difficult in
bst and unused in practice. However, we think that
our successive nbst:sort elements are clearer than
the presort, sortify and purify$ functions used
within bibliography styles written in bst.

Splitting a style into several files

As abovementioned, the bst language is not mod-
ular, and all the definitions for a particular style
must be stored in the same file, what is a drawback
since several styles share the same definitions. That
complicates the mainenance of bibliography styles
if some definitions need some enrichment. Besides,
it is difficult, when we are studying a style, to de-
termine what is specific or common to other styles.
The nbst language includes:

e annbst:include element, to import definitions
explicitly from another nbst file;

Bibliography Styles Easier with MIBibTEX
Jean-Michel Hufflen

WETO02

o implicit importations, described in [14, § 3.1].
Hereafter, we show how to spread out the templates
we are writing over different files, in order to take as
much advantage as possible of implicit importations
of nbst. Let us recall that we are developing a new
version of the ‘plain’ bibliography style, that is, the
master file is plain.nbst.

e The global.nbst can be viewed as MIBIBTEX’s

initial library of definitions using nbst: it in-
cludes general named templates such as:

adjoin-sign date-etc tie-number

as well as template matching the following ele-

ments:
address one-page
booktitle orgnization
ff pages
firstpage pages-verbatim
lastpage publisher
note title

Putting more templates in this file may seem
to be of interest, but let us recall that in nbst,
imported templates have the same priority than
other elements!'”: so ‘global’ elements cannot be
redefined'®, unless adding a language or mode
attribute to the redefinition.

e Of course, the plain.nbst file—the master file
for this bibliography style—must include its
root (nbst:bst) element and the ‘main’ tem-
plate matching an mlbiblio element, given in
Figure 12. The following named templates, re-
lated to references’ labels, should be included
in this file, too:

common-post put-postamble

common-pre put-preamble

The layout of the following element depends
on the bibliography style, so the corresponding
templates have to be stored in the plain.nbst file:

series
volume

author inproceedings
editor number

as well as the named templates, for the same
reason:

in-eds-booktitle
org-pub

volume-number-series

e The ‘French’ definition of the template match-
ing a lastpage element (cf. Figure 6) is gen-
eral for French-speaking styles, not directly re-
lated to ‘plain’ styles, so we place it onto the

17This is not the case in xsrT if the xs1:import element is
used.

18More exactly, if there is conflict between templates, it is
unpredictible to know which will be run.

187

WETO02

Proceedings EuroTEX2005 — Pont-a-Mousson, France

<nbst:bst version="1.3" id="plain" zmlns:nbst="http://lifc.univ-fcomte.fr/~hufflen/mlbibtex">

<nbst:output method="LaTeX" encoding="IS0-8859-1"/>
<!-- This encoding allows accented letters of Western European Languages [5, Table C.4]. -->

<nbst:template match="mlbiblio">
<nbst:call-template name="put-preamble">

<nbst:with-param name="longest-label" select="count(*)"/>

</nbst:call-template>
<nbst:apply-templates>

<nbst:sort select="concat(author/name[1]/personname/last,
author/name [1] /othername/@sortingkey,
author/name [1] /othername [not (@sortingkey)]1)"/>

<nbst:sort select="author/name[1]/personname/first"/>

<nbst:sort select="author/name[1]/personname/von"/>

<nbst:sort select="author/name[1]/personname/junior"/>

<nbst:sort select="year" data-type="number"/>

<nbst:sort select="call(month-position,month)" data-type="number"/>

</nbst:apply-templates>
<nbst:call-template name="put-postamble"/>
</nbst:template>

</nbst:bst>

Figure 12: Root element for a program in nbst— Organising all the entries to generate references.

-french.nbst file, that is, the file grouping the
general definitions for the French language.

e On the contrary, the French and German re-
definitions of the template matching title el-
ements in inproc mode (cf. Figure 11) belong
both to the ‘plain’ bibliography style so they
should be put into the files plain-french.nbst and
plain-german.nbst.

Conclusion

We think that when a new tool or a new program-
ming language is developed, its conceptor(s) should
provide methodology and advice about it. Often
teachers of programming languages notice that stu-
dents may program badly in a good language. Let
us go back to BIBTEX, we personally missed —in
the past, a long time before we decided to develop
MIBIBTEX — a didactic introduction to the bst lan-
guage like [28]. Likewise, an overview for writers
of WTEX extensions such as [24, Appendix A] was
missing for a long time.

