
TUGBOAT

Volume 29, Number 2 / 2008

General Delivery 231 From the president / Karl Berry

232 Editorial comments / Barbara Beeton

TEX 3.1415926 is here, and other Knuthian references; Phyllis Winkler, RIP;
New domain name for CervanTEX; Interactive typography courses by
Jonathan Hoefler; A helpful CTAN feature: “get”; Recreating the Gutenberg
press; Copy-editing the wayward apostrophe; A font game for your amusement

233 The TEX tuneup of 2008 / Donald Knuth

239 Hyphenation exception log / Barbara Beeton

Typography 240 Typographers’ Inn / Peter Flynn

242 The Greek Font Society / Vassilios Tsagkalos

246 Designing and producing a reference book with LATEX: The Engineer’s Quick

Reference Handbook / Claudio Beccari and Andrea Guadagni

255 Suggestions on how not to mishandle mathematical formulæ /

Massimo Guiggiani and Lapo Mori

Electronic Documents 264 Wikipublisher: A Web-based system to make online and print versions of the
same content / John Rankin

270 Character encoding / Victor Eijkhout

Fonts 278 lxfonts: LATEX slide fonts revived / Claudio Beccari

283 Reshaping Euler: A collaboration with Hermann Zapf / Hans Hagen,

Taco Hoekwater and Volker RW Schaa

Software & Tools 288 Asymptote: A vector graphics language / John Bowman and Andy Hammerlindl

295 The Luafication of TEX and ConTEXt / Hans Hagen

303 Porting TEX Live to OpenBSD / Edward Barrett

LATEX 305 Good things come in little packages: An introduction to writing .ins and .dtx files /

Scott Pakin

ConTEXt 315 ConTEXt basics for users: Indentation / Aditya Mahajan

Multilingual MetaPost 317 Kanji-Sudokus: Integrating Chinese and graphics / Denis Roegel

Hints & Tricks 320 Interesting loops and iterations— second helping / Pawe l Jackowski

324 Glisterings: More on paragraphs regular; LATEX’s defining triumvirate; TEX’s dictator
/ Peter Wilson

328 The treasure chest / Karl Berry

Reviews 331 Book review: Fonts & Encodings by Yannis Haralambous / Ulrik Vieth

333 Software review: TEXCAD for Windows / Bernd Schroeder

Warnings 334 \looseness on the loose / Frank Mittelbach

Abstracts 335 MAPS: Contents of issue 35 (2007)

336 Die TEXnische Komödie: Contents of issues 2007/2–2008/1

337 Eutypon: Contents of issues 16–20 (2007–2008)

338 ArsTEXnica: Contents of issue 4 (2007)

339 The PracTEX Journal : Contents of issues 2007-3–2008-1

TUG Business 343 TUG financial statements for 2007 / David Walden

344 TUG institutional members

345 TUG membership form

News 346 Calendar

347 TUG 2008 announcement

Advertisements 348 TEX consulting and production services

TEX Users Group

TUGboat (ISSN 0896-3207) is published by the
TEX Users Group.

Memberships and Subscriptions

2008 dues for individual members are as follows:
Ordinary members: $85.
Students/Seniors: $45.

The discounted rate of $45 is also available to
citizens of countries with modest economies, as
detailed on our web site.

Membership in the TEX Users Group is for the
calendar year, and includes all issues of TUGboat

for the year in which membership begins or is
renewed, as well as software distributions and other
benefits. Individual membership is open only to
named individuals, and carries with it such rights
and responsibilities as voting in TUG elections. For
membership information, visit the TUG web site.

Also, (non-voting) TUGboat subscriptions are
available to organizations and others wishing to
receive TUGboat in a name other than that of an
individual. The subscription rate is $95 per year,
including air mail delivery.

Institutional Membership

Institutional membership is a means of showing
continuing interest in and support for both TEX
and the TEX Users Group, as well as providing
a discounted group rate and other benefits. For
further information, contact the TUG office or see
our web site.

TEX is a trademark of the American Mathematical
Society.

Copyright c© 2008 TEX Users Group.

Copyright to individual articles within this publication

remains with their authors, so the articles may not be

reproduced, distributed or translated without the authors’

permission.

For the editorial and other material not ascribed to

a particular author, permission is granted to make and

distribute verbatim copies without royalty, in any medium,

provided the copyright notice and this permission notice are

preserved.

Permission is also granted to make, copy and distribute

translations of such editorial material into another language,

except that the TEX Users Group must approve translations

of this permission notice itself. Lacking such approval, the

original English permission notice must be included.

Printed in U.S.A.

Board of Directors

Donald Knuth, Grand Wizard of TEX-arcana†

Karl Berry, President∗

Kaja Christiansen∗, Vice President

David Walden∗, Treasurer

Susan DeMeritt∗, Secretary

Barbara Beeton
Jon Breitenbucher
Steve Grathwohl
Jim Hefferon
Klaus Höppner
Ross Moore
Arthur Ogawa
Steve Peter
Cheryl Ponchin
Samuel Rhoads
Philip Taylor
Raymond Goucher, Founding Executive Director †

Hermann Zapf, Wizard of Fonts†

∗member of executive committee
†honorary

See http://tug.org/board.html for past board
members.

Addresses

General correspondence,
payments, etc.

TEX Users Group
P.O. Box 2311
Portland, OR 97208-2311
U.S.A.

Delivery services,
parcels, visitors

TEX Users Group
1466 NW Naito Parkway
Suite 3141
Portland, OR 97209-2820
U.S.A.

Telephone

+1 503 223-9994

Fax

+1 206 203-3960

Electronic Mail

(Internet)

General correspondence,
membership, subscriptions:
office@tug.org

Submissions to TUGboat,
letters to the Editor:
TUGboat@tug.org

Technical support for
TEX users:
support@tug.org

Contact the Board
of Directors:
board@tug.org

World Wide Web

http://www.tug.org/

http://www.tug.org/TUGboat/

Have a suggestion? Problems not resolved?

The TUG Board wants to hear from you:
Please email board@tug.org.

[printing date: June 2008]

The Communications of the TEX Users Group

Volume 29, Number 2, 2008

TEX Users Group

TUGboat (ISSN 0896-3207) is published by the
TEX Users Group.

Memberships and Subscriptions
2008 dues for individual members are as follows:

Ordinary members: $85.
Students/Seniors: $45.

The discounted rate of $45 is also available to
citizens of countries with modest economies, as
detailed on our web site.

Membership in the TEX Users Group is for the
calendar year, and includes all issues of TUGboat

for the year in which membership begins or is
renewed, as well as software distributions and other
benefits. Individual membership is open only to
named individuals, and carries with it such rights
and responsibilities as voting in TUG elections. For
membership information, visit the TUG web site.

Also, (non-voting) TUGboat subscriptions are
available to organizations and others wishing to
receive TUGboat in a name other than that of an
individual. The subscription rate is $95 per year,
including air mail delivery.

Institutional Membership
Institutional membership is a means of showing
continuing interest in and support for both TEX
and the TEX Users Group, as well as providing
a discounted group rate and other benefits. For
further information, contact the TUG office or see
our web site.

TEX is a trademark of the American Mathematical
Society.

Copyright c© 2008 TEX Users Group.
Copyright to individual articles within this publication

remains with their authors, so the articles may not be
reproduced, distributed or translated without the authors’
permission.

For the editorial and other material not ascribed to
a particular author, permission is granted to make and
distribute verbatim copies without royalty, in any medium,
provided the copyright notice and this permission notice are

preserved.
Permission is also granted to make, copy and distribute

translations of such editorial material into another language,

except that the TEX Users Group must approve translations
of this permission notice itself. Lacking such approval, the
original English permission notice must be included.

Printed in U.S.A.

Board of Directors

Donald Knuth, Grand Wizard of TEX-arcana†

Karl Berry, President∗

Kaja Christiansen∗, Vice President

David Walden∗, Treasurer

Susan DeMeritt∗, Secretary

Barbara Beeton
Jon Breitenbucher
Steve Grathwohl
Jim Hefferon
Klaus Höppner
Ross Moore
Arthur Ogawa
Steve Peter
Cheryl Ponchin
Samuel Rhoads
Philip Taylor
Raymond Goucher, Founding Executive Director †

Hermann Zapf, Wizard of Fonts†

∗member of executive committee
†honorary

See http://tug.org/board.html for past board
members.

Addresses
General correspondence,

payments, etc.
TEX Users Group
P. O. Box 2311
Portland, OR 97208-2311
U.S.A.

Delivery services,
parcels, visitors

TEX Users Group
1466 NW Naito Parkway
Suite 3141
Portland, OR 97209-2820
U.S.A.

Telephone
+1 503 223-9994

Fax
+1 206 203-3960

Electronic Mail
(Internet)

General correspondence,
membership, subscriptions:
office@tug.org

Submissions to TUGboat,
letters to the Editor:
TUGboat@tug.org

Technical support for
TEX users:
support@tug.org

Contact the Board
of Directors:
board@tug.org

World Wide Web
http://www.tug.org/

http://www.tug.org/TUGboat/

Have a suggestion? Problems not resolved?
The TUG Board wants to hear from you:
Please email board@tug.org.

[printing date: June 2008]

The problem is what interests all but beginners in typography.
Its solution may be, and often is, moderately exciting;
although if the problem is successfully solved no one
perceives it has existed.

Daniel Berkeley Updike
Notes on the Merrymount Press

(1934)

COMMUNICATIONS OF THE TEX USERS GROUP

EDITOR BARBARA BEETON

VOLUME 29, NUMBER 2 • 2008
PORTLAND • OREGON • U.S.A.

TUGboat

This regular issue (Vol. 29, No. 2) is the second
issue of the 2008 volume year. No. 1 was a joint
publication of the EuroBachoTEX 2007 conference,
and No. 3 will contain the TUG 2008 (Cork II)
proceedings.

TUGboat is distributed as a benefit of member-
ship to all current TUG members. It is also available
to non-members in printed form through the TUG

store (http://tug.org/store), and online at the
TUGboat web site, http://tug.org/TUGboat. On-
line publication to non-members is delayed up to
one year after an issue’s print publication, to give
members the benefit of early access.

Submissions to TUGboat are reviewed by vol-
unteers and checked by the Editor before publica-
tion. However, the authors are still assumed to be
the experts. Questions regarding content or accu-
racy should therefore be directed to the authors,
with an information copy to the Editor.

Submitting Items for Publication

The deadline for receipt of the final papers for
the upcoming proceedings issue is August 15, 2008.
Links, locations, and more information about this
and all conferences are available at
http://tug.org/meetings.html.

The next regular issue will probably be in
spring 2009. As always, suggestions and propos-
als for TUGboat articles are gratefully accepted
and processed as received. We encourage submit-
ting contributions by electronic mail to TUGboat@

tug.org.
The TUGboat “style files”, for use with either

plain TEX or LATEX, are available from CTAN and
the TUGboat web site. We also accept submissions
using ConTEXt.

Effective with the 2005 volume year, submission
of a new manuscript implies permission to publish
the article, if accepted, on the TUGboat web site,
as well as in print. If you have any reservations
about posting online, please notify the editors at
the time of submission.

TUGboat Editorial Board

Barbara Beeton, Editor-in-Chief

Karl Berry, Production Manager

Christina Thiele, Associate Editor,

Topics in the Humanities

Production Team
William Adams, Barbara Beeton,
Karl Berry (Manager), Kaja Christiansen,
Robin Fairbairns, Robin Laakso, Steve Peter,
Yuri Robbers, Michael Sofka, Christina Thiele

Other TUG Publications

TUG is interested in considering additional man-
uscripts for publication. These might include
manuals, instructional materials, documentation, or
works on any other topic that might be useful to
the TEX community in general.

If you have any such items or know of any
that you would like considered for publication, send
the information to the attention of the Publications
Committee at tug-pub@tug.org.

TUGboat Advertising

For information about advertising rates and options,
including consultant listings, write or call the TUG

office, or see our web pages:
http://tug.org/TUGboat/advertising.html

http://tug.org/consultants.html

Trademarks

Many trademarked names appear in the pages of
TUGboat. If there is any question about whether
a name is or is not a trademark, prudence dictates
that it should be treated as if it is. The following
list of trademarks which appear in this issue should
not be considered complete.

METAFONT is a trademark of Addison-Wesley Inc.
PostScript is a trademark of Adobe Systems, Inc.
TEX and AMS-TEX are trademarks of the American

Mathematical Society.

TUGboat, Volume 29 (2008), No. 2 231

General Delivery

From the President

Karl Berry

TUG at the 2008 Joint Mathematics Meeting

2008 started with a bang, as we were generously
sponsored by the American Mathematical Society to
have a booth at the (huge) JMM in San Diego this
January. Robin Laakso, our always-hard-working
executive director, and I staffed the booth, with
TUG member Stephen Hartke joining us for some
of the time. It was inspiring to meet so many peo-
ple who happily use TEX every day in their work,
be able to answer a few questions, and even sign up
new members.

Google Summer of Code 2008

Another notable event in the first part of 2008 was
TUG being chosen to participate in Google’s 2008
Summer of Code. In this program, Google funds
full-time work by students over the summer on free
software projects. TUG was selected by Google to
be one of 175 “mentoring organizations”, providing
an infrastructure and pairing students with mentors.

We were given three slots, and chose the follow-
ing three projects from among the (generally excel-
lent) applications:

• Better Unicode compliance for TEX extensions,
by Arthur Reutenauer, mentored by Eric Muller.

• Overhaul of the texshow documentation system,
by Mojca Miklavec, mentored by Taco Hoekwa-
ter.

• Improved JavaScript support in MathTran, by
Christoph Hafemeister, mentored by Jonathan
Fine.

http://tug.org/gsoc has more details and links
about the proposals and the overall program.

Interview corner

The Interview Corner on the TUG web site (http:
//tug.org/interviews) continues to grow. Recent
interviews come from a wide variety of areas in the
TEX world:

• Susan DeMeritt and Cheryl Ponchin are both
members of the TUG board of directors (Sue
is secretary of the board), give workshops on
LATEX, and use TEX daily in their technical typ-
ing work.

• Peter Gordon is the editor at Addison Wesley
for Donald Knuth’s books and the company’s
(LA)TEX books.

• Jim Hefferon is one of the key maintainers of
CTAN and a member of the TUG board.

• Ross Moore is a long-time TUG board member
and TEX contributor, especially in the areas of
mathematics and Unicode support.

• Oleg Katsitadze maintains Eplain and contrib-
utes to GNU Texinfo.

• Dick Koch is the creator and lead developer
of TeXShop, a popular front end for TeX on
Mac OS X, as well as being a new TUG board
member.

• Rainer Schöpf was a co-founder of the LATEX 2ε
and CTAN projects, and is still a key maintainer
of CTAN.

We have begun work on a printed volume of all the
interviews, to be published by TUG perhaps by early
2009.

The PracTEX Journal

Issue 2008-1 of The PracTEX Journal was published
in April. The theme of this issue is LATEXniques.
All the articles and all the back issues (the journal
started in 2005) are available on the journal web
site, http://tug.org/pracjourn. As always, new
articles and feedback of any kind is welcome.

Conferences

The TUG 2008 conference will take place in Cork,
Ireland (for the second time!), from July 21–24 with
workshops on July 20, hosted by the University
of Cork; Peter Flynn is the principal local orga-
nizer. For the schedule, registration and accommo-
dation information (inexpensive on-campus housing
is available), and more, visit the conference web site
at http://tug.org/tug2008. Please join us and
the excellent line-up of workshops and speakers.

The second annual ConTEXt user conference
will take place from August 20–25, 2008, in Bo-
hinj, Slovenia, around a lake in the Alps. Web site:
http://meeting.contextgarden.net/2008.

Looking ahead, TUG 2009 will take place at
the University of Notre Dame, in South Bend, Indi-
ana, from July 27–31, 2009, sponsored by the Notre

Dame Journal of Formal Logic, with Martha Kum-
merer being the principal local organizer.

Hope to see you on both sides of the Atlantic!

⋄ Karl Berry
president@tug.org

232 TUGboat, Volume 29 (2008), No. 2

Editorial comments

Barbara Beeton

TEX 3.1415926 is here, and other

Knuthian references

Don Knuth has completed his periodic review of
bug reports, and has released the new versions of
all programs, fonts and macros. His summary of
the changes made in this round appears later in this
issue.

The period between reviews increases by a
year with each round. The review just completed
was actually begun in 2007, after a five year hia-
tus. The next review is scheduled for six years
from then—2013. For the present, I will continue
to act as Don’s “TEX entomologist”. However, I
may relinquish this post before the next cycle ends;
any change will be announced here, and posted
on Don’s TEX web page: http://www-cs-faculty.
stanford.edu/~knuth/abcde.html.

Ulrik Vieth noted, at the announcement of the
new release, that “we all silently missed the 30 year
anniversary of TEX78 which started on March 10,
1978.” He also reminds us that the saga of TEX
development and updates is chronicled in the file
errorlog.tex, which “is still an interesting read for
the historians”. Thanks, Ulrik.

Another note, from Nelson Beebe, points to an
interview with Don at http://www.informit.com/
articles/article.aspx?p=1193856&rll=1. Quot-
ing Nelson, “Don talks about TEX, METAFONT, lit-
erate programming, and the writing of his famous
books, The Art of Computer Programming, and re-
sponds to a number of questions about software de-
velopment and tools, and the trend towards multicore
and multithreaded CPUs.”

And finally, Don appears in the comics:
http://xkcd.com/163/ and xkcd.com/342/.

Phyllis Winkler, RIP

Phyllis Winkler, Don Knuth’s secretary for many
years, passed away on December 7, 2007. She was
much more than Don’s secretary. It was for her,
as well as for himself, that Don created TEX. (We
announced her retirement in TUGboat 19, no. 4,
page 351.) Phyllis was kind, generous, and strikingly
competent. The TEX community has lost a good
friend.

New domain name for CervanTEX

Late last year, the president of CervanTEX, Juan
Luis Varona, informed us that their domain name,

cervantex.org was stolen, and held for ransom,
which, as a small group, they are unable to pay.
Although they would greatly prefer to have an .org

name, showing that they represent TEX for everyone
who writes in Spanish, they have had to make an
accommodation.

Their new site is http://www.cervantex.es.
They ask everyone who may have a link to the old
name to please update it.

Interactive typography courses by

Jonathan Hoefler

The Resources page at the Typophile web site (http:
//www.typophile.com/resources) always lists in-
teresting material. Two items of particular interest
are “Typography 101” (Type Styles) and “Typogra-
phy 110” (Typeface Design), interactive courses by
Jonathan Hoefler.

The first course presents images of well-known
typefaces, along with text placing each face in its ap-
propriate design category and historical environment.
Related faces are identified for further exploration.
In the second course, the participant is asked to ex-
periment with irregular shapes that illustrate the
behavior of lettershapes (while not being themselves
letters) in order to understand principles such as
balance and typographic color; the shapes are then
transformed to be styled like some of the typefaces
presented in the first course, paying attention to the
design principles that characterize these faces.

Another feature at Typophile is an extensive
forum on Typographic Education. Look for http:

//typophile.com/forum/16.

A helpful CTAN feature: “get”

Although it has most likely been there for quite a
while, I just learned about the “get” feature of CTAN.
If you are reasonably certain of the location of files
you are looking for, the command www.ctan.org/

get/ presents a nicely formatted directory list of the
archive’s top level, and adding a directory name takes
you to that area directly, using an available mirror
to spread the load. This is a convenient alternative
to the search page.

Thanks to the CTAN crew whose efforts are
always appreciated, if not acknowledged nearly often
enough.

Recreating the Gutenberg press

In April, a documentary video was aired by the BBC

chronicling the invention of the Gutenberg Press.
This description was posted by RIT Professor Emeri-
tus Michael L. Kleper.

TUGboat, Volume 29 (2008), No. 2 233

Stephen Fry travels to France and Germany
on the trail of Johannes Gutenberg, and sets
about reconstructing a replica of Gutenberg’s
first press. This is a must-see program. Owing
to contractual restrictions, it’s not available
outside of the UK.

For awhile, it was posted on YouTube, but pulled
in response to the BBC’s copyright claim. Watch
for it — it may reappear, or be released elsewhere.
Before it disappeared, I managed to view most of it;
Prof. Kleper’s description is spot on!

Copy-editing the wayward apostrophe

Do you become exasperated reading signs in which
words are (mis-)spelled in sometimes seemingly ran-
dom ways, and apostrophes appear in places where
they don’t belong, often changing the meaning of
what is being advertised?

Well, you’re not alone, and someone is doing
something about it.

Jeff Deck, a Dartmouth College (New Hamp-
shire, USA) graduate, is on a mission to correct
typographical errors in public places. You can read
about his quest at
http://abcnews.go.com/Travel/BusinessTravel/

story?id=4593597&page=1.
He also writes a blog (http://www.jeffdeck.

com/teal/blog/) where he ruminates on the activi-
ties of the Typo Eradication Advancement League
(TEAL).

Join the hunt.

A font game for your amusement

At http://fontgame.ilovetypography.com, one
finds a page entitled “the rather difficult Font Game”.

Below this heading appears a small font sample —
a word, a date, or other string of glyphs from a font —
with four font names; choose the one you think the
sample came from.

The game consists of 34 such samples, and it
keeps score. When you have identified all 34, you
can look at the correct answers, check the scores of
other testees (the average score is reported to be 23
out of 34 points), or start again with new samples.

The game was created by Kari Pätilä of Jout-
seno, Finland. It can be played on an ordinary
browser or on an iPhone.

⋄ Barbara Beeton

American Mathematical Society

201 Charles Street

Providence, RI 02904 USA

tugboat (at) tug dot org

Editor’s note: The following note announced the
periodic update of TEX and friends on March 18,
2008. (In this presentation, some of the verbatim
code lines have been re-broken or otherwise adjusted
to fit the narrow columns.) Work is underway to in-
clude the new versions in the next release of TEX Live.
Unless you have experience in implementing the soft-
ware, it’s advisable to wait for that release. Please
refrain from posing questions or reporting problems,
to allow the implementors to pursue their work with-
out interruptions. If you want to find out the details
of the updates, those can be found on CTAN in the
area systems/knuth/errata/.

The TEX tuneup of 2008

Donald Knuth

I’ve written this note while going through the long,
long file of bug reports and suggestions that were
submitted during the years 2003–2007. You know
that I am committed to keeping TEX and META-
FONT as stable as possible, while also correcting
serious blunders that are likely to be harmful if left
as is. It is certainly not always obvious where to
draw the line; I intend to keep drawing it as close
to the existing implementations as I can, without
feeling extremely guilty.

The index to Digital Typography lists eleven
pages where the importance of stability is stressed,
and I urge all maintainers of TEX and METAFONT

to read them again every few years. Any object of
nontrivial complexity is non-optimum, in the sense
that it can be improved in some way (while still
remaining non-optimum); therefore there’s always
a reason to change anything that isn’t trivial. But
one of TEX’s principal advantages is the fact that
it does not change — except for serious flaws whose
correction is unlikely to affect more than a very tiny
number of archival documents.

Let me give two examples. First, David Kas-
trup observes that TEX doesn’t do the best possi-
ble rounding when it converts units. One inch is
exactly 72.27 points, which is exactly 4736286.72
scaled points. When you say ‘1in’, TEX converts it
to 4736286sp; when you say ‘72.27pt’, TEX converts
it to 4736287sp, which is about 23.6 Ångstrom units
closer to the truth. With a simple change to TEX
§458, namely to add ‘denom div 2’ before dividing
by ‘denom’, the rounding would be slightly better.
But that would invalidate the line-break and page-
break decisions of an enormous number of documents.
It’s unthinkable to change TEX in such a way today.

234 TUGboat, Volume 29 (2008), No. 2

But of course the authors of other systems should
adopt superior methods when they want to.

Second, I recently installed METAPOST version
0.993, which corrected a bug in the calculation of the
bounding box of its outputs. I’m a user of META-
POST, not a developer; but I’m sort of glad that the
developers had fixed this bug. On the other hand
it was a tremendous headache for me, because it
affected nearly 200 of the illustrations for The Art of

Computer Programming, and caused severe changes
to the layouts of more than a dozen pages, even
though the individual corrections to the box sizes
were typically 2pt or less! I spent three days going
over everything so that I could once again typeset the
volumes of my main life’s work. I couldn’t reasonably
insist that the METAPOST developers retain such
a serious bug as a “feature”. With TEX, on the
other hand, it’s a different story, because people’s
accumulated investment in TEX documents is more
than a million times the total current investment in
METAPOST documents. If a comparable bug had
showed up in TEX, I would not have changed it.

Let me also observe that I never intended TEX
to be immune to vicious “cracker attacks”; I only
wish it to be robust under reasonable use by people
who are trying to get productive work done. Almost
every limit can be abused in extreme cases, and I
don’t think it useful to go to extreme pain to pre-
vent such things. Computers have general protection
mechanisms to keep buggy software from inflicting
serious damage; TEX and METAFONT are far less
buggy than the software for which such mechanisms
were designed. For instances of the philosophy that
I had while writing these programs, see for instance
TEX §9 and MF §9, which say that I expected the pro-
grams to be run with arithmetic overflow interrupt
turned on; also TEX §104: “TEX does not check for
overflow when dimensions are added or subtracted . . .
the chance of overflow is so remote that such tests
do not seem worthwhile”; MF §369 says that the
total weight in a picture “will be less than 231 unless
the edge structure has more than 174,762 edges”;
MF §558, “we shall assume that the coordinates are
sufficiently non-extreme”; MF §930, “users aren’t
supposed to be monkeying around with really big
values.”

A proposal re file errors

I think the following change would be nice for the
next versions of TEX, METAFONT, etc.: In place of
the current message

Please type another %s file name:

produced by prompt_file_name, let’s substitute

Please type another %s file name (or quit):

and then if the user’s response is ‘quit’ we do the
equivalent of control-C. If the response is null, let’s
give a help message.

This modification should be handled by change
files, keeping the master files tex.web and mf.web

and whatever.web as they are. I never have intended
to control the aspects of user interaction on particular
systems.

Maybe also introduce a finite loop, with
‘(or quit)’ replaced by ‘(or I’ll quit)’ the third
or fourth time. I agree that infinite loops are evil,
and I’m sorry that prompt_file_name is invoked
only within infinite loops in my own programs. If
I had thought of this idea earlier, I’d have added
a global variable like max_prompt_repeats, and ini-
tialized it to 3 or 4 just before those infinite loops;
then prompt_file_name would decrement it, or give
up if it’s zero.

Another possibility is ‘(or quit or retry)’,
except the last time. That wording is a bit more
suited to computer geeks, who have ideas about fixing
things by repairing file permissions, etc.; if the user
responds with either ‘retry’ or null, the intention is
clearly to try again because of some reason to hope for
success. Still, I prefer the non-geek version, because
it reaches more people and enables the null-for-help
option. Let the geeks type a few more keystrokes—
they get satisfaction in other ways.

TEX

TEX version 3.1415926 corrects a few minor bugs,
following major studies by David Fuchs. A summary
of the noteworthy changes to the Pascal code in
tex.web can be found near the end of the (long) file
errata/tex82.bug. Here are the most significant
ones, in decreasing order of importance:

1. Leaders with \mskip glue never worked prop-
erly; this feature has now been disallowed.

2. Error recovery was incorrect when an extra
right brace appeared within a macro parameter.

3. TEX’s inner loop now runs a bit faster.

4. The size of insert boxes is now displayed more
accurately by \showlists.

5. A restriction on TFM files enforced by TFtoPL

(namely that there must be at least one entry in each
of the width, height, depth, and italic correction
tables) is now enforced also by TEX, since noncom-
pliance could cause a mess.

6. TEX used to leak four words of memory
if arithmetic overflow occurred when \multiply or
\divide was applied to glue or muglue.

TUGboat, Volume 29 (2008), No. 2 235

7. The old iniTeX could leak four words of
memory in another way (but at most four total), if
“last_glue” pointed to a glue specification when the
format file was created.

There’s an undocumented feature, which
is inconvenient to explain anywhere in The

TEXbook: \pagedepth is cleared to zero when
the current page disappears into \box255; but
\pagetotal, \pagestretch, \pagefilstretch,
\pagefillstretch, \pagefilllstretch, and
\pageshrink are zeroed later, when the cur-
rent page becomes nonempty. (That’s the time
\pagegoal is set, and recorded in the log file with a
%% line if you’re tracing pages.) I don’t recall why
there is a discrepancy, but I certainly don’t want to
diddle with any of that logic at this late date.

Here are some other things that I don’t want to
touch:

i. David Kastrup found a glitch in plain TEX’s
footnote-splitting mechanism. Everything works ac-
cording to the documentation in The TEXbook and I
can’t possibly make a change to such a sensitive part
of TEX’s logic at this late date. But his example is
quite interesting, and I’d like to discuss it here for
the benefit of people planning other systems.

Here’s his construction (to be used with plain
TEX):

\def\testpage#1{\dimen0=#1

\vrule height .5\dimen0 depth .5\dimen0

\quad #1\par

Some text.\footnote*{A bigbreak follows...

\bigbreak

A bigbreak preceded.}

\par\vfill\supereject}

\testpage{8.17in}

\testpage{8.23in}

\testpage{8.2in}

The first test page is an example where the entire
footnote fits fine. In the second one, the footnote
needs to be split; so two pages are generated, one
with the first half of the footnote, as desired.

The third test page illustrates the problem:
Plain TEX uses the worst of both strategies! Namely,
it generates two pages, in which the first is under-
full, while the second has the text and footnote that
would have fit on the first page.

Why does plain TEX screw up here? Well, TEX
knows that the footnote doesn’t fit, when typeset
at its natural height+depth of 36pt. So it tries to
split it, by choosing a height threshold: It says to the
vsplit routine, “Please give me your best break that
doesn’t exceed a height of 30.089pt.” (That is what’s
left after we start with plain TEX’s vsize of 8.9in and
subtract the page-total-so-far, which is 8.2in for the

vrule, plus 1pt of lineskip, plus 7.5pt for the height
of ‘Some text.’, plus 12pt to separate the text from
its first footnote.) The vsplit algorithm discovers
two ways to break the footnote: One has height
8.5pt (the height of ‘* A bigbreak follows. . . ’), depth
1.94444pt, and penalty −200 (at the bigbreak); the
other has natural height 32.5pt, depth 3.5pt (which
comes from a strut placed by plain TEX), and penalty
−10000 (the force-out penalty at the very bottom of
the footnote). This latter break is considered viable
because 4pt of glue shrinkage is available to bring the
height down to 30.089pt. Naturally vsplit chooses
the latter alternative.

Then TEX does something dumb. It records the
result of the split in the list of contributions to the
current page, in such a way that the first part of
the split will be included on the page only if there’s
room for its natural height+depth, namely 36pt in
this case. (And in this case, the “first part of the
split” actually turns out to be the whole footnote.)
Therefore, when TEX next finds a legal breakpoint,
the current page limit has been exceeded, and the
line with its footnote is deemed not to be permissible.
The previous break, which leaves an underfull vbox,
is chosen instead of “overfilling” the page—even
though there is really enough shrinkability to bring
the page back to size.

As I said, it’s too late now to correct my age-old
faulty reasoning. If I’d known about the problem
twenty years ago, I may well have decided to make
the change that seems most appropriate to me today,
which is this:

@x module 974

best_height_plus_depth:=cur_height+prev_dp;

@y

best_height_plus_depth:=cur_height+prev_dp;

if (best_height_plus_depth>h+prev_dp)

and (b<awful_bad) then

best_height_plus_depth:=h+prev_dp;

@z

In other words, the log file (with tracingpages=1)
now gets the line

% split254 to 30.08878,36.0 p=-10000

but after that patch it would instead say

% split254 to 30.08878,33.58878 p=-10000

and the footnote would wind up on the first page
where it belongs.

When I made the mistake ages ago, I proba-
bly wasn’t thinking of shrinkability inside the foot-
note, only in the “virtual” amount of space within
\skip254 that separates the text from its footnotes.
Indeed, the present problem goes away if one sets
\skip254=12pt minus 8pt. But that workaround

236 TUGboat, Volume 29 (2008), No. 2

would be appropriate only for this particular exam-
ple.

ii. Section 798 could be made more robust with
“until q=cur_align” moved down one line. Imple-
mentors can put this into a change file if they like.

iii. The format plain.tex leaves \box0=\hbox
{\tenex B}; and it also defines \\ to be a macro
such that “\\10pt” expands to “10” (for example).
I could have cleaned these up by saying something
like

{\setbox1=\box0} \let\\=\undefined

but I decided not to change it, since plain.tex is
so widely used as is.

iv. Frank Mittelbach reported a construction of
Morten Høgholm Pedersen:

\parindent=0pt

\setbox0=\hbox{p} \hsize=\wd0

\discretionary{m-}{h}{p}\par

It gives an overfull box, because TEX doesn’t see any
feasible breakpoint. (More precisely, the pre-break
part exceeds the line width, and TEX doesn’t look
ahead to see if some fairy godmother is going to save
us.) Thus TEX is resigned to making an overfull box,
and it takes the only legal breakpoint it knows.

This must be considered a feature of TEX’s line-
break algorithm. Namely, a discretionary break is
normally never taken when the pre-break part would
make an overfull box; but it is always taken in the
unusual case that no other feasible break is possible
(without looking ahead at the third, “unbroken” al-
ternative of the discretionary). A problem can arise
only if an unhyphenated word is actually shorter than
its first hyphenated fragment. What, me worry?

Amusingly, if you put the line

\spaceskip=0pt plus 1fill

\discretionary{p}{\kern-2em}{}

before the other discretionary, you get two p’s and
nothing overfull.

v. Jonathan Kew mentioned some of the surpris-
ing effects that occur when you try to do things in
the command line (or in the very first line of TEX’s
input, at the ** prompt). There are many, many
such.

Before TEX knows the job name, it outputs just
to the terminal. Log file output won’t happen until
an \input command has occurred, or input line one
has been processed, whichever comes first, because
the log file is given its name at that time.

For example,

**\showhyphens{whatever}

will show ‘what-ever’ on the terminal, but not in
the log file. Same for

**\showhyphens{whatever} \input foo

but in this case the log file is called foo.log instead
of texput.log. With

**\input foo \showhyphens{whatever}

you see ‘what-ever’ also in foo.log.

plain TEX format

Version 3.141592653 of plain.tex is identical to
version 3.14159265, except that \errorstopmode

is no longer invoked by the \tracingall and
\loggingall macros. (That mistake had been in
plain.tex for more than 25 years, and I thank David
Kastrup for the wakeup call.)

