
TUGBOAT

Volume 27, Number 1 / 2006

EuroTEX 2006 Conference Proceedings

EuroTEX 2006 2 Conference delegates and sponsors

3 Gyöngyi Bujdosó / The Hungarian TEX Rhapsody — EuroTEX 2006

4 Gábor Bella / Impressions from EuroTEX 2006

Typography 8 András Virágvölgyi / Would Aldus Manutius have used TEX?

Macros 13 Katalin Fried et al. / The colourful side of TEX

Software & Tools 16 Taco Hoekwater / Opening up the type

18 Taco Hoekwater / MetaPost developments— autumn 2006

22 Siep Kroonenberg / Managing a network TEX installation under Windows

28 Gyöngyi Bujdosó / Typography based on-line help on TEX

32 László Németh / Automatic non-standard hyphenation in OpenOffice.org

38 Hans Hagen / What tools do ConTEXt users have?

Electronic

Documents

43 Ildikó Miklós / KöMaL CD —The execution

45 Thierry Bouche / A pdf LATEX-based automated journal production system

51 István Bencze, Balázs Fark, László Hatala and Péter Jeszenszky /

Server side PDF generation based on LATEX templates

57 Péter Szabó and András Hraskó / Managing a math exercise database with LATEX

Fonts 62 Taco Hoekwater and Hans Hagen / The making of a (TEX) font

66 Siep Kroonenberg / Font installation the shallow way

71 Karel Ṕı̌ska / Font verification and comparison in examples

Bibliographies 76 Jean-Michel Hufflen / MlBIBTEX meets ConTEXt

Tutorial 83 Bogus law Jackowski / Appendix G illuminated

Omega 91 Yannis Haralambous, Gábor Bella and Atif Gulzar / Open-belly surgery in Ω2

98 Yannis Haralambous / New hyphenation techniques in Ω2

Abstracts 104 Abstracts (Fahmy, Hagen, Henkel, Hufflen, Radó, Schröder, Szabó)

News 106 Calendar

TUG Business 107 TUG 2007 election

107 Institutional members

Advertisements 108 TEX consulting and production services



TEX Users Group

TUGboat (ISSN 0896-3207) is published by the
TEX Users Group.

Memberships and Subscriptions

2006 dues for individual members are as follows:
Ordinary members: $85.
Students/Seniors: $45.

The discounted rate of $45 is also available to
citizens of countries with modest economies, as
detailed on our web site.

Membership in the TEX Users Group is for the
calendar year, and includes all issues of TUGboat

for the year in which membership begins or is
renewed, as well as software distributions and other
benefits. Individual membership is open only to
named individuals, and carries with it such rights
and responsibilities as voting in TUG elections. For
membership information, visit the TUG web site.

Also, (non-voting) TUGboat subscriptions are
available to organizations and others wishing to
receive TUGboat in a name other than that of an
individual. The subscription rate is $95 per year,
including air mail delivery.

Institutional Membership

Institutional membership is a means of showing
continuing interest in and support for both TEX
and the TEX Users Group, as well as providing
a discounted group rate and other benefits. For
further information, contact the TUG office or see
our web site.

TEX is a trademark of the American Mathematical
Society.

Copyright c© 2006 TEX Users Group.

Copyright to individual articles within this publication

remains with their authors, and may not be reproduced,

distributed or translated without their permission.

For the editorial and other material not ascribed to

a particular author, permission is granted to make and

distribute verbatim copies without royalty, in any medium,

provided the copyright notice and this permission notice are

preserved.

Permission is also granted to make, copy and distribute

translations of such editorial material into another language,

except that the TEX Users Group must approve translations

of this permission notice itself. Lacking such approval, the

original English permission notice must be included.

Printed in U.S.A.

Board of Directors

Donald Knuth, Grand Wizard of TEX-arcana†

Karl Berry, President∗

Kaja Christiansen∗, Vice President

David Walden∗, Treasurer

Susan DeMeritt∗, Secretary

Barbara Beeton
Jon Breitenbucher
Steve Grathwohl
Jim Hefferon
Klaus Höppner
Ross Moore
Arthur Ogawa
Steve Peter
Cheryl Ponchin
Samuel Rhoads
Philip Taylor
Raymond Goucher, Founding Executive Director †

Hermann Zapf, Wizard of Fonts†

∗member of executive committee
†honorary

See http://tug.org/board.html for past board
members.

Addresses

General correspondence,
payments, etc.

TEX Users Group
P. O. Box 2311
Portland, OR 97208-2311
U.S.A.

Delivery services,
parcels, visitors

TEX Users Group
1466 NW Naito Parkway
Suite 3141
Portland, OR 97209-2820
U.S.A.

Telephone

+1 503 223-9994

Fax

+1 206 203-3960

Electronic Mail

(Internet)

General correspondence,
membership, subscriptions:
office@tug.org

Submissions to TUGboat,
letters to the Editor:
TUGboat@tug.org

Technical support for
TEX users:
support@tug.org

Contact the Board
of Directors:
board@tug.org

World Wide Web

http://www.tug.org/

http://www.tug.org/TUGboat/

Have a suggestion? Problems not resolved?

The TUG Board wants to hear from you:
Please email board@tug.org.

[printing date: October 2006]



The Communications of the TEX Users Group

Volume 27, Number 1, 2006

EuroTEX 2006 Conference Proceedings



TEX Users Group

TUGboat (ISSN 0896-3207) is published by the
TEX Users Group.

Memberships and Subscriptions

2006 dues for individual members are as follows:
Ordinary members: $85.
Students/Seniors: $45.

The discounted rate of $45 is also available to
citizens of countries with modest economies, as
detailed on our web site.

Membership in the TEX Users Group is for the
calendar year, and includes all issues of TUGboat
for the year in which membership begins or is
renewed, as well as software distributions and other
benefits. Individual membership is open only to
named individuals, and carries with it such rights
and responsibilities as voting in TUG elections. For
membership information, visit the TUG web site.

Also, (non-voting) TUGboat subscriptions are
available to organizations and others wishing to
receive TUGboat in a name other than that of an
individual. The subscription rate is $95 per year,
including air mail delivery.

Institutional Membership

Institutional membership is a means of showing
continuing interest in and support for both TEX
and the TEX Users Group, as well as providing
a discounted group rate and other benefits. For
further information, contact the TUG office or see
our web site.

TEX is a trademark of the American Mathematical
Society.

Copyright c© 2006 TEX Users Group.

Copyright to individual articles within this publication

remains with their authors, and may not be reproduced,

distributed or translated without their permission.

For the editorial and other material not ascribed to

a particular author, permission is granted to make and

distribute verbatim copies without royalty, in any medium,

provided the copyright notice and this permission notice are

preserved.

Permission is also granted to make, copy and distribute

translations of such editorial material into another language,

except that the TEX Users Group must approve translations

of this permission notice itself. Lacking such approval, the

original English permission notice must be included.

Printed in U.S.A.

Board of Directors

Donald Knuth, Grand Wizard of TEX-arcana†

Karl Berry, President∗

Kaja Christiansen∗, Vice President

David Walden∗, Treasurer

Susan DeMeritt∗, Secretary

Barbara Beeton
Jon Breitenbucher
Steve Grathwohl
Jim Hefferon
Klaus Höppner
Ross Moore
Arthur Ogawa
Steve Peter
Cheryl Ponchin
Samuel Rhoads
Philip Taylor
Raymond Goucher, Founding Executive Director †

Hermann Zapf, Wizard of Fonts†

∗member of executive committee
†honorary

See http://tug.org/board.html for past board
members.

Addresses

General correspondence,
payments, etc.

TEX Users Group
P. O. Box 2311
Portland, OR 97208-2311
U.S.A.

Delivery services,
parcels, visitors

TEX Users Group
1466 NW Naito Parkway
Suite 3141
Portland, OR 97209-2820
U.S.A.

Telephone

+1 503 223-9994

Fax

+1 206 203-3960

Electronic Mail

(Internet)

General correspondence,
membership, subscriptions:
office@tug.org

Submissions to TUGboat,
letters to the Editor:
TUGboat@tug.org

Technical support for
TEX users:
support@tug.org

Contact the Board
of Directors:
board@tug.org

World Wide Web

http://www.tug.org/

http://www.tug.org/TUGboat/

Have a suggestion? Problems not resolved?

The TUG Board wants to hear from you:
Please email board@tug.org.

[printing date: October 2006]



EuroTEX2006 Proceedings

Debrecen, Hungary

July 5–8, 2006

COMMUNICATIONS OF THE TEX USERS GROUP

TUGBOAT EDITOR BARBARA BEETON

PROCEEDINGS EDITOR KARL BERRY

VOLUME 27, NUMBER 1 • 2006

PORTLAND • OREGON • U.S.A.



EuroTEX 2006: A Hungarian TEX Rhapsody

The XVI th European TEX Conference

Sponsors
DANTE e.V. GUTenberg MATEX TEX Users Group
Faculty of Computer Science, University of Debrecen
Hungarian Mathematics Society of Transylvania
Panem Kiadó Gyöngyi Bujdosó

Programme Committee
Karl Berry Thierry Bouche Gyöngyi Bujdosó Luzia Dietsche Yannis Haralambous Hans Hagen
Taco Hoekwater Bogusław Jackowski Jerzy Ludwichowski Péter Maczó
Frank Mittelbach Bence Nagy Bernd Raichle Péter Szabó Ferenc Wettl

Organising Committee
László Baranyai Gábor Bella Gyöngyi Bujdosó Luzia Dietsche Klaus Höppner
Péter Hanák Tamás Mihálydeák Bence Nagy Volker RW Schaa Péter Szabó
Maria Jolanta Szelatyńska Ferenc Wettl

Preprints Committee
István Baranyai Gyöngyi Bujdosó Péter Szabó Ferenc Wettl

Participants

Gábor Bella, ENST Bretagne

Thierry Bouche, Université de Grenoble

Gyöngyi Bujdosó, University of Debrecen & MATEX

Hossam Fahmy, Cairo University

Katalin Fried, Eötvös Loránd University

Hans Hagen, Pragma ADE & NTG

Yannis Haralambous, ENST Bretagne

Hartmut Henkel, von Hoerner & Sulger GmbH

Maurizio Himmelmann, GUiT

Taco Hoekwater, Elvenkind BV

Jean-Michel Hufflen, University of Franche-Comté

Bogusław Jackowski, GUST

Péter Jeszenszky, University of Debrecen

Lajos Kollár, University of Debrecen

Siep Kroonenberg, Rijksuniversiteit Groningen

Dag Langmyhr, University of Oslo

Jerzy Ludwichowski, Nicolaus Copernicus
University & GUST

Tamás Mihálydeák, University of Debrecen, MATEX

Ildikó Miklós, KöMaL

László Németh, OpenOffice.org team

Karel Ṕı̌ska, Czech Academy of Sciences

István Radó, Horváth & Partners

Arthur Reutenauer, École Normale Supérieure

Volker RW Schaa, DANTE e.V.

Martin Schröder, pdfTEX team

Péter Szabó, Budapest University of Technology
and Economics

Ulrik Vieth, Germany

András Virágvölgyi, sequens.hu

Staszek Wawrykiewicz, GUST

Ferenc Wettl, Budapest University of Technology
and Economics & MATEX



The Hungarian TEX Rhapsody — EuroTEX 2006

EuroTEX 2006 was the first international TEX confer-

ence held in Hungary; it was organized by the Hun-

garian TEX Users Group, MATEX. It took place dur-

ing the first week of the hot Hungarian summer, from

July 4 to July 8, in Debrecen, the second largest city

in Hungary.

Debrecen is a town of several universities, and the

capital of Calvinism. The conference was held in the

new campus of the University of Debrecen, near the

center of the town. During the excursion, the par-

ticipants visited some of the nice places of the town:

the old campus and buildings of the university, the

old library and a school exhibition of the Theolog-

ical University, and the main Calvinistic church. A

short walk in the center was followed by a tour in

the Hortobágy National Park. Here we could see the

old Hortobágy bridge, as well as special, protected an-

imals and a photo exhibition about the special flora

and fauna of the area. And, of course, we got a taste

of traditional Hungarian food.

The TEXers and typographers participating in the

conference came from Europe and Africa: Czech Re-

public, Egypt, France, Germany, Hungary, Poland,

The Netherlands, and Norway. We were very sorry

that some of our friends could not participate because

of personal reasons. We thank all the attendees for the

talks, tutorials and valuable discussions that made the

conference successful.

In this proceedings, papers on various parts of

TEX and typography can be read. There are papers

on how to use TEX for publishing journals and math-

ematical exercise databases, about attractive Roman

and Arabic and even some bovine fonts, new devel-

opments in pdfLATEX, ConTEXt, Ω and MlBibTEX,

and new hyphenation techniques for TEX and Ω. The

other main thread of the conference was typography:

papers about typographical history, aspects and sys-

tems can also be found in the proceedings. We regret

to inform the reader that Yannis Haralambous’s greet-

ing lines delivered in Hungarian at the beginning of

his presentation are not part of the proceedings! We

hope that you will enjoy the papers as we enjoyed the

excellent talks during the conference.

Beyond that many thanks must go to the members

of the programme and organizing committees (listed

on the preceding page) for their work in making the

conference successful and valuable.

We are also grateful to the sponsors of the confer-

ence. Many thanks to the Faculty of Computer Sci-

ence of University of Debrecen for ensuring the tech-

nical support and the place of the conference. We are

thankful for the generous contributions from TEX user

groups that made it possible to organize the conference

in Hungary, namely DANTE e.V., GUTenberg, NTG,

and TUG for financial aid, and TUG for publishing

the proceedings. We also thank the Panem Publishing

Company and the Hungarian Mathematics Society of

Transylvania (EMT) for the financial support.

Special thanks to Yannis Haralambous, Karl Berry,

Jerzy Ludwichowski and Maria Jolanta Szelatyńska

for their help given to us before and during the or-

ganizing process. Many thanks to Hans Hagen, Klaus

Höppner, and Volker RW Schaa for their help in ensur-

ing the financial background, and Karl Berry and Bar-

bara Beeton for their work in editing, correcting and

publishing this proceedings. And we are grateful for

the contributions of Luzia Dietsche, Taco Hoekwater,

Bogusław Jackowski, Péter Maczó, Frank Mittelbach

and Bernd Raichle.

We were honored by the participation of the es-

teemed typographer István Baranyai, who created the

conference logo, buttons, and the design used for the

preprints and these proceedings. Thank you, István!

And last but not least I must thank the work and

help of my Hungarian TEX mates, to László Baranyai

for ensuring the technical background, Gábor Bella

for preparing and keeping the web pages up to date,

Tamás Mihálydeák for many things in the local or-

ganizing work, Bence Nagy for the web page design,

Péter Szabó for making the style file and editing the

preprints, as well as setting up the mailing lists and

other infrastructure, and Ferenc Wettl for his work

on the committees and the valuable conversations.

Hope to see you at the next TEX conference!

— With best regards, Gyöngyi Bujdosó

TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006 3



Impressions from EuroTEX 2006

GÁBOR BELLA

Arrival
Having been responsible for programming the con-
ference website and followed email discussions on or-
ganisational matters, I arrived at the conference with
the knowledge that only around 30 people were reg-
istered, a fact that worried me slightly. It had also
appeared that a single person bore the brunt of the
organisational work. However, what cheered me up
was that this person was none other than Gyöngyi,
the leading lady of the Hungarian TEX community
whose wonderful personality we all know. And in-
deed, as it turned out on arrival, everything was im-
peccably organised and, despite the small number of
people present, the overall ambience was very posi-
tive, light, and relaxed. The conference was held on
one of the campuses of the Debrecen University. Ho-
tel rooms were also provided on campus, just 50 me-
tres from the conference hall. I, for one, was perfectly
satisfied with the facilities and living conditions.

Debrecen is one of the most important cities of
Hungary, both in terms of history and present in-
fluence. It is situated some 250 km to the east of
Budapest. Those who traveled to Debrecen by train
had no big problems during their trip. However, at-
tendees taking the Budapest-Debrecen flight had the
unique experience of landing twice. The Debrecen air-
port is new (it opened only two months before the
conference) and apparently the logistics arrangements
are not yet perfect: the flight controllers simply forgot
to give landing clearance to the aeroplane, forcing it
to head upwards again, do a circle and proceed to land
a second time.

The first afternoon’s tutorial sessions were fol-
lowed by a dinner and a collective watching of the
Germany vs. Italy semi-final. The author has to doff
his hat to all the German supporters at EuroTEX who
soberly accepted (despite the quantity of cheap Hun-
garian beer consumed) the unfavourable results of the
game without the least inclination towards football
hooliganism.

Registration
The registration procedure of TEX conferences is al-
ways a little bit like Christmas: this is the time when
participants get to see and collect the usual T-shirts,
mugs, pens, and other lion-related memorabilia. This
year, these items all had a genuine Hungarian touch
to them: instead of usual conference handbags, peo-
ple were given haversacks. T-shirts were not bearing a
traditional Duane Bibby illustration; rather, the con-
ference logo was a simple design referring to the lions
of the Chain Bridge, the symbols of Budapest and of
Hungary (this is also proof of the strong TEX com-
munity that has existed here since the end of the 19th
century). Conference mugs were handcrafted locally.
Even the proceedings volume will perhaps become a
collectible item, not only because of the simple but
elegant design (adapted also for this proceedings) but
also because it opens with a mystery: if this was re-
ally the 16th EuroTEX conference, why was a num-
ber XVII printed on the title page? Does EuroTEX
feel too young and thus cheat to appear older? (The
person who finds the most satisfying answer to this
puzzle will win an extra set of conference items.)

Talks
Usually, talks at TEX conferences are mostly technical
but sometimes also have a lighter side. In Debrecen,
we had our share of both serious and fun talks. It also
seemed that participants in general shared a genuinely
positive and optimistic view about the present and
future of TEX-related software development. As you
will see from the following articles, we heard several
announcements and saw demos of very exciting new
advances. Fonts and font-related development were
perhaps the most popular subject, addressed by seven
speakers. Other hot topics were better extensibility
of TEX-related systems and improved hyphenation al-
gorithms, showing the need to address current weak
points of TEX-based systems. Quite a few of the talks
dealt not with the development of TEX itself but with
using it for a variety of practical purposes. Read and
enjoy.

4 TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006



Impressions from EuroTEX 2006

Nightly sessions
When there was no football game to watch in the
evening, we headed out from the campus into the
Debrecen nightlife. The session chair for these nightly
events was Gyöngyi, who led us around the city and
took us to various pubs and bars. Not everyone, how-
ever, was equally motivated to stay up late, and only
the most adventurous got to taste Unicum, a strong
Hungarian herbal spirit whose medicinal powers were
perhaps less immediate than its side effects. Congrat-
ulations to Arthur, the most fearless drinker of the
group!

Trip
An entire day was devoted to exploring the city of
Debrecen and its surroundings. First we had a look
at the university’s impressive central building. Having
its roots in the historic Reformist College founded al-
most 500 years ago, the University of Debrecen is one
of the biggest in Hungary, with more than twenty-five
thousand students. Its enormous library (the second
largest in the country) with its rich catalogue of an-
cient and rare books, including a large collection of
prints from various European and Hungarian masters
of typography, was a special treat for us.

In the afternoon we headed out to a National
Park that embraces the westernmost remnant of the
Eurasian steppe (puszta). One of the park’s main goals
is to preserve the special cattle breeds that do not exist

elsewhere. (Cows were another recurrent theme at the
conference; see both Taco’s talk and László Németh’s
presentation featuring an ice cream cow that we now
all know how to hyphenate in Swedish.) The park
also gives insights into how herdsmen and locals lived
there centuries ago. And, of course, we all had gulyás

for lunch!

Banquet dinner and conference ending
The banquet dinner provided, in the author’s opinion,
a real high point to the conference: the very nice din-
ner (especially the wild boar chops) was crowned by a
real surprise when, with a glass of red wine in hand,
we headed to a nearby hall to attend an exclusive live
concert by a renowned local Dixieland band. It was
a treat to listen to such professional musicians; those
who did not come to the meeting missed a unique
experience.

The next day, though full of interesting talks, was
the day of departure. Despite the small number of
attendees, I believe it was a very successful conference.
I left with very good impressions and I believe all of
us felt the same. Thank you, Gyöngyi, for all your hard

work, and see you all next time!

(A sampling of conference photos are below, courtesy of
Hartmut Henkel, Volker Schaa, Martin Schröder, and Ul-
rik Vieth. Many more are at http://www.matexhu.org/

eurotex2006/pictures. Ed.)

Julika, Zsuzsa and Beáta at the registration desk Staszek Wawrykiewicz

TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006 5



Gábor Bella

At work or watching football?

A technical problem needs the experts: Tamás Mihálydeák,
Jerzy Ludwichowski, Hans Hagen, Yannis Haralambous

Thierry showed us the perspectives: Jean-Michel Hufflen,
Thierry Bouche, Ferenc Wettl, Hossam Fahmy,
Staszek Wawrykiewicz, Gábor Bella

Martin Schröder and Hartmut Henkel

Tales from the history of typography: András Virágvölgyi

Dag Langmyhr, Bogusław Jackowski, Jerzy Ludwichowski

6 TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006



Impressions from EuroTEX 2006

The four champions at cracking the whip:
Jerzy Ludwichowski, Arthur Reutenauer, Hossam Fahmy,
Ferenc Wettl

Arthur Reutenauer, Ulrik Vieth, Taco Hoekwater,
Staszek Wawrykiewicz, Volker Schaa, Gyöngyi Bujdosó,
Gábor Bella

At the center, before departure: Hartmut Henkel,
Arthur Reutenauer, Siep Kroonenberg, Hans Hagen,
Taco Hoekwater, Hossam Fahmy

Dixieland in Debrecen

Gyöngyi Bujdosó

TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006 7



1

TUGBoat, volume 24 (2006), No. 3 – Proceedings of Euro TeX 2006

It might be of intereɨ  to the participants attending the 

6ĉǪ EuroTETT X conference tXX o hear about the golden age of 

traditional typography in the 6ĉǪ century and get to know 

one of the moɨ  famous book publishers of all times, Aldus 

Manu tius of Venice.

ɩ e word typography is a compound of Greek elements. 

Typos means engraved illuɨ ration and grapho means to 

write.¹ Scrivere sine penne (to write without a pen), as they 

called it in the 6ĉǪ century. Typography  century century uses predefi ned 

shapes, letters, texts and sometimes illuɨ rations as well. 

As fi nal output it creates the printed page, which repre-

sents another level of visual quality. After the new types of 

books of the 6ĉǪ century left behind the poor readability 

and ponderousness of old codices, typographers, who at 

the time were the printers themselves, followed the rules of 

the retroɧ eɤ ively labeled “traditional typography”. It was ““

a combined outcome of Renaissance modern ɨ yle and the 

laɨ ing eĊ eɤ  of medieval lettering. “Traditional typography” 

determined the encounters of many generations with let-

ters and enjoyed a consciously or unconsciously accepted 

ɨ atus in the eyes of readers throughout the centuries.²

According to the traditional ɨ yle the design of books  ɨ arts 

with choosing the right proportions for page margins. Set-

ting the inside, outside, top and bottom margins will give 

us the type area. ɩ e height, width and carefully chosen 

position of the type area infl uences overall proportions and 

balance of the book. Not everyone and not every workshop 

took the time and the trouble to carry out this kind of pre-

cision work and fi ne tuning. As time went by well-teɨ ed 

recipes ɨ arted to form, incorporating certain elements of  

antique architeɤ ure and epigraphy. ɩ e golden mean for ex-

ample, very popular among Renaissance artiɨ s also found 

its way to book design. It ɨ ated that the smaller portion 

should compare to the bigger as the bigger compares to the 

whole, as in the series 3 : 5 : 8. ɩ e relevance of these pro-

portions could be observed in nature or in antique archi-

teɤ ure. Like sculptors, painters or architeɤ s before them, 

typographers also wanted to take advantage of this noble 

rule when designing letters, margins or title pages.

After they made their decision about margin sizes, they 

could begin to compose the text. Information was organized 

according to a tight hierarchy, ɨ arting with the biggeɨ  type 

size used on title pages through the opening pages of chap-

ters and the type of the body text to the smaller fonts of 

marginal notes and indices. ɩ e rhythm was provided by 

the repeating order of chapter headings, subheads and para-

graphs, all indicated by traditional typographic methods.

Further decisive features of 

the traditional page ɧ read 

were symmetry and ɨ atic 

arrangement. ɩ is ɨ ruɤ ure 

encouraged linear reading, so 

readers of the 6ĉǪ century 

did not feel at all that they 

missed some thing. ɩ ey read 

a book thoroughly from cov-

er to cover. ɩ e liɨ  of recom-

mended books was short and 

they had the time to periodi-

cally re-read some of them. 

Would Aldus Manutius have used TETT XEE ?XX

ANDRÁS VIRÁGVÖLGYI

hiɨ orian, designer

www.sequens.hu

ABSTRACT

Traditional Typography · Golden Mean · Linear Reading · ɩ e Siege of Conɨ antinople ·

Aldus Manutius · His Ambitious Publishing Program · ɩ e Moɨ  Beautiful Book of the World

· Feɨ ina Lente · Would Aldus have used TETT XEE ?XX

Printers 
(6ĉǪ century woodcut)

Aldus’ emblem, the dolphin the dolthe dol
curling around an anchor

1  Péter Virágvölgyi: ɩ e Art of Typography. [Osiris Handbooks] Budapest, 2002, 
Osiris Kiadó.

2  Suzanne West: Working with Style. Traditional and Modern Approaches of Page 
Design. Budapest, 1998, UR Könyvkiadó. p. 54. 

8 TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006



Would Aldus Manutius have used TEX?
TUGBoat, volume 24 (2006), No. 3 – Proceedings of Euro TeX 2006

2

Not to mention the Bible itself, which was ɨ udied and re-

ɨ udied by many people every year.

Rena issan ce typography gra du  ally fi lled the ɧ ace cre a ted 

by the newly in ven ted art of printing. New and subɨ antial 

methods of arranging information profoundly aĊ eɤ ed re-

ception and the way of thinking of 6ĉǪ century people juɨ  

like the digital world infl uences our approaches nowadays.³

ALDUS MANUTIUS

In 453 the Turks occupied Conɨ antinople. Around the 

same time Gutenberg was preparing his 42-line Bible for 

printing. ɩ e taking of Conɨ antinople not only coincided 

with the beginning of European printing, but it also had an 

indireɤ  eĊ eɤ  on it as well. During Byzantine times many 

Greek schools proɧ ered on the coaɨ  of the Boɧ horus 

ɨ rait. When the Turkish siege ɨ arted, these Greek scholars 

left their schools and fl ed to Italy. ɩ ey had an extensive 

knowledge of classical authors of ancient times. ɩ erefore 

their relocation turned Venice into a true center of classical 

erudition and research. ɩ ere was something in the air in 

that city and the situation juɨ  needed an entrepreneur to 

take advantage of it.

Aldus Manutius was a modeɨ  language inɨ ruɤ or at the 

time, at the side of famous humaniɨ s like Pico della Miran-

dola. He taught them Greek and Latin and surely felt the 

need to create better editions to be used in education or for 

other humaniɨ s working with the same texts. Underɨ and-

ing the signifi cance of all those Greek scholars arriving in 

Venice, he moved to the city to try his luck. At fi rɨ  he was 

employed by a Venetian book merchant and printer called 

Asola. He was later named the leader of Asola’s workshop, 

and possibly because of this the owner’s daughter became 

Aldus’ wife. ɩ is was not an unusual ɨ ep though, as it was 

Asola’s beɨ  way to ensure that his talented employee would 

carry on with his thriving workshop. Aldus, on the other 

hand, had navigated himself to a position from which he 

could set about executing his monumental plans. To se-

cure a serious intelleɤ ual background he contaɤ ed Latin 

ɧ eaking humaniɨ s as well as the aforementioned Greek 

emigrants. Now he could frequently consult Greek scholars 

of Conɨ antinople and also hired scribes from the island of 

Crete as Greek typesetters and proofreaders.

ɩ e realization of his publishing program ɨ arted in 495. 

ɩ e result was the creation of  probably the moɨ  beauti-

ful and eĊ eɤ ual books in the hiɨ ory of printing. Greek au-

thors were published fi rɨ . ɩ e six-volume Ariɨ otle should 

be mentioned above all, which used a Greek cursive type 

modeling those scribes’ original handwriting, and appeared 

in print between 495 and 498, causing a big sensation 

among European humaniɨ s. ɩ is initial success was soon 

followed by editions of Sophocles, Plato and ɩ ucydides. 

After them came other classical authors writing in Latin: 

Virgil, Horace and Ovid. ɩ e size of each run was around 

a thousand copies. A surprisingly modern publishing policy 

governed these early critical editions. Aldus, being a major 

representative of the humaniɨ  approach to classical litera-

ture, preferred to get rid of all the medieval commentaries 

and foɨ er the reading of original texts in their original lan-

guages. ɩ us it was up to the reader to make up his or her 

own variant, and to interaɤ  freely with ancient authors. To 

help the learning of classical languages ofof – since originally he 

was a teacher – he also published quality textbooks and dic-

tionaries. 

ɩ e moɨ  beautiful book of the world, as book hiɨ orians 

like to call it, came out in 499, four years after the initia-

tion of Aldus’ ambitious program. It contained Francesco 

Colonna’s olonnaolonna allegorical and mythic poem, the Hypnerotoma-

chia Poliphili. Using singsing 70 excellent renaissance wood-cut il-

luɨ rations, fully harmonizing type design and margin pro-Aldus Manutius
3  Leah S. Marcus: ɩ e Silence of the Archive and the Noise of Cyberspace. 
In: ɩ e Renaissance Computer. Knowledge and technology in the fi rst age of print. 
Eds. Neil Rhodes and Jonathan Sawday. London, 2000, Routledge. p. 22.

TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006 9



András Virágvölgyi

3

TUGBoat, volume 24 (2006), No. 3 – Proceedings of Euro TeX 2006

portions, it received a form that ɨ ill evokes the admiration 

of today’s typographers and bibliophile book colleɤ ors all 

over the world. Surprisingly enough, though the unique 

nature of Hypnerotomachia Poliphili was certainly noticed 

by contemporaries (a pirate edition came out soon after 

in Lyon), it was never reprinted in Venice during the next duringduring

hundred years.

Aldus’ achievements deserve acknowledgement already, alreadyalready

but his moɨ  remarkable innovation is ɨ ill to follow. Pro-

duɤ ion of books in the 6ĉǪ century ever becoming cheaper 

and faɨ er, workshops could ɨ art counting on bigger audi-

ences. He was fi rɨ  to realize that inɨ ead of the large-for-

mat books printed before, readers who preferred solitary 

reading needed portable or pocket-size editions – as we 

call them today. call them todaycall them today Fifty years passed after the appearance of 

Gutenberg’s enormousGutenbergGutenberg , two-column 42-line Bible, when 

the Aldus Oċ  cina in Venice, leaving the old codex format 

behind, ɨ arted to produce the incredibly popular one-col-

umn pocket-size editions of the classics. 

Soon the Aldi Neacademia, a diɨ inguished group of 

scholars (men of letters) was formed. By this time the 

workshop’s Greek and Latin consultants had daily meet-

ings to decide about the titles to be published. While the 

medieval scholar accumulated, the Renaissance humaniɨ  

judged the old manuscripts: they reconsidered the classic 

authors known in medieval times and tried to acquire pre-

viously unknown works by research or purchase. ɩ is was 

the way editio princeps books (fi rɨ  printed versions of the 

classics) got published, considered rare gems by later col-

leɤ ors. However, they did not refuse to publish eminent 

medieval authors either; we can fi nd Dante and Petrarch in 

Aldine editions. ɩ e farseeing editorial policy had its fruit-

ful result, the carefully seleɤ ed titles were appreciated all 

over Europe.ņ

Charaɤ eriɨ ic of the success of the pocket-size editions 

is the large number of imitators eɧ ecially in France. Sim-

one de Colines launched a similar series in Paris, while Al-

dus had to defend himself againɨ  the pirate editions of the 

Lyon workshops by issuing a public proteɨ  letter. In this he 

enumerated the errors made by the printers of Lyon, so that 

an original copy could be easily discerned from a fake one. 

ɩ e antecedent of the pirate editions, of course, was the ap-

pearance and success of Aldine publications in the French pearance and success ofpearance and success of

market. Classical Roman culture crossed the Alps in the 

form of these beautiful books, and as Beatus Rhenanus, the 

biographer of Erasmus, put it: “northern barbarians” could 

now learn Latin and Greek and save a long journey to Italy.

Being an Italian, Aldus was a faithful supporter of BeingBeing anti-

qua letters. In the beginning he used fonts ɨ rikingly similarn the beginning he used fn the beginning he used f

Pages from the 
Hypnerotomachia 
Poliphili, one 
of the moɨ  beautiful 
book of the world

4  Martin Lowry: ɩ e World of Aldus Manutius. Oxford, 1979, Oxford University Press.

10 TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006



Would Aldus Manutius have used TEX?
TUGBoat, volume 24 (2006), No. 3 – Proceedings of Euro TeX 2006

4

to those used by the French Nicholas Jenson, also working 

in Venice. In 50 he commissioned the talented letter de-

signer, Francesco GriĊ o (450–58) to create a new Latin signersigner

typeface. ɩ is was the fi rɨ  antiqua typeface which used 

capitals somewhat smaller than the ascenders of lower case 

letters. In the next year GriĊ o designed the famous cursive 

or italic type as it was later called, honoring the country of 

origin. Based on the so-called cancelleresca, it became the 

printed version of humaniɨ ic handwriting. Today we use 

italics to put emphasis on words or passages of text, but 

Aldus aɤ ually used it for typesetting whole books. Italics 

ɨ arted its career in his workshop, exercising a great deal of 

infl uence on 6ĉǪ century typography and foɨ ering the vic-

tory of antiqua type all across Europe.

Page numbering also ɧ read by Aldus’ books – he was 

among the fi rɨ  to recognize its praɤ ical importance. Page 

numbers, apart from assiɨ ing the work of bookbinders, 

made it much easier for readers to refer to a given seɤ ion 

within a book.

ɩ e Aldus workshop had its heyday at the turn of the 

5ĉǪ and 6ĉǪ centuries. In the Juvenal edition of 50, Aldus 

set forth his philosophy and goals, many of which were al-

ready achieved by releasing the series of elegantly designed 

and carefully edited classic publications. His logo, the dol-

phin with the anchor, appeared in his books from 502. In 

the eyes of book lovers this mark represents utmoɨ  excel-

lence in terms of both content and form. ɩ e dolphin curls 

around the anchor and emphasizes the classic saying which 

goes with it: Feɨ ina lente [gr. S[[ peude bardeosgr. Sgr. S ], i.e. to hur-

ry slowly. It was Eray slowlyy slowly smusŇ who made this saying popular. 

Originally it comes from a play called ɩ e Knights by Aris-

tophanes: “Speude takheos” – to hurry up quickly. In its re-

versed form the saying has several meanings. According to 

Erasmus this ɨ oic ɨ atement should prevent princes from 

aɤ ing in the heat of the moment, to avoid swift and arbi-

trary decisions. Fabius Maximus is mentioned as the beɨ  

example for slow diligence, who continuously weakened the 

invading army led by Hannibal employing his diɨ ressing 

technique. ɩ at is why he was labeled the poɨ poner (cunc-

tator) by Roman politicians. Supposedly emperor Auguɨ us 

and Veɧ asian also liked the saying Feɨ ina lente. ɩ e dol-

phin curling around the anchor appears on one of the coins 

issued by Veɧ asian.

Poɨ erity highly eɨ eems Aldus’ publishing aɤ ivity. Ja-

cob Burckhard (88–897), one of the earlieɨ  and moɨ  

famous researchers of the Renaissance period, highlighted 

his importance. Several contemporary memorials record 

the exceptional popularity of Aldine books. ɩ e following 

quotation comes from a letter written by the German hu-

maniɨ  Heinrich Glareanus to Ulrich Zwingly, dated on 9ĉǪ

Oɤ ober, 56: “I cannot miss to mention, that Wolfgang 

Lachner, our Frobenus’ father-in-law ordered a wagonful 

of classics from Venice, the beɨ  of Aldus’ publications. If 

you would like to have some of them, let me know quickly 

and send cash. Because as soon as a similar shipment ar-

rives, there are already thirty people surrounding it and 

keep asking ‘how much is it?’ then ɨ art to fi ght over it. Pas-

sion rapidly ignites animated discussions and often seizes 

men who cannot even underɨ and them.”ň

As an author and consultant Erasmus worked together 

with the Venetian printer and publisher several times. He 

already wrote to Aldus, that his translations of Euripides 

would make him immortal, eɧ ecially if they were “printed ““

Portrait of
Erasmus 
of Rotterdam 
by Albrecht 
Dürer (526)

5  Stefan Zweig: ɩ e Glory and Tragedy of Erasmus of Rotterdam. Budapest, 1993. 
Holnap Kiadó. pp. 73–80.

6  Nándor Várkonyi: ɩ e History of Books and Letters. Budapest, 2001, Széphalom 
Könyvmǂhely. p. 352. 

TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006 11



András Virágvölgyi

5

TUGBoat, volume 24 (2006), No. 3 – Proceedings of Euro TeX 2006

using your small [minutius] types, which are the moɨ  ele-

gant in the world (tuis excusae formulis... maxima minutiori-

bus illis omnium nitidissimis).”  But beauty is not every thing. 

Erasmus calls the oɤ avo editions the outɨ anding produɤ s 

of his age. Not even Ptolemaios of Philadelphia could ac-

cess literature and science the way Aldus Manutius made 

it possible in the early modern age. While the great king 

had built only one extensive library, Aldus raised ‘a library ‘‘

without walls,’ which will survive all disaɨ ers. Willibald 

Pirckheimer, yet another humaniɨ , eɨ eemed his ɩ eokris-

tos-edition so highly, that he asked the famous German 

engraver and painter Albrecht Dürer to illuɨ rate its cover 

and design an ex libris sign for it. Every detail of the bucolic 

idyll created by Dürer follows the text faithfully.

ɩ ere was feedback from Hungary, too. Sigismund 

ɩ urzo, provoɨ  and secretary of the king, writes in his 

grateful letter of 50: “My diĊ erent kinds of aĊ airs con-

sume the time I could ɧ end at home in the company of po-

ets and orators. Your books – being very praɤ ical, so that I 

can take them with me for my walks or have them around 

during conversations or my aĊ airs in the court – cause me 

much delight.” ŉ

No doubt, Aldus Manutius was the leading publisher in 

Europe at the turn of the 5ĉǪ and 6ĉǪ centuries. A genera-

tion after Gutenberg, printers overɨ epped the traditional 

manuscripts of medieval times and by appeasing the needs 

of this new generation of readers, published Latin and 

Greek classics with fl awless content and in wonderful form.

Aldus died in 55, but his workshop continued to op-

erate throughout the 6ĉǪ century. His work, if not to the 

same eĊ eɤ  but ɨ ill at a very good ɨ andard, was carried on 

by his son and later by his grandchild for a hundred years. 

In 597 the grandchild gave up the workshop in Venice and 

in reɧ onse to the call of the pope he went to Rome to man-

age the printing facilities of the Vatican. By that time the 

humaniɨ ic movement was a thing of the paɨ . Public opin-

ion was mainly concerned with the ɨ ruggle of the Catholic 

church with Proteɨ ants, and its eĊ orts to renew itself.Ŋ

As they were popular, the number of surviving Aldine 

books is not too great and oftentimes they are worn-out 

because of frequent usage. But their quality is clearly shown 

by the faɤ  that they were ɨ ill good enough for the famous 

French playwright Racine (639–699), who got to know 

the Greek tragedies from Aldine editions nearly a hundred 

and fi fty years after their publication.

Finally let us attempt to answer the queɨ ion in the title 

of this paper. As we have seen, Aldus was seriously involved 

in the business of publishing ‘scientifi c’ books. He was open ‘‘

to the novelties of his trade; moreover he also made signifi -

cant contributions to it with his inventions. Based on this 

we could assume that if computers, the main representatives

of modernity and future, had exiɨ ed at his time, he would 

have surely used them. But would he have used TEX?

Aldus published many works in Greek. (By the way, the 

word TETT X comes from the Greek XX ĥĖĩğę or techné). Origi-

nally TETT X, being an American software had a limit of work-

ing with 28 charaɤ ers only. ɩ is could have raised initial 

problems for someone planning to bring out multi-lingual 

publications. However, this limit has been eliminated since 

then, and at this conference we hear about the both typo-

graphically and technologically diċ  cult task of publishing 

the Koran itself.

ɩ ough I am not a TETT X guru or XX a TETT Xpert, I underɨ and 

the many advantages of TETT X in the fi eld of scientifi c pub-XX

lications, eɧ ecially if they contain a lot of formulae. Well, 

we muɨ  realize that the early modern age of Aldus pre-

ceded Newton’s scientifi c revolution. In the 6ĉǪ century we 

could have possibly found some formulas in could have possibly found some fcould have possibly found some f esoteric works 

by alchemiɨ s on how to make gold, but usually explained 

in very unclear terms. As far as the ‘serious‘‘  science’ science science of the ’’

century is concerned, it was mainly represented by classi-

cal works of ancient authors. ɩ ey did not perform experi-

ments back then but read Ariɨ otle inɨ ead, so science was 

more like literature.

We can ɨ ate that Aldus’ innovative personality was al-

ways ready to accept newer and better solutions. He would 

have thought about using TETT X if Donald Knuth had been XX

born several hundred years earlier. But since the works he 

published were not scientifi c but rather literary in form, he 

might have decided otherwise.

7  Anthony Grafton: Humanist Reading. In: Cultural History of Reading. Budapest, 2000, 
Balassi. Eds. Robert Chartier, Guglielmo Cavallo. p. 206.