In this article, we have not shown all the fea-
tures of MIBIBTX. For example, we have not gone
thoroughly into multilingual features—in order to
show that our approach was mostly suitable for de-
signing styles using XSLT, too— and ‘new plain’ style
was implicitly supposed to be language-dependent
[13], that is, each reference is expressed using the

188

language’s entry. In fact, our goal was to show that
nbst allowed us to write bibliography styles in ele-
gant manner, provided that we are given a precise
specification of what to put. So we are able to build
a solid basis for a style, and people could easily en-
rich it with new language-dependent templates by
using MIBIBTEX’s implicit importation.

Now we are rewriting predefined bibliography
styles of BIBTRX. Most of them have already been
redesigned, but this work is not finished yet at the
time we finish writing this article. We hope that
these explanations would help people enrich these
new styles, especially in order to adapt them to other
languages.

Acknowledgements

Thanks to Volker R. W. Schaa, who proof-read the
German translation of the abstract.

A bst vs nbst

A precise comparison between bst and nbst is diffi-
cult, since these two languages belong to very differ-
ent programming paradigms. The former is based
on handling a stack (see [28] for a didactic introduc-
tion to this aspect), the latter encourages rule-based
programming. They do not belong to the same time,
either: the former has been influenced by assembly

Bibliography Styles Easier with MIBibTEX
Jean-Michel Hufflen

Proceedings EuroTEX2005 — Pont-a-Mousson, France

WETO02

bst expression “Equivalent” expression in nbst [Kind* ‘
Ty Io > | 7)° > Io° P
T I < | Th" alt; T,° P
1 I, = | ' = I,° P
S S =& =8 P
I I + | Th' + I,° P
LI - | S -8 P
81 S * [concat (57,80 p
<nbst:call-template name="adjoin-sign">
S add.period$ <nbst:w%th—param name="thejstring" select="S%"/> B
<nbst:with-param name="ending" select="’.’"/>
</nbst:call-template>
S "t" change.case$ concat(substring(Sh,l,l) ,lowercase(substring(Sh,2))) Pe
S "1" change.case$ | lowercase(S?) P
S "u" change.case$ | uppercase(S?) P
S chr.to.int$ | (char->integer S%) S
cite$ | @id P
L empty$ | not(string(L")) P
<nbst:choose>
. <nbst:when test="7" & t O">_7-'1h</nbst:when>
L Fr Fo if$ <nbst:otherwise>f2h</1glbst:otherwise> E
</nbst:choose>
7 int.to.chr$ | (integer->char Z°) S
7 int.to.str$ | string(ZF) P
£ missing$ | not(L7) P
newline$ | <nbst:text>&eol;</nbst:text> or <nbst:value-of select="’&eol;’"/> E
S num.names$ | count(name) if name (S%) € {author, editor} p
preamble$ | @preamble P
S purify$ | call(bst-purify,S?) P
quote$ | <nbst:text>"</nbst:text> or <nbst:value-of select="’"’"/> E
, substring(S¥,7,7,7,%) ifZ; >0 .
S T I, substring$ substrini(Sh ,string—length(Sh) + -0 Z,Zgh) if7Z: <0 P
S text.length$ | string-length(S?) P
S 7 text.prefix$ | substring(S%,1,77) Pc
type$ | name() P
S warning$ | <nbst:warning>S°</nbst:warning> E
S width$ | (tex-width S%) S°
S write$ | <nbst:value-of select="S""/> E

“Qualifies the given expression in nbst: ‘E’ is for ‘element’, ‘P’ for ‘path expression’, ‘S’ for ‘Scheme expression’.

®The adjoin-sign is included in MIB1BTEX s initial library.

¢Let us recall that indexing strings is one-based in XPath and nbst, whereas it is zero-based in Scheme.
4This Scheme function is given in Figure 13. Useless in practice (see Figure 8)!

¢Not implemented yet (always returns "0").

Table 2: Translation of most bst statements given in [24, Table 13.8]

languages, the latter has taken advantage of a mod-
ern langage, suitable for handling documents and
designed for a large purpose.