METAFONT

Turning now to METAFONT, Thorsten Dahlheimer
gave the whole program a much-needed scrutiny and
came up with a number of bugs that have now been
corrected in version 2.718281. (Incidentally, he has
also given me invaluable help finding mistakes in the
darker corners of TAOCP.) Only one of those bugs
was serious enough to affect real programs with high
probability; the others are the sorts of things that a
good nitpicker will spot when reading code, although
the actual misbehavior requires weird scenarios. As
usual, you can find details of the significant changes
to Pascal code in the file errata/mf84.bug. The
complete source file mf.web shows many instances
of improved commentary.

1. The serious bug arose from user input such
as

boolean b[]; b1=true=b2;

earlier versions of METAFONT would go into an infi-
nite loop from such constructions, so evidently no-
body ever writes code like this. (Strings, paths, and
pictures have similar problems, not just booleans.)
No problem would occur if the statement had been
“b1=b2=true” instead. I forgot to include one instruc-
tion in my program, and it’s a glaring error in section
1003.

This bug is also in the METAPOST source,
mp.web, which I assume somebody else will fix. Who-
ever does that should also look carefully at the other
changes just made to mf.web, since so much of the
code is common to both.

2. There also were problems in the TFM files
when extremely large characters or dimensions were
present. For example, from

mode:=lowres; mode_setup; designsize:=10pt#;

beginchar("!",160pt#,-160pt#,160pt#);

endchar; end

TUGboat, Volume 29 (2008), No. 2 237

you get a TFM file with a bad character width and
depth, because of an off-by-one error in my code.
(TFtoPL doesn’t complain about the character height,
which violates some but not all of the documentation
of TFM files: A fix_word is supposed to lie between
−2048 and 2048 − 2−20, inclusive, but The META-

FONTbook says that no TFM dimension should result
in the fix_word value −2048. TEX has no problem
inputting that value.)

3. Another TFM problem was tweaked with
ultralarge design sizes:

fontmaking:=1; designsize:=2000;

fontdimen 2: 3000;

shipout nullpicture; end

used to set fontdimen 2 (the SPACE parameter) to
be about 32000 points. The correct behavior is to
reduce fontdimen 2 to just less than 2048 points.

4. Weird behavior could previously occur with

transform T;

T=identity xscaled 4 yscaled 3 rotated 180;

pickup pencircle transformed T;

show currentpen;

which always came out correctly without the (redun-
dant) rotation by 180.

5. Another bug arose in code fragments like

string a.b; a.b="lost"; outer a;

numeric a.c; showvariable a;

the string a.b was indeed now lost. (METAPOST

probably fails in the same way.)

6. METAFONT now checks that serial numbers
don’t overflow. Actually I had recommended that
the program always be run with arithmetic integer
overflow trapped; but this doesn’t seem to be cur-
rent practice. If a user creates 225 distinct numeric
variables, the “METAFONT capacity exceeded” er-
ror now occurs; formerly, this would have caused
arithmetic overflow. (Well, this correction was ac-
tually made already in TEX-live change files some
years ago; I’ve now introduced it into the master file
mf.web, in a slightly different way.)

Not a bug: The init_gf procedure has an
assignment to str_start[str_ptr+1] that looks
like it could cause a segmentation fault if str_ptr=
max_strings. Actually, however, that can’t happen.
(The test “str_ptr+3>max_strings” in end_name,
together with the fact that area_delimiter=0 in
that procedure because cur_area="", provides the
extra breathing space.) But I changed init_gf any-
way.

Anomalies that won’t be changed: Autoround-
ing does not work properly when filling certain non-
convex shapes, such as

pickup makepen((-.6,0)--(.6,0)--cycle);

filldraw (2,0){up}..(0,1){down}..%

(1,0){down}..(0,-1){down}..cycle

at point (1,0). Pens whose width and height are not
integers are deprecated; there’s no point cluttering
up the code with stuff that benefits only them.

One of METAFONT’s (and METAPOST’s) most
interesting algorithms is the way it chooses control
points and directions for paths that are partially
specified. I ran into a curious glitch some years ago
when preparing an illustration for my book Selected

Papers on Computer Languages: The two paths
(0,0){dir45}...(15,0)...(0,0){dir150}

and (0,0){dir-45}...(15,0)...(0,0){dir-150}

turn out to have amazingly different shapes. (The
first one twists around almost unbelievably, while
the second looks reasonable.) I tracked this down
to the equations in METAFONT’s “solve_choices”
routine, which chooses the desired “turning angle” at
the point (15,0). In both cases this value, psi[1],
is set to n_arg(-983040,0); here −983040 is the
internal (scaled) representation of −15, and n_arg is
supposed to determine the value of angle(-15,0).
[See page 67 of The METAFONTbook.] The answer
is 180, which is appropriate in the second case, but
the first case really wants the answer to be −180.

Computer Modern

I made a noticeable change to the shape of one (and
only one) letter in the CM family, namely the cal-
ligraphic F. The new one has a slightly different
swash, which pleases me more when I look at it in
The Art of Computer Programming. The change is
small, yet it would be nice if people would remake
the Type 1 versions of the fonts that use calu.mf,
namely cmsy* and cmbsy*.

The lowercase Greek nu could develop a tiny
notch at the bottom, especially at high resolutions
of boldface versions (brought to my attention by
Charles Duan, who conjectured its existence by read-
ing the source code!). So I corrected that problem.

Duan also found a few other places where the
source code was logically wrong in greekl.mf. I fixed
those too. However, those changes don’t actually
show up in the generated font, since the differences
in point positions are minuscule.

Karel Pǐska noticed that the bulbs of lowercase
a and c are positioned rather differently when the
“blacker” parameter of a mode varies. (He blamed
it on varying resolution, but that’s because my code
was obscure.) In those characters I essentially try
to move strokes apart so that there’s twice as much
white space as the thickness of the pen; therefore
a blacker pen makes the strokes go further apart.

238 TUGboat, Volume 29 (2008), No. 2

My logic was faulty, because the “blacker” setting
was intended to compensate for differences in the
device that make its apparent pen width too small,
thereby making the actual appearance after printing
only as black as it would have been on an ideal
device; increasing “blacker” by 1 shouldn’t make me
reposition any strokes. Yet I do actually reposition
them, on the lowercase a, by roughly 2 pixels per
unit of blacker! And the bulb on c is positioned to
be like that of a. Still, the repositioned bulbs look
OK, and I’m happy to continue forever with this
wart in the design.

TEXware

TFtoPL version 3.2 is identical to version 3.1 except
that a (missing) newline character now appears after
one of the warning messages.

Computers & Typesetting

Dozens of corrections were made to Volumes A, B,
C, D, and E of the books Computers & Typeset-

ting, bringing everything up to date with respect
to the latest sources. (This includes The TEXbook,
which is a paperback Volume A, and The META-

FONTbook, which is a paperback Volume C.) Copies
of the corrected books won’t be available for sale un-
til the publisher’s stock of already-printed volumes
is depleted; but I’ve prepared detailed errata from
which you can make hardcopy inserts to paste into
the books you have.

Summary

All of the results of my changes appear in the
following files:
tex/texbook.tex % source file for The TEXbook

tex/tex.web % complete master file for TEX in
Pascal

tex/trip.fot % torture test terminal output
tex/tripin.log % torture test first log file
tex/trip.log % torture test second log file
tex/trip.typ % torture test output of DVItype
texware/tftopl.web % complete master file for

TFtoPL in Pascal
mf/mfbook.tex % source file for The

METAFONTbook

mf/mf.web % complete master file for
METAFONT in Pascal

mf/trap* % (namely trap.fot, trapin.log,
trap.log, trap.typ, trap.pl)

mf/trap.fot % torture test terminal output
mf/trapin.log % torture test first log file
mf/trap.log % torture test second log file

mf/trap.typ % torture test output of GFtype
mf/trap.pl % torture test output of TFtoPL

cm/calu.mf % master source file for calligraphic
capital letters

cm/greekl.mf % master source file for lowercase
greek letters

cm/symbol.mf % master source file for special
symbols

errata/errata.ten % changes to Volumes
ABCDE before 2001

errata/errata.eleven % changes to Volumes
ABCDE in 2001

errata/errata.tex % changes to Volumes
ABCDE since the 2001 boxed set

errata/tex82.bug % changes to tex.web since
the beginning

errata/mf84.bug % changes to mf.web since the
beginning

errata/cm85.bug % changes to Computer
Modern metafont sources since 1985

These files are available in directory pub/tex/dist

of the ftp server cs.stanford.edu, which accepts
“anonymous” as a login name. They are a subset
of the files in pub/tex/dist/tex08.tar.gz, which
you can compare to pub/tex/dist/tex03.tar.gz if
you like. Hopefully they will be easy to incorporate
into the major distributions of TEX, and they will
presumably soon be available on CTAN.

In general the changes can be characterized as
a general cleanup, especially to the documentation.
The new versions don’t affect old documents, except
when the existing behavior was seriously incorrect.
(And except for the fact that TEX will often run a
bit faster now.)

To do this revision I waded through more than
600 K bytes of text files, not counting the binary .pdf

and .png files that were also submitted. Barbara
Beeton faithfully compiled all of this material during
the years 2003–2007, and organized it so that my task
wasn’t hopeless. She had many volunteers helping
to separate wheat from chaff; needless to say, I’m
extremely grateful for all of this assistance.

The total number of independent topics about
which I had to make a decision, after they had come
through the filtering process, was approximately 335.
Some of these needed several days of thought and
careful study; some of them needed only a few sec-
onds. More than a hundred of them were nontrivial,
and I did my best.

So now I send best wishes to the whole TEX
community, as I leave for vacation to the land of
TAOCP — until 31 December 2013. Au revoir!

Hyphenation Exception Log

Barbara Beeton

This is the periodic update of the list of words
that TEX fails to hyphenate properly. The full list
last appeared in TUGboat 16, no. 1, starting on
page 12, with updates in TUGboat 22, no. 1/2,
pages 31–32, 23, no. 3/4, pages 247–248, and 26,
no. 1, pages 5-6.

In the list below, the first column gives results
from TEX’s \showhyphens{...}; entries in the
second column are suitable for inclusion in a
\hyphenation{...} list.

In most instances, inflected forms are not shown
for nouns and verbs; note that all forms must be
specified in a \hyphenation{...} list if they occur
in your document. The full list of exceptions, as a
TEX-readable file, appears at http://mirror.ctan

.org/info/digests/tugboat/ushyphex.tex. (It’s
created by Werner Lemberg’s scripts, available in
the subdirectory hyphenex.)

Like the full list, this update has been subdi-
vided into two parts: English words, and names and
non-English words (including transliterations from
Cyrillic and other non-Latin scripts) that occur in
English texts.

Thanks to all who have submitted entries to
the list. Here is a short reminder of the relevant
idiosyncracies of TEX’s hyphenation. Hyphens will
not be inserted before the number of letters specified
by \lefthyphenmin, nor after the number of letters
specified by \righthyphenmin. For U.S. English,
\lefthyphenmin=2 and \righthyphenmin=3; thus
no word shorter than five letters will be hyphenated.
(For the details, see The TEXbook, page 454.) This
particular rule is violated in some of the words
listed; however, if a word is hyphenated correctly by
TEX except for “missing” hyphens at the beginning
or end, it has not been included here.

Some other permissible hyphens have been
omitted for reasons of style or clarity. While this is
at least partly a matter of personal taste, an author
should think of the reader when deciding whether
or not to permit just one more break-point in some
obscure or confusing word. There really are times
when a bit of rewriting is preferable.

One other warning: Some words can be more
than one part of speech, depending on context, and
have different hyphenations; for example, ‘analyses’
can be either a verb or a plural noun. If such a word
appears in this list, hyphens are shown only for the
portions of the word that would be hyphenated the
same regardless of usage.

TUGboat, Volume 29 (2008), No. 2 239

The reference used to check these hyphenations
is Webster’s Third New International Dictionary,
Unabridged.

Hyphenation for languages
other than English

Patterns now exist for many languages other
than English, including languages using accented
alphabets. CTAN holds an extensive collection of
patterns; see http://mirror.ctan.org/language/
hyphenation and its subdirectories.

The list — English words

acupunc-ture(ist) acu-punc-ture(-ist)
aneurysm an-eu-rysm
aneurys-mal an-eu-rys-mal
com-putab(le,ility) com-put-ab(le,il-ity)
copy-rightable copy-right-able
deal-lo-cate(s,d) de-allo-cate(s,d)

deal-lo-ca-tion de-allo-ca-tion
der-i-va-tion der-i-va-tion

deriva-tional der-i-va-tion-al
essence es-sence
fig-urine figu-rine
home-o-static ho-meo-stat-ic
home-osta-sis ho-meo-sta-sis
iso-ge-o-met-ric iso-geo-met-ric

isother-mal iso-ther-mal
makein-dex make-in-dex
mnemonic mne-mon-ic
monoph-thong mon-oph-thong
monospace mono-space
names-pace name-space
om-nipresent(ce) om-ni-pres-ent(ce)
phe-nolph-thalein phe-nol-phthalein
ph-tha-la-mic phtha-lam-ic

ph-tha-late phthal-ate
ph-thi-sis phthi-sis

polyandry(ous) poly-an-dry(ous)
poly-dactyl(lic) poly-dac-tyl(-lic)
polyg-yny(ous) po-lyg-y-ny(ous)
polyp(s) pol-yp
poly-phonic poly-phon-ic
presently pres-ent-ly
re-al-lo-cate(s,d) re-allo-cate(s,d)
re-ar-range(s,d) re-arrange(s,d)
sergeant ser-geant

ser-vome-chan-i-cal ser-vo-me-chan-i-cal
ser-vomech-a-nism ser-vo-mech-a-nism

tex-theight \text-height

textlength \text-length

tex-twidth \text-width

tribesman tribes-man

Names and non-English words
used in English text

Malay-alam Ma-la-ya-lam
Mon-treal Mont-real
Pres-by-te-rian Pres-by-terian

Vi-eth Vieth

240 TUGboat, Volume 29 (2008), No. 2

Typography

Typographers’ Inn

Peter Flynn

1 METAFONT fonts

Although the majority of the typefaces installed with
a standard TEX distribution are available in Post-
script Type 1 format, there are still several very use-
ful ones available only in METAFONT format. These
include the specialist fonts in the bookhands bun-

dle, such as ❘✉st✐❝ or❯♥❝✐❛❧, the BB Dingbats,
the cartographic symbols (Karta), Ogham, and many
others.

METAFONT is a font outline language, but by
default TEX systems use the bitmap output from
such fonts (a .pk font file). It is possible that these
will never be rewritten as PostScript fonts, so using
them will continue to require a TEX system, with a
little help from The LATEX Companion [2].

The Adobe Acrobat Reader notoriously used to
make a complete hames of bitmapped fonts on screen,
blurring them into unreadability while printing them
perfectly, but this has been improved significantly
in recent versions. It is very fashionable in certain
quarters to decry the use of bitmapped fonts on
purely technical grounds, disregarding the fact that
they do actually provide a useful — and in some cases
essential — instantiation of a specific design.

There are some problems: a few of the fonts
available (Ogham is one example) produce microscop-
ically tiny glyphs by default, requiring a correction to
the METAFONT code; and not all of them can yet be
used directly in LATEX via a standard package. But
they are all worth investigating, not just for special
effects, but because they are a useful contribution to
the range of typefaces available to us.

❚❨P❖●❘❆P❍■❆

❆❘❙ ❆❘❚■❯▼ ❖▼◆■❯▼

❈❖◆❙❊❘❱❆❚❘■❳

2 Type 1 (PostScript) fonts

Better late than never: I finally managed to rescue
my Type 1 virtual font installation script from the
ravages of a damaged disk drive. I’ve been using this
for a decade or more, and I documented what it did
in ‘Formatting Information’ [1, §8.3.2], but I never
released it into the wild, as it was very specific to
my own system.

I’ve now updated it and documented it, and
it’s ready to test, although the platform is very re-
stricted: it’s a bash (1) shell script for TEX Live
on Ubuntu Gutsy, installing typefaces from the Bit-
stream 500–font CD. If you have all this, feel free
to download it from http://latex.silmaril.ie/

fonts/cdvf (too early for CTAN).
So what on earth am I doing? In the face of Alan

Jeffrey’s (and others’) fontinst, which uses LATEX
itself to install fonts, and Jonathan Kew’s wonderful
X ETEX, which ferrets out and lets you use every font
on your hard disk, isn’t installing Type 1 fonts a bit,
well, retro?

Yes and no: while a lot of people are moving to
OpenType and other post-PostScript formats, there
is still a vast supply of Type 1 fonts around, and still
a lot of people who want to install them (to judge
by the posts on the topic to comp.text.tex). The
problem with installing them isn’t the making of the
.tfm files, it’s making them play nicely with LATEX,
and that ’s what cdvf does.

It takes a typeface from a standard distribution
mapfile (currently just bitstrea.map)— for exam-
ple a font family name like bun; Bitstream’s version
of Univers which they call ZurichBT — and creates all
the .tfm and .vf files, moves them (and the .pfb

and .afm files) to the right places, writes a .sty

(package) file and the relevant .fd (font definition)
and .map files, and finally runs updmap and texhash
to leave you with an immediately usable entire type-
face and a report on what was installed. Figure 1
shows the result of typing the command:

$ cdvf bitstream univers ZurichBT s

It’s by no means perfect, but it seems to work,
and needs testing. The next stages are:

• generalize it for all Unix-like platforms;
• add support for other CDs/DVDs of typeface

collections (currently working on FontSite);
• add support for other encodings (currently it

only does T1);
• clean up series and shape detection;
• add isolated-font classification detection, so that

arbitrary .pfb/.afm pairs can be installed with-
out the need for a .map file to pre-exist;

• eventually rewrite it in something platform-in-
dependent, with a GUI front-end.

Type 1 font files notoriously lack full information
about themselves (it’s often impossible to machine-
detect a sans-serif typeface, for example, hence the
final parameter on the command given above). But
it still ought to be easier to install Type 1 fonts for
LATEX and have them ‘just work’.

TUGboat, Volume 29 (2008), No. 2 241

Table 1: Fonts installed

Family Series Shape

bun l n The quick brown fox jumped over the lazy dog

bun l sc The quick brown fox jumped over the lazy dog

bun l it The quick brown fox jumped over the lazy dog

bun m n The quick brown fox jumped over the lazy dog

bun m sc The quick brown fox jumped over the lazy dog

bun m it The quick brown fox jumped over the lazy dog

bun b n The quick brown fox jumped over the lazy dog

bun b sc The quick brown fox jumped over the lazy dog

bun b it The quick brown fox jumped over the lazy dog

bun c n The quick brown fox jumped over the lazy dog

bun c sc THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG

bun c it The quick brown fox jumped over the lazy dog

bun mx n The quick brown fox jumped over the lazy dog

bun mx sc THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG

bun bx n The quick brown fox jumped over the lazy dog

bun bx sc THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG

bun cx n The quick brown fox jumped over the lazy dog

bun cx sc THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG

bun ux n The quick brown fox jumped over the lazy dog

bun ux sc THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG

bun lc n The quick brown fox jumped over the lazy dog

bun lc sc THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG

bun lc it The quick brown fox jumped over the lazy dog

bun mc n The quick brown fox jumped over the lazy dog

bun mc sc THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG

bun mc it The quick brown fox jumped over the lazy dog

bun bc n The quick brown fox jumped over the lazy dog

bun bc sc THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG

bun bc it The quick brown fox jumped over the lazy dog

bun lq n The quick brown fox jumped over the lazy dog

bun lq sc THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG

bun mq n The quick brown fox jumped over the lazy dog

bun mq sc THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG

bun bq n The quick brown fox jumped over the lazy dog

bun bq sc THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG

bun x n The quick brown fox jumped over the lazy dog

bun x sc THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG

Table 2: File locations

File Location

Font definition /usr/local/share/texmf/tex/latex/psnfss/t1bun.fd

Style (package) file /usr/local/share/texmf/tex/latex/psnfss/univers.sty

Font map file /usr/local/share/texmf/dvips/config/bun.map

Font map reference /home/peter/.texmf-config/updmap.d/10local.cfg

Adobe Font Metrics /usr/local/share/texmf/fonts/afm/bitstrea/univers

Postscript Font Binaries /usr/local/share/texmf/fonts/type1/bitstrea/univers

TEX Font Metrics /usr/local/share/texmf/fonts/tfm/bitstrea/univers

Virtual Fonts /usr/local/share/texmf/fonts/vf/bitstrea/univers

3

Figure 1: Part of the report output of the cdvf font

installation script

3 New forum, old forum

John Coffey has started a new forum for technical
questions and answers related to typesetting at http:
//typesetterforum.com. This is in bulletin-board
format rather than a mailing list like TYPO-L, and
has lots of interesting posts from users of all the
popular systems (Quark, InDesign, 3B2-as-was, and
others, as well as LATEX).

For those of you who haven’t discovered it yet,
the typography mailing list TYPO-L is at http://

listserv.heanet.ie/typo-l.html where you can
join or leave, or browse the archives.

Strange that there is no global Usenet newsgroup
on typography.

4 2008 TUG meeting in Cork

The Call for Papers went out in February and we
already have some good abstracts submitted. If
you’re doing something interesting with TEX-and-
friends (or with type, or in a related field), then you
should let everyone know—and the best way to do
that is to write it up and submit it (or send it to
TUGboat).

Registration is now open on the web site at
http://tug.org/tug2008/, so sign up and book
early. We look forward to seeing you all here!

Afterthought

Thanks to Michael Everson for pointing this out in
TYPO-L (quoted with permission from David Fried-
man’s Ironic Sans blog, http://www.ironicsans.

com/2008/02/):

keming. (kěm′-̆ıng). n. The result of improper
kerning.

References

[1] Peter Flynn. Formatting Information. TUGboat,
23(2):115–250, 2002.

[2] Frank Mittelbach, Michel Goossens, Johannes
Braams, David Carlisle, and Chris Rowley. The
LATEX Companion. Addison-Wesley/Pearson Ed-
ucation, Boston, MA, 2nd edition, 2004.

⋄ Peter Flynn

Textual Therapy Division, Silmaril

Consultants, Cork, Ireland

Phone: +353 86 824 5333

peter (at) silmaril dot ie

http://blogs.silmaril.ie/peter

242 TUGboat, Volume 29 (2008), No. 2

The Greek Font Society

Vassilios Tsagkalos

Abstract

The Greek Font Society is a part of Greece standing
against a predominantly easy-going culture.

Background and goals

The text that follows is a translation of a text that
originally appeared in Greek in Εὔτυπον (Eutypon),
the newsletter of the Greek TEX Friends Group (see
http://www.eutypon.gr). The text has been trans-
lated into English by the original author.

A non-profit organization committed to study-
ing meticulously, creating superbly and offering open-
ly: the Greek Font Society (GFS) was founded in
1992 with the express aim of contributing to the
research of Greek typography and supporting Greek
typefaces in a digital environment. Its Board of
Directors consists of Mikhail V. Sakellariou (Pres-
ident), Lili Macrakis (Vice-President), Dimitris G.
Portolos (Secretary), Lena G. Savidis (Treasurer),
Giorgos E. Agouridis and Eleftheria Giakoumakis.
GFS’s type design program began through the collab-
oration of the then Vice-President Mikhail Macrakis
and its artistic director, the painter-engraver Takis
Katsoulidis, with the type designer and typogra-
phy researcher George D. Matthiopoulos and the
philologist Eleni Tsialta. The current working group
consists of George Matthiopoulos (artistic director)
and type designers Mikhail Semoglou and Natasha
Raissaki. GFS operates on limited resources which
leave no space for promotional campaigns; it will
continue to function as long as this is manageable.
Operational costs are usually covered by subventions,
grants and financial support from various state and
non-state bodies.

The Greek Font Society was established to fill
the observed gap in systematic research of the impor-
tance of Greek typeface design for visual communi-
cation as well as to emphasize the specific weight of
history, the reverberation and consolidation of visual
forms in an area of artistically illiterate publishers
with low typographic expectations within Greece. It
seeks to offer a solution today to a problem which
initially should have been addressed systematically
as long ago as the late 19th century, in order to enjoy
its fruits today.

GFS’s work is well-described by its impressive
motto: always study and continuously train your
eyes! That’s why they investigate the past of Greek
typography, study the design rules that formed it,
digitize and preserve historical Greek typefaces, and

finally make them available to the public. Its type-
faces provide support for the “extended” Greek block
of Unicode, while older typefaces include the original
ligatures and abbreviated forms — end result: as far
as possible, each typeface is intended as a complete
tool for the user and a historical sample to every new
type designer who may wish to learn the history of
his/her art before attempting to design.

Although polytonic Greek is technically sup-
ported, this does not mean that GFS’s statutory
goals include reversion to the polytonic system. (As
of 1982, the official grammar of the Greek state is
monotonic Modern Greek.) GFS is not a literary or
linguistic union that can take a collective position
on issues outside its area of expertise. Its goal is
to reinforce and promote Greek typography in our
globalized milieu, that is, it stretches out to reach
users not necessarily located in Greece but every
user of the Greek language around the world. Since
the Greek script has evolved through several forms
during the millennia, different scholars should be
offered the technical prospect of using it in their
own ways: be it Greek or non-Greek researchers
of Homer, annotators of Papadiamantis, historians
studying Thucydides or critics of El Greco’s work,
all need to use Greek typefaces for the special needs
of their sectors.

Typefaces

The public is therefore offered a continuously widen-
ing choice of Greek OpenType fonts freely distributed
under the SIL Open Font License, including impor-
tant historical samples and new designs which respect
the typographic tradition and avoid the insensitive
and ignorant copying of Latin-based standards. As
GFS survives on donations, it offers its cultural work
for free, only to remind those who tend to forget that
there is an alternative way of living apart from profit-
making and also in its attempt to make a positive
step towards the others, even to the disadvantage of
one’s personal gain.

In opposition to the argument made by many
that the Greek alphabet is in risk of extinction, be-
cause its letters become more and more similar to
the glyphs of Latin script fonts, GFS states that
the main enemy is not the Latin script itself but
rather an aversion to the knowledge of the past and
its teachings, the statements of our present leaders
which lulls our vigilance, the spiritual sybaritism
typical of contemporary Greeks along with the poor
quality of most Greek libraries and the taking of
minimum pains for every effort. Now, ‘effort’ is one
keyword for the Greek Font Society, along with the
second keyword of ‘offer’: five majuscule typefaces

TUGboat, Volume 29 (2008), No. 2 243

are offered, together with GFS Complutum Classic
(with new capital letters) from the 16th century,
three typefaces from the 18th century, another three
from the 19th century and seven typefaces from the
20th/21st century — all free of charge! Naturally we
can only expect more free GFS fonts.

As for our present (LA)TEX, GFS offers five free
fonts: GFSDidotTeX, GFSBodoniTeX, GFSPorsonTeX,
GFSNeoHellenicTeX and GFSArtemisiaTeX. That is,
we do provide specific fonts and a web page dedi-
cated to TEX, combined with a presentation of the
Department of Mathematics at the University of the
Aegean and the Laboratory of Digital Typography
and Mathematical Applications. All this is thanks
to a collaboration of the GFS with a member of our
Greek TEX Friends group, Antonis Tsolomitis. Need-
less to say, all OpenType fonts can be used directly
with X ETEX/X ELATEX.

Publishing

The Greek Font Society is also productive in pub-
lishing, since it has translated and designed Robert
Bringhurst’s renowned book “The Elements of Ty-
pographic Style,”, Crete University Press, Iraklion,
2001, with a grant by the Stavros Niarchos Founda-
tion. For the occasion of the 2004 Olympic Games
in Athens, GFS designed and published, also with
the kind support of the Stavros Niarchos Founda-
tion, a set of seven bilingual not-for-sale publications
(English, French, German, Modern Greek, Italian,
Russian, and Spanish) of the 14 Olympic Odes of Pin-
dar using historical Greek typefaces from the 15th to
the 20th century for the ancient Greek text. The An-
cient Greek text was typeset in seven digital redesigns
(one for each language) of the most celebrated Greek
typefaces elaborated in several European countries.
This publication was aimed at asserting that the
Olympic Games, far from becoming used up as an
instance of immoderate commercialization, ought to
be generating a cultural dialogue uniting all nations.
The set was offered as a gift to all of the participating
Olympic Committees in the Games and sent to a
range of libraries in Greece and abroad.

In 1995 the GFS organised an International Con-
ference, “Greek Letters: From Tablets to Pixels” at
the Institute Français d’Athènes in 1995, with Greek
and foreign participants who presented their research
on the history, aesthetics and technological future
of the Greek typefaces. The proceedings of the Con-
ference are downloadable in Greek from the GFS’s
website, and their English translation by Mikhail S.
Macrakis (ed.), “Greek Letters: From Tablets to Pix-
els”, was published by Oak Knoll Press, New Castle,
Delaware, 1996.

GFS is also preparing an anthology of Greek
typography, presenting books which have impacted
the typography of Greek publications from the era
of earliest typography to mid-20th century, as well
as historical information on the publishers and ty-
pographers who created them. The anthology will
aim at making Greek typographic history accessible
to all and enabling Greek graphic designers to come
into contact with the history of their art by offering
images and data kept hidden on library shelves.

Interview: George Matthiopoulos

Mr George Matthiopoulos works as a type designer
for the Greek Font Society. He kindly agreed to
answer the questions which Εὔτυπον put to him.

Q: What makes Greek typographic history worth
attention and study?
A: The history of every aspect of the art and tech-
niques which shaped the course of modern Greek
culture is, in my view, self-evidently worthy; add to
this that a better understanding of the typographic
tradition aids the creative assimilation of the global-
ized visual communication by new generation graphic
designers.

Q: Would you say that the Greek script receives its
value through the ages on the simple grounds of being
the carrier of the Greek language and civilization or
does it have its own value due to some important
people that have served it?
A: Letters are primarily communication symbols of
a language, but in the course of time they develop
a timeless aesthetic connection with language. The
Greek alphabet originated without many modifica-
tions from the Phoenician alphabet and the Latin
alphabet was derived from the Greek. [According to
the American scholar Barry B. Powel, the alphabet
is a Greek invention: see Homer and the Origin of
the Greek Alphabet, Cambridge University Press,
1991.] So, any couplings between language and aes-
thetics are not metaphysical and immovable ideas
(in the Platonic sense), but are rather shaped by
the historical process: historical changes, such as the
transition from majuscule to miniscule script (around
the 9th century) or the simplification of the typo-
graphic case by removal of the Byzantine ligatures
(in the mid-18th century) were not undertaken by
individual persons but resulted from already existing
changes in everyday practice.

Q: In an age of abundant impressive technological
means, with many technical issues resolved, do you
think that the artistic component of typography is
served or oppressed by technological advancements?

244 TUGboat, Volume 29 (2008), No. 2

A: Like the tools of every form of art, computers and
their software may prove to be means of emancipating
those who realize the capabilities and the limitations
of these means, but for their lazy-minded users they
only foster their shallow minds. Now, shallowness
flourishes around us.

Q: Can you highlight the reasons why typographic
culture is absent in the Greek society today? Could it
be a matter of culture in general and of the utilitarian
notion of knowledge?
A: Yes, I think the answer is there. How can there be
typographic education when education in general is
becoming an even more distant dream for the major-
ity? I mean here real Culture, not the industrialized
product of our grade-aholic educational system we
have all come to accept. Aesthetical culture is even
more demanding than the general education and this
is a field in which modern Greece is still held back.
Add to this the loss of the popular elegant taste
which sprang spontaneously from the people until
just a few years ago. The “mincing machine” called
television has ground everything from one end to
the other into a colorless and tasteless mass. You
see, the increased money we have made in the recent
decades is not enough in itself.

Q: Would you like to share your experience from
contemporary typographic culture in other European
countries? Are there any immediate initiatives that
can be taken?
A: The states that have always had a tradition of ty-
pography continue to support typographical practice
and bring new ideas. Even non-central European
countries like Spain and Portugal have already orga-
nized the education of type design. Indeed, they all
have the privilege of drawing upon the centuries-long
research and background of Latin script typography,
from which we can benefit only indirectly. The issue
of typographic education is big and difficult to deal
with in a general way. There has been more progress
lately compared to what was happening a decade
ago, but there is a long way to go. The Greek Font
Society tries to lay the foundations, in order for all
who become sensitive to the issue to be able to refer
to sources. The Union of Greek Graphic Designers
has also recently demonstrated an actual interest
and we will continue to work with them. Both the
School of Graphic Arts at the Athens Technolog-
ical Educational Institute and the Athens School
of Fine Arts currently promote the teaching of ty-
pographic art more dynamically, as well as private
educational centers and other schools. Still, I am
not sure whether this is a momentary interest by
certain individuals today or something that might

be long-lived. Greece is unfortunately not the place
to make easy predictions.

Q: Given that young people use text editing in their
computers from a very young age, do you think
that there are proposals to introduce typographic
education in at least the secondary education level
by providing stimuli and asking for speculation on
the aesthetics of our texts?
A: That would definitely be very good indeed, but I
am afraid that Greek secondary education has other
more important issues to address first.

Q: Are you bothered by the completely unaccented
Greek appearing often on the TV, mainly on the
news broadcast? [News captions, headlines and tran-
scriptions on Greek TV news is almost always typed
without even a tonos (the monotonic accent symbol)
on vowels.]
A: No, not personally. I am rather bothered aesthet-
ically by the monotonic Modern Greek. The GFS

does not claim the role of a philological leader. In
a sense we are “accent neutral”, if I may use this
neologism. As a Society, we offer the maximum range
in our products, that is, polytonic Greek fonts, so
that anyone can use them in any way they see fit.

Q: How do you explain the contradiction of a down-
graded visual appearance of our texts in our age
where image aesthetics and visual representations
keep the leading role?
A: I think I referred to this before. Those who
deal in visual communication in Greece today rarely
possess any aesthetical culture which presupposes
knowledge of the historical tradition. Most standards
are imported to Greece and remain unassimilated.