8  Lucien Febvre and Henri-Jean Martin: ɩ e Coming of the Book (L’Apparition du livre). 
ɩ e Impact of Printing 1450–1800. London, 1990, Verso. p. 124.

12 TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006



The colourful side of TEX

KATALIN FRIED et al.
Faculty of Science, Institute of Mathematics
Eötvös Loránd University, Hungary
kfried (at) cs dot elte dot hu

The day it started. . .

First of all I would like to say thanks to all who helped

me in my understanding and learning TEX. (My fa-

ther, Ervin Fried, my husband, Lehel Juhász, friends,

Gabriella Köves, Tamás Bori.)

It all happened in the late eighties. At that time

Lehel worked as an editor at the publishing house of

the Hungarian Academy of Sciences. One day he came

home and with a smile on his face he said: I have some-

thing you are going to like. (You have to be aware

that I started writing books right after I finished uni-

versity — early eighties — and by this time I had been

through two books.) This is, he said to me, a typeset-

ting program. So what, I said, a typewriter can do it.

But you can typeset mathematics symbols with it, he

said. I can type mathematics on my typewriter, I said.

But it looks nice!, he added. Now you are talking!, I

said, but then I simply do not believe you.

Questions

Can you type a sum sign?, I asked. Yes, he said. Can

you type integrals? Yes. Can you type matrices? Yes.

Can you. . . , can you. . . , can you. . . , I kept asking.

And the answer was always the same: yes, yes, yes.

After about a couple of hours I remembered some-

thing.

Just a few month before that I had problems about

denoting arcs in a book. You know what I mean,

taking an arc of a circle between the points A and B

you would like to refer to this arc and denote it in

a similar way as you denote a line segment, AB , but

with an arc above the letters. So I asked, can you

typeset such an arc? No, he said. But I can typeset
ÓAB or ÝAB . That is not good, I want to see an arc!

Like
⌢

AB . Just much nicer!

But how can you do such a thing?

And there is more! When simplifying fractions I

need to cross out the numerator and the denominator.

Then I have to write the new numerator and denomi-

nator above and below the fraction, respectively. You

know, like

6

8
=

3
6

8
4

=

3

4
.

But how can you do it?

And can you put a frame around a text? (You

must not forget that at the time we only had plain

TEX and no utilities.) You know, like A 6= B . Or

rather A 6= B .

Yes, yes, but how do you do it?

Some answers

At the time when these questions arose we had no

help at all. All we had was The TEXbook — and only

I read English. For framing things we simply had to

put them into a box then “wrap them into hrules and

vrules”.

\def\boxit#1#2#3\hfill\break

{\vbox{\hbox{\vrule\vbox{\hrule%

\kern#2\hbox{\kern#3#1\kern#3}

\kern#2\hrule}\vrule}}}

It did not take more than a couple of months to solve

this problem. And refining took only another 2–3

years.

Now, crossing out the numerator and denomina-

tor of a fraction took somewhat more time. We had

to wait until Eberhard Mattes created his version of

TEX in 1990: emTEX.

Its \special feature gave us the freedom to create

new graphic objects. With these we could solve some

of our problems — similar to the framing problem.

We could define nodes:

\def\node#1{\special{em:point #1}}

We could draw lines between two nodes:

\def\line#1#2{\special{em:line #1,#2}}

Fractions could be “simplified graphically”. We

had only to measure the numerator and the denomi-

nator in TEX — by boxing it and then measuring the

TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006 13



Katalin Fried et al.

box itself — and then draw a line between the appro-

priate nodes.

And we could even import bitmap graphics into

TEX. This was fairly important because we could not

draw everything under emTEX.

And from this point on we could create drawings

of polygons and lines. We could add letters and sym-

bols to our drawings.

We only had to face one serious problem: how to

position the nodes we want to use.

\def\put(#1,#2)#3{\vbox to0pt

{\vss\kern#2pt\kern#2pt\hbox

to0pt{\hss\kern#1pt\kern#1pt

\vbox{#3}\hss}\vss}}

did the trick for us. Notice that this is basically the

same idea as the one we used in framing.

But we still could not draw arcs. So we still did

not have the arc above AB .

It was about this time when we discovered a draw-

ing utility for TEX: PICTEX.

It had wonderful features:

1) You could define a plot area to be used. The

picture had height, depth, and width independent of

our construction. Why is it important? Because an

object that has no height, depth, and width is difficult

to input into your TEX file. As soon as you have to

position the picture and the text you are going to face

problems.

If it has height, depth, and width you can handle

it as a TEX object and so you can fit it into your text.

True, it is still a hard job. (Of course it is easier if you

just centerline the picture.)

2) You could draw circles and ellipses. What a

joy! We could do elliptical arcs, circular arcs (that is,

parts of ellipses and circles). Alas, still no arc above

mathematical objects.

And what did we lose when switching to PICTEX?

We had no nodes. That was a great loss so we started

to use the two drawing programs at the same time.

PICTEX can be used under LATEX. But we got stuck

in plain TEX. Forever, it appears . . .

Demands of authors

Years have gone and we solved more and more prob-

lems concerning drawings. Seeing this, our authors

have become greedier and greedier. Not only would

they like us to create real drawings by computer (ones

a graphic artist should do) but also, they would like

to have colours added to their books.

Luckily, Lehel had his diploma in art, so he could

create all kinds of drawings (only he didn’t have time

to draw, as he was busy “TEXing”). But we gave it a

try. There were two things we tried:

1) Drawing, scanning, retouching and importing

the drawing into TEX.

2) Drawing by a graphic program and importing

the drawing into TEX.

(After these experiments we could import “any-

thing” into TEX.)

We imported bitmap drawings as before. But the

age of bitmap graphics was declining. We had to

change to eps form. Luckily, we found Tomas Ro-

kicki’s epsf.sty file from 1989. (We started to use it

many many years later — bitmaps did the trick for us

for quite a while.)

The drawings were created in some graphic pro-

grams (like Illustrator, CorelDraw, etc.).

On the other hand, there was a need to do more

mathematical objects, such as the graphs of functions

and constructions.

We could not keep pace with the demands our

authors set for us. emTEX and PICTEX were simply

not enough.

But just around that time we found another soft-

ware package perfect for our needs. This software was

PSTricks by Timothy Van Zandt (from 1993). For

using this we also needed a dvi → ps driver. Tomas

Rokicki’s “dvips” offered us the PostScript output.

What did we gain from it? Everything! It had all

sorts of graphics abilities — all kinds of “PostTricks”.

We could embed PostScript code into the drawings!

What joy we had!

A whole new world opened in front of our eyes

with “posttricks” (pstricks).

More answers (fine tricks)

True, when doing constructions we had to face a new

problem. Euclid’s postulates give us the possibility

• to draw a line going through two given points:

could be done.

• to open the compasses to a distance of two given

points: not simple but could be done somehow.

• to draw a circle with a given diameter: not simple

but could be done.

14 TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006



The colourful side of TEX

• to draw the intersection point (if any) of two lines:

lacking!

• to draw the intersection points (if any) of two

circles: lacking!

Our friend Tamás Bori gave us a hand. He created

a utility with which we could construct the intersec-

tion points. We were drawing happily ever after. . .

No, we were not! We found that we could not

draw in 3D. I am not a mathematician for nothing. I

studied projective geometry. I know how to do the

transformation on the 3D coordinates to create such

a drawing. So we wrote and used the program. As

curves were not given by their coordinates no curves

could be drawn. (I have to mention that about a cou-

ple of years ago we found a 3D graphing program

written by someone else.)

Programming TEX reminds me of a conversation I

had with a colleague of mine: At the university every-

body uses TEX and when I told him I write programs

in TEX with variables and calculations and such, he

was astonished. ‘Can you really write a program in

TEX?’ Well, not all of us do it. But for creating an

animation I have to have a variable to calculate the

number of phases, to calculate the measurement of

objects changing, to calculate the shades of colours to

use. Because that’s what animation is.

And we could draw functions dot-by-dot. And we

could create animation.

And what is a presentation? Properly animated

pages. So, we can create a presentation. As a matter

of fact, we have done such a presentation — like the

one at this conference.

Open questions

I want to draw your attention to an important point:

these programs have been available from the mid 90’s.

I have not seen anybody else using them. I believe

that we are offered too much and we can take too

little. Each of us finds small bits of all the knowledge

that had been created in connection with TEX. We,

ourselves have created utilities, tools for TEX we never

published. Imagine what a huge amount of knowledge

there must be!

Still one question remains: how can you put an arc

above AB?!?

Finally, I would like to say thanks to all those

who posed questions to me to make me think about

TEX problems (and solve them, most of the cases).

TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006 15



Opening up the type∗

TACO HOEKWATER
Elvenkind, Dordrecht
taco (at) elvenkind dot com

Abstract
In the near future, pdfTEX will gain the ability to use OpenType fonts. This paper explains in broad terms what will

be done and why it will be done in that way.

Introduction

There are many reasons why OpenType support is

a good thing for pdfTEX to have. For one, many

of the latest commercial fonts can only be purchased

in OpenType format. For another, most of the new

OpenType fonts are of higher quality than their older

brethren. Also — this is a minor point, but not com-

pletely unimportant — everybody else does it. So long

as pdfTEX does not support OpenType, it has no

chance of being perceived as a viable competitor to

those other systems.

Finally and perhaps most importantly, OpenType

allows us to escape from TFM format and its many

limitations, without the need to invent another special

font format that can only understood by TEX and not

much else.

The plan is for the OpenType support to be in-

cluded as part of a project to create a high-end Arabic

typesetting engine based on a merge of pdfTEX, Aleph

and luaTEX. The final result of this project will be

open source and can be merged into future versions

of pdfTEX.

Wishes and constraints

Of course we want to integrate the new OpenType

support such that it behaves well with the rest of TEX:

• It should be possible to use all of the glyphs and

features in the font.

• The implementation, its input, and its output

should all be platform independent: same font,

same syntax, same typesetting.

∗This work is made possible by a grant from Colorado State Uni-
versity.

• We want to make the implementation extensible,

just in case someone comes up with OpenType++

in the next decade.

• It should still be possible to define virtual fonts

and use the current pdfTEX micro-typography fea-

tures like protruding and font expansion.

• The ability to make run-time adjustments to the

font characteristics is desirable.

• The interface should be usable by somebody who

is not trained as a programmer.

• For nice and small pdf output, some sort of font

subsetting has to take place.

• Backward compatibility code for traditional TEX

and PostScript fonts has to remain; the goal is

evolution, not revolution.

• We wish full control at the basic glyph level, not

limited to turning OpenType features on or off.

Unicode

When dealing with OpenType fonts, adding support

for Unicode is more or less implied. Therefore pdfTEX

had to be extended to handle Unicode input as well

as output.

File I/O

Partial Unicode support is already in the current lua-

TEX code base:

• UTF-8 encoded text input and output.

• Characters and tokens use 21 bits for storing char-

acter information.

• Hyphenation patterns are loaded in UTF-8.

• The pool file (strings) and buffer are Unicode en-

abled.

16 TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006



Opening up the type

Characters

At present, TEX does not have a concept of a character:

a ‘charnode’ is actually a glyph in a font, together with

the font it should be taken from.

To fix this unpleasant intermingling of glyphs with

characters, pdfTEX will be extended with two new

node types:

• A font node is the result of a font selection com-

mand by the user.

• A unichar node is the result of tokens being read.

The ‘charnode’ functionality is still present (re-

named to glyph node), but the new types will not be

converted to the traditional TEX glyph, font pair until

after the hyphenation pass is completed.

Hyphenation

The old node list and paragraph building routines

intertwined ligature building, hyphenation and line

breaking. On top of that, hyphenation patterns were

stored using the ‘charnode’, as mentioned in the pre-

vious paragraph.

This resulted in a few unfortunate side-effects:

• patterns are font encoding dependent;

• hyphenation is impossible unless a \hyphenchar

is present in the current font;

• hyphenation patterns can only use 256 characters

at a time.

The new code separates hyphenation from the line

breaking decisions: First it finds all potential hyphen-

ation points in the words (made up of unichar nodes)

and insert \discretionary nodes for all of them.

Only after that step is completed will it attempt to

find ligatures and break the paragraph into lines.

This change makes hyphenation completely inde-

pendent of the current font.

A different internal representation of the loaded

patterns will make it possible to use the full range of

Unicode characters in hyphenation patterns as well as

making it possible to extend the patterns in a language

at run-time.

Languages

We believe this is a good opportunity to also tackle

another traditional problem in TEX: the \lccode,

\uccode and \sfcode tables. These tables contain

information that is conceptually part of the current

language, and should not be stored in a font attribute.

We want to increase the importance of \language

codes and attach much more information to language

switches. Other candidates for inclusion in language

switching are the \uchyph parameter and the list of

applicable ligatures.

Scripts

pdfTEX currently uses the TEX–XET algorithm from

ǫ-TEX, with the primitives \beginL and \beginR.

This will be removed in favor of the much more

advanced and flexible Aleph/Omega1 typesetting di-

rection commands \pagedir, \pardir, etc.

An equivalent to ΩTP processing will be imple-

mented using lua instead of ΩCP (precompiled binary)

files.

Font loading

In current pdfTEX, fonts are internally represented as

a large storage heap with a few dozen auxiliary tables

that store various meta-information and pointers into

the heap. All of those are global, and implemented as

static objects.

While this is very efficient in terms of speed, it is

also very hard to alter a font after it has been loaded,

and the unification forces all fonts to offer strictly the

same interface.

In the new setup, fonts will be loaded under the

direct control of lua code, and they will be presented

to the typesetting engine as a single lua table for each

loaded font. This table will make the font behave

much like an object that can be queried and altered

directly by the macro programmer, either from TEX

macro code (through \fontdimen) or from lua code

(through callbacks from the typesetting engine).

The low-level font loading routines will be writ-

ten in compiled C code, perhaps by using a separate

library like freetype.

Conclusion

We gratefully acknowledge that this work is made pos-

sible by a grant from Colorado State University, with

the sponsorship of Idris Hamid, and with support

from TUG. A test version of the changes described

in this paper should be available before the TUG 2006

meeting in Morocco. People wishing to stay up to

date with respect to this project are invited to visit

http://www.luatex.org.

TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006 17



MetaPost developments — autumn 2006

TACO HOEKWATER
Elvenkind, Dordrecht
taco (at) elvenkind dot com

Abstract
The new release of MetaPost includes some new features as well as a number of bug fixes. The new functionality includes:

the possibility of using a template for the naming of output files; support for CMYK and greyscale color models; per-

object PostScript specials; the option to generate Encapsulated PostScript files adhering to Adobe’s Document Structuring

Conventions; the ability to embed re-encoded and/or subsetted fonts; and support for the GNU implementation of

troff (groff ).

Introduction
Version 0.901 of MetaPost was released at BachoTEX

2005. It featured an updated manual and the new

mpversion primitive, but was mostly a bug-fix re-

lease.

At that time, a new version was promised for the

autumn. In hindsight, that was overly optimistic. It

is now autumn 2006, and version 1.0 will finally be

released by the time this article is published.

Bug fixes in version 1.0
Stability issues

In previous versions of MetaPost, the size of the mem-

ory array was not stored in the mem file, because it

was assumed to be a fixed quantity. But in Web2c-

based systems, the memory sizes are dynamic: the ac-

tual size that should be used by the executable can

change depending on the command-line invocation

and texmf.cnf settings.

This caused a number of bugs, for example

• disappearing specials from the output;

• incorrect error messages;

• unexplained crashes.

The required minimum memory size is now in-

cluded in the memory dump file. If a mismatch oc-

curs, an error message will be issued.

turningnumber

The previous (0.9) MetaPost executable used a very

simple algorithm to implement the turningnumber

operation: connect the dots, add up all the angles, and

then divide by 360. This was a temporary patch that

was added as a stop-gap measure to make the erroneous

cases easier to predict. The current version includes

a final fix for turningnumber by including new code

that calculates the true curvature for path segments.

This new algorithm is based on a mailing list dis-

cussion between members of the group. It is slower,

but (finally) 100% accurate.

Adobe Document Structuring Conventions

Thanks to detailed comments from Michail Vidiassov,

the output will now strictly adhere to the Adobe Doc-

ument Structuring Conventions for Encapsulated Post-

Script files — when the internal quantity prologues is

set to 2 or higher. The special setting of prologues is

needed for compatibility with existing MetaPost post-

processing tools.

Ignored withcolor

All previous versions of MetaPost failed to recognize

that the user supplied a color specification when the

color consisted of three zero-valued parts, as in this

example:

draw fullcircle withcolor black;

In this case, no PostScript color selection com-

mand was output at all. If any surrounding command

specified a different drawing color, that color would

be used instead of black.

Current color trashed after clip

Previously, a clip command would completely de-

stroy the internal graphic state. As a side effect, it

would force the default color of the following oper-

ation to be black even if the surrounding document

specified a different text color. This is now fixed.

18 TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006



MetaPost developments — autumn 2006

Table 1: Escape sequences for filenametemplate

%% A percent sign
%j The current jobname

%〈0-9〉c The charcode value
%〈0-9〉y The current year

%〈0-9〉m The numeric month
%〈0-9〉d The day of the month

%〈0-9〉H The hour
%〈0-9〉M The minute

New features in version 1.0
File-name templates

The first of the new features is support for output

filename templates. These templates use printf-style

escape sequences (listed above) and are re-evaluated be-

fore each shipout. Numeric fields may be left-padded

with zeroes.

The new primitive is filenametemplate, and it

is string-valued. Here’s an example:

filenametemplate "%j-%3c.eps";

beginfig(1);

draw p;

endfig;

If this input file is saved as test.mp, then the

output file will be named test-001.eps, instead of

test.1 as in previous versions.

Here are the escape sequences:

To ensure compatibility with older files, the de-

fault value of filenametemplate is %j.%c. If it is

assigned an empty string, it will revert to that default.

CMYK color model

Support is now provided for the industry-standard

CMYK color model. Following is a simple example.

beginfig(1);

draw fullcircle

withcmykcolor (1,0,0,0);

endfig;

To make more flexible use possible, a new type of

expression is introduced. A cmykcolor is a quartet of

numeric values that behaves similarly to the already

existing type color. This example is equivalent to the

previous one:

beginfig(1);

cmykcolor cyan;

cyan := (1,0,0,0);

draw fullcircle withcmykcolor cyan;

endfig;

The new cyanpart, magentapart, yellowpart

and blackpart primitives allow access to the various

pieces of a cmykcolor or the CMYK component of an

image object.

Greyscale color model

Only two new primitives are needed for greyscale sup-

port: withgreyscale and greypart. This is because

greyscale values are simple numeric values.

beginfig(1);

faded := 0.5;

draw fullcircle withgreyscale faded;

endfig;

Mark-only color model

There is also a new primitive for ‘mark-only’ support:

withoutcolor. This command is convenient in cases

where MetaPost is not supposed to output any explicit

color commands to the PostScript file at all, as in the

generation of font outlines. Example:

beginfig(1);

draw fullcircle withoutcolor;

endfig;

Other color handling changes

A new primitive defaultcolormodel is introduced.

This specifies the assumed color model for objects that

are drawn without any color specification. In all three

models that actually specify a color, the default color

is black.

The primitives for the already existing RGB color

model are now also available under new names: the

draw option withcolor becomes withrgbcolor, and

the variable type rgbcolor is an alias for color.

The existing primitive withcolor has been ex-

tended so that it accepts any of the five possible input

syntaxes:

Actual input Remapped meaning

withcolor 〈rgbcolor〉 withrgbcolor 〈rgbcolor〉

withcolor 〈cmykcolor〉 withcmykcolor 〈cmykcolor〉

withcolor 〈numeric〉 withgreyscale 〈numeric〉

withcolor 〈false〉 withoutcolor

withcolor 〈true〉 〈nothing〉

An image object can have only one color model.

The last specification of withcolor, withcmykcolor

or withgreyscale controls the color model for a par-

ticular object.

TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006 19



Taco Hoekwater

Object specials

The new MetaPost supports specials that can be at-

tached to main drawing objects. These specials are

output on their own lines, immediately before and

after the object they are attached to.

The names of the two new drawing options are

withprescript and withpostscript. Their argu-

ments are simple strings that are output as-is. It is up

to the macro writer to make sure that the generated

PostScript code is correct.

beginfig(1);

draw fullcircle

withprescript "gsave"

withpostscript "grestore";

endfig;

Multiple prescripts and postscripts for a single ob-

ject are possible; simply repeat the command. They

are placed in the output file in the same order in which

they are specified.

Standalone EPS

If prologues is set to the value 2, MetaPost now gen-

erates a proper Encapsulated PostScript level 2 image

that does not depend on dvips post-processing. A

private PostScript dictionary will be created to reduce

the output size for large images.

In this output mode, fonts are not actually em-

bedded, but their definition will be handled correctly.

Font re-encoding

If prologues is set larger than 1, any used fonts are

automatically re-encoded, and the encoding vector file

specified in the fontmap entry will be embedded in

the output file.

This code is based on the font library used by

dvips and pdfTEX. Also following in the footsteps

of pdfTEX, there are two new associated primitives:

fontmapfile and fontmapline. Their string-valued

arguments use the same optional flag as pdfTEX:

replace the current font list completely

+ extend the font list, but ignore duplicates

= extend the font list, replacing duplicates

− remove all matching fonts from the font list

Here is an example:

prologues := 2;

fontmapfile "+ec-public-lm.map";

beginfig(1);

draw "Helló, világ" infont "ec-lmr10";

endfig;

Font inclusion

Font inclusion is triggered by prologues being equal

to 3. Whether or not actual inclusion and/or subset-

ting takes place is controlled by the map files. These

can be controlled using the syntax explained in the

previous section.

GNU groff support

The new version of MetaPost has native support for

GNU groff, thanks to a set of patches from Werner

Lemberg and Michail Vidiassov.

Future plans
With version 1.0 out the door, plans for the next ver-

sion are being made. The next release after this one

is 1.1, and it will likely have the following set of new

features:

MetaPost dynamic library

It will become possible to build MetaPost as a thread-

safe dynamic library as well as a static executable. This

will allow easy embedding inside other programs, as

well as facilitating the creation of a system-level ren-

dering service.

The two main pieces needed for this are the cre-

ation of a MetaPost instance structure to replace the

current set of global variables, and the addition of an

extra layer of I/O indirection.

Better numerical precision

MetaPost currently uses fixed-point arithmetic based

on 32-bit integers, with the decimal dot varying be-

tween the 16th bit (for numeric values), the 20th bit (for

angles), and the 28th bit (for Bézier fractions). The pre-

cision as well as the range of these calculations leaves

something to be desired.

There is a web change file by Giuseppe Bilotta

that uses 64-bit internal calculations instead, with the

decimal dot at the 32nd, 52nd, or 60th bit. While this

change file does not deal with the problems MetaPost

has with ranged input data, it does solve the most

obvious acute precision problems.

Storable objects

We want to add the possibility of storing and retriev-

ing named drawing objects. These objects will be

stored in memory only once, and written to the out-

put file only once.

20 TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006



MetaPost developments — autumn 2006

This will greatly reduce the memory requirements

and output size for certain types of figures.

Multiple linear equation systems

All linear equations in MetaPost are part of the same

equation system. With every new equation this entire

system has to be updated, at a significant cost in terms

of running time.

Certain macro programming styles would benefit

enormously from the possibility to use disjoint sets of

equations simultaneously.

Some 3D support

The ability to create and use 12-part transformations

and perhaps some other operations on triplets should

make it easier for macro packages to implement three-

dimensional drawings.

It seems unlikely at this point that there will be

true three-dimensional paths. We certainly do not ob-

ject to such an extension, but both the expertise and

available time to do this are sorely lacking within the

current MetaPost development team.

Where to find MetaPost
• Web home page and portal:

http://www.tug.org/metapost

• User mailing list:

http://www.tug.org/mailman/listinfo/metapost

• Development & sources:

https://foundry.supelec.fr/projects/metapost

TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006 21



Managing a network TEX installation under Windows

SIEP KROONENBERG
Rijksuniversiteit Groningen
Faculteit der Economische Wetenschappen
Postbus 800, 9700 AV Groningen, The Netherlands
siepo (at) cybercomm dot nl

Keywords
MiKTEX, TeXnicCenter, filename database, registry, graphic file formats

This paper is about the MiKTEX installation I main-

tain for the Economics Department of the Rijksuni-

versiteit Groningen. We have long been the home of

4TEX. But when development of that project stopped,

the time came that this TEX installation had to be re-

placed by something else. This something else was go-

ing to be MiKTEX with TeXnicCenter as editor and

front end (see fig. 1).

There are various Windows editors which sup-

port MiKTEX, i.e. editors which have menu items and

buttons for compiling and viewing your TEX docu-

ments with MiKTEX. Configuring e.g. TeXnicCenter

or WinEdt for MiKTEX is almost automatic. TeXnic-

Center is free, both as in beer and as in speech. The

MiKTEX site lists a few more free editors. LaTeX-

Editor1 and Texmaker2 seem to have a focus similar

to TeXnicCenter.

MiKTEX itself comes with a configuration pro-

gram, MiKTEX Options or mo.exe,3 which has to

be started from outside the editor. Over time, the

MiKTEX installation has been accumulating some add-

ons, especially for handling graphics; see further on.

Moving from 4TEX to MiKTEX

I didn’t try to create a unified 4TEX-style interface for

everything, and also didn’t try to replicate the func-

tionality of 4TEX, but I did collect the local macros,

fonts and graphics from 4TEX which were still in use

and put them into the MiKTEX installation, some-

times with some minor tweaks.

1http://www.ntu.edu.sg/home5/pg03053527/latexeditor/
2http://www.xm1math.net/texmaker/
3MiKTEX also has a package manager. But of course that is not
useful to users who don’t have write access to the installation.

Figure 1: TeXnicCenter, a MiKTEX front end.

I dropped support for the old LATEX 2.09 since it

would have meant real work for something that might

not even get used.

The MiKTEX installation was put online early in

2003. For a year and a half, MiKTEX and 4TEX were

available side by side, but in the end, after six months

notice, I removed 4TEX from the network.

Layout and contents of the installation

Texmf trees

As to the organization of macros, fonts and other sup-

port files, MiKTEX is rather similar to other mod-

ern free TEX implementations: it organizes its files

into several texmf trees, which have a standardized

structure: e.g. font-related files are in subdirectories

fonts\tfm, fonts\type1, etc., and LATEX macros are

in tex\latex. Each tree follows such a structure and

has its own filename database. Users can configure in

which order the trees are going to be searched.

I configured the following three trees (fig. 2): a

main tree for files coming from the MiKTEX distri-

bution; a department tree for local additions, includ-

22 TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006



Managing a network TEX installation under Windows

Figure 2: Defining texmf trees and their priorities with
MiKTEX options.

ing the files inherited from the 4TEX installation; and

a user tree for people’s own macros and other files.

Users have write access only to their own user tree.

With this setup, a MiKTEX upgrade won’t interfere

with the department tree, and anything done to the

network installation leaves user files alone.

Package selection

MiKTEX is distributed as a setup program and a set of

packages. The MiKTEX Setup Wizard lets you choose

between three initial package sets: small, large or ev-

erything, which you can modify later on. I picked

the ‘large’ package set, and added and removed some

packages afterwards.

Add-ons

Add-ons to MiKTEX originally included GSview and

Ghostscript, but for the current edition, this was no

longer necessary, since these programs were already

installed separately.

For better scripting, I included the Perl .exe and

.dll files, but placed them outside the search path. If

people have a need for Perl then they can install their

own copy, without these two files getting in the way.

Graphics support

Drawing programs

Our MiKTEX installation includes a couple of draw-

ing programs. One of these is Ipe (http://ipe.

Figure 3: The Ipe drawing program has views or pages which
are really assemblies of ‘layers’.

compgeom.org), which has a few interesting features

(fig. 3):

• It uses pdflatex in the background for typesetting

text elements. You can tune typographic details

with LATEX preamble commands.

• It can import arbitrary pdf via a separate conver-

sion utility.

• A drawing can be layered in the sense that it can be

displayed incrementally in a pdf presentation. In

fact, Ipe also advertises itself as a tool for making

presentations.

A second drawing program is LATEXCAD, which gen-

erates LATEX picture environments. It is very old and

basic and is only included for people who still have

old LATEXCAD drawings in use.

Converters

I also added some PostScript, EPS and PDF conver-

sion scripts, with desktop shortcuts which can be used

as drag-and-drop targets. For conversion from pdf to

PostScript I added the xpdf utilities.

I plan to write a basic GUI tool, custom tailored

for our installation, which offers all available con-

versions from a single interface. Of course, the real

work will be done by Ghostscript and other trusty

command-line standbys.

There is also an installer for wmf2eps. This pro-

gram offers a fairly practical way to make graphics

from MS Office and other Windows programs avail-

able to LATEX. It seems that not much has happened

with it lately, but it still works well enough. It relies

TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006 23



Siep Kroonenberg

on a virtual printer driver, and therefore isn’t a good

candidate for a network install. Its main advantage

over simply printing to an EPS file is that it calcu-

lates a tight bounding box, rather than just turning an

entire page into a graphic.

Recent versions of Ghostscript have a ‘bounding-

box’ output device. There are now various scripts

which use Ghostscript to fix bounding boxes. The

as yet nonexistent GUI tool mentioned above should

also offer such an option, as an alternative to using

wmf2eps.4

An installer

Installation of the network version involves:

• storing configuration information in the registry

• creating the user tree if it doesn’t exist

• creating desktop and start menu shortcuts

• generating the filename database

Because our desktop systems are very standardized,

none of this requires user input.

Filename database

MiKTEX’s texmf trees have an important and annoy-

ing difference with the more unixy varieties: the file-

name database of a tree is not stored with that tree,

but in a designated ‘local’ tree which receives gener-

ated files. This local tree can only be the user tree.

That means that it is up to the user to update his file-

name database if items are added to or moved around

in the global installation.

The filename database can be generated from the

MiKTEX Options program but, fortunately for writers

of installation scripts, it can also be done from the

command line:

initexmf --update-fndb

It happens often enough that the installation fails be-

cause the user becomes impatient with the generation

of the filename database. Without the help of this data-

base, MiKTEX becomes very very slow. To minimize

the problem, I saved filename database generation till

last in the installation process and preceded it with

dire warnings about not interrupting the installer. If

these warnings are ignored, then the filename database

can still be generated after the fact from the MiKTEX

4There is also a Linux program called wmf2eps, but I have had
mixed results with it. It seems better to convert wmf and emf
graphics to EPS or PDF on the original system before trying to use
them elsewhere.

Options program. An alternative would be to copy a

pregenerated filename database to the right place dur-

ing installation.

Dealing with the registry

Under Windows, almost all configuration information

is stored in the registry.

The registry contains a set of hierarchically orga-

nized keys. There are several root keys. The most im-

portant ones are HKEY_CURRENT_USER and HKEY_LOCAL_

MACHINE, HKCU and HKLM in short. The HKCU part of

the registry may be on a network drive. HKLM is nor-

mally in a subdirectory of the Windows directory.

The actual information is contained in values un-

der those keys. Values are name-data pairs.

For users, there are very few reasons to edit the

registry directly. There are almost always specialized

menu entries and dialogs available, such as Tools

menus and Control Panel entries.

Registry tools

If you do need to view or manipulate the registry

directly, Windows has a number of tools: you can

browse the registry with regedit;5 and you can export

and import registry keys to and from .reg files with

either regedit or the command-line tool reg.exe. These

.reg files are editable text files. reg.exe may not be

installed by default, though. Type ‘reg /?’ for help.

Various programming languages, including Perl,

VBScript and installer programs, also have functions

for accessing the registry.

Finding out what registry values are needed

There are a number of techniques for identifying the

registry settings that you need: one way would be to

inspect the source code of the original installer.

A second method is browsing and searching the

registry for likely strings, and then testing whether

you have captured enough to make the program work

as intended. However, such testing can be time-consu-

ming since you sometimes have to re-login or reboot

before the changes take effect.

A third method is to export the registry to a text

file before installation and after installation or first

use, and compare the differences. There exist auto-

5Under earlier versions of Windows, regedit and regedt32 each could
do things that the other couldn’t. Under Windows XP, regedit
combines the functionality of the earlier regedit and regedt32. Its
version of regedt32 simply starts up regedit.

24 TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006



Managing a network TEX installation under Windows

mated installers which do just this, but the GNU diff

program works just fine.

You still have to decide which differences matter.

There will probably a lot of spurious differences. For

example, most programs record window positions and

most recently used files in the registry.

Also, some information which occurs only once

can appear to occur multiple times. In particular, un-

der Windows 2000 and later, the keys under HKEY_

CLASSES_ROOT (HKCR) are copies of keys from un-

der HKLM\software\classes and HKCU\software\

classes.

All users or not: HKLM vs. HKCU

Often, when you install software, there is a choice

whether or not to install for all users. If you do, keys

are added under HKLM\software; otherwise, under

HKCU\software.

Where to look

The most important settings are put in software\

〈program〉 and software\classes (either from HKLM

or from HKCU). The keys under classes define file

types and define what happens when you double-click

a file in Windows Explorer. Command-line programs

may not need any entries here.

Uninstall information can be found under HKLM\

software\Microsoft\Windows\CurrentVersion

\Uninstall. MiKTEX doesn’t have an uninstaller yet.

Registry entries for MiKTEX itself

MiKTEX makes very modest use of the registry. It

just records the locations of the texmf trees, stores

uninstall information, and defines the .dvi file type,

associating it with the yap previewer.

I also added the MiKTEX binaries directory to

the search path, for those people who prefer to run

MiKTEX from the command line. On Windows 2000

and Windows XP the search path and other such en-

vironment variables are stored in the registry; under

HKCU\software\environment for the current user,

and HKLM\system\currentcontrolset\control\

session manager\environment for the local sys-

tem.

Registry entries for Ghostscript and GSview

Ghostscript needs to record the location of the main

.dll and of its own fonts and support files. GSview

defines the .eps and .ps file types and associates them

with itself.

Registry entries for TeXnicCenter

TeXnicCenter stores a lot of information in the reg-

istry, but it can configure itself when it is started for

the first time if it can find the MiKTEX, Acrobat,

Ghostscript, and GSview registry settings. All the

user has to do is to answer ‘yes’ a few times. I decided

to leave configuration of TeXnicCenter to itself.

It is possible to rerun the TeXnicCenter config-

uration wizard at a later date. This may come in

handy whenever MiKTEX or Ghostscript or GSview

has moved, or Adobe Reader has been upgraded.

It would be nice for TeXnicCenter to check at

startup whether these programs are still at their pre-

vious location.

More installers

I started out with one installer, but now there are

several.

A network installation for a LATEX course

A second network installation was needed for a com-

puter course for econometrics students. This instal-

lation is a slightly stripped-down version of the first

one: no department tree, and without some of the

add-ons.

A cd installation

Earlier, I had already made a cd with the standard in-

stallers for MiKTEX, Ghostscript, GSview and TeXnic-

Center, and a copy of the department tree, plus a file

with instructions how to put everything together.

There were two problems with this: it was com-

plicated enough that some people preferred to let me

install MiKTEX for them, and other people figured

that they might as well download and install MiKTEX

directly from the Internet. Which was not exactly

wrong, but differences in their setup sometimes made

it difficult to debug their problems.

So I hope that the new installer cd has persuaded

some people to avoid the do-it-yourself install.

The differences

I already listed some of the differences between staff

and student installations. Some differences between

the network and cd installers are:

TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006 25



Siep Kroonenberg

With the cd installer, users can choose locations

for the main installation and for their own data. These

locations are fixed in the network version.

The cd installer has to copy everything to the hard

disk, whereas in the network version everything is al-

ready in place. In fact, re-running the network in-

staller is no big deal. Which is just as well, since time

and again configurations get messed up by a malfunc-

tioning network or other mishaps.

The cd installer tests for Ghostscript and GSview.

If they are missing, the user first has to install these

programs, e.g. with the installers provided on the cd.

The network version simply knows that Ghostscript

and GSview are present and where they are.

The cd does an ‘All users’ install; the network

version doesn’t. Since on our network the HKCU part

of the registry and the start menu are on the user’s

network drive, you can run MiKTEX from any work-

station on the network.

The cd only contains MiKTEX fonts, not the ad-

ditional department fonts. Adding fonts in MiKTEX

2.4 is tricky at best. Adding them to systems that I

didn’t control caused too much grief.

It was not difficult to create the installer script as one

main script with four different wrapper scripts.

I kept the installation and the installer on a Linux

Samba server. I managed to put all ‘real’ files in a

single directory tree, and to access these files through

four different sets of symlinks. This prevented worries

about keeping the versions in sync.

Installer programs

The standard way to distribute applications at our uni-

versity is to create entries in NAL, or Novell Appli-

cation Launcher, using Novell ZENworks. As I un-

derstand it, ZEN identifies file system and registry dif-

ferences before and after installation. With ZEN, an

installer can make system changes for which the user

wouldn’t have permissions without ZEN. However, a

first attempt to create such a NAL entry for MiKTEX,

done together with our NAL specialist, was not exactly

smooth sailing.

I needed something that I could develop and test

on my own system. This was even more important for

the student install for the LATEX course, where I had

to do everything through intermediaries who weren’t

even in the same building.

In the first edition, which didn’t include a cd coun-

terpart, I could make do with a batch file with some

embedded Perl code6 for manipulating the search path.

The cd version of the second edition required

user interaction, first for telling users to install Ghost-

script if it wasn’t found, second for asking users where

MiKTEX should be installed. So it was really time to

switch to a GUI installer.

I picked NSIS.7 It is completely scriptable and can

be used from the command line.8 It has functions for

reading and writing the registry and for creating short-

cuts. It offers string handling and conditionals. You

can choose to what extent you want to package files

into the installer itself, i.e. you can also tell the installer

to copy files straight from the installation media to the

target system.

The principal drawback of NSIS is very low-level

string handling, which is quite painful if you are used

to Perl string handling and regular expressions.

I have also heard good things about InnoSetup

(http://www.jrsoftware.org/isinfo.php), but

by then I was almost finished with my NSIS installer.

Development and testing

Virtual machines

Nowadays, you don’t need physical test machines any

more; with software such as VMware you can create

virtual guest machines for testing inside a host, e.g.

inside your everyday PC. The hard disk of this guest

computer is a very large file on the host’s disk. Its

screen can take up the entire physical screen, but it

can also run inside a window, whatever is convenient.

If host and guest have similar processors, performance

can be quite decent. VMware supports Windows and

Linux hosts.

There are other options for virtual machines, both

commercial and free: the Xen project (xensource.

com) is getting a lot of attention, and may in time be-

come a very interesting alternative. See also QEMU

(qemu.org), Win4Lin (win4lin.com) and Virtual PC

6That is, the batchfile calls Perl with the -x switch and itself as
parameter; see the perlrun man page.
7http://nsis.sourceforge.net/
8For GUI addicts, there is an interface with some buttons to push.
There are also third-party editors with a GUI for building dialog
boxes.

26 TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006



Managing a network TEX installation under Windows

Figure 4: The Samba shares seen from the Windows client
machine. It doesn’t make a difference whether the Windows
machine is physical or virtual.

(microsoft.com).9 Some of these emulators are fo-

cused more on running Windows applications than

on creating a realistic test environment.

For testing installers, you can create a ‘clean’ vir-

tual machine with just Windows and some indispens-

able programs installed. Then you can run simulations

on copies of this virtual machine. Getting another

clean test machine is just a matter of making a fresh

copy of the original one, which takes only minutes.

Virtual networking

For networking, I let VMware create what it calls a

host-only network, with no direct access to an external

network. This saves me the hassle of protecting virtual

Windows machines against malware from the Internet.

I configured the Linux host as a Samba server, with

the MiKTEX installation in a Samba share, and the

user’s home directory in another share. (See figures 4

and 5.)

Roaming profiles

The university has started using roaming profiles. The

idea is to place user configuration data as much as

possible on their own network home drive. This in-

cludes e.g. users’ start menus and the HKCU part of the

registry.

With Samba, roaming profiles means configuring

the (or a) Samba server as a PDC or Primary Do-

9Virtual PC was bought from Connectix by Microsoft in the second
half of 2003. The Macintosh version of Virtual PC was at the time
the only real option for running Windows on the Mac. I, along
with many other Mac owners, was duly shocked by this sell-out.
But in the meantime, other emulators appeared, and now that the
Mac is moving to Intel, we can hope for VMware-quality virtual
machines on Mac OS X from other companies than Microsoft.

Figure 5: The Samba shares seen from the Linux server. It
makes no difference whether the server is a separate ma-
chine, a VMware host or a second VMware guest machine.

main Controller. This is no fun. It means creat-

ing things called machine accounts for the client ma-

chines, and painstakingly reading Samba documen-

tation. A very helpful and funny guide was ‘The

Unoffical Samba HOWTO’. You can find this docu-

ment via the Samba site. Its current location is http:

//hr.uoregon.edu/davidrl/docs/samba.html.

For testing, I now make clean MiKTEX-free pro-

files, with just the worst default Windows settings

fixed, and work with copies of those clean profiles,

just as I already did with guest machines.

Disappearing file types

In theory, with MiKTEX and TeXnicCenter, roam-

ing profiles should work perfectly: there should be

no need to install or configure anything on the ma-

chine itself. In practice, definitions of file types under

HKCU, i.e. all keys and values under HKCU\software\

classes, got lost in between logins — in real life, not

in my test setup.

For staff network installations, a workaround is to

duplicate the file type definitions in HKLM\software\

classes. For student network installations, students

don’t have write permission on HKLM keys, so this

would only be possible with something like ZEN. As a

hacky alternative, I put together a registry patch with

file type definitions, i.e. a .reg file with the registry

keys and values under the HKCU key which define these

file types. By double-clicking this file, these keys and

values are imported into the registry. Students have to

run this registry patch before each MiKTEX session.

Next time around, if the disappearing file types

problem still isn’t solved, I might have to do some-

thing with ZEN after all.

TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006 27



Typography-based on-line help for TEX∗

GYÖNGYI BUJDOSÓ
Faculty of Computer Science
University of Debrecen
H-4010 Debrecen, P.O.B. 12, Hungary
bujdoso (at) inf dot unideb dot hu

Abstract
People using TEX often search for on-line information about TEX. Although many on-line systems show the syntax of

many commands and environments, few or none contain typographical recommendations for them. For example, we

can find the command \underline and its syntax but there is no hint that underlining texts is not recommended

in documents even if the text is a section title.

Our project was to begin developing a typography-based TEX help system. This presentation deals with the main

features of the system, how to integrate important typographical recommendations, source code of TEX commands and

environments, designed forms and layouts, and the most problematic grammatical rules.

Introduction
When people use TEX they sometimes need help with
command syntaxes. There are some very good web
based systems about how to use TEX (e.g., [5, 7])
which assist people in how to use a command or en-
vironment, how to set the indentation of a paragraph,
how to italicize a word or how to modify the labels of
an enumeration. It is quite useful, saves a lot of time,
but is it enough? Is it possible to find information on
the web on how big the indentation should be, which
words should be in italics or bold, what types of labels
should be applied?

It is safe to say that it is hard to find information
on typographical recommendations on the web and
most people do not acquire books on typography.

An idea follows from the foregoing: an on-line
system which contains more than the technical details
for typesetting should be offered to those interested.

Basic considerations
The curriculum in many courses on computer sci-
ence for beginners (including primary and secondary
schools) contains word processing. In general, this
means teaching techniques on how to use menus, dia-
log boxes and icons. The methodology is similar when
teaching TEX (for example, for students in mathemati-
cal specialties). This method of teaching word process-

∗Supported by DIP Kooperációs Kutató Központ, University of
Debrecen, project no. GVOP-3.2.2.-2004-07-0021/3.0.

ing results in students being able to use some functions
of a word processor or TEX, but they do not care
about the layout of documents. Usually they use the
default settings of one (and only one) style file, and
bold letters for emphasizing in-line texts, sometimes
they use headings or centering — and that is all. The
layout of the documents is not harmonious and not
aesthetic, sometimes quite structureless.

The first idea was to give information to students
on typography when teaching techniques of word pro-
cessing. This method was not successful enough, be-
cause students thought that these rules and recommen-
dations were without importance. Shifting the focus
from teaching techniques to teaching typography [2]
was more successful, because information describing
a form was about typography first, then followed by
technical issues. The students were more motivated
and attended to the layout of their documents.

Currently many students at universities do not
have time to attend courses on word processing, and
have no money for buying books, so they mostly use
the web for getting information in this field (just as
with almost everything). Nevertheless, on-line help
for word processing generally contains only technical
information. How to motivate students and, for that
matter, anyone to give more consideration to layout?

A solution could be an on-line help system based
on typography [3].

28 TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006



Typography-based on-line help for TEX

Versions, concepts and problems
The first version of our “on-line help” was more of a
textbook on the web than on-line help. It was a static
system of web pages on certain parts of the curricu-
lum, namely a set of

• sample pages

– containing the description of some technique,

– showing a recommended layout of the form in
question, and which

– has to be reproduced.

The system had two main problems: The most impor-
tant problem was that the sample pages did not con-
tain the entire source code of the special forms, only
the syntax and the detailed descriptions of the com-
mands (because students had to reproduce the pages).
There was a time when this type of learning was mo-
tivating for our students, but the world has changed;
nowadays people prefer ready-to-use things. The sec-
ond problem was that it was hard to find a command
or anything else in the curriculum. It was time to
change the concept.

The second version was a system of web pages.
These pages contained the same topics of the first ver-
sion, plus

• the source code of many forms.

A new structure was applied: small pages with less in-
formation on each and with many links to the related
topics and forms.

Some problems arose when more topics and text
had to be inserted into the system. The descriptions
had to be sliced and organized in another way.

The result: hundreds of small web pages (contain-
ing much redundant information), hundreds of pic-
tures and thousands of links. After a while, it was im-
possible to handle and update the system. The system
collapsed before being published! Thus the concept
had to be changed.

New techniques
Having worked with systems which were not efficient
enough, we planned to develop a free system which
could be a help to teachers (with or without program-
ming skills) in creating and organizing thousands of
files of their curricula. This system was designed to be
different from the Learning Content Management Sys-

tems (lcms) which are available free of charge. (A free
lcms needs a system administrator for installing, main-
taining and updating it.) This project has been can-
celed due to various reasons.

The frame that we can use can be a free lcms.
Among others, Moodle [6] seems to be the best frame
for our purposes, as its language support is quite good
and it has several agreeable features and other func-
tions.

Moodle — like lcms frames in general — has many
advantages such as tests, logs, chats, possible tutoring,
white boards, searching, etc. Nevertheless it has some
disadvantages, too. One of its best features, i.e., its uni-
formity (that is, each window dialog box, etc. has the
same layout, as determined by the chosen skin) is con-
sidered to be quite disadvantageous from the current
perspective. Another problem is that it lacks some
functions that could make the system easier to deal
with. It is too rigid and hard to personalize.

Formats
One of the biggest problems with using on-line sys-
tems is that people need hardware and web access to
get any information. For people who work always
on computers, of course this does not cause any prob-
lem because they have both. For other people, who
have neither laptops in their bags nor free (nor unlim-
ited) Internet access, getting on-line information can
be problematic.

A more convenient way would be if the system
can be downloaded and installed if needed (in an easy
way) onto a local computer.

Also, visualization is a common learning tech-
nique. The system should support this method of
study by offering a printable version of the needed
part(s) of the curriculum to the users. Such pieces of
information should be at anyone’s disposal.

Accessibility
Accessibility is an important question in typesetting
texts, too. Many disabled people use TEX, so we must
help them, one major group being people with visual
impairment. Initiatives can be read, e.g., at [8, 9, 11],
or in Hungarian at [1]. Many useful recommenda-
tions on interactive design can also be read, e.g., at
[4] or [10]. Most of them should be adapted to the
new on-line help system.

TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006 29



Gyöngyi Bujdosó

Figure 1: Fields and relations

The minimal requirements for our on-line help
system are the following:

• It must contain functions for enlarging text, menu
items, icons, pictures, etc. These would help peo-
ple with visual as well as motor impairments.

• Alternative text should be assigned to each picture.

• It should offer possibilities to users for setting
colors and contrast applied by the system to the
users’ desire. This feature is very important, for
example, for color- and night-blind people.

Augmented content
Some new topics and many new (cross-)references (see
Figure 1) have to be built in. The following new fields
are planned to be embedded into the on-line help:

• typographical recommendations,

• commonly (not) used rules of grammar,

• a class/style file (or a simple macro file) maker to
LATEX and plain TEX.

Also, some new features have to be added and many
relations should be highlighted:

• links from special forms of a displayed page to ty-
pographical descriptions and samples that are con-
cerned to the forms (see Figure 2),

• links from special forms to their source code,

• links to grammatical rules of problematic words,
suffixes, etc.,

• supporting different languages,

• demonstration of designed layouts,

• representative samples on good and bad forms and
usage of grammatical rules.

Figure 2: Sample page and relations

About the project
The project consists of two main parts: developing
the content, building up the frame and aligning it to
the needs of the content and users.

The content on TEX is under development; many
of the necessary topics and parts are being gathered.
The contained descriptions have to be organized into
self-contained pieces by carefully abolishing the redun-
dancies, meaning that a system of learning objects has
to be developed.

There are many texts on typography, but we need
to enlist a typographer who would write more, or at
least referee them.

The most problematic part is building up and
aligning the frame. It needs programmers who have
to be supported. Trying to find financial support is in
progress.

Conclusions
Our main goal is to develop a system that can motivate
people to create good layouts in their work. Develop-
ing an easy-to-use on-line help system on word process-
ing combined with typographical issues is a difficult
task. It requires a lot of work from several people
on various fields: instruction, typography, human–
computer interaction, system programming.

In case we succeed in developing this on-line sys-
tem, it will be a good frame to adapt the content to
other languages, and offer a place on the web where
people can get information not only about TEX, but
typesetting texts and designing aesthetic layouts.

30 TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006



Typography-based on-line help for TEX

References
[1] Accessibility initiatives and principles,

(in Hungarian), http://vmek.oszk.hu/vmek2/

ajanlas.phtml

http://www.paramedia.hu/

http://weblabor.hu/cikkek/iranyelvek

http://www.w3c.hu/forditasok/wai_quick_

tips.html.

[2] Gyöngyi Bujdosó, Teaching word-processing

at our university, Proceedings of Informatika
a felsőoktatásban ’96 (August 27–30, 1996,
Debrecen, Hungary), 1996, pp. 101–109,
(in Hungarian), http://www.iif.hu/

rendezvenyek/networkshop/96/vegl.html.

[3] Gyöngyi Bujdosó, Online learning course on

word processing based on typography, Proc.
of EMES 2005 (May 26–18, 2005, Oradea,
Romania), in: Analele Universită̧tii din Oradea,
2005, pp. 33–36.

[4] What accessibility means, The gnome Project,
2005, http://developer.gnome.org/

projects/gap/access-def.html.

[5] W. Macewicz and S. Wawrykiewicz, Wirtualna

TEX akademia, 2004, (in Polish),
http://www.ia.pw.edu.pl/~wujek/tex/.

[6] Moodle: A modular object-oriented dynamic

learning environment, http://moodle.org.

[7] (LA)TEX Navigator, A (LA)TEX encyclopaedia,
http://tex.loria.fr/.

[8] Section 508, http://www.section508.gov/.

[9] SENDA: Special Educational Needs and Disability

Act, http://www.ukcle.ac.uk/directions/

issue4/senda.html.

[10] Bruce Tognazzini, First principles of interaction

design, in: Interaction design solutions for the real

world, AskTog, 2003, http://asktog.org.

[11] WAI: Web Accessibility Initiative,
http://www.w3.org/WAI/.

TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006 31



Automatic non-standard hyphenation in
OpenOffice.org

LÁSZLÓ NÉMETH
nemeth (at) openoffice dot org

Abstract
The hyphenation algorithm of OpenOffice.org 2.0.2 is a generalization of TEX’s hyphenation algorithm that allows

automatic non-standard hyphenation by competing standard and non-standard hyphenation patterns. With the

suggested integration of linguistic tools for compound decomposition and word sense disambiguation, this algorithm

would be able to do also more precise non-standard and standard hyphenation for several languages.

Introduction
Standard hyphenation consists of splitting a word and
including a hyphen at the end of the first part of the
split word (unless the word already contained a hy-
phen or n-dash at the break). While standard hyphen-
ation is widely applicable, several languages also use
non-standard hyphenation.

Table 1 shows examples for non-standard hyphen-
ation: character deletions and other changes at hy-
phenation break points in European writing systems.
Some non-standard hyphenation can be handled easily
by computer, like the mandatory middle dot deletion
from Catalan digraph l.l. But complex analysis is neces-
sary for languages, like German,1 Hungarian, Swedish
and Norwegian to recognize hyphenation points. For
instance, the Swedish word form glassko has three dif-
ferent meanings, and can be hyphenated as glas- sko

(glass shoe), glass- ko (ice cream cow) and in the non-
standard way, glass- sko (ice cream shoe).

Such non-standard hyphenation plays an impor-
tant role in good typesetting. Commercial DTP pro-
grams, even word processors, support automatic non-
standard hyphenation, often by licensing third party
libraries. The most important free alternatives, such
as Apache FOP, GNU Troff, KDE KOffice, Open-
Office.org, Scribus, and TEX and its variants, do not
support automatic non-standard hyphenation. TEX
has a hyphenation primitive, the \discretionary

command. There are TEX macros in the Babel package
for non-standard hyphenation, for instance, \lgem for
Catalan l.l, \ck or "ck for German, ~ssz for Hungar-
ian, \= for Polish, but there is no real automatic non-

1German orthography before the spelling reform of 1996.

standard hyphenation in TEX. Omega 2 has promis-
ing developments towards implementing sophisticated
automatic non-standard hyphenation for German and
other languages [4, 5].

The aim of the present project was to implement
language-independent automatic non-standard hyphen-
ation in OpenOffice.org. In this article we present
our results, introduce old and new hyphenation algo-
rithms, extension of the Hungarian hyphenation pat-
terns and finally show the possibility of integrating
compound word decomposition and word sense dis-
ambiguation to our algorithm.

Results
TEX’s hyphenation is the de facto standard in the free
software world, because the hyphenators of the free
programs mentioned in the previous section are all
based on Liang’s hyphenation algorithm from TEX82
[9], and use the TEX hyphenation patterns. Thus,
we have developed an extension for OpenOffice.org’s
ALT Linux LibHnj hyphenator to do automatic non-
standard hyphenation. The result is based on a gener-
alization of Liang’s original algorithm which also al-
lows easy integration of special linguistic tools to han-
dle compound word decomposition and word sense
disambiguation in automatic hyphenation. The Hun-
garian hyphenation patterns were extended with non-
standard hyphenation patterns.

The improved hyphenation library (without inte-
grated linguistic tools) is part of the OpenOffice.org
2.0.2 with the extended Hungarian hyphenation pat-
terns. Developers can download a standalone version

32 TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006



Automatic non-standard hyphenation in OpenOffice.org

Language Example Hyphenation Description
Catalan paral.lel paral- lel digraph l.l represents long (geminated) l

Dutch reëel re- eel diaeresis and hyphenation sign syllable breaks
omaatje oma- tje vowel lengthening with diminutive -tje

English eighteen eight- teen suggested pretty hyphenation by D. E. Knuth [6]
German Zucker Zuk- ker digraphs ck and kk represent long k

Schiffahrt Schiff- fahrt triple consonants at compound word boundary
Greek Μαΐου Μα- ίου diaeresis and hyphenation sign syllable breaks
Hungarian asszonnyal asz- szony- nyal simplified double digraphs (long sz and ny phonemes)
Norwegian bussjåfør buss- sjåfør triple consonants at compound word boundary
Polish kong-fu kong- -fu repeated hyphen at line begin
Swedish tillåta till- låta triple consonants at compound word boundary

Table 1: Non-standard hyphenation in European languages

. a l g o r i t h m .

4l1g4

l g o3

1g o

2i t h

4h1m

-----------------

4 1 4 3 2 0 4 1

a l-g o-r i t h-m

Figure 1: TEX hyphenation of ‘algorithm’

of this library with an example executable from the
Lingucomponent project home [14].

Liang’s hyphenation algorithm
Franklin M. Liang’s hyphenation algorithm is based
on competing hyphenation patterns. The patterns can
give excellent compression for a hyphenation dictio-
nary, and using these patterns the fast hyphenator al-
gorithm can also correctly hyphenate unknown (non-
dictionary) words most of the time. Liang’s work
covers also the machine learning of the hyphenation
patterns and exceptions by PatGen pattern generator.

The hyphenation patterns can allow and prohibit
hyphenation breaks on multiple levels. Figure 1 shows
the pattern matching on the word ‘algorithm’. The
TEX English hyphenation patterns 4l1g4, lgo3, 1go,
2ith and 4h1m match this word and determine its
hyphenation. Only odd numbers mean hyphenation
breaks. If two (or more) patterns have numbers in
the same place, the highest number wins. The al-

go- rith- m hyphenation is bad, but the last one-letter

hyphenation is suppressed by TEX, so we end up with
the correct al- go- rithm.

One of the most notable features of this pattern-
based hyphenation is the human-readable format of
the knowledge database, in contrast to an equivalent
finite state machine or a similarly good artificial neural
network. This format is good for manual checking and
corrections.

Missing features

In TEX’s automatic hyphenation the most wanted fea-
tures are non-standard hyphenation, compound word
analysis, word sense disambiguation and taboo word
filtering [12, 13].2

Sojka’s non-standard hyphenation extension
In [12] Petr Sojka suggests a non-standard hyphen-
ation extension for Liang’s algorithm. His algorithm
first searches all hyphenation points of a word using
Liang’s algorithm, and then matches patterns from a
non-standard hyphenation table at valid hyphenation
points, replaces the matching pattern with a special
character, and rechecks the hyphenation of the new
word at this special character with Liang’s algorithm.
The non-standard hyphenation point will be chosen if
the second hyphenation is successful. Using a ck→%

(k- k) pattern data from a non-standard hyphenation
table, the German word Zucker will be Zu%er after

2Liang’s hyphenation algorithm and its compact implementation
using packed trie data structure was perfect twenty-five years ago for
English and for computers with less than a few MB RAM. Nowadays
internationalization (handling multiple languages) is a standard in
software industry and free software development. Modern personal
computers have much more memory and speed to enable using
additional special linguistic tools in hyphenation.

TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006 33



László Németh

Pattern Example Hyphenation
l·1l/l=l paral.lel paral- lel

e1ë/e=e reëel re- eel

a1atje./a=t,1,3 omaatje oma- tje

eigh1tee/t=t,5,1 eighteen eight- teen

c1k/k=k Zucker Zuk- ker

schif1f/ff=f,5,2 Schiffahrt Schiff- fahrt

1ΐ/=ί Μαΐου Μα- ίου

s1sz/sz=sz asszonnyal asz- szony-

n1ny/ny=ny nyal

bus1s/ss=s,3,2 bussjåfør buss- sjåfør

7-/=- kong-fu kong- -fu

.til1lå/ll=l,3,2 tillåta till- låta

Table 2: Extended hyphenation patterns for Table 1

the replacement, and the pattern zu%1er permits non-
standard hyphenation with k- k (Zuk- ker).

Problems

It’s possible to use the pattern generator on a pre-
pared input dictionary for Sojka’s algorithm, but then
we lose the human-readable format of hyphenation
patterns. The biggest problem is to use competing
patterns on multiple levels. That is why instead of us-
ing difficult redundant patterns with special hyphen-
ation characters, Sojka suggests global parameters (left
and right non-standard hyphenation penalties) to for-
bid standard hyphenations near the non-standard hy-
phenation points. But German, Hungarian, Norwe-
gian and Swedish non-standard hyphenation need true
competing patterns.

OpenOffice.org’s extension
To keep the flexibility of Liang’s algorithm, Open-
Office.org augments the original hyphenation patterns
with extended patterns defining non-standard hyphen-
ation points as subregions and replacements of the sub-
regions. To keep the clear syntax, a non-standard hy-
phenation pattern is denoted as a plain hyphenation
pattern and a record separated by a slash.

For example, the pattern zuc1ker/k=k,3,2 rep-
resents the hyphenation of Zucker. This means the
non-standard hyphenation subregion will be replaced
by k=k, where the = indicates the break point with
a hyphen. The subregion begins at the 3rd character,
and contains 2 characters (ck).

. a s s z o n n y a l .

s1s z/sz=sz,1,3

n1n y/ny=ny,1,3

-------------------

0 1 0 0 0 1 0 0 0/sz=sz,2,3,ny=ny,6,3

a s-s z o n-n y a l/sz=sz,2,3,ny=ny,6,3

Figure 2: Hyphenation of asszonnyal

Table 2 shows possible hyphenation patterns for
Table 1. The dots in the patterns match the word
boundaries. The first dot doesn’t affect the character
positions in the non-standard hyphenation subranges:
.zuc1ker/k=k,3,2. Figure 2 shows the result of ap-
plying multiple non-standard pattern matching.

Rules

A single subregion must contain exactly one hyphen-
ation point (indicated by an odd number in Liang’s
syntax). There may also be explicit non-breakable
points (indicated by even numbers) in the subregion,
and any breakable or non-breakable points out of the
subregion.

A standard and a non-standard hyphenation pat-
tern matching the same hyphenation point must not
be on the same hyphenation level. For instance,
c1 and zuc1ker/k=k,3,2 are invalid, while c1 and
zuc3ker/k=k,3,2 are valid extended hyphenation
patterns.

Unicode character encoding

Unicode is the basis for internationalization.3 Thanks
to the unambiguous start positions of the multibyte-
characters, Liang’s algorithm works perfectly with the
UTF-8 Unicode encoding. Subregion parameters of
non-standard hyphenation patterns use Unicode char-
acter (not byte) positions and lengths.

Changing hyphen

Missing or alternative hyphenation marks are handled
by using underline characters instead of equal signs in
our non-standard hyphenation patterns, where under-
line character indicates only the break point, without
an implied hyphen. For example, using the underline
with an explicit hyphen, k-_k and k=k are equivalent

3Not only for exotic writing systems. Affix-rich languages can
combine different 8-bit character codes in one word. For exam-
ple, Nexøről (about Nexø in Hungarian) contains special characters
from Latin-1 and Latin-2 character tables.

34 TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006



Automatic non-standard hyphenation in OpenOffice.org

Example Hyphenation Description
meggy meggy noun with long phoneme gy (sour cherry)

meggyez megy- gyez derived verb (to do something with sour cherry)
meggyíz meggy- íz compound (sour cherry jam)
meggyőz meg- győz verb prefix meg- + verb gyõz (persuade)

esszé esz- szé long phoneme sz (essay)
Jamesszé James- szé noun James + suffix -szé ([to become] James)
samesszé samesz- szé noun samesz + suffix -szé ([to become] verger)

esszék esz- szék noun esszé + plural k (essays)
vizesszék vizes- szék compound (special chair (szék) in Hungarian folklore)
rekesszék rekesz- szék verb rekeszt + suffix -jék (third-person plural obstruct!)

berekesszék berekesz- szék prefix be + verb rekeszt + suffix -jék (third-person plural adjourn!)
kirekesszék kirekesz- szék prefix ki + verb rekeszt + suffix -jék (third-person plural exclude!)

kerekesszék- kerekes- szék- compound (wheel chair)

Table 3: Hungarian hyphenation examples with ambiguous ggy and ssz patterns

patterns.4 This notation is functionally equivalent to
TEX’s \discretionary command.

Extending Hungarian hyphenation patterns
The Hungarian language uses simplified forms to rep-
resent its double digraph and trigraph consonants
(sz+sz→ssz, dzs+dzs→ddzs, etc.), but hyphenation un-
does the simplification (sz- sz, dzs- dzs). Some ambi-
guity results from this non-standard hyphenation in
Hungarian, caused by rich compounding and affixa-
tion, see Table 3.

Manual extension of the Huhyphn Hungarian hy-
phenation patterns based on Hungarian vocabularies
and morphology has been accomplished, and the re-
sult contains over two thousand non-standard hyphen-
ation patterns. For example, Figure 3 shows the com-
peting patterns matching the word esszé (essay).

The Huhyphn distribution consists over 63 thou-
sand hyphenation patterns generated from a 2.5 mil-
lion word hyphenation dictionary by PatGen [10].
Our experience shows that with the manual extension
of this database, the results are as good as the Hun-
garian commercial hyphenator MorphoLogic Helye-
sel5. What’s more, extended Huhyphn works well on
unknown words, resulting in significantly better auto-
matic typesetting.6

4It doesn’t work in OpenOffice.org, yet!
5Hyphenator of Hungarian MS Office, Adobe InDesign, Adobe
PageMaker and QuarkXPress.
6Helyesel hyphenates only known words, and it cannot handle
many proper compounds, because its compound decomposition al-

. e s s z é .

1s z é

1z é

. e2

s2s z

s2z

2é .

s3s z é .

. e s5s z é/sz=sz,2,3

---------

2 5 2 2/sz=sz,2,3

e s-s z é/sz=sz,2,3

Figure 3: Non-standard hyphenation of esszé

Linguistic tools for better hyphenation
Pattern-based hyphenation doesn’t work well on lan-
guages with an unlimited number of compound words
[7]. Compound word decomposition by patterns re-
sults in an enormous number of hyphenation patterns
in the Huhyphn distribution. However, within a few
minutes, an expert could be able to find a dozen badly
hyphenated compound words in Magyar webkorpusz,
a Hungarian gigaword corpus with 21 million word
forms. We need more sophisticated compound word
decomposition methods, like SiSiSi [1, 7, 8]. Open-
Office.org’s Hunspell spell checker also has morpho-
logical analyzer capability to decompose compound
words. We suggest a simple method and formalism to
integrate these tools with the pattern-based hyphen-

gorithm cannot decompose compounds from three or more dictio-
nary words.

TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006 35



László Németh

g l a s s k o g l a s s k o

. g l a s . s k o . . g l a s s . k o .

.7 .7

--------------- ---------------

0 0 0 0 7 0 0 0 0 0 0 0 7 0

0 0 0 7 0 0 0 0 0 0 7 0

g l a s-s k o g l a s s-k o

g l a s s k o

. g l a s . . s k o .

.7

.7

s .8.9s/ss=s,1,4

-----------------

0 0 0 0 8 9 0 0/ss=s,4,4

0 0 8 9 0 0/ss=s,4,2

g l a s-s k o/ss=s,4,2

Figure 4: Hyphenation by decomposition

ation. Another advantage of the integration is that the
external linguistic tools could also provide word sense
disambiguation (for example, using part-of-speech tag-
gers) to hyphenate the ambiguous words in hyphen-
ation dictionaries.

Dots within patterns

Dots denote word boundaries in Liang’s algorithm.
Extending this formalism, let us also allow dots to
denote the word boundaries within compounds. The
compound word decomposition makes only a bound-
ary annotation with dots, and we can hyphenate the
decomposed word by dotted hyphenation patterns.

For instance, the Swedish word glassko would be
glas.sko or glass.ko after compound word decomposi-
tion, and can be hyphenated with the pattern .7 as in
Figure 4.

Double dots

We denote non-standard compounding by double dots,
as in glas..sko. This annotated word can then be hy-
phenated with a non-standard hyphenation pattern,
such as s.8.9s/ss=s,1,4 in our example.

The annotation is removed from the output of the
hyphenation algorithm, as in the three possible anno-
tated and hyphenated forms of glassko in Figure 4.
With a suitable word sense disambiguation, the pat-
tern based hyphenator is given exactly one of them.
(Without word sense disambiguation, glassko is not an-
notated and hyphenated).

Conclusion
The new version of OpenOffice.org contains state-of-
the-art Hungarian hyphenation, solving the problem
of automatic non-standard hyphenation in a general-
ized way. The extended version of Liang’s hyphen-
ation algorithm is suitable for other languages. With
the suggested formalism and minimal extension, the
algorithm can also be integrated with sophisticated lin-
guistic tools to handle compound word decomposition
and word sense disambiguation in automatic hyphen-
ation.

Acknowledgments
OpenOffice.org’s improved hyphenation was demon-
strated at the 3rd Conference on Hungarian Computa-
tional Linguistics in 2005, Szeged, Hungary, thanks to
Media Education and Research Center (MOKK), Uni-
versity of Technology and Economics, Budapest. I
would like to thank Stefan Baltzer and other devel-
opers at Sun Microsystems for testing and quick in-
tegration of the extended ALT Linux LibHnj library
into OpenOffice.org, Péter Szabó for his helpful com-
ments and Yannis Haralambous for his information
about Dutch and Greek non-standard hyphenation.
Also thanks to Marcin Miłkowski and the authors of
various Internet sources [2, 3, 11] for the Polish and
other examples. Special thanks for the editorial work
of TUGboat.

References
[1] W. Barth and H. Nirschl. Sichere

sinnentsprechende Silbentrennung fur die
deutsche Sprache. In Angewandte Informatik,
volume 4, pages 152–159, 1985.

[2] Linda Andersson et al. Performance of Two

Statistical Indexing Methods, with and without

Compound-word Analysis. http://www.nada.

kth.se/kurser/kth/2D1418/uppsatser03/

LindaAndersson_compound.pdf.

[3] Dave Fawthrop. Hyphenation by algorithm

of English/American and other languages.
http://www.hyphenologist.co.uk/, 2000.

[4] Yannis Haralambous. New hyphenation
strategies in Omega v2. In this volume,
pp. 98–103.

36 TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006



Automatic non-standard hyphenation in OpenOffice.org

[5] Yannis Haralambous and Gábor Bella. Omega
becomes a texteme processor. In Actes

d’EuroTEX, pages 99–110, 2005.

[6] Donald E. Knuth. The TEXbook, page 314.
Addison-Wesley, 1984.

[7] Gabriele Kodydek. A word analysis system
for German hyphenation, full text search, and
spell checking, with regard to the latest reform
of German orthography. In Text, Speech and

Dialogue: Third International Workshop (TSD

2000), pages 39–44, 2000.

[8] Gabriele Kodydek and Martin Schönhacker.
Si3trenn and Si3Silb: Using the SiSiSi word
analysis system for pre-hyphenation and
syllable counting in German documents.

[9] Franklin M. Liang. Word Hy-phen-a-tion

by Com-put-er. Stanford University, 1983.
http://www.tug.org/docs/liang.

[10] Bence Nagy. Huhyphn — Magyar elválasztás

TEX-hez, Scribushoz és OpenOffice.org-hoz.
http://www.tipogral.hu, 2003.

[11] Ole Michael Selberg. Nohyphbx.tex introduction.
http://home.c2i.net/omselberg/pub/

nohyphbx_intro.htm, 2005.

[12] Petr Sojka. Notes on compound word
hyphenation in TEX. TUGboat, 16(3):290–296,
September 1995.

[13] Petr Sojka and Pavel Ševeček. Hyphenation in
TEX — Quo Vadis? TUGboat, 16(3):280–289,
September 1995.

[14] Standalone version of ALT Linux
LibHnj hyphenation library. OpenOffice.org

Lingucomponent project.
http://lingucomponent.openoffice.org/.

TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006 37



What tools do ConTEXt users have?

HANS HAGEN
Pragma ADE, Hasselt
pragma (at) wxs dot nl

A bit of history

When we started working on ConTEXt, MS Windows

(and before that 4Dos) was our main platform; it still

is for development (we use Unix on the web and file

servers and the Mac for fun). So, when ConTEXt

was integrated into the TEX distributions we faced

the problem of portability. Since one needs auxiliary

programs1 for e.g. sorting an index, we had written

TEXutil, and the lack of a commandline handler made

us come up with TEXexec. Both were written in Mod-

ula but were rewritten in Perl in order to be usable

on platforms other than MS Windows. It was easier

to maintain a Perl version than to deal with low-level

platform issues indefinitely.

As both our own and user demands grew, we

wrote more tools and found out that they could best

be written in Ruby. In the meantime TEXexec has

been rewritten in Ruby, and relevant parts of TEXutil

have been merged into it.

Launching scripts

Starting a script on an MS Windows box can be done

using a so-called stub, a small program or command

file with the same name that locates a similarly named

script. On Unix some shell magic can be used to do

the same or one can fall back on a magic preamble (a

Bash/Perl mixture) fooling the operating system into

locating and spawning the script using the right in-

terpreter. By now, MS Windows has a convenient file

association mechanism (but one has to activate it first)

while Unix needs a (nowadays less path sensitive) she-

bang line and a suffixless copy of the script.

Nevertheless we decided to come up with a less

sensitive approach which also gave us the opportunity

to accomplish a few more things: TEXMFstart. This

script locates and executes a script (or program) in the

TEX tree and executes it.

texmfstart texexec somefile.tex

1We will use the terms ‘scripts’ and ‘programs’ interchangeably.

When you incorporate TEX in workflows, call-

ing TEXexec this way is rather future safe. Actually,

because of this method, we could make the transition

from TEXexec being a Perl script to being a Ruby pro-

gram without too much trouble. A side effect of this

way of lunching scripts is that nested calls are faster

because some information is passed on to child runs.

The script is also able to sort out a couple of

things, for instance where files reside. Nowadays one

will seldom use TEX alone and not all text processing

(or related) programs have a clear concept of resource

management and/or can work well with a TDS con-

forming tree.

texmfstart bin:xsltproc --output=new.xml \

kpse:how.xsl old.xml

This2 will locate the file how.xsl in the TEX tree

and expand the filename to the full path. That way

one can keep XSLT scripts organized as well. There

are a few more such prefixes.

Other features are locating and showing documen-

tation and launching editors with files located in the

tree. The following call will open the texmf.cnf file

that is currently used.

texmfstart --edit kpse:texmf.cnf

The script can initialize a tree so one can effec-

tively run multiple trees in parallel. It does so by

loading (when present) a file with variable specifica-

tions (more later about that).

texmfstart --tree=e:/tex-2003 \

texexec somefile.tex

We often use a different tree for each project be-

cause commercial fonts may be project related and this

way we can move a tree around without running into

copyright problems (read: installing all fonts on each

box).

texmfstart --tree=e:/tex-2003 \

texexec somefile.tex

2The backslash at the end of line denotes a continued line.

38 TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006



What tools do ConTEXt users have?

Another handy feature is conditional processing.

In the following case the test file will only be processed

when it has changed.

texmfstart --ifchanged=test.r --direct R \

"-q --save --restore < test.r"

In a similar fashion one can make running depen-

dent on time stamp comparison. More details can be

found in the manual.

Managing ConTEXt runs

The TEXexec script manages a user’s TEX run. There

are many factors that influence such a run:

• Since ConTEXt uses the same format for all back-

ends, it depends on loading the relevant backend

driver modules. Although one has complete con-

trol, life can be made easier when this is done

automatically.

• A first pass may generate data needed in a succes-

sive pass. There may be references, tables of con-

tents, indices, etc. so we need a way to manage

multiple runs. We have to make sure that neither

fewer nor more runs than needed take place.

• A run may demand further action between runs,

like graphic manipulations or delayed MetaPost

execution.

• We may want to run different TEX engines, ap-

ply different backends, use different user inter-

faces. Also, the name and way of calling TEX

may change over time, something that we don’t

want users to be bothered with.

• We may want to process a TEX or XML file un-

der different style regimes or enable style-specific

modes.

• The document may need an additional page im-

position pass, managed in such a way that no aux-

iliary data gets messed up.

• We may want to close and open the result in a

viewer after the run is done.

This and a bit more is handled by TEXexec. When

dealing with ConTEXt files the script will do a few

things users are normally not aware of, like making

sure that the random seed is frozen for a run, bugs

in programs are caught (as long as needed) and that

omissions in the texmf.cnf settings are compensated

for. In addition TEXexec provides a few features for

combining and manipulating PDF files.

The latest versions of TEXexec also support so-

called ctx files. These are files in XML format that

describe a process, additional pre- and postprocessing

needed, styles and modules to be used, etc.3 This

means that one can easily configure projects with-

out the need to tweak source files or editor setups

or give explicit commands. Think of situations where

an XML file (or bunch of files) has to be converted

to another variant in order to be processed. TEXexec

will only do that conversion when needed. In Fig-

ure 1 we show the file that is used in the MathAdore

project.4 The source file contains OpenMath and what

we call ‘shortcut math’ and after normalizing this to

OpenMath (first conversion) we convert the math to

content MathML (second conversion).

The source file contains a reference to this ctx file

and when TEXexec is applied to the source file, it will

take the appropriate actions. Such a reference looks

like:

<?ctx-dir job ctxfile ../mathadore.ctx ?>

Here “ctx-dir” denotes a ConTEXt directive.

When dealing with a TEX file, TEXexec will scan

the first line for comments that serve a similar pur-

pose.

Handling the utility file

For a long time TEXutil was called from within

TEXexec to handle the utility file that collects the in-

dex entries, tables of contents, references, etc. Nowa-

days this functionality is integrated in TEXexec which

is more efficient. We also took the opportunity to

enhance the sorting features so that one can mix lan-

guage specific sorting rules.

The original TEXutil is also responsible for some

other manipulations, like analyzing graphics. That

kind of functionality has been moved to other scripts

and more modern ways of dealing with such issues.

Because we were in a transition stage to Ruby script-

ing, it was a good moment to say goodbye to TEXutil

and concentrate on building a more extensive set of

tools.

3Although one can use the ctx suffix for ConTEXt related TEX files,
this is normally a bad idea.
4This project will provide highly interactive math to schools and is
conducted in cooperation with the University of Eindhoven.

TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006 39



Hans Hagen

<?xml version=’1.0’ standalone=’yes’?>

<ctx:job>

<ctx:message>mathadore</ctx:message>

<ctx:preprocess suffix=’prep’>

<ctx:processors>

<ctx:processor name=’openmath’ suffix=’om’>texmfstart

--direct xsltproc

--output <ctx:value name=’new’/>

kpse:x-sm2om.xsl <ctx:value name=’old’/>

</ctx:processor>

<ctx:processor name=’mathadore’ suffix=’prep’>texmfstart

--direct xsltproc

--output <ctx:value name=’new’/>

kpse:x-openmath.xsl

<ctx:value name=’old’/>.om

</ctx:processor>

</ctx:processors>

<ctx:files>

<ctx:file processor=’openmath,mathadore’>v*.xml</ctx:file>

<ctx:file processor=’openmath,mathadore’>h*.xml</ctx:file>

<ctx:file processor=’openmath,mathadore’>openmath*.xml</ctx:file>

</ctx:files>

</ctx:preprocess>

<ctx:process>

<ctx:resources>

<ctx:environment>o-m4all.tex</ctx:environment>

</ctx:resources>

</ctx:process>

<ctx:postprocess>

</ctx:postprocess>

</ctx:job>

Figure 1: A ctx file used in the MathAdore project

The tools collection

Instead of expanding TEXutil, we decided to spread

functionality over multiple scripts. These can be rec-

ognized by their name: they all end with tools. If

you call them using TEXMFstart there is not much

opportunity for conflicts with existing tools.

Each tool comes with a manual, so we will not

discuss details here.

ctxtools

This tool provides ConTEXt related features, like gen-

erating generic pattern files (so that we are indepen-

dent), providing editor syntax checking files derived

from the generic ConTEXt interface definition (handy

for lexers), generating documentation (from the Con-

TEXt source code), updating ConTEXt (by download-

ing an archive and regenerating formats), etc.

rlxtools

The ‘r’ represents resources, normally graphics, the ‘l’

stands for libraries, and the ‘x’ (indeed) for XML. This

tool can analyze graphic files and manipulate resources

using other programs. For instance it can be used to

downsample files at runtime, to handle special color

conversion, and to convert graphics to formats accept-

able for TEX. By using the runtime converters one

can build workflows without the need to rely on ad-

ditional scripting. There is a dedicated manual on this

topic so we will not bore you here with yet another

blob of XML.

xmltools

You can use this tool to do a simple analysis on an

XML file. Another option is to generate a directory

listing in XML format. In both cases, the result can

be fed into ConTEXt and used in the process. A more

obscure option is to generate images from MathML

snippets. This script will without doubt include more

features in the future.

40 TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006



What tools do ConTEXt users have?

pdftools

This is work in progress. One can for instance roughly

analyze PDF files. It also provides a way to manipulate

colors in PDF images but that feature is now supported

in ConTEXt directly.

textools

Users will seldom need this tool. It can fix things in

a TDS compliant tree (for instance when the standard

has changed), it deals with a few cross platform issues,

it can help you to create so-called TPM archives (and is

meant for ConTEXt module writers) and it can merge

updates into your tree.

mpstools

In the future this tool will host the now standalone

MetaPost to PDF wrapper (mptopdf) as well as the

cropper (both are still Perl scripts).

tmftools

This script encapsulates some of the functionality of

the Ruby based kpsewhich functionality that we use.

In the future we may completely move away from

the binary because the script is just as fast or faster

when it serializes the database. The script can act as a

kpsewhich server. The script can also analyze the tree

for duplicates.

runtools

Because TEX is multiplatform and because we (need to)

run services on multiple platforms, we use this script

to do things normally done at the console (shell). It

just loads the given Ruby scripts with the appropriate

library. We also use this tool to generate the ConTEXt

distribution.

exatools

This is a more obscure tool. It provides some features

related to form based style control and web driven

TEX processing that we use in projects.

pstopdf

This last one is not a collection like the previous tools.

It started long ago as a wrapper for Ghostscript. It

still provides this function and over the years we’ve

added quite a bit of filtering to it (we just filter the

things that Ghostscript fails on or gets confused from).

In the meantime we cheat on the name since it also

manages the conversion of bitmap images, especially

cached downsampling, using ImageMagick as well as

conversion from SVG to PDF using Inkscape.

texfont

This script has been around for a while now and is

used to install (commercial) fonts. It generates metric

files, map files, and a demo file so that one can see

if things went right. ConTEXt does not depend on

(ever changing) map file methods and loads map files

on demand. You can generate map files for dvipdfmx

with the previously mentioned ctxtools.

More

There are a few more scripts, like concheck (simple

syntax checking) and texsync (synchronizing mini-

mal distributions) but we will not discuss them here.

Integration

When setting up multiple TEX trees, the trick is in iso-

lating them as much as possible. Because one can never

be sure how distributions set things up, we revert to

setting environment variables, which will then take

precedence over the settings in a regular texmf.cnf

file. In the TEXMFstart manual you can find more de-

tails on how we take care of this; here we only show

an example of such an file in Figure 2.

When the tree flag is given, TEXMFstart will read

this file and set the environment variables accordingly

before it launches the program it is supposed to start.