Some statements of bst are not really translat-
able into nbst: for example, the assignment (‘:=’),
because nbst is like a purely functional language, in
the sense that a variable—or a parameter — can-
not be changed, once it has been given a value. On

Bibliography Styles Easier with MIBibTEX
Jean-Michel Hufflen

the other hand, nbst allows recursive templates, like
in XsLT, what is useful for iterative programming
(cf. Figure 5) and replaces the while$ function of
bst.

The call.type$ function of bst does not have
a direct equivalent, either: such an operation is per-
formed by pattern-matching by means of the match
attribute of suitable nbst:template elements. The

189

WETO02

(define (bst-purify string-0)

(let thru ((index (- (string-length string-0) 1))

Proceedings EuroTEX2005 — Pont-a-Mousson, France

;3 Current index, we are going backward. The second argument allows us to accumulate retained
;3 characters in a list, we begin with an empty list:

(accumulator ’()))
(if (negative? index)

;3 The string has been processed, we convert the list of accumulated characters into a string:

(list->string accumulator)

(thru (- index 1) (let ((current-char (string-ref string-0 index)))
;3 Discarding it if it is not alphanumeric:
(if (or (char-alphabetic? current-char) (char-numeric? current-char))
(cons current-char accumulator)

accumulator))))))

Figure 13: Scheme function implementing the bst function purify$.

format.name$ function is replaced by handling path
expressions like in XPath for subtrees for authors and
editors.

Table 2 is an attempt to express the relation-
ship between bst statements and corresponding real-
isations in nbst. In fact, it emphasises which state-
ments are easily translatable, which are not. This
table does not include bst functions such as ‘:=’,
while$, call.type$, skip$. Likewise, we did not
put bst functions directly related to BIBTX’s stack
management: duplicate$, stack$, swap$, top$.

For the other bst functions, we make precise
its operands: Z is for an integer, S for a string,
L for any value, F for a function. When several
operands are the same type, we use indices. We use
the “...% notation to mean ‘the translation of an
operand in nbst’: for example, the if$ function of
bst pops three values from the stack, the translation
of the first should be used inside the value of a test
attribute, the others should be translated into nbst
elements put as contents of an nbst:if element.

As it can be seen in Table 2, the direct trans-
lation of some statements needs to call functions di-
rectly written in Scheme: we put them for sake of
completeness, but in practice, most of these func-
tions are useless when a style is wholly rewritten
using nbst (cf. § B). Last, let us remark that in
the path expressions given in this table—@id and
@preamble — the current node is supposed to be the
node for an entry (inproceedings, book, ...)

B Interface with Scheme

Path expressions used within nbst include calls to
external functions written in Scheme and returning
strings. The syntax is:

call(function-name,argi,...,arg,)

190

where function-name is the function’s name, ap-
plied to argy, ..., arg, (n € N). Now we got some
experience in writing bibliography styles, and as far
as we know, there are three reasons for using such
functions within bibliography style files:

e functions related to TEX’s features: for exam-
ple, returning the width of a string, expressed
in TEX’s units (cf. Table 2), as another exam-
ple, searching IATEX source files: for instance,
we have to do that in order to know the docu-
ment’s language'?;

e operations that would be tedious with the func-
tions of XPath’s library: an example appearing
in Table 2 is the bst-purify function;

e functions used to sort entries: e.g., the func-
tion month-position, that allows the sort of
month names according to the chronological or-
der, used in the template given in Figure 8.

In Figure 13, we give the exact equivalent for
the purify$ function of bst, in order to give some
idea about how to deal with strings in Scheme. Let
us remark that this operation—used in BIBTEX to
build strings to be sorted lexicographically —is use-
less practically since it is better to use successive
nbst:sort elements as we show in Figure 12.

In addition to the bst-purify function, we give
a second example written in Scheme in Figure 14:
the month-position function, used to sort month
names, as shown in Figure 12. As abovementioned,
this way may be thought as ad hoc method, never-
theless, let us remark that such a sort is not provided
by ‘old’ BIBTRX.

19Gee [16] for more details about this problem. MIBIETEX
also searches auxiliary (.aux) files produced by XTEX, but not
whilst a bibliography style is applied.