Q: Let me ask you a reasonable question: Have any
of those who are par excellence interested in the
diachronic Greek language and advocate it so far
embraced, promoted or supported your work? I refer
to philologists, historians, archaeologists, theologians,
Universities, the Church, etc. [The Eastern Orthodox
Church has never adopted monotonic Modern Greek
and still uses the polytonic grammar in its services
and most of its communication.]
A: Not to the extent that one would actually expect,
but then again what else has been institutionally
embraced by them? Nothing, so this does not leave
us out either. Nevertheless, individual entities from
all of the above have individually expressed their
solidarity with our work.

Q: Your website includes a special page devoted to
TEX and offers TEX-compatible fonts. How do you
appreciate this interest of people from exact science?
A: I am a type designer myself, but through my
father’s love for Mathematics I have developed an

TUGboat, Volume 29 (2008), No. 2 245

intimate and warm relation with Science — although
I do not particularly succeed in it. Furthermore, the
late Mikhail Macrakis, the actual founder of GFS,
was a physicist. This bidirectional relationship be-
tween the GFS and people from exact science came
as no surprise to me, but, if we need to be objective
about this, that is still a welcome mystery. Obvi-
ously, typography has indeed touched an unknown,
until recently, sensitive string of the more “practical
minds”, as the cliché goes. I suppose we all ought to
be grateful to Dr Donald Knuth who identified this
sensitive string and to Dr Antonis Tsolomitis, De-
partment of Mathematics, University of the Aegean,
Samos, Greece, who makes such a remarkable effort
to keep this bridge open in the geographical region
to the east of Greece. Our reference to TEX would
have been impossible without his initiative and con-
tribution and I would like to take this opportunity
to thank him warmly. [Naturally, with the advent
of X ETEX it is now possible to use any OpenType or
TrueType font directly, something that has greatly
simplified the job of many people.]

Q: You support the Open Source “movement — free
software for all. Can you explain why to us?
A: As long as the Greek Font Society manages to
survive on grants, we have to return the trust demon-
strated to us by offering our work to those who ask
for it. The need to spread the knowledge about Greek
typography is too big to be hindered by our making
economic demands on those who seek this knowledge.
“You can’t receive anything from someone who hasn’t
got anything” and “share with others what others
have offered you”: that is our idea on the issue.

Q: The verbal poverty of Modern Greeks inevitably
affects the separate professional sectors too, who nor-
mally turn to the adoption of predominantly English
terms in spite of the richness of Greek terminological
variants. Since “the start of wisdom is in the study
of the names” according to Antisthenes, does the
Greek Font Society intend to compile an integral
dictionary of typographic terminology?
A: You are right. Terminology in our field is des-
perately poor, but the technology of graphic arts
changes at such a fast rate that it is no longer pos-
sible to catch up with the tide. Mikhail Macrakis
had also wished a glossary of typographic terms, so
we started an early effort during the translation and
design of Robert Bringhurst’s book “The Elements
of Typographic Style” (Crete University Press, Irak-
lion, 2001), which included a relevant Appendix. I
have collected much material since then, but haven’t
managed to get the time to organize it. In any case,
I believe that apart from the descriptive and explana-
tory definition of lemmas, the very onomatopoeia of
terms is beyond my knowledge.

Q: Finally, on the occasion of our communication,
please allow me to congratulate you on behalf of all
of the members of the Greek Font Society for the
work you offer us and above all for the high quality
level and the sensitivity it shows. I thank you for
your time!
A: I thank you in my turn for the opportunity you
gave us to present the Greek Font Society.

⋄ Vassilios Tsagkalos
Dip TransIoL, Voula, Attica
Greece
wassily (at) ath forthnet dot gr

http://www.greekfontsociety.gr

246 TUGboat, Volume 29 (2008), No. 2

Designing and producing a reference

book with LATEX: The Engineer’s Quick

Reference Handbook

Claudio Beccari and Andrea Guadagni

Abstract

This article describes the process of designing an
Italian reference book, namely Il prontuario dell’in-

gegnere. As a reference work it shares the char-
acteristics of any other such book; it also uses a
large amount of mathematics and contains a large
number of graphics insertions. Moreover, the pub-
lisher wanted to distribute the work both as a reg-
ular bound book and as a computer file to be read
directly on the computer screen.

1 Introduction

In the first half of the nineties, Andrea Guadagni
(AG) asked Claudio Beccari (CB) to collaborate on
the production of a ‘Quick Reference’ handbook, in a
thinner and more comfortable format than the his-
torical and bulky landmark volume for engineers,
the Manuale dell’ingegnere (The Engineer’s Hand-
book) by Colombo1 [2]. This Quick Reference hand-
book was planned to be published at the publishing
company Hoepli, well-known in Italy for its collec-
tion of handbooks in every possible discipline. The
general idea was that the Quick Reference should
be a collection of records, each one on a particular
subject, with a minimum of mathematics, prefer-
ably self-contained and without reference to other
records.

As the editor of the huge “Manuale”, AG had
all the necessary experience for finding the experts,
for organising the material to be published, and for
managing the whole publishing process. Eventually
he also took care of the source file editing.

On the other side, CB already had some experi-
ence with LATEX design and layout, but the produc-
tion of the “Quick Reference” was a new challenge
that required a very close interaction between AG

and CB.

Editor’s note: This is a translation of the article “La pro-
gettazione di un’opera di consultazione: l’edizione del Pron-

tuario dell’ingegnere con LATEX”, which first appeared in
ArsTEXnica issue #4 (October 2007), pp. 16–24. Reprinted
with permission. Translation by the author.

1 Professor Colombo’s first name was Giuseppe, but the
handbook was and still is simply named “Il manuale del
Colombo” (Colombo’s handbook) or “il Colombo” by every
engineer, no matter the specialization.

2 LATEX in the nineties

First of all it may be useful to mention some ques-
tions concerning computers and programming that
today are obsolete, but at the time were a real prob-
lem; mentioning these problems is of general interest
in every cooperative work when many authors are in-
volved. Moreover, even if advances in the computer
world have eradicated several incompatibilites, often
new ones arise, producing new problems. It is advis-
able that authors who want to produce a coopera-
tive document be aware of these problems and know
how to overcome the difficulties that they might en-
counter along their path.

One of the problems was the fact that CB, AG

and the various collaborators used different plat-
forms. CB was still working with a DOS PC; Win-
dows 95 had just appeared but it was not so wide-
spread on existing PCs. Windows 3.1 was still too
rudimentary for this kind of work, for one thing be-
cause its graphic interface used most of the memory
available to those PCs. Moreover, CB was still work-
ing with LATEX 2.09, although by the end of the work
LATEX 2ε was available; as usual at that time he was
using a plain ASCII editor and ran the various LATEX
connected applications with suitable command lines.

On the other hand, AG was working with a
Macintosh, whose operating system was very differ-
ent from the simple DOS from many points of view,
not least that paths were described in a very differ-
ent way. Obviously it had a beautiful graphic inter-
face, but this was more or less irrelevant for the goal
of the production of this work. Concerning the TEX
system, AG was using Textures; this was (and still
is) a commercial product by BlueSky Research and
it worked both as an editor and as a synchronous
previewer, that is, it employs two windows open si-
multaneously, in one of which the usual .tex source
is edited while the other synchronously displays the
result of typesetting at the same rate that text is
input in the editor window.

Today, everything is simpler; plain DOS is al-
most forgotten; although the command window al-
lows one to use a more modern DOS incarnation,
most users appear to ignore its existence. Apple has
recently changed the operating system of its Macin-
toshes, passing to Mac OS X, a Unix-based operating
system with the typical Macintosh beautiful graphic
interface.

On the TEX system side, the TEX Users Group
and most other TEX user groups distribute the free
TEX system through the TEX Collection CDs and
DVDs; TEX Live is available for all platforms and

TUGboat, Volume 29 (2008), No. 2 247

the differences between the various operating sys-
tems are managed in a unified way, so that the macro
collections and the packages are more and more plat-
form independent.

But in the nineties it was necessary to fight
against the various ways of indicating absolute and
relative paths: DOS and Unix used the slash / while
Macintosh used the colon :, and in different posi-
tions from those where DOS and Unix would use /.
This was relevant for the production of the Quick
Reference handbook, because the subpaths where it
was handy to keep the pictures and other included
material had to be accessed on both systems. Just
to give an idea of the code that had to be imple-
mented, here are the macros that would automati-
cally change the explicit path of a file containing a
figure.

\newif\if@path \@pathfalse

% These macros were adapted from Knuth’s

% TeXbook (pag. 375)

\def\check@figurefilepath#1{%

\@@chkfpM#1:\@@chkfpM\@%

\if@path\else\@@chkfpU#1/\@@chkfpU\@\fi}

%

\def\@@chkfpM#1:#2#3\@{%

\ifx\@@chkfpM#2\@pathfalse\else

\@pathtrue\fi}

\def\@@chkfpU#1/#2#3\@{%

\ifx\@@chkfpU#2\@pathfalse\else

\@pathtrue\fi}

%

% This is the macro that possibly prepends

% the path specification to the file name

% of a figure, then it checks if the

% folder or directory separators agree

% with the operating system; eventually it

% passes this generated full specification

% to the macro that includes the figure.

%

\parse@figure@filename#1{%

\def\figurefilename{#1}%

\ifx\def@ultpath\empty\else

\expandafter\check@figurefilepath

\expandafter{\figurefilename}%

\if@path\else

\edef\figurefilename{%

\def@ultpath\ifMacintosh:%

\else/\fi\figurefilename}%

\fi

\fi

\ifMacintosh

\expandafter\Mac@rename

\figurefilename/\relax

\else

\expandafter\UNIX@rename

\figurefilename:\relax

\fi}

%

% Recursive macro that erases the slashes

% and sets the colons.

%

\def\Mac@rename#1/#2\relax{%

\def\@tempA{#2}%

\ifx\@tempA\empty

\def\figurefilename{#1}%

\else

\def\@tempA{#1:#2}%

\expandafter\remove@slash

\@tempA\relax

\expandafter\Mac@rename

\figurefilename/\relax

\fi}

%

% Recursive macro that erases the colons

% and sets the slashes.

%

\def\UNIX@rename#1:#2\relax{%

\def\@tempA{#2}%

\ifx\@tempA\empty

\def\figurefilename{#1}\else

\def\@tempA{#1/#2}%

\expandafter\remove@colon

\@tempA\relax

\expandafter\UNIX@rename

\figurefilename:\relax

\fi}

%

% These macros erase the final slash

% or colon.

%

\def\remove@slash#1/\relax{%

\def\figurefilename{#1}}

\def\remove@colon#1:\relax{%

\def\figurefilename{#1}}

3 The layout of the book

For the typeset book AG and CB agreed on a layout
where each record would be a freestanding section
to be introduced with \section. Furthermore, each
record should consist of a single spread: in the ‘pa-
per’ version of the book, where pages are turned
from right to left, it was necessary that the writ-
ten part be typeset on an odd page (the recto page)
on the right side of the spread, while the graphic
contents of the record would appear on the verso
of the previous sheet, an even page, i.e. on the left
part of the spread. The sections were collected in
chapters, and the latter in parts. Each part dealt
with a particular branch of engineering, for example
the part “Edilizia” (Building) would be divided in
the chapters dealing with such chapters as “Founda-
tions”, “Pillars”, “Roofs”, and the like; each chapter
contained a few records concerning the details, with
formulas, tables, drawings, descriptions, costs, etc.

248 TUGboat, Volume 29 (2008), No. 2

The publishing house wanted also an “e-book”
version of this reference book; in this electronic ver-
sion, where pages scroll from bottom to top, but
reading goes from left to right, the record should
occupy a single screen, with the written part on the
left and the graphic part on the right.

Both versions have thumbnails on the side of
the page. In the paper version traditionally it would
have been necessary to make a semicircular cut in
the pages, as sometimes seen in large Holy Books, or
in large dictionaries or encyclopedias. However, the
high cost of this operation suggested we use a sim-
pler method, namely to let the thumbnail shadow
be visible on the external margin cut, by typeset-
ting such thumbnails across the trimming area.

The electronic version had all the necessary in-
ternal links, but for consistency with the printed
version it also contained various icons (thumbnails)
on the left side.

Headers, footers, part titles, records, the table
of contents and the index required a particular lay-
out, partly because each page, each contents entry,
and each chapter required the name of the individual
author or the name of the chapter coordinator.

The source files for both the printed and the
electronic version had to be identical and the output
format chosen with a single option in the main file.

4 Page layout and fonts

The trimmed page size was a standard ISO-A5, that
is, 148 mm by 210 mm. The main text box, without
headers and footers, was 116 mm by 175 mm. With
such a compact text box, we decided to typeset the
book with fonts of size 9/10 pt; we left the decision
on the font collection to a later time, after attentive
examination of the typesetting results with different
typefaces. We eventually chose the Times fonts, be-
cause with Textures (at that time) they were easier
to configure and use.

Figure 1 shows a spread of the printed version:
the left page contains the drawings relative to the
record or section, while the right page displays the
text and the other relevant information. The thumb-
nail icon that characterizes the part [in the example:
“Edilizia” (Building)] is on the right page. The part
title is repeated on the left header, while the chapter
title is only in the right header. The section title is
centered above the text. The record is subdivided
into small unnumbered subsections in line with the
text. The section author is in the right footer while
the left footer contains the book title and the pub-
lisher’s name.

Figure 2 contains in one screen shot more or less
the same information, except that thumbnails, text

and drawings are interchanged with regard to ‘left’
and ‘right’ sides. There is just one header and one
footer, the contents of which are flush to the external
margins. The rest is identical to the printed version.

While the printed version had pages of size A5
that form a spread in a landscape A4, the electronic
version has one screen shot in landscape with a page
size (needed for the PDF output) of a landscape A4
sheet. The typesetting information for LATEX had to
be completely automatic, depending on the version
to be output. If a screen shot had to be printed,
either the landscape orientation must be compati-
ble with the printer, or the latter should be capa-
ble of scaling the printed area to the paper width.
This was a necessary warning at that time; today all
printers are capable of printing in landscape mode.

5 LATEX commands for inputting records

The LATEX input of this Quick Reference handbook
obviously requires specific commands in order to
cope with the specific requirements of the layout.

For example, the drawings of each record must
be separately assembled, possibly with recourse to
a graphics editor so as to produce a single graphic
object to be included in the output file. At those
times it was absolutely necessary to run LATEX and
produce output in DVI format, then passed through
dvips in order to get the PostScript format, and fi-
nally to get the PDF format by running the ps2pdf

program. Today it would be possible to get the same
result with one pass through pdflatex. Nevertheless,
once suitable macros were made available, it was
easy to get the desired result for both the editor
and the individual authors.

The macros for starting a new spread or a new
chapter required only the specification of the perti-
nent title and the name of the author or editor.

The macros that started a new part had to pro-
vide the pointer to the specific thumbnail and to its
typesetting on the proper margin in each version.
The option draf had to be modified so that dur-
ing the preliminary work the authors and the editor
could save a lot of black ink by omitting printing the
thumbnail, but leaving the explicit part title in the
relevant margin.

The babel package at that time did not have the
functionality it has today; in addition many Italian
LATEX users did not even know they could typeset
with the rules of Italian typography and with Ital-
ian hyphenation, or they did not know how to con-
figure their system; many were still working with
LATEX 2.09. So we created the necessary tests with
suitable warning messages in order to assure at least

TUGboat, Volume 29 (2008), No. 2 249

2 Edilizia

Prontuario dell’ingegnere – Hoeply

Strutture in calcestruzzo armato 3

E
d
il

iz
ia

❉

PILASTRI

Materiali. Calcestruzzo di buona qualità con una resistenza a rottura di
circa 30 N/mm2 (v. Calcestruzzo, pag. ??). Armature di acciaio ad aderenza mi-
gliorata con una resistenza a rottura di circa 440 N/mm2 (v.Acciaio, pag. ??)

Carichi. I pilastri sono soggetti alle forze verticali dovute al peso sovrastan-
te (carichi permanenti e accidentali). Se l’edificio è in zona sismica i pilastri, le
travi e il blocco scale-ascensori devono resistere alle forze orizzontali causate dal
terremoto (v. La struttura nel suo complesso, pag. ??). I carichi verticali sono pari
a circa 10 kN/m2 per ogni piano. Se un pilastro sostiene una soletta di 5 m×5 m
= 25 m2, ogni piano contribuisce con 250 kN al carico sul pilastro.

Sezione. Se N è il carico verticale e A la sezione trasversale, σ = N/A è
la tensione di esercizio nel calcestruzzo per i carichi verticali. Si sceglie l’area A
in modo che la tensione di esercizio si mantenga inferiore ai valori prescritti. Si
ha che A = Ac + m As con Ac area del calcestruzzo, As area delle armature e
m (coefficiente di omogeneizzazione) uguale a 14. Inoltre As ≃ 0,01 Ac, con un
minimo di 4 d 12. (In presenza di carichi orizzontali è necessario tener conto dei
momenti flettenti che sollecitano i pilastri.)

Dimensioni in funzione del carico

N Ac a × a a × 25 As

kN cm2 cm×cm cm×cm cm2

250 321 18×18 15×25 4,4

500 642 25×25 25×25 6,4

750 963 31×31 39×25 9,6

1000 1285 36×36 51×25 12,9

1250 1606 40×40 64×25 16,1

1500 1927 44×44 77×25 19,3

1750 2249 47×47 90×25 22,5

2000 2570 51×51 103×25 25,7

Forma. Normalmente i pilastri sono rettangolari o quadrati (fig.A, B). In
casi particolari sono a L, a C, a T. Lo spessore dei pilastri che stanno lungo il
contorno dell’edificio dipende dallo spessore della muratura. Di solito, però, non
si scende sotto i 20 cm. Le armature longitudinali vengono disposte negli angoli e,
se occorre, lungo i lati della sezione ogni 30 cm circa. Il diametro delle armature
longitudinali va da 12 mm a 20 mm e solo eccezionalmente fino a 26 mm. Le staffe
seguono il contorno della sezione e sono disposte a un intervallo di circa 15 cm. Il
diametro delle staffe va da 6mm a 10 mm. Il copriferro sulle staffe deve essere non
meno di 2 cm (v.Acciaio, pag. ??).

Dettagli costruttivi. Riprese di armatura da piano a piano (fig.C). Pila-
stri di sezione particolare (fig. D). Smussi negli spigoli: è opportuno prevederli di
2,5×2,5 cm. Negli edifici in zona sismica le armature dei pilastri e quelle delle travi
devono essere opportunamente collegate.

Casseri e getti. Modalità di disposizione dei casseri (fig. E). Modalità di
getto: normale ma con particolare cura nella vibrazione. Tempo di maturazione:
circa una settimana per tutti i pilastri di un piano.

Quantità e costi. Incidenza delle armature: da 120 a 140 kg di acciaio
per m3 di calcestruzzo. Pilastro di 30 cm×40 cm, per piano di altezza 320 cm:
calcestruzzo 0,38m3, acciaio 50 kg, casseri 4,5 m2. Costo (1998): 300 000 Lit.

Renato Villa

Figure 1: Printed version: a spread.

E
d
il

iz
ia

❉

5 Strutture in calcestruzzo armato

PILASTRI

Materiali. Calcestruzzo di buona qualità con una resistenza a rottura di
circa 30 N/mm2 (v. Calcestruzzo, pag. 11). Armature di acciaio ad aderenza mi-
gliorata con una resistenza a rottura di circa 440 N/mm2 (v.Acciaio, pag. 10)

Carichi. I pilastri sono soggetti alle forze verticali dovute al peso sovrastan-
te (carichi permanenti e accidentali). Se l’edificio è in zona sismica i pilastri, le
travi e il blocco scale-ascensori devono resistere alle forze orizzontali causate dal
terremoto (v. La struttura nel suo complesso, pag. 12). I carichi verticali sono pari
a circa 10 kN/m2 per ogni piano. Se un pilastro sostiene una soletta di 5m×5m
= 25 m2, ogni piano contribuisce con 250 kN al carico sul pilastro.

Sezione. Se N è il carico verticale e A la sezione trasversale, σ = N/A è
la tensione di esercizio nel calcestruzzo per i carichi verticali. Si sceglie l’area A
in modo che la tensione di esercizio si mantenga inferiore ai valori prescritti. Si
ha che A = Ac + m As con Ac area del calcestruzzo, As area delle armature e
m (coefficiente di omogeneizzazione) uguale a 14. Inoltre As ≃ 0,01 Ac, con un
minimo di 4 d 12. (In presenza di carichi orizzontali è necessario tener conto dei
momenti flettenti che sollecitano i pilastri.)

Dimensioni in funzione del carico

N Ac a × a a × 25 As

kN cm2 cm×cm cm×cm cm2

250 321 18×18 15×25 4,4

500 642 25×25 25×25 6,4

750 963 31×31 39×25 9,6

1000 1285 36×36 51×25 12,9

1250 1606 40×40 64×25 16,1

1500 1927 44×44 77×25 19,3

1750 2249 47×47 90×25 22,5

2000 2570 51×51 103×25 25,7

Forma. Normalmente i pilastri sono rettangolari o quadrati (fig. A, B). In
casi particolari sono a L, a C, a T. Lo spessore dei pilastri che stanno lungo il
contorno dell’edificio dipende dallo spessore della muratura. Di solito, però, non
si scende sotto i 20 cm. Le armature longitudinali vengono disposte negli angoli e,
se occorre, lungo i lati della sezione ogni 30 cm circa. Il diametro delle armature
longitudinali va da 12 mm a 20 mm e solo eccezionalmente fino a 26 mm. Le staffe
seguono il contorno della sezione e sono disposte a un intervallo di circa 15 cm. Il
diametro delle staffe va da 6mm a 10mm. Il copriferro sulle staffe deve essere non
meno di 2 cm (v.Acciaio, pag. 10).

Dettagli costruttivi. Riprese di armatura da piano a piano (fig. C). Pila-
stri di sezione particolare (fig. D). Smussi negli spigoli: è opportuno prevederli di
2,5×2,5 cm. Negli edifici in zona sismica le armature dei pilastri e quelle delle travi
devono essere opportunamente collegate.

Casseri e getti. Modalità di disposizione dei casseri (fig. E). Modalità di
getto: normale ma con particolare cura nella vibrazione. Tempo di maturazione:
circa una settimana per tutti i pilastri di un piano.

Quantità e costi. Incidenza delle armature: da 120 a 140 kg di acciaio
per m3 di calcestruzzo. Pilastro di 30 cm×40 cm, per piano di altezza 320 cm:
calcestruzzo 0,38m3, acciaio 50 kg, casseri 4,5 m2. Costo (1998): 300 000 Lit.

Prontuario dell’ingegnere – Hoepli Renato Villa

Figure 2: Electronic version: a screen shot corresponding to the same spread shown in figure 1.

250 TUGboat, Volume 29 (2008), No. 2

Part Right icon Left icon

Environment A A
Chemistry B B
Economy C C
Building D D
Electronics E E
Power electrical eng. F F
Energetics G G
Hydraulics I I
Computers J J
Machines K K
Production L L
Survey M M
Telecommunications N N
Land planning O O
Quality Q Q
Miscellany P P

Figure 3: Right and left hand thumbnails.

the use of Italian hyphenation.2 The code was the
following:

\expandafter

\ifx\csname language\endcsname\relax

\else

\expandafter

\ifx\csname l@italian\endcsname\relax

\typeout{La sillabazione per l’italiano

non e’ definita.^^J

Usero’ la sillabazione di

default e faro’ tanti errori!}%

\typeout{Verificare che la sillabazione

per l’italiano sia stata

caricata^^J

e che il suo nome sia associato

al comando \string\l@italian}%

2 Even today, although everything is much simpler, many
Italian users run LATEX to typeset Italian texts without con-
figuring it for Italian!

Figure 4: The thumbnail shadow on the trimmed
side of the second edition.

\language0\righthyphenmin 2\relax

\lccode‘\’=‘\’

\else

\def\italiano{\language \l@italian

\righthyphenmin 2\relax

\lccode‘\’=‘\’}%

\italiano

\fi

\fi

Well, today even these messages are built-in to the
babel package, and warning messages are much sim-
pler to program. (The first message says: “Italian
hyphenation is undefined. I’ll use the default hy-
phenation and I’ll make a lot of errors!” The second
message says: “Verify that Italian hyphenation has
been loaded and that its name is associated to the
command \l@italian”.)

6 Thumbnails

Concerning the thumbnail icons, we solved the prob-
lem by designing their fonts, with white strokes over
a black background, and with the background ex-
tending well beyond the actual icon, so as to pro-
trude into the right trimming area for the printed
version, or to protrude well to the left of the virtual
PDF sheet border for the electronic version. This
solution guarantees the visibility of the inked icon
shadow on the trimmed pages of the printed ver-
sion, even without the typical thumbnail semicircu-
lar cut. Figure 3 shows the left and right icons, with
the extending background; initially they were pro-
duced with METAFONT; but for the second edition
they were traced and rendered as scalable outline
Type 1 fonts.

Figure 3 displays the icons on a wide black rect-
angle, whose width goes beyond the trimmed page;
this is why when pages are trimmed, the closed book
exhibits on the right trimmed side the thumbnail
shadows, figure 4; probably this fact is not so im-
portant while ‘navigating’ the handbook as the icon

TUGboat, Volume 29 (2008), No. 2 251

Figure 5: The published editions; on the left the first edition in size A5; on the right the second edition in size
120 mm× 170 mm.

drawn on the flat side of the thumbnail — even when
rapidly flipping the handbook pages it’s very easy to
identify the icon one is looking for. It goes without
saying that the thumbnails of every part are progres-
sively shifted down along the margin so that they
appear still when pages are rapidly flipped.

Even the electronic version, although it has its
icons on the left border and does not have pages
to be flipped through one’s fingers, benefits from
the presence of such icons when the screen view
is rapidly scrolled up or down by operating on the
scrolling arrows of the PDF reading program.

7 Internal hyperlinks

The various elements of the electronic version are
completely hyperlinked with one another by means
of the hyperref package, so that surfing the docu-
ment gets particularly simple when the colored an-
chor texts are clicked upon. Even the table of con-
tents entries and the index entries are hyperlinked
with their sources. The sections that must refer to
other sections are also hyperlinked. In this way the
electronic version is even more easily readable than
the printed one. In the nineties this was a real nov-
elty that has been appreciated by the readers.

8 The second edition modifications

The second edition [3] underwent a few layout modi-
fications compared to the first edition. The page size
was reduced to the trimmed page size of 120 mm by
170 mm, figure 5. The written and drawn parts of
each record were interchanged as may be seen in fig-
ure 6. The thumbnails were set on the left side, as
in the electronic version, but in both versions they
were set a little closer to the text border. Together
with figure 6 it’s possible to examine a screen shot
in figure 7. The thumbnail shadows remain visible
on the trimmed page side, figure 4.

9 The publishing house policy

The Hoepli Publishing Company is very well known
for its (Italian) handbooks and, among engineers,
for its Manuale del Colombo (Colombo’s Handbook).
This work started in 1875 and was published in
many successive revisions so as to become almost
encyclopedic, since it can no longer be used as origi-
nally intended, as an easily workable handbook. We
all know that engineering sciences have evolved in an
incredible way in the past century, so that the evo-
lution of Colombo’s Handbook has been unavoid-
able. For these reasons, in our Prontuario dell’Inge-

gnere (The Engineer’s Quick Reference Handbook),

252 TUGboat, Volume 29 (2008), No. 2

E
d
il

iz
ia

D

54 Strutture in calcestruzzo armato

PILASTRI

Materiali. Calcestruzzo di buona qualità con una resistenza a rottura di
circa 30N/mm2 (v. Calcestruzzo, pag. 52). Armature di acciaio ad aderenza mi-
gliorata con una resistenza a rottura di circa 440N/mm2 (v. Acciaio, pag. 50)

Carichi. I pilastri sono soggetti alle forze verticali dovute al peso sovrastan-
te (carichi permanenti e accidentali). Se l’edificio è in zona sismica i pilastri, le
travi e il blocco scale-ascensori devono resistere alle forze orizzontali causate dal
terremoto (v. La struttura nel suo complesso, pag. 48). I carichi verticali sono pari
a circa 10 kN/m2 per ogni piano. Se un pilastro sostiene una soletta di 5m×5m
= 25m2, ogni piano contribuisce con 250 kN al carico sul pilastro.

Sezione. Se N è il carico verticale e A la sezione trasversale, σ = N/A è
la tensione di esercizio nel calcestruzzo per i carichi verticali. Si sceglie l’area A
in modo che la tensione di esercizio si mantenga inferiore ai valori prescritti. Si
ha che A = Ac + m As con Ac area del calcestruzzo, As area delle armature e
m (coefficiente di omogeneizzazione) uguale a 14. Inoltre As ≃ 0,01 Ac, con un
minimo di 4 d 12. (In presenza di carichi orizzontali è necessario tener conto dei
momenti flettenti che sollecitano i pilastri.)

Dimensioni in funzione del carico

N Ac a × a a × 25 As

kN cm2 cm×cm cm×cm cm2

250 321 18×18 15×25 4,4

500 642 25×25 25×25 6,4

750 963 31×31 39×25 9,6

1000 1285 36×36 51×25 12,9

1250 1606 40×40 64×25 16,1

1500 1927 44×44 77×25 19,3

1750 2249 47×47 90×25 22,5

2000 2570 51×51 103×25 25,7

Forma. Normalmente i pilastri sono rettangolari o quadrati (fig.A, B). In
casi particolari sono a L, a C, a T. Lo spessore dei pilastri che stanno lungo il
contorno dell’edificio dipende dallo spessore della muratura. Di solito, però, non
si scende sotto i 20 cm. Le armature longitudinali vengono disposte negli angoli e,
se occorre, lungo i lati della sezione ogni 30 cm circa. Il diametro delle armature
longitudinali va da 12mm a 20mm e solo eccezionalmente fino a 26mm. Le staffe
seguono il contorno della sezione e sono disposte a un intervallo di circa 15 cm. Il
diametro delle staffe va da 6mm a 10mm. Il copriferro sulle staffe deve essere non
meno di 2 cm (v. Acciaio, pag. 50).

Dettagli costruttivi. Riprese di armatura da piano a piano (fig.C). Pila-
stri di sezione particolare (fig. D). Smussi negli spigoli: è opportuno prevederli di
2,5×2,5 cm. Negli edifici in zona sismica le armature dei pilastri e quelle delle travi
devono essere opportunamente collegate.

Casseri e getti. Modalità di disposizione dei casseri (fig. E). Modalità di
getto: normale ma con particolare cura nella vibrazione. Tempo di maturazione:
circa una settimana per tutti i pilastri di un piano.

Quantità e costi. Incidenza delle armature: da 120 a 140 kg di acciaio
per m3 di calcestruzzo. Pilastro di 30 cm×40 cm, per piano di altezza 320 cm:
calcestruzzo 0,38m3, acciaio 50 kg, casseri 4,5m2. Costo (2003): 150E.

Strutture in calcestruzzo armato 55

Renato Villa

Figure 6: Second edition printed version: a spread.

E
d
il

iz
ia

D

35 Strutture in calcestruzzo armato

PILASTRI

Materiali. Calcestruzzo di buona qualità con una resistenza a rottura di
circa 30 N/mm2 (v. Calcestruzzo, pag. 34). Armature di acciaio ad aderenza mi-
gliorata con una resistenza a rottura di circa 440 N/mm2 (v.Acciaio, pag. 33)

Carichi. I pilastri sono soggetti alle forze verticali dovute al peso sovrastan-
te (carichi permanenti e accidentali). Se l’edificio è in zona sismica i pilastri, le
travi e il blocco scale-ascensori devono resistere alle forze orizzontali causate dal
terremoto (v. La struttura nel suo complesso, pag. 32). I carichi verticali sono pari
a circa 10 kN/m2 per ogni piano. Se un pilastro sostiene una soletta di 5m×5m
= 25 m2, ogni piano contribuisce con 250 kN al carico sul pilastro.

Sezione. Se N è il carico verticale e A la sezione trasversale, σ = N/A è
la tensione di esercizio nel calcestruzzo per i carichi verticali. Si sceglie l’area A
in modo che la tensione di esercizio si mantenga inferiore ai valori prescritti. Si
ha che A = Ac + m As con Ac area del calcestruzzo, As area delle armature e
m (coefficiente di omogeneizzazione) uguale a 14. Inoltre As ≃ 0,01 Ac, con un
minimo di 4 d 12. (In presenza di carichi orizzontali è necessario tener conto dei
momenti flettenti che sollecitano i pilastri.)

Dimensioni in funzione del carico

N Ac a × a a × 25 As

kN cm2 cm×cm cm×cm cm2

250 321 18×18 15×25 4,4

500 642 25×25 25×25 6,4

750 963 31×31 39×25 9,6

1000 1285 36×36 51×25 12,9

1250 1606 40×40 64×25 16,1

1500 1927 44×44 77×25 19,3

1750 2249 47×47 90×25 22,5

2000 2570 51×51 103×25 25,7

Forma. Normalmente i pilastri sono rettangolari o quadrati (fig. A, B). In
casi particolari sono a L, a C, a T. Lo spessore dei pilastri che stanno lungo il
contorno dell’edificio dipende dallo spessore della muratura. Di solito, però, non
si scende sotto i 20 cm. Le armature longitudinali vengono disposte negli angoli e,
se occorre, lungo i lati della sezione ogni 30 cm circa. Il diametro delle armature
longitudinali va da 12 mm a 20 mm e solo eccezionalmente fino a 26 mm. Le staffe
seguono il contorno della sezione e sono disposte a un intervallo di circa 15 cm. Il
diametro delle staffe va da 6mm a 10mm. Il copriferro sulle staffe deve essere non
meno di 2 cm (v.Acciaio, pag. 33).

Dettagli costruttivi. Riprese di armatura da piano a piano (fig. C). Pila-
stri di sezione particolare (fig. D). Smussi negli spigoli: è opportuno prevederli di
2,5×2,5 cm. Negli edifici in zona sismica le armature dei pilastri e quelle delle travi
devono essere opportunamente collegate.

Casseri e getti. Modalità di disposizione dei casseri (fig. E). Modalità di
getto: normale ma con particolare cura nella vibrazione. Tempo di maturazione:
circa una settimana per tutti i pilastri di un piano.