In fact, a tree specification can specify a file, but by

default the setyptex one is taken.

texmfstart \

--tree=f:/minimal/tex/setuptex.tmf \

texexec test.tex

Since TEXMFstart can load several such files, we

can also use this method to preset more environment

variables, for instance pointers to resources like graph-

ics. This is what the –env or –environment option

is for, as in:

texmfstart --tree=f:/minimal/tex \

--env=xyz.tmf texexec test.tex

The advantage of this variable setting game is that

instead of cooking up scripts with statements like:

thread.new do

ENV["something"] = "nothing"

a = "texmfstart --tree=f:/minimal/tex --"

system(a+"env=xyz.tmf texexec test.tex")

end

we can put the variable definition in a file and say:

TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006 41



Hans Hagen

# file : setuptex.tmf (the less generic version have suffixes like cmd, sh, csh etc)

# author : Hans Hagen - PRAGMA ADE - Hasselt NL - www.pragma-ade.com

# usage : texmfstart --tree=f:/minimal/tex ...

#

# this assumes that calling script sets TEXPATH without a trailing

# slash; %VARNAME% expands to the environment variable, $VARNAME

# is left untouched; we also assume that TEXOS is set.

TEXMFMAIN = %TEXPATH%/texmf

TEXMFLOCAL = %TEXPATH%/texmf-local

TEXMFFONTS = %TEXPATH%/texmf-fonts

TEXMFPROJECT = %TEXPATH%/texmf-project

VARTEXMF = %TMP%/texmf-var

HOMETEXMF =

TEXMFOS = %TEXPATH%/%TEXOS%

TEXMFCNF = %TEXPATH%/texmf{-local,}/web2c

TEXMF = {$TEXMFOS,$TEXMFPROJECT,$TEXMFFONTS,$TEXMFLOCAL,!!$TEXMFMAIN}

TEXMFDBS = $TEXMF

TEXFORMATS = %TEXMFOS%/web2c/{$engine,}

MPMEMS = %TEXFORMATS%

TEXPOOL = %TEXFORMATS%

MPPOOL = %TEXPOOL%

PATH > %TEXMFOS%/bin

PATH > %TEXMFLOCAL%/scripts/perl/context

PATH > %TEXMFLOCAL%/scripts/ruby/context

TEXINPUTS =

MPINPUTS =

MFINPUTS =

Figure 2: Example texmf.cnf file

thread.new do

a = "texmfstart --tree=f:/minimal/tex --"

system(a+"env=xyz.tmf texexec test.tex")

end

This has not only a big advantage in terms of

isolation (and maintenance) but is also more robust

since one can never be sure if another thread is not

setting the same variable too, thereby creating much

confusion for all the other threads that use the same

variable. Since TEXMFstart runs as a separate process,

it can set its variables independently.

Whenever (on the ConTEXt mailing list) you see

mentioning of something named setuptex, you can

be sure that it relates to initializing a TEX tree (prob-

ably a minimal ConTEXt tree) in an isolated way.

Conclusion

In this short article we have tried to give you an im-

pression of what is needed in order to make TEX us-

able in a diversity of today’s environments. It was not

our intention to be complete, because for that purpose

we have manuals. One thing should be made clear: al-

though TEX itself is pretty stable, the same cannot be

said for the environment that it is used in. Just telling

TEX to process a file is not enough nowadays. This

also means that ConTEXt and its tools, in order to

keep up, need to be adapted to current needs. On the

other hand, by organizing the functionality in tools,

and by using a modern and reliable scripting language

like Ruby, users don’t pay a high price for this. Most

nasty details can be hidden from them.

42 TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006



KöMaL CD — The execution

ILDIKÓ MIKLÓS
miklosildiko (at) komal dot hu

What is KöMaL?
The first edition of Mathematical and Physical Journal
for Secondary Schools (Középiskolai Matematikai és
Fizikai Lapok — KöMaL [1]) appeared in the 19th cen-
tury, on the 1st of January, 1894, under the name High
School Mathematics Journal (Középiskolai Mathemati-
kai Lapok). Dániel Arany, a teacher of mathematics,
founded the Journal. Since 1894, generations of math-
ematicians and scientists have developed their problem-
solving skills through KöMaL. The best solutions with
the names of the 14–18 year-old authors are printed
in the periodical. KöMaL regularly reports on na-
tional and international competitions, prints articles
on interesting results in mathematics and physics, and
includes book reviews. At the present time, KöMaL
is the oldest existing journal in Hungary.

From the beginning there have been competitions
based on collecting points in the Journal, first only
in mathematics and only in Hungarian and later in
physics (from 1925) and in information technology
(from 1981), and in several other languages: mainly
in English (from 1965), but also in German, French,
Russian, and Esperanto. For more than 30 years all
the new problems have appeared in English as well as
in Hungarian in the Journal. This means thousands of
mathematics and physics problems and exercises have
been published in English.

The periodical KöMaL is published in Hungarian
nine times a year, and in English twice a year. Each
issue is 64 pages.

The first CD
From the beginning until 1991 KöMaL was typed by
hand. In 1995, we scanned all the pages of the issues
and made a CD with the scanned pages. It is also view-
able on the Internet, on the home pages of Educational
Ministry, www.sulinet.hu/komal. We made a foun-
dation of a searchable database for articles, problems,
competitions etc. Of course, the scanned pages had
limitations, such as problems with text quality, users
being unable to search for words, copy problems, etc.

In 2004 we decided to type all 39,000 pages, and
convert them to MathML. Then we made a CD which
contains the pages of the Journal from 1994 to 2003.
During the process we have faced several problems:
from 1994 to 2001 the Journal was typed in plain TEX,
with different macros. From 2002 we have been using
LATEX, with more and more packages. Finally Géza
Makay, a teacher at Szeged University, made a con-
verter from LATEX to MathML, so now the CD has a
web interface. He has also created a more user friendly
database, which contains the title of the articles, the
label and the mathematical type of the problems, the
name of the authors and who made the best solutions
of the problems, the final results of KöMaL competi-
tions with photos of the overall winners, etc.

The project
To type the hand-made pages of the past years we
needed manpower for the project. Finally in 2005 we
were awarded a grant from the European Union and
the nation of Hungary. So we could start the job with
24 low educated, disabled people. Some of these peo-
ple have never touched a computer before they started
this job. We had only two weeks to teach them how
to use a computer and one more week to use LATEX.
So we had to create a curriculum which was flexible,
very easy to learn and follow, and user friendly. After
this short course the workers were given a computer,
and they were expected to work in their own home.
We found several free sources for learning LATEX on
the Internet, these were Oetiker–Partl–Hyna–Schlegl’s
‘LATEX 2ǫ in 78 minutes’ and Gábor Csárdi’s ‘LATEX 2ǫ
in 69 minutes’.

After the course they needed constant tutorial
help, which was done by establishing an Internet con-
nection. They also helped themselves using the Inter-
net. The first questions were very simple but after a
few months they could handle more and more com-
plicated equations and tables in LATEX.

TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006 43



Ildikó Miklós

Finalizing of the database
A couple points about the converter: e.g., we use
equation numbering only with the \tag command
(not with \label). We do not use \textwidth and
\textheight, because of the web interface.

The workers load the database with LATEX files.
The database translates the LATEX source with a fixed
preamble and they can view the DVI results. Another
person checks and corrects the LATEX source. Over one
year they were able to type and correct more than 15
years of the Journal.

The CD: “Aim at the Nobel prize”
This CD provides a unique opportunity to improve
the knowledge of mathematics, physics and informa-
tion technology of talented students, parents as well as
teachers. The content is searchable according to mul-
tiple criteria, and one can even create his/her own
worksheet using the selected problems or articles.

There were several famous Hungarian mathemati-
cians who read the Journal and solved the problems,
e.g., Paul Erdős and László Lovász, both of whom
won the Wolf Prize (in 1983 and 1999, respectively).
The CD contains photos of them at a young age.

We hope that having read the problem in English,
one will be able to reconstruct its solution from the
Hungarian text. Translating the whole KöMaL in En-
glish would probably be too big a task for us now, but
we are considering it for the future.

For the next few years, we are planning further
developments in the KöMaL archives, based on its cur-
rent database: see www.komal.hu/cd. Our goal is to
fill the database with the more than one hundred years
of material, and also to be available in English.

References
[1] KöMaL: Középiskolai Matematikai és Fizikai

Lapok, http://komal.hu.

44 TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006



A pdfLATEX-based automated journal production system

THIERRY BOUCHE
Cellule MathDoc
UMS 5638 (Université Joseph Fourier & CNRS)
100, rue des Maths
Domaine Universitaire
38402 St-Martin-d’Hères, France
thierry dot bouche (at) ujf dash grenoble dot fr

http://www.cedram.org/

Abstract
We present the recent development of a production system for mathematical serials with both an electronic and paper

version. The challenges were many: (i) no house style layout should be imposed, as the journals come from different

publishing houses and may have very different typographical options; (ii) produce screen-optimised and printer-friendly

output at once; (iii) avoid any duplication of information so that all aspects of the publications are always in sync

(Web site metadata, table of contents. . . ), thus (iv) generate on the fly article’s page numbers, XML metadata at the

published volume level from one master LATEX source file tree. Using available technology (pdflatex, pdfpages.sty and

\write18), the proposed solution to these problems appeared amazingly simple and easy to use. However, we’ll show

that there is quite some room left for improvement.

Introduction
At the end of fall 2003, discussions began in the French

mathematical community about a consolidated effort

for high-quality online publishing of our academically

(meaning: independent and learned society) published

research journals. One driving force of this project

was the achievements of the NUMDAM digitisation

program, which has more or less settled standards for

delivery and navigation of a significant part of the

mathematical literature (http://www.numdam.org).

Among the prominent features of NUMDAM, we

have the rich set of metadata for each article, includ-

ing tagged bibliographies, and the powerful search en-

gine associated with it, written by Claude Goutorbe of

Cellule MathDoc. Thanks to various matching tools

provided by the AMS or developed internally, what-

ever sensible link can be provided is added to the Web

interface, which is something our users very much

appreciate.

It appeared after some investigations that what

was almost straightforward to achieve in a retrodigiti-

sation process could become a nightmare to produce

in a natively digital environment:

1. Although all journals under consideration were

produced with some flavour of TEX, each had a

specific format with a primarily paper-only ap-

proach to the publication process.

2. Although all of them had a Web site, none of

them had reliable processes to control whether

the metadata exposed on this site was consistent

with the reality of the paper issues.

3. Although bibliographies are such a routine ob-

ject in the learned publication business, we could

count over 20 ways of “structuring” them in the

TEX files.

It turned out that, although we’re now in the

21st century, the rather quaint copy-paste operation

(a typical late 20th century hobby) was the main pro-

cedure on which all these journals relied for the most

typical aspect of serials publishing: exposing the same

data in many formats and contexts. Let’s think for a

moment about the starting page number of an article,

which is a rather critical datum if you hope to find it

somewhere. It will be printed within the article itself

(where it is determined only at the last step of pro-

duction, as it depends on the lengths of all the same

volume’s articles before it), probably an inner table

of contents, possibly a back cover table of contents,

presumably a Web table of contents, not to mention

TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006 45



Thierry Bouche

an eventual annual index, or third party uses of the

data, as current contents or indexing databases ser-

vices, that could nowadays be fed through OAI-PMH

or RSS feeds. . .

For instance, let me give the following (anony-

mous) example: a respected journal once published

a paper which, for some obscure (possibly scientific!)

reason, was ultimately shortened by a paragraph or

two in the proof reviewing stage. It was the first pa-

per of the first issue of its year of publication in that

journal, and was paginated 1–27 (hard coded in the

TEX source) although its final form had 26 pages. The

next article was thus paginated starting at p. 29 but

the printer saved the 2 white pages. Thus, all the

2000 printed page numbers in this volume are wrong

except the first 26.

Last minute changes and copy-paste are the two

devils in journal production. A more obvious exam-

ple: an accepted paper happens to have a serious sci-

entific failure which is found after all the publishing

process has been done. The author informs the jour-

nal in a hurry that they have to cancel it, of course

they do. Now, all pages numbers are wrong for the

following articles, go figure where they have already

been disseminated!

In a retrodigitisation process, these issues are just

annoying, but all you aim at is to create accurate and

structured metadata describing an existing paper col-

lection. Moreover, as it is a batch process on a large

amount of similar data, high quality can be achieved

at a reasonable cost. Production cost and complexity

is an issue for our small journals, which heavily rely

on voluntary effort by researchers in their spare time

(as well as Cahiers GUTenberg which will enter the

scene later on).

Good solutions to complex problems

are simple
So. How do you produce a journal in such a way that

you have detailed, accurate metadata in a versatile for-

mat, a powerful Web site with screen optimised ver-

sions of the articles, and yet the same paper version?

After some time spent in reviewing the existing

more or less full answers to this question, mostly based

on scripts, heuristics, external programs or auxiliary

files, I happened to find one so simple that I think it

deserves to be detailed here. In fact, it is so simple

that I feel a little embarrassed to show the main steps

in the small \includearticle macro on p. 48 while

I spend the rest of the text discussing the troubles.

At the time of this writing, 11 issues from 3 journals

(including the latest Cahiers GUTenberg) were made

using this tool.

This solution has been made possible rather re-

cently thanks to the collaborative effort of many tal-

ented developers, and although I could achieve this

because of the power of TEX macro language, I must

confess that I never use TEX itself, but engines that un-

derstand an extension of TEX’s primitives, yet have a

full macro interpreter onboard, namely: pdfTEX with

\write18 enabled and (soon) Tralics.

Here is a short description of the system.

Principles

1. Any metadata is input at most once in the system,

preferably in the relevant file.

2. Anything that is not deterministically determined

by a given file, should stay away from that file.

3. Anything that can be computed, should be com-

puted!

4. Do not reinvent the wheel, do not invent exotic

formats that no one will master, stay pragmatic

but avoid bottle-necks that would impact versatil-

ity of future use or quality of the output.

Implications

1. A journal is a set of volumes, made of issues, made

of articles, plus various other material, mostly

constant. The journal description belongs to the

journal file, the volume description to the volume

file, etc. Notice that a page number is essentially

a by-product of a completed issue; except for the

first page of an issue, it should be set nowhere.

2. As it is the de facto standard of math writing,

AMSLATEX was chosen as the input format, with

the minmal set of extensions as required by the

subsequent processing. BibTEX was chosen for

the bibliographies.

User interface

Of the relevant parts of a journal, I didn’t implement

the volume level (this would save copying one number)

but tried to define an issue.

Claim 1 An issue is entirely determined by

46 TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006



A pdfLATEX-based automated journal production system

• its bibliographic data (journal, year, month, volume,

issue),

• its first page number,

• the ordered list of the articles,

• and optional additional material such as advertis-

ing, disclaimers, obituaries. . .

I write this (and only this) in the issue file:
\documentclass[francais,CG,Volume,

Couverture]{cedram}

\IssueInfo{}{46-47}{avril}{2006}

\SetFirstPage{1}

\SpecialNo{Les fontes (Brest 2003)}

\begin{document}

\makefront

\includearticle{edito}

\includearticle{atanasiu}

[...]

\includearticle{devroye}

\includepub{pubyannis}

\makeback

\end{document}

The \makefront command makes the front mat-

ter of the paper volume (including the table of con-

tents), \includearticle includes the corresponding

article, \makeback makes the back matter, etc.

Each article obeys an AMSLATEX structure:
\documentclass[CG,francais]{cedram}

\usepackage{x,y}

\title[Formatons les formats de fonte]

{Formatons\\ les formats de fonte !}

\author{\firstname{Luc} \lastname{Devroye}}

\address{McGill University,\\

etc.}

\thanks{L’auteur...}

Assuming that all the articles and other material

are in final form (which means that they are in a direc-

tory of their own, and that an error-free source master

file compiled with pdflatex has been compiled success-

fully with all cross-references resolved), when we com-

pile (twice) the issue file, it will produce one big PDF

comprising all inner pages of the paper volume; this

is sent to the printer. It will also produce the pages of

the cover, and an XML file with all the metadata for

this volume. In fact, as a side effect, you’ll also find

in each article subdirectory a hyperlinked PDF with

a first page added, so that everything is ready at once

for shipping both the paper and electronic editions of

that issue.

Architecture
LATEX is a “document preparation system”; it oper-

ates at the document level. I’m not convinced by sys-

tems that address the abovementioned issues by con-

sidering articles as subdocuments of a master docu-

ment: they require a high level of normalisation of

the sources to avoid conflicts (different macros with

same names, cross references, etc.), many redefinitions

of standard user commands which is very risky since

users like shortcuts, and would yield broken links

when you provide an article on its own. We can’t ex-

pect that mathematicians will obey such strict rules,

nor TEXnicians! Thus the relevant document unit in

a journal is an article, preferably isolated in a spe-

cific directory in order to avoid conflicts with input

of figure names, etc. It should be compiled individu-

ally and produce a nicely hyperlinked and searchable

vector PDF. The metadata relevant to the article are

standard: authors’ data, title, abstract, keywords, sub-

ject classification, dates, bibliography. The volume,

issue, page numbers are not part of the article itself,

as it can be moved at any time without affecting its

scientific content, thus without edits. Of course, an

article is prepared for a journal, so that info should

be present in the article file, and determine the layout

and many typographical options.

Starting from the obvious observation that no-

body but TEX knows how long an article is, when

considering its source, I eventually understood that the

only reliable solution for setting error-free page num-

bers was to ask TEX to do so. Of course, you could

compile a volume with a perl script that would com-

pute things, compile articles, examine the produced

PDF to deduce page numbers, modify the articles, re-

compile, etc. These are heuristics, and will be broken

at the first discrepancy between the paper volume and

the model volume assumed by the script. In some

sense, as long as articles have a “bibliographical” refer-

ence, we’re still in the retrodigitisation paradigm when

producing an electronic edition: it is the paper model

that endows the article with its metadata, so it is by

assembling the paper volume that we can deduce the

required data to get the final articles. But, more gener-

ally, the same applies to purely electronic serial publi-

cations: even the table of contents of an incrementally

growing online volume is something that is generated

as the last step when the latest article is added. Only

flat repositories like arXiv can bypass this question.

TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006 47



Thierry Bouche

Implementation
Articles

As far as articles are concerned, the cedram class is

simply amsart, with a few features added. Namely:

• some extra metadata fields (provision for bilin-

guism, journal dates, . . . );

• the automatic inclusion of a configuration file at

\begin{document};

• a ‘lastpage’ trick;

• the facility to store the literal TEX code of a macro

argument or an environment’s contents and write

it to auxiliary files in various formats (by over-

loading standard macros);

• hooks added in the presentation code so that all

known layout options can be easily implemented;

• some ad hoc definitions for various theorem styles;

• a journal option to load the journal file defining all

constant metadata and make-up for that journal;

• some more class options, mostly for compatibility

(by default, the class requires hyperref, pdflatex,

T1 encoding, Latin Modern fonts, . . . ).

There is a light version called ‘special’ for things

that should look like an article but do not have its full

features (editorial statements, e.g.).

When compiling an article at its final stage, it

reads a possible configuration file that might override

options and provide the needed metadata (issue info,

first page), writes out the screen-optimised PDF (with

a first page added, kind of an offprint cover, meant

to identify more clearly the article origin when it will

travel the net on its own), a .cdrsom file which con-

tains a TEX command providing all the data pertain-

ing to this article that could be used to generate the

corresponding TOC line in whatever format, and a

.cdrxml file that contains an XML-like snippet with

all the metadata for this article.

Volumes

A volume is made using the same cedram class, with

an option ‘Volume’, so that all the typographical op-

tions are the ones of the journal. There are some spe-

cific options to this mode of operation, such as ‘Cou-

verture’ which will generate the cover, ‘CouvTires’ the

covers for author’s (paper) offprints . . .

Let me explain what it does line by line, which

will show how it works, and why it is so simple and

reliable.

\documentclass[francais,CG,Volume,Couverture]{cedram}

This sets the volume mode for Cahiers GUTenberg

(CG), with French hyphenation patterns for the edi-

torial material surrounding articles, and will generate

a cover.

\IssueInfo{}{46-47}{avril}{2006}

\SetFirstPage{1}

\SpecialNo{Les fontes (Brest 2003)}

These set variables: issue number (CG has no vol-

umes), month and year of publication, starting page

number of the first article, title of the issue when rel-

evant. These variables are available during the whole

LATEX run, as well as written to auxiliary files.

\begin{document}

\makefront

In article mode, many things happen at the point

of \begin{document} — but not in volume mode, as

far as I can tell! The \makefront call could have

been automated here. In any case, this command

sets \pagestyle{empty}, and inputs CG-front.tex,

which in turn inputs the definition files for the front

matter (title page, administrative data, summary). It

also inputs a void file that can be populated locally for

special occasion issues. The summary is a container

constant source file making use of the issue variables

and inputting a summary data file with some fixed

name which is generated later on (thus the necessity of

two runs to complete an issue). In fact, the summary

is a ‘special’ item, thus a complete LATEX file which

is compiled during the run, in a subprocess similar

to the ‘article’ case below. The \makefront macro

ejects all remaining material to be printed, goes to the

next odd page, and sets the page counter of the master

document to the value given by \SetFirstPage.

\includearticle{devroye}

This is the main operation, but maybe the sim-

plest one. It is so simple that I include its entire defi-

nition here:

\def\includearticle#1{%

\IncludeArticle[2]{#1/}{#1}%

\ifx\@empty\articlesXML

\gdef\articlesXML{#1/#1.cdrxml}%

\else

\g@addto@macro\articlesXML{ #1/#1.cdrxml}%

\fi

\ifx\@empty\articlesSOM

\gdef\articlesSOM{#1/#1.cdrsom}%

\else

\g@addto@macro\articlesSOM{ #1/#1.cdrsom}%

\fi

48 TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006



A pdfLATEX-based automated journal production system

As we can see, \includearticle is just a short-

hand for the more general \IncludeArticle that as-

sumes that the article’s master TEX file resides in a

subdirectory with the same basename. Moreover, it

stores in a macro the list of .cdrxml and .cdrsom

files that will be dealt with at the end of the run.

Going back a few lines in cedram.cls, we have:

\def\IssueInfo#1#2#3#4{%

\tkkv={\ScreenMode\issueinfo{#1}{#2}{#3}{#4}}%

\issueinfo{#1}{#2}{#3}{#4}}

\let\articlesXML\@empty

\tkkp={\setpage}

\def\pdflatex{%

pdflatex --shell -interaction=nonstopmode }

\newcommand\IncludeArticle[3][2]{%

\cleararticlepage

\immediate\write18{echo ’\the\tkkv

\the\tkkp{\thepage}’ > #2#3.cfg}%

\immediate\write18{cd #2 && \pdflatex #3}%

\ifcdr@redoBibtex

\immediate\write18{cd #2 && bibtex #3}%

\immediate\write18{cd #2 && \pdflatex #3}%

\immediate\write18{cd #2 && \pdflatex #3}%

\fi

\immediate\write18{cd #2 && \pdflatex #3}%

\includepdf[pages={#1-},noautoscale]{#2#3.pdf}%

}

The main article operation is thus the following.

1. The last page is ejected and, depending on the

journal style, we go to the next odd page before

dealing with the article.

2. The issue info has been stored globally and is

written to the auxiliary file for the article, to-

gether with the current page number (a traditional

\write could have been used here as well).

3. Then, the article is recompiled; this will use the

given information because it reads the just created

.cfg file at \begin{document}. Optionally bib-

tex and further pdflatex calls are executed.

4. Finally, the newly generated PDF is included (ex-

cept, of course, for its first page) in the master

volume being produced.

The trick here is that we can trust the page counter

of the master document: this is the actual paper vol-

ume to be printed! Thus we can reasonably be sure

that the value of \thepage is the correct value for the

first page of the next article, which will be included

precisely at this page. And this will remain true next

time as we input the final PDF of the article right

away.

\includepub{pubyannis}

\makeback

\end{document}

These last lines show that we can add advertising,

or anything else. The counterpart of \makefront is

\makeback: it includes almost static pages (instruc-

tions to authors, subscription info, etc.). In fact, many

things happen at \end{document}, which is the only

place where everything is known about the issue in

final form: an XML file is written by processing the

master’s and all articles’ XML snippets, summary data

is generated by concatenation of all articles’ summary

lines, and the cover is built by compiling the adequate

template.

Metadata and format questions
As long as printer and screen (Web) PDF files are con-

sidered, the described system has proved to work quite

effectively. But, when you wish to produce versatile

metadata from LATEX source, you can expect troubles.

All typeset material is done by LATEX, thus the above-

mentioned .cdrsom files are perfect, thanks to the

possibility of redefining any necessary macro on the

fly to have different views on the same data (for in-

stance, one journal has three summaries in it: one in

French, with corresponding abstracts, another in En-

glish, both at the beginning of the paper volume, and

another one set differently on the back cover, where

actual titles are used: this is why I store nine fields in

the .cdrsom files).

Apart from pragmatic reasons discussed earlier,

there is a fundamental reason to prefer TEX source as

the master for all metadata: math authors write their

papers with TEX, and validate their scientific content

on the printed result, which is where last minute cor-

rections happen. With a full XML process, outputting

TEX code after automated transformations, the cor-

rection process would be much more difficult to con-

trol, and could yield cases where there is simply no

way to obtain the desired physical representation of

the article, which is at the present time still the only

long-term reference for the scientific content of the

paper.

The first version of the cedram tools assumed a

lot of postprocessing of the ‘pseudo’ XML files output

by LATEX. We had the TEX code somewhat sanitised,

TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006 49



Thierry Bouche

textual material converted to UTF-8 with variable suc-

cess, and math expressions exposed as GIFs on our

Web interface, thanks to latex2html.

My first idea in this respect was to use the kind of

trick that is exploited in hyperref to produce properly

encoded PDF bookmarks in order to write Unicode

files. I was not able to achieve this myself. I also

had a look at TEX4Ht which sounds like a good con-

version tool from TEX to XML or HTML+GIF as an

alternate presentation format. I gave up because of

the huge number of parameters and files necessary to

understand before producing output only somewhat

similar to my expectations.

I am currently experimenting with Tralics [1],

which might be the killer application: instead of ask-

ing pdflatex to write out a pseudo XML snippet for

each article, that will need further processing, it can

easily write structured code tweaked for Tralics, where

all the data is the literal unexpanded TEX string, leav-

ing all the conversion process from TEX data to Tral-

ics, which is very good at doing so.

It even parses BibTEX files, but might also easily

be used to structure thebibliography environments!

For example, here is an excerpt from the file generated

by the compilation of our example article.

\begin{xmlelement}{article}

\xmlbibcite {b8}{8}

\xbox{pagedeb}{149}

\xbox{pagefin}{166}

\begin{xmlelement}{auteur}

\xbox{nomcomplet}{\firstname {Luc}

\lastname {Devroye}}

\xbox{prenom}{Luc}

\xbox{nom}{Devroye}

{\killparcode\begin{xmlelement}{adresse}{McGill

University,\\ etc.\end{xmlelement}}

\end{xmlelement}

{\killparcode\begin{xmlattelement}[fr]{titre}%

Formatons\\ les formats de

fonte !\end{xmlelement}}

\begin{biblio}

\bibitem{b8}J.~\textsc{Andr\’e}

\pointir « Ligatures \& informatique »,

\emph{Cahiers GUTenberg}, \no22,

p.~61--86, 1995. \end{biblio}

\end{xmlelement}

After some minor configuration, thanks to the

fact that Tralics rather deeply understands TEX macros,

Tralics will generate a wonderful, valid, XML, with all

text converted to Unicode, and math to MathML. This

XML can be exploited at once on our Web sites.

The only remaining question is whether the world

is ready for MathML. Recent tests show that the qual-

ity of the display of MathML expressions in current

browsers has drastically increased: it is now similar

to TEX in readability (which relies a lot on fine po-

sitioning of sub- or superscripts), and it considerably

enhances accessibility to the math content on the Net.

The only remaining difficulty is that, as Tralics is a full

TEX interpreter, it cannot generate easily a mixed for-

mat sanitising the text strings to well-formed Unicode

XML but keeps a verbatim copy of the math formulas

in TEX, which might be the most practical for many

of our users in the near future . . .

<?xml version=’1.0’ encoding=’iso-8859-1’?>

<article>

<pagedeb>149</pagedeb>

<pagefin>166</pagefin>

<auteur>

<nomcomplet>Luc Devroye</nomcomplet>

<prenom>Luc</prenom>

<nom>Devroye</nom>

<adresse>McGill University,\\ etc.</adresse>

</auteur>

<titre xml:lang="fr">Formatons les formats

de fonte !</titre>

<biblio type=’flat’>

<bib_entry crossref=’cite:b8’>

<reference>8</reference>

<bibitemdata>J.&#xA0;<hi rend=’sc’>André</hi>

« Ligatures &amp; informatique »,

<hi rend=’it’>Cahiers GUTenberg</hi>,

no&#xA0;22, p.~61&#x2013;86,

1995.</bibitemdata>

</bib_entry>

</biblio>

</article>

References
[1] José Grimm, “Tralics, a LATEX to XML

Translator”, TUGboat 24:3 (2003), Proceedings

of EuroTEX 2003, pp. 377–388.

50 TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006



Server side PDF generation based on LATEX templates

ISTVÁN BENCZE, BALÁZS FARK, LÁSZLÓ HATALA, PÉTER JESZENSZKY
University of Debrecen
Faculty of Informatics
Egyetem t.
H-4032, Debrecen, Hungary
jeszy (at) inf dot unideb dot hu

Abstract
We present a web-based addressbook application that can generate customized PDF documents using LATEX template

documents. The application is hosted on a server and users can access its functions using a web browser. A working

LATEX system must be installed only on the server side. Each registered user can manage his or her own addressbook.

They can upload LATEX templates and can generate multiple PDF documents from a template. Templates are customized

to each selected recipient, substituting the appropriate addressbook data element into them. An example application

might be an invitation card or a letter that must be sent to different recipients. Moreover, users can create simple

documents (e.g. letters) using builtin templates and a simple web-based document editor.

Introduction
The Portable Document Format (PDF) has become
one of the most widely used electronic document for-
mats for publishing documents on the Web. It has
many advantages that made it very popular. Some of
them are the following:

• It is an open standard.
• It is device and platform independent.
• It is suitable for both viewing and printing.
• It is a file format, not a programming language like

PostScript. A PostScript file contains code that
must be interpreted, whereas a PDF file is rather
a description, that results in faster and computa-
tionally less expensive processing.
• PDF files are searchable.

The goal of this paper is to give an overview of
the tools and techniques that can be used to generate
PDF documents in Java applications.

The first section presents a brief overview of the
family of PDF tools that are available in Java.

In the following section we present our solution
that is based on LATEX template documents and on
access to an external LATEX system.

The last section is devoted to our sample LATEX
template-driven web application that generates PDF

documents.

Overview of creating PDF documents in
Java applications using conventional tools
This section gives an overview of the widely used so-
lutions for the dynamic creation of PDF documents in
Java applications. These tools can be classified as:

• XSL-FO formatters,
• PDF class libraries,
• reporting tools.

In the following we restrict our attention to open
source solutions.

XSL-FO formatters
XSL-FO is an XML vocabulary for document format-
ting, a TEX-like typesetting language that uses XML

syntax. It is a part of XSL, a family of W3C stan-
dards for the transformation and formatting of XML

documents.
Because of the verbosity of the syntax, XML doc-

uments using the XSL-FO vocabulary are not edited
manually. In order to use XSL-FO one needs an XML

document and an appropriate XSLT stylesheet to trans-
form it into another XML document that uses the
XSL-FO markup vocabulary. (The transformation is
executed by an XSLT processor, which is commonly
available in Java environments.)

Then the XSL-FO document is converted into a
readable or printable format by a so-called formatter.
The most widely used output format is PDF.

TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006 51



István Bencze, Balázs Fark, László Hatala, Péter Jeszenszky

Although the current version of the XSL specifi-
cation became a W3C recommendation in 2001, none
of the existing XSL-FO software products (including
commercial products) implements the full standard.

Apache FOP [3] is an open source formatter, im-
plemented in Java, that is a partial implementation of
the XSL specification. FOP provides a Java API to ac-
cess all of its functionality, thus it can be embedded
into Java applications without difficulty.

XSL-FO might be a good solution if your data is
in XML. There are ready-to-use XSLT stylesheets for
standard XML document formats, such as DocBook
XML, to transform them into XSL-FO. Writing your
own stylesheet is not an easy job. Although there are
graphical authoring tools, a sound knowledge of XSLT

and XSL-FO is required.

PDF class libraries
Several Java class libraries are available to create and
work with PDF documents. Unfortunately most of
them are commercial products.

For example, fourteen PDF class libraries are listed
in the appropriate category of the Google Directory
[1] at the present time, and only three of them are
available as open source software. Another reference
[2] provides a list of open source PDF libraries in Java
and contains six entries at present.

PDF class libraries can be classified as low-level or
high-level.

Low-level PDF libraries provide low-level access to
the contents of PDF documents and allow the creation
of PDF documents in Java applications. To work with
these APIs the programmer must be quite familiar with
the PDF document format. It might be very difficult
and cumbersome to use them.

In contrast, high-level PDF libraries use object
models to model the logical structure of PDF docu-
ments. These logical models consist of Java objects
that represent building blocks such as pages, chapters
and paragraphs. Manipulating the object model pro-
grammers can access and modify the content of the
underlying PDF documents.

PJX

A typical example of a low-level PDF library is PJX

[4]. In order to use it one must know all about the
PDF document format.

PDFBox

PDFBox [5] is a high-level class library. According to
the project’s web site it is used in several open source
and commercial software products.

It allows the programmer to access and manipulate
individual pages within a document. The content of
pages can be accessed as a stream of objects, and it is
easy to add text and images.

Unfortunately the API does not provide access to
higher level building blocks such as chapters or para-
graphs. For example, in order to add some text one
must position to the right location within a page.

Although the API documentation is quite good
and there are also some example programs and a de-
veloper’s guide, unfortunately the latter is not very
extensive.

iText

iText [6] is another high level class library that is more
user friendly than PDFBox. It uses a higher level ab-
straction of documents. The building blocks of doc-
uments are chapters, sections, paragraphs, list, tables
etc. This model looks like a document object model of
an XML document. It is well documented; a very good
tutorial is also available. According to the project web
site, a book on iText will be published by Manning
Publications this year.

Reporting tools
These are software tools that can generate business re-
ports based on templates and data in databases and
other data sources. Visual report designers may assist
in the preparation of the reports. Templates are typi-
cally stored as XML documents that can also be edited
by hand.

For a comprehensive list of open source reporting
tools see [7]. Reporting tools offer varying features
and capabilities; for example, they support different
data sources and output formats. Some of them can
produce PDF output and some can not.

JasperReports

JasperReports [8] is an excellent and powerful open
source reporting tool that is written entirely in Java. It
has a Java API that provies full programmatic control
over the entire reporting process form report defini-
tion to report generation.

52 TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006



Server side PDF generation based on LATEX templates

Report templates are defined by XML documents
or defined programmatically, but open source and com-
mercial visual report designer tools are available too.
Compiled templates can be populated with data that is
passed as parameters by the application or that comes
from various data sources. A wide range of data sources
is supported, such as relational databases (via JDBC

and also via Hibernate), EJBs, XML documents and
CSV files. When a template is filled the resulting re-
port can be viewed, printed or exported to PDF, XML,
HTML, CSV, XLS or RTF.

JasperReport is a professional-quality tool with
many other features, such as i18n and integrated chart-
ing support.

DataVision

DataVision is an open source reporting tool that is
very similar to JasperReports. It is also open source
and written in Java, and it can be incorporated into a
Java application easily. Reports can be created using a
visual report designer tool and stored as XML files that
can also be edited manually. The generated reports can
be viewed, printed and exported to tab or comma-
separated text files, DocBook, HTML, PDF and XML.

Compared to JasperReports, it has fewer features,
for example it supports only relational databases (via
JDBC) and plain text files as data sources.

It is mentioned here because to the best of our
knowledge it is the only reporting tool than can ex-
port to LATEX. Note that it uses LATEX only as an
output format; the user may use the resulting LATEX
documents to produce PDF or PostScript files. Data-
Vision itself does not interpret LATEX files to produce
PDF, it uses the iText PDF library instead to generate
PDF files directly.

Problems with the above solutions when
using LATEX templates
Some problems with the solutions presented in the
preceding section are summarized below.

Problems with XSL-FO

Lack of stylesheets for non-standard XML formats

If data is stored in a non-standard XML format
and a stylesheet is not available to transform it
into XSL-FO, it may be a difficult task to create
an appropriate stylesheet.

Problems with PDF class libraries

Lack of flexibility As documents are created program-
matically, any change in the output PDF file re-
quires modification of the source code and the
application must be recompiled.

Difficulty of use Low-level PDF class libraries require
in-depth knowledge of the PDF format, making it
extremely difficult to generate a PDF file. Even in
the case of high-level libraries it may be difficult
to achieve the right text layout.

Problems with report generators

Non-general purpose They are useful for generating
business reports that contain tables and charts,
based on data sources. They may not be the best
solution to generate conventional documents such
as letters. Typesetting large chunks of text and
achieving the right layout may be difficult.

Common problems

Quality The aesthetic quality of the generated PDF

documents is often poor compared with PDF files
that are produced by LATEX.

Java-TEX integration
Accessing TEX from Java

TEX and LATEX offer the highest typographic quality.
They can produce publication-quality PDF files with
a professional appearance. It would be very useful if
Java applications could benefit from it.

Unfortunately we have no knowledge of any ex-
isting standard tool to integrate Java and TEX.

Such an integration may work as follows. To pro-
duce high quality PDF output a Java application gener-
ates a TEX file. This is a trivial task since TEX source
is plain text. Then the resulting TEX file is passed to a
TEX system, that will turn it into DVI, PostScript or
PDF.

The TEX system is accessed by using the java.

lang.Runtime class, which allows the Java applica-
tion to interface with the operating system. The appli-
cation can have complete control over the TEX compi-
lation process, it can interrupt the process if necessary
and it also has access to the files that are produced by
the TEX system.

Extending the above scenario with the use of TEX
templates offers greater flexibility. In this case the Java
application does not generate a TEX file from scratch,

TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006 53



István Bencze, Balázs Fark, László Hatala, Péter Jeszenszky

but it reads a template and populates it with data.
(Report generators operate in this way.)

Template engines

As described in Wikipedia, a template engine is a piece
of software that processes an input text (the template)
to produce one or more output texts. Template en-
gines are widely used and very popular in web appli-
cation development to create dynamic web content.
Their most important advantage is that they separate
application logic from web page layout.

Many Java-based template engines are available;
see [10] for a list of open source Java template en-
gines. They are used not only on the server side to
generate HTML, but also they may be used in other
applications to produce arbitrary textual output, even
source code.

Generating LATEX sources using FreeMarker

FreeMarker [11] is one well-known general-purpose
open source template engine implemented in Java. Al-
though it is typically used to generate HTML web
pages in servlet-based MVC applications, we use it to
produce LATEX sources based on templates, that are
turned into PDF.

FreeMarker has a powerful template language. Di-
rectives such as if, switch and list provide pro-
gramming capabilities, and other common program-
ming language constructs as variables, expressions and
user defined functions are also available in templates.

Just as in the case of web applications the tem-
plate engine is frequently used to incorporate database
content into templates. In the example below we use
Hibernate to access a relational database.

Hibernate [12] is the most popular solution for
object-relational mapping (ORM) in the Java world.
Hibernate provides transparent persistence for Java
objects, that allows applications to store, update and
delete objects in a relational database. It also provides
query and object retrieval facilities. It is simple to use
FreeMarker and Hibernate together.

Here is an example template fragment for produc-
ing a LATEX table with FreeMarker:

\begin{tabular}{ll}

\toprule

Title & ISBN\\

\midrule

<#list HibernateUtil.query("from Book b

where b.year = 2006 order by b.title")

as book>

${book.title} & ${book.isbn}\\

</list>

\bottomrule

\end{tabular}

In the example, HibernateUtil is a helper class
whose static query(String query) method executes
a HQL query,1 and returns query results as a list of
objects. Here we retrieve all books in the database
that are published this year sorted by title. The table
contains titles and ISBN numbers of the books and the
output would look like this:

Title ISBN

Aglaja. Apokrif 9630779668
Kazár szótár 9637448306
Utazás a tizenhatos mélyére 9631425169

Related projects

Although they have not influenced our work, the NTS

and ǫXTEX projects must be mentioned here.
NTS stands for New Typesetting System. The goal

of the project was to re-implement TEX in Java, but it
was discontinued.

NTS has been replaced by ǫXTEX [13], that is a
TEX-compatible typesetting system written in Java.
Originally it was started as an attempt to enhance
NTS, but later the entire system was rewritten from
scratch.

The system is under development. Although a
downloadable installer is available at the website of
the project, the development is currently in pre-alpha
stage.2

The project is a very promising initiative, but
there is much to do. If it becomes available it will
provide a more flexible Java-TEX integration.

The TEX Catalogue [14] contains two packages
that support database access, namely SQLTeX and La-
TeXDB.

SQLTeX is a Perl script that reads an input TEX
file containing SQL commands and produces an out-
put in which the commands are replaced with the
results. LaTeXDB is a similar preprocessor but it is

1HQL stands for Hibernate Query Language, the fully object-
oriented query language of Hibernate.
2Namely, it is only a development release that is not “feature com-
plete”. The next so-called alpha release will be delivered for more
general testing.

54 TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006



Server side PDF generation based on LATEX templates

implemented in Python. Both packages support only
MySQL databases.

In either case, TEX input files may contain con-
structs that look like commands (for example \sqldb,
\sqlrow or \texdbconnection) but are not in fact
TEX commands. (This means that TEX files contain-
ing them will not compile.) They will be interpreted
and replaced by the preprocessor to produce TEX files
that should compile without any errors. In that sense,
SQLTeX and LaTeXDB operate in a similar way to
FreeMarker, but using TEX syntax.

A sample web application generating PDF

We have developed a web application to demonstrate
the above approach in practice. Using the web appli-
cation requires registration. Each registered user can
manage his or her own addressbook and can generate
PDF files based on LATEX templates. The user selects
entries of the addressbook and these are used to pop-
ulate the template with data. A separate PDF file is
generated for each selected entry that will be offered
for download in a single ZIP file.

For example, this can be used to generate letters
in PDF that are customized for each recipient. The
PDF files are produced by LATEX, thus guaranteeing
a certain quality. Many users do not have LATEX in-
stalled on their computer, but via the web application
they have access to a LATEX system. (It is also possible
not to use the addressbook at all, and simply produce
single PDF files.)

After logging in users have the following options:

• manage addressbook (add, delete and modify en-
tries),
• upload an existing template and generate PDF(s),
• create a new template with a simple web-based

editor and generate PDFfile(s).

If the third option is selected the user is presented
with a list of predefined templates. These templates
are LATEX document skeletons that are stored on the
computer hosting the web application. The follow-
ing templates are installed by default: article, book,
report, letter, empty.3 The document editor is initial-
ized with the selected template.