Bibliography Styles Easier with MIBibTEX
Jean-Michel Hufflen

Proceedings EuroTEX2005 — Pont-a-Mousson, France

(define month-position

(let ((month-name-list

WETO02

7(lljanll "feb" "mar" llaprll Ilmayll |ljunll lljulll "aug" Ilsepll "oct" "nov" "dec")))

(lambda (string-0)

(let thru ((month-name-list-0O month-name-list)

(current-position 0))
(if (or (null? month-name-list-0)

;3 This way, elements with a non-recognised or empty month name will be put after those with
;3 an actual month name after the sorting operation.

(string=7 (car month-name-1list-0) string-0))

; Final result as a string.

(thru (cdr month-name-list-0) (+ current-position 1)))))))

(number->string current-position)

Figure 14: Scheme function used to sort month names by sorting corresponding positions.

References

[1]

2]

3]

4]

[5]

[6]

7]

18]
19]

[10]

Judith BUTCHER: Copy-FEditing. The Cam-
bridge Handbook for Editors, Authors, Publish-
ers. 3rd edition. Cambridge University Press.
1992.

The Chicago Manual of Style. The University
of Chicago Press. The 14th edition of a manual
of style revised and expanded. 1993.

Patrick W. DaLy: Customizing Bibliographic
Style Files. Version 3.2. February 1999. Part of
BIBTX’s distribution.

Lars Marius GARSHOL: BNF and EBNF:
What Are They and How Do They Work?
July 2003. http://www.garshol.priv.no/
download/text/bnf .html.

Michel GOOSSENS and Sebastian RAHTZ,
with Eitan M. GURARI, Ross MOORE and
Robert S. SuTOR: The KX Web Compan-
ion. Addison-Wesley Longmann, Inc., Reading,
Massachusetts. May 1999.

Vidar Bronken GUNDERSEN and Zeger W.
HENDRIKSE: BIBTpX as XML Markup. January
2003. http://bibtexml.sourceforge.net.
Harald HARDERS: ,Mehrsprachige Literatur-
verzeichnisse: Anwendung und Erweiterung des
Pakets babelbib“. Die TgXnische Komddie,
Bd. 4/2003, S. 39-63. November 2003.

Erik vAN HERWIJNEN: Practical SGML. Inter-
pharm Press. December 1994.

Jean-Michel HUFFLEN: “MIBIBTRX: a New Im-
plementation of BIBTRX”. In: EuroTpX 2001,
p- 74-94. Kerkrade, The Netherlands. Septem-
ber 2001.

Jean-Michel HUFFLEN: “Multilingual Features
for Bibliography Programs: From XML to
MIBIBTRX”. In: FuroTgX 2002, p. 46-59. Ba-
chotek, Poland. April 2002.

Bibliography Styles Easier with MIBibTEX
Jean-Michel Hufflen

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

Jean-Michel HUFFLEN: “Mixing Two Bibliog-
raphy Style Languages”. In: LDTA 2003, Vol.
82.3 of ENTCS. Elsevier, Warsaw, Poland. April
2003.

Jean-Michel HUFFLEN: “European Bibliogra-
phy Styles and MIBIBTRX”. TUGboat, Vol. 24,
no. 3. EuroTEX 2003, Brest, France. June 2003.

Jean-Michel HUFFLEN: “MIBIBTX’s Version
1.3”. TuGboat, Vol. 24, no. 2, p. 249-262. July
2003.

Jean-Michel HUFFLEN: “Making MIBIBTEX Fit
for a Particular Language. Example of the Pol-
ish Language”. Biuletyn GusT, Vol. 21, p. 14—
26. 2004.

Jean-Michel HUFFLEN: “A Tour around
MIBIBTEX and Its Implementation(s)”. Biule-
tyn GUST, Vol. 20, p. 21-28. In BachoTgX 2004
conference. April 2004.

Jean-Michel HUFFLEN: “MIBIBIRX: beyond
KTEX”. In: International Conference on TEX,
XML, and Digital Typography, Vol. 3130 of
LNCS, p. 203-215. Springer, Xanthi, Greece.
August 2004.

Jean-Michel HUFFLEN: Multilingual Bibliogra-
phy Styles: nbst vs XSLT. To appear in Proc.
GUIT conference, Pisa. October 2004.