Quantità e costi. Incidenza delle armature: da 120 a 140 kg di acciaio
per m3 di calcestruzzo. Pilastro di 30 cm×40 cm, per piano di altezza 320 cm:
calcestruzzo 0,38m3, acciaio 50 kg, casseri 4,5 m2. Costo (2003): 150E.

Renato Villa

Figure 7: Second edition electronic version: a screen shot of the same spread shown in figure 6.

TUGboat, Volume 29 (2008), No. 2 253

only the essential elements of the various engineer-
ing disciplines were included, and those condensed.
The purpose is to give essential information to those
who are not experts in a particular discipline, but
want to understand the basic principles. This neces-
sity arises also from the always increasing coopera-
tion between engineers and architects, each expert
in their respective fields. Therefore the Quick Ref-
erence meets the need of understanding one another
and easing communication among technical staff.

The graphic solution by records (a spread in the
printed version) came naturally in order to show in
the most simple and schematic way the various sub-
jects. The work had to have a synthetic and essential
look. The importance of the technical drawings re-
quired a whole page for each subject, so the other
page was dedicated to the text. This unusual ar-
rangement was of great importance for the LATEX
structure and for the very management of the edit-
ing work.

AG had significant experience as the editor of
Colombo’s handbook with about one hundred and
fifty collaborators, so he had no difficulty finding
the forty plus collaborators for the Quick Reference.
The difficulty was in the coordination and the choice
of what to write in this Quick Reference and in which
detailed form to write it in the records. A general
idea of the text length was given to the authors, but
it was the editor’s task to cut down lengthy contri-
butions or to request some additional material for
excessively short records.

To coordinate a few dozen authors is an inter-
esting task, because authors are very different from
one another from both the scientific and a human
point of view. They range from the very precise and
pedantic personality to the excessively ingenious and
chaotic one. All of them, though, are very inter-
ested to see their experience take form and become
a real printed object. Moreover, they were passion-
ate about extracting a synthesis of their knowledge
for the book. Many of them are true professionals,
but with little experience as technical writers. For
these reasons the coordination task revealed itself as
heavier that foreseen, but at the end the editor and
the authors were very satisfied.

At the moment (2007) at the publishing house
they are working on the third edition, whose pub-
lication should be around May 2008. At the be-
ginning of 2007 the publishing house opened a new
Internet site, http://www.manualihoepli.it/, in-
tended to give information on the various published
handbooks, and to publish integrations and updates
that users may freely download. This site contains
several pages from the Quick Reference, since they

are evidently assumed to be both interesting and
good general advertising on behalf of the Hoepli
Publishing Company.

This third edition will contain few modifica-
tions, compared to the second one, the most relevant
of which is an increase in size, so that it is possible
to increase also the font size and the legibility.

10 Conclusion

The Quick Reference has been a wonderful occasion
for both AG and CB to learn how to use to its best
advantage such a powerful instrument as LATEX. The
book received a well deserved success so that, as said
before, a third edition is under way; it contains not
only upgraded information, but also the correction
of some remaining typos.

Today, to create a similar work, from the point
of view of the typesetter, would be much simpler,
when one considers that most operations that were
necessary to ‘invent’ when the first edition was pub-
lished, are now mostly available with the countless
packages, produced in the past 10 years, that have
extended LATEX’s functionality.

Today the available packages allow us to cre-
ate the necessary macros in a more orderly way,
but most important, in a well-documented manner
[5]; they allow building up typesetting structures
in a simpler way by means of high level user com-
mands made available by the extension packages:
the graphic formats can be chosen more easily by
means of the geometry package [8]; fonts can be cho-
sen and configured with one statement, for example
using the extended Times fonts [7], or the extended
Palatino ones [6]; the style of titles and running ti-
tles can be defined with high level user commands
[4]; the same is true for headers and footers [9]; even
the handling of figure sets does not require the man-
ual graphic editing as previously described [1].

Nevertheless all these packages, although ex-
tremely useful, if used by amateurs allow the cre-
ation of graphic designs that are not the best one
can achieve.

Luckily, in this work the interaction between
the LATEX programmer and those giving the design
specification had a particular positive synergy. This
type of collaboration allowed setting reasonable lim-
its to the graphic novelty involved, thanks to both
the experience of AG and the interaction with CB

who could indicate what was and was not feasible
with LATEX and the typesetting interpreter TEX.

Thanks to this cooperation between the editors,
specifying unrealizable requirements for the graphic
design and the page layout was avoided. In truth,
even though LATEX and TEX are extremely powerful,

254 TUGboat, Volume 29 (2008), No. 2

they are computer programs that operate in batch
mode, not interactively. This is their strength and
their weakness, since they are not (yet) at the level of
the modern interactive pagination programs mostly
used by publishing companies, but are far superior
in typesetting paragraphs and mathematical expres-
sions.

References

[1] Steve Douglas Cochran. The Subfig package,
2005. Normally distributed with the TEX
system, documentation in file doc/latex/

subfigure/subfig.pdf.

[2] Giuseppe Colombo. Manuale dell’ingegnere.
Hoepli Editore, Milano, 84 edition, 2003.

[3] Andrea Guadagni, editor. Prontuario

dell’ingegnere. Hoepli Editore, Milano, 2
edition, 2003.

[4] Ulf A. Lindgren. FncyChap, 2005.
Normally distributed with the TEX system,
documentation in file doc/latex/fncychap/

fncychap.pdf.

[5] Frank Mittelbach. The doc and shortvrb

packages, 2006. Normally distributed with the
TEX system, documentation in file doc/latex/

base/doc.pdf; see also doc/latex/base/

docstrip.pdf.

[6] Young Ryu. The PX fonts, 2000.
Normally distributed with the TEX system,
documentation in file doc/fonts/pxfonts/

pxfontsdocA4.pdf.

[7] Young Ryu. The TX fonts, 2000.
Normally distributed with the TEX system,
documentation in file doc/fonts/txfonts/

txfontsdocA4.pdf.

[8] Hideo Umeki. The geometry package, 2002.
Normally distributed with the TEX system,
documentation in file doc/latex/geometry/

manual.pdf.

[9] Piet van Oostrum. Page layout in LATEX, 2004.
Normally distributed with the TEX system,
documentation in file doc/latex/fancyhdr/

fancyhdr.pdf.

⋄ Claudio Beccari
claudio dot beccari at gmail dot com

⋄ Andrea Guadagni
andrea dot guadagni at tin dot it

TUGboat, Volume 29 (2008), No. 2 255

Suggestions on how not to mishandle
mathematical formulæ

Massimo Guiggiani and Lapo F. Mori

Abstract

Quite frequently mathematical formulæ in reports,
theses or even articles are not written correctly. In-
deed, the basic rules for composing the formulæ are
almost never explicitly stated. This article provides
some suggestions to fill this gap.

1 Introduction

Formulæ are an excellent tool to express (some) math-
ematical concepts. This statement may seem obvious,
but scientists realized it only after a long historical
process. Natural language might at first seem easier
to use than formulæ. However, scientists know very
well that formulæ are an essential tool to communi-
cate clearly, unambiguously and concisely. Formulæ
are then part of a language and therefore should
follow some rules. Unfortunately formulæ are often
written “badly”, that is not clearly, ambiguously, and
not concisely.

The purpose of this article is to give some indica-
tions on how to write, or better on how not to write
formulæ. In fact, children need to go to school, make
mistakes, and be corrected to learn how to write
in natural languages. Typically, uneducated people
can communicate orally, but make many mistakes in
writing. The same applies to mathematical formulæ.
Only occasionally do people think about which rules
to follow and which errors to avoid. The examples
reported in the article are taken from publications
and theses. Most suggestions and remarks have a
general validity. However, LATEX users will also find
indications on how to implement them.

This article is mostly aimed to authors of tech-
nical/scientific documents (engineers, experimental
physicists, chemists, and in general anyone who uses
mathematics as a tool) and not to mathematicians.
In pure mathematics there is much more attention
to the proper typographic rendering of mathematical
concept, and each field has its own rules (which do
not necessarily comply with ISO standards (Gregorio,
2007)).

2 General rule

The general rule is very easy: formulæ must be unam-
biguous and concise, that is clear and simple. This
is (or should be) true for many forms of communi-
cation, not only the written ones. When doing sci-
ence, however, the writer should be even more careful
about how to explain concepts in order to make them

easy to understand. Further details on how to write
mathematical formulæ can be found in the ISO 31
standard (ISO 31/11, 1982; ISO 31/12, 1982), which
is discussed in depth in Wikipedia (2008a,b,c,d) and
in Beccari (1997).

3 Operations

3.1 Multiplication

One of the most common errors is using the “dot” to
indicate multiplication between scalars. For example
the following formulæ

a · x2 + b · x + c = 0, σ · ε = 2 · α
should be written as

ax2 + bx + c = 0, σε = 2α.

In fact, for the sake of simplicity, the standard multi-
plication between letters, or between a number and a
letter, does not require any symbol. If, on the other
hand, the multiplication is between two numbers,
the × or · symbols are required to avoid ambiguity.
For example you should write

2 × 3 = 6 and not 2 3 = 6.

The same symbol should also be used when a line
break occurs at a product, as shown in Eq. (1). The
asterisk is absolutely not acceptable:

a ∗ x2 + b ∗ x + c = 0, σ ∗ ε = 2 ∗ α.

The dot has to be used to indicate a scalar
product between vectors. For this purpose either
a thin or a thick dot can be used. The first one is
provided by \cdot, the second one by \bcdot, which
is defined as

\newcommand{\bcdot}{\boldsymbol{\cdot}}

The two commands produce respectively

a · c = 0 and a · c = 0.

3.2 Mathematical operators

Mathematical operators, including the differential,
must be indicated with upright characters, as in the
following examples:

∫

sin x dx,
dy

dx
, lim

x→0
cos x = 1.

They are indeed abbreviations of words and the up-
right font reminds us of this fact and avoids any
ambiguity with products. For example, tan x is un-
doubtedly the tangent of x, while tanx might be the
product of four scalars.

LATEX and the amsmath package define the most
common mathematical operators, including \lim,
\sin, \min, etc. In order to define new ones, the ams-

math package provides the \DeclareMathOperator

command, to be used only in the preamble, and the

256 TUGboat, Volume 29 (2008), No. 2

\operatorname that allows one to define an operator
directly in the text. For example

argmax f(x)

can be obtained in two ways:

• declaring in the preamble

\DeclareMathOperator{\argmax}{argmax}

and then using in the text

\argmax f(x)

• directly using in the text

\operatorname{argmax} f(x)

Defining an operator is different than using
\mathrm1 because the first one also takes care of
the space between the operator and its argument.
Note for example the difference between

sin x and sinx

obtained respectively with

\sin x

and

\mathrm{sin}x

Moreover, operators correctly handle superscripts
and subscripts as for limits. For example

lim
x→∞

1

x

can be easily obtained with

\lim_{x\to\infty}\frac{1}{x}

A peculiar definition is required to properly
write the differential symbol. It is in fact an op-
erator that has a space only on its left. In Beccari
(2007b) the following solution is proposed:

\newcommand{\ud}{\mathop{}\!\mathrm{d}}

It uses an empty operator and eliminates the space
on its left with \!.2 Note the difference between

∫

sin xdx and

∫

sin x dx,

where the differential is obtained respectively with
\mathrm{d} and \ud.

1 \mathrm can be used to obtain an upright font in mathe-
matical mode. The other methods to use an upright font in
mathematical mode are described in par. 5.1.1.

2 \! inserts a negative space as wide as the one that TEX
inserts between an operator and a variable (Beccari, 2007a).

3.3 Multi-line equations

Long equations sometimes need to be split over sev-
eral lines. The general rule is to indicate the opera-
tion or relation symbols only once at the end of the
line for text style formulæ and at the beginning of
the line for display style formulæ3

f =
a

b

[

sin

(

c

d

)

+ tan

(

c

d

)]

×
[

1 + sin

(

e

f

)

− cos

(

g

h

)]

. (1)

Operation and relation symbols should always
be indicated only once because it is simpler and, more
importantly, to avoid ambiguity. If, for example, you
write

a = b + c + d−
− e − f,

it is not clear which of the following two you mean:

a = b + c + d − e − f

a = b + c + d + e − f.

This rule also applies to equalities:

a = b + c + d

= −e − f

≃ g.

3.3.1 LATEX commands

While LATEX automatically splits long text style for-
mulæ, the author has to do this manually with dis-
play style equations. The amsmath package provides
several environments to split equations, such as split,
multline, gather, align, aligned, alignat; refer to the
amsmath package documentation (American Mathe-
matical Society, 2002) for the details.

3.3.2 How to handle parentheses

When using the \left and \right commands to let
LATEX automatically choose the bracket size, prob-
lems may arise if the formula is split between \left

and \right. For example the code

\begin{multline*}

f(x,y,z)= (1+x+y-z)\left[\pi\\

+\sin\left(\frac{a}{b}\right)

+\cos\left(\frac{c}{d}\right)\right].

\end{multline*}

3 Text style formula means a formula that appears inside
a line of text (Knuth, 1992), such as c = a + b, while display
style formula means a formula that occupies a line by itself
(Knuth, 1992), such as

c = a + b.

The first ones can be obtained in LATEX with the $...$ com-
mand, while the second ones can alternatively be obtained
with the \[...\] command or the equation environment.

TUGboat, Volume 29 (2008), No. 2 257

cannot be compiled because LATEX expects all the
\left to be closed by the respective \right inside
each line.

A solution is to close \left and \right respec-
tively with \right. and \left.

\begin{multline*}

f(x,y,z)= (1+x+y-z)\left[\pi\right.\\

\left.+\sin\left(\frac{a}{b}\right)

+\cos\left(\frac{c}{d}\right)\right].

\end{multline*}

but now the bracket dimension for each couple \left
and \right are computed independently and this
can lead to awful results such as

f(x, y, z) = (1 + x + y − z) [π

+ sin
(a

b

)

+ cos
(c

d

)]

.

A possible solution is to find the tallest term, in
this case

(a

b

)

,

and to insert it inside a \vphantom command in the
other line

\begin{multline*}

f(x,y,z)= (1+x+y-z)\left[\pi\vphantom{

\left(\frac{a}{b}\right)}\right.\\

\left.+\sin\left(\frac{a}{b}\right)

+\cos\left(\frac{c}{d}\right)\right].

\end{multline*}

obtaining

f(x, y, z) = (1 + x + y − z)
[

π

+ sin
(a

b

)

+ cos
(c

d

)]

.

Another solution is to use fixed height brack-
ets4 instead of looking for the tallest element. For
example the code

\begin{multline*}

f(x,y,z)= (1+x+y-z)\Bigl[\pi\\

+\sin\Bigl(\frac{a}{b}\Bigr)

+\cos\Bigl(\frac{c}{d}\Bigr)\Bigr].

\end{multline*}

gives

f(x, y, z) = (1 + x + y − z)
[

π

+ sin
(a

b

)

+ cos
(c

d

)]

.

Note that this solution is applicable only to cases in
which brackets are not taller than \Bigg.

In addition to the previous solutions, Michael
Downes and Morten Høgholm developed the breqn

4 Fixed height brackets can be obtained with the com-
mands \bigx, \Bigx, \biggx, and \Biggx (where x is ‘l’ for
left brackets, ‘r’ for right brackets, ‘m’ or nothing for a regular
symbol).

package to automatically handle this problem. When
the package is loaded, the \left and \right com-
mands work properly even when the equation is split.

3.4 Punctuation

There are two approaches on how to handle external
punctuation, that is, the punctuation in display style
formulæ. Some authors think that it should never
be used (Beccari, 2007a), others that it is necessary
and essential.5 Whichever of these two conventions
you choose, the fundamental thing is to be consistent
and always use the same method.

The authors of this article believe that formulæ,
both in display and text style, are part of the argu-
mentation and so punctuation should be used to help
the reader. An example of good use of punctuation is:

Since
a = b

and
b = c,

it is proven that
a = c.

4 Variables

4.1 Vectors and matrices

4.1.1 Synthetic notation

Vectors are usually indicated with bold face lower
case letters6

3a + αc = v.

Other notations such as

~a, a, {a}, [a]

should be avoided.
The same applies to matrices which can be indi-

cated with upper case bold face letters

Ax = b

avoiding expressions such as

[A]{x} = {b}.
In a linear algebra text, which deals entirely with
matrices and vectors, it is perfectly legitimate to get
rid of the bold face and simply write

Ax = b.

5 Most mathematics books, new and old ones (including
books typeset with metal movable type), use, although not
always consistently, semicolon, comma, and full stop in display
style equations (Bellacchi, 1894; Bertini, 1907; Bianchi, 1899;
Bonola, 1906; Burali-Forti, 1904; Caprilli, 1912; Cesaro, 1894;
Dini, 1878; Fubini, 1908; Gazzaniga, 1903; Peano, 1887; Sacchi,
1854; Veronese, 1891; Vivanti, 1916).

6 Upright bold face characters in mathematical mode can
be obtained with the \mathbf command.

258 TUGboat, Volume 29 (2008), No. 2

4.1.2 Component notation

In some cases it is necessary to show explicitly vector
and matrix components. Books and theses often
report expressions like





a11 a12 a13

a21 a22 a23

a31 a32 a33











x1

x2

x3







=







b1

b2

b3







.

This notation should be avoided because it uses dif-
ferent brackets for matrices and vectors and also
because it uses curly brackets for vectors. Much
better is the following:





a11 a12 a13

a21 a22 a23

a31 a32 a33









x1

x2

x3



 =





b1

b2

b3



 . (2)

Although there is no rule or customary practice
on the type of brackets to use for vectors and matrices
in component notation, it is advisable to:

• use either round or square brackets and avoid
all the other types (curly, angle, etc.);

• maintain the same notation for both matrices
and vectors7 throughout the document.

Matrices and vectors should be written in LATEX
with the following environments provided by the
amsmath package: pmatrix (for round brackets) and
bmatrix (for square brackets). For example Eq. (2)
can be obtained with

\begin{bmatrix}

A_{11}&A_{12}&A_{13}\\

A_{21}&A_{22}&A_{23}\\

A_{31}&A_{32}&A_{33}\\

\end{bmatrix}

\begin{bmatrix}

a_1\\ a_2\\ a_3

%%\end{bmatrix}

\end{bmatrix} =

\begin{bmatrix}

b_1\\ b_2\\ b_3

\end{bmatrix}

When a column vector has to appear in the text
in component notation, it is advisable to represent
it as a transposed row vector in order not to add
too much space between lines. There are at least
two notations for row vectors in the text. The first
one consists in using the notation for display style
vectors. For example you could write v = [v1 v2 v3]T

with

\mathbf{v} = [v_1\;v_2\;v_3]^T

The second one, adopted for example by Strang
(2005), is more compact and consists in separating

7 In fact, in component notation, a vector is just a one
column (or one row, depending on the convention adopted)
matrix.

the component with commas without indicating the
transposition, which is implicit. For example you
could write v = (v1, v2, v3) with

\mathbf{v} = (v_1,v_2,v_3)

In either case, the pmatrix and bmatrix environments
should not be used since they would produce too big
brackets.

The choice between round and square brackets
depends only on personal taste.

4.2 One symbol, one letter

A mathematical symbol is usually indicated by one
letter, not two or three. If, for example, we want to
suggest that the factor of safety is equal to three, we
should not write

FoS = 3

because FoS looks like the product between three
scalars. It is much better to use a subscript

Fs = 3.

CG is quite often used to indicate the center of
gravity. Wouldn’t G be better?

ISO standards admit some exceptions, such as
Mach number Ma and Reynolds number Re, which
are represented by two letters. In these rare cases in
which the italic font is used for a symbol of several
letters, the \mathit command should be used to
avoid spacing problems between the letters. Note
for example the difference between Ma and Ma, ob-
tained respectively with Ma and Ma.
In the first case the spacing between M and a might
induce one to consider it as a product while in the
second case the spacing is correct.

Formulæ should never include whole words such
as

mass × acceleration = force.

First of all, this should be a vector relation and the
formula does not suggest it. Moreover the words
should be written in an upright font

mass × acceleration = force,

in order to have the right spacing between letters.
However it is still not as clear and concise as

ma = F.

Another common error consists in using in a
formula the same symbols employed in a computer
program. For example

A_fl + B_fl = d_k_fl

instead of

A + B = d.

TUGboat, Volume 29 (2008), No. 2 259

4.3 Superscripts and subscripts

Subscripts should be used only if necessary and, even
in these cases, they should not be abbreviations.
For example you should not write σnominal or σnom,
where “nominal” has the regular English meaning;
in this case you could simply write σn. Obviously
it is allowed to use subscripts (or superscripts) for
indices, as in a third order tensor σijk. In this case
mathematical italic characters should be used with
the regular command \sigma_{ijk}.

Subscripts and superscripts follow the same rules
that apply for symbols (par. 5.1); they must be in
an italic font if representing physical quantities or
mathematical variables, in an upright font otherwise.
For example you should write AT if T represents the
temperature but AT if T represents a name such as
“trajectory”. You should write Ai if i represents a
summation index.

Using words as subscripts can disfigure even
simple formulæ such as

Twheel,braking =

(Tengine,supplied − Tengine,absorbed) ∗ C

N

which should have been written as

Tb =
C(Ts − Ta)

N
. (3)

Since the “b”, “s”, and “a” subscripts are abbreviation
of respectively “braking”, “supplied”, and “absorbed”,
they must be in an upright font according to the
previous rule.

4.4 Appropriate notation

Appropriate notation is fundamental to make a sci-
entific text easy to understand. To realize how im-
portant the notation is, you can just try to compute
a product with Roman numerals

MMCDXXVIII × XIX instead of 2428 × 19.

A common error consists in using different types
of letters for quantities of the same kind; for example
indicating some lengths with Latin letters (l, s, a)
and others with Greek letters (α, γ) does not help
the reader. Subscripts should be chosen carefully as
well. Some books contain figures in which ω1 is the
angular velocity of body 2 and ω2 that of body 1.

5 Physical and mathematical quantities

5.1 Symbols

ISO standards prescribe the use of italic symbols for
all the physical and mathematical quantities that
can assume different values; for example the names

Figure 1: Example of mathematical variables

indicated with italic letters.

of geometrical entities8 (Fig. 1) and all the physics
constants whose values are not “constant” because
more accurate measures might change it.9

All the other mathematical and physical quan-
tities must be written in an upright font. Among
these the imaginary unit 2 + 4i, the base of natural
logarithms e = 2.718 . . ., and pi π = 3.141,592 . . .
(Beccari, 2007a).

As already mentioned in the introduction, “pure”
mathematics does not always follow these rules (Gre-
gorio, 2007).

5.1.1 Character types in LATEX

In mathematical mode, LATEX typesets letters in
italic by default and so they represent non-constant
mathematical and physical quantities. For example
$a=b$ gives a = b.

In order to write constants, that is upright let-
ters in mathematical mode, the \mathrm command
can be used. For example $a=\mathrm{b}$ gives
a = b. \mathrm, although using upright characters,
is still in mathematical mode so it ignores spaces. If
spaces are needed, it is convenient to use the \text

command from amsmath. Note for example the dif-
ference between

vreduced section and vreducedsection

obtained respectively with

v_\text{reduced section}

and

v_\mathrm{reduced section}

8 Points and angles, being mathematical variables, must
be written in italic. Most authors indicate points with Latin
upper case letters (A, B, C, etc.), segments with Latin lower
case letters (a, b, c, etc.), and angles with Greek lower case
letters (α, β, γ, etc.).

9 For example the charge of the electron e, Planck’s con-
stant h, the reduced Planck’s constant ~, and Boltzmann’s
constant k.

260 TUGboat, Volume 29 (2008), No. 2

\mathrm, as opposed to \text, does not let super-
scripts and subscripts become italic in an italic con-
text. For example

\textit{This produces $L_\text{eff}\ne L_\mathrm{

eff}$}

gives

This produces Leff 6= Leff

(Both \mathrm and \text with their arguments
can be used directly as subscripts and superscripts as
shown here; ordinarily, such multi-token sequences
would need to be enclosed in braces.)

Upright Greek letters are provided by the up-

greek package. Note the difference betwen π and π
obtained respectively with \uppi and \pi.

The previous examples are only meant to show
how to use the various commands but, as explained in
the previous paragraphs, superscripts and subscripts
with full words should be avoided.

5.2 Numbers

Numbers must always be in an upright font (123), not
in italic (123).10 This is LATEX’s default behavior in
mathematical mode, but problems might arise in the
text. For this reason it is always advisable to write
numbers in mathematical mode even in the text. If,
for example, a number appears in an italic sentence,
the mathematical mode enforces the upright font.
For example

walk \emph{at most 2 km} north

gives

walk at most 2 km north

instead of the correct form

walk at most 2 km north

that can be obtained with

walk \emph{at most 2 km} north

Lesina (1986) provides some rules for numbers
in the text. They can be summarized in (Gregorio,
2005):

• Numbers less than twenty11 must be in words.
For example: the pinion has eleven teeth.

• If a number represents a precise measure, it
must be in figures. For example: the long side
is 1.5 m.

10 Dates are an exception to this rule and might be in italic
if their context is.

11 Other authors suggest numbers of at most one digit.

• If a number represents an approximate measure,
it must be in words, unless the number is too
long (when written). In this case it is easy to
round it because no one is interested in know-
ing that a building is one kilometer or 1123 m
distant (except in some specific cases). When
reporting approximate numbers, the units must
be explicitly written as well. You can write
then “in about twenty meters” but not “in about
20 m”.

• A number must be written in figures if it is
coupled with another one that is in figures. For
example you can write: there are 10 subjects of
the first type and 154 of the second one.

• Never begin a sentence with a number written
in figures.

Roman numerals, although quite rare in scien-
tific texts, must always be written in an upright font,
like the Arabic numbers. You should then write XVI
instead of XVI .

Long numbers should have a comma every three
digits:12

125,362

0.398,276

12.345,4.

In scientific documents the comma is usually substi-
tuted by a thin space (\,) (Wright, 2008a). Luckily
this can be done automatically with the command
\np of the numprint package. Here are some of the
features of this package:

• Addition of a separator every three digits. The
separator (, or . or \, or ~) depends on the
language in use (defined by the babel package).
The English separator is a comma , and so
\np{15000000} gives 15,000,000.

• Substitution of the decimal symbol. Indepen-
dently from the decimal symbol used in the
LATEX code, numprint represents numbers with
the one that is appropriate for the language
in use: . in English and , for the other Euro-
pean languages. For example, when writing in
English, \np{3,15} becomes 3.15.

• Approximation of decimal numbers to the de-
sired number of significant figures. If using
three significant figures, \np{2,742647826672}
becomes 2.743.

• Conversion of the E, e, D, and d characters
into the exponential format.13 For example
\np{1,234E-4} becomes 1.234 × 10−4.

12 Often four-digit numbers are not separated. Thus you
would write 1234 but 12,345 (Wright, 2008a).

13 This function is particularly useful when reporting data
produced by software such as FORTRAN, MATLAB, etc.

TUGboat, Volume 29 (2008), No. 2 261

Figure 2: Units enclosed in round brackets.

• Automatic addition of zeros, if necessary. For
example \np{,12} becomes 0.12.

5.3 Significant figures and scientific
notation

Experimental sciences often express evaluations and
results with numerical quantities. Some numerical
quantities, such as π, e,

√
2, 2/3, are exact. Quan-

tities deriving directly or indirectly from measures
or estimates are, on the contrary, approximate. The
representation, both in floating-point and in fixed-
point, of approximate quantities is very important
because it provides information about the precision
with which the quantities are known. For example

h = 1.23 m and h = 1.230,00 m

might seem similar but have quite different meanings.
In the first case h is a length known with a margin
of ±5 mm and then it derives from quite inaccurate
measures, in the second case the margin is ±5 µm
and then it derives from very accurate measures.

Therefore, the number of significant digits of
a numerical quantity is very important, sometimes
even more important than the digits themselves.14

Unfortunately, numerical quantities are very often
represented with too many significant digits, espe-
cially when reporting results of calculations.

Scientific notation, which is a way of expressing
approximate numbers with integer powers of ten,
provides a concise notation and allows to immediately
identify the number of significant digits.

5.4 Units

Units (ISO 1000, 1982; Bureau International des
Poids et Mesures, 2006) are often made of multiple

14 For example, in some contexts, there might be more
difference between 2.1 and 2.150,2 than between 2.1 and 2.9.

χ C1 C2 a1

(N/rad) (N/rad) (m)

0 73,000.0 90,000.0 0.912
0.05 70,899.3 89,143.7 0.912
0.10 68,565.1 88,850.5 0.912

Table 1: Units enclosed in round brackets.

letters (kg, Pa, mm, MN, rad, etc.) and must follow
some rules:

• they must be written with an upright font;

• they cannot be separated by a line break from
the numeric quantity to which they refer;

• they cannot be enclosed in square brackets.

Square brackets cannot be used with units because
in metrology they mean “unit of” (Beccari, 2007a).
For example

a = 25 m/s2 and [a] = m/s2

can be written, but not

a = 25 [m/s2].

On the other hand, round brackets can be used in
tables and graphs when units appear next to a symbol
of the corresponding physical quantity instead of the
numeric value to which they refer (Tab. 1 and Fig. 2).

Some conceptual errors can be added to the pre-
vious typographic errors. One of the most common
is to indicate the second (unit of time) with “sec”
(that means secant in trigonometry) instead of the
symbol “s”. A good guide on units is the manual
of the siunitx package (Wright, 2008b). With this
package the user does not have to format units by
hand. For example

\unit{32.1}{\micro\meter}

gives

32.1 µm

The package writes the units with upright characters
and adds an indivisible space between the number
and the unit.

Another common error is using the upper case
“K” to indicate kilo. In the context of units, “K”
can only mean “Kelvin” while kilo is written with
the lower case “k”. Thus you should write kg, kB,
etc. to indicate kilogram, kilobyte, etc. In general
the name of the units of the International System
have an upper case initial when named after scientists
(e.g. N, W, Pa, J), lowercase initials in all other cases
(e.g. m, lm, cd). The liter, which can be written both
upper and lower case (l, L) in Europe and must be
upper case in the USA (L), is the only exception to

262 TUGboat, Volume 29 (2008), No. 2

this rule (Ceraolo, 2007; Bureau International des
Poids et Mesures, 2006). (Also, the official spelling
is ‘litre’, although ‘liter’ is typical in the USA, as
seen in the present article.) When units are spelled
out, they must always start with a lowercase letter,
e.g. newton, siemens (Ceraolo, 2007; NIST, 2001).

6 Ambiguities

The digit “zero” should not be indicated by ∅ in
handwriting. The context will clearly show that
it is not a lower case “o”. However, the symbol ∅
should be used when writing program code by hand
because, in this particular case, it would be difficult
to distinguish “O” from “0”.

With electronic typesetting it is advisable to
indicate liters with the capital letter “L” instead of
the lower case “l”. Although the standards allows
both forms (ISO 1000, 1982; Giacomo, 1980; Bureau
International des Poids et Mesures, 1979),15 the lower
case letter could be confused with the number one
and the upper case “i”. Note the similarity between
the following: l, 1, I.

7 Conclusions

These notes are meant to contribute to reducing
the “illiteracy” with which, sometimes, very interest-
ing and profound mathematical formulæ are written.
The importance of clarity and efficacy of communi-
cation, especially scientific communication, should
never be underestimated.

8 Acknowledgments

We would like to thank Valeria Angeli, Luca Baldini,
Riccardo Bartolozzi, Barbara Beeton, Marco Beghi-
ni, Karl Berry, Massimo Ceraolo, Andrea Domenici,
Massimiliano Dominici, Beatrice Lazzerini, Cateri-
na Mori, Pier Angelo Mori, Antonio Sponziello and
Joseph Wright for their suggestions during both the
writing and reviewing process of this article. We
would also like to thank Claudio Beccari and Enrico
Gregorio for their enlightening discussions on the guIt

forum (http://www.guit.sssup.it/phpbb/index.
php) about some of the topics of this article.

Bibliography

American Mathematical Society. “User’s Guide for
the amsmath Package”. 2002. ftp://ftp.ams.

org/pub/tex/doc/amsmath/amsldoc.pdf.

Beccari, C. “Typesetting mathematics for science
and technology according to ISO31XI”. TUG-

15 The ISO standards allow the use of liters although the In-
ternational System unit for the volume is m3 and its multiples
(Bureau International des Poids et Mesures, 2006).

boat 18(1), 39–48, 1997. http://www.tug.org/

TUGboat/Articles/tb18-1/tb54becc.pdf.

Beccari, C. Private communication, 2007a.

Beccari, C. Introduzione all’arte della composizione
tipografica. 2007b. http://www.guit.sssup.it/
downloads/GuidaGuIT.pdf.

Bellacchi, G. Introduzione storica alle funzioni ellit-
tiche. Barbera, Firenze, 1894.

Bertini, E. Introduzione alla geometria proiettiva
degli iperspazi. E. Spoerri, Pisa, 1907.

Bianchi, L. Lezioni sulla teoria dei gruppi di sosti-
tuzioni. E. Spoerri, Pisa, 1899.

Bonola, R. La geometria non-euclidea. Zanichelli,
Bologna, 1906.

Burali-Forti, C. Lezioni di geometria metrico-
proiettiva. Fratelli Bocca, Torino, 1904.

Bureau International des Poids et Mesures. “Resolu-
tion 6”. In Comptes Rendus de la 16e Conférence
Générale des Poids et Mesures, page 101. 1979.

Bureau International des Poids et Mesures. The
International System of Units (SI). Pavillon de
Breteuil, Sèvres, France, 8th edition, 2006.

Caprilli, A. Nuove formole d’integrazione. Belforte,
Livorno, 1912.

Ceraolo, M. Private communication, 2007.

Cesaro, E. Corso di analisi algebrica con introduzione
al calcolo infinitesimale. Bocca, Torino, 1894.

Dini, U. Fondamenti per la teorica delle funzioni di
variabili reali. Nistri, Pisa, 1878.

Fubini, G. Introduzione alla teoria dei gruppi discon-
tinui e delle funzioni automorfe. E. Spoerri, Pisa,
1908.

Gazzaniga, P. Gli elementi della teoria dei numeri.
Drucker, Verona-Padova, 1903.

Giacomo, P. Metrologia 16(1), 55–61, 1980.

