
Opening up the type∗

TACO HOEKWATER
Elvenkind, Dordrecht
taco (at) elvenkind dot com

Abstract
In the near future, pdfTEX will gain the ability to use OpenType fonts. This paper explains in broad terms what will
be done and why it will be done in that way.

Introduction
There are many reasons why OpenType support is
a good thing for pdfTEX to have. For one, many
of the latest commercial fonts can only be purchased
in OpenType format. For another, most of the new
OpenType fonts are of higher quality than their older
brethren. Also — this is a minor point, but not com-
pletely unimportant — everybody else does it. So long
as pdfTEX does not support OpenType, it has no
chance of being perceived as a viable competitor to
those other systems.

Finally and perhaps most importantly, OpenType
allows us to escape from TFM format and its many
limitations, without the need to invent another special
font format that can only understood by TEX and not
much else.

The plan is for the OpenType support to be in-
cluded as part of a project to create a high-end Arabic
typesetting engine based on a merge of pdfTEX, Aleph
and luaTEX. The final result of this project will be
open source and can be merged into future versions
of pdfTEX.

Wishes and constraints
Of course we want to integrate the new OpenType
support such that it behaves well with the rest of TEX:

• It should be possible to use all of the glyphs and
features in the font.

• The implementation, its input, and its output
should all be platform independent: same font,
same syntax, same typesetting.

∗This work is made possible by a grant from Colorado State Uni-
versity.

• We want to make the implementation extensible,
just in case someone comes up with OpenType++

in the next decade.

• It should still be possible to define virtual fonts
and use the current pdfTEX micro-typography fea-
tures like protruding and font expansion.

• The ability to make run-time adjustments to the
font characteristics is desirable.

• The interface should be usable by somebody who
is not trained as a programmer.

• For nice and small pdf output, some sort of font
subsetting has to take place.

• Backward compatibility code for traditional TEX
and PostScript fonts has to remain; the goal is
evolution, not revolution.

• We wish full control at the basic glyph level, not
limited to turning OpenType features on or off.

Unicode
When dealing with OpenType fonts, adding support
for Unicode is more or less implied. Therefore pdfTEX
had to be extended to handle Unicode input as well
as output.

File I/O
Partial Unicode support is already in the current lua-
TEX code base:

• UTF-8 encoded text input and output.
• Characters and tokens use 21 bits for storing char-

acter information.
• Hyphenation patterns are loaded in UTF-8.
• The pool file (strings) and buffer are Unicode en-

abled.

16 TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006



Opening up the type

Characters
At present, TEX does not have a concept of a character:
a ‘charnode’ is actually a glyph in a font, together with
the font it should be taken from.

To fix this unpleasant intermingling of glyphs with
characters, pdfTEX will be extended with two new
node types:

• A font node is the result of a font selection com-
mand by the user.
• A unichar node is the result of tokens being read.

The ‘charnode’ functionality is still present (re-
named to glyph node), but the new types will not be
converted to the traditional TEX glyph, font pair until
after the hyphenation pass is completed.

Hyphenation
The old node list and paragraph building routines
intertwined ligature building, hyphenation and line
breaking. On top of that, hyphenation patterns were
stored using the ‘charnode’, as mentioned in the pre-
vious paragraph.

This resulted in a few unfortunate side-effects:

• patterns are font encoding dependent;
• hyphenation is impossible unless a \hyphenchar

is present in the current font;
• hyphenation patterns can only use 256 characters

at a time.

The new code separates hyphenation from the line
breaking decisions: First it finds all potential hyphen-
ation points in the words (made up of unichar nodes)
and insert \discretionary nodes for all of them.
Only after that step is completed will it attempt to
find ligatures and break the paragraph into lines.

This change makes hyphenation completely inde-
pendent of the current font.

A different internal representation of the loaded
patterns will make it possible to use the full range of
Unicode characters in hyphenation patterns as well as
making it possible to extend the patterns in a language
at run-time.

Languages
We believe this is a good opportunity to also tackle
another traditional problem in TEX: the \lccode,
\uccode and \sfcode tables. These tables contain
information that is conceptually part of the current

language, and should not be stored in a font attribute.
We want to increase the importance of \language

codes and attach much more information to language
switches. Other candidates for inclusion in language
switching are the \uchyph parameter and the list of
applicable ligatures.

Scripts
pdfTEX currently uses the TEX–XET algorithm from
ε-TEX, with the primitives \beginL and \beginR.

This will be removed in favor of the much more
advanced and flexible Aleph/Omega1 typesetting di-
rection commands \pagedir, \pardir, etc.

An equivalent to ΩTP processing will be imple-
mented using lua instead of ΩCP (precompiled binary)
files.

Font loading
In current pdfTEX, fonts are internally represented as
a large storage heap with a few dozen auxiliary tables
that store various meta-information and pointers into
the heap. All of those are global, and implemented as
static objects.

While this is very efficient in terms of speed, it is
also very hard to alter a font after it has been loaded,
and the unification forces all fonts to offer strictly the
same interface.

In the new setup, fonts will be loaded under the
direct control of lua code, and they will be presented
to the typesetting engine as a single lua table for each
loaded font. This table will make the font behave
much like an object that can be queried and altered
directly by the macro programmer, either from TEX
macro code (through \fontdimen) or from lua code
(through callbacks from the typesetting engine).

The low-level font loading routines will be writ-
ten in compiled C code, perhaps by using a separate
library like freetype.

Conclusion
We gratefully acknowledge that this work is made pos-
sible by a grant from Colorado State University, with
the sponsorship of Idris Hamid, and with support
from TUG. A test version of the changes described
in this paper should be available before the TUG 2006
meeting in Morocco. People wishing to stay up to
date with respect to this project are invited to visit
http://www.luatex.org.

TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006 17