International Standard 150/1EC 10179:1996(E):
DSSSL. 1996.

Richard KeLsey, William D. CLINGER,
Jonathan A. REES, Harold ABELSON, Nor-
man I. ApaMs 1v, David H. BARTLEY,
Gary BRrRoOOkS, R. Kent DYBVIG, Daniel P.
FRrIEDMAN, Robert HALSTEAD, Chris HAN-
SON, Christopher T. HAYNES, Eugene Edmund
KOHLBECKER, JR, Donald OXLEY, Kent M.
PirMAN, Guillermo J. Rozas, Guy Lewis
STEELE, JR, Gerald Jay SUSSMAN and Mitchell

191

WETO02

[20]

[21]

22]

23]

[24]

[25]

[26]

[27]

28]

[29]
[30]

31]

[32]

[33]

[34]

192

WAND: Revised® Report on the Algorithmic
Language Scheme. February 1998. http://
www.cs.indiana.edu/scheme-repository/.

Oleg KISELYOV: “A Better XML Parser through
Functional Programming”. In: 4th Inter-
national Symposium on Practical Aspects of
Declarative Languages, Vol. 2257 of LNCS.
Springer. 2002.

Donald Ervin KNUTH: Computers & Typeset-
ting. Vol. A: the TgXbook. Addison-Wesley
Publishing Company, Reading, Massachusetts.
1984.

Leslie LAMPORT: IATEX. A Document Prepa-
ration System. User’s Guide and Reference
Manual. Addison-Wesley Publishing Company,
Reading, Massachusetts. 1994.

Wenzel MATIASKE: Multilinguale Zitierfor-
mate. Oktober 1995. CTAN:macros/latex/
contrib/supported/mlbib/.

Frank MITTELBACH and Michel GOOSSENS,
with Joannes BrAAMS, David CARLISLE,
Chris A. RowLEY, Christine DETIG and
Joachim SCHROD: The ETpX Companion. 2nd
edition. Addison-Wesley Publishing Company,
Reading, Massachusetts. August 2004.

Oren PATASHNIK: Designing BIBTpX Styles.
February 1988. Part of BIBTRX’s distribution.

Oren PATASHNIK: BiBTpXing. February 1988.
Part of BIBTRX’s distribution.

Chris PuTNAM: Bibliography — Conver-
sion Utilities. February 2005. http:

//www.scripps.edu/~cdputnam/software/
bibutils/bibutils.html.

Bernd RAICHLE: Tutorium: FEinfihrung in die
BiBTpX-Programmierung. Handouts flir DANTE
2002. Februar 2002.

Erik T. RAY: Learning XML. O’Reilly & Asso-
ciates, Inc. January 2001.

John E. SiMpsON: XPath and XPointer.
O’Reilly & Associates, Inc. August 2002.

Tan SOMMERVILLE: Software Engineering. 5th
edition. Addison-Wesley Publishing Company.
1996.

George SPRINGER and Daniel P. FRIEDMAN:

Scheme and the Art of Programming. The MIT
Press, McGraw-Hill Book Company. 1989.
THE UNICODE CONSORTIUM: The Unicode
Standard Version 4.0. Addison-Wesley. August
2003.

Doug TiDWELL: XSLT. O’Reilly & Associates,
Inc. August 2001.

[35]

[36]

37]

[38]

Proceedings EuroTEX2005 — Pont-a-Mousson, France

W3C: xMmL Path Language (XPath). Ver
sion 1.0. w3C Recommendation. Edited
by James Clark and Steve DeRose. Novem-
ber 1999. http://www.w3.org/TR/1999/
REC-xpath-19991116.

W3C: xsL Transformations (XSLT). Ver
ston 1.0. W3C Recommendation. Edited b

James Clark. November 1999. http://www.w3.
org/TR/1999/REC-xs1t-19991116.

W3C: Extensible Stylesheet Language (XSL).
Version 1.0. w3C Recommendation. Edited b

James Clark. October 2001. http://www.w3.
org/TR/2001/REC-xs1-20011015/.

Norman WALSH and Leonard MUELLNER: Doc-
Book: The Definitive Guide. O’Reilly & Asso-
ciates, Inc. October 1999.

Bibliography Styles Easier with MIBibTEX
Jean-Michel Hufflen