Gregorio, E. Discussione sul forum di guIt, 2005.
http://www.guit.sssup.it/phpbb/viewtopic.

php?t=1220.

Gregorio, E. Private communication, 2007.

ISO 1000. “SI units and recommendations for the use
of their multiples and of certain other units”. In
ISO Standards Handbook N. 2. International Orga-
nization for Standardization, Geneva, 2nd edition,
1982.

ISO 31/11. “Mathematical sign and symbols for use
in physical sciences and technology”. In ISO Stan-
dards Handbook N. 2. International Organization
for Standardization, Geneva, 2nd edition, 1982.

ISO 31/12. “Dimensionless parameters”. In ISO Stan-
dards Handbook N. 2. International Organization
for Standardization, Geneva, 2nd edition, 1982.

TUGboat, Volume 29 (2008), No. 2 263

Knuth, D. The TEXbook. Addison-Wesley, 1992.

Lesina, R. Il manuale di stile. Zanichelli, Bologna,
2nd edition, 1986.

NIST. NIST Special Publication 330: The Interna-
tional System of Units (SI). 2001.

Peano, G. Applicazioni geometriche del calcolo in-
finitesimale. Bocca, Torino, 1887.

Sacchi, G. Sulla geometria analitica delle linee piane.
Bizzoni, Pavia, 1854.

Strang, G. Linear Algebra and Its Applications.
Brooks Cole, 4th edition, 2005.

Veronese, G. Fondamenti di geometria a più di-
mensioni e a più specie di unità rettilinee esposti
in forma elementare. Tipografia del Seminario,
Padova, 1891.

Vivanti, G. Elementi della teoria delle equazioni
integrali lineari. Hoepli, Milano, 1916.

Wikipedia. 2008a. http://en.wikipedia.

org/wiki/Typographical_conventions_in_

mathematical_formulae.

Wikipedia. 2008b. http://en.wikipedia.org/

wiki/ISO_31.

Wikipedia. 2008c. http://en.wikipedia.org/

wiki/Mathematical_notation.

Wikipedia. 2008d. http://en.wikipedia.org/

wiki/Mathematical_symbols.

Wright, J. Private communication, 2008a.

Wright, J. siunitx: a comprehensive (SI) units
package, 2008b. http://ctan.org/get/macros/

latex/exptl/siunitx/siunitx-manual.pdf.

⋄ Massimo Guiggiani

Dipartimento di

Ingegneria Meccanica,

Nucleare e della Produzione

Università di Pisa

Pisa, Italy

guiggiani (at) ing dot unipi dot it

⋄ Lapo F. Mori

Mechanical Engineering Department

Northwestern University

2145 Sheridan Road

Evanston IL 60208

USA

mori (at) northwestern dot edu

264 TUGboat, Volume 29 (2008), No. 2

Electronic Documents

Wikipublisher: A Web-based system to
make online and print versions of the
same content

John Rankin

Abstract

Web pages and print documents exist as two soli-
tudes: information created as a Web page may print
poorly; information created as a print document
may translate into an unappealing Web page. The
Wikipublisher system lets authors create content on-
line first, as Web pages, and lets readers turn in-
dividual pages or page collections into print docu-
ments. It uses wiki software as a lightweight and
extensible content management system, so any page
can be edited using any Web browser. It then uses
LATEX as the typesetting engine, thus providing print
output of the highest quality. This paper examines
the reasons for developing Wikipublisher, techniques
and challenges faced in transforming Web content
into print, and some wishes for the future. The
project’s home is www.wikipublisher.org.

1 Web-centred text

Wikipublisher was born of frustration over the gap
between how I wanted to work and the capabilities
of the tools I was using. In discussing this with
like-minded colleagues, we came to the view that by
re-thinking how we created and published informa-
tion, we could be more productive and effective. We
expressed this aspiration as a set of principles which
underpin and inform every aspect of Wikipublisher’s
design:

Online first The World Wide Web enhances our
ability to communicate, so most of our work
ought to appear online first. Creating content
online first makes it instantly and widely ac-
cessible, and encourages linking to other online
resources. Yet most of our authoring tools are
“print first” and turning print documents into
HTML for publishing on the Web is hard to
do well. Too many long documents are sim-
ply posted to the Web as PDF files. The links
in an online document make it easy to navi-
gate, yet print first authoring tools do little to
encourage rich inter-document linking. So the
first requirement is a system with support for
the direct creation and editing of Web pages.

Print still matters If a Web page is worth read-
ing, it is worth printing. The longer and richer
the content, the more likely the reader is to
print it. We may skim read a 50 page report
online, but if we want to study it, we print it.
If we want to deliver a printed and bound ver-
sion, it needs to look good and be laid out for
optimal readability. Yet few Web site designs
appear to care what the printed form of the
site looks like. Most appear to be designed as-
suming all the information on the site can be
chunked into short, easily digested pieces. As
readers, experience has taught us to have low
expectations of the printed Web page.

One authoritative source The most up-to-date
version is what appears on the Web page; the
typeset PDF is a snapshot taken at a point in
time. This means the printed page can never be
newer than the Web page. This is in direct con-
trast to most publishing systems, where there
are often 3 (and sometimes more) versions: the
word processing or other source, a PDF snap-
shot of the word processing source, and a col-
lection of Web pages generated (perhaps with
edits) from the source. The more frequently the
content changes and the more authors involved
in creating it, the more important it becomes
to have one source.

Wikipublisher is designed for people who write long,
complex, richly linked documents, who wish to pub-
lish these in an accessible form on the Web and in
print. The reader presses a “Typeset” button on the
Web page and the system returns a PDF. By us-
ing LATEX as the typesetting engine, Wikipublisher
produces printed output of the highest quality.

2 We built it because . . .

My company, Affinity Limited, is a small IT manage-
ment consultancy. Like most professional services
firms, our document production systems, based on
Adobe FrameMaker, were geared to efficiently pro-
ducing print documents such as letters, proposals,
short papers, and reports. Our Web presence was
essentially an online brochure — who we are, what
we do, and how to contact us. Communication with
clients primarily used e-mail to send document at-
tachments back and forth. Several years ago, three
things happened:

• we decided to make our work processes Web-
centric wherever possible;

• open source wiki software became widely avail-
able, easy to install, and easy to use;

TUGboat, Volume 29 (2008), No. 2 265

• Adobe decided not to offer a Mac OS X version
of FrameMaker.

Apple’s switch to Intel processors meant that OS 9
was dead and with it FrameMaker on Mac. Either
we had to switch to Windows or find a replacement.
We concluded that the least-worst alternative was
to use LYX as a front-end to LATEX, and while this
would meet our print needs, it didn’t really advance
our aim to be more Web-centric. We had received
very positive comments from clients when we intro-
duced wiki software for some of our work. For ex-
ample, when writing up interview notes, it is much
easier and faster for everyone if we send a link to a
Web page of the write-up, which the interviewee can
edit using a Web browser. Wikis use simple textual
markup to describe a page, which gets translated
into HTML when the page is displayed. Each page
carries an Edit link, which when clicked displays the
content of the page as an editable Web form.

However, we have to deliver the interview notes
as part of a printed and bound report, typically as an
appendix. We experimented with “printable views”
of the Web pages and quickly learnt that while the
quality is good enough for an appendix, HTML plus
CSS (cascading style sheets) produces printed out-
put of a quality far lower than that produced by
software such as FrameMaker or LATEX. We also felt
that it ought to be a lot easier to bundle up 10 in-
terview Web pages into a single printed document.
So we had succeeded in improving the doing part
of the process, but at the cost of lowering the final
output quality, and we still needed a solution for the
main body of our reports. We concluded that if we
were to make further advances in this direction, we
needed a way to turn a Web page or page collection
into a print document of at least the same quality
as one expects from a modern word processor, with
minimal manual intervention.

We decided to investigate the possibility of cre-
ating a report as a set of linked wiki Web pages
and using some form of typesetting engine to re-
purpose this into a printable document, complete
with cover page, table of contents, running head-
ers and footers, and other print-oriented structures.
With the help of a research and development grant
from New Zealand’s Foundation for Research, Sci-
ence and Technology (FRST), we teamed up with
the School of Mathematics, Statistics and Comput-
ing Sciences at Victoria University of Wellington to
carry out the project. The grant allowed us to hire
a graduate student on a part-time basis for just over
a year, while he worked on a MSc. After a further
round of enhancements and bug fixes, we can now
produce letters, articles, reports, presentations and

books, including images, tables, equations, citations
and bibliographies— in other words, it has become
a fully-fledged publishing system for Web and print
documents. We have released the source code (a
plug-in for the wiki engine and a separate typeset-
ting server) and discovered that a surprising (to us)
number of people find it useful.

3 TEXnical matters

Without TEX, the project would have been imprac-
tical. We considered using XSL-FO (formatting ob-
jects), but our not very scientific assessment found
that at the time, none of the books on FO had been
written using FO. We suspected that somewhere
between the beautiful examples in the books and
typesetting an arbitrary Web page, we would en-
counter impenetrable problems. TEX seemed to us
a low risk and proven approach. Various books and
PDF documents on LATEX written with LATEX gave
us confidence that any problems we might find would
have ready solutions.

3.1 Typesetting becomes a Web service

Wikipublisher works by re-purposing Web pages to
a form of XML designed to describe printed mate-
rial and then transforming the XML into LATEX for
typesetting. It builds on the following open source
projects.

PmWiki We chose the PmWiki engine1 because it
is markup agnostic — that is, the administra-
tor can control the input markup for structur-
ing the content and the output markup the en-
gine produces. The wiki continues to gener-
ate HTML for normal browsing, but when the
reader requests a PDF document, we invoke a
Wikipublisher plug-in which causes the wiki en-
gine to generate Wikibook XML instead. The
wiki’s design means we can do this without any
changes to the original source code.

tbook The tbook project2 is an XML-based sys-
tem designed to allow an author to create doc-
uments in XML and then transform these into
a variety of different formats, including LATEX.
The original tbook system did not accommo-
date all the markup available in PmWiki, so
we have extended the XML syntax quite signif-
icantly. We call the revised DTD (document
type definition) “Wikibook” — any valid tbook
XML document is valid Wikibook, but Wiki-
book supports constructs not found in tbook.

1 www.pmwiki.org
2 sourceforge.net/projects/tbookdtd

266 TUGboat, Volume 29 (2008), No. 2

When a reader issues a request for a PDF, this goes
to the Wikibook server, which asks the PmWiki
server to generate the requested page(s) as Wiki-
book XML. The Wikibook server transforms the
XML into LATEX and thence into a PDF, which it
returns to the reader. All an author or reader needs
is a Web browser and PDF viewer; everything else
happens on a Web server.

For sites requiring equations, we provide a plug-
in for PmWiki that lets authors write TEX equations
into a page, including automatically-generated equa-
tion numbers if required. On the Web, each equa-
tion is transformed into an image; in the PDF, the
equations are just part of the document. We use the
open source latexrender php library for this.3

3.2 Headings determine structure

Authors generally use heading markup to structure
their pages. In HTML, there are no controls over
how headings are used. Wikipublisher assumes that
a page has sections, subsections and subsubsections;
whatever 3 kinds of heading it finds on the page, it
maps into this structure. In other words, it trans-
forms the absolute HTML and wiki heading levels
into relative section levels. This means different
headings on different pages can be rendered the same
way in print. PageA might start with <h2> while
PageB starts with <h3>: both become sections. It
also means the same heading might be rendered dif-
ferently in different print contexts. If a page is being
typeset as part of a list of pages, each page becomes
a section, so the first heading on the page now be-
comes a subsection.

In other words, different authors can use differ-
ent heading conventions (or the same author may
use different conventions at different times), and let
Wikipublisher sort it out and produce consistently
laid out print documents. An author can create a
long structured document using multi-level lists, like
this (each item is a separate wiki page):

• Section A

– Subsection A.1

– Subsection A.2

• Section B

– Subsection B.1

– Subsection B.2

And so on. On a page like Subsection A.1, the first
3 heading levels now become subsubsection, para-
graph and subparagraph. A list item can also be
designated as an appendix, which means it and sub-
sequent items are unnumbered.

3 www.mayer.dail.pipex.com/tex.htm

3.3 Adapt the output on demand

Suppose that some of the readers want output on
US letter paper while others need A4; some have
duplex printers while others do not; some prefer
indented paragraphs while others prefer space be-
tween paragraphs. Perhaps the author wishes to in-
clude a “draft” watermark. Wikipublisher provides
a <meta> XML element with name/value attribute
pairs to control these and other settings. An “op-
tions” button on the typesetting request form lets
the reader control the look of the finished docu-
ment, over-riding the default meta settings. A Cana-
dian reader with a duplex printer and an Australian
reader with a one-sided printer can each request the
output he or she prefers.

The print metadata capability does the simple
things like creating mirrored headers and footers on
odd and even pages for duplex printing, or making
all headings serif. It also does more sophisticated
things; for example, if a reader requests A5 paper, it
not only reduces the font size to compensate for the
shorter line length, it also makes sure any images are
shrunk, if they are too big to fit the smaller page.
Indeed, whatever the page size, it makes sure the
images fit the page.

While many of these print metadata settings
are common to all document classes, such as choos-
ing the fontset or watermark, some are class-specific.
For example, when typesetting a book, the reader
can choose the chapter heading style; when typeset-
ting a letter, the reader can include or omit a return
address; when typesetting an article, the reader can
choose whether or not to number the sections.

3.4 Citations and bibliographies

Because the wiki content is “online first”, we can-
not use any of the traditional bibliography tools like
natbib. The problem we face is that LATEX bibliogra-
phy tools assume the author writes some variant of
\cite{key} and LATEX works out how to render the
reference and sort the bibliography. On the other
hand, to render a Web page with citations and a
bibliography from wiki markup, the wiki engine has
to solve these and other problems, then Wikipub-
lisher has to tell LATEX that we already know how
to typeset the result. The wiki way to add a new
entry to a bibliography is to cite it, just as the way
to create a new page is to link to it:

• if the cited key exists, the wiki links to that
entry in the page’s bibliography

• otherwise, it links to a “new citation” form —
fill in the form and press Save

TUGboat, Volume 29 (2008), No. 2 267

The Wikibook XML we generate contains everything
LATEX needs to know —the keys, the text of the link
(numbered or author–year), the items (labelled) in
the bibliography, sorted in the correct order. All
LATEX has to do is typeset the data. For example,
the body text might contain:

<cite kind="sic" refid="Smith:2001">see

Smith (2001, p.6)</cite>

The corresponding bibliography entry text might be:

<item id="Smith:2001">Smith, A. 2001. ...

</item>

In the PDF, we want the <cite> to link to the
<item> and we want the item to print with a hang-
ing indent. To achieve this, we created a new LATEX
command:

\citesic{see Smith (2001~p.6)}{Smith:2001}

and a new kind of list environment for a preformat-
ted, presorted bibliography, containing:

\abibitem{Smith:2001} Smith, A. ...

The \citesic command uses the \hyperlink com-
mand and \abibitem uses \hypertarget from the
hyperref package. We use a similar approach for
numbered references, except the <item> includes an
attribute style="n" where n is the number of the
reference.

Finally, Wikipublisher invites URL addresses to
break on selected special characters, avoiding ugly
white space in bibliographies (or indeed in regu-
lar text) containing references to Web sites. We
achieve this by substituting <discy kind="x" /> in
the URL link text, where x is: hyphen (-), full stop
(.), equals (=), underscore (_), or forward stroke (/);
and generating:

\discretionary{}{x}{x}

This means the hyphenation character starts the line
following the break point, thereby avoiding the am-
biguity of an address line ending in a hyphen, which
could cause a reader to wonder whether the hyphen
is part of the address or was inserted during text
hyphenation.

3.5 Tables

Wikipublisher currently provides support for three
kinds of tables:

• simple tables float, their column widths are de-
termined automatically, and text in the cells
can be left justified, centred, or right justified;
the caption, if there is one, is numbered

• long tables are like simple tables, except that
they do not float and if the first row is headings
(the wiki markup for the HTML <th> tag), this

becomes a running header on the second and
subsequent pages

• complex tables can contain any wiki markup
the author deems it necessary to use (including
simple tables); to handle these, we wrap the
cell content in a LATEX minipage environment,
set all cell text to ragged right, and hope; if
the author supplies percentage cell widths, we
use these, otherwise we make the columns equal
width

Authors are generally used to the fluid nature of
wiki and HTML tables, and tend to assume that
anything a Web browser can handle, the typesetting
engine ought to handle too. By changing HTML at-
tribute values, authors have fine control over table
ruling, shading, colouring, and spacing on a Web
page. There may also be site-wide table styles set in
an external CSS file. Wikipublisher ignores almost
all of these settings, and instead sets what we hope
are reasonable and consistent defaults. In essence, it
takes the structure of the table and ignores the style.
This can be a strength, rather than a weakness—
all the tables in a long document will look similar,
whereas the original Web tables may show a great
deal of stylistic variation.

We are investigating ways to handle rotated ta-
bles, especially long (multi-page) tables. The aspect
ratio of modern computer screens is typically greater
than 4:3 (the screen I am using at the moment is
1.6:1), so cell column widths which look fine through
a Web browser tend to be too narrow on a portrait
A4 page. Ideally, an author could assign a “wide”
class to a table and Wikipublisher would print it ro-
tated 90◦, automatically splitting it across several
pages if necessary, with column widths calculated
from the available text height.

4 If we had a magic wand . . .

And could make three wishes, what would we like
to improve? Most of the time, “it just works”; once
Wikipublisher is installed and configured, users can
forget it is there until they need it, and when they
need it, they get what they need, although this may
not be precisely what they think they want.

4.1 Colour cite links correctly

I wish we could tell the hyperref package that the
special \citesic{link text}{key} command we
have defined is just a variation on the \cite{key}

command, even though it invokes the \hyperlink

command. At the moment, if you run Wikipub-
lisher with the colorlinks option turned on, cita-
tion links come out in red (linkcolor) instead of
green (citecolor). There is probably a simple way

268 TUGboat, Volume 29 (2008), No. 2

to modify the wikibib.sty file to check whether
colorlinks is on and if so, to use citecolor for
the colour of the generated hyperlink. Or preferably
to define the \citesic command in such a way that
hyperref recognises it as a citation link and colours
it correctly. Any reader thinking “Oh, that’s easy”
might like to contact me. The \citesic command
is defined as follows:

\newcommand\citesic[2]{\hyperlink{#2}{#1}}

4.2 Publish with style

I wish we had a general method for mapping the
wiki’s HTML style information into equivalent LATEX
print structures. Here are some of the things people
do with wiki styles which at the moment do not work
properly in Wikipublisher.

1. Define a style with a light green background,
a dotted dark green border, text aligned right,
with 0.5 em padding, applied to a paragraph.

2. Define styles for text decoration underline and
line-through, even though there is a perfectly
good structural markup to designate inserted,
deleted, and highlighted text.

3. Set up “zebra tables” where alternate rows or
columns are shaded. Combine alternate row
and column stripes to create “hatched tables”.
Define cell ruling and padding.

4. Float text around a table using the table at-
tributes align="left" or align="right". Ap-
ply the rowspan="n" attribute to a table cell
(although colspan works, rowspan does not).

An author can use wiki markup to define a named
style consisting of any combination of HTML style
attributes, and apply this style to any block, line or
inline piece of text. Wikipublisher correctly handles
styles like text size and colour, background colour,
list item numbering and numbering style, and text
alignment. There is a project awaiting us to an-
alyse all the HTML style attributes, map these to
their LATEX equivalents (where these exist), and sys-
tematically define attribute transformations for any
validly-styled text.

4.3 Typeset any Web page

I wish we could typeset pages from MediaWiki,4

WordPress,5 and other Web sites. In principle, if
we can transform wiki markup, we ought to be able
to transform HTML into Wikibook XML and then
on into LATEX. While this is superficially attrac-
tive, there are also some obvious problems. The

4 www.mediawiki.org
5 wordpress.org

HTML syntax makes no provision for semantic ele-
ments such as:

• figure captions

• footnotes

• marginal notes

• citations and references

• chapters, sections, subsections, appendices and
other parts of a book

It also includes the widely used (and meaningless)
<div> and tags. In practice, one would have
to rely on inferring structure from site-specific con-
ventions for how class attributes are used. For ex-
ample, if an image has alt text (as images should),
use that as the caption. However, as more Web sites
become database-driven, rather than using hand-
crafted HTML, we can envisage developing different
handlers (sets of rules) for different kinds of content
management software, controlling the actions of a
general-purpose HTML to Wikibook conversion en-
gine. For example, suppose a university publishes
an online journal in HTML or if TUGboat were to
publish online first. A reader could choose articles
of interest, from several online volumes, and request
these as a single typeset PDF file. Potentially, high
quality “print runs of one” become economic, per-
haps with the ability to use a wider choice of LATEX
document classes than those currently supported.

We plan to seek some research and development
funding to pursue this proposal. Unfortunately for
us, FRST allocated almost all its 2007/08 grants
budget in the first three months of the financial year
and is only funding big companies at the moment.
We have to wait until the 2008/09 financial year to
apply.

5 Summing up

This article has described an open source software
project which combines easy-to-use wiki software
with the typesetting capabilities of LATEX to cre-
ate a simple, flexible, and powerful collaborative au-
thoring and publishing system. Before the project
started, I was an absolute LATEX beginner; I have
learnt how it works by looking at what the tbook
XSL transformation did and watching how Donald
Gordon, our part-time developer, enhanced this to
handle the PmWiki markup set.

How does a small business justify investing this
level of effort, when it would be easier to use Mi-
crosoft Word like almost everyone else? It is said
that businesses change direction out of fear, greed,
or boredom. It is true that we have won additional
business as a result of the work, but not as much
as we had hoped. It is also true that our clients see

TUGboat, Volume 29 (2008), No. 2 269

the project as innovative and pretty cool, so it has
enhanced our reputation. As a research and devel-
opment project it was a success, but commercialis-
ing the investment has been problematic. Currently,
it is not generating revenue for us, but it has never
been boring, it makes our working lives simpler, and
it is a lot more fun than many of the things I get
paid to do.

The project has taught us three important and
in hindsight self-evident lessons.

Publishing online first alters the rules Like
most other project-based consultancy practices,
we write regular progress reports to our clients.
These used to be paper letters; now they are
wiki Web pages which can be typeset as letters.
The shift from “documents” to “pages” creates
a new perspective on the content. For exam-
ple: they can contain links to related materials;
the client can annotate them with comments;
the entire history of the project is instantly ac-
cessible and searchable; and we can take print
snapshots to store in a document management
system or bind for physical distribution.

Open beats closed Using open source (free) soft-
ware reduces the barriers to entry, allowing us
to stand on the shoulders of giants. Open stan-
dards, especially the XML set of standards, en-
able interoperability between disparate systems
like PmWiki and LATEX. Open means that when
we strike a problem, Google knows the solution:
someone will have seen the problem before and
left a trail on the Web for us to follow. The
wiki markup and file format specifications are
open and fully documented, so long term con-
tent curation and preservation are simply not
a problem. In contrast, when we replace our
last PowerPC-based Mac, a decade’s worth of
documents, stored in FrameMaker’s proprietary
format, will become inaccessible, unless we first
convert them to a format like rtf.

Most people are not interested It is a minority
of people who share our enthusiasm for what

Wikipublisher can do. People who are familiar
with HTML often do not see the point of trans-
forming Web content into LATEX to create a high
quality print document. They see print as a
disposable afterthought and consider that gen-
erating a printable page view using CSS is good
enough. I find it surprising that people who pay
careful attention to accessibility and readabil-
ity principles for Web sites are happy to ignore
these for printed material. On the other hand,
most authors are comfortable with their word
processor and see no reason to change their
practice. If what they are writing will be pub-
lished on a Web site, converting the document
to HTML is someone else’s problem. When their
document is finished, they toss the dead sheep
over the fence into the next paddock and forget
about it.

The success of Microsoft Office in bringing typeset-
ting to the mass market has had the unfortunate
side-effect of entrenching typographic mediocrity in
our culture. Most people are unaware of, and hence
do not value, the correct use of ligatures, text justi-
fication algorithms, inter-paragraph separation, and
the many other details which TEX looks after on our
behalf. Competitors such as OpenOffice and Google
Office are often judged by how well they replicate the
layout of Word documents. So in a sense, Wikipub-
lisher is over-engineered— it does a better job than
it needs to.

If you are interested in Wikipublisher, you can
try it online at www.wikipublisher.org, using any
Web browser, or download the software and install
it on any Unix or Linux server. I have PmWiki and
the Wikibook PDF server running on my Apple Mac-
Book. If you have any questions, you can contact me
via the web site or the address below.

⋄ John Rankin

Affinity Limited, Wellington, New Zealand

john dot rankin (at) affinity dot co dot nz

270 TUGboat, Volume 29 (2008), No. 2

Character encoding

Victor Eijkhout

Have you ever wondered what goes on between the
‘A’ you hit on your keyboard, the ‘A’ stored in your
file, and the ‘A’ that comes out of your printer?
Why does that letter still come out of the printer
if the file is printed by your friend in Egypt who
doesn’t use the letter ‘A’? Maybe you know that ‘A’
is character 65 (decimal) in ASCII; if you put it on
a web page, and it’s visited by someone in Japan,
why don’t they get character number 65 in the Kanji
alphabet? Do you remember the DOS days when
your Mac owning colleague would send you a file
and what were supposed to be accented characters
would turn into smiley faces? Have you ever pasted
text from MS-Word into Emacs, and Emacs wanted
to save the document as UTF-8? Just what is that
about?

All this, and more, will be explained in this
article.

1 History in one byte

Somewhere in the depths of prehistory, people in the
Western world agreed on a standard for character
codes under 127, ASCII, the American Standard
Code for Information Interchange. This standard
declares that the letter ‘A’ is character number 65
decimal (41 in hexadecimal), so if your file contains
the bit pattern for 65 (which is 01000001), it will
produce an ‘A’ when sent to the printer.

ASCII has some nice properties, some of which
were lacking in another encoding scheme, EBCDIC

(which was used almost exclusively by IBM):

• All letters are consecutive, making a test ‘is this
a letter’ easy to perform.

• Uppercase and lowercase letters are at a distance
of 32; this means that the Shift key on your
keyboard simply toggles the sixth bit in the
pattern of whatever key you are holding down.

• The first 32 codes, everything below the space
character, as well as position 127, are ‘unprint-
able’, and can be used for such purposes as
terminal cursor control.

The ISO 646 standard codified 7-bit ASCII, but it
left certain character positions (or ‘code points’) open
for national variation. For instance, British usage
put a pound sign (£) in the position of the dollar.
The ASCII character set was originally accepted as
ANSI X3.4 in 1968. ANSI is displayed in table 1.

Since a computer organizes its bits in 8-bit bytes,
and ASCII only codified the codes under 128, this left
the codes with the high bit set (‘extended ASCII’)
undefined, and different manufacturers of computer
equipment came up with their own way of filling
them in. These standards were called ‘code pages’,
and IBM gave a standard numbering to them. For in-
stance, code page 437 is the MS-DOS code page with
accented characters for most European languages,
862 is DOS in Israel, and 737 is DOS for Greek.

Here is cp437:

MacRoman:

and Microsoft cp-1252:

More code pages are displayed in [5].

TUGboat, Volume 29 (2008), No. 2 271

ASCII CONTROL CODES

dec

CHAR
hex oct

b7
b6

b5

0
0

0

0
0

1

0
1

0

0
1

1

1
0

0

1
0

1

1
1

0

1
1

1

BITS

b4 b3 b2 b1
CONTROL

SYMBOLS

NUMBERS
UPPERCASE LOWERCASE

0 0 0 0
0

NUL
0 0

16

DLE
10 20

32

SP
20 40

48

0
30 60

64

@
40 100

80

P
50 120

96

‘
60 140

112

p
70 160

0 0 0 1
1

SOH
1 1

17

DC1
11 21

33

!
21 41

49

1
31 61

65

A
41 101

81

Q
51 121

97

a
61 141

113

q
71 161

0 0 1 0
2

STX
2 2

18

DC2
12 22

34

”
22 42

50

2
32 62

66

B
42 102

82

R
52 122

98

b
62 142

114

r
72 162

0 0 1 1
3

ETX
3 3

19

DC3
13 23

35

#
23 43

51

3
33 63

67

C
43 103

83

S
53 123

99

c
63 143

115

s
73 163

0 1 0 0
4

EOT
4 4

20

DC4
14 24

36

$
24 44

52

4
34 64

68

D
44 104

84

T
54 124

100

d
64 144

116

t
74 164

0 1 0 1
5

ENQ
5 5

21

NAK
15 25

37

%
25 45

53

5
35 65

69

E
45 105

85

U
55 125

101

e
65 145

117

u
75 165

0 1 1 0
6

ACK
6 6

22

SYN
16 26

38

&
26 46

54

6
36 66

70

F
46 106

86

V
56 126

102

f
66 146

118

v
76 166

0 1 1 1
7

BEL
7 7

23

ETB
17 27

39

’
27 47

55

7
37 67

71

G
47 107

87

W
57 127

103

g
67 147

119

w
77 167

1 0 0 0
8

BS
8 10

24

CAN
18 30

40

(
28 50

56

8
38 70

72

H
48 110

88

X
58 130

104

h
68 150

120

x
78 170

1 0 0 1
9

HT
9 11

25

EM
19 31

41

)
29 51

57

9
39 71

73

I
49 111

89

Y
59 131

105

i
69 151

121

y
79 171

1 0 1 0
10

LF
A 12

26

SUB
1A 32

42

*
2A 52

58

:
3A 72

74

J
4A 112

90

Z
5A 132

106

j
6A 152

122

z
7A 172

1 0 1 1
11

VT
B 13

27

ESC
1B 33

43

+
2B 53

59

;
3B 73

75

K
4B 113

91

[
5B 133

107

k
6B 153

123

{
7B 173

1 1 0 0
12

FF
C 14

28

FS
1C 34

44

,
2C 54

60

<
3C 74

76

L
4C 114

92

\
5C 134

108

l
6C 154

124

|
7C 174

1 1 0 1
13

CR
D 15

29

GS
1D 35

45

−
2D 55

61

=
3D 75

77

M
4D 115

93

]
5D 135

109

m
6D 155

125

}
7D 175

1 1 1 0
14

SO
E 16

30

RS
1E 36

46

.
2E 56

62

>
3E 76

78

N
4E 116

94

ˆ
5E 136

110

n
6E 156

126

˜
7E 176

1 1 1 1
15

SI
F 17

31

US
1F 37

47

/
2F 57

63

?
3F 77

79

O
4F 117

95

˙
5F 137

111

o
6F 157

127

DEL
7F 177

Table 1: The ASCII table

The international variants were standardized as
ISO 646-DE (German), 646-DK (Danish), et cetera.
Originally, the dollar sign could still be replaced by
the currency symbol, but after a 1991 revision the
dollar is now the only possibility.

The different code pages were ultimately stan-
dardized as ISO 8859, with such popular code pages
as 8859-1 (‘Latin 1’) for western European:

272 TUGboat, Volume 29 (2008), No. 2

8859-2 for eastern European, and 8859-5 for Cyrillic:

These ISO standards explicitly left the first 32
extended positions undefined.

Reading material: The history of ASCII out of
telegraph codes [1]; a history, paying attention to mul-
tilingual use [4]; Bob Bemer, the ‘father of ASCII’ [2];
a detailed discussion of ISO 8859, Latin-1 [11].

2 Character sets and encodings

As you can tell from the introduction, there is quite
a bit of confusion possible between characters and
representations or encodings. Let us clear up the
concepts a little.

Informally, the term ‘character set’ (also ‘char-
acter code’ or ‘code’) used to mean something like
‘a table of bytes, each with a character shape’. With
only the English alphabet to deal with that is a good
enough definition. These days, much more general
cases are handled, mapping one octet into several
characters, or several octets into one character. The
definition has changed accordingly:

A charset is a method of converting a se-
quence of octets into a sequence of characters.
This conversion may also optionally produce
additional control information such as direc-
tionality indicators.

(From RFC 2978) A conversion the other way may not
exist, since different octet combinations may map
to the same character. Another complicating fac-
tor is the possibility of switching between character
sets; for instance, ISO2022-JP is the standard ASCII

character set, but the character sequence ESC $ @

switches to JIS X 0208-1978.
To disentangle the concepts behind encoding,

we need to introduce a couple of levels:

ACR Abstract Character Repertoire: the set of
characters to be encoded; for example, some
alphabet or symbol set. This is an unordered set
of characters, which can be fixed (the contents of
ISO 8859-1), or open (the contents of Unicode).

CCS Coded Character Set: a mapping from an
abstract character repertoire to a set of non-
negative integers. This is what is meant by
‘encoding’, ‘character set definition’, or ‘code
page’; the integer assigned to a character is its
‘code point’.

There used to be a drive towards unambiguous
abstract character names across repertoires and
encodings, but Unicode ended this, as it provides
(or aims to provide) more or less a complete list
of every character on earth.

CEF Character Encoding Form: a mapping from a
set of non-negative integers that are elements of
a CCS to a set of sequences of particular code
units. A ‘code unit’ is an integer of a specific
binary width, for instance 8 or 16 bits. A CEF

then maps the code points of a coded character
set into sequences of code points, and these
sequences can be of different lengths inside one
code page. For instance ASCII uses a single 7-bit
unit; UTF-8 uses one to four 8-bit units. We
will discuss the UTF encodings below.

CES Character Encoding Scheme: a reversible trans-
formation from a set of sequences of code units
(from one or more CEFs to a serialized sequence
of bytes. In single-byte cases such as ASCII and
UTF-8 this mapping is trivial. With the two-
byte scheme UCS-2 there is a single ‘byte order
mark’, after which the code units are trivially
mapped to bytes. On the other hand, ISO 2022,
which uses escape sequences to switch between
different encodings, is a complicated CES.

Additionally, there are the concepts of

CM Character Map: a mapping from sequences of
members of an abstract character repertoire to
serialized sequences of bytes bridging all four
levels in a single operation. These maps are
what gets assigned MIBenum values by IANA;
see section 4.1.

TES Transfer Encoding Syntax: a reversible trans-
formation of encoded data. This data may or
may not contain textual data. Examples of a
TES are base64, uuencode, and quoted-printable,
which all transform a byte stream to avoid cer-
tain values.