The templates that are uploaded or edited by the
user should be valid LATEX documents that should
compile without any errors, although they may con-

3Additional templates can be added easily.

tain constructs that have special meaning. Text sur-
rounded by ‘@’ characters is a variable reference, and
a replacement text will be substituted for it.

Some variable references have a predefined mean-
ing, for example

• @current.name@ means the full name of a person
in an addressbook entry;

• @current.name.firstname@ is the first name of
a person in an addressbook entry;

• @current.addresses.country@ is the country
of the default postal address of a person in an
addressbook entry;

• @current.addresses.home.zipcode@ means
the zip code of the home address of a person in
an addressbook entry;

• @current.phonenumbers.office@ is the office
telephone number of a person in an addressbook
entry.

These variable references can be used to generate
multiple PDF files from a single template based on ad-
dressbook entries. Any other variable references such
as @signature@ are called static variable references,
which will be replaced by static replacement text.

The user is presented with a list that contains all
static variable references that occur in the template.
For each of them a replacement text may be specified.

The next step is to select the output format, the
possible choices being DVI, PostScript and PDF.

If the template does not contain any variable refer-
ences, or contains only static variable references, then
a single result file will be generated. Otherwise as the
last step the user must select at least one addressbook
entry, and a DVI, PostScript or PDF file will be gener-
ated for each of them.

The results are offered for download in a ZIP file
that contains the generated DVI, PostScript or PDF

file(s) together with the log file(s) and LATEX source(s).
The \write18{command} construct allows the

execution of operating system commands and is a po-
tential security risk. Thus, \write18 should be dis-
abled, especially in web applications such as this (nor-
mally this is the default in TEX systems).

The following technologies and software products
were used in the development: JDK 5.0, Apache Tom-

TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006 55



István Bencze, Balázs Fark, László Hatala, Péter Jeszenszky

cat, JavaServer Pages (JSP), PostgreSQL, and Hiber-
nate. Note that we did not use FreeMarker, as there
was no need for such a complex template engine in
this application.

References
[1] A list of PDF class libraries for Java.

http://www.google.com/Top/Computers/

Programming/Languages/Java/Class_

Libraries/Data_Formats/PDF/

[2] Open source PDF libraries in Java.
http://java-source.net/open-source/

pdf-libraries

[3] Apache FOP.
http://xmlgraphics.apache.org/fop/

[4] PJX.
http://www.etymon.com/epub.html

[5] PDFBox — Java PDF library.
http://www.pdfbox.org/

[6] iText, a free Java-PDF library.
http://www.lowagie.com/iText/

[7] Open Source Charting & Reporting Tools in
Java. http://java-source.net/

open-source/charting-and-reporting

[8] JasperReports.
http://jasperreports.sourceforge.net/

[9] DataVision.
http://datavision.sourceforge.net/

[10] Open Source Template Engines in. Java
http://java-source.net/open-source/

template-engines

[11] FreeMarker.
http://freemarker.sourceforge.net/

[12] Hibernate. http://www.hibernate.org/

[13] ǫXTEX. http://www.extex.org/

[14] The TEX Catalogue Online.
http://texcatalogue.sarovar.org/

56 TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006



Managing a math exercise database with LATEX

PÉTER SZABÓ ANDRÁS HRASKÓ
Budapest University of Technology and Economics Fazekas Mihály Fővárosi Gyakorló Ált. Isk. és Gimnázium
Dept. of Computer Science and Information Theory Horváth Mihály tér 8.
H-1117 Hungary, Budapest, Magyar tudósok körútja 2. H-1082 Budapest, Hungary
pts (at) fazekas dot hu hraskoa (at) fazekas dot hu

Abstract
TEX is a good tool for creating beautiful books, especially when the book contains a lot of math formulas. It is not

rare that TEX is used to typeset a view of a database, by generating TEX source from the database text, possibly using

XML as an intermediate format. Some TEX packages and formats support reading XML data directly.

In the matbook project we have created a database of math exercises for special class secondary school students, as

well as solutions and instructions for teachers. The data is organized in a tree structure of custom LATEX environments

in .tex source files. LATEX reads these data files several times for generating the books. CVS is used for data replication

and concurrent co-authoring. We are planning to switch to using a LATEX-to-HTML translator to publish the database

on the web.

This paper presents the simple software architecture of the matbook project and the design decisions we made con-

cerning software and workflow, and it also compares matbook with other approaches such as big content management

systems and TEX-enabled wikis.

Non-standard use of TEX
The original purpose of TEX (and LATEX) was typeset-
ting beautiful books, journals and other printed ma-
terial.

Novel uses include preparing slides for talks, de-
veloping software and its documentation together (e.g.
web and ltxdoc), typesetting math formulas (e.g. Texvc
[11]), typesetting printed and on-line HTML docu-
mentation together, rearranging PDF pages (pdfTEX
with pdfpages.sty) and typesetting text generated from
databases or other markup formats.

In the matbook project we use LATEX to read a
database of math exercises (in several passes), and type-
set the material to books for students and teachers.
This paper presents the software architecture and some
implementation details of the matbook project, and it
is also a case study of integrating excellent free soft-
ware tools for low-budget publishing.

Project goals and products
The Fazekas Mihály Secondary Grammar School of Bu-
dapest [1] has been launching special mathematics clas-
ses for several decades, and is proud of its students win-
ning national and international student competitions,
and later becoming appreciated mathematicians. E.g.

László Lovász, the well-known Hungarian mathemati-
cian, graduated from Fazekas in 1966.

Good mathematicians have good problem solving
skills, and this skill can be best developed by solving
problems and exercises. It is the responsibility of the
teacher to choose the exercises for the students which
best fit their learning curve. Talented students in a
special math class need special attention. A lot of
exercises and didactic experience have accumulated in
Fazekas over the last few decades, and we have decided
to publish this in printed form in Hungary; we are also
planning to provide a web interface where all material
is available. Thus matbook was born.

We are compiling a comprehensive exercise data-
base (which also includes solutions, didactic advice,
exercise lists for lessons and metadata for more accu-
rate searching). Students and teachers in Fazekas are
both working on extending this database, and we are
developing software that would present this database
to its audience. We are planning to publish exercise
books (for students) and teachers’ guides. If students
buy the exercise books, teachers can give homework
assignments from those books. (Of course, teachers
will assign exercises whose solutions cannot be found
in the exercise book.)

TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006 57



Péter Szabó and András Hraskó

We are also planning to provide a web interface
on which visitors can browse and view exercises, so-
lutions etc., they can do a full text search, and they
can also search for exercises in a given topic (speci-
fied using a set of predefined keywords). We already
have a web interface for a comprehensive database of
Hungarian secondary school math contest problems
(which stores text in LATEX format, and converts it to
HTML using TTH [2]), and we’d like unify this with
the matbook database.

Database structure
The database consists of

• exercises for the students;
• hints and solutions corresponding to the exercises,

for the students;
• solutions for the teachers only;
• remarks and didactic advice corresponding to the

exercises, for the teachers;
• a hierarchic taxonomy of keywords covering the

fields of mathematics (e.g. prime numbers, trigo-
nometry);
• association between exercises and keywords;
• organization of exercises into chapters and volumes;
• chapter and volume introduction text;
• ordered exercise lists prepared for obligatory and

facultative lessons;
• figures referred to in the text, in EPS format.

Software components
• volume typesetter: a set of LATEX macros to read

the database in multiple passes, and typeset the
book volumes;
• indexer: generates the keyword index at the end

of the volumes (similar to makeindex);
• web user interface: with browse, view and search

functionality;
• consistence validator: checks whether database files

conform to the specifications.

Existing free software used: standard tools in a
TEX distribution, the lmodern font family [3], GNU

Ghostscript, sam2p [4], ImageMagick, CVS, Perl, the
new magyar.ldf (part of [5]), husort.pl (Hungarian in-
dex processor, part of [5]), stuki.sty (structogram fig-
ure generator [6]).

We work in a Linux–Windows mixed environ-
ment, so it was our aim that all components except

for the server part of the web user interface should
run on both Unix and Win32. TEX tools we need are
available on both systems. We decided to implement
the indexer and the consistence validator as command-
line Perl applications so it would be easy to port them
across systems.

Database layout
We chose to store our data in structured text files
rather than using a relational database, because it is
easier to change the schema later, and we don’t have
to develop a custom user interface for data editing.
XML is a good and widely supported structured text
data model and syntax, but we prefer a format which
is quick to type and easy to review for humans. YAML

[7] is such a format. We finally chose the XML data
model (for interoperability with other software), but a
LATEX-compatible syntax (for easy typing), which can
be converted to XML without loss when needed.

As a master text markup format, we quickly re-
jected XHTML+CSS+MathML, mostly because it is
tiresome to type a document in this format. Also,
it is not possible to archive a rendered version of
an XHTML text in a scalable way; it is not possible
to specify typesetting hints (such as penalties); and
MathML is not powerful enough: it is not possible
to type the right, textual side of \cases in MathML;
MathML still lacks some symbols. Moreover, with
current browsers it is not possible to ensure acceptable
visual quality: browsers render the same document dif-
ferently, MathML support usually doesn’t come out of
the box, browser MathML fonts lack important sym-
bols, browsers cannot hyphenate long words automat-
ically, the visual output depends on the installed fonts
and the browser window size (which the author of the
text cannot control), browsers cannot break the line
in the middle of a MathML formula etc.

We could have adopted a safe and easy to type
markup format, similar to MediaWiki’s WikiText for-
mat [8] or ŞäferTEX [9]. The MediaWiki software
implements the text rendering engine of Wikipedia
[10], and it lets authors insert math formulas in a
subset of (AMS)LATEX syntax. When the page is ren-
dered, these formulas are interpreted and converted
to images or MathML formulas by Texvc [11]. We
have rejected MediaWiki because — as with XHTML —
it doesn’t give the author enough power to ensure per-
fect visual output quality. We did not use ŞäferTEX

58 TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006



Managing a math exercise database with LATEX

because its source code was not available, and it was
not mature enough.

We could have invented our own markup format.
Doing this would have required us not only to in-
vent an excellent format, but to write a renderer (to
both PDF and HTML), and document the format thor-
oughly, including tutorials and examples. This option
was not feasible in our project.

Thus we have chosen a restricted subset of LATEX
as a markup format. Its advantages are: it has been
available for a long time, the basic commmand set
is well-documented, it gives the text author sufficient
control over the visual quality of the output, and there
are lot of fonts and packages we can use. We had to
impose restrictions in order to keep our format con-
vertible (primarily to XHTML+CSS+MathML). The
most important restrictions on the document text are:
it is forbidden to load packages or other files, define
or change macros, use conditionals or other program-
ming features, change catcodes, use the character " in
the input (the “proper quotes” must be used), use con-
ditionals, or insert figures with \includegraphics

(we provide a more restricted command instead).
Once we settled on LATEX as a text markup for-

mat, it was straightforward to use the same syntax
for structuring the data, so that our database text files
won’t contain two alternative formats, and they can be
syntax-highlighted or otherwise processed in text ed-
itors easily. However, plain LATEX is not suitable for
structuring. For example, it is not obvious to deduce
where chapter “First” ends in this LATEX source, with-
out knowing the meaning and depth of \section:
\chapter{First} \emph{First} content.

\section{Inside} \emph{Inside} content.

\chapter{Second}\label{2nd} % dummy

\emph{Second} content.

The XHTML representation (using <H1> for chap-
ter titles and <H2> for section titles) suffers from the
same limitation.

Our data format solves the problem by specify-
ing structure using custom LATEX environments. The
example above looks like this:
\begin{mchapter}{title={First}}

\emph{First} content.

\begin{msection}{title={Inside}}

\emph{Inside} content.

\end{msection}

\end{mchapter}

\begin{mchapter}{title={Second},id={2nd}}

% dummy

\emph{Second} content.

\end{mchapter}

When converted to XML, it becomes:
<mchapter title="First">

\emph{First} content.

<msection title="Inside">

\emph{Inside} content.

</msection>

</mchapter>

<mchapter title="Second" id="2nd">

<!-- dummy -->

\emph{Second} content.

</mchapter>

Please note that \emph is not converted, because it is
part of the text markup, and not part of the structure.

Thus there is a simple mapping between XML and
our data format:

• LATEX environment with attributes (i.e. “key =
value” pairs) ↔ XML tag with attributes, prop-
erly escaped
• TEX comment↔ XML comment
• other LATEX text↔ XML text (PCDATA)

This direct mapping makes it possible to use XML

tools on our database. For example, we can use XSLT

to do structural transformations on the XML, and we
can use DTD or XML Schema validators to validate
our database.

Database folders and files
The database is spread into several small text files
in several folders. The files read each other (using
\input). The points where the data must be split and
the naming conventions for the files and folders are
strictly regulated.

The database is replicated on each co-worker’s ma-
chine, using the CVS [12] revision control system.
People can work offline, and commit their changes
back to the repository on the server a few times a day.
Server failures and network connection slowdowns
don’t affect working hours seriously. CVS is smart
enough to merge concurrent but independent changes
of text files, and it enforces human interaction when
a conflict occurs, so there is no danger of accidentally
overwriting somebody else’s changes. CVS also keeps
old versions, so accidentally deleted text can be re-
covered any time later. (CVS merges files line-by-line,
which complicates concurrent editing of binary files —
but this limitation doesn’t affect our project since we

TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006 59



Péter Szabó and András Hraskó

mostly use text files.) Subversion (= SVN [13]) is a
newer and more advanced revision control system, and
it won’t be hard to migrate from CVS when those ad-
vanced features are needed. Both CVS and Subversion
have clients on multiple platforms, including Unix and
Win32. We use the standard cvs client on Linux, and
TortoiseCVS on Windows.

The reason why the database is split into multiple
files is that it is easier to transfer changes of smaller
files in CVS, and it is also easier for humans to edit a
few small files concurrently than to edit one large file.
Usually multiple people are modifying the database at
the same time, but most of the time they work in their
own files, so no conflict occurs. Using multiple folders
makes it easier to select the correct file for opening.

The file and folder layout also follows the LATEX
compilation process. Compilation always starts in the
root folder (of the CVS tree). For example, to com-
pile the first volume of Algebra, one runs “latex

volume_a_i”, which starts processing the file volume

_a_i.tex. All other files belonging to this volume
reside in the folder chs_a_i and its subfolders. Files
\input are thus specified relative to the root folder,
thus adding ../ is not necessary when referring to lo-
cal .sty files. It is also convenient that all temporary
and output files go to the root folder, thus subfolders
are not changed during the compilation process.

LATEX tricks
In this section we present some problems we faced
when typesetting with LATEX; solutions included.

Unified labels

This is a feature that makes it possible to refer to
a \label defined in another volume. It is accom-
plished by reading \newlabel commands from the
other .aux files, and adding them with both the label
text and page numbers prefixed with the other volume
name.

Volume split

Since teachers’ guides can be several hundred pages
long, it might be necessary to split them into multiple
volumes. If this is so, the editor promotes some chap-
ter boundaries to volume boundaries by adding the
appropriate command to the source of the main .tex

file. We chose the most portable ways to typeset these
subvolumes: all subvolumes are separate LATEX docu-

ments, which \input the main .tex file in a mode
in which the \shipout of the unnecessary pages is
cancelled.

The advantage of this method is that it doesn’t
require external tools (such as psselect), it works for
both PostScript and PDF, and it can be run from a
regular LATEX IDE. Its disadvantage is its slowness.
An alternative approach for PostScript would be gen-
erating and running a psselect command line for each
volume. And for PDF, an alternative approach is se-
lecting the appropriate pages from the main volume
using pdfpages.sty.

Splitting the volume into real subvolumes (so that
compiling a subvolume doesn’t read the other subvol-
umes’ LATEX source) would not work, because it would
render page numbers, the bibliography and inter-sub-
volume references incorrectly, or need additional pro-
gramming.

Fuzzy keyword names

When specifying the list of keywords associated with
an exercise, it is a big burden to specify a long keyword
precisely (with spaces, punctuation etc.). In order to
solve this, a Perl script generates keyword aliases, e.g.
the first word of a keyword will become an alias for
the keyword if this is not ambiguous.

String processing

Another idea in fuzzy keyword name matching is to
match keywords after stripping spaces, punctuation,
upper case and accents. This stripping had to be imple-
mented in LATEX, too. Since TEX doesn’t have string
processing primitives, we have to implement them us-
ing macros. Here is a mix of a macro definitions that
shows the most important string processing tricks:
\def\stripit#1>{}\def\empty{}\def\space{ }

\def\rmonestar#1{\ifx#1\hfuzz\empty\else

\if*\string#1\else#1\fi

\expandafter\rmonestar\fi}

\begingroup\lccode‘!‘ \lowercase{\endgroup

\def\oonespace#1 {\ifx\hfuzz#1\empty\else

#1!\expandafter\oonespace\fi}}

\def\rmstars{%

\afterassignment\rmstarsb\def\M}

\def\rmstarsb{%

\edef\M{\expandafter\stripit\meaning\M

\space\hfuzz\space}

\edef\M{\expandafter\oonespace\M}

\edef\M{\expandafter\rmonestar\M\hfuzz}}

60 TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006



Managing a math exercise database with LATEX

The macro \rmstars above removes all stars (*)
from a string. The string is given as an argument in
braces, and the result — without the stars and all to-
kens having catcode 12 — is put into the macro \M. Ex-
ample invocation: \rmstars{a * B**cd} \show\M

A rough outline of its operation: \meaning con-
verts tokens to catcode 12, except for spaces, which
are converted to catcode 10. Then \oonespace iter-
ates over all spaces and converts them to catcode 12,
too. Finally \rmonestar iterates over the tokens and
removes all stars. Almost beautiful.

Read more about the primitives involved here in
The TEXbook [14].

One or more solutions?

If there is one solution for an exercise, it should be
prefixed with “Solution” (and not “Solution 1”). If
there are more solutions, each of them should have a
number, “Solution 1”, “Solution 2” etc. By the time
of emitting the 1st solution, we don’t have the infor-
mation whether there are more. How do we typeset
it properly?

To solve problems like that, it is a common trick
to use the \label–\ref mechanism. We emit \label

{exercise42-sol2} at “Solution 2”, and the next
time the document is recompiled, at “Solution 1” we
check for the presence of this label, e.g. with
\@ifundefined{r@exercise42-sol2}{...}{...}

Bibliography three times

When a \cite command with a new target is added
to the document, it is necessary to run LATEX three
times: latex doc; bibtex doc; latex doc; latex

doc. The 1st run of LATEX records the \citation

command to the .aux file. The BibTEX run generates
the .bbl file. The 2nd run of LATEX inserts the new
.bbl file to the document, and it also records the
\bibcite command to the .aux file indicating the
new number to be displayed by the \cite command.
The last, 3rd run of LATEX makes \cite emit that
number.

We speed this up by parsing the .bbl file at the
beginning (before the first \cite), so the 3rd run of
LATEX is not necessary.

Conclusion and future work
The matbook project demonstrates not only the
power, openness and flexibility of LATEX, but is also an

example of low-budget publishing using free software
and a little scripting. matbook is also free software.

Our most important future goals are completing
the exercise database and implementing the missing
software components: a thorough consistence genera-
tor and the web user interface.

References
[1] Fazekas Mihály Secondary Grammar School of

Budapest. http://www.fazekas.hu/

[2] TTH: the TEX to HTML translator.
http://hutchinson.belmont.ma.us/tth/

[3] Bogusław Jackowski and Janusz M. Nowacki.
Latin Modern fonts: how less means more. In
proc. of EuroTEX 2005, pp. 172–178.
http://www.dante.de/dante/events/

eurotex/papers/TUT09.pdf, 2005.

[4] Péter Szabó. Inserting figures into TEX

documents. In proceedings of EuroBachoTEX
2003.

[5] Péter Szabó. Implementation tricks in the

Hungarian Babel module. In proc. of TUG
2004.

[6] Károly Lőrentey. stuki.sty: Structograms in

LATEX.

http://lorentey.hu/project/stuki.html.en

[7] YAML: machine parsable data serialization
format. http://www.yaml.net/

[8] WikiText: wiki markup language.
http://en.wikipedia.org/wiki/Wikitext

[9] Frank Schäfer. ŞäferTEX: Source Code Esthetics

for Automated Typesetting. In proc. of TUG
2004.

[10] Wikipedia: the free encyclopedia that anyone
can edit. http://en.wikipedia.org/

[11] Texvc: TEX validator and converter.
http://en.wikipedia.org/wiki/Texvc

[12] Karl Fogel and Moshe Bar. Open Source

Development with CVS. 3rd Edition. O’Reilly,
2003.

[13] Ben Collins-Sussman et al. Version Control

with Subversion. O’Reilly, 2004.

[14] Donald E. Knuth. The TEXbook.
Addison-Wesley, 1984.

TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006 61



The making of a (TEX) font

TACO HOEKWATER HANS HAGEN
Bittext, Dordrecht Pragma ADE, Hasselt
info (at) bittext dot nl

Abstract
We want to introduce a new display font to the TEX community. The font is a digitization of a series of Duane Bibby

drawings, commissioned by Pragma ADE. The digital version for use with ConTEXt is prepared by Bittext based on

scans provided by Pragma ADE.

Figure 1: The first drawing

Introduction

At TUG 2003 in Hawaii, Hans Hagen met with Duane

Bibby. Hans was looking for some small images to

enliven the ConTEXt manuals. A cutout of a very

early sketch can be seen in Figure 1, but it was soon

agreed that consecutive drawings were going to be an

alphabet.

Nothing much happened after that initial meeting,

until the beginning of this year when Hans picked up

the thread and got Duane started drawing. The alpha-

bet quickly progressed. Starting in a rather naturalis-

tic style like Duane’s ‘normal’ TEX drawings, but later

progressing toward a much more cartoon-like style, as

can be seen from the drawings in Figure 2.

For ease of use, it was clear that these drawings

should ideally become a computer font. Taco Hoek-

Figure 2: Rough design

Figure 3: Shapes were drawn on a grid, and refined over time

water agreed to take care of the digitization, and luck-

ily the drawings were already prepared for that. As

can be seen from the leftmost closeup in Figure 3, the

cows are drawn inside a grid. This ensures that they

are all the same size, which is a vital requirement for

a font.

The center drawing in Figure 3 is a still rather

roughly inked version of one of the in-between draw-

ings (there were many). In this particular one you can

see that the mouth of the cow was originally more or

less oval, but in the final form (on the right) it became

much more hexagonal.

62 TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006



The making of a (TEX) font

Figure 4: One of the original sheets, showing the alphabet and latin punctuation

Digitization

The original sheets were sent to Pragma ADE by regu-

lar mail in the beginning of March. Hans scanned the

original sheets at 1200 dpi and then forwarded the im-

ages to Taco. There were four sheets in all, and one of

them is shown in Figure 4. The other three contain a

number of TEX-related logos and a few (mathematical)

symbols.

Preparing the images

The first task in the preparation of the font was to

create a set of bitmap images for use by FontForge’s

import command.

For this, the four sheets had to be cut up into

many smaller pieces, each containing a single glyph

for the font. This being intended as a decorative font,

the character set does not even contain the complete

ASCII range. Nevertheless, almost a hundred separate

images were created.1

FontForge automatically scales imported images

so that they are precisely one em unit high. After

cutting the sheets up to pieces, the images therefore

1It would have been nice if this step could have been done solely
with free software, but the Gimp turned out to be incapable of
handling the 75 megabyte PNG images for each of the four scanned
sheets. Adobe Photoshop was used instead.

Figure 5: An imported bitmap images, with height adjusted

had to be adjusted so that they all had the same height.

Without that, it would have been nearly impossible to

get all the drawn lines in the glyphs the same width.

Figure 5 shows the adjusted version.

Automatic tracing

The autotracer in FontForge, which is actually the

stand-alone autotrace program, does quite a good job

of tracing the outlines. But, interestingly enough, only

at a fairly low resolution. At higher resolutions it gets

confused and inserts more than a quadratic amount

of extra points for each resolution increase. Based on

empirical tests, the images were scaled to 40% of their

TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006 63



Taco Hoekwater and Hans Hagen

Figure 6: Close-ups of autotracer output

original scanned size, resulting in bitmaps that were

precisely 1000 pixels high.

As was to be expected, the autotracer brought out

many of the impurities in the original inked version, as

you can see in the left image of Figure 6. Luckily, the

number of places where manual corrections like this

were needed was not so big to force us to reconsider

the digitization process.

A more severe problem can be seen in the right-

hand image of Figure 6. The drawings contain hardly

any straight lines. For a font of this complexity, it

turned out to be absolutely necessary to simplify the

curves. Without simplification, the rendering speed

in pdf browsers became unbearably slow. All of the

near-horizontal stripes in the bellies were manually

removed and replaced by absolute straights.

Hinting

The final stage in the font editor is to add the Post-

Script hinting. A screenshot of a manually hinted

letter is shown in Figure 7.

This part of the work is in fact turned out to be

one of the largest jobs, because it is necessary to find

a balance between two possible extrema.

On the one hand, if there are no hints at all,

that results in nice small fonts that render quickly,

but poorly.

On the other hand, if there is a lot of hinting

information, that creates a much better appearance but

it slows down the rendering. And sometimes extra

hinting produces worse rendering than less hinting,

especially with non-commercial renderers.

A middle ground can be reached, but unfortu-

nately only by doing all hinting manually, and that

took quite a lot of time.

Finishing the font

The font was saved as two separate PostScript Type

Figure 7: Finished outline, with hints

A A
Figure 8: The final ‘A’

1 fonts, one with the text glyphs and one containing

the logo glyphs. The text font is named ‘koeieletters’,

the logo font ‘koeielogos’. ‘Koeieletters’ literally trans-

lates from Dutch to English as ‘cowcharacters’, but the

word ‘koeieletter’ is also is used to indicate a really big

character. Like in a billboard, for instance.

Eventually it turned out that we needed a second

set of two fonts. Sometimes you want to have text

in the cowfont but on top of a colored background.

The background would then shine right through the

hide of the cow and that was of course unacceptable.

Hence, we also have the fonts ‘koeieletters-contour’

and ‘koeielogos-contour’.

Figure 8 shows the final ‘A’, in the normal and the

contour font.

Playing around

The original goal of this font was to enliven the

Pragma ADE manuals. It would be a waste if we did

not try to get the most out of the drawings provided

by Duane, so we coded some rather silly effects in

the font and its metrics. The final paragraphs of this

article highlight a few of those.

64 TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006



The making of a (TEX) font

�
Figure 9: The Pragma ADE logo

����
Figure 10: The ConTEXt logo

�
�
�
�

Figure 11: Four characters of the ConTEXt logo

Pragma ADE

The only lowercase symbols in the font are in the

Pragma ADE logo itself, see Figure 9.

The ConTEXt logo

If you look closely at the ConTEXt logo in Figure 10,

you can see that the shadows and the spots of the

cows are drawn in different shades of grey (or colors).

This is only possible because there are actually four

characters involved instead of just the logo and the

background contour, as shown in Figure 11.

Logo ligatures

The line on Figure 12 can be input directly as “Cows

in ConTeXt”, thanks to a handcrafted virtual font.

This font contains a complete set of ligatures that

Cows in �
Figure 12: “Cows in ConTEXt” typeset


 � �
Figure 13: Word logos

∑

x→1

(

√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√

a
2 ×

1
√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√

a

)

+ 100

Figure 14: Cows in math mode

� I count 10 sheep

Figure 15: Old-style sheep

travel from ‘C at the beginning of a word’, past ‘e

following the temporary ligature C_o_n_T’, all the

way to ‘t at the end of word’. Such word logos are

defined for TEX, ConTEXt, and MP, see Figure 13.

Mathematics

As is true for the collection of normal text glyphs, the

math set is also not very extensive. But there are just

enough math symbols to allow some example math

formulas to be created. Virtual fonts make sure that

the input is what you expect from TEX. See Figure 14.

Old-style Sheep

Seeing nothing but cows does tend to get boring after

a while. To prevent the font from getting too pre-

dictable, we decided we needed some extra freshness.

That is why the old-style numerals are actually sheep

(see output in Figure 15):

I count \oldstylenumerals{10} sheep

Final words

The koeieletter fonts can be downloaded from the

Pragma ADE site. The fonts, needed typescript file

and macros are part of the standard ConTEXt distri-

bution.

TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006 65



Font installation the shallow way∗

SIEP KROONENBERG
Rijksuniversiteit Groningen
Department of Economics
P.O. Box 800
9700 AV Groningen, The Netherlands
siepo (at) cybercomm dot nl

Abstract
For one-off projects, you can cut corners with font installation and end up with a more manageable set of files and a

cleaner TEX installation. This article shows how and why.

Keywords
Font installation, afm2pl, afm2tfm, TrueType, pdftex, mapfiles

If you are putting together a flyer or invitation or

book cover, then it would be nice if you could test

a batch of fonts from your CorelDRAW or Illustra-

tor CD, or your Windows font directory, without too

much trouble and without polluting your TEX instal-

lation with a lot of stuff you are never going to use

again.

This article takes you through the steps needed

to use one or more fonts in one particular document.

We won’t really install the fonts; we just generate the

files that TEX needs and leave them where TEX will

find them, i.e. in the working directory. This makes

it easy to take the project to another system, and easy

to clean things up.

We will primarily use afm2pl to generate .tfm

(TEX Font Metric) files. Later on, we show the steps

required for afm2tfm. Both programs are simpler and

much faster to use than the usual choice, fontinst.

They create few intermediate or unnecessary files and

do their job without virtual fonts. Virtual fonts and

fontinst have their place, but sometimes there is no

good reason to put up with the inevitable mess.

afm2tfm is available on all major free TEX imple-

mentations. afm2pl is part of current TEX Live distri-

butions. Note that these programs are needed only to

create the necessary font support files for TEX; once

these files have been created, they can be used on any

∗This article appeared originally in slightly different form in
MAPS 33, fall 2005.

other system, whether or not it contains afm2pl or

afm2tfm.

An example

We use a decorative script font Pepita that Adobe bun-

dles (or used to bundle) with some of its software.

pdftex needs the actual font file epscr___.pfb, its

TEX font metrics file epscr7t.tfm and a mapfile con-

taining an entry relating the two. First, we copy not

only epsrc___.pfb but also epsrc___.afm to the

working directory. We need the latter file to generate

the .tfm file. Next, we enter the following commands

on a command line:

afm2pl -p ot1 epscr___.afm epscr7t.pl

pltotf epscr7t

The extensions .afm and .pl are optional. The

first command converts the .afm file to an (almost)

human-readable text version of the desired .tfm file.

The second command creates the more compact bi-

nary version.

Before we can use this font, we must tell LATEX

about it. We do this with a font family definition file

ot1myfontfam.fd:

\ProvidesFile{ot1myfontfam.fd}

\DeclareFontFamily{OT1}{myfontfam}{}

\DeclareFontShape{OT1}{myfontfam}{m}{n}{

<-> epscr7t }{}

The prefix ot1 indicates the encoding, which tells

which characters occur at what positions. The next

section will say more about encodings. The param-

eters to \DeclareFontShape are successively encod-

66 TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006



Font installation the shallow way

ing, family name, weight (e.g. bold), shape, font file

(without extension) and special options. You can nor-

mally leave this last parameter empty. With just one

family member, we are not fussy about font charac-

teristics and just pick defaults. We also leave this file

in the working directory.

This is the code of our first testfile exabasic.tex,

which uses this font:

\documentclass{article}

\pagestyle{empty}

\pdfmapfile{=epscr7t.map}

\newcommand{\fancyfont}%

{\fontfamily{myfontfam}\selectfont}

\begin{document}

\fancyfont

Hello, world!

Accents: \’el\‘eve bl\"of \"i;

Kerning: WAV, LTa

\end{document}

The \pdfmapfile command causes pdflatex to

read the file epscr7t.map, which tells pdftex how

to get the font into the output file. The prepended ‘=’

tells pdftex that it should read epscr7t.map in addi-

tion to, not instead of, the default mapfile, and that in

case of a conflict epscr7t.map wins.

Now we are ready to compile exabasic.tex:

pdflatex exabasic

This is the result:

Hello, world!

Accents: élève blöf ı̈; Kerning: WAV, LTa

Encodings

We already mentioned encodings briefly. Now it is

time to dig a little deeper, because it is a topic that

can easily trip you up.

An encoding defines what character corresponds

to which number. Only numbers between 0 and 255

are allowed. A .tfm file associates character metrics di-

rectly with character positions and doesn’t know what

position represents what character. TEX simply makes

assumptions about this correspondence or encoding,

and if you disagree with those assumptions then you

need to load some macro package or other to tell TEX

otherwise.

We hope that mainstream TEX will eventually

move to Unicode, which is a comprehensive encod-

ing of all conceivable characters, including far-eastern

alphabets and mathematical symbols. When that hap-

pens, we can forget about encodings and also do away

with many applications of virtual fonts. There are

already some Unicode-based variants of TEX.2

For a PostScript .pfb or .pfa font, character met-

rics are stored in a separate .afm file. These metrics

are associated with characters, not with character po-

sitions. Therefore you should specify an encoding to

afm2pl or afm2tfm.3 The same encoding must also

be specified in the mapfile entry. A PostScript font

usually has more characters than fit into a single TEX

encoding.

A command-line option such as ‘-p texnansi’ or

‘-p texnansi.enc’ means that the encoding should

be read from a file texnansi.enc. This encoding

probably has a different internal name.

OT1 encoding

If you don’t tell TEX otherwise, it assumes that you

are using the OT1 encoding. This encoding uses only

128 of the 256 available slots. TEX creates missing

accented characters from an unaccented base charac-

ter and a separate accent character. Unfortunately,

this interferes with hyphenation. Apart from this, the

OT1 encoding has various other oddities, and is best

avoided. OT1-encoded fonts often have a TEX name

ending in 7t.4 Note that ot1.enc comes with afm2pl

and is probably not available if you don’t have afm2pl

on your system.

T1 encoding

T1 is the successor to OT1. It uses all available slots,

and has lots of accented characters, including those for

Eastern European languages. Because the T1 encoding

left no room for symbols such as ‘‰’ or ‘©’ or ‘‡’ you

will need to get those from a second encoding of the

same font. This second encoding is called TS1 or ‘text

companion’.

2Omega and its offshoot Aleph are Unicode-based. Users may
also be interested in X ETEX (http://scripts.sil.org/xetex),
which is built on top of a regular TEX implementation and lets you
use Unicode fonts installed on the system directly with TEX.
3If you don’t specify an encoding, then you get the encoding from
the .afm file, which is almost certainly not what you want.
4For afm2pl and afm2tfm, font names have no particular meaning.
This is one more difference with fontinst. I add encoding suffixes
such as 7t and 8y to font names just as reminders to myself.

TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006 67



Siep Kroonenberg

For most traditional PostScript fonts, some of the

accented characters in the T1 encoding aren’t actually

present and must be created with virtual font tech-

nology from a base character and an accent. Since

it doesn’t have to be done by TEX itself, this is no

obstacle to hyphenation.

Although you can tell afm2pl to use T1 encoding,

it can’t create composite characters, and such compos-

ite characters will be missing unless they are already

present in the original font.

T1-encoded fonts often have a TEX name ending

in 8t.

Texnansi encoding

The texnansi encoding, known as LY1 to LATEX, was

introduced by Y&Y, the now-defunct company be-

hind Y&YTEX, dviwindo and dvipsone. It combines

a good selection of both accented letters and typo-

graphic symbols, and normally contains everything

you need in a single encoding, at least for Western Eu-

ropean languages. Texnansi-encoded fonts often have

a name ending in 8y.

The package texnansi selects the texnansi encod-

ing and contains some additional code to smooth out

incompatibilities with T1 and OT1.

A texnansi example

For this example, we choose Augie, a handwriting font

from TEX Live. These are the commands for generat-

ing the .tfm and .map files:

afm2pl -p texnansi augie___.afm augie8y.pl

pltotf augie8y

This is ly1augie.fd (notice the ly1 prefix):

\ProvidesFile{ly1augie.fd}

\DeclareFontFamily{LY1}{augie}{}

\DeclareFontShape{LY1}{augie}{m}{n}{

<-> augie8y }{}

This is the LATEX code:

\documentclass{article}

\usepackage{texnansi}

\pagestyle{empty}

\pdfmapfile{=augie8y.map}

\newcommand{\fancyfont}%

{\fontfamily{augie}\selectfont}

\begin{document}

\fancyfont

Hello, world!

Accents: \’el\‘eve bl\"of \"i;

Symbols:

\textparagraph{} \textdaggerdbl{}

\texttrademark{} \textcopyright

\end{document}

And this is the result. Notice the extra symbols.

These are absent from the T1 encoding and would

have required a text companion font.

Hello, world!
Accents: élève blöf ï; Symbols: ¶ ‡ ™ ©

TrueType

Another scalable font format is TrueType, which is

supported by pdftex but currently not by dvips. Font

metrics are stored in the font file itself. Using True-

Type is somewhat more work; the following com-

mands are required to import a TrueType font such

as Trebuchet:

ttf2afm trebuc.ttf >trebuc.afm

afm2pl -p texnansi trebuc trebuc8y

pltotf trebuc8y

<edit mapfile to replace .pfb with .ttf>

ttf2afm extracts the metric information from the

.ttf file.5

afm2pl has no way of knowing that the .afm de-

scribes a TrueType font, and guesses that the actual

fontfile is trebuc.pfb. Therefore you have to fix the

mapfile afterwards.

We leave it as an exercise for the reader to write the

.fd file and LATEX source for the following example:

Hello, world!
Accents: élève blöf ï; Kerning: WAV, LTa, WAV, LTa.
Symbols: ¶ ‡ ™ ©

Font-based uppercasing and letterspacing

afm2pl comes with an uppercased version texnanuc of

texnansi. Uppercasing, e.g. in headings, works best in

combination with letterspacing. For this, afm2pl has

a parameter ‘-m’.

Warning: afm2pl implements letterspacing with

kerns. Unfortunately, the .tfm format can contain

only a limited number of kerns. If there are too many

in the .pl file then all kerns and ligatures will be

dropped from the generated .tfm file! So use this

feature with care. fontinst implements letterspacing

5This will result in an empty encoding, unless you specify an en-
coding parameter. But we are going to ignore the encoding in the
.afm anyhow.

68 TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006



Font installation the shallow way

by adding sidebearings via virtual fonts, and doesn’t

suffer from this limitation.

We can create a letterspaced, uppercased version

of Trebuchet with the following commands:

ttf2afm trebuc.ttf >trebuc.afm

afm2pl -p texnanuc -m 100 trebuc trebucupp8y

pltotf trebucupp8y

<edit mapfile to replace .pfb with .ttf>

A corresponding fontfamily and fontshape decla-

ration might look as follows:

\ProvidesFile{ly1trebuc.fd}

\DeclareFontFamily{LY1}{trebuc}{}

\DeclareFontShape{LY1}{trebuc}{m}{upp}{

<-> trebucupp8y }{}

The fontshape upp for uppercasing is not an offi-

cial LATEX shape but that doesn’t seem to matter. You

can use the font as follows:

\documentclass{article}

\usepackage{texnansi}

\pagestyle{empty}

\pdfmapfile{=trebucupp8y.map}

\begin{document}

\fontfamily{trebuc}\fontshape{upp}

\selectfont

Letterspaced uppercasing

\end{document}

And this is the result:

LETTERSPACED UPPERCASING

A font family

The next example uses a real font family, consisting of

the usual four family members plus our letterspaced

font. So we will need not only trebuc.ttf, as in the

previous example, but also trebucbd.ttf, trebucit.ttf,

and trebucbi.ttf. For each of these we’ll have to run

the ttf2afm — afm2pl — pltotf sequence, and we’ll have

to edit each of the generated map files, or create a

combined mapfile.

Here is the .fd file:

\ProvidesFile{ly1trebuc.fd}

\DeclareFontFamily{LY1}{trebuc}{}

\DeclareFontShape{LY1}{trebuc}{bx}{n}{

<-> trebucbd8y }{}

\DeclareFontShape{LY1}{trebuc}{m}{n}{

<-> trebuc8y }{}

\DeclareFontShape{LY1}{trebuc}{bx}{it}{

<-> trebucbi8y }{}

\DeclareFontShape{LY1}{trebuc}{m}{it}{

<-> trebucit8y }{}

\DeclareFontShape{LY1}{trebuc}{m}{upp}{

<-> trebucupp8y }{}

And this is the LATEX code using it:

\documentclass{article}

\usepackage{texnansi}

\pagestyle{empty}

% better combine these mapfiles!

\pdfmapfile{=trebuc8y.map}

\pdfmapfile{=trebucbd8y.map}

\pdfmapfile{=trebucit8y.map}

\pdfmapfile{=trebucbi8y.map}

\pdfmapfile{=trebucupp8y.map}

\begin{document}

\fontfamily{trebuc}\selectfont

Hello, \textbf{world!}

Accents: \’el\‘eve bl\"of \"i;

Kerning: WAV, LTa, \textit{WAV,

\textbf{LTa.}}

Symbols:

\textparagraph{} \textdaggerdbl{}

\texttrademark{} \textcopyright

\fontshape{upp}\selectfont

Letterspaced uppercasing

\end{document}

And this is the result:

Hello, world!

Accents: élève blöf ï; Kerning: WAV, LTa, WAV, LTa.

Symbols: ¶ ‡ ™ ©
LETTERSPACED UPPERCASING

Using dvips

If you go the dvips route, then you cannot use the

\pdfmapfile macro. Instead, you have to enter addi-

tional mapfiles on the command line:

dvips -u +mapfile dvifile

The prefix + to the mapfile parameter is analo-

gous to the = prefix for the \pdfmapfile macro: it

tells dvips to use the named mapfile in addition to the

default one.

Using afm2tfm

The original intention of afm2tfm was not to create

fonts which are used directly by TEX. Instead, they

were to serve as a basis for virtual fonts, i.e. recipes

to compose fonts from other fonts. But it is not too

difficult to subvert this intention. The less optimal

way is to use the output of afm2tfm directly:

TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006 69



Siep Kroonenberg

afm2tfm kuen408i -p texnansi.enc \

quick.tfm >a2t.map

<edit a2t.map; see below>

Note that the .afm filename comes before the op-

tions. The .enc extension must be included.