3 Unicode and UTF encodings

The systems above functioned quite well as long
as you stuck to one language or writing system.
Poor dictionary makers. More or less simultane-
ously two efforts started that aimed to incorporate
all the world’s character sets in one standard: the
Unicode standard (originally 2-byte), and ISO 10646
(originally 4-byte). Unicode was extended further,
so that it has all code points up to 10FFFFF, which
is slightly over a million.

Two international standards organizations, the
Unicode Consortium and ISO/IEC JTC1/SC2, started

TUGboat, Volume 29 (2008), No. 2 273

designing a universal standard that was to be a su-
perset of all existing character sets. These standards
are now synchronized. Unicode has elements that
are not in 10646, but they are compatible where it
concerns straight character encoding.

ISO 10646 defines UCS, the ‘Universal Character
Set’. This is in essence a table of official names and
code numbers for characters. Unicode adds to this
rules for hyphenation, bi-directional writing, and
more.

The full Unicode list of code points can be found
online, broken down by blocks [14], and download-
able [17].

3.1 BMP and other Unicode subplanes

Characters in Unicode are mostly denoted hexadeci-
mally as U+wxyz; for instance, U+0041 is ‘Latin Cap-
ital Letter A’. The range U+0000–U+007F (0–127) is
identical to US-ASCII (ISO 646 IRV), and U+0000–
U+00FF (0–255) is identical to Latin 1 (ISO 8859-1).

The original 2-byte subset is now called the
‘BMP’ for Basic Multilingual Plane, or plane 0. These
are the Unicode code points that are nonzero in the
last two bytes. Other ‘planes’ have been defined that
have one or more bits set outside the last two bytes.

BMP (Basic Multilingual Plane) The first plane
defined in Unicode/ISO10646, designed to in-
clude all scripts in active modern use. The BMP

currently includes the Latin, Greek, Cyrillic,
Devangari, hiragana, katakana, and Cherokee
scripts, among others, and a large body of math-
ematical, APL-related, and other miscellaneous
characters. Most of the Han ideographs in cur-
rent use are present in the BMP, but due to the
large number of ideographs, many were placed
in the Supplementary Ideographic Plane.

SMP (Supplementary Multilingual Plane; plane 1)
This contains mostly ancient writing systems.
Some of these you’ll have likely heard of, such as
Linear B, cuneiform, Aztec, and Mayan; others
are fairly obscure, such as Tangut, a language
used in Central China between 1000 and 1500.

SIP (Supplementary Ideographic Plane) The third
plane (plane 2) defined in Unicode/ISO 10646,
designed to hold all the ideographs descended
from Chinese writing (mainly found in Viet-
namese, Korean, Japanese and Chinese) that
aren’t found in the Basic Multilingual Plane.
The BMP was supposed to hold all ideographs
in modern use; unfortunately, many Chinese di-
alects (like Cantonese and Hong Kong Chinese)
were overlooked; to write these, characters from
the SIP are necessary. This is one reason even

non-academic software must support characters
outside the BMP.

3.2 Unicode encodings

Unicode is basically a numbered list of characters.
When they are used in a file, their numbers can be
encoded in a number of ways. To name the obvious
example: if only the first 128 positions are used, the
long Unicode code point can be truncated to just
one byte. Here are a few encodings:

UTF-32 Little used: this is a four-byte encoding.
(UTF stands for ‘UCS Transformation Format’.)

UTF-16 A two-byte encoding. Its precursor, UCS-2,
encoded the BMP; UTF-16 has a way of going
beyond that to encode planes 1–16 by using
‘surrogate pairs’ of two-byte units.

UTF-8 A one-byte scheme; details below.

UTF-7 Another one-byte scheme, but now the high
bit is always off. Certain byte values act as an
‘escape’, so that higher values can be encoded.
Like UTF-1 and SCSU, this encoding is only of
historical interest.

There is an important practical reason for a one-
byte encoding such as UTF-8. Multi-byte encodings
such as UCS-2 are wasteful of space, if only tradi-
tional ASCII is needed. Furthermore, they would
break software that is expecting to walk through a
file with s++ and such. Also, they would introduce
many zero bytes in a file, which would play havoc
with Unix software that uses null-termination for
strings.

Then there would be the problem of whether two
bytes are stored in low-endian or high-endian order.
For this reason it was suggested to store FE FF or FF
FE at the beginning of each file as the ‘Unicode Byte
Order Mark’. Formally, FEFF is the Unicode ‘zero
width nobreak space’ character, which can innocently
be inserted anywhere. Conversely FFEF is defined to
be illegal, so encountering this is a sign that bytes
should be interpreted little-endian. Of course this
plays havoc with files such as shell scripts which
expect to find #! at the beginning of the file.

3.3 UTF-8

UTF-8, standardized as RFC 3629, is an encoding
where the positions up to 127 are encoded ‘as such’;
higher numbers are encoded in groups of 2 to 6
bytes. (Tim Bray describes this as ‘kind of racist’ [3]:
the further east a language comes from, the more
overhead is involved in its encoding.) In a multi-
byte group, the first byte is in the range 0xC0–0xFD
(192–252). The next up to 5 bytes are in the range
0x80–0xBF (128–191, bit pattern starting with 10).

274 TUGboat, Volume 29 (2008), No. 2

U-00000000 - U-0000007F 7 bits 0xxxxxxx

U-00000080 - U-000007FF 11 = 5 + 6 110xxxxx 10xxxxxx

U-00000800 - U-0000FFFF 16 = 4 + 2 × 6 1110xxxx 10xxxxxx 10xxxxxx

U-00010000 - U-001FFFFF 21 = 3 + 3 × 6 11110xxx 10xxxxxx (3 times)
U-00200000 - U-03FFFFFF 26 = 2 + 4 × 6 111110xx 10xxxxxx (4 times)
U-04000000 - U-7FFFFFFF 31 = 1 + 5 × 6 1111110x 10xxxxxx (5 times)

Table 2: UTF-8 encoding blocks

Note that 8 = 1000 and B = 1011, so the highest
two bits are always 10, leaving six bits for encoding).
All bytes in a multi-byte sequence have their high
bit set. See table 2.

IETF documents such as RFC 2277 require sup-
port for this encoding in internet software. Readable
introductions can be found all over the Internet [19];
see also the history of UTF-8 in [20].

3.4 Unicode tidbits

3.4.1 Line breaking

The Unicode standard describes line breaking: it
has a mechanism for specifying tables of character
pairs between which line breaks are allowed or for-
bidden [15, 18].

3.4.2 Bi-directional writing

Most scripts are left-to-right, but Arabic and Hebrew
run right-to-left. Characters in a file are stored in
‘logical order’, and usually it is clear in which direc-
tion to render them, even if they are used mixed.
Letters have a ‘strong’ directionality: unless overrid-
den, they will be displayed in their natural direction.
The first letter of a paragraph with strong direction
determines the main direction of that paragraph [16].
See figure 1.

However, when differently directional texts are
embedded, some explicit help is needed. The problem
arises with letters that have only weak directionality.
The following is a sketch of a problematic case:

Memory: he said “I NEED WATER!”, and expired.
Display: he said “RETAW DEEN I!”, and expired.

If the exclamation mark is to be part of the Ara-
bic quotation, then the user can select the text ‘I
NEED WATER!’ and explicitly mark it as embedded
Arabic (<RLE> is Right-Left Embedding; <PDF> Pop
Directional Format), which produces the following
result:

Memory: he said “<RLE>I NEED WATER!<PDF>”,
and expired.
Display: he said “!RETAW DEEN I”, and ex-
pired.

A simpler method of doing this is to place a Right-To-
Left Mark <RLM> after the exclamation mark. Since
the exclamation mark is now not on a directional
boundary, this produces the correct result.

Memory: he said “I NEED WATER!<RLM>”,
and expired.
Display: he said “!RETAW DEEN I”, and ex-
pired.

3.5 Unicode and oriental languages

‘Han unification’ is the Unicode strategy of saving
space in the oriental languages (traditional Chinese,
simplified Chinese, Japanese, Korean: ‘CJK’) by
recognizing common characters. This idea is not
uncontroversial [6].

4 Further tidbits

4.1 A bootstrapping problem

In order to know how to interpret a file, you need to
know what character set it uses. This problem also
occurs in MIME mail encoding (section 4.5), which
can use many character sets. Names and numbers

Figure 1: Right-to-left Arabic text containing left-to-right numerals

TUGboat, Volume 29 (2008), No. 2 275

for character sets are standardized by IANA: the
Internet Assigned Numbers Authority [9]. However,
in what character set do you write this name down?

Fortunately, everyone agrees on (7-bit) ASCII,
so that is what is used. A name can be up to 40
characters from US-ASCII.

As an example, here is the IANA definition of
ASCII:

name ANSI_X3.4-1968

reference RFC 1345, KXS2
MIBenum 3

source ECMA registry
aliases iso-ir-6, ANSI_X3.4-1986,

ISO_646.irv:1991, ASCII,
ISO646-US, US-ASCII
(preferred MIME name), us,
IBM367, cp367, csASCII

The MIBenum (Management Information Base) is a
number assigned by IANA.1 The full list of character
sets can be found online [8], and RFC 3808 is a memo
that describes the IANA Charset MIB.

4.2 Unicode in programming languages

Before Unicode, a system called the ‘Double Byte
Character Set’ was invented to accommodate Asian
languages, where some characters were stored in one,
others in two bytes. This is very messy, since you
can not simply write s++ or s-- to traverse a string.
Instead you have to use functions from some library
that understands these encodings. While this system
is now only of historical interest, the string handling
problem is back in force with UTF-8.

Many modern languages (Python, C99) have
support for Unicode. In C99 (which is the new
standard for C) this is done through so-called ‘wide
characters’. For instance, L’x’ is a wide character
and L"xyz" is a string of wide characters. Such
strings can be manipulated through equivalents of
the normal string library. For instance, wcscpy acts
like strcpy but on wide strings. General Unicode
characters can be represented as \u0000 for 4-byte
and \U00000000 for up to 8-byte characters.

The two-byte UTF-16 encoding is popular with
programmers, since it can handle almost any prac-
tically encountered character without extensions to
longer byte sequences.

4.3 Character codes in HTML

HTML can access unusual characters in several ways:

• With a decimal numerical code: is a space
token. (HTML 4 supports hexadecimal codes.)

1 Apparently these numbers derive from the Printer MIB,
RFC 1759.

• With a vaguely symbolic name [12, 7]: © is
the copyright symbol, is a non-breaking
space, etc.

• The more interesting way is to use an encoding
such as UTF-8 (section 3.2) for the file. For this
it would be nice if the server could state that
the file is

Content-type: text/html;charset=utf-8

but it is also all right if the file starts with (end
with /> for XHTML):

<meta http-equiv="Content-Type"

content="text/html;charset=utf-8">

It is a requirement of user agents that they can
at least parse the charset parameter, which means
they have to understand US-ASCII.

Open this link in your browser, and addition-
ally view the source: http://www.unicode.org/

unicode/iuc10/x-utf8.html. How well does your
software deal with it?

4.4 Keyboards and control characters

Unprintable ASCII codes are accessible through the
control modifier key; for this reason they are also
called ‘control codes’ or control characters. The
control key, combined with a regular key, zeros bits
2 and 3 of the ASCII code of that key. For instance,
you can hit Ctrl-[to get Esc.

The way key presses generate characters is typ-
ically controlled in software. This mapping from
keyboard scan codes to 7 or 8-bit characters is called
a ‘keyboard’, and can be changed dynamically in
most operating systems.

Using the modifier keys, one can generate more
keystrokes than can be described in 8 bits, so key-
boards can send an ‘escape sequence’: one escape
character followed by one or more regular charac-
ters. The escape character is mostly ASCII NUL or
ESC [10].

4.5 Characters in email

The protocols for Internet mail are based on ‘7-bit
ASCII’, that is, the high bit in every byte transmitted
is supposed to be off. This is a problem for any
message that has text outside of ASCII, such as
when accented characters from the various ISO 8859
character sets are used. It also makes transmitting
binary data such as images impossible. For this
reason the ‘Multipurpose Internet Mail Extensions’
(MIME) were designed. MIME uses several encoding
schemes, such as base64 or quoted-printable, to turn
arbitrary data into 7-bit ASCII.

The email standard RFC 822 states that any-
thing outside 7-bit ASCII has to be encoded with

276 TUGboat, Volume 29 (2008), No. 2

uuencode. This means that the sender and recipient
need decoding program; it is decidedly overkill if a
message is plain ASCII apart from a few accented
characters.

The MIME protocol (RFC 2045 and 2046) inserts
headers in a mail message, stating for each message
section the content type and the encoding that is
used for that section of the message. These encodings
are also used for attachments, in which case the con-
tent type should give an indication what application
can handle the attachment after its decoding. ‘Help-
ful’ mail programs that automatically invoke such
applications have been a source of Trojans (malicious
software) in the past.

4.6 FTP

FTP is a very old ARPA protocol for transferring
files from one computer to another. It knows ‘binary’
and ‘text’ mode: in binary mode bytes are trans-
ferred without further interpretation, but the text
mode is concerned with files that contain lines of
text. Unfortunately, line ends are different between
operating systems, and their transfer in text mode
is not well defined. Some FTP programs adjust line
ends; others, such as Fetch on the Mac, actually do
code page translation.

5 Character issues in (LA)TEX

5.1 Diacritics

Before 1990, TEX was a 7-bit system: only characters
0–127 in the input could be recognized, and fonts
were also limited to 127 positions. This meant that
there was not enough space in fonts for letters with
accents, so accents (diacritics) were implemented as
things to put on top of characters, even when, as
with the cedilla, they are under the letter. This leads
to the problem that TEX could not hyphenate a word
with accents, since the accent introduces a space in
the word (technically: an explicit kern).

Both problems were remedied to a large extent
with the ‘Cork font encoding’, which contains most
common accented letters as single characters. This
means that accents are correctly placed by design,
and also that the word can be hyphenated, since the
kern has disappeared.

These fonts with accented characters became
possible when TEX version 3 came out around 1990.
This introduced full 8-bit compatibility, both on the
input side and in the font addressing.

5.2 LATEX input file access to fonts

If an input file for LATEX is allowed to contain all
8-bit octets, we get all the problems of compatibility

that plague regular text files. This is solved by the
package inputenc:

\usepackage[code]{inputenc}

where code is applemac, ansinew, utf8, or various
other code pages.

This package makes all unprintable ASCII char-
acters, plus the codes over 127, into active characters.
The definitions are then dynamically set depending
on the code page that is loaded.

5.3 LATEX output encoding

The inputenc package does not solve the whole prob-
lem of producing a certain font character from certain
keyboard input. It only maps a byte value to the
TEX command for producing a character. To map
such commands to an actual code point in a font file,
the TEX and LATEX formats contain lines such as

\chardef\i="10

declaring that the dotless-i is at position 16. However,
this position is a convention, and other people — type
manufacturers — may put it somewhere else.

This is handled by the ‘font encoding’ mech-
anism. The various people working on the LATEX
font schemes have devised a number of standard
font encodings. For instance, the OT1 encoding cor-
responds to the original 128-character set. The T1

encoding is a 256-character extension thereof, which
includes most accented characters for Latin alphabet
languages.

A font encoding is selected with

\usepackage[T1]{fontenc}

A font encoding definition contains lines such as

\DeclareTextSymbol{\AE}{OT1}{29}

\DeclareTextSymbol{\OE}{OT1}{30}

\DeclareTextSymbol{\O}{OT1}{31}

\DeclareTextSymbol{\ae}{OT1}{26}

\DeclareTextSymbol{\i}{OT1}{16}

5.4 TEX beyond 8 bits

The above LATEX packages allow flexible handling
of (8-bit) code pages, essentially the ISO 8859 stan-
dard. For handling of other alphabets, a number
of styles have been written over the years. How-
ever, their continued support is often uncertain. The
first project that aimed at use of Unicode throughout
TEX’s code base was Omega [13]; the modern TEX ex-
tensions X ETEX (http://scripts.sil.org/xetex)
and LuaTEX (http://luatex.org) also do so.

TUGboat, Volume 29 (2008), No. 2 277

References

[1] Annotated history of ASCII. http://www.wps.
com/projects/codes/index.html.

[2] Bob Bemer homepage. http://www.

trailing-edge.com/~bobbemer/.

[3] Tim Bray. Characters vs. bytes. http:

//www.tbray.org/ongoing/When/200x/2003/

04/26/UTF.

[4] Brief history of character codes in
North America, Europe, and East Asia.
http://tronweb.super-nova.co.jp/

characcodehist.html.

[5] Codepage & co. http://aspell.net/

charsets/codepages.html.

[6] Han unification. http://en.wikipedia.org/

wiki/Han_unification.

[7] Character entity references in HTML4.
http://www.w3.org/TR/html401/sgml/

entities.html.

[8] IANA character set names. http://www.iana.

org/assignments/character-sets.

[9] Internet Assigned Numbers Authority.
http://www.iana.org/.

[10] IBM PC keyboard scan codes. http:

//jimprice.com/jim-asc.shtml#keycodes.

[11] The ISO Latin 1 character repertoire.
http://www.cs.tut.fi/~jkorpela/latin1/

index.html.

[12] Character entities for ISO Latin 1. http:

//www.cs.tut.fi/~jkorpela/HTML3.2/

latin1.html.

[13] Omega project home page. http://omega.

enstb.org/.

[14] Unicode. http://www.fileformat.info/

info/unicode/index.htm.

[15] Unicode standard annex 14, line breaking
properties. http://www.unicode.org/

reports/tr14/.

[16] Unicode standard annex 9, the bidirectional
algorithm. http://www.unicode.org/

reports/tr9/.

[17] Unicode code chart and scripts. http:

//www.unicode.org/charts/.

[18] Unicode line breaking rules: explanations
and criticism. http://www.cs.tut.fi/

~jkorpela/unicode/linebr.html.

[19] UTF-8 and Unicode FAQ for Unix/Linux.
http://www.cl.cam.ac.uk/~mgk25/unicode.

html.

[20] UTF-8 history. http://www.cl.cam.ac.uk/

~mgk25/ucs/utf-8-history.txt.

⋄ Victor Eijkhout
University of Texas at Austin
victor (at) eijkhout dot net

278 TUGboat, Volume 29 (2008), No. 2

Fonts

lxfonts: LATEX slide fonts revived

Claudio Beccari

Abstract

The LATEX 2ε class slides used special fonts whose
readability was exceptional. However, despite being
part of the TEX system, they were not particularly
efficient where mathematics was concerned. Since
the time the LATEX3 Team abandoned slides, they
have almost disappeared.

This article describes the modifications and en-
hancements made to revive these historical fonts, and
explains the package making the new font version
usable with modern presentation classes, in order
to produce slides that were unthinkable during the
olden times of slides.

1 Some history

Once upon a time there was a program, SliTEX [4],
when the TEX interpreter’s version was 2.x. This was
the 1980s, almost the prehistory of TEX, certainly
LATEX’s infancy, when in order to typeset a document
in a language different from English it was necessary
to have suitable format files, since that old TEX could
handle only one hyphenation pattern set at a time.

With version 3.0 of TEX, the ability to type-
set in a variety of languages different from English
spread the TEX system, with its LATEX dialect, in
the old continent, and it became so important that
the Europeans set up the LATEX3 team. This new
team produced, in 1994, the new LATEX 2ε, and with
this SliTEX died for good, replaced by the standard
class slides [5].

Actually, other than using the same interpreter
and the same LATEX set of macros, with the slides

class things did not change very much. In the short
term, in 1999 the LATEX3 team gave up the mainte-
nance of the slides class; even if it still is a standard
LATEX class distributed with every new release of the
TEX system, the Team formally invited the users of
TEX to develop new classes to produce presentations
and slide shows. This warm invitation included the
strong suggestion that such new creations should be
made available to the whole TEX user community.

For these reasons, in the past several years we
have witnessed the proliferation of many systems,

Editor’s note: This is a translation of the article “I font per le
slide LATEX resuscitati”, which first appeared in ArsTEXnica is-
sue #4 (October 2007), pp. 82–87. Reprinted with permission.
Translation by the author.

packages and classes to produce excellent presenta-
tions, fully colored, with some animations, making
use of a large variety of outline fonts, particularly
well suited for use with modern video beamers.

In this article I describe the old fonts used by
SliTEX and by the slides class, with their pros and
cons. I further describe the modifications I have
introduced, and in particular how I produced their
PostScript versions, necessary in order to be used
with the modern classes and packages. I describe
the .sty file with which a complete substitution of
the CM/EC (Computer Modern/European Modern)
or LM (Latin Modern) families, together with the
American Mathematical Society’s fonts may be made
in order to produce nice presentations that use such
fonts and exploit their legibility. What I produced
may be considered an alpha-release; in order to be-
come a beta or a definitive release, some feedback
is required so as to repair the various glitches that
may possibly still be present (and certainly there are
many. . .).

2 The quotation fonts

The SliTEX fonts derive from the ones that Knuth
created for typesetting those witty quotations at the
end of every chapter of The TEXbook [2] and The

METAFONTbook [3].
They are sans serif fonts, formally designed at a

design size of 8 pt, but with a large x-height and short
ascenders and descenders. Anybody who handled
those books knows perfectly what we are talking
about, but here a specimen is replicated in order to
describe the successive modifications.

If you can’t solve a problem,

you can always look up the answer.

But please, try first to solve it by yourself;

then you’ll learn more and you’ll learn faster.

— DONALD E. KNUTH,The TEXbook (1983)

The elegance and style of this sans serif font is
immediately evident, simple and perfectly readable.
Although it is used at size 8 pt, its x-height appears
as large as that of the roman font of the main text.

Its drawback, though, is that the lower case ‘l’
and the upper case ‘I’ and, in math mode (not shown),
the ‘absolute value’ sign are indistinguishable. This
appealing font, well-suited for Knuth’s quotations, is
thus not suited for typesetting mathematics.

3 The slide fonts

This is why since the beginning of SliTEX, Leslie
Lamport created a new font for slides by modifying

TUGboat, Volume 29 (2008), No. 2 279

the quotation fonts, essentially by substituting the
upper case ‘i’ with a seriffed variant.

If you can’t solve a problem,

you can always look up the answer.

But please, try first to solve it by yourself;

then you’ll learn more and you’ll learn faster.

— DONALD E. KNUTH,The TEXbook (1983)

4 The new fonts for slides

As is clear from the previous example, this modified
capital ‘I’ solves part of the problem; there remains
the fact that the lower case ‘l’ may still be confused
with the mathematical sign for marking the absolute
value, or the norm, or this sort of mathematical
entity.

For this reason, the new fonts under discussion
here have been created with the lowercase ‘l’ drawn
with a hook at the bottom, similar to the foot of the
lower case ‘t’. The result is the following.

If you can’t solve a problem,

you can always look up the answer.

But please, try first to solve it by yourself;

then you’ll learn more and you’ll learn faster.

— DONALD E. KNUTH, The TEXbook (1983)

Of course this also implies the modification of
the metric files .tfm, and, more intrusive than any-
thing else, the correction of all the ligatures and kerns
where the lower case ‘l’ is involved. Having designed
these fonts for both the old OT1 and the T1 Latin en-
codings, this implied also the Polish l with its kerns,
and all the other signs where some sort of diacritic
mark is used with the base sign ‘l’. The revisions
involved both the normal and the slanted styles, as
well as both the medium and the bold weights. For
completeness, the same design parameters were used
for the Text Companion font in encoding TS1 in all
its versions, so that the new fonts could be paired
harmoniously.

5 Typesetting problems in mathematics

When typesetting mathematics new problems arise;
in the old SliTEX math expressions were typeset
with the normal CM math fonts; but this produced
undesirable effects even beyond the obvious stylistic
clash, because the operators font was substituted
by the upright version of the slide fonts, but all the
other signs were taken from the letters, symbols,
and large delimiters CM fonts. This produced a
bad rendering of those signs that were produced by
kerning a symbol from the operators font and another
symbol from the symbols font. For example, the
double long arrows are produced by joining an ‘equals
sign’ from the operators font and a ‘double arrow tip’

from the symbols font. It seems complicated, but it
suffices to observe the \Longrightarrow sign =⇒ to
understand the problem; the mathematical axes do
not match and the stroke thicknesses are different;
the final result is very unsatisfying.

For math mode typesetting it was thus neces-
sary to create math fonts that had the same design
parameters as the new slide fonts. This implied the
creation of the ‘letters’ font (essentially the math
italics, the Greek upper and lower case letters and
a good number of other symbols), the symbols font
(most operator symbols, the old style numbers and
the calligraphic letters), and the large delimiters and
display math operators font. This further work did
not consist simply of changing the design parameters
in the master METAFONT file, but also reviewing
each glyph in order to assure its adequacy to the
typesetting of (hopefully) beautiful mathematics, as
good as the CM math fonts do in normal text. Those
unsatisfying compound math signs, so frequent in
the definitions of math symbols, had to be checked
one by one, in order to assure the perfect match of
the new glyphs with one another.

6 Examples

Besides the last text example in section 4, I now show
some examples where different series and typesetting
modes are mixed.

6.1 The medium and the bold series

The preceding running title is typeset with

the bold series, while this text is composed

with the medium one.

Notice that the previous example, unlike the
one given in section 4, is typeset at size 10 pt, as is
this normal text (which is typeset with the standard
roman font of the CM collection). The larger x-height
induces one to think that the example is typeset with
a larger font, possibly size 12 pt.

6.2 The font sizes

The new font, like the old one, is designed at just
one size, and other sizes are obtained by shrinking or
enlarging this single size. Table 1 shows some sizes
and it’s evident that the smaller sizes are definitely
too thin, while the larger ones do not appear blacker
as the normal CM fonts do, with their multiple design
sizes.

But this is a deficiency that was already inherent
in the old slide font, and it also manifests itself
with the vast majority of the available Type 1 or
Open Type fonts when they are excessively shrunk
or magnified.

280 TUGboat, Volume 29 (2008), No. 2

Size Example

5 pt ABCD abcd

7 pt ABCD abcd

10 pt ABCD abcd

12 pt ABCD abcd

14 pt ABCD abcd

17 pt ABCD abcd
20 pt ABCD abcd
Table 1: The new font in different sizes

As things are, the first level sub- and super-
scripts are certainly readable, while the second level
ones may be a bit too thin. Nevertheless, some of
the examples shown below contain such second-order
subscripts, and one hardly notices they are so thin.

6.3 Comparison with the standard sans
serif CM font

It’s interesting to compare the normal sans serif font
selectable with the command \textsf, with the new
font drawn at the same optical size — see table 2. It’s
evident that the new font, in spite of being at the
same size, appears definitely larger than the normal
sans serif one.

OT1/cmss abcdefghijklmnopqrstuvwxyz

OT1/llcmss abcdefghijklmnopqrstuvwxyz

Table 2: The regular CM sans serif font compared
with the slide font

6.4 Some mathematics

It’s worth typesetting some simple math expression
as if we were preparing a slide: see figure 1. Probably
at first sight what strikes our attention is that the
exponents are a little lighter than expected, since
we are used to math expressions typeset with the
CM math fonts, where exponents are drawn from the
right optical size, not merely reduced versions of a
larger size. But this problem, as was already pointed
out, occurs with almost all outline fonts, except
those specific to the TEX system collections where
optical sizes are conveniently available, especially for
purposes of typesetting math.

Another point is that math italics are real italics,
not a slanted version of the upright font, as happens
with the default settings for some classes for slide pro-
duction and conference presentations. This happens
with both CM sans serif fonts and with Helvetica,
the two most common sans serif fonts for preparing

The second degree equation with con-
stant real coefficients:

ax2 + bx+ c = 0 (1)

has solutions

x1;2 =
`b˚

p

b2 ` 4ac

2a
(2)

with
8

>

>

<

>

>

:

x1;2 2 R se b2 ` 4ac > 0

x1 = x2 = `
b

2a
se b2 ` 4ac = 0

x1;2 2 C se b2 ` 4ac < 0

(3)

Figure 1: Some text and math

presentations.
Another point is evident: figure 1 contains sym-

bols, such as the blackboard bold capital letters, that
belong to the AMS math font collections. Yes, the
new slide font collection contains also the sans serif
version of the AMS fonts, redrawn with the same
graphic parameters used for the other fonts of this
collection.

The equations shown in figure 1 appear out of
their typical context of a slide show, since they are
intermixed with the rest of this article’s text, typeset
with the normal Computer Modern roman font. It is
better to examine a whole slide show displayed with
an actual projector in order to appreciate the beau-
tiful effect of these fonts maintaining the legibility
associated with the old SliTEX. To this end, the new
fonts’ distribution package contains a demo beamer
show contained in the file Slidesfonts-demo.pdf

where everything is typeset with these new fonts and
where some more information is given in addition to
what is provided here.

6.5 Some more math

Of course it is impossible to display here all the
available LATEX math symbols, AMS math included.
Nevertheless, in order to evaluate what you can get
with these new fonts when typesetting math, it’s
worthwhile to typeset some more expressions, for
example an expression where large operators appear;
see figure 2.

Notice that the expression in figure 2 contains
also the counterclockwise oriented circle, taken from
the redrawn AMS math font collection.

Another formula, figure 3, contains a triple in-
tegral, a typical construct obtainable with standard
amsmath commands, but here they directly access
the newly redrawn math symbols and operators. The

TUGboat, Volume 29 (2008), No. 2 281

The residues theorem states that if f(z) :
z; f 2 C is analytic in D except in a finite set

of singularities, then it is

!

Z
‚

f(z) dz = 2ıj

NsingX
k=1

Rk

where ‚ is a simply connected line total-

ly lying in D and Nsing is the number of

singularities contained within ‚.

Figure 2: Some more math

ZZZ
V

F (P) dx dy dz

Figure 3: Large operators

mixture of medium and bold math symbols is ob-
tained with the \boldsymbol command, but all the
symbols are taken from the new fonts.

More examples could be produced endlessly —
all constructs that can be typeset with LATEX and
its extension packages are compatible with the new
fonts.

7 Text symbols

Since the Text Companion font [7] has also been
redrawn with the graphic parameters of these fonts,
all symbols available with that Companion font are
accessible together with these slide fonts; some glyphs
are shown in figure 4.

č ţ W ě $ £ Ľ

Figure 4: A specimen of Text Companion symbols

Notice in particular the Euro symbol: in contrast
to the original Text Companion font, this glyph is
without serifs, according to the style of these new
slide fonts.

Obviously this font variety has the same shapes
and series of the main text font, that is upright
medium and bold, and slanted medium and bold; the
italic variant is missing as is customary with sans
serif fonts. In any case, with symbols the difference
between slanted and italics is rather uncertain.

8 The PostScript Type 1 implementation

All fonts described so far have been transformed
into PostScript Type 1 format by means of mftrace

[8]. This script provides for calling a number of
other programs in order to trace the contours of
bitmapped fonts produced with METAFONT, clean
up the results, and assemble the final .pfb font files.

In order to complete this transformation it is
necessary to use particular encoding vectors; for the
American Mathematical Society fonts such encod-
ing vectors were not distributed with TEX Live in
2007, so it was necessary to create them. They are
included in this font distribution package in the enc
subdirectory; although they should not be necessary
in normal use, now they are available.

9 Font installation

In order to use these fonts, it is necessary to install
them. If the bitmapped versions are sufficient, then
the .mf and the .tfm file should be copied to the
right folders and the file name database should be
updated.

Since the outline versions are available, there
is no reason to avoid their installation. It is a little
trickier than with the ordinary METAFONT version,
but the instructions are given in the documentation
contained in the distribution package. See also [6].

In fact, installation of the outline fonts is highly
recommended. Even if PDF viewers are improv-
ing, it’s still true that bitmapped fonts are not par-
ticularly suited for reading a document at various
magnifications: enlarged bitmapped fonts appear as
small tiles set close together, instead of fonts with
smooth contours. Moreover, bitmapped fonts should
be avoided when one uses programs, such as pdflatex,
that directly use outline fonts, for the very reason
described above. Presentations, which these fonts
were intended for, are of course typically produced
in PDF format.

10 The extension package for the fonts

Last and perhaps most important of all, it is nec-
essary to copy lxfonts.sty into a suitable folder
where LATEX can find it.

This file, lxfonts.sty, is the keystone of the
whole building, but it must be used with care. It
must be invoked by means of \usepackage after all
other font related packages have been loaded.

Some details:

• If no special font choices are made, the default
settings of lxfonts.sty is to choose the OT1

font encoding (not recommended when type-
setting in languages that use many diacritical
marks), and neither the Text Companion nor
the AMS fonts are loaded.

• If the T1 encoding is specified, then the pack-
age loads the T1 encoded fonts, which is recom-
mended when typesetting in most Latin-based
languages other than English.

• If the Text Companion font was invoked, then
lxfonts.sty loads the new substitution font,

282 TUGboat, Volume 29 (2008), No. 2

in the sense that all normal Text Companion
commands that access glyphs from the original
font, after this substitution, access the glyphs
from the new font.

• Finally, if the amsmath package was called for,
that is, if the AMS math symbols are required,
then the lxfonts.sty file takes care of substi-
tuting the original AMS fonts by the new ones.

There is no declaration to make in order to use
these new fonts; everything is needed is provided by
the new lxfonts.sty file. The curious ones who
want to dig into this file will find only family and
shape definitions that refer to just one size, 8 pt, that
is magnified or shrunk according to necessity during
the various typesetting stages. For this reason it is
particularly convenient to use the scalable outline
fonts; their installation might be a little tricky, but
it is worth the effort.

11 Suggestions

The simple examples shown in the previous sections
of this printed paper demonstrate the pros and cons
of these new fonts. In particular, they display the ex-
treme lightness of the smaller sizes, and this, perhaps,
is the primary drawback of these fonts.

But when you use them for producing presenta-
tions, for example with the beamer class, you get the
best out of them, because they appear to be partic-
ularly suited for presentations; after all, they were
originally conceived with this aim as part of the old
SliTEX system. And it is for this very reason that is
suggested to avoid using these fonts for anything but
presentations and, perhaps, for text to be printed at
very large sizes.

12 Conclusion

While building these fonts I had to correct a certain
number of glitches in the original METAFONT files
originally produced by the American Mathematical
Society. These glitches probably never showed up
because nobody (I suppose) needed to produce new
fonts with different graphical parameters while using
the same METAFONT programs. By experience I
know that more often than not the character pro-
grams are tweaked to the necessities of the graphic
parameters, and probably I did the same with the
AMS fonts. I do not want to blame at all the AMS

experts who designed the AMS fonts, because their

work is excellent and their fonts have been used for
decades now, to the complete satisfaction of every
user. I simply noticed that their METAFONT pro-
gramming was specific for the particular glyphs that
had to be produced.

The same holds true for the Text Companion
fonts, where I had to ‘correct’ only the Euro sign —
the original serifed one gave very strange results with
the new parameters.

I am sure that many other corrections are nec-
essary, but being the only user of these new fonts, I
have not been able to discover more. Therefore the
lxfonts package now available on CTAN [1] must be
considered an alpha version, though reliably usable.

Therefore I invite all interested readers to use
these new fonts, discover where they should be cor-
rected and give me feedback on their findings. As
with every piece of free and open source software,
these fonts get better when constructive criticism is
provided by the users, not to mention the software
contribution that competent users can offer.

References

[1] Beccari, Claudio. The lxfonts package.
http://ctan.org/get/fonts/lxfonts.

[2] Knuth, Donald E. The TEXbook. Addison
Wesley, Reading Mass., 1990.

[3] Knuth, Donald E. The METAFONTbook.
Addison Wesley, Reading Mass., 2000.

[4] Lamport, Leslie. LATEX: A Document

Preparation System. Addison Wesley, Reading
Mass., 1st edition, 1984.

[5] Lamport, Leslie. LATEX: A Document

Preparation System. Addison Wesley, Reading
Mass., 2nd edition, 1994.

[6] Philipp Lehman. The font installation
guide, 2004. http://ctan.org/get/info/

Type1fonts.

[7] Frank Mittelbach, Michel Goossens, et al. The

LATEX Companion. Addison Wesley, 2nd edition,
2004.

[8] Nienhuys, Han-Wen. mftrace — scalable fonts for
METAFONT. http://lilypond.org/download/
sources/mftrace/mftrace-1.2.14.tar.gz.

⋄ Claudio Beccari
claudio dot beccari at gmail dot com

TUGboat, Volume 29 (2008), No. 2 283

Reshaping Euler: A collaboration with Hermann Zapf

Hans Hagen, Taco Hoekwater, Volker RW Schaa

It is no secret that over the last few years Hermann Zapf has been reshaping some of his designs,
most notably Palatino and Optima. Some three years ago, when Volker and Hans were talking
to Hermann, they discovered he would like to improve the Euler fonts as well. These fonts were
developed a few decades ago using the technology of those days, in close cooperation between Don
Knuth and Hermann Zapf.

The glyphs were drawn on paper about 6cm height and these drawings were digitized using
pinpoints on paper with a raster. The resulting points were translated to METAFONT and some
additional math shapes were added afterwards. Later, when the fonts became popular with TEXies,
virtual fonts were created using Euler and AMS Math fonts.

The resulting bitmap fonts were fine for the bitmap-oriented TEX backends of those days. Later,
when bitmaps became outdated, the bitmaps became outlines, and the artifacts introduced in the
digitization became somewhat more prominent (especially when the fonts were scaled).

The reasons why Hermann wanted to reshape Euler were manifold. First, he wanted to improve
some details related to drawing with a broad pen. Then, the slope as well as the descenders of
some glyphs needed to be adapted. The strokes had to be made more consistent too. Finally, the
characters that were not Euler (but had been added afterwards) had to be redrawn: first the core
characters, later (in principle) all characters that TEXies use. This last effort is still on the agenda
and part of making Euler Unicode compliant.

When we met Hermann on a subsequent occasion, the topic of reshaping Euler came up again,
and we decided to go ahead with an active project. Taco was willing to join in and we decided to
improve the fonts by just editing the Type 1 fonts.

Because the project would take more than a year (at that time Hermann was still working at
Linotype on his other projects), we decided to make this redesign into a present for Don Knuth’s
70th birthday. At that point the old Euler was 25 years old.

The following graphics display some of the changes. Some are more prominent than others.
Even small corrections help improve the overall look and feel because they influence our perception
of black on white. (It may help to have a magnifier at hand.)

In figure 1 we take a first look at some of the reshaping. The gray area is the bounding box,
the white shape is the new font, the outline is the old one.

BBΣΣΓΓ
subtle corrections direction changes vertical strokes

Figure 1 New Euler Roman Medium (a)

In figure 2 we see more drastic changes: shortened strokes. The bounding box is kept unchanged
since we made it an initial goal for the new shapes to work well with the existing metric files; that

284 TUGboat, Volume 29 (2008), No. 2

way, New Euler would be a drop-in replacement for the existing fonts and could be used with no
fear of changing line breaks.

ννττ..
Figure 2 New Euler Roman Medium (b)

As with Palatino Nova and Optima Nova, Hermann did not hesitate to go even further than
this. Figure 3 demonstrates this clearly. A nice side effect of harmonizing the font is that we can
now use Euler for running text, although the text font is not yet released (due to too many holes
in the usual text encoding vectors).

ffgg
Figure 3 New Euler Roman Medium (c)

Some of the changes result directly from looking at the fonts in a larger size (see figure 4).
The redesign started by printing the outlines of the fonts at sizes up to 12cm but finally Hermann
decided to focus on the 6cm variant. The corrected outlines were mailed, faxed and/or presented
in person. Many such corrections concerned the way corners are cut off. In that respect some of
the original characters didn’t qualify as Euler at all, for instance < symbols, but by cutting some
corners and adapting the strokes they became eulerized.

MM<<
bend in corners wrong cut-offs

Figure 4 New Euler Roman Medium (d)

TUGboat, Volume 29 (2008), No. 2 285

When the discussions about reshaping started, the changes mostly concerned small corrections
and descenders, but once we had the proper work-cycle in place Hermann went a bit further. Of
course the descenders have been lowered too, as is demonstrated in Figure 5.

JJQQ
Figure 5 New Euler Roman Medium (e)

As usual, TEX math fonts have interesting ways of combining characters in fonts and so we have
old style digits in the Fraktur font. The elegance of New Euler is well demonstrated by these
numerals (see figure 6).

006688**
eufm: 0 eufm: 6 eufm: 8 eufm: star

Figure 6 New Euler Fraktur Medium

Most characters have been changed, some much more than others. In the symbol font, the
aleph now better matches the rest (it was rather fat) and the script L is less upright (see figure 7).

ℵℵLL
eusm: Aleph eusm: Script L

Figure 7 New Euler Symbol Medium

286 TUGboat, Volume 29 (2008), No. 2

As intended, New Euler is metric compatible with Old Euler, and of course the smaller sizes
and the bold variants have been adapted too. By the end of 2007 all the medium variants at
10pt were done, and Taco had to go into overdrive. We were quite lucky that he has mastered
FontForge so well (figure 8), and so we could start 2008 with a complete set of fonts.

normal bold

Figure 8 Editing Euler in FontForge

The fonts were presented to Don Knuth on January 10, 2008 on an eight-page leporello hand-made
by Willy Egger, with each page showing one of the aspects of the reshaping, all of which kept us
pretty busy during the holidays (figure 9).

Figure 9 Presenting New Euler

TUGboat, Volume 29 (2008), No. 2 287

Does the project end here? No, this is just the first stage. Hermann is willing to participate in
extending the Euler fonts with the Unicode math characters that make sense.

An important aspect of the project is to get the old fonts replaced by the new ones. We’re
happy that the AMS is considering acceptance of the new fonts as a formal substitute for the
existing ones. And of course, the TEX distribution wizard Karl Berry will take care of getting the
fonts in the right places and rooting out traces of old ones, when the time comes.

For quite some time Don Knuth has been asking users to get rid of the old Computer Modern
delta, so in closing let’s quote him from his web site on behalf of Hermann:

If you see that your system produces the symbol δ instead of δ for the Greek

lowercase delta, you should tell your system administrator immediately to upgrade

your obsolete version of the Euler fonts.

And don’t tell us that you don’t see the difference. And, as you may expect, this quote was typeset
in Euler Text.

⋄ Hans Hagen, Taco Hoekwater, Volker RW Schaa

288 TUGboat, Volume 29 (2008), No. 2

Software & Tools

Asymptote: A vector graphics language

John C. Bowman and Andy Hammerlindl

Abstract

Asymptote is a powerful descriptive vector graph-
ics language inspired by METAPOST that features
robust floating-point numerics, automatic picture siz-
ing, native three-dimensional graphics, and a C++/
Java-like syntax enhanced with high-order functions.

1 Motivation

The descriptive vector graphics language Asymptote1

was developed to provide a standard for drawing
mathematical figures, just as TEX and LATEX have
become the standard for typesetting equations in the
mathematics, physics, and computer science commu-
nities. Asymptote has been aptly described as “the
ruler and compass of typesetting” [1]. For profes-
sional quality and portability, Asymptote natively
produces PostScript or PDF output. Graphics la-
bels are typeset directly by TEX to achieve overall
document consistency: identical fonts and equations
should be used in graphics and text portions of a
document.

In this article we first highlight Asymptote’s ba-
sic graphics capabilities with an example and then
proceed to review the origins and distinguishing fea-
tures of this powerful vector graphics language. Fur-
ther examples of Asymptote diagrams, graphs, and
animations are available in the Asymptote gallery
and user-written wiki:
http://asymptote.sourceforge.net/gallery/

http://asymptote.sourceforge.net/links.html

2 An example

The following example illustrates the four Asymptote
graphics primitives (draw, fill, clip, and label):

size(0,100);

pair z1=(-1,0);

pair z2=(1,0);

real r=1.5;

path c1=circle(z1,r);

path c2=circle(z2,r);

fill(c1,lightred);

fill(c2,lightgreen);

1 Andy Hammerlindl, John Bowman, and Tom Prince,
available under the GNU General Public License from
http://asymptote.sourceforge.net/

picture intersection;

fill(intersection,c1,lightred+lightgreen);

clip(intersection,c2);

add(intersection);

draw(c1);

draw(c2);

label("A",z1);

label("B",z2);

path g=(0,-2)--(0,-0.25);

draw(Label("$A\cap B$",0),g,Arrow);

A B

A ∩ B

3 History

Asymptote began as a University of Alberta sum-
mer undergraduate research project in 2002, after
looking into the feasibility of overhauling Hobby’s
METAPOST

2 to use floating-point numerics. Many
of the current limitations of METAPOST derive from
METAFONT: numbers are stored in a low-precision
fixed-point format that is adequate for representing
points in a glyph but restrictive for diagrams and sci-
entific computations. While the IEEE floating-point
numeric format was not standardized until 1985,
the initial development of TEX dates back to 1978.
At that time, the decision to use only fixed-point
(integer-based) arithmetic was perfectly reasonable:
Knuth wanted to guarantee that TEX and META-
FONT would produce exactly the same bit-mapped
output on any existing hardware.

We quickly determined that a complete rewrite
of the underlying graphics engine would be necessary.
After six months of work, our compiler for a new
graphics language could finally draw a sine curve.
One of the four Asymptote primitives had now been
implemented!

From this very humble beginning, Asymptote
evolved rapidly. The basic fill operation was straight-
forward to implement. The most crucial advance,

2
METAPOST is a modified version of METAFONT, the

program that Knuth wrote to produce the Computer Modern
fonts used with TEX.

TUGboat, Volume 29 (2008), No. 2 289

aligning TEX labels at the correct positions, was ac-
complished three months later, using compass direc-
tions or arbitrary angles to specify label alignments:

size(0,2cm);

draw((0,0)--(1,0)--(1,1)--(0,1)--cycle);

label("A",(0,0),SW);

label("B",(1,0),SE);

label("C",(1,1),NE);

label("D",(0,1),NW);

A B

CD

The idea was to leave the entire label type-
setting to LATEX, inserting PostScript layers with
\includegraphics, and thereby avoid the complica-
tions and kerning issues inherent in the METAPOST

approach of post-processing the DVI file. To accom-
plish this, Asymptote communicates with TEX via

a bidirectional pipe in two passes: the first pass is
used to obtain label sizing information, while the
second pass performs the final typesetting directly
into DVI/PostScript or PDF. Label clipping and
transforms are implemented with PostScript or PDF

specials.
A third co-developer, Tom Prince, joined us

in 2004. He contributed a method for embedding
Asymptote code directly in LATEX source files. With
Tom’s help, we ported more reliable versions of the
METAPOST algorithms for basic Bézier path oper-
ations such as splitting into subpaths, computing
points of tangency, determining path bounds, and
finding intersection points. Robust arc length and
arc time computations were implemented with adap-
tive Simpson integration, which was determined to
be more efficient than Bézier subdivision.

On November 7, 2004, we posted our first pub-
lic release, version 0.51, on sourceforge.net. Since
then, the user base and the list of new features have
grown dramatically. The current version at the time
of this writing is 1.42. Like METAPOST, Asymptote
runs on GNU/Linux and other UNIX-like operating
systems, Microsoft Windows, and Mac OS X. Pre-
compiled Asymptote binaries are now included in
several major Linux distributions.

4 Language features

Asymptote uses lexical analysis, parsing, and inter-
mediate code generation to compile commands into
virtual machine code, optimizing speed without sac-
rificing portability. Double-precision floating-point
numbers and 64-bit integers make arithmetic over-

flow, underflow, and loss of precision issues much
less troublesome than they are in METAPOST pro-
grams. Asymptote represents curves as cubic Bézier
splines, but can easily handle large data values and
the pathological behaviour of functions like x sin(1/x)
near the origin. It also supports new path operations
like computing the winding number of a path relative
to a given point, which is useful for identifying the
region bounded by a closed path.

Most users find the Asymptote language much
easier to program in, with its C++/Java-like syn-
tax (augmented to support high-order functions),
than METAPOST, with its awkward and somewhat
confusing vardef macros. Asymptote also borrows
several ideas from Python, such as named function
arguments and array slices. High-level graphics com-
mands are implemented in the Asymptote language
itself, allowing them to be easily tailored to specific
user applications.

Like METAPOST, Asymptote is mathematically
oriented. For example, one can rotate vectors by
complex multiplication and apply affine transforma-
tions (shifts, rotations, reflections, and scalings) to
pairs, triples, paths, pens, strings, pictures, and other
transforms.

4.1 Functions

Asymptote is the only language we know of that
treats functions as variables, but allows overloading
by distinguishing variables based on their signatures.
In fact, function definitions are just syntactic sugar
for assigning function objects to variables:

real square(real x) {return x^2;}

is equivalent to

real square(real x);

square=new real(real x) {return x^2;};

Asymptote supports a more flexible mechanism
for default function arguments than C++: they may
appear anywhere in the function prototype. This
feature underlies Asymptote’s greatest strength: sen-
sible default values for the basic graphical elements
allow beautiful graphs and drawings to be created
with extremely short scripts, without sacrificing the
flexibility for detailed customization. Default argu-
ments are evaluated as Asymptote expressions in the
scope where the function is defined.

Because certain data types are implicitly cast
to more sophisticated types, one can often avoid
ambiguities in function calls by ordering function
arguments from the simplest to the most complicated.
For example, given

real f(int a=1, real b=0) {return a+b;}

290 TUGboat, Volume 29 (2008), No. 2

the call f(1) returns 1.0, but f(1.0) returns 2.0.
It is sometimes difficult to remember the order in
which arguments appear in a function declaration.
Python-style named (keyword) arguments make call-
ing functions with multiple arguments easier: the
above examples could respectively be written f(a=1)

and f(b=1). An assignment of a function argument
is interpreted as an assignment to a parameter of
the same name in the function signature, not in the
local scope of the calling routine.

Rest arguments allow one to write functions that
take a variable number of arguments. For example,
the following function sums its arguments:

real sum(... real[] nums) {

real total=0;

for(real x : nums)

total += x;

return total;

}

As in other modern languages, functions can call
themselves recursively. Operators, including all of
Asymptote’s built-in arithmetic and path operations,
are just syntactic sugar for functions that can be
addressed and defined with the operator keyword.

Asymptote functions are first-class values, al-
lowing them to be defined within, passed to, and
returned by other functions. This is convenient when
one wants to graph a sequence of functions such as
fn(x) = n sin(x/n) for n = 1 to 5 from x = −10 to
10:

import graph;

typedef real function(real);

function f(int n) {

real fn(real x) {

return n*sin(x/n);

}

return fn;

}

for(int n=1; n <= 5; ++n)

draw(graph(f(n),-10,10));

Anonymous functions can be created with the key-
word new, so that the function definition in the pre-
vious example could be simplified to

function f(int n) {

return new real(real x) {

return n*sin(x/n);

};

}

5 Modules

Function and structure definitions can be grouped
into modules:

// powers.asy

real square(real x) {return x^2;}

real cube(real x) {return x^3;}

and imported:

import powers;

path square(real x) {

return scale(x)*unitsquare;

}

real four=powers.square(2.0);

real eight=cube(2.0);

For example, Asymptote ships with modules for
Feynman diagrams:

k′

k

q

p′

p

e−

e+

µ+

µ−

data structures,

5

4 0

2

6 7

3

1

and algebraic knot theory:

0 1 2

Modules are written in high-level Asymptote code.
Users have contributed modules tailored to many
other specialized applications (such as flowcharts
and computer-aided design).

TUGboat, Volume 29 (2008), No. 2 291

6 Graphics features

METAPOST does not support many important fea-
tures of PostScript. For example, only connected
PostScript subpaths are supported. Regions must
be simply connected (have no holes) and can only
be filled with uniform RGB colours. In addition to
native support for three-dimensional graphics, also
lacking in METAPOST, these missing features have
been implemented in Asymptote.

6.1 Pens

Pens provide a context for the four primitive drawing
commands: they specify attributes such as color, line
type, line width, text alignment, font, font size, fill
rule, and filling patterns. For non-solid line types,
dash lengths are by default slightly adjusted to fit the
path arc length (for example, to allow publication
quality legend entries in graphs with multiple line
types). Interesting calligraphic effects are possible by
applying transforms to the (normally circular) pen
nib or even using a polygonal pen nib (which need
not be convex):

The default pen, called currentpen, provides the
same functionality as the METAPOST pickup com-
mand. Colors can be specified in any one of the
PostScript colorspaces: grayscale, RGB, and CMYK.

6.2 Subpaths

An Asymptote path, being connected, is equivalent to
a PostScript subpath. The binary operator ^^, which
requests that the pen be moved (without drawing or
affecting endpoint curvatures) from the final point
of the left-hand path to the initial point of the right-
hand path, may be used to group several Asymptote
connected paths into a path[] array (equivalent to
a PostScript path). While this facility is merely
convenient for drawing an object like the skeleton of
a cube (without retracing), it is essential for filling
nonsimply-connected regions:

path g=scale(2)*unitcircle;

filldraw(unitcircle^^g, evenodd+yellow, black);

The PostScript even-odd fill rule here specifies that
only the region bounded between the two unit circles

is to be filled. In this example, the same effect can be
achieved by using the default zero winding number
fill rule, if one is careful to alternate the orientation
of the paths:

filldraw(unitcircle^^reverse(g), yellow,

black);

6.3 Patterns

One can also construct custom pictures to be used as
tiling patterns for fill or draw operations. The tiling
pattern can be assigned a name that can subsequently
be used to construct a patterned pen. For example,
a hatch pattern can be generated like this:

import patterns;

add("hatch",hatch());

filldraw(unitcircle,pattern("hatch"));

6.4 Shading

Asymptote supports axial and radial gradient shad-
ing, lattice shading, Gouraud shading, and shading of
Coons and tensor product patches; the latter forms
are essential for three-dimensional rendering in the
presence of a light source. Asymptote also supports
a true unfill operation implemented with clipping
(the METAPOST unfill command simply fills with a
fixed background color).

6.5 Automatic picture sizing

A frame is a canvas for drawing in PostScript coordi-
nates, much like a picture in METAPOST. However,
working directly in PostScript coordinates is often
inconvenient, requiring the tedious introduction of
manual scaling factors.

Pictures are high-level structures that provide
canvases for drawing in a user-specified Cartesian
coordinate system. Automatic sizing allows pictures
to be constructed in user coordinates and then auto-
matically scaled to the desired final size:

x

y

(a, 0) (2a, 0)

size(0,50);

x

y

(a, 0) (2a, 0)

size(0,100);

292 TUGboat, Volume 29 (2008), No. 2

Eventually, one must fit a picture to a Post-
Script frame. This requires deferred drawing: a
graphical object cannot be drawn until the actual
scaling of the user coordinates (in terms of Post-
Script coordinates) is known. One needs to queue
a function that can draw the scaled object later,
when this scaling is known. For example, the draw

function for pictures in scalable user coordinates is
implemented in terms of the underlying PostScript-
coordinate draw primitive for frames like this:

void draw(picture pic=currentpicture,

path g, pen p=currentpen) {

pic.add(new void(frame f, transform t) {

draw(f,t*g,p);

});

pic.addPoint(min(g),min(p));

pic.addPoint(max(g),max(p));

}

Here, the addPoint function stores bounding box
information as user (e.g. path) coordinates, which
scale linearly with the picture size, and true-size (e.g.
pen) coordinates, which remain fixed.

The sizing constraints that arise between scal-
able objects and fixed-sized attributes (typically la-
bels, dots, linewidths, and arrowheads) reduce to a
linear programming problem that is solved by the sim-
plex method. However, a figure can easily produce
thousands of restrictions, making direct application
of the simplex method time consuming. In practice,
most of these restrictions are redundant: in the case
of concentric circles, only the largest circle needs to
be accounted for. When sizing a picture, Asymptote
first determines which coordinates are maximal (or
minimal) and sends only active constraints to the
simplex algorithm. The entire picture-sizing algo-
rithm, including the simplex method, is implemented
in high-level Asymptote code.

This example illustrates how deferred drawing
can be used to draw paths around text labels and
then connect them (an object is a unifying structure
that a label or frame can be implicitly cast to):

size(0,100);

pair A=(0,1);

pair B=(0,0);

object small=draw("small",box,A,1mm);

object big=draw("\huge BIG",ellipse,B,1mm);

add(new void(frame f, transform t) {

draw(f,point(small,SW,t){SW}

..{SW}point(big,NE,t));

});

small

BIG

6.6 Three-dimensional graphics

We now describe our three-dimensional generaliza-
tion of Hobby’s prescription for drawing an aesthet-
ically pleasing, numerically efficient, interpolating
spline through a set of nodes, given optional tangent
directions and endpoint curvatures [2, 3]. This gener-
alization is shape invariant under three-dimensional
rotation, scaling, and translation. In the planar case,
it reduces to the two-dimensional algorithms found
in METAFONT, METAPOST, and Asymptote.

In two dimensions, a tridiagonal system of linear
equations is first solved to determine any unspecified
directions θk and φk through each node zk:

θk−1 − 2φk

ℓk

=
φk+1 − 2θk

ℓk+1

.

ℓk

ℓk+1

θk

φk

zk−1

zk

zk+1

The resulting shape may be adjusted by modifying
the default tension parameters and curl boundary
conditions (cf. [3]).

Having prescribed outgoing and incoming path
directions eiθ at node z0 and eiφ at node z1 relative
to the vector z1 − z0, any unspecified control points
are then determined by the equations

u = z0 + eiθ(z1 − z0)f(θ,−φ),

v = z1 − eiφ(z1 − z0)f(−φ, θ),

where the relative distance function f(θ, φ) is given
in [2] and [3].

In three dimensions, it is natural to require that
our generalization reduce in the planar case to the
usual two-dimensional algorithm. Therefore, any
unknown incoming or outgoing tangent directions
are first determined by applying Hobby’s direction

TUGboat, Volume 29 (2008), No. 2 293

algorithm in successive planes containing the three
points zk−1, zk, and zk+1. The only ambiguity that
can arise is in the overall sign of the angles, which
relates to viewing each local two-dimensional plane
from opposing normal directions. A reference vector
constructed from the mean unit normal of successive
segments is used to resolve such ambiguities.

A formula for the three-dimensional control
points u and v follows on expressing Hobby’s algo-
rithm in terms of the absolute incoming and outgoing
unit direction vectors ω0 and ω1, respectively:

u = z0 + ω0 |z1 − z0| f(θ,−φ),

v = z1 − ω1 |z1 − z0| f(−φ, θ),

ω0

ω1

θ

φ

z0

z1

where we interpret θ and φ as the angle between the
corresponding path direction vector and z1 − z0. In
this case there is an unambiguous reference vector for
determining the relative sign of the angles θ and φ.

Unfortunately, PostScript and PDF support only
Bézier splines, which are shape invariant under affine
(orthographic) projections (parallel lines being pro-
jected to parallel lines), but not perspective projec-
tions. In any dimension, applying an affine trans-
formation x′

i = Aijxj + Ci to a cubic Bézier curve

x(t) =
∑3

k=0
Bk(t)Pk for t ∈ [0, 1], where Bk(t) is

the kth cubic Bernstein polynomial yields the Bézier
curve

x′
i(t) =

3
∑

k=0

Bk(t)Aij(Pk)j + Ci =

3
∑

k=0

Bk(t)P ′
k

in terms of the transformed kth control points P ′
k,

noting that
∑3

k=0
Bk(t) = 1. Thus, for orthographic

projections, both the nodes and control points of
three-dimensional Bézier curves can simply be pro-
jected to obtain their two-dimensional counterparts.

Non-uniform rational B-splines have the advan-
tage of being invariant even in the presence of per-
spective distortion, since they are Bézier curves in
the projective space described by homogeneous coor-

dinates, where (x, y, z, w) is considered as equivalent
to (x

w
, y

w
, z

w
, 1). For example, the Asymptote syntax

(1,0,0)..(0,1,1)..(-1,0,0)..(0,-1,1)..cycle

describes a saddle-like path in three dimensions. The
result of simply projecting the nodes and control
points of this three-dimensional Bézier curve to a
two dimensional Bézier curve is indicated by the
dashed path in the following perspective projection.
The true projection, described by the two-dimension-
al nonuniform rational B-spline represented by the
solid curve, can be efficiently approximated as a two-
dimensional Bézier curve by introducing additional
nodes and control points. An algorithm for doing this
efficiently will be presented in a future publication.

The three-dimensional graph of the sinc function
below illustrates Gouraud shading, advanced contour
path computations, and PDF transparency:

−2 −1 0 1 2x −
2

2

y

0

0.5

1

z

6.7 Scientific graphs

Asymptote ships with a sophisticated graph module
that quickly allows one to draw publication-quality
scientific and textbook-style graphs, such as the two-
dimensional polar coordinate graph of the cardioid
shown in Section 6.5 and the three-dimensional sur-
face plot shown in Section 6.6. It supports features
such as legends, custom graph markers, secondary
axes, custom (e.g. base 2) axes scalings, broken axes,
and custom tick label formats and locations.

7 Graphical user interface

Recent versions of Asymptote include an innovative
graphical user interface, written in Python/TK, that
allows one to modify existing graphical objects and

294 TUGboat, Volume 29 (2008), No. 2

draw new ones. The modified figure can then be
saved and processed as a normal Asymptote file.
This allows the user to exploit the best features of
the script (command-driven) and graphical-interface
methods for producing figures.

8 Slide presentations

Asymptote also includes a convenient slide module
for preparing slide presentations, including embedded
clickable high-resolution PDF movies (with optional
control panels). This module has the advantage over
existing LATEX presentation packages of providing
built-in graphics support, including object alignment,
in addition to the full power of TEX.

9 Animations

While Asymptote can create MPEG and animated
GIF movies, the lossless inline PDF movies it can
generate with the help of the LATEX animate.sty

package are of a much higher quality. Sample anima-
tions can be found in the Asymptote gallery.

10 Equation solving

Unlike METAFONT and METAPOST, Asymptote is
not built on top of an implicit linear equation solver
and therefore does not automatically have the no-
tion of a whatever unknown. Although such an
implicit equation facility could certainly be added
(perhaps using the notation ?= since = denotes as-
signment in Asymptote), we have noticed that the
most common uses of whatever in METAPOST are
covered by explicit functions like extension in the
math module (which returns the intersection point
of the extensions of two line segments). We find the
use of routines like extension to be more explicit
and less confusing, particularly to new users. But we
could be persuaded to add implicit equation solving
if someone can justify the need (so far no one has
provided us with an example that cannot already
be done elegantly in Asymptote). In the meantime,
one can always use the explicit built-in linear solver
solve (based on LU decomposition) or one of the
numerically robust specialized solvers tridiagonal,
quadraticroots, cubicroots, and quarticroots.

11 Future plans

Thanks to the LATEX movie15 package, Asymptote
can embed three-dimensional U3D files into PDF

files. In the near future, we plan to generate U3D

data (or possibly the more advanced PRC format)
directly from Asymptote’s internal three-dimensional
representations. This will provide the scientific com-
munity with a self-contained and powerful facility for
generating interactive three-dimensional PDF files.

12 Credits

Financial support for the development of Asymptote
was generously provided by the Natural Sciences
and Engineering Research Council of Canada, the
Pacific Institute for Mathematical Sciences, and the
University of Alberta Faculty of Science.

We would like to acknowledge enthusiastically
the previous work of John D. Hobby, which inspired
the development of Asymptote, and Donald E. Knuth,
for his exceptionally high quality TEX typesetting sys-
tem, without which none of these later developments
would have been possible. We also thank L. Nobre
and Troy Henderson for suggesting techniques for
approximating nonuniform rational B-splines.

The authors of Asymptote are Andy Hammer-
lindl, John Bowman, and Tom Prince. Sean Healy
designed the Asymptote logo (below). Other con-
tributors include Radoslav Marinov, Orest Shardt,
Chris Savage, Philippe Ivaldi, Olivier Guibé, Jacques
Pienaar, Mark Henning, Steve Melenchuk, Martin
Wiebusch, and Stefan Knorr.

symptotesymptotesymptotesymptotesymptotesymptotesymptotesymptotesymptotesymptotesymptote

References

[1] The Art of Problem Solving: Asymptote
(Vector Graphics Language). Available online at
http://www.artofproblemsolving.com, 2007.

[2] John D. Hobby. Smooth, easy to compute
interpolating splines. Discrete Comput. Geom.,
1:123–140, 1986.

[3] Donald E. Knuth. The METAFONTbook.
Addison-Wesley, Reading, Massachusetts, 1986.

⋄ John C. Bowman
Dept. of Mathematical and Statistical Sciences
University of Alberta
Edmonton, Alberta
Canada T6G 2G1
bowman (at) math dot ualberta dot ca

http://www.math.ualberta.ca/~bowman/

⋄ Andy Hammerlindl
University of Toronto
Dept. of Mathematics
Toronto, Ontario
Canada M5S 2E4
andy (at) math dot toronto dot edu

TUGboat, Volume 29 (2008), No. 2 295

The Luafication of TEX and ConTEXt

Hans Hagen

1 Introduction

Here I will present the current stage of LuaTEX
around beta stage 2, and discuss the impact so far
on ConTEXt MkIV that we use as our testbed. I’m
writing this at the end of February 2008 as part of
the series of regular updates on LuaTEX. As such,
this report is part of our more or less standard test
document (mk.tex). More technical details can be
found in the reference manual that comes with Lua-
TEX. More information on MkIV is available in the
ConTEXt mailing lists, Wiki, and mk.pdf.

For those who never heard of LuaTEX: this is
a new variant of TEX where several long pending
wishes are fulfilled:

• combine the best of all TEX engines
• add scripting capabilities
• open up the internals to the scripting engine
• enhance font support to OpenType
• move on to Unicode
• integrate MetaPost

There are a few more wishes, like converting the
code base to C code but these are long term goals.

The project started a few years ago and is
conducted by Taco Hoekwater (Pascal and C code
coding, code base management, reference manual),
Hartmut Henkel (PDF backend, experimental fea-
tures) and Hans Hagen (general overview, Lua and
TEX coding, website). The code development got a
boost by a grant of the Oriental TEX project (project
lead: Idris Samawi Hamid) and funding via the TEX
Users Group. The related MPlib project by the same
team is also sponsored by several user groups. The
very much needed OpenType fonts are also a user
group funded effort: the Latin Modern and TEX
Gyre projects (project leads: Jerzy Ludwichowski,
Volker RW Schaa and Hans Hagen), with develop-
ment (the real work) by: Bogus law Jackowski and
Janusz Nowacki.

One of our leading principles is that we focus
on opening up. This means that we don’t implement
solutions (which also saves us many unpleasant and
everlasting discussions). Implementing solutions is
up to the user, or more precisely: the macro package
writer, and since there are many solutions possible,
each can do it his or her way. In that sense we follow
the footsteps of Don Knuth: we make an extensible
tool, you are free to like it or not, you can take it
and extend it where needed, and there is no need to
bother us (unless of course you find bugs or weird
side effects). So far this has worked out quite well

and we’re confident that we can keep our schedule.
We do our tests of a variant of ConTEXt tagged

MkIV, especially meant for LuaTEX, but LuaTEX
itself is in no way limited to or tuned for ConTEXt.
Large chunks of the code written for MkIV are rather
generic and may eventually be packaged as a base
system (especially font handling) so that one can
use LuaTEX in rather plain mode. To a large extent
MkIV will be functionally compatible with MkII, the
version meant for traditional TEX, although it knows
how to profit from X ETEX. Of course the expectation
is that certain things can be done better in MkIV

than in MkII.

2 Status

By the end of 2007 the second major beta release of
LuaTEX was published. In the first quarter of 2008
Taco would concentrate on MPlib, Hartmut would
come up with the first version of the image library
while I could continue working on MkIV and start
using LuaTEX in real projects. Of course there is
some risk involved in that, but since we have a rather
close loop for critical bug fixes, and because I know
how to avoid some dark corners, the risk was worth
taking.

What did we accomplish so far? I can best de-
scribe this in relation to how ConTEXt MkIV evolved
and will evolve. Before we do this, it makes sense
to spend some words on why we started working on
MkIV in the first place.

When the LuaTEX project started, ConTEXt
was about 10 years in the field. I can safely say that
we were still surprised by the fact that what at first
sight seems unsolvable in TEX somehow could always
be dealt with. However, some of the solutions were
rather tricky. The code evolved towards a more or
less stable state, but sometimes depended on con-
trolled processing. Take for instance backgrounds
that can span pages and columns, can be nested and
can have arbitrary shapes. This feature has been
present in ConTEXt for quite a while, but it involves
an interplay between TEX and MetaPost. It depends
on information collected in a previous run as well as
(at runtime or not) processing of graphics.