The better way is to pretend to create a virtual

font:

afm2tfm kuen408i -T texnansi.enc \

-v slow.vpl null.tfm >a2t.map

vptovf slow.vpl

rm slow.vf

<edit a2t.map>

vptovf generates two files from slow.vpl, named

slow.vf and slow.tfm. You should remove slow.vf,

otherwise the dvi driver or pdftex would think that

slow is a virtual font.

Mapfile information is written to standard output,

which therefore has to be redirected, as shown above.

It contains the following string:

quick Kuenstler480BT-Italic

" TeXnANSIEncoding ReEncodeFont "

<texnansi

(everything on one line). This has to be changed into:

slow Kuenstler480BT-Italic

" TeXnANSIEncoding ReEncodeFont "

<texnansi.enc <kuen408i.pfb

(also on one line).

The example below displays differences in spac-

ing between the two: kerns and ligatures were only

written to the .vpl file, not to quick.tfm.

Note. This is not an example for copying.

Hello, world!
Accents: élève blöf ï; Symbols: ¶ ‡ ™ ©;
Kerning: WAV, LTa
Kerning: WAV, LTa

Other options of afm2pl and afm2tfm

With both programs you can artificially slant, narrow

and widen a font. afm2tfm can also generate artificial

smallcaps. Such manipulated fonts rarely look good,

though.

afm2pl also has some options for manipulating the

ligkern table and for setting spacing parameters. For

casual use, you don’t need to bother with these.

OpenType

We are seeing more and more OpenType fonts, which

are Unicode-based. These consist of either PostScript/

Type 1 or TrueType outlines inside a TrueType wrap-

per. OpenType fonts may contain huge character sets,

sometimes including smallcaps and oldstyle figures.

OpenType fonts with TrueType outlines have an

extension .ttf and can be treated just like TrueType

fonts.

OpenType fonts with Type 1 outlines have an

.otf extension. You can get an .afm for an OpenType

file by first converting it with FontForge to TrueType

(tip from Taco Hoekwater):

fontforge -c ’Open($1); Generate($2);’ \

ofont.otf ofont.ttf

ttf2afm ofont.ttf >ofont.afm

afm2pl -p texnansi ofont ofont8y

pltotf ofont8y

<edit mapfile to replace ‘<ofont.pfb’

with ‘<<ofont.otf’>

Note the <<, which means that the font is to be in-

cluded in full. For commercial fonts, this is usually

not allowed.

Or have a look at otftotfm, part of Eddie Kohler’s

LCDF Typetools and included in TEX Live.

Scripting

Various people have written scripts to automate font

installation. ConTEXt users will be familiar with tex-

font, which, by the way, has an option to use afm2pl

instead of afm2tfm.

Each example took several commands on a com-

mand line. So why not a script?

Actually, I did use scripts. But my scripts tend to

be highly specific to the job at hand, and I keep them

with those jobs. So it made more sense to me just to

give the necessary commands, and let readers script

their own solutions.

70 TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006



Font verification and comparison in examples

KAREL PÍŠKA
Institute of Physics, Academy of Sciences
182 21 Prague, Czech Republic
piska (at) fzu dot cz

Abstract
This contribution demonstrates several techniques for verifying and comparing fonts widely used with TEX: META-
FONT fonts and outline fonts in the PostScript Type 1 and OpenType formats. The aim is to generate various
proofsheet files in PDF or PostScript with node and control points, control vectors and hinting zones for the subsequent
visual scanning of graphic glyph representation, calculations of differences between metric data (e.g. character widths),
between contour curves for different versions or releases, etc., thus accomplishing the auditing process more quickly and
efficiently. Numerous tools — METAFONT, METAPOST, (pdf )(LA)TEX, dvips, gv, FontForge, MetaType1, TEXtrace,
mftrace, t1utils, awk, sed, sort and other programs — are used. Resulting differences “greater than negligible” often
indicate problems with compatibility, sometimes they may signal a bug undetected even for a long time. The examples
are mostly taken from the current TEX Live 2005. The results of verification of CM, EC, LM, CS and other fonts
available from TEX Live or CTAN, comparison for compatibility and consistency and the information about differences
and bugs will be reported.

Introduction
A short version of the article (low level font oriented
and technical) is presented here. After a brief explana-
tion of font elements important for typesetting with
TEX (metrics and glyph images) we will show a lim-
ited number of illustrations. The motivation of the
work was to prepare tools and intermediate results in
a textual (lists, tables) and a visual form to find, detect
and demonstrate differences, mistakes, cases of incon-
sistency and incompatibility and, in the next step, to
improve past, current or future fonts.

Font types and font data
TFM character dimensions
The tfm (TEX font metric) files contain four dimen-
sions for each character [1]:

• charwd, the width
• charht, the height above the baseline
• chardp, the depth below the baseline
• charic, the character’s “italic correction”

These define the size of each character’s “bounding
box” which TEX needs to typeset. For formatting text
TEX uses only metric information and does not need
glyph shapes. The tfm files also contain information
about ligatures and kerning pairs defining the space

adjustment between two adjacent characters. The dvi

output produced by TEX contains only references to
glyphs. The real glyphs are absent in dvi and are
included into the final output in PS/PDF by device
drivers (e.g. dvips) or by pdfTEX. The tfm files can be
converted by the tftopl program to human-oriented
property list files. We can read, edit and process them
in this text form more easily. afm is a metric format
for Type 1 PostScript fonts. The tfm and afm formats
represent and store metric data differently. The afm

bounding box has a different meaning, and in afm the
glyph width is defined by the WX parameter.
ec-lmr10.tfm/pl:

(CHARACTER C y

(CHARWD R 0.5278)

(CHARHT R 0.43055)

(CHARDP R 0.194443)

(CHARIC R 0.008)

lmr10.afm:

C 121 ; WX 527.77777 ; N y ; B 19 -205 508 431 ;

During our processing we check, compare and test
for compatibility the metric data, especially the charac-
ter widths, ligatures and kerning pairs crucial for type-
setting, taking into account TEX’s font limitations: A
font contains at most 256 character codes, 255 dif-
ferent nonzero widths, at most 15 different nonzero

TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006 71



Karel Píška

heights, 15 different nonzero depths, and 63 different
nonzero italic corrections.

Difference between TEX and outline fonts
The ‘native’ TEX font formats (pk/tfm) have no more
than 256 characters, no character names, and any com-
parison using TEX is based on character sets defined by
available encodings. On the other hand, the PostScript
Adobe Type 1 fonts (pfb/afm) have glyph names,
may contain many glyphs, but only 256 of which can
be encoded, their encodings may be flexible, and all
glyphs may be compared by names. Additionally, in
OpenType (otf) many glyphs are encoded and avail-
able. Therefore, operations with an outline font could
be independent of the TEX limitations and all glyphs
present in the font can be processed.

Font tables and font specimens with TEX
To test completeness of a font’s glyph set, we start
with font tables and font specimens. For this task,
testfont.tex (available from macros/plain/base

on CTAN) from the basic TEX distribution, as well
as fonttabs (texmf/tex/csplain/fonttabs.tex),
and OFS [4] developed by Petr Olšák can be recom-
mended.

METAFONT and bitmap fonts
METAFONT generates the metric tfm files and a bit-
map representation of glyphs for a selected device
(‘mode’). The shapes of bitmap fonts are represented
as a bitmap (a matrix of pixels) in any resolution. Un-
fortunately, probably no reference resolution exists.
We run METAFONT and dvips with modes avail-
able from the widely distributed modes.mf (CTAN:

fonts/modes):
mf ’\mode=’$MOD’;’ input font.mf

dvips -mode $MOD -D $RES

and with the corresponding resolutions, for example
MOD 300 600 1200 2400 2602 5333

RES cx ljfour ljfzzz supre proof crs

to test fonts for all designed sizes and also for various
(low, middle and high) resolutions. There is no di-
rect correlation between correctness or incorrectness
of shapes in different design sizes or different resolu-
tions (magnifications).

Outline fonts
Outline fonts, e.g. Adobe PostScript Type 1 and Open-
Type, are represented by their outline contour curves

Figure 1: csbx10 Á at various resolutions; the shape of the
accent changes.

independent of resolution. Of course, rendering al-
ways depends on an output device for both outline
and bitmap fonts. Good outline fonts that should be
rendered properly elsewhere, for example, may be em-
bedded in a PDF document and are more flexible than
bitmap fonts because “rerendering” of a bitmap font
for any device often causes a loss of quality. The aim
of testing outlines is to verify consistency (font and
glyph elements are unified for all fonts of a font fam-
ily, preserved for all design sizes) and compatibility of
versions, changes may be only improvements or cor-
rections of mistakes (not producing new mistakes).

Proofs of METAFONT fonts
csbx10: Á
Our approach is not to prove correctness of META-
FONT programs but to check their products — glyphs
in the pk format. Because it is impossible to choose
one resolution to verify, we test the glyphs at various
resolutions. Fig. 1 shows tests of Á from the csbx10
font at following resolutions: 300, 600, 1200, 2602, and
5333 dpi. The last is the result of mftrace (autotracing
bitmaps). We can detect a bug in CS fonts (from TEX
Live 2005) — serif upper case accents depend on reso-
lution (mode). We thus also observe a consequence
of such bugs: the results of conversion to the outline
font by autotracing high resolution bitmaps cannot be
correct.

cmbx9/cmbx10: y
The next example illustrates behavior of “y” in the
bold Computer Modern fonts (see Fig. 2 with 600,

72 TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006



Font verification and comparison in examples

Figure 2: cmbx10 y: an artifact in the tail.

Figure 3: Standard proofsheet from MetaType1.

1200, 5333 dpi, and mftrace) where a strange scrap is
generated. This bug in CM is very small, its occurrence
is rare and well hidden (only in some sizes), unlike the
previous easily evident bug in CS. A similar effect can
be observed for cmbx9, cmbx7, cmbx8 (see also [2]).
Probably, weaker correlations suppress this defect for
cmbx5, cmbx6, cmbx12, and cmbx17.

The role of METAFONT today
METAFONT fonts may be simple or very complex,
therefore debugging of a bitmapped glyph representa-
tion may be difficult. Although probably the users do
not expect bitmap fonts in distributions today, META-
FONT and METAPOST are still and will continue to
be very important tools for font developers.

Figure 4: Outline font proofs.

Figure 5: Extrema points and hints.

Proofs of outline fonts
Figure 3 shows the proofing page produced from the
Latin Modern sources directly by programs from the
MetaType1 package [3]. The following pictures in
Fig. 4 demonstrate my own variants of proofsheets
for screen and printer to recognize better the tinest
details (using zoom) invisible in the previous figure
because of mutual overlapping of such small details,
e.g. the control points and vectors. Figures 4 and 5
also raise questions about an optimal approximation
and a hinting strategy: To add the nodes at extrema
or not, how to hint accents, etc.

FontForge [5], an open source font editor devel-
oped by George Williams, allows us to read and gener-
ate various font formats. We can also use it for check-
ing and analyzing fonts, importing TEX font bitmaps,
and exporting glyph outline curves in eps for subse-
quent processing.

TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006 73



Karel Píška

P.P.

P.P.

P,P,

P,P,

F.F.

F.F.

F,F,

F,F,

AcAc cmr10

AcAc ec-lmr10

AdAd cmr10

AdAd ec-lmr10

AeAe cmr10

AeAe ec-lmr10

AoAo cmr10

AoAo ec-lmr10

Figure 6: Kerning pairs in a visual form.

ajaj ec-lmr100.99.3

ajaj ec-lmr101.00

ąjąj ec-lmr100.99.3

ąjąj ec-lmr101.00

f!f! ec-lmr100.99.3

f!f! ec-lmr101.00

f?f? ec-lmr100.99.3

f?f? ec-lmr101.00

Figure 7: Kerning changes in LM.

Comparison of metric data
Analyzing the metrics we detect (automatically) cases
of agreement or disagreement in dimension and kern-
ing values. In Fig. 6 we present a small part of the com-
parison between the CM and LM tfm files in the T1
(ec-lm) encoding. cmr10 and ec-lmr10 are compati-
ble in relation to the kerns "P" : ","." and absence
of kerns for "F","T","V","W","Y" : ",",".".

In ec-lmr10 new kerning pairs have been intro-
duced: "A" : "c","d","e","o".

Fig. 7 demonstrates the changes between two ver-
sions of LM.
\newlength{\bbox}\newlength{\cbox}%

\def\fboxsep{0pt}\def\fboxrule{0.1pt}

\def\pair#1#2{%

\settowidth{\bbox}{#1#2}%

\settowidth{\cbox}{\mbox{#1}\mbox{#2}}%

ÁÁÁÁÁ
Figure 8: A color mix.

\addtolength{\bbox}{-\cbox}%

\fbox{#1}\kern-0.2pt\kern\bbox\fbox{#2}%

\fbox{#1#2}}

\pair{a}{j}

A short LATEX macro \pair calculates the shift
between two “kerned” boxes.

Comparison of glyph images
We will demonstrate two techniques:
• color mix with pdfTEX for visual scan
• outline comparison for outline fonts

Color mix with pdfTEX
Generating of comparative proofsheets using pdfTEX
for mixing colors is possible for both bitmapped and
outline fonts. Searching for differences needs subse-
quent human visual postprocessing. In our examples,
the combination of red and cyan produces pink in the
intersection. Here is the TEX code:
\usepackage{graphicx}

\def\Default{\pdfliteral{0 g 0 G}}

\pdfpageresources{/ExtGState

<< /Luminosity

<< /Type /ExtGState /BM /Luminosity >>

>>}

\def\Acolor{1 0 0 rg}% red

\def\Bcolor{0 1 1 rg}% cyan

\renewcommand\C{\char#1}%

\Default \fbox{\makebox[0pt][l]%

{\pdfliteral{/Luminosity gs \Acolor}\Afont\C}%

{\pdfliteral{\Bcolor}\Bfont\C}}%

Fig. 8 demonstrates data from two samples:

left outline font lmbx10 (ver. 0.99.3) [cyan] vs. bit-
map font csbx10 [red]

right lmbx10 (ver. 0.99.3) [cyan] vs. lmbx10 (ver. 1.00)
[red] (both outline Type 1)

In a grayscale printing the red color looks dark, the
cyan is lighter, and the intersection is the lightest.

74 TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006



Font verification and comparison in examples

Figure 9: Improvement of outline approximation.

Comparison of outline fonts
Some elements of two outline fonts allow an auto-
matic comparison. We can compare two fonts with
a common glyph repertoire, e.g. to test two releases,
alternatives, extensions or subsets of any font, or to
test two similar fonts for differences. We compare all
the glyphs available in both fonts by their names au-
tomatically and detect the following differences:

• presence and absence of a glyph with a given name
(This may mean that a new glyph has been added
or an old glyph has been removed, a glyph has
been renamed, or sometimes, a glyph name may
be invalid)

• different glyph shapes (at least one segment is dif-
ferent)

• different glyph widths (even after rounding to in-
teger in the glyph coordinate space)

In the examples, the contour curves of the first
(older) font are black. The contour curves of the sec-
ond (newer) font are red and the filled glyph area is
yellow. The glyph box frames in the older font are
blue. The black and dark lines denote the older ver-
sion in printing without colors.

Figure 10: Modification and correction.

Figures 9 and 10 show differences between LM
0.99.3 and LM 1.00. In Fig. 9 the dollaroldstyle

from lmr10 has been improved (its conversion to out-
lines is better). Fig. 10 gives information about the
modification of the acute accent and correction of
glyph width in the lmbx10 font.

Conclusion
Techniques extending and complementary to existing
testing tools have been presented in various examples,
to help font authors and maintainers in their time
comsuming and expensive work. The results of tests
were or may be applied as warnings, bug reports or
suggestions. They were or are used for verification of
the Type 1 version of public Indic fonts [6] available
from CTAN and for tests of the LM fonts.

References
[1] Donald Knuth. The METAFONTbook.

[2] Bogusław Jackowski, Janusz M. Nowacki,
Piotr Strzelczyk. “Programming PostScript
Type 1 Fonts Using MetaType1: Auditing,
Enhancing, Creating. TUGboat 24:3, pp.
575–581, Proceedings of the XIV EuroTEX 2003
conference, Brest, France, 24–27 June 2003.

[3] MetaType1 distribution. ftp://bop.eps.gda.

pl/pub/metatype1.

[4] Petr Olšák. The OFS font management system.
ftp://matf.feld.cvut.cz/pub/olsak/ofs

[5] George Williams. FontForge: an outline font
editor. http://fontforge.sourceforge.net

[6] CTAN:fonts/ps-type1/indic

TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006 75



MlBibTEX meets ConTEXt

JEAN-MICHEL HUFFLEN
LIFC (FRE CNRS 2661)

University of Franche-Comté
16, route de Gray
25030 Besançon Cedex, France
hufflen (at) lifc dot univ dash fcomte dot fr

http://lifc.univ-fcomte.fr/~hufflen

Abstract
This article reports a first experiment of using MlBibTEX — our reimplementation of BibTEX — with ConTEXt, a TEX

format more modern than LATEX. We show how to take as much advantage as possible of both ConTEXt and MlBibTEX

features when they are used together. Also, many end-users are accustomed to using LATEX commands inside values

of BibTEX fields, and such commands may be unrecognised by ConTEXt. We explain how patterns and preambles

allow us to solve such problems.

Keywords
ConTEXt, bib module, bibliographies, bibliography styles, BibTEX, MlBibTEX.

Introduction
Listing the bibliographical references cited within a

document can be done manually — if the LATEX word

processor is used, that consists of typing successive

\bibitem commands of a thebibliography envi-

ronment [18, § 4.3.2]— but such an approach leads

to texts difficult to maintain and reuse, because they

are tightly bound to bibliography styles. A publisher

or anthology editor might like authors’ last names of

a ‘References’ section to be typeset using small capi-

tals, whereas another publisher would require the use

of standard Roman letters for these last names. Like-

wise, first names may be abbreviated or put in ex-

tenso, w.r.t. the bibliography style used. In addition,

doing a document’s bibliography manually is error-

prone: if this bibliography is unsorted, that is, if the

order of items is the order of first citations of these

items throughout the document, some change within

the document’s body can cause the bibliography to be

reorganised. Likewise, keys based on the author-date

system [19, § 12.3] may need to be recomputed if the

bibliography is enriched.

A better method is to use a bibliography processor:

such a program is given citation keys, searches bibliog-

raphy database files for resources associated with these

keys, and arranges them according to a bibliography

style, the result being a source file for a ‘References’

section, suitable for a word processor. A well-known

association between a word and bibliography proces-

sor is given by LATEX and BibTEX [21], working in

tandem, although this example is not unique. As an-

other example, Tib [1] has sometimes been used with

Plain TEX [17]; more generally, other examples of bib-

liography processors are given in [25].

‘Historically’, BibTEX was initially designed to

work with Scribe1 [24]. In fact, only a few points

related to TEX are hard-wired within BibTEX: us-

ing braces as delimiters, considering a group such as

‘{\command ...}’ as an accent command applied to

arguments in order to produce a single character [19,

§ 13.2.2], the use of the ‘~’ character for unbreak-

able spaces when names are formatted [20, § 5.4], the

width$ function, provided by the style language, that

returns the width of a string, expressed using TEX

units [19, Table 13.8]. Thus bibliographic entries spec-

ified with BibTEX should be usable with any format

built from TEX, provided that end-users do not put

LATEX-specific commands inside field values. Let us re-

call that TEX basically provides a powerful framework

1That is why BibTEX uses the ‘@’ character for specifying its com-
mands and entry types: this character introduces a command name
in Scribe, like ‘\’ in TEX. This convention is also used within
Texinfo [3], the GNU documentation format.

76 TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006



MlBibTEX meets ConTEXt

@BOOK{meaney2003,

AUTHOR = {John Meaney},

TITLE = {Context},

PUBLISHER = {Bantam Books},

YEAR = 2003,

NUMBER = 2,

SERIES = {The \emph{Nulapeiron}

Sequence},

NOTE = {The Sequel to ‘‘Paradox’’.

[Pas de version française

connue!] ! french},

LANGUAGE = english}

Figure 1: Example of a bibliographical entry.

to format texts nicely, but to be fit for use, the defini-

tions of this framework need to be organised in a for-

mat. The first formats were Plain TEX and LATEX; an-

other format, more modern, is ConTEXt [5]. A bibli-

ographic module, usable in conjunction with BibTEX,

has been added to ConTEXt [6, 8]. This module de-

fines ConTEXt commands to deal with the compo-

nents (metadata) of bibliographical information.2

Over the last few years, we have designed and

implemented a ‘new BibTEX’ — MlBibTEX, for ‘Mul-

tiLingual BibTEX’. Of course, it has been designed

to work with LATEX, but we plan to use it for other

output formats, too [10]. This article is a revised

and extended version associated with the presentation

given at EuroTEX. It aims to report a first experi-

ment of using MlBibTEX to build outputs suitable for

ConTEXt.3 First, we show how ConTEXt can be easily

used to pretty-print bibliography database (.bib) files.

Then we explain how an interface between ConTEXt

and BibTEX can be improved when MlBibTEX is used.

This article should be read without any difficulty by

any user familiar with LATEX and BibTEX: it requires

only basic knowledge of ConTEXt and its bib mod-

ule. It also refers to some basic notions of XML4 and

Scheme, the implementation language for MlBibTEX.5

2If we compare this module to what is provided for LATEX, its ap-
proach is close to the jurabib package [19, § 12.5.1], in the sense
that items of bibliographical information are given as arguments
of new commands. If you would like to redefine the layout of a
bibliography’s items, just redefine these new commands.
3We have used the most recent version of ConTEXt at the time of
writing, included in TEX Live 2005, available on DVD-ROM.
4eXtensible Markup Language. Readers interested in an introduc-
tory book to this formalism can consult [23].
5The version used is described in [14].

<mlbiblio>

...

<book id="meaney2003" language="english">

...

<series>

The <emph>Nulapeiron</emph> Sequence

</series>

<note>

The Sequel to

<emph emf="no" quotedf="yes">

Paradox

</emph>.

<group language="french">

Pas de version française connue!

</group>

</note>

</book>

...

</mlbiblio>

Figure 2: XML tree for the bibliographical entry shown in
Figure 1.

Pretty-print bibliographies
MlBibTEX’s new syntactic features for bibliographi-

cal entries are detailed in [9]. Roughly speaking, any

.bib file suitable for ‘old’ BibTEX can be processed

by MlBibTEX, except that square brackets are ordinary

characters for the former, syntactic delimiters for the

latter. Figure 1 gives an example of a bibliographical

entry for a book written in English (the value of the

LANGUAGE field, handled by MlBibTEX). The value of

the NOTE field includes a text to be put down only

in French-speaking bibliographies, this text being en-

closed by square brackets and labelled by the french

language identifier.

As mentioned in [9], the result of parsing a .bib

file can be viewed as an XML tree. For example, pars-

ing a file containing the meaney2003 entry results in

the XML tree sketched in Figure 2. Such a tree can be

saved into a file and displayed verbatim or handled by

tools belonging to XML’s world. ConTEXt provides

a way to handle XML texts [22], so it can deal with

such files. Figure 3 sketches a pretty-printer for bib-

liographical entries by means of ConTEXt commands

documented in [7, 22], other basic TEX commands —

such as \expandafter or \uppercase — being doc-

umented in [17]. These bibliographical entries are

displayed using MlBibTEX’s syntax. In addition, Ml-

BibTEX’s new syntax for emphasising the parts of per-

TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006 77



Jean-Michel Hufflen

\enableregime[il1]

\def\ProcessMlBibTeXFieldName[#1]{{\tt \expandafter\uppercase{#1} = \textbraceleft}}

\def\CloseMlBibTeXFieldValue{{\tt \textbraceright},\par}

\def\ProcessMlBibTeXLanguagePart[#1]{\PutLanguageCommand[#1]{\tt LANGUAGE =} #1,\par}

\def\ProcessMlBibTeXNamePart[#1]{{\tt #1 =>} }

\def\PutLanguageCommand[#1]{\doifelse{#1}{english}{\language[en]}{%

\doifelse{#1}{french}{\language[fr]}{\doif{#1}{magyar}{\language[hu]}}}}

\defineXMLenvironment[mlbiblio] \startitemize \stopitemize

\defineXMLenvironment[book] {\item {\tt @BOOK\textbraceleft}\XMLpar{book}{id}{*unkeyed*},%

\startnarrower[left] \ProcessMlBibTeXLanguagePart[\XMLpar{book}{language}{english}]} {%

\stopnarrower {\tt \textbraceright}}

...

\defineXMLenvironment[author] {\ProcessMlBibTeXFieldName[author]} \CloseMlBibTeXFieldValue

...

\defineXMLenvironment[first] {\ProcessMlBibTeXNamePart[first]} {, }

\defineXMLenvironment[von] {\ProcessMlBibTeXNamePart[von]} {, }

\defineXMLenvironment[last] {\ProcessMlBibTeXNamePart[last]} \unskip

\defineXMLenvironment[junior] {, \ProcessMlBibTeXNamePart[junior]} \unskip

\defineXMLenvironment[asitis] {{\tt \textbraceleft}} {{\tt \textbraceright}}

\defineXMLenvironment[emph] {\doifelse{emph}{quotedf}{yes}{{\tt ‘‘}}{%

\doifelse{emph}{emf}{yes}{{\tt \textbackslash emph\textbraceleft}\bgroup\em}{}}} {%

\doifelse{emph}{emf}{yes}{{\tt \textbraceright}\egroup}{%

\doifelse{emph}{quotedf}{yes}{{\tt ’’}}{}}}

\def\GroupMarker{! }

\defineXMLenvironment[foreigngroup] {{\tt [}%

\bgroup\PutLanguageCommand[\XMLpar{foreigngroup}{language}{*error*}]} {%

\egroup{\tt ] : \XMLpar{foreigngroup}{language}{*error*}} }

\defineXMLenvironment[group] {\startnarrower[left]{\tt [}%

\bgroup\PutLanguageCommand[\XMLpar{group}{language}{*error*}]} {%

\egroup{\tt ] \GroupMarker \XMLpar{group}{language}{*error*}} \stopnarrower}

\defineXMLenvironment[nonemptyinformation] {{\tt []}\def\GroupMarker{* }} {}

\starttext

\processXMLfilegrouped{...}

\stoptext

Figure 3: Pretty-printing an XML tree resulting from parsing .bib files.

son names [21, § 4], based on keywords, is used. For

example:

AUTHOR = {first => John, last => Meaney},

We can notice that keywords, syntactic delimiters,

and field names are typeset using a typewriter font,

whereas the Roman typeface is used for metadata. As

another pretty-printing feature, typographical effects

are put into action. For example, the value of the

SERIES field will be rendered as follows:

SERIES = {The \emph{Nulapeiron} Sequence},

Likewise, any information is typeset using the typo-

graphical conventions of its own language:

NOTE =

{ ... [Pas de version française connue !] ... }

where the exclamation mark is preceded by a thin

space character, as in French.

If we look at the text given in Figure 3, we notice

that the only heavy part concerns language identifiers.

ConTEXt uses ISO codes for languages [5, Ch. 7] and

can switch to any language via the \language[...]

command, without any preliminary declaration such

as LATEX needs when the babel package is loaded [19,

§ 9.2]. MlBibTEX’s language identifiers are unambigu-

ous prefixes of packages or options of the babel pack-

age, as explained in [12]. For example:

78 TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006



MlBibTEX meets ConTEXt

• polish is for the option of the babel package,

• polski is for the polski package [4, App. F],

• pol is for either of these last two, the final choice

depends on what a user puts in the document’s

preamble,

• po is ambiguous because it may be the prefix of

‘Polish’ or ‘Portuguese’.

In fact, we need a complete correspondence table, with

our \PutLanguageCommand command given in Fig-

ure 3 implementing it only partially.6 Let us remark

that such a correspondence table could be useful for

other purposes, e.g., generating bibliographies for doc-

uments written using DocBook7 [27]. This table be-

tween the structure managing MlBibTEX’s language

identifiers [12] and ISO codes for languages [2] has

been implemented within the Scheme functions of Ml-

BibTEX.8

Figure 3 gives a rough version of such a pretty-

printer, which may be improved.9 For example, the

error cases are just labelled within the source text by

identifiers surrounded by ‘*’, which could be refined

into a more efficient marking of errors. We can also

align ‘=’ signs vertically between field names and val-

ues. That can be done in a tabulate environment, but

leads to slighly complicated ConTEXt commands, be-

cause we need to collect the content of a table before

formatting it.

ConTEXt and MlBibTEX together
If you would like BibTEX to generate specifications of

publications suitable for ConTEXt from bibliographi-

cal entries, you may use the \setupbibtex command,

as explained in [8, § 2.4]. This command gets access

to bibliography styles suitable for ConTEXt, that is,

handled by the bib module. Since MlBibTEX can pro-

cess bibliography styles using the bst language [20] in

compatibility mode [13], it can deal with these styles.

6In fact, this \PutLanguageCommand command could be written
in an easier way, since complete names such as english, french, . . .
also work as arguments of the \language command of ConTEXt.
However, this feature is not described in [5].
7DocBook is an XML-based system for writing structured docu-
ments.
8How to put this implementation into action is shown in Figure 4.
9A more elaborated version can be downloaded from MlBibTEX’s
home page: http://lifc.univ-fcomte.fr/~hufflen/texts/

mlbibtex/contextstuff/.

However, we do not recommend this solution, which

should be temporary, from our point of view. In addi-

tion, the compatibility mode is not very efficient for

sake of implementation issues.10 A first improvement

could be the development of new bibliography styles,

using the nbst11 language, close to XSLT12 [26] and

described in [9].

As mentioned in [19, § 13.5.2], the choices among

different styles for displaying person names, work ti-

tles, . . . causes a combinatorial explosion. Besides,

all the functions of a bibliography style of BibTEX

must be grouped into a unique file, so a rich library

of bibliography styles for BibTEX should include a

huge number of styles, each being monolithic. As

explained in [11], several fragments of a bibliography

style written using the nbst language can be assembled

dynamically, provided that there is no conflict among

the templates programmed using nbst. Consequently,

designing styles according to a modular approach is

easier in MlBibTEX than in BibTEX. Moreover, an ex-

tended version of the \setupbibtex command could

allow the use of several complementary files for a bib-

liography style.

ConTEXt vs LATEX
End users sometimes put LATEX commands within the

values of BibTEX fields. Some commands aim to in-

crease the expressive power of the information put

into .bib files, an example being given by the value

of the SERIES field in Figure 1. Other examples are

related to some features of BibTEX:

{Maria {\MakeUppercase{d}e La} Cruz}

— given in [19, p. 767] about person names — allows

BibTEX to interpret ‘{de La}’ as a particle,13 because

this group, surrounded by braces, begins with a low-

ercase letter, even if this particle should be typeset as

‘De La’. Some commands are recognised by ConTEXt,

some not. There are two solutions to this problem:

• when outputs for ConTEXt are produced, the con-

tents of @preamble rubrics included in .bib files

10When MlBibTEX parses a .bib file, it tries to organise informa-
tion into a deep tree, as far as possible. For example, the compo-
nents of a person name are split into subtrees. When the compat-
ibility mode is used, these components are serialised into a string,
and destructured again by the format.name$ function of bst [20].
11New Bibliography STyles.
12eXtensible Stylesheet Language Transformations, the language of
transformations used for XML texts.
13‘Maria’ being the first name, ‘Cruz’ the last name.

TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006 79



Jean-Michel Hufflen

(and-let* ((((log-output-p-pv ’open) jobname)) ; Opening the log (.mblg) file.
(((bibtexkey-alist-pv ’add-key) "hoekwater2001")) ; Citation key to be processed.
...

(((bibtexkey-alist-pv ’extend))) ; If we want to process all the entries ( \nocite{*}).
((let ((bib-suffix ".bib"))

(every (lambda (filename) ; Parsing .bib files. If the suffix is not given, the filename-plus

; function adds it.
(s-parse-bib-file (filename-plus filename bib-suffix #f)))

bibliographyfilename-list)))

(sxml-mlbiblio-tree (s-get-sxml-mlbiblio-tree)) ; Build the SXML tree.
(((language-trie-pv ’use-iso-code-table))) ; Using ISO codes for all the languages.
(((preamble-pv ’set) "contextpreamble")) ; Using @contextpreamble{...} as preambles.
(k1 (n-assemble-nstyles stylefilename-list)) ; Styles are assembled and compiled into a

; so-called k1 function.
(((output-encoding-pv ’set) ’latin1)) ; Accented letters of Latin-1 allowed in the output file.
(((bbl-output-p-pv ’open) jobname))) ; Opening the output file.

(k1 sxml-mlbiblio-tree) ; Applying the whole style to the SXML tree.
((bbl-output-p-pv ’close)) ; Closing files.
((log-output-p-pv ’close))

#t) ; Final result.

Figure 4: MlBibTEX’s kernel for use with ConTEXt.

are not written as BibTEX would do; instead, Ml-

BibTEX uses @contextpreamble rubrics,14 which

can be used to implement some LATEX commands

in ConTEXt; switching to another preamble is

controlled by an option of the MlBibTEX pro-

gram;15

• a better solution is given by patterns, expressed in

Scheme, replacing substrings by XML-conformant

strings; for example:16

(define-pattern "\\emph{#1}"

"<emph>#1</emph>")

Patterns aim to process any LATEX command in-

cluded in a .bib file, including user-defined com-

mands, as explained in [10]. ‘General’ patterns

are planned for the next version, only some pre-

defined patterns are implemented now, mostly for

letters accented by means of TEX commands.17

14This new command does not interfere with parsing .bib files by
‘old’ BibTEX, because it looks like:

@...{〈string〉 (# 〈string〉)*}

where ‘〈string〉’ is surrounded by braces or double quotes. Such
a command is ignored by ‘old’ BibTEX.
15. . . or see how to process in Scheme in Figure 4.
16Let us recall that in Scheme, the ‘\’ character is used to escape
special characters in constant strings. To include it within a string,
it must be itself escaped.
17The internal representation uses Latin-1, accented letters of this
encoding being viewed as single characters.

This solution is more general, not limited to bibli-

ographies usable by ConTEXt. Let us assume that

you have to convert a .bib file into HTML,18 and

consider the following title:

\ConTeXt, the Manual

Even if displaying ‘\ConTeXt’ on a Web page does

not cause any error, it is better to introduce this

pattern:

(define-pattern "\\ConTeXt"

"<symbol name=’ConTeXt’/>")

Now you can define a way to display this symbol

within a bibliography style.

Direct interface
ConTEXt does not deal with the same auxiliary files

as LATEX. Moreover, it builds an .aux file only if the

\setupbibtex command is activated. Let us recall

that BibTEX reads only .aux files, never .tex files.

However, MlBibTEX may need to parse the preamble

of a source file, as explained in [12]. Concerning out-

puts suitable for ConTEXt, the information of interest

is the encoding: can MlBibTEX put accented letters of

Latin-1 directly into the resulting file? Or does it have

to use TEX accent commands?

18HyperText Markup Language.

80 TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006



MlBibTEX meets ConTEXt

A better solution than making useless .aux files

and the parsing of preambles of ConTEXt documents

(parts between the beginning of a document and the

\starttext command) is to build a driver directly

written in Scheme. Of course, this task requires some

knowledge of both the Scheme programming language

and the broad outlines of MlBibTEX’s implementa-

tion, but the result is a small-sized program, as shown

in Figure 4. You can see how to add a citation key as

if it were caught from an .aux file, and how to get

all the entries of .bib files as the \nocite{*} com-

mand of LATEX would cause to. We also show how to

use a preamble command — @...{...} — specific for

ConTEXt. Other information to be supplied is:

jobname (string) the base name of the main input file

processed by ConTEXt;

bibliographyfilename-list (string list) all of the

.bib file names to be searched;

stylefilename-list (string list) all the fragments

of a bibliography style.

The and-let* macro [15] causes the sequential evalu-

ation of the clauses of its first argument to be stopped

as soon as a false value (for a failure) is returned. For

example, the evaluation of the whole expression given

in Figure 4 stops and returns the false value if a log file

(.mblg file) cannot be opened. Otherwise, the non-

false result of a clause may become the value of a local

variable. For example, the sxml-biblio-tree vari-

able is given the bibliographical entries in the SXML19

format. Then the other arguments of the and-let*

macro are evaluated sequentially if all the clauses suc-

ceed, that is, if there is no error in parsing .bib

files and building the bibliography style. In our case,

the style — which results in a Scheme function — is ap-

plied to the bibliographical entries, and output files

are closed. Finally, the true value is returned.

Going further, the texexec script, which launches

successive run phases of ConTEXt, could be extended

to launch the MlBibTEX program.

Conclusion
When we began this task, we had written only some

small-sized examples using ConTEXt and emphasising

its differences with LATEX. And we were afraid we

19Scheme implementation of XML. See [16] for more information.

would have to reprogram some important parts of Ml-

BibTEX. To be honest, changes were needed, but not

as many as we believed. Concerning the bib mod-

ule, we learned it more quickly than we planned. The

first meeting between MlBibTEX and ConTEXt has

succeeded.

Acknowledgements
Many thanks to Hans Hagen and Taco Hoekwater,

who kindly answered my very ConTEXt-nical ques-

tions. I am also grateful to Karl Berry, who proofread

this article.

References
[1] James C. Alexander: Tib: a TEX Bibliographic

Preprocessor. Version 2.2, see CTAN:

biblios/tib/tibdoc.tex. 1989.

[2] Harald Tveit Alvestrand: Request for

Comments: 1766. Tags for the Identification

of Languages. UNINETT, Network Working

Group. March 1995. http://www.cis.

ohio-state.edu/cgi-bin/rfc/rfc1766.

html.

[3] Robert J. Chassell and Richard M. Stallman:

Texinfo. The GNU Documentation System.

Version 4.8. http://www.gnu.org/software/

texinfo. December 2004.

[4] Antoni Diller: LATEX wiersz po wierszu.

Wydawnictwo Helio, Gliwice. Polish

translation of LATEX Line by Line with an

additional annex by Jan Jelowicki. 2001.

[5] Hans Hagen: ConTEXt, the Manual. November

2001. http://www.pragma-ade.com/

general/manuals/cont-enp.pdf.

[6] Taco Hoekwater: “The Bibliographic Module

for ConTEXt”. In: EuroTEX 2001, pp. 61–73.

Kerkrade (the Netherlands). September 2001.

[7] Taco Hoekwater: ConTEXt System Macros.

Part 1: General Macros. 2002. http://tex.

aanhet.net/context/syst-gen-doc.pdf.

[8] Taco Hoekwater: ConTEXt. Module

Documentation. March 2006. http:

//dl.contextgarden.net/modules/t-bib/

doc/context/bib/bibmod-doc.pdf.

TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006 81



Jean-Michel Hufflen

[9] Jean-Michel Hufflen: “MlBibTEX’s Version

1.3”. TUGboat, Vol. 24, no. 2, pp. 249–262.

July 2003.

[10] Jean-Michel Hufflen: “MlBibTEX: beyond

LATEX”. In: Karl Berry, Baden Hughes and

Steven Peter, eds., Preprints for the 2004 Annual

Meetings, pp. 77–84. TUG, Xanthi, Greece.

August 2004.

[11] Jean-Michel Hufflen: “Making MlBibTEX Fit

for a Particular Language. Example of the

Polish Language”. Biuletyn GUST, Vol. 21,

pp. 14–26. 2004.

[12] Jean-Michel Hufflen: Managing Languages

within MlBibTEX. To appear. June 2005.

[13] Jean-Michel Hufflen: “BibTEX, MlBibTEX and

Bibliography Styles”. Biuletyn GUST, Vol. 23,

pp. 76–80. In BachoTEX 2006 conference. April

2006.

[14] Richard Kelsey, William D. Clinger,

Jonathan A. Rees, Harold Abelson, Norman I.

Adams IV, David H. Bartley, Gary Brooks,

R. Kent Dybvig, Daniel P. Friedman, Robert

Halstead, Chris Hanson, Christopher T.

Haynes, Eugene Edmund Kohlbecker, Jr,

Donald Oxley, Kent M. Pitman, Guillermo J.

Rozas, Guy Lewis Steele, Jr, Gerald Jay

Sussman and Mitchell Wand: “Revised5 Report

on the Algorithmic Language Scheme”. HOSC,

Vol. 11, no. 1, pp. 7–105. August 1998.

[15] Oleg B. Kiselyov: and-let*: an and with local

bindings, a guarded let* special form. March

1999. http://srfi.schemers.org/srfi-2/.

[16] Oleg E. Kiselyov: XML and Scheme. September

2005. http://okmij.org/ftp/Scheme/xml.

html.

[17] Donald Ervin Knuth: Computers & Typesetting.

Vol. A: The TEXbook. Addison-Wesley

Publishing Company, Reading, Massachusetts.

1984.

[18] Leslie Lamport: LATEX. A Document

Preparation System. User’s Guide and Reference

Manual. Addison-Wesley Publishing Company,

Reading, Massachusetts. 1994.

[19] Frank Mittelbach and Michel Goossens, with

Joannes Braams, David Carlisle, Chris A.

Rowley, Christine Detig and Joachim

Schrod: The LATEX Companion. 2nd edition.

Addison-Wesley Publishing Company, Reading,

Massachusetts. August 2004.

[20] Oren Patashnik: Designing BibTEX Styles.

February 1988. Part of the BibTEX

distribution.

[21] Oren Patashnik: BibTEXing. February 1988.

Part of the BibTEX distribution.

[22] PRAGMA ADE, http://www.pragma-ade.

com/general/manuals/example.pdf: XML in

ConTEXt. November 2001.

[23] Erik T. Ray: Learning XML. O’Reilly

& Associates, Inc. January 2001.

[24] Brian Keith Reid: SCRIBE Document Production

System User Manual. Technical Report,

Unilogic, Ltd. 1984.

[25] David Rhead: The “Operational Requirement”

(?) for Support of Bibliographic References by

LATEX 3. Technical Report L3–005, LATEX 3.

August 1993.

[26] W3C: XSL Transformations (XSLT). Version 1.0.

W3C Recommendation. Edited by James Clark.

November 1999. http://www.w3.org/TR/

1999/REC-xslt-19991116.

[27] Norman Walsh and Leonard Muellner:

DocBook: The Definitive Guide. O’Reilly

& Associates, Inc. October 1999.

82 TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006



Appendix G illuminated

BOGUSŁAW JACKOWSKI
BOP s.c., Gdańsk, Poland
_JB ackowski (at) gust dot org dot pl

Introduction
This paper aims to provide a collection of illustrations

to Appendix G of The TEXbook [1].

To begin with, I will summarize briefly the main

issues of The TEXbook which will be dealt with here;

next, I confine myself to the explanation of the figures.

Naturally, I will use the same notation as is used in

Appendix G.

I recommend reading this paper simultaneously

with Appendix G, although they partly overlap.

Motivation
TEX’s algorithm for typesetting mathematical formu-

las is precisely described by Donald E. Knuth in Ap-

pendix G of The TEXbook. The description suffices to

implement the algorithm in other languages. For ex-

ample, it was implemented in JavaScript by Davide P.

Cervone [2].

The only drawback of Appendix G is that no il-

lustrations are provided. Of course, it is only a rela-

tive drawback. Professor Knuth apparently can live

without illustrations. My comprehension critically

depends on pictures. When they are missing in the

original text, I end up making sketches while reading.

A few years ago, during my umpteenth reading of

Appendix G, I prepared a bunch of sketches for my-

self. I didn’t think about publishing them, as I was

convinced that it is just my predilection or idiosyn-

crasy; but, judging from the paucity of available math

fonts, I concluded that perhaps others might have sim-

ilar problems.

Therefore, I decided to publish my illustrations to

Appendix G in hope that they may prove useful, for ex-

ample, for those working on math extensions for the

available non-math fonts. Moreover, they may turn

out to be helpful in future works on the improvement

of TEX; after all, the algorithm is older than a quarter

of century, and the world is not sleeping. For example,

Murray Sargent III from Microsoft published recently

(April, 2006) an interesting note on using Unicode for

coding math [3]. He apparently was inspired by TEX:

the notation is certainly TEX-based and well-known

names appear in the acknowledgements and bibliogra-

phy (Barbara Beeton, Donald E. Knuth, Leslie Lam-

port).

Math styles
In math formulas, the following eight styles are used:

• D, D′— in display formulas, generated out

of text placed between double dollars $$...$$

(display style);

• T , T ′— in formulas occurring in a paragraph,

i.e., placed between single dollars $...$

(text style);

• S, S′— in formulas occurring in lower or

upper indices, i.e., after the symbols ^ and _

(script style);

• SS, SS′— in formulas occurring in indices of

indices or deeper (scriptscript style).

Typically, in the plain format, 10-point fonts are

used for the styles D and T , 7-point fonts for the style

S, and 5-point fonts for the style SS. The “primed”

styles, called cramped, use the same point sizes; they

differ from the uncramped ones in the placement of

subformulas. Table 1 defines the relations between

styles of formulas and their subformulas.

The symbol C will denote the current style, the

symbol C↑ the corresponding style of a superscript,

and the symbol C↓ the corresponding style of a sub-

script. From the rules given in Table 1 it follows that

C↓= (C↑)′.

Math lists
When TEX reads math material, it makes a math list

out of it. The math list contains the following math-

specific objects:

TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006 83



Bogusław Jackowski

Basic style Superscript style Subscript style

D, T S S′

D′, T ′ S′ S′

S, SS SS SS′

S′, SS′ SS′ SS′

Basic style Numerator (α) Denominator (β)
of the formula style style
α \over β

D T T ′

D′ T ′ T ′

T S S′

T ′ S′ S′

S, SS SS SS′

S′, SS′ SS′ SS′

Table 1: Rules of the style change — indices (top) and frac-
tions (bottom)

• atom, the basic element;

• generalized fraction, the result of \above, \over,

etc.;

• style change, the result of \displaystyle,

\textstyle, etc.;

• boundary element, result of \left or \right;

• 4-way choice, the result of \mathchoice.

There are several types of atoms, depending on

their contents. Table 2 (a duplicate of the table given

on page 158 of The TEXbook) lists all possible cases.

Moreover, the math list may contain elements spe-

cific to a vertical list:

• horizontal material (rules, penalties, discretionaries

or whatsits);

• vertical material, inserted by \mark, \insert or

\vadjust;

• horizontal space, inserted by \hskip, \kern,

or (acceptable only in math mode) \mskip,

\nonscript or \mkern.

The math list is processed twice; after the second

pass the “normal” vertical list is created. The scheme

of the algorithm (consisting of 22 steps) is shown in

Figure 1.

As we will see, font dimension parameters play

an essential role. Following The TEXbook, I will de-

note the i th parameter of the second family (that is,

\textfont2, \scriptfont2, \scriptscriptfont2)

by σi , and the i th parameter of the third family

(\textfont3, \scriptfont3, \scriptscriptfont3)

Name Description of the atom

Ord ordinary, e.g., x
Op holding a big operator, e.g.,

∑

Bin holding a binary operator, e.g., +
Rel holding a relational symbol, e.g., =
Open holding an opening symbol, e.g., (
Close holding an closing symbol, e.g., )
Punct holding a punctuation symbol, e.g., ,
Inner “inner”, e.g., 1

2

Over holding an overlined symbol, e.g., x
Under holding an underlined symbol, e.g., x
Acc holding an accented symbol, e.g., x̂
Rad holding a radical symbol, e.g.,

p
2

Vcent holding a vbox produced by \vcenter

Table 2: The types of atoms which may appear in a math
list

by ξi . Note that the σi parameters have different

values for different styles, while the values of the

ξi parameters do not depend on the current style —

when Computer Modern fonts and the plain format

are used.

Selected steps of the algorithm
In most cases, the steps of the algorithm are straight-

forward and a short verbal explanation suffices. More

detailed elaboration is needed, in my estimation, only

for the typesetting of: radicals (step 11), mathemati-

cal accents (step 12), operators with limits (step 13),

generalized fractions (step 15), and formulas with in-

dices (step 18). The ensuing subsections deal with

these steps.

Typesetting radicals

The process of assembling a formula containing a radi-

cal is presented in Figure 2. The top part of the picture

shows the components (the radicand is typeset using

the C′ style), the bottom part the result of the assem-

bling. Let wx , hx , dx denote respectively the width,

the height and the depth of the radicand, and wy , hy ,

dy those of the radical symbol. The height of the rad-

ical symbol is expected to be equal to the thickness

of the math rule, i.e., hy = θ = ξ8. (A font designer

may decide that hy 6= ξ8 but I cannot see the ratio-

nale for such a decision.) The quantity ψ is defined as

follows:

ψ=

(

ξ8+
1
4
σ5, styles D,D′,

5
4
ξ8, other styles.

84 TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006



Appendix G illuminated

Figure 1: The scheme of the algorithm of the math list processing; the numbers at the left of the boxes refer to the steps
of the algorithm, as described in Appendix G

The quantity ∆ is computed in such a way that the

radical symbol is vertically centered with respect to

the radicand: ∆= 1
2

�

dy − (hx + dx +ψ)
�

.

The baseline of the resulting formula coincides

with the baseline of the radicand.

Typesetting mathematical accents

The typesetting of an accented formula is simpler than

the typesetting of a radical. Nevertheless, Figures 3

and 4 reveal non-trivial subtleties of the routine.

As before, let wx , hx , dx denote respectively the

width, the height and the depth of the accentee (type-

set in the style C′), and wy , hy , dy those of the ac-

center. Actually, these are the widths of the respective

boxes; if the accentee is a symbol, its width, wx , is

computed as the sum wd+ ic, where wd is the nom-

inal (metric) width of the accentee, and ic the italic

correction.

Both the accenter and accentee boxes are put into

a vbox one above the other, and a negative vertical

TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006 85



Bogusław Jackowski

Figure 2: Assembling a radical; symbols explained in the text

kern, −δ, is inserted between the boxes, where δ =
min(x-height, hx ). The x-height is defined by the fifth

dimen parameter (\fontdimen5) of the accenter font.

The horizontal shift of the accenter, s , is equal

to the implicit kern between the accentee and the

special character, skewchar (defined by the command

\skewchar); in the plain format, it is the character of

code 127 (tie after) for family 1, and the character of

code 48 (prime) for family 2. The kern has nothing to

do with the shape of the \skewchar, but is intended

to provide an appropriate correction due to the skew-

ness of the accentee. If the accentee is already a boxed

formula, TEX assumes that s = 0.

The width of the resulting formula is always equal

to the width of the accentee, wx ; the baseline of the

resulting formula coincides with the baseline of the

accentee.

Figure 3: Assembling an accented formula, wy ≤ wx ;
symbols are explained in the text

Figure 4: Assembling an accented formula, wy > wx ;
symbols have the same meaning as in Figure 3

86 TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006



Appendix G illuminated

Figure 5: Assembling an operator with limits placed above and below; δ denotes the italic correction of the operator symbol

Typesetting operators with limits

The placement of the limits of an operator depends

on the current style and the usage of \limits and

\nolimits commands. If the style is D or D′ and the

operator \nolimits was not applied, the limits are

placed above and below the operator, as displayed in

Figure 5; otherwise, unless the operator \limits was

used, the limits are processed as fractions (see follow-

ing section about fractions).

The operator symbol is centered vertically with

respect to the math axis (σ22). TEX tries to place the

upper formula in such a way that its baseline is distant

by ξ11 from the top of the operator; however, if the

distance between the bottom of the upper subformula

and the top of the operator would be less than ξ9,

the distance ξ9 is forced. Similarly, the baseline of the

lower subformula is distant by ξ12 from the bottom

of the operator, unless the distance between the top of

the lower subformula and the bottom of the operator

would be less than ξ10, in which case the distance ξ10

is forced.

For the correction of the horizontal placement

of the limits, the value of the italic correction of the

operator symbol (denoted by δ in Figure 5), is used.

Typesetting generalized fractions

There are two kinds of fractions implemented in TEX:

with or without a bar between the numerator and de-

nominator. They are typeset using different rules, as

shows Figure 6. These rules, however, do not suffice,

as the numerator and denominator are likely to col-

lide. TEX cleverly avoids collisions, as is shown in

Figures 7 and 8.

For a fraction with a bar, the numerator and de-

nominator are shifted independently in order to pro-

vide a minimal gap, ϕ, between the formulas and the

bar. The position of the bar remains intact — it coin-

cides with the math axis (see Figure 7). For a fraction

without a bar, a different strategy is used to avoid the

collision, namely, both the numerator and denomina-

tor are shifted apart so that the gap between them is

equal to ϕ (see Figure 8). Note that ϕ has a different

meaning in the two cases.

TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006 87



Bogusław Jackowski

Figure 6: The placement of numerators and denominators in generalized fractions; the thickness of the rule, θ, is given either
by the value of ξ8 or explicitly; the latter possibility is provided by the \abovewithdelims command; observe that σ9 is
used for the formula with a bar, while σ10 for the formula without a bar

Figure 7: Resolving a collision between the numerator
and denominator in the case of a fraction with a bar

Figure 8: Resolving a collision between the numerator
and denominator in the case of a fraction without a bar

88 TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006



Appendix G illuminated

(a)

(b)

(c)

Figure 9: The horizontal placement of indices: (a) the place-
ment of a lone superscript, (b) the placement of a lone sub-
script, (c) the placement of both superscript and subscript

(a)

(b)

Figure 10: The vertical placement of indices: (a) the place-
ment when the kernel is a symbol, (b) the placement when
the kernel is a boxed formula

(a) (b)

(c) (d)

Figure 11: Resolving collisions of indices (further explana-
tions in the text)

Typesetting formulas with indices

The placement of indices is a fairly complex task due

to the variety of situations that may occur.

Figures 9a – 9c show the horizontal placement of

indices. If the kernel is a single symbol, the super-

script, if present, is shifted to the right by the amount

of the italic correction of the kernel symbol. Techni-

cally, a slightly different procedure is involved in the

presence of a subscript, as stated in the description of

step 17 in Appendix G. If the kernel is already a boxed

formula, TEX assumes that δ = 0. A kern of the value

\scriptspace (s in the figure) is always appended to

index formulas.

The procedure for the vertical placement (see Fig-

ures 10a – 10b) makes use of 7 parameters: from σ13 to

σ19. Again, different procedures are employed depend-

ing on the structure of the kernel. If it is a symbol,

σ13 for the style D, σ14 for other uncramped styles,

and σ15 for cramped styles are used for the placement

of a superscript; for the placement of a subscript, σ16

is used if a superscript is absent and σ17 otherwise. If

the kernel is a boxed formula, σ18 is used for the posi-

tioning of the superscript and σ19 for the positioning

of the subscript. Moreover, the respective values are

TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006 89



Bogusław Jackowski

not taken from the current font: σ↑ and σ↓ mean that

the parameters refer to the fonts corresponding to the

styles C↑ and C↓, respectively.

Indices, as one can expect, are also subject to po-

tential collisions. The actions for such a case are

depicted in Figures 11a – 11d: (a) the bottom of the

superscript formula cannot be placed lower than 1
4
σ5

above the baseline; (b) the top of the subscript formula

cannot be placed higher than 4
5
σ5 above the baseline;

(c) the gap between the bottom of the superscript and

the top of the subscript cannot be smaller than 4ξ8

(recall that ξ8 stores the math rule thickness) — the

subscript is shifted if required; (d) finally, if the latter

situation occurs, both indices can be shifted up so that

the bottom of the superscript is not lower than 4
5
σ5

above the baseline.

Conclusions
As originally mentioned, I prepared the illustrations

initially for myself and only later decided to publish

them in hope that somebody else may also benefit.

Therefore, I eagerly welcome any feedback.

Acknowledgements
I am very grateful to Jerzy Ludwichowski and Piotr

Strzelczyk for their prompt and willing help.

References
[1] Donald E. Knuth, The TEXbook, Computers &

Typesetting: Volume A, Addison Wesley, 1986

[2] Davide P. Cervone, jsMath: A Method

of Including Mathematics in Web Pages,

http://www.math.union.edu/ dpvc/jsMath/

[3] Murray Sargent III, Unicode Nearly Plain -Text

Encoding of Mathematics,

http://www.unicode.org/notes/tn28/

90 TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006



Open-belly surgery in Ω2

YANNIS HARALAMBOUS, GÁBOR BELLA, ATIF GULZAR
ENST Bretagne, CS 83 818, 29 283 Brest Cedex 3, France
yannis dot haralambous (at) enst-bretagne dot fr, gabor dot bella (at) enst-bretagne dot fr,

atif dot gulzar (at) gmail dot com

Abstract
TEX and its successors, including the initial version of Ω, all suffer from the same technical limitations, such as

inadequate support for TrueType/OpenType font formats and the lack of distinction between character and glyph data.

In this paper, the authors present Ω2, which provides extensibility through both external modules and the texteme
concept that supersedes TEX’s tokens and nodes as well as characters and glyphs. Ω2’s modules, while much more

powerful than macros or ΩTPs, provide relatively easy access to Ω2’s internals without needing to touch the source

code itself. Among immediate applications are full OpenType support (GSUB, GPOS, etc.), use of independent linguistic

tools such as hyphenation algorithms, and support for Unicode’s Bidirectional Algorithm.

Introduction
Since its birth, TEX has undergone significant evo-
lution, resulting in extended versions such as ǫ-TEX,
pdfTEX, Ω1, and others. However, the fundamentals
of TEX have barely changed: to cite two examples,
both its basic text model, that is, the horizontal node

list, and the concept of the single main vertical list are
almost exactly the same as 25 years ago. Ω1, as a first
step towards Unicode compatibility, introduced 16-bit
character codes and some text directionality support
but did not change TEX’s original text model, based
on token lists converted to node lists and finally to
DVI instructions.

Users and developers have long since recognised
the serious limitations of this approach. Inside the
belly of TEX, character codes included in tokens are
replaced by glyph codes, resulting in loss of infor-
mation if one does not stick to the severely limited
TEX font encodings, especially in the case of non-Latin
scripts: searchability and recovery of the original char-
acter data in general become impossible. Support for
advanced font formats such as OpenType, essential for
writing systems having contextual properties (Arabic,
Hebrew, Nastaleeq, the Indic scripts, etc.) but also
necessary for some Western typographical features, is
also impossible without a clear distinction between the
concepts of character and glyph. Still due to the same
limitation, until now, no successor of TEX could get
rid of the TFM font format and provide native support
for PostScript or TrueType-based fonts.

As of today, the most remarkable development in
the TEX world regarding support for intelligent font
formats is without doubt the X ETEX system [1]. How-
ever, as far as micro-typography is concerned, X ETEX
does not have much to do with Knuth’s original TEX:
while the latter is a stand-alone tool, X ETEX ‘out-
sources’ all the word-level typography to the under-
lying operating system and external libraries: the ICU

library initially developed by IBM [7], ATSUI under
Mac OS X, FreeType under Linux, all come into play.
So, while X ETEX succeeds in combining the OpenType
and Apple AAT font technologies with TEX’s layout
and input style, it ties the application to the operating
system.

The main reason for preferring such a solution
was without any doubt the opportunity to avoid reim-
plementing the quite complicated Unicode and Open-
Type engines that already exist on the operating sys-
tem level. Moreover, the TEX source code itself is far
from being easily extendable, despite having been writ-
ten in the didactic WEB programming language that
divides the code into small, easy-to-digest chunks. It
lacks modularity and is so highly optimised for per-
formance that the slightest modification can cause a
snowball effect of patching and debugging. The single
way of extending TEX foreseen by Knuth was the cre-
ation of new whatsit node types, each of which in prac-
tice results in a further increase of the programme’s
complexity.

TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006 91



Yannis Haralambous, Gábor Bella, Atif Gulzar

Unlike X ETEX’s approach, the developers of Ω2

preferred to solve the problem of extensibility by in-
troducing modularity into the system. In fact, ΩTPs
were already module-like components in Ω1. ΩTPs are
capable of transforming ‘character’ strings into other
‘character’ strings and even of inserting new control
sequences. However, due to the early, token-level stage
where they intervene, they are limited by the group-
ing of input text: to show an example, processing of
the word ‘emphasis’:

{\it emph}asis

as a whole is not possible, since it is broken by markup
into two separate ΩTP buffers. Even more important
is the fact that ΩTPs are inherently character-level tools
and are unable to perform operations other than char-
acter substitutions (such as glyph positioning, adding
linguistic data, modifying colour, etc.).

Consequently, the objectives that the Omega team
have set to themselves are on one hand to solve the
character/glyph duality issue, by creating data struc-
tures capable of storing both, and on the other hand to
provide extensibility to Ω2 in a more efficient way, in
order to allow manipulation of characters, glyphs, and
other types of data independently. It will be shown
later in the article how these two improvements are
tightly related and that they provide the best results
when used together.

In the following section, the original text model of
TEX will be compared to our texteme-based approach.
Then, external modules will be presented in detail.
Finally, it will be shown how using modules together
with texteme properties opens up possibilities of im-
mediate applications such as OpenType support, lin-
guistic analysis, or fully customised typography be-
yond the limitations of TEX or current font technolo-
gies.

Of characters, glyphs, tokens, nodes,
and DVI instructions
Text in TEX and in its extensions goes through several
different states. In the beginning, it is read as character

data from the input buffer. These characters may ei-
ther be textual content or TEX markup. They will im-
mediately be converted into either character tokens or
control sequence tokens, respectively. A character token
consists of the character code and its catcode, while
a control sequence is represented by a single identi-

fier. However, the token state is ephemeral: shortly
after their creation, both types of tokens are converted
into nodes.1 Character tokens usually become charac-
ter nodes, but sometimes also ligature nodes. Other
types of nodes are also created on-the-fly: kern nodes,
glue nodes, discretionary nodes, and so on. Text is or-
ganised into horizontal and vertical lists (represented
by hlist and vlist nodes).

An important thing to notice is that fonts come
into the picture precisely at the point of converting
tokens into nodes. (Ligature, kerning, glue, etc., in-
formation all come from font resources.) This is the
very moment of TEX’s original sin: supposing that

character code≡ glyph code from the font,

characters are being replaced by glyphs in character
nodes. The reason why hyphenation, in principle a
character-based operation, still works at a latter stage2

is this assumed equality, that is in fact valid only
for a small set of characters, namely those that were
coded in locations common between character and
font encodings. Were we to use a different (say, Open-
Type) font format or a script like Arabic, subsequent
character-based operations such as searching, copying
and pasting, and hyphenation would all be doomed to
failure.

The odyssey is still not over: TEX, having done
most of its work on node lists, in the end outputs the
resulting document using the venerable DVI format
where text is encoded through glyph identifiers only,
represented in 16 or 8 bits, depending on whether
Ω1 or another TEX-based system is being used. By
this time, all the other types of nodes holding non-
character data either have already been absorbed in
the typesetting process (penalty, discretionary, etc.), or
else they now become physical dimensions (kerning,
offsets, glue, etc.) or special DVI instructions (specials,
etc.). This is the end of the story: our output DVI

document is purely presentation-oriented and in no
way is able to provide the original character data, long
lost in the process.

Textemes
Textemes3 are one solution to the problems presented
above. The idea is to replace TEX’s various data repre-

1ΩTPs extend the lives of tokens somewhat: they read character
tokens and output both character and control sequence tokens.
2Namely, at line breaking.
3Introduced as signs at the EuroTEX 2005 conference.

92 TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006



Open-belly surgery in Ω2

sentations, namely characters, character tokens, some
types of nodes, as well as glyphs in the output, by a
single entity: the texteme.

A texteme, as presented in detail in [5] and in [4],
is a set of properties, where a property is basically a key–

value pair. A texteme usually represents a character, its
glyph, and other related data. More specifically, char-
acter code, glyph and font identifiers, and any kind of
information related to the atomic units of electronic
text are all represented by texteme properties.

How do textemes work in Ω2 ? The general idea
is to let information accumulate inside textemes in-
stead of converting data from one form to the other.
Raw, unformatted text is a texteme string where tex-
temes contain only character properties. When raw
text (with markup) is fed into Ω2, a catcode prop-
erty is added to every texteme. When font informa-
tion is read, instead of creating character nodes, the
same textemes — texteme nodes — are carried on, only
with new glyph and font properties added. No liga-
ture nodes are created: an ‘fi’ ligature is represented
by two textemes linked together, the first with charac-

ter=f and glyph=fi, and the second with character=i

and glyph=∅ (empty). Some other information like
kerning, glue, or penalties, become texteme properties
just the same, resulting in simplified text structure.

Separating character and glyph codes while having
access to both of them throughout the whole typeset-
ting process proves to be very useful for tasks such as
hyphenation (as shown in Haralambous’s article [3]).
However, the ultimate goal is to be able to produce
final documents that keep all these accumulated (and
useful) information. A document that displays glyphs
but also holds the original character-based text has an
enormous technical advantage compared to glyph-only
documents where retrieval of characters is only possi-
ble through non-standard, error-prone glyph naming
schemes.

The PDF format makes such a double encoding
of text possible through the ActualText operator:
for every glyph or glyph sequence, the correspond-
ing character or character sequence may be defined.
This way, even cases like multiple glyphs correspond-
ing to a single character or reordered glyph sequences
can be handled correctly, something that would never
be possible through glyph naming.

Unfortunately, Ω2 does not (yet) produce PDF di-
rectly and the DVI format does not offer mechanisms

similar to PDF’s ActualText. It is therefore not pos-
sible to output texteme data into DVI without break-
ing compatibility with the original DVI format. As a
temporary solution, Ω2’s DVI format has been slightly
modified in order to include texteme-related informa-
tion that is interpreted by a patched dvipdfmx utility
that produces PDF documents with ActualText oper-
ators. This is a quick and dirty solution, but it works.

The document creator is by all means allowed
and encouraged to invent and use their own proper-
ties in their documents. First of all, the set of avail-
able texteme properties is open and extensible.4 Such
user-defined properties can be added either automati-
cally, by linguistic analysers and various text processor
tools, or manually, by a texteme-compatible text edi-
tor (a simple prototype of which has been developed
by students of ENST Bretagne). In this editor, texteme
properties are added and manipulated in an intuitive,
graphical way. Texteme-based documents can then be
saved in XML that Ω2 will be able to interpret and thus
rebuild texteme strings. (The XML reading capability
of Ω2 has not been developed yet.)

How do texteme properties come into play during
text processing? External modules are the answer.

External modules
Theoretical considerations

As mentioned before, Ω1’s ΩTPs are basically character
processors at the token level. This approach is not suf-
ficient when non-character data needs to be processed
(e.g., glyph substitution or glyph positioning). First,
with the introduction of textemes, access to individ-
ual texteme properties as opposed to mere character
strings becomes necessary. Secondly, even if an ex-
tended ΩTP syntax and input/output scheme allowed
the handling of such information, ΩTPs are still called
at the token level where font data have not yet been
read by Ω2.

Consequently, in order to allow ΩTP-like external
modules to process font-dependent information, their
point of activation needs to be displaced to a later
point, to the node level.

But there is a problem: since nodes (including tex-
teme nodes) and node lists are considerably more com-
plicated data structures than characters or tokens, Ω1’s
internal ΩTP approach is not powerful enough to de-

4Namespaces are used for semantic disambiguation.

TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006 93



Yannis Haralambous, Gábor Bella, Atif Gulzar

scribe transformations on them. For these reasons,
our new external modules need to be standalone bi-
naries that communicate with Ω2 using a well-defined
XML format (more on this later). Since these binaries
can be written in any programming language, there
is no limitation to their computing power, unlike for-
mer internal ΩTPs that were equivalent to finite state
automata.

In reality, there are no less than three well-defined
points during Ω2’s typesetting process where external
modules may be called:

1. on token-based input text (as in the case of ΩTPs);

2. on yet unbroken horizontal node lists that repre-
sent whole paragraphs;

3. on node lists representing individual lines during
paragraph breaking.

Each of these three legal intervention points corre-
sponds to a set of well-defined processing tasks. The
first point is used by character-level transformers and
analysers. They receive a simple list of textemes, unin-
terrupted by control sequences on grouping braces (no
wonder: these tokens act as boundaries for the ΩTP

buffer), and containing mostly character information.
They are supposed either to perform character trans-
formations (e.g., converting from a local transcription
scheme or encoding to Unicode, preprocessing, etc.)
or to generate new texteme properties. (At the mo-
ment of writing the article, Ω2 is not yet capable of
adding texteme properties at this stage.)

The second type of external module reads entire
paragraphs and operates on node lists. This type of
module applies, among others, OpenType glyph sub-
stitution and positioning rules. However, as a result
of working with nodes instead of just characters, such
modules have enormous power as well as responsibil-
ity over the behaviour of Ω2: they have full access to
every aspect of the text including horizontal and verti-
cal lists, kerning, penalties, and so on. Were a module
to, say, substitute a glyph by another, it would have
the responsibility to update the corresponding kern-
ing information or at least make sure that this will be
done subsequently either by Ω2 or by another module.

Finally, the third type of module is called on indi-
vidual lines, inside the line breaking algorithm. Sim-
ilarly to modules of the second type, it operates on
node lists. Its task is to perform line-related opera-

tions such as optical kerning, OpenType JSTF (justifi-
cation) support, or line-dependent glyph substitutions
and positionings (e.g., an OpenType contextual liga-
ture invalidated by a nearby line break).

The fragility of node lists when manipulated ex-
ternally may seem worrying. Indeed, it is very easy
to produce typographically unacceptable documents
and even to freeze Ω2 through erroneous or malicious
node operations. Creators of modules should respect
rules regarding what and in what order they are al-
lowed to modify. Correct ordering of modules is of
crucial importance: for example, the order character

transformations – glyph substitutions – glyph positionings

should always be respected, otherwise regression prob-
lems may arise.

Indeed, node-level modules represent a drastic sur-
gical intervention in Ω2’s digestive system: it is as if
Ω2’s stomach and intestines were piped into external
digestion machines. The reader will kindly excuse the
authors for this somewhat disturbing analogy and read
on to see how in practice modules are called from Ω2.

Modules in Practice

Module support in Ω2 is currently in prototype stage,
that is, developer- and user-friendly macros and li-
braries are only minimally available at the moment.

External modules are implemented as standalone
binaries and communicate with Ω2 through signals
and an input-output buffer. For performance rea-
sons, these binaries run as daemons, that is, they are
spawned only once and then remain idle until they
receive data to process as well as a wakeup signal.
Once a module has finished processing, after writing
its output into the same input-output buffer, it goes
back to sleep again, and Ω2 continues by waking up
the following module.

More precisely: a module binary is launched by
the \registermodule primitive. By writing
\registermodule{mymodule}{modbin}{par}{10}

the binary programme modbin is run, in the future
referenced by the name mymodule. The par parame-
ter means that it is a type 2 (paragraph-level) module
and its number in the execution order among mod-
ules of the same type is 10. These four parameters
are mandatory. There is a fifth, optional parameter
(omitted in our example) that sends its argument to
the binary when it is launched; this may sometimes
be useful for initialisation purposes.

94 TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006



Open-belly surgery in Ω2

Modules are asleep by default. For performance
reasons, Ω2 does not send any data to sleeping mod-
ules. In order to perform their task, modules need to
be both waked up and activated. They are waked up
and sent back to sleep by the \wakeup{mymodule}

and \gotosleep{mymodule} primitives. Note that
paragraph- and line-level modules are waked up for
entire paragraphs, there is no point in trying to wake
them up for shorter text segments. Awake but inactive

modules receive and read all data but let them pass
through untouched. They activate themselves when
they encounter an activate special node, inserted by
the \activate{mymodule} macro. From this point,
they process the text until they either read a deactivate

node or arrive at the end of the buffer. These activate

and deactivate nodes may of course very well appear
inside paragraphs, making it possible to activate mod-
ules for text segments as small as individual characters
(more precisely, textemes).

Text (textemes and other nodes) is transmitted be-
tween Ω2 and modules in XML format. The full DTD

is not provided here for space reasons; instead, a small
but relevant example is given. As is shown, for para-
graph and line-level modules, Ω2’s current font table

is also included in the XML buffer since these mod-
ules (e.g., an OpenType engine) usually need access to
fonts. The font table is then followed by the node list
itself: in our case, a whatsit, an empty horizontal list

and two texteme nodes. In this simple example, tex-
teme nodes contain only three properties each, namely
the character and the corresponding font and glyph ID.
<?xml version="1.0"?>

<buffer version="0.1">

<preamble>

<fontlist>

<font id="51" name="ptmr"

size="1310720"/>

<font id="52" name="pala"

size="655360"/>

...

</fontlist>

</preamble>

<nodelist>

<!-- whatsit -->

<wha st="6" intpnl="0" brkpnl="0"

pardir="0">

<lbl></lbl><lbr></lbr>

</wha>

<!-- hlist -->

<hls wd="1310720" dp="0" ht="0"

shift_amount="0" gse="0" gsi="0"

go="0" dir="0">

</hls>

<!-- texteme -->

<t linkl="0" linkr="0">

<p n="c">76</p> <!-- char: L -->

<p n="g">12</p> <!-- glyph -->

<p n="f">52</p> <!-- font -->

</t>

<t linkl="0" linkr="0">

<p n="c">111</p> <!-- char: o -->

<p n="g">142</p>

<p n="f">52</p>

</t>

...

</nodelist>

</buffer>

A particular advantage of communicating with
modules in XML is that certain tasks can thus be im-
plemented by very simple XSLT transformations that
are executed by a generic XSLT driver module. This
way, the task of implementing a module is reduced to
the complexity of writing XSLT code.

Applications of modules and textemes
OpenType support

For quite a long time, the Holy Grail of typesetting
systems has been to implement robust support for the
TrueType and OpenType font formats. Development
has been slow on all platforms, due to the investment
required on a very wide scale (full Unicode support,
internationalisation, availability of actual fonts). No
wonder that no TEX-based system, apart from X ETEX,
has even come close yet to full OpenType compatibil-
ity: without the profound changes in TEX’s text model
described in earlier sections of the present article, or
at least similar improvements, OpenType support is
not fully possible.

As has been shown in numerous articles, such as
[1], the main difficulty of developing OpenType-com-
patible applications lies in the complexity of opera-
tions described in OpenType’s GSUB (glyph substitu-
tion) and GPOS (glyph positioning) tables. In order
to achieve this, apart from providing an appropriate
text model, typesetting applications also need a pow-
erful OpenType engine. Fortunately, a lot of effort
has already been made in this direction in the free
software community, and thus free and cross-platform
OpenType libraries are already available: let us men-
tion the FreeType [6] and M17N [2] projects that both

TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006 95



Yannis Haralambous, Gábor Bella, Atif Gulzar

offer OpenType-related functionalities. The new Ω2

system makes use of both of these libraries.5

Basically, two aspects of the OpenType format
need to be taken care of in Ω2: reading metrics and
performing glyph transformations. Most TEX-based
systems solve the former issue by falling back to util-
ities such as ttf2afm that convert TrueType metrics
into TFM files, the OpenType and the TrueType for-
mats being compatible as far as metrics are concerned.
This solution works but is inelegant from the user’s
point of view since installation and use of TrueType
or OpenType fonts require several conversion steps
and editing of various configuration files. The authors
have thus decided to implement direct access from Ω2

to OpenType metrics, without any need for OFM or
other files. At the moment of writing the article, Ω2 is
already capable of reading TrueType metrics directly
from the font.6

Glyph transformations, on the other hand, are
too big a task to implement inside the monolithic Ω2

code. Modules are an ideal place for such operations.
Both paragraph- and line-level modules are going to be
necessary: paragraph-level modules will perform both
font-independent (multilingual preprocessing similar
to what Microsoft’s Uniscribe library does) as well
as font-dependent OpenType GSUB and GPOS glyph
transformations. Finally, the same OpenType module
intervenes once again at the line breaking phase if nec-
essary; also, JSTF support can be implemented at this
point.

Hyphenation

TEX’s original hyphenation procedure is called in the
line breaking phase: at this point, text is converted
into lowercase, ligatures are replaced by their original
characters, and pattern matching is performed. Con-
sequently, the hyphenation algorithm is an integral
part of TEX that is difficult to modify or customise
according to the special needs of different languages,
apart from language-dependent pattern sets. In Ω2,
textemes and modules allow performing hyphenation
externally, in a module, opening up the possibility of
using more advanced hyphenation algorithms. The
general idea is that the external hyphenation module

5M17N, far from being just a multilingual typesetting engine, is
a whole set of libraries aiming at providing complete multilingual
support.
6Kerning data is not read by Ω2, as this operation is planned to be
implemented inside an external module.

marks potential hyphenation points in words using
texteme properties and at the line breaking stage Ω2

simply selects from the marked hyphenation points
the ones giving the least badness.

See [3] (in this same proceedings volume) for a
more detailed description of new hyphenation tech-
niques used in Ω2.

Getting rid of (some) TEX markup

Through properties, textemes provide a new way of
enriching electronic text. In some cases, such proper-
ties can substitute for markup that would otherwise
serve the same purpose. The interest in doing so lies
in the simplification of input text, an important gain
both from a technical and a usability point of view.
Consider the following example of LATEX code:
The \verb#\textcolor# command’s purpose

is to colorify text, such as this word

in \textcolor{red}{red}.

There are several problems with the above snippet:
first of all, it is far from being intuitive. To typeset
the ‘\’ character, the user needs to use the \verb com-
mand, which is one way of escaping the special role of
the backslash. Also, there is nothing indicating that
the first parameter of the \textcolor command is
the colour parameter and the second is the text to be
coloured: neither a human nor an automatic tool, say
a preprocessor, can distinguish them without proper
knowledge of the color LATEX package. Finally, the
use of control sequences and delimiters breaks up text
into small chunks causing various problems at later
processing stages.

A possible solution is to use texteme properties for
colour as well as for escaping. For example, with a cat-

code= 12 property the user could mark the backslash
as textual content. Of course, more user-friendly prop-
erty name and values could also be used. The same
point can be made for various types of spaces (non-
breakable, thin, etc.): instead of using active characters
like ‘~’ or control sequences like ‘\,’, such informa-
tion can be encoded as orthogonal properties of the
same space character. This solution is also far sim-
pler and more intuitive than using Unicode’s various
non-breakable space, thin space, non-breakable and thin

space, etc., characters.

96 TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006



Open-belly surgery in Ω2

Linguistic tools

One of the advantages of textemes is that the set of
available properties is open which, together with mod-
ularity, makes it possible to integrate Ω2 with new text
processing applications. For numerous linguistic prob-
lems that bear some relation to typography, such an
approach can be fruitful: automatically finding word
boundaries in Thai or Chinese text or distinguishing
dots (for abbreviations) and periods (at ends of sen-
tences) in English typography are all complicated lin-
guistic problems that transcend the limits of typeset-
ting engines. If appropriate, standalone linguistic tools
already exist and are able to perform the tasks in ques-
tion; they can be called as external modules of Ω2 in
order to add linguistic information to the input text
in the form of texteme properties. Then, an Ω2 devel-
oper just needs to implement a second, much simpler
module that interprets such linguistic properties and
takes them into account at the typesetting stage (cor-
rect line breaks for Thai, changes in the widths of
spaces for English).

Conclusions
The second version of the Ω2 system has two new as-
pects: texteme support and modularity. Although still
in a prototype stage, the basic framework for running
external modules has been implemented in Ω2 and the
underlying text model has also been adapted to the
texteme concept. As an addition, the new Ω2 out-
puts a DVI format that contains both characters and
glyphs, and with a patched dvipdfmx utility this in-
formation can be incorporated into PDF documents
that as a result will be able to provide the reader both
with formatted output and with the original character
string. On the input side, a texteme-compliant text ed-
itor tool has been developed, allowing users to enter
texteme properties into input documents. OpenType
support is partially available: Ω2 now reads metrics
from OpenType files directly. Work is underway for
modular GSUB and GPOS support. The authors are
also working on moving TEX’s hyphenation algorithm
into an external module, resulting in easier implemen-
tation of improved hyphenation tools.

Work that still needs to be done includes full ca-
pabilities of texteme input and output: texteme-based
auxiliary (.toc etc.) files and input format, as well as
development of various multilingual modules includ-
ing support for OpenType layout tables. An especially
important feature that still needs further development
is generation of PDF documents with both character
and glyph information added. The already mentioned
dvipdfmx tool is a likely candidate for such an exten-
sion. The authors kindly welcome contribution from
the TEX community in these areas.

References
[1] Jonathan Kew: The Multilingual Lion: TEX

Learns to Speak Unicode. 27th International
Unicode Conference. TUGboat 26:2, 2005,
pp. 115–124.

[2] Nishikimi Mikiko, Handa Kenichi,
Takahashi Naoto, Tomura Satoru: The

m17n Library — A General Purpose Multilingual

Library for Unix/Linux Applications. Asian
Symposium on Natural Language Processing
to Overcome Language Barriers (2004).
http://www.m17n.org

[3] Yannis Haralambous: New Hyphenation

Techniques in Omega 2. Proceedings of the
EuroTEX 2006 (Debrecen, Hungary) conference.
In this volume, pp. 98–103.

[4] Yannis Haralambous, Gábor Bella: Injecting

Information into Atomic Units of Text. ACM

Symposium on Document Engineering 2005.

[5] Yannis Haralambous, Gábor Bella: Omega

Becomes a Sign Processor. Proceedings of the
EuroTEX 2005 (Pont-à-Mousson, France)
conference, pp. 99–110.

[6] The FreeType Project.
http://www.freetype.org

[7] International Components for Unicode.
http://icu.sourceforge.net/

TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006 97



New hyphenation techniques in Ω2

YANNIS HARALAMBOUS
Département Informatique, ENST Bretagne, CS 83 818, 29 283 Brest Cedex 3, France
yannis dot haralambous (at) enst dash bretagne dot fr

Abstract
By replacing the internal hyphenation engine of TEX by an external Omega2 module, we are able to solve all short-

comings related to hyphenation and to add new features: segmentation of compound words, excentricity, preferential

hyphenation.

Introduction
Ever since a computer hyphenated the word “God”
and ruined a night’s sleep of an RCA employee, there
has been quite a lot of literature on hyphenation:1 it is
a complex linguistic operation, permanently in use (at
least for languages that are hyphenated), and requiring
high efficiency. Nevertheless there are some flaws in
TEX’s approach to hyphenation, as well as some areas
where extra features could be helpful.

The flaws are mainly (a) the fact that hyphenation
patterns are stored in the format, so that one needs
to know in advance which languages will be used in
the document and create the appropriate format file;
(b) in some contexts, words are not hyphenatable be-
cause they are not preceded by glue (for example, a
word preceded by a penalty, or the first word of a
paragraph); (c) font or color changes prohibit hyphen-
ation, so that a word like “différance” cannot be hy-
phenated; and (d) special hyphenations such as Ger-
man backen becoming bak-ken are possible (through
the discretionary primitive) but cannot be automatic.

New features have been suggested on many occa-
sions: for example, it would be very useful for some
languages to prioritize hyphenation between word
components rather than between syllables in the same
component. In German, the priority list is even three-
fold: first comes hyphenation between components,
then hyphenation inside the last component, and last
and least: hyphenation inside the other components.
Another useful extra feature is weighted hyphenation:
for example, in French, words starting with “con”
should not be hyphenated at that location, but this
restriction should not be absolute: if one cannot do

1See, in particular, [1, 6, 7, 8, 10, 11, 12, 13, 14].

otherwise, it should be allowed to hyphenate never-
theless (a typical example is the word “conscience”
which can be hyphenated only after “con”). So one
should be able to specify a penalty value for each hy-
phen. Another useful feature would be interaction
with the user in case of ambiguity requiring morpho-
logical, syntactical or even semantic input: a typical
case is already stated in The TEXbook: “rec-ord” (the
noun) vs. “re-cord” (the verb). Whenever the algo-
rithm detects such an ambiguity, the user should be
warned and, why not, asked to disambiguate.

In languages like Greek there is no requirement
for hyphenating between word components.2 Never-
theless, although it is allowed, it looks silly to hyphen-
ate a word such as Παπαχατζηχαραλαµπó- πoυλoς
after the two first letters. In such cases it would be
useful to prioritize hyphenation towards the middle
of the word rather than near its borders.

In this paper we present the new hyphenation
module of Omega2, which solved the problems men-
tioned and provides infrastructure for the extra fea-
tures described above.

2The reader may wonder why there is such a requirement for Ger-
man and not for Greek, which uses as least as many compound
words as German. Here is a possible explanation: in German, com-
pound words are separated by a glottal stop. For example, Satzende
will be pronounced “zats[break]ende” to distinguish the compo-
nents Satz (= sentence) and Ende (= end). The visually similar
Sitzende will be pronounced continuously “zitsende” (= sitting). In
Greek, however, there is no glottal stop: συνάδελφoς (= colleague)
is pronounced continuously “sinathelfos” although it is composed
by συν (= plus, together) and αδελφoς (= brother). This feature of
the modern Greek language has influenced hyphenation practice. In
fact, there are two ways to hyphenate this word in Greek: in mod-
ern dêmotikê [5] it will be hyphenated phonetically συ-νά-δελ-φoς
(which contradicts component segmentation), and in kathareuousa
it will be hyphenated etymologically συν -άδελ-φoς . The question
of whether kathareuousa hyphenation patterns should give priority
to word components is open.

98 TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006



New hyphenation techniques in Ω2

Description
A module for Omega2 is a binary reading and writing
horizontal node lists serialized in XML. It is hooked
into Omega2 at two possible locations: one is inside
the end graph procedure (§1096 of [9], just before the
call of line break: that’s when a complete paragraph
is sent to the paragraph builder). The second location
(which has not been implemented yet) is inside the
paragraph builder, for a given vertice of the graph of
break nodes.

To say it simply: a module extracts horizontal
node lists from Omega’s stomach, modifies them, and
puts them back so that typesetting can go on.

But there is something more in Omega2: instead
of character nodes, we use texteme nodes [3], so that
we clearly separate glyphs from characters and that we
can add arbitrary name/value pairs to each node.

In our case, the hyphenation module will study
the paragraph, apply the hyphenation algorithm to
textemes and add a “potential hyphenation point”
property to some of them. The value of this prop-
erty is not simply a boolean but rather a penalty, so
that the paragraph builder will automatically priori-
tize some hyphenation points (for example, those be-
tween word components).

Problems solved
Let us see how our approach solves the five problems
described in the first section.

Problem a: Preloading of patterns

Omega2 does not preload any patterns in the format
file. Patterns contained in external files are dynami-
cally loaded by the module (and subsequently kept in
cache), whenever they are needed.

Problem b: Unhyphenatable words

This problem has always been a nightmare for TEX
users: now and then, for reasons which seem obscure
to the average user, a word will not be hyphenated,
resulting in a horrible overfull box. Most of the time
the reason is the fact that the word is preceded by
something which is not glue. Indeed, according to
§891 of [9], a “potentially hyphenatable part” of a para-

graph is a sequence of nodes p0 p1 . . . pm where p0 is a

glue node, p1 . . . pm−1 are character, or ligature or what-

sit or implicit kern nodes, and pm is a glue or penalty or

insertion or adjust or mark or whatsit or explicit kern

node (see also [4]).
Since now hyphenation is external to Omega, we

can define our own rules. One can apply the original
TEX rules so that we obtain the same results. Or
one can define new rules and obtain potentially better
results.

Problem c: Font or color change

This problem comes from the fact that, as often in
TEX, the rules for hyphenatable words we described
above are not complete. Other restrictions arrive as
we read §891: a whatsit node found after p1 will be

the terminating node pm and all character nodes that

do not have the same font as the first character node,

will be treated as nonletters. That means that a special

primitive or a font change inside a word prohibits
hyphenation after them.

In fact, the use of textemes allows us to inject into
text properties which will not disable hyphenation. A
less typical example is vertical offset: up to now, the
TEX logo was not a word, but a graphical construc-
tion using glyphs. Using texteme properties to spec-
ify the lowering of letter ‘E’ it will be at last possible
to hyphenate the title of the well-known journal Die

TEXnische Komödie!
As said in the previous section, since we define our

own rules, this restriction can very well be abandoned.

Problem d: Special hyphenations

There is no miracle for that: the various special cases
have been hard-coded in the module (one could imag-
ine a syntax for including them in the patterns, but
the author considers that their extreme rarity does not
justify a syntax enhancement).

New features
Penalties

As said in [9] §145, a discretionary node produces
either a hyphen penalty or an ex hyphen penalty de-
pending on its pre-break text. This penalty can be
changed by the user, but on a global level only, and
certainly not separately for each hyphen point. In
Omega2, there are 65,536 hyphenation penalty regis-
ters. Patterns can contain a hyphenation register num-
ber (the default register being 0). The hyphenation
engine will transmit the highest register number value
to the paragraph builder through a texteme property.

TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006 99



Yannis Haralambous

1

2

3 ENDBEGIN

Figure 1: Finite-state engine of SiSiSi

The paragraph builder will use the penalty value of
that register.

It is up to the user to take advantage of these penal-
ties to prioritize hyphenation between word compo-
nents, or simply to make the paragraph builder prefer
a given hyphenation point rather than some other.

The obvious question which remains is: how do
we calculate the various hyphenation penalties in the
case of, for example, word component boundaries.

Excentricity

To prioritize hyphenation points that occur near the
middle of words, we have introduced a number called
excentricity factor (a deliberate neologism). This num-
ber is the slope of a linear function giving the hyphen-
ation register number according to the distance of an
hyphenation point from the center of the word: if φ
is the factor, i the position of the letter in the word
and c the center of the word, then the hyphenation
penalty register will be 0 for letter c , int((c ·i )· s ) when
c> i and int((i · c + 1) · s ) otherwise. So, for example,
the word

Πα|πα|χα|τζη|χα|ρα|λαµ|πó|πoυ|λoς

with an excentricity factor of, for example, φ= 0.33,
will be hyphenated with penalties contained in the
following registers:

Πα|3πα|3χα|2τζη|1χα|0ρα|0λαµ|1πó|1πoυ|2λoς

It is up to the user to choose the penalty values
for each of registers 0, 1, 2, 3. With a higher slope, we
get more registers and are able to control hyphenation
penalties more finely.

A Finite-State Engine

There are two ways to calculate word component
boundaries. Either by using again patterns (as sug-
gested by Antoš in [1]), or by using a finite-state en-
gine, as used by spelling checkers such as huspell.

2

3

4

1

7

5

6

ENDBEGIN

Figure 2: Finite-state engine of huspell

Let us develop the second case. A first approach
to word component detection through a finite state en-
gine was SiSiSi (= Sichere sinnentsprechende Silbentren-

nung für die deutsche Sprache = “Reliable and Sense-
Conveying Hyphenation for the German language”),
a TEX extension developed in the early nineties by
Barth and Steiner [2] based on their work on hyphen-
ation from the eighties. In SiSiSi a word is segmented
in three parts: a series of prefixes, a single stem and a
series of suffixes. This can be described by the finite-
state engine in fig. 1: states 1, 2 and 3 are resp. the
one of prefix, stem and suffix. We have twelve tran-
sitions BEGIN→1 BEGIN→2 1→1 1→2 2→*1 2→*2
2→3 2→END 3→*1 3→*2 3→3 3→END, where the
asterisk (or • on the figure) means that going through
this transition we enter a new word component.

This approach has been proven to have relatively
low efficiency (the SiSiSi system was strongly relying
on interaction with the user to find and store excep-
tions to rules).

Another word segmentation approach is the one
of spelling checkers. Ispell-based checkers (like huspell,
which seems to be the most advanced variant) use a
“file of affixes” containing lines of the like:
SFX A lig elig [^aeiouhlräüö]lig

which means: there is a set of rules called A con-
taining this rule; this rule says: when you see a word
ending by some string matching the regular expression
/[^aeiouhlräüö]lig/ then strip lig and add elig.
These rules generate new word forms from the exist-
ing ones, whenever the latter satisfy the requirements.
Similar rules exist for prefixes (starting with PFX).

We have modeled this approach as a finite-state
machine with 7 states and 32 transitions. The 7 states
are: (1) prefix, (2) stems which are not modified by an

100 TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006



New hyphenation techniques in Ω2

SFX or PFX rule, (3) stems which have been modified
by a PFX rule (after modification), (4) stems which
have been modified by a SFX rule (after modification),
(5) stems which have been modified by both a PFX and
a SFX rule (after modification), (6) stem which cannot
be combined with either a prefix or a suffix, (7) suffix.
It should be noted that only 1, 2, 4 and 6 can be at
word begin, and only 2, 3, 6 and 7 can be at word
end. The reader can find a graphical representation of
this engine in fig. 2.

Here are the transitions: BEGIN→1 BEGIN→2
BEGIN→4 BEGIN→6 1→2F 1→3F 1→4F 1→5F
2→*1 2→*2 2→*4 2→*6 2→7F 2→END 3→*1 3→*2
3→*4 3→*6 3→7F 3→END 4→7F 5→7F 6→*1
6→*2 6→*4 6→*6 6→END 7→*1 7→*2 7→*4 7→*6
7→END. Those marked by an ‘F’ are conditional tran-
sitions: they only apply whenever left and right string
belong to the same “family.” Families are necessary be-
cause of the regular expressions in SFX and PFX rules.

We will see in the next section how this informa-
tion is included in the patterns file.

Patterns file
TEX users are used to patterns files containing a pat-

terns primitive and, in many cases, a hyphenation prim-
itive for exceptions. These files sometimes also contain
lccode commands because only characters with non-
zero lccode are recognized by TEX’s hyphenation algo-
rithm. This part of the code works also as a mapper
to equivalence classes, so that patterns can be writ-
ten using those classes rather than explicit characters.
For example, in the case of Greek one can map all
combinations of letter alpha and diacritics to a single
equivalence class and use that class in the patterns.
That way, one has fewer patterns and the result is the
same (provided, of course, that hyphenation rules are
independent of diacritics).

In our new hyphenation patterns files we keep
the same pseudo-commands \patterns and \hyphen

ation—“pseudo” because these files are not read by
TEX anymore, but by a tool of our own, called inittrie,
written in C. These files, for which we recommend
the file extension .pat, are compiled into compressed
binary form (file extension .hyp) by inittrie. This
binary form contains a certain number of tries, exactly
as formerly stored in TEX format files.

Here is a detailed description of the ingredients of
.pat files.

(left|right)hyphenmin

The primitives lefthyphenmin and righthyphenmin are
used in TEX to specify the minimal number of letters
to leave on a line, or to allow on the next line. In our
case, these values are included in the patterns file, so
that there is no need to worry about them in the TEX
file, or Babel language file, etc.

equivalents

The argument of this command consists of a big num-
ber of character pairs, separated by blanks. These char-
acter pairs play the same role as lccode instructions in
TEX. In each pair, the first character is a character con-
sidered to be a letter by the hyphenation algorithm,
and the second one is its equivalence class. These char-
acters are, of course, all written in Unicode UTF-8. In
fig. 3 the reader can see this command displayed under
Mac OS X.

patterns

Patterns are described in the same way as in TEX hy-
phenation files, with an extra convention: numbers
between brackets specify the number of the hyphen-
ation penalty register requested. So, for example, the
hypothetical pattern
.con8s

for French language can be replaced by
.con8[17]s

so that the value of hyphenation penalty register 17
will be used.

segmenthyphenpenalty

Using this pseudo-command one can specify the hy-
phenation penalty register to be used between word
components. Default value is 1.

segmenthyphencharacter

Through this pseudo-command one can specify the
hyphenation character to be used between word com-
ponents. Default value is the hyphen. In cases like
Thai, where we really segment a sentence into words
(and words into syllables), the segment hyphenation
character will be empty.

segmentpatterns

The syntax of the argument of this pseudo-command
is the same as for patterns. These patterns will be used
to obtain word components rather than syllables. The
other two arguments specify the number of hyphen-

TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006 101



Yannis Haralambous

Figure 3: Table of equivalents

ation penalty register to be used, and the requested
secondary hyphenation character.

transitions

To use a finite-state engine, we need the commands
\transitions, \references and \segments instead
of the command \segmentpatterns. In the argu-
ment of the \transitions command we will write
transitions in the syntax given above: strings BEGIN

and END for beginnings and ends of words, numbers
for all other transitions, the string -> between origin
and destination of a transition. Example: BEGIN->1

BEGIN->2 1->1 1->2 2->*1 2->*2 2->3 2->END

3->*1 3->*2 3->3 3->END for the SiSiSi model. The
asterisk means that the given transition produces a
new segment. A destination followed by an F means
that there is a filter: the transition occurs only if origin
and destination belong to the same family.

references

This command contains “references”. A reference is a
set of families. The idea is the following: a segment
very often belongs to several families (meaning that it
can be combined with many other segments, in order
to form components and words). Instead of writing

all the families to which each segment belongs, we will
in fact use a single number. This number will be an
index to the set of families to which it belongs, its
reference.

The syntax is shown by the following example:
2368=/843/844/845/921/943

meaning that segments followed by number 2368 be-
long to families 843, 844, 845, 921 and 943. When
checking whether a transition is allowed, our algo-
rithm will not check if the references are the same,
but rather if they have a non-empty common set of
families. References are separated by blanks.

segments

Segments are classified by the state to which they be-
long. The argument of \segments looks like:
\segments{

1: %prefixes

a2083 abba2084 agyon2084 alá2084 b2085

be2084 bele2084 benn2084 benn-2084

billió2086 c2087 d2088 e2089 egy2086

egybe2084 el2084 ...

2: %original stems

aba3 abafala3 abafalva3 abaffy5 abafi6

abafája3 abajgat8 abakteriális9 ...

3: %pre-altered stems

...

102 TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006



New hyphenation techniques in Ω2

4: %post-altered stems

...

ab2 abafal2 abafalv4 abafáj2 abajga7

abalehot2 abar2 abaújharaszt14

abaújszakal18 abaújszin2 abaújtorn2

abd2 abell25 abelov2 ...

5: %prepost-altered stems

...

6: %stems without affixes

...

7: %suffixes

abbak2137 abbakat2138 abbakba2138

abbakban2138 abbakból2138 abbakhoz2138

abbakig2138 abbakkal2138 abbakká2138

abbaknak2138 ...

}

A number followed by a colon denotes a state. Seg-
ments are separated by blanks. They are followed by
reference numbers.

If the finite-state engine does not require family
filtering, then the references command will be empty
and segments will not be followed by any number.

lastsegmentpriority

Whenever this option is included in the patterns file,
the hyphenation points in the last segment have their
hyphenation penalty registers increased by a given
amount.

excentricity

Gives the excentricity factor.

References
[1] Antoš D., “PATLIB, Pattern

Manipulation Library”, Master Thesis,
Masaryk University Brno, 2001.
http://www.fi.muni.cz/~xantos/

patlib/thesis/thesis-p.pdf

[2] Barth W., Steiner H., “Deutsche
Silbentrennung für TEX 3.1”, Die TEXnische

Komödie, 1, 1992, pp. 33-35.
http://www.dante.de/dante/DTK/dtk92_1/

dtk92_1_barth_steiner_deutsche.html and
http://www.ads.tuwien.ac.at/research/

SiSiSi.html

[3] Haralambous Y., Bella G., “Injecting
Information into Atomic Units of Text”,
in Proceedings of the ACM Symposium
on Document Engineering, Bristol, 2005.
http://omega.enstb.org/yannis/pdf/

fp10174-haralambous.pdf

[4] Haralambous Y., “Voyage au centre de TEX :
composition, paragraphage, césure”, Cahiers

GUTenberg 44-45, 2004, pp. 3-53. http://

omega.enstb.org/yannis/pdf/voyage.pdf

[5] Haralambous Y., “From Unicode to
Typography, a Case Study: the Greek
Script”, Proceedings of International
Unicode Conference XIV, Boston, 1999, pp.
b.10.1–b.10.36. http://omega.enstb.org/

yannis/pdf/boston99.pdf

[6] Haralambous Y., “A Small Tutorial on the
Multilingual Features of PATGEN2”, in
electronic form, available from CTAN as
info/patgen2.tutorial, 1994.

[7] Haralambous Y., “Using PATGEN to Create
Welsh Patterns”, submitted to TUGboat, 1993.

[8] Haralambous Y., “Hyphenation Patterns for
Ancient Greek and Latin”, TUGboat 13 (4),
1992, pp. 457-469. http://omega.enstb.org/

yannis/pdf/ancgreek92.pdf

[9] Knuth D.E., Computers & Typesetting, Vol. B:

TEX, The Program, Addison-Wesley, 1986.

[10] Raichle B., “Hyphenation patterns for words
containing explicit hyphens”, CTAN/language/

hyphenation/hypht1.tex, 1997.

[11] Scannell K, “Hyphenation Patterns for
Minority Languages”, TUGboat 24 (2), 2003,
pp. 236–239. http://www.tug.org/TUGboat/

Articles/tb24-2/tb77scannell.pdf

[12] Sojka P., “Hyphenation on Demand”, TUGboat

20 (3), 1999. http://www.tug.org/TUGboat/

Articles/tb20-1/tb62sched.pdf

[13] Sojka P., Ševeček P., “Hyphenation in TEX —
Quo Vadis?” TUGboat 16 (3), pp. 280–289,
1995. http://www.tug.org/TUGboat/

Articles/tb16-3/tb48soj1.pdf

[14] Sojka P., “Notes on Compound Word
Hyphenation in TEX”, TUGboat 16 (3),
pp. 290–297, 1995. http://www.tug.org/

TUGboat/Articles/tb16-3/tb48soj2.pdf

TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006 103



Abstracts

Typesetting the Qur’an and its specific

challenges to the TEX family

Hossam A.H. Fahmy, Cairo University

AlQalam (“the pen” in Arabic) is our freely available

system intended for typesetting the Qur’an, other tra-

ditional texts, and any publications in the languages

using the Arabic script. From a typographical point of

view, the Qur’an is one of the most demanding texts.

However, there is a long historical record of excellent

quality materials (manuscripts and recent printings)

to guide the work on a system to typeset it. Such a

system, once complete, can easily typeset any work

using the Arabic script, including those with mixed

languages.

(The full paper will be printed in the proceedings of the
TUG 2006 conference. Ed.)

How to deal with TEX in unfriendly

situations

Hans Hagen, Pragma ADE

Tools and methods for dealing with TEX in unfriendly

situations, such as multiple trees, potentially conflict-

ing environments, and strictly regulated web services.

Making better PDF

Hartmut Henkel, pdfTEX team

Under normal circumstances, once the TEX part of

pdfTEX is happy with the input, and all the required

stuff like fonts and graphics is available, pdfTEX pro-

duces a valid PDF file. This talk is about PDF output,

looking under the hood.

To learn about the general PDF file format and

structure, we have a look at a PDF file generated from

a short LATEX example. We follow the steps of a simple

virtual PDF viewer from opening the file over collect-

ing required resources until text from a typical page is

placed on the output medium. We see how the PDF

file is made up from many objects that can be found

in the file by consulting a cross reference table. The

most important building blocks for objects (dictionar-

ies and streams) and data structures are described, and

the basic operators for coordinate transforms, font se-

lection and glyph placement are discussed.

Then we have a look at how pdfTEX implements

precise glyph placement, taking into account that most

movements are incremental, that there are two differ-

ent coordinate systems involved (one for TEX’s inter-

nal calculations and one for the PDF output repre-

sentation), and that coordinate values in PDF files are

rounded to only a few decimal digits. As a PDF viewer

knows only these rounded numbers (and not the exact

TEX ones), there could be the risk of error accumu-

lation; pdfTEX prevents this by keeping track of the

rounded numbers it has output to the PDF file.

In the last part of the talk we do a little detec-

tive work: if one inspects a page stream generated by

pdfTEX one can often spot tiny correction terms ‘)1(’

and ‘)-1(’ in the glyph placement array that, interest-

ingly, are there only for the Computer Modern fonts,

not for standard PostScript fonts like Times-Roman.

The origin of these corrections is traced to the fact

that the CM fonts are not designed on a 1/1000 font-

size raster, as they predate PostScript. Finally, a tiny

patch to pdfTEX is presented that makes these correc-

tion terms happen much less frequently while keeping

precision, which leads to slightly tidier and smaller

PDF files.

BibTEX, MlBibTEX, and bibliography styles

Jean-Michel Hufflen, University of Franche-Comté

The first part of this talk about BibTEX will focus

on some difficult points related to the syntax of bib-

liography files, e.g., the specification of person and

organisation names. In addition, we show how some

successors of BibTEX — the BibTEX8, Bibulus, and Ml-

BibTEX programs — improve them. In a second part,

we explain how bibliography styles are built. Some

demonstrations of the BibTEX program are given, and

some technical points could be made clearer by using

some functions belonging to MlBibTEX.

(The full paper was printed in the proceedings of the Bacho-
TEX 2006 conference. Ed.)

104 TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006



Abstracts

Typography — the art of the letter system

István Radó, Radó Kiadó and Szolgáltató MC

This talk will discuss the dialectic of the typographic

print and the service of the ergonomics of reading, as

well as the damage caused by malformed prints result-

ing from its partial or complete negligence — in the

context of European Roman letters.

Writing is conserving human thought in a system-

atic order. Printing is the generator of intellect, and

occasionally a bearer of real knowledge, too. For over

a thousand years letters have been the means of repre-

sentation of the creative human intellect on papyrus,

then paper, and for some 30 years now on the com-

puter screen, too.

The term ‘letter’ signifies the so-called Roman let-

ters that emerged from ancient Greek and Roman cul-

ture. It was this type of letter that had as its destiny

to be a primary carrier of knowledge and culture in

Europe, and thus it has served a worldwide technical

civilisation emerging from European culture, with all

its well-known blessings and curses.

Today 60% of humanity is illiterate, and half of

the rest is functionally illiterate. Halving again, we

find the percentage of those who do not read any-

thing except the news and tabloids — therefore it is a

mere 20% of the entire population of the earth that

seeks knowledge from letters. And there is an ever-

growing proportion within this 20% representing Chi-

nese speakers! This latter fact provides a peculiar (and

alarming) future to the Roman letter.

However, the documentation of the past, present

and near future remains a task for European Roman

letters and numbers nearly exclusively. The appear-

ance and the point of this form of expression is the

dialectic harmony of form and content, or an apparent

and highly disturbing lack of it. It is easy to express

the gist of a given idea in letters: unity of thought

developing from contrapositions, opinion, reasoning,

assertion, informative teaching, the obscuring of the

point, plagiarism, incitement, forgery, lying etc.

Good, well-made and intelligent typography gives

emphasis and order to the thought it represents. A

printing type that is ostentatious, or one that neglects

or consciously infringes a moderate proportionality is

always a sign of the superficiality and false nature of

the message itself. The blissful development of PCs re-

gards as uniform and (perhaps unduly) degrades, too,

all prints produced by repetitious use of the same font

types and groups. The chaotic and disproportionate

location of font size and spacing of lines are evidence

of the damage made to the message, or its very worth-

lessness.

pdfTEX — what was, is and will be

Martin Schröder, pdfTEX team

This talk is a review of key pdfTEX features and prim-

itives presented on a timeline from the beginning, in-

cluding present versions (1.30 and 1.40), and through

the features planned for the near future.

LATEX programming tutorial

Péter Szabó, Budapest University of Technology
and Economics

This tutorial is a practical introduction to LATEX pro-

gramming: implementing new features (writing LATEX

packages), writing packages accepting options, chang-

ing existing features, finding out what commands to

change, finding the file containing the definition of

the command, overriding the definition, extending the

definition, debugging, writing code independent of

catcode changes, string processing and .aux file tricks.

TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006 105



2006

Oct 12 – 14 Guild of Book Workers 100th
Anniversary Exhibition: A traveling
juried exhibition of books by members
of the Guild of Book Workers.
Grolier Club, New York City. Sites
and dates are listed at http://

palimpsest.stanford.edu/byorg/gbw.

Oct 16 – 18 Fifth Annual St. Bride Conference,
“Fast Type, Slow Type”,
Birmingham, England.
Celebrating the 300th birthday of
John Baskerville. For information, visit
http://www.creativepro.com/story/

news/23853.html.

Oct 20 UK TUG Joint workshop with the
London Mathematical Society,
“Living and Working with LATEX”,
and Annual general meeting,
London. For information, visit
http://uk.tug.org/.

Oct 20 – 22 The Fourth International Conference on
the Book, “Save, Change or Discard:
Tradition and Innovation in the World of
Books”, Emerson College, Boston,
Massachusetts. For information, visit
http://book-conference.com.

Oct 21 GuIT meeting 2006 (Gruppo
utilizzatori Italiani di TEX),
Pisa, Italy. For information, visit
http://www.guit.sssup.it/

GuITmeeting/2006/2006.en.php.

TUG 2006

Digital Typography & Electronic Publishing:

Localization & Internationalization,

Marrakesh, Morocco.

Nov 7 – 8 Pre-conference tutorials.

Nov 9 – 11 The 27th annual meeting of the TEX
Users Group. For information, visit
http://www.tug.org/tug2006.

106 TUGboat, Volume 27 (2006), No. 1

Calendar

Nov 18 NTG 38th meeting, Zeist, Netherlands.
For information, visit
http://www.ntg.nl/bijeen/bijeen38.html.

Dec 4 – 7 <XML2006>, Boston, Massachusetts.
For information, visit
http://2006.xmlconference.org/.

2007

Feb 1 TUG Election: Deadline for
nominations (see p.107).

Mar 7 – 9 DANTE 2007, 36th meeting, Westfälische
Wilhelms-Universitẗ, Münster,
Germany. For information, visit
http://www.dante.de/dante2007.

Mar 24 – 25 First international CONTEXT User
Meeting, Epen, The Netherlands.
For information, visit
http://context.aanhet.net/epen2007.

Apr 28 –
May 2

17th EuroTEX Conference +

15th BachoTEX Conference =
EuroBachoTEX 2007, Bachotek,
Poland. For information, visit
http://www.gust.org.pl/BachoTeX/

EuroBachoTeX2007.

TUG 2007

Practicing TEX,

San Diego, California.

Jul 17 Workshops (free for attendees).

Jul 18 – 20 The 28th annual meeting of the TEX
Users Group. For information, visit
http://www.tug.org/tug2007.

Aug 5 – 9 SIGGRAPH 2007, San Diego,
California. For information, visit
http://www.siggraph.org/s2007/.

Aug 6 – 10 Extreme Markup Languages 2007,
Montréal, Québec. For information, visit
http://www.extrememarkup.com/extreme/.

Status as of 15 October 2006

For additional information on TUG-sponsored events listed here, contact the TUG office
(+1 503 223-9994, fax: +1 206 203-3960, e-mail: office@tug.org). For events sponsored
by other organizations, please use the contact address provided.

An updated version of this calendar is online at http://www.tug.org/calendar/.
Additional type-related events are listed in the Typophile calendar, at

http://www.icalx.com/html/typophile/month.php?cal=Typophile.



TUGboat, Volume 27 (2006), No. 1 107

2007 TEX Users Group election

Steve Peter, for the Elections Committee

The positions of TUG President and several mem-
bers of the Board of Directors will be open as of the
2007 Annual Meeting.

The directors whose terms will expire in 2007:
Barbara Beeton, Jon Breitenbucher, Kaja Christian-
sen, Susan DeMeritt, Ross Moore, Cheryl Ponchin,
Samuel Rhoads, and Philip Taylor. One additional
director position is currently unoccupied.

Continuing directors, with terms ending in 2009,
are: Steve Grathwohl, Jim Hefferon, Klaus Höppner,
Arthur Ogawa, Steve Peter, and David Walden.

The election to choose the new President and
Board members will be held in spring of 2007. Nom-
inations for these openings are now invited.

The Bylaws provide that “Any member may be
nominated for election to the office of TUG Presi-
dent/to the Board by submitting a nomination pe-
tition in accordance with the TUG Election Proce-

dures. Election . . . shall be by written mail ballot
of the entire membership, carried out in accordance
with those same Procedures.” The term of President
is two years, of Director four years.

The name of any member may be placed in
nomination for election to one of the open offices by
submission of a petition, signed by two other mem-
bers in good standing, to the TUG office.

Nomination forms, along with all the details,
are available via the TUG Web pages at http://

tug.org/election, or from the TUG office.
Along with a nomination form, each candidate

must supply a passport-size photograph, a short bi-
ography, and a statement of intent to be included
with the ballot; the biography and statement of in-
tent together may not exceed 400 words. Also, a
candidate’s membership dues for 2007 are expected
to be paid by the nomination deadline.

The deadline for receipt at the TUG office of
nomination forms and ballot information:
1 February 2007.

Institutional

Members

Aalborg University, Department
of Mathematical Sciences,
Aalborg, Denmark

American Mathematical Society,
Providence, Rhode Island

Banca d’Italia,
Roma, Italy

Center for Computing Science,
Bowie, Maryland

Certicom Corp.,
Mississauga, Ontario Canada

CNRS - IDRIS,
Orsay, France

CSTUG, Praha, Czech Republic

Florida State University,
School of Computational Science
and Information Technology,
Tallahassee, Florida

IBM Corporation,
T J Watson Research Center,
Yorktown, New York

Institute for Defense Analyses,
Center for Communications
Research, Princeton, New Jersey

MacKichan Software,
Washington/New Mexico, USA

Marquette University,
Department of Mathematics,
Statistics and Computer Science,
Milwaukee, Wisconsin

Masaryk University,
Faculty of Informatics,
Brno, Czechoslovakia

New York University,
Academic Computing Facility,
New York, New York

Princeton University,
Department of Mathematics,
Princeton, New Jersey

Springer-Verlag Heidelberg,
Heidelberg, Germany

Stanford Linear Accelerator
Center (SLAC),
Stanford, California

Stanford University,
Computer Science Department,
Stanford, California

Stockholm University,
Department of Mathematics,
Stockholm, Sweden

United States Environmental
Protection Agency,
Narragansett, Rhode Island

University College, Cork,
Computer Centre,
Cork, Ireland

University of Delaware,
Computing and Network Services,
Newark, Delaware

Université Laval,
Ste-Foy, Québec, Canada

University of Oslo,
Institute of Informatics,
Blindern, Oslo, Norway

Vanderbilt University,
Nashville, Tennessee



The information here comes from the consultants
themselves. We do not include information we
know to be false, but we cannot check out any of
the information; we are transmitting it to you as it
was given to us and do not promise it is correct.
Also, this is not an official endorsement of the
people listed here. We provide this list to enable
you to contact service providers and decide for
yourself whether to hire one.

TUG also provides an online list of consultants
at http://tug.org/consultants.html. If
you’d like to be listed, please fill out the form at
https://www.tug.org/consultants/listing.html

or email us at consult-admin@tug.org. To
place a larger ad in TUGboat, please see
http://tug.org/TUGboat/advertising.html.

Kinch, Richard J.

7890 Pebble Beach Ct
Lake Worth, FL 33467
561-966-8400
Email: kinch (at) truetex.com

Publishes TrueTEX, a commercial implementation
of TEX and LATEX. Custom development for
TEX-related software and fonts.

Martinez, Mercè Aicart

C/Tarragona 102 4o 2a

08015 Barcelona, Spain
+34 932267827
Email: m.aicart (at) menta.net

Web: www.edilatex.com/index_eng.html

We provide, at reasonable low cost, TEX and
LATEX typesetting services to authors or publishers
world-wide. We have been in business since the
beginning of 1990.

MCR Inc.

731 Beta Drive #G
Mayfield Village, OH 44143
(440) 484-3010; fax: (440) 484-3020
Email: sales (at) mcr-inc.com

Web: www.mcr-inc.com

Contract typesetting/printing services.

TEX Consultants

MicroPress Inc.

68-30 Harrow Street
Forest Hills, NY 11375
+1 718-575-1816; fax: +1 718-575-8038
Email: support (at) micropress-inc.com

Web: www.micropress-inc.com

Makers of VTEX, fully integrated TEX system
running on Windows. VTEX system is capable of
one-pass output of PDF, PS, SVG and HTML;
VTEX IDE includes Visual Tools for writing
equations, function plots and other enhancements
and a large number of fonts, many not available
elsewhere. Makers of many new and unique
mathematical font families for use with TEX, see
http://www.micropress-inc.com/fonts. Makers
of microIMP, a fully WYSIWYG LATEX-based
Word Processor. microIMP supports TEX and
AMSTEX math, lists, tables, slides, trees, graphics
inclusion, many languages and much else — all
without any need for knowing TEX commands, see
http://www.microimp.com. See our web page for
other products and services. Serving TEX users
since 1989.

Peter, Steve

310 Hana Road
Edison, NJ 08817
+1 (732) 287-5392
Email: speter (at) dandy.net

Specializing in foreign language, linguistic, and
technical typesetting using TEX, LATEX, and
ConTEXt, I have typeset books for Oxford
University Press, Routledge, and Kluwer, and have
helped numerous authors turn rough manuscripts,
some with dozens of languages, into beautiful
camera-ready copy. I have extensive experience in
editing, proofreading, and writing documentation.
I also tweak and design fonts. I have an MA in
Linguistics from Harvard University and live in the
New York metro area.

Veytsman, Boris

2239 Double Eagle Ct.
Reston, VA 20191
(703) 860-0013
Email: borisv (at) lk.net

Web: http://users.lk.net/~borisv

TEX/LATEX consulting. Integration with
databases, full automated document preparation
systems, conversions and more.



TUGBOAT Volume 27, Number 1—EuroTEX 2006 Conference Proceedings 2006



TUGBOAT Volume 27 (2006), No. 1 EuroTEX 2006 Conference Proceedings

Table of Contents (ordered by difficulty)

Introductory

4 Gábor Bella / Impressions from EuroTEX 2006
• informal introduction to and review of EuroTEX 2006, with photos

3 Gyöngyi Bujdosó / The Hungarian TEX Rhapsody — EuroTEX 2006
• introduction to the EuroTEX 2006 conference

28 Gyöngyi Bujdosó / Typography based on-line help on TEX
• towards an on-line TEX help system including typographical assistance

13 Katalin Fried et al. / The colourful side of TEX
• recollections of TEX adventures through the years

62 Taco Hoekwater and Hans Hagen / The making of a (TEX) font
• from cow (and a few sheep) drawings to digital letterforms

43 Ildikó Miklós / KöMaL CD — The execution
• making the archives of a century-old journal accessible online

8 András Virágvölgyi / Would Aldus Manutius have used TEX?
• beginnings of typography and the Aldine workshop

104 Abstracts (Fahmy, Hagen, Henkel, Hufflen, Radó, Schröder, Szabó)

Intermediate

16 Taco Hoekwater / Opening up the type
• high-level plan for supporting OpenType in luaTEX and pdfTEX

18 Taco Hoekwater / MetaPost developments — autumn 2006
• new features and fixes in the forthcoming MetaPost release

22 Siep Kroonenberg / Managing a network TEX installation under Windows
• procedures and tips for a MiKTEX-based site-wide installation

66 Siep Kroonenberg / Font installation the shallow way
• examples of simple font installation using afm2pl and afm2tfm

Intermediate Plus

51 István Bencze, Balázs Fark, László Hatala and Péter Jeszenszky / Server side PDF

generation based on LATEX templates
• survey of free Java tools for PDF generation and LATEX integration, with examples

45 Thierry Bouche / A pdfLATEX-based automated journal production system
• design of a generic system for production of many scientific journals

38 Hans Hagen / What tools do ConTEXt users have?
• review of tools for manipulating the TEX environment, graphics, and more

32 László Németh / Automatic non-standard hyphenation in OpenOffice.org
• extending TEX’s hyphenation algorithm to handle spelling changes and more

57 Péter Szabó and András Hraskó / Managing a math exercise database with LATEX
• using LATEX as source for a database with multiple output forms

Advanced

98 Yannis Haralambous / New hyphenation techniques in Ω2

• supporting generalized hyphenation routines
91 Yannis Haralambous, Gábor Bella and Atif Gulzar / Open-belly surgery in Ω2

• radical reorganization of Omega to support general modularity and textemes
76 Jean-Michel Hufflen / MlBibTEX meets ConTEXt

• adding support for ConTEXt to MlBibTEX
83 Bogus law Jackowski / Appendix G illuminated

• illustrations and explanations of fine points of TEX’s math typesetting
71 Karel Ṕı̌ska / Font verification and comparison in examples

• detailed examples and tools for exacting font comparisons

Reports and notices

106 Calendar
107 Institutional members
107 TUG 2007 election
108 TEX consulting and production services



TUGBOAT

Volume 27, Number 1 / 2006

EuroTEX 2006 Conference Proceedings

EuroTEX 2006 2 Conference delegates and sponsors

3 Gyöngyi Bujdosó / The Hungarian TEX Rhapsody — EuroTEX 2006

4 Gábor Bella / Impressions from EuroTEX 2006

Typography 8 András Virágvölgyi / Would Aldus Manutius have used TEX?

Macros 13 Katalin Fried et al. / The colourful side of TEX

Software & Tools 16 Taco Hoekwater / Opening up the type

18 Taco Hoekwater / MetaPost developments— autumn 2006

22 Siep Kroonenberg / Managing a network TEX installation under Windows

28 Gyöngyi Bujdosó / Typography based on-line help on TEX

32 László Németh / Automatic non-standard hyphenation in OpenOffice.org

38 Hans Hagen / What tools do ConTEXt users have?

Electronic

Documents

43 Ildikó Miklós / KöMaL CD —The execution

45 Thierry Bouche / A pdf LATEX-based automated journal production system

51 István Bencze, Balázs Fark, László Hatala and Péter Jeszenszky /

Server side PDF generation based on LATEX templates

57 Péter Szabó and András Hraskó / Managing a math exercise database with LATEX

Fonts 62 Taco Hoekwater and Hans Hagen / The making of a (TEX) font

66 Siep Kroonenberg / Font installation the shallow way

71 Karel Ṕı̌ska / Font verification and comparison in examples

Bibliographies 76 Jean-Michel Hufflen / MlBIBTEX meets ConTEXt

Tutorial 83 Bogus law Jackowski / Appendix G illuminated

Omega 91 Yannis Haralambous, Gábor Bella and Atif Gulzar / Open-belly surgery in Ω2

98 Yannis Haralambous / New hyphenation techniques in Ω2

Abstracts 104 Abstracts (Fahmy, Hagen, Henkel, Hufflen, Radó, Schröder, Szabó)

News 106 Calendar

TUG Business 107 TUG 2007 election

107 Institutional members

Advertisements 108 TEX consulting and production services



TUGBOAT Volume 27 (2006), No. 1 EuroTEX 2006 Conference Proceedings

Table of Contents (ordered by difficulty)

Introductory

4 Gábor Bella / Impressions from EuroTEX 2006
• informal introduction to and review of EuroTEX 2006, with photos

3 Gyöngyi Bujdosó / The Hungarian TEX Rhapsody —EuroTEX 2006
• introduction to the EuroTEX 2006 conference

28 Gyöngyi Bujdosó / Typography based on-line help on TEX
• towards an on-line TEX help system including typographical assistance

13 Katalin Fried et al. / The colourful side of TEX
• recollections of TEX adventures through the years

62 Taco Hoekwater and Hans Hagen / The making of a (TEX) font
• from cow (and a few sheep) drawings to digital letterforms

43 Ildikó Miklós / KöMaL CD — The execution
• making the archives of a century-old journal accessible online

8 András Virágvölgyi / Would Aldus Manutius have used TEX?
• beginnings of typography and the Aldine workshop

104 Abstracts (Fahmy, Hagen, Henkel, Hufflen, Radó, Schröder, Szabó)

Intermediate

16 Taco Hoekwater / Opening up the type
• high-level plan for supporting OpenType in luaTEX and pdfTEX

18 Taco Hoekwater / MetaPost developments — autumn 2006
• new features and fixes in the forthcoming MetaPost release

22 Siep Kroonenberg / Managing a network TEX installation under Windows
• procedures and tips for a MiKTEX-based site-wide installation

66 Siep Kroonenberg / Font installation the shallow way
• examples of simple font installation using afm2pl and afm2tfm

Intermediate Plus

51 István Bencze, Balázs Fark, László Hatala and Péter Jeszenszky / Server side PDF

generation based on LATEX templates
• survey of free Java tools for PDF generation and LATEX integration, with examples

45 Thierry Bouche / A pdfLATEX-based automated journal production system
• design of a generic system for production of many scientific journals

38 Hans Hagen / What tools do ConTEXt users have?
• review of tools for manipulating the TEX environment, graphics, and more

32 László Németh / Automatic non-standard hyphenation in OpenOffice.org
• extending TEX’s hyphenation algorithm to handle spelling changes and more

57 Péter Szabó and András Hraskó / Managing a math exercise database with LATEX
• using LATEX as source for a database with multiple output forms

Advanced

98 Yannis Haralambous / New hyphenation techniques in Ω2

• supporting generalized hyphenation routines
91 Yannis Haralambous, Gábor Bella and Atif Gulzar / Open-belly surgery in Ω2

• radical reorganization of Omega to support general modularity and textemes
76 Jean-Michel Hufflen / MlBibTEX meets ConTEXt

• adding support for ConTEXt to MlBibTEX
83 Bogus law Jackowski / Appendix G illuminated

• illustrations and explanations of fine points of TEX’s math typesetting
71 Karel Ṕı̌ska / Font verification and comparison in examples

• detailed examples and tools for exacting font comparisons

Reports and notices

106 Calendar
107 Institutional members
107 TUG 2007 election
108 TEX consulting and production services