This means that by now ConTEXt is not just
a bunch of TEX macros, but also closely related to
MetaPost. It also means that processing itself is
by now rather controlled by a wrapper, in the case
of MkII called texexec. It may sound complicated,
but the fact that we have implemented workflows
that run unattended for many years and involve
pretty complex layouts and graphic manipulations
demonstrates that in practice it’s not as bad as it
may sound.

296 TUGboat, Volume 29 (2008), No. 2

With the arrival of LuaTEX we not only have a
rigourously updated TEX engine, but also get Meta-
Post integrated. Even better, the scripting language
Lua is not only used for opening up TEX, but is also
used for all kind of management tasks. As a result,
the development of MkIV not only concerns rewriting
whole chunks of ConTEXt, but also results in a set
of new utilities and a rewrite of existing ones. Since
dealing with MkIV will demand some changes in the
way users deal with ConTEXt I will discuss some of
them first. It also demonstrates that LuaTEX is more
than just TEX.

3 Utilities

There are two main scripts: luatools and mtxrun.
The first one started as a replacement for kpsewhich
but evolved into a base tool for generating (TDS)
file databases and generating formats. In MkIV we
replace the regular file searching, and therefore we
use a different database model. That’s the easy part.
More tricky is that we need to bootstrap MkIV into
this alternative mode and when doing so we don’t
want to use the kpse library because that would
trigger loading of its databases. To discuss the gory
details here might cause users to refrain from using
LuaTEX so we stick to a general description.

• When generating a format, we also generate a
bootstrap Lua file. This file is compiled to byte-
code and is put alongside the format file. The
libraries of this bootstrap file are also embedded
in the format.

• When we process a document, we instruct Lua-
TEX to load this bootstrap file before loading
the format. After the format is loaded, we re-
initialize the embedded libraries. This is needed
because at that point more information may be
available than at loading time. For instance,
some functionality is available only after the
format is loaded and LuaTEX enters the TEX
state.

• File databases, formats, bootstrap files, and
runtime-generated cached data is kept in a TDS

tree specific cache directory. For instance, Open-
Type font tables are stored on disk so that next
time loading them is faster.

Starting LuaTEX and MkIV is done by luatools.
This tool is generic enough to handle other formats
as well, like mptopdf or plain. When you run this
script without argument, you will see this:

version 1.1.1 - 2006+ - PRAGMA ADE / CONTEXT

--generate generate file database

--variables show configuration variables

--expansions show expanded variables

--configurations show configuration order

--expand-braces expand complex variable

--expand-path expand variable

(resolve paths)

--expand-var expand variable

(resolve references)

--show-path show path expansion of ...

--var-value report value of variable

--find-file report file location

--find-path report path of file

--make or --ini make luatex format

--run or --fmt= run luatex format

--luafile=str lua inifile

(default is <progname>.lua)

--lualibs=list optional libraries to assemble

--compile assemble & compile lua inifile

--verbose give a bit more info

--minimize optimize lists for format

--all show all found files

--sort sort cached data

--engine=str target engine

--progname=str format or backend

--pattern=str filter variables

--lsr use lsr and cnf directly

For the Lua based file searching, luatools can be
seen as a replacement for mktexlsr and kpsewhich

and as such it also recognizes some of the kpsewhich
flags. The script is self-contained in the sense that all
needed libraries are embedded. As a result no library
paths need to be set and packaged. Of course the
script has to be run using LuaTEX itself. The follow-
ing commands generate the file databases, generate
a ConTEXt MkIV format, and process a file:

luatools --generate

luatools --make --compile cont-en

luatools --fmt=cont-en somefile.tex

There is no need to install Luain order to run
this script. This is because LuaTEX can act as such
with the advantage that the built-in libraries are
available too, for instance the Lua file system lfs, the
zip file manager zip, the Unicode library unicode,
md5, and of course some of our own.

• luatex— a Lua-enhanced TEX engine
• texlua— a Lua engine enhanced with some li-

braries
• texluac— a Lua bytecode compiler enhanced

with some libraries

In principle luatex can perform all tasks but
because we need to be downward compatible with
respect to the command line and because we want
Lua compatible variants, you can copy or symlink
the two extra variants to the main binary.

The second script, mtxrun, can be seen as a re-
placement for the Ruby script texmfstart, a utility

TUGboat, Volume 29 (2008), No. 2 297

$ mtxrun --script font --list --pattern=lmtype.*regular

lmtypewriter10-capsregular LMTypewriter10-CapsRegular lmtypewriter10-capsregular.otf

lmtypewriter10-regular LMTypewriter10-Regular lmtypewriter10-regular.otf

lmtypewriter12-regular LMTypewriter12-Regular lmtypewriter12-regular.otf

lmtypewriter8-regular LMTypewriter8-Regular lmtypewriter8-regular.otf

lmtypewriter9-regular LMTypewriter9-Regular lmtypewriter9-regular.otf

lmtypewritervarwd10-regular LMTypewriterVarWd10-Regular lmtypewritervarwd10-regular.otf

Figure 1: Listing fonts available by pattern with mtxrun.

whose main task is to launch scripts (or documents or
whatever) in a TDS tree. The mtxrun script makes
it possible to get away from installing Ruby and
as a result a regular TEX installation can be made
independent of scripting tools.

version 1.0.2 - 2007+ - PRAGMA ADE / CONTEXT

--script run an mtx script

--execute run a script or program

--resolve resolve prefixed arguments

--ctxlua run internally

(using preloaded libs)

--locate locate given filename

--autotree use texmf tree

cf. environment settings

--tree=pathtotree use given texmf tree

(def: ’setuptex.tmf’)

--environment=name use given (tmf)

environment file

--path=runpath go to given path before

execution

--ifchanged=file only execute when given file

has changed

--iftouched=old,new only execute when given file

has changed

--make create stubs for

(context related) scripts

--remove remove stubs for

(context related) scripts

--stubpath=binpath paths where stubs

will be written

--windows create windows stubs

--unix create unix (linux) stubs

--verbose give a bit more info

--engine=str target engine

--progname=str format or backend

--edit launch editor

with found file

--launch (--all) launch files

(assume os support)

--intern run script using built-in

libraries

This help information gives an impression of
what the script does: running other scripts, either
within a certain TDS tree or not, and either con-
ditionally or not. Users of ConTEXt will probably
recognize most of the flags. As with texmfstart,
arguments with prefixes like file: will be resolved
before being passed to the child process.

The first option, --script is the most impor-
tant one and is used like:

mtxrun --script fonts --reload

mtxrun --script fonts --pattern=lm

In MkIV you can access fonts by filename or by
font name, and because we provide several names per
font you can use this command to see what is possible.
Patterns can be Lua expressions, as demonstrated
in Figure 1.

A simple

mtxrun --script fonts

gives:

version 1.0.2 - 2007+ - PRAGMA ADE / CONTEXT

font tools

--reload generate new font database

--list list installed fonts

--save save open type font

in raw table

--pattern=str filter files

--all provide alternatives

In MkIV font names can be prefixed by file: or
name: and when they are resolved, several attempts
are made, for instance non-characters are ignored.
The --all flag shows more variants.

Another example is:

mtxrun --script context --ctx=somesetup \

somefile.tex

Again, users of texexec may recognize part of
this and indeed this is its replacement. Instead of
texexec we use a script named mtx-context.lua.
Currently we have the following scripts and more
will follow:

298 TUGboat, Volume 29 (2008), No. 2

context controls processing of files by MkIV

babel conversion tools for LATEX files
cache utilities for managing the cache
chars utilities used for MkIV development
check TEX syntax checker
convert helper for some basic graphic conversion
fonts utilities for managing font databases
update tool for installing minimal ConTEXt trees
watch hot folder processing tool
web utilities related to automate workflows

The babel script is made in cooperation with
Thomas Schmitz and can be used to convert ba-
belized Greek files into proper UTF. More of such
conversions may follow. With cache you can inspect
the content of the MkIV cache and do some cleanup.
The chars script is used to construct some tables
that we need in the process of development. As its
name says, check is a script that does some checks,
and in particular it tries to figure out if TEX files are
correct. The already mentioned context script is the
MkIV replacement of texexec, and takes care of mul-
tiple runs, preloading project specific files, etc. The
convert script will replace the Ruby script pstopdf.

A rather important script is the abovementioned
fonts. Use this for generating font name databases
(which then permits a more liberal access to fonts) or
identifying installed fonts. The unzip script indeed
unzips archives. The update script is still some-
what experimental and is one of the building blocks
of the ConTEXt minimal installer system by Mojca
Miklavec and Arthur Reutenauer. This update script
synchronizes a local tree with a repository and keeps
an installation as small as possible, which for in-
stance means: no OpenType fonts for pdfTEX, and
no redundant Type 1 fonts for LuaTEX and X ETEX.

The (for the moment) last two scripts are watch
and web. We use them in (either automated or
not) remote publishing workflows. They evolved out
of the Example framework which is currently being
reimplemented in Lua.

As you can see, the LuaTEX project and its Con-
TEXt companion MkIV project not only deal with
TEX itself but also facilitate managing the workflows.

There will be more scripts. These scripts are
normally rather small because they hook into mtxrun

which provides the libraries. Of course existing
tools remain part of the toolkit. Take for instance
ctxtools, a Ruby script that converts font encoded
pattern files to generic UTF encoded files.

Those who have followed the development of
ConTEXt will notice that we moved from utilities
written in Modula to tools written in Perl. These
were later replaced by Ruby scripts and eventually
most of them will be rewritten in Lua.

4 Macros

I will not repeat what is said already in the MkIV

related documents, but stick to a summary of what
the impact on ConTEXt is and will be. From this
you can deduce what the possible influence on other
macro packages can be.

Opening up TEX started with rewriting all I/O

related activities. Because we wanted to be able to
read from zip files, the web and more, we moved
away from the traditional kpse based file handling.
Instead MkIV uses an extensible variant written in
Lua. Because we need to be downward compatible,
the code is somewhat messy, but it does the job, and
pretty quickly and efficiently too. Some alternative
input media are implemented and many more can
be added. In the beginning I permitted several ways
to specify a resource but recently a more restrictive
url syntax was imposed. Of course the file locating
mechanisms provide the same control as provided by
the file readers in MkII.

An example of reading from a zip file is:

\input zip:///archive.zip?name=foo.tex

\input zip:///archive.zip?name=/somepath/foo.tex

In addition one can register files, like:

\usezipfile[archive.zip]

\usezipfile[tex.zip][texmf-local]

\usezipfile[tex.zip?tree=texmf-local]

The last two variants register a zip file in the
TDS structure where more specific lookup rules apply.
The files in a registered file are known to the file
searching mechanism so one can give specifications
like the following:

\input */foo.tex

\input */somepath/foo.tex

In a similar fashion one can use the http, ftp
and other protocols. For this we use independent
fetchers that cache data in the MkIV cache. Of
course, in more structured projects, one will seldom
use the \input command but use a project structure
instead.

Handling of files rather quickly reached a stable
state, and we seldom need to visit the code for fixes.
Already after a few years of developing the first code
for LuaTEX we reached a state of ‘Hm, when did I
write this?’. When we have reached a stable state
I foresee that much of the older code will need a
cleanup.

Related to reading files is the sometimes messy
area of input regimes (file encoding) and font encod-
ing, which itself relates to dealing with languages.
Since LuaTEX is UTF-8 based, we need to deal with
file encoding issues in the frontend, and this is what
Lua based file handling does. In practice users of

TUGboat, Volume 29 (2008), No. 2 299

LuaTEX will swiftly switch to UTF anyway but we
provide regime control for historic reasons. This time
the recoding tables are Lua based and as a result
MkIV has no regime files. In a similar fashion font
encoding is gone: there is still some old code that
deals with default fallback characters, but most of
the files are gone. The same will be true for math en-
coding. All information is now stored in a character
table which is the central point in many subsystems
now.

It is interesting to notice that until now users
have never asked for support with regards to input en-
coding. We can safely assume that they just switched
to UTF and recoded older documents. It is good to
know that LuaTEX is mostly pdfTEX but also incor-
porates some features of Omega. The main reason
for this is that the Oriental TEX project needed bidi-
rectional typesetting and there was a preference for
this implementation over the one provided by ε-TEX.
As a side effect input translation is also present, but
since no one seems to use it, that may as well go
away. In MkIV we refrain from input processing as
much as possible and focus on processing the node
lists. That way there is no interference between user
data, macro expansion and whatever may lead to the
final data that ends up in the to-be-typeset stream.
As said, users seem to be happy to use UTF as input,
and so there is hardly any need for manipulations.

Related to processing input is verbatim: a fea-
ture that is always somewhat complicated by the fact
that one wants to typeset a manual about TEX in
TEX and therefore needs flexible escapes from illus-
trative as well as real TEX code. In MkIV verbatim
as well as all buffering of data is dealt with in Lua. It
took a while to figure out how LuaTEX should deal
with the concept of a line ending, but we got there.
Right from the start we made sure that LuaTEX
could deal with collections of catcode settings (those
magic states that characters can have). This means
that one has complete control at both the TEX and
Lua end over the way characters are dealt with.

In MkIV we also have some pretty printing fea-
tures, but many languages are still missing. Cleaning
up the premature verbatim code and extending pretty
printing is on the agenda for the end of 2008.

Languages also are handled differently. A major
change is that pattern files are no longer preloaded
but read in at runtime. There is still some relation
between fonts and languages, no longer in the encod-
ing but in dealing with OpenType features. Later we
will do a more drastic overhaul (with multiple name
schemes and such). There are a few experimental
features, like spell checking.

Because we have been using UTF encoded hy-

phenation patterns for quite some time now, and
because ConTEXt ships with its own files, this tran-
sition probably went unnoticed, apart maybe from a
faster format generation and less startup time.

Most of these features started out as an exper-
iment and provided a convenient way to test the
LuaTEX extensions. In MkIV we go quite far in
replacing TEX code by Lua, and how far one goes
is a matter of taste and ambition. An example of
a recent replacement is graphic inclusion. This is
one of the oldest mechanisms in ConTEXt and it has
been extended many times, for instance by plugins
that deal with figure databases (selective filtering
from PDF files made for this purpose), efficient run-
time conversion, color conversion, downsampling and
product dependent alternatives.

One can question if a properly working mecha-
nism should be replaced. Not only is there hardly
any speed to gain (after all, not that many graphics
are included in documents), a Lua–TEX mix may
even look more complex. However, when an opened-
up TEX keeps evolving at the current pace, this last
argument becomes invalid because we can no longer
give that TEXie code to Lua. Also, because most of
the graphic inclusion code deals with locating files
and figuring out the best quality variant, we can ben-
efit much from Lua: file handling is more robust, the
code looks cleaner, complex searches are faster, and
eventually we can provide way more clever lookup
schemes. So, after all, switching to Lua here makes
sense. A nice side effect is that some of the men-
tioned plugins now take a few lines of extra code
instead of many lines of TEX. At the time of writing
this, the beta version of MkIV has Lua based graphic
inclusion.

A disputable area for Luafication is multipass
data. Most of that has already been moved to Lua
files instead of TEX files, and the rest will follow:
only tables of contents still use a TEX auxiliary file.
Because at some point we will reimplement the whole
section numbering and cross referencing, we post-
poned that till later. The move is disputable because
in the end, most data ends up in TEX again, which
involves some conversion. However, in Lua we can
store and manipulate information much more easily
and so we decided to follow that route. As a start,
index information is now kept in Lua tables, sorted
on demand, depending on language needs and such.
Positional information used to take up much hash
space which could deplete the memory pool, but now
we can have millions of tracking points at hardly any
cost.

Because it is a quite independent task, we could
rewrite the MetaPost conversion code in Lua quite

300 TUGboat, Volume 29 (2008), No. 2

early in the development. We got smaller and cleaner
code, more flexibility, and also gained some speed.
The code involved in this may change as soon as we
start experimenting with MPlib. Our expectations
are high because in a bit more modern designs a
graphic engine cannot be missed. For instance, in
educational material, backgrounds and special shapes
are all over the place, and we’re talking about many
MetaPost runs then. We expect to bring down the
processing time of such documents considerably, if
only because the MetaPost runtime will be close to
zero (as experiments have shown us).

While writing the code involved in the MetaPost
conversion a new feature showed up in Lua: lpeg,
a parsing library. From that moment on lpeg was
being used all over the place, most noticeably in the
code that deals with processing XML. Right from the
start I had the feeling that Lua could provide a more
convenient way to deal with this input format. Some
experiments with rewriting the MkII mechanisms did
not show the expected speedup and were abandoned
quickly.

Challenged by lpeg I then wrote a parser and
started playing with a mixture of a tree based and
stream approach to XML (MkII is mostly stream
based). Not only is loading XML code extremely
fast (we used 40 megabyte files for testing), dealing
with the tree is also convenient. The additional
MkIV methods are currently being tested in real
projects and so far they result in an acceptable and
pleasant mix of TEX and XML. For instance, we can
now selectively process parts of the tree using path
expressions, hook in code, manipulate data, etc.

The biggest impact of LuaTEX on the ConTEXt
code base is not the previously mentioned mecha-
nisms but one not yet mentioned: fonts. Contrary
to X ETEX, which uses third party libraries, LuaTEX
does not implement dealing with font specific issues
at all. It can load several font formats and accepts
font data in a well-defined table format. It only pro-
cesses character nodes into glyph nodes and it’s up to
the user to provide more by manipulating the node
lists. Of course there is still basic ligature building
and kerning available but one can bypass that with
other code.

In MkIV, when we deal with Type 1 fonts, we try
to get away from traditional TFM files and use AFM

files instead (indeed, we parse them using lpeg). The
fonts are mapped onto Unicode. Awaiting extensions
of math we only use TFM files for math fonts. Of
course OpenType fonts are dealt with and this is
where we find most Lua code in MkIV: implementing
features. Much of that is a grey area but as part of
the Oriental TEX project we’re forced to deal with

complex feature support, so that provides a good
test bed as well as some pressure for getting it done.
Of course there is always the question to what extent
we should follow the (maybe faulty) other programs
that deal with font features. We’re lucky that the
Latin Modern and TEX Gyre projects provide real
fonts as well as room for discussion and exploring
these grey areas.

In parallel to writing this, I made a tracing
feature for Oriental TEXer Idris so that he could
trace what happened with the Arabic fonts that he is
making. This was relatively easy because already in
an early stage of MkIV some debugging mechanisms
were built. One of its nice features is that on an
error, or when one traces something, the results will
be shown in a web browser. Unfortunately I have not
enough time to explore such aspects in more detail,
but at least it demonstrates that we can change some
aspects of the traditional interaction with TEX in
more radical ways.

Many users may be aware of the existence of so-
called virtual fonts, if only because it can be a cause
of problems (related to map files and such). Virtual
fonts have a lot of potential but because they were
related to TEX’s own font data format they never got
very popular. In LuaTEX we can make virtual fonts
at runtime. In MkIV for instance we have a feature
(we provide features beyond what OpenType does)
that completes a font by composing missing glyphs
on the fly. More of this trickery can be expected as
soon as we have time and reason to implement it.

In pdfTEX we have a couple of font related good-
ies, like character expansion (inspired by Hermann
Zapf) and character protruding. There are a few
more but these had limitations and were suboptimal
and therefore have been removed from LuaTEX. Af-
ter all, they can be implemented more robustly in
Lua. The two mentioned extensions have been (of
course) kept and have been partially reimplemented
so that they are now uniquely bound to fonts (in-
stead of being common to fonts that traditional TEX
shares in memory). The character related tables can
be filled with Lua and this is what MkIV now does.
As a result much TEX code could go away. We still
use shape related vectors to set up the values, but
we also use information stored in our main character
database.

A likely area of change is math and not only
as a result of the TEX Gyre math project which
will result in a bunch of Unicode compliant math
fonts. Currently in MkIV the initialization already
partly takes place using the character database, and
so again we will end up with less TEX code. A side
effect of removing encoding constraints (i.e. moving

TUGboat, Volume 29 (2008), No. 2 301

to Unicode) is that things get faster. Later this year
math will be opened up.

One of the biggest impacts of opening up is the
arrival of attributes. In traditional TEX only glyph
nodes have an attribute, namely the font id. Now all
nodes can have attributes, many of them. We use
them to implement a variety of features that already
were present in MkII, but used marks instead: color
(of course including color spaces and transparency),
inter-character spacing, character case manipulation,
language dependent pre and post character spacing
(for instance after colons in French), special font
rendering such as outlines, and much more. An
experimental application is a more advanced glue/
penalty model with look-back and look-ahead as
well as relative weights. This is inspired by the one
good thing that XML formatting objects provide: a
spacing and pagebreak model.

It does not take much imagination to see that
features demanding processing of node lists come
with a price: many of the callbacks that LuaTEX
provides are indeed used and as a result quite some
time is spent in Lua. You can add to that the time
needed for handling font features, which also boils
down to processing node lists. The second half of
2007 Taco and I spent much time on benchmarking
and by now the interface between TEX and Lua
(passing information and manipulating nodes) has
been optimized quite well. Of course there’s always
a price for flexibility and LuaTEX will never be as
fast as pdfTEX, but then, pdfTEX does not deal with
OpenType and such.

We can safely conclude that the impact of Lua-
TEX on ConTEXt is huge and that fundamental
changes take place in all key components: files, fonts,
languages, graphics, MetaPost XML, verbatim and
color to start with, but more will follow. Of course
there are also less prominent areas where we use Lua
based approaches: handling url’s, conversions, alter-
native math input to mention a few. Sometime in
2009 we expect to start working on more fundamental
typesetting related issues.

5 Roadmap

On the LuaTEX website http://www.luatex.org

you can find a roadmap. This roadmap is just an
indication of what has happened and will happen
and it will be updated when we feel the need. Here
is a summary:

• merging engines
Merge some of the Aleph codebase into pdf-

TEX (which already has ε-TEX) so that LuaTEX
in DVI mode behaves like Aleph, and in PDF

mode like pdfTEX. There will be Lua callbacks

for file searching. This stage is mostly finished.

• OpenType fonts

Provide PDF output for Aleph bidirectional
functionality and add support for OpenType
fonts. Allow Lua scripts to control all aspects of
font loading, font definition and manipulation.
Most of this is finished.

• tokenizing and node lists

Use Lua callbacks for various internals, com-
plete access to tokenizer and provide access to
node lists at moments that make sense. This
stage is completed.

• paragraph building

Provide control over various aspects of para-
graph building (hyphenation, kerning, ligature
building), dynamic loading of hyphenation pat-
terns. Apart from some small details these ob-
jectives are met.

• MetaPost (MPlib)

Incorporate a MetaPost library and investi-
gate options for runtime font generation and
manipulation. This activity is on schedule and
integration will take place before summer 2008.

• image handling

Image identification and loading in Lua in-
cluding scaling and object management. This is
nicely on schedule, the first version of the image
library showed up in the 0.22 beta and some
more features are planned.

• special features

Cleaning up of Hz optimization and protrud-
ing and getting rid of remaining global font
properties. This includes some cleanup of the
backend. Most of this stage is finished.

• page building

Control over page building and access to in-
ternals that matter. Access to inserts. This is
on the agenda for late 2008.

• TEX primitives

Access to and control over most TEX prim-
itives (and related mechanisms) as well as all
registers. Especially box handling has to be
reinvented. This is an ongoing effort.

• PDF backend

Open up most backend related features, like
annotations and object management. The first
code will show up at the end of 2008.

• math

Open up the math engine parallel to the de-
velopment of the TEX Gyre math fonts. Work

302 TUGboat, Volume 29 (2008), No. 2

on this will start during 2008 and we hope that
it will be finished by early 2009.

• CWEB

Convert the TEX Pascal source into CWEB

and start using Lua as glue language for compo-
nents. This will be tested on MPlib first. This
is on the long term agenda, so maybe around
2010 you will see the first signs.

In addition to the mentioned functionality we
have a couple of ideas that we will implement along
the road. The first formal beta was released at TUG

2007 in San Diego (USA). The first formal release
will be at TUG 2008 in Cork (Ireland). The pro-
duction version will be released at EuroTEX in the
Netherlands (2009).

Eventually LuaTEX will be the successor to pdf-
TEX (informally we talk of pdfTEX version 2). It can
already be used as a drop-in for Aleph (the stable vari-
ant of Omega). It provides a scripting engine without
the need to install a specific scripting environment.
These factors are among the reasons why distribu-
tors have added the binaries to the collections. Nor-
bert Preining maintains the Linux packages, Akira
Kakuto provides Windows binaries as part of his dis-
tribution, Arthur Reutenauer takes care of Mac OS X

and Christian Schenk recently added LuaTEX to MiK-
TEX. The LuaTEX and MPlib projects are hosted
at Supelec by Fabrice Popineau (one of our techni-
cal consultants). And with Karl Berry being one of
our motivating supporters, you can be sure that the
binaries will end up someplace in TEX Live this year.

⋄ Hans Hagen
PRAGMA ADE

http://pragma-ade.com

TUGboat, Volume 29 (2008), No. 2 303

Porting TEX Live to OpenBSD

Edward Barrett

Abstract

The history, creation, and fruition of porting TEX
Live to OpenBSD.

1 Why TEX?

At the time that I became a student, I had been using
*NIX systems for years, in particular an operating
system called OpenBSD, which is one of the BSD1

derived open-source Unix-a-likes. OpenBSD aims to
be “Free, Functional and Secure”, but it also has
other qualities which made it appealing to me: it
was small, it did not demand a fast computer and is
developed with “correctness” in mind.

The existing WYSIWYG2 document preparation
software packages for OpenBSD either did not suit
the nature of the document, or did not feel natural
to me as a computing student. In particular:

• Most of my assignments required source code
listings. Standard procedure generally consisted
of copy and pasting large chunks of code into
a word processor (screen by screen if you were
in a terminal appplication). It did work, but it
was tedious to repeat when the sources changed.

• During my two years in industry, Vim3 had
become second nature to me when editing text.
In comparison a word processor seemed very
limited and inefficient.

It was only when I saw what some of the mem-
bers of staff at University had done with TEX that
I became fully aware of its purpose. The concept
of logical markup in a document felt right, and my
previous gripes with word processors could be solved,
not to mention that documents typeset with TEX
looked a much more professional than anything I
could make with a word processor. I started learning
how to make documents like this myself using the
existing teTEX package on my OpenBSD systems.

2 The retirement of the teTEX distribution

Oddly enough, the porting process of TEX Live
started with the simple need for the rcs package
in a document. I had one day decided that a verba-
tim CVS tag in the preface of my documents looked
ugly and that I should find a solution.

A CTAN search revealed the rcs package, but it
was not included in teTEX. I visited the teTEX web
page to see if there was a possibility of including it in

1 Berkeley Software Distribution
2 What you see is what you get
3 Vi Improved, http://www.vim.org

future versions. It was then that I realized that teTEX
development had sadly been retired for almost a year.
The web page suggested that I pursue a project called
“TEX Live”, so I did. I was mostly pleased with what
I saw, but found the ISO disk image distribution
format inconvenient, and the DVD only supplied i386
binaries for OpenBSD, which needless to say would
not work on my Sun Sparc systems.

This was when I started the porting process,
after an email to the ports@openbsd.org mailing
list in March 2007 to see if anyone else had been
working on a port. At the time I remember thinking
that this was a week’s work at most. How wrong I
was . . .

3 Porting

My initial build confirmed that TEX Live was quite
happy to build on OpenBSD. Now I had to inte-
grate the build with the OpenBSD “ports” build
system. The “ports” build system is basically a set
of instructions (in the form of Makefiles) for building
third party software, whose concept was originally
devised by the FreeBSD project. NetBSD also has
a similar system, as does the Gentoo Linux project.
The advantage of these systems is that packages need
not be manually built upon each new release of the
operating system, as it can be powerfully automated.

Getting TEX Live to play nice with the ports in-
frastructure was not easy. A lot of the TEX Live build
system did not honour the GNU standard DESTDIR

environment variable, which is required to fool soft-
ware into installing into a fake root filesystem ready
for packaging. Luckily a tool called systrace allowed
me to detect these bugs and I was able to “patch
them away” before the build commenced. I applied
just under 40 patches to the TEX Live build system,
resulting in a package named texlive base-2007. Fol-
lowing the conventions of the existing teTEX port,
I made the texmf tree a separate package named
texlive texmf-2007.

On May 8th 2007 I posted my hopefully “com-
pleted” work onto the porting mailing list and waited.

Responses to my work were positive, but there
was concern with the size of the texmf package which
had exceeded 512 MB. I was asked to “trim it down”,
if at all possible. The next few months proved to be
the most difficult stage of the port, not only because
I was studying for exams as well as porting, but
also because I had uncovered some nasty bus errors
in X ETEX when run on the sparc64 CPU architec-
ture. I think my housemates must have thought I
was chasing a lost cause, but I was not prepared to
give up.

304 TUGboat, Volume 29 (2008), No. 2

I decided to first concentrate on splitting the
texmf tree. This involved learning how the (now
deprecated) “TPM”4 hierarchy worked as well as the
various configuration files, so that they matched the
relevant texmf subset that was installed. Norbert
Preining had done a similar task for Debian Linux
and generously shared what he knew. Also, a lec-
turer at University, Peter Knaggs, who had been
using TEX for a while was able to explain some of
the mechanisms of a TEX system. A Python script I
called MFSplit sprang into existence. This creation
split the large texmf tree into three smaller counter-
parts (minimal, full and documentation) and helped
to generate configuration files. I must admit I found
this quite challenging, even frustrating at times, and
the TEX Live mailing list was a invaluable resource
during times of confusion.

A major cause of the aforementioned frustra-
tion was due to the slowness of my dated Sun hard-
ware. In an attempt to find something more prac-
tical, I placed a banner on my web page asking for
hardware donations. I had expected to hear noth-
ing. Within a few days one individual donated some
money for a beer, which pleasantly shocked me, but
not as much as when a company contacted me say-
ing that they wished to donate a machine to the
port! The company was yellowshift LLC, a consul-
tancy company in America that believed in giving
back to open source (https://www.yellowshift.
com/giving-back). Gratefully I accepted and now
I am a proud owner of a Sun Blade 1000 for devel-
opment of TEX Live/OpenBSD for sparc64 systems.

As for the X ETEX issues, the X ETEX author and
a very dedicated member of the TEX community,
Jonathan Kew, helped me out greatly. It proved
very difficult to debug over email, so I ended up
granting him remote access to my build box in order
for him to look more closely at the problem. Very
quickly he put together some patches which fixed the
issue (and a few others too), which were committed
upstream and to the port.

4 Integrating TEX Live into OpenBSD

On July 17th 2007 the TEX Live port was committed
on my behalf to the head branch of the ports tree,
but not yet linked to the build as a replacement for
teTEX, since further community testing was needed.
Small bug fixes and cleanups were applied. Eventu-
ally, on October 11th 2007, TEX Live replaced teTEX
entirely for OpenBSD developer snapshots, and will
certainly be included in upcoming OpenBSD-4.3. I
consider this is a great personal achievement, as I

4 TEX Package Manager

had always wished I could give something back to
the open source community. I have been in contact
with several developers interested in developing ports
of TEX Live for their operating systems, including a
developer from the Macports project who succeeded
in translating the OpenBSD port to their ports sys-
tem. I certainly do enjoy the freedom of open source
software development.

If you are running the developer branch of Open-
BSD (or -current as it is known), then you can
get TEX Live now from the OpenBSD FTP servers.
OpenBSD 4.3 pre-orders are available now; this is a
great way to help the project.

5 Thanks

I would like to take the opportunity to thank all
of the people who have answered my questions on
mailing lists, donated resources, helped me bug-fix
or otherwise contributed to porting TEX Live to
OpenBSD. It is greatly appreciated and I hope to
meet some of you at the conference in Cork.

6 About the author

Allow me to introduce myself, as I am new to the
TEX community. I am a student at Bournemouth
University in England. As far as I can remember, I
have always been fascinated by computers, starting
with the Sinclair Spectrum 48K. After messing about
on computers most of my childhood (and advancing
through almost all of the Sinclair Spectrum models),
I studied computing at college and entered the real

world as a programmer for a kitchen manufacture
company. During this time I learned a web script-
ing language inside out, programmed some really
interesting industrial machinery and pulled out a lot
of hair trying to interpret 20-year-old BASIC code.
Having done this for two years, I felt a change was
in order and enrolled for a BSc computing degree.
At the time of writing I am on the 3rd year of the
degree, which is a “sandwich year” in which students
work in industry for a year before returning to Uni-
versity to complete the final year. It turned out that
I really liked the academic environment and wished
to look into the possibility of an academic future.
After enquiring if the University accepted placement
students, I became a Unix systems administrator for
the school of design, engineering and computing.

⋄ Edward Barrett
eddbarrett (at) googlemail dot com

http://students.dec.bournemouth.ac.

uk/ebarrett

TUGboat, Volume 29 (2008), No. 2 305

LATEX

Good things come in little packages: An
introduction to writing .ins and .dtx files

Scott Pakin

Abstract

LATEX packages made available from CTAN are com-
monly distributed as a pair of files: 〈something〉.ins
and 〈something〉.dtx. The user is then instructed
to run the .ins file through latex to produce the
actual package files. What are these .ins and .dtx

files? How do you, as a class or style-file writer,
create your own? And, why would you want to?
This article answers those questions and elucidates
the mysterious techniques underlying LATEX package
distribution.

1 Introduction

A typical CTAN package comprises a README file,
some PDF documentation, an .ins file, and a .dtx

file. Running the .ins file through latex creates
one or more .sty, .cls, .def, or other files that
the user can install. Few LATEX users and developers
understand the reasoning behind that extra step or
the purpose of the seemingly unnecessary .dtx file.

Before we examine .ins and .dtx files in depth,
let us consider a coding example from outside the
TEX world. Figure 1 presents a function in the C pro-
gramming language for solving a quadratic equation.
Comments at the top of the function are used to
explain what the function does. Although comments
are intended to be human-readable, only simple text
can be used to format comments. Wouldn’t it be
nice if comments and the code they describe could
be typeset using a tool such as LATEX, as in Figure 2?
Even for short programs, including mathematics, fig-
ures, and tables in comments can assist readability.
For longer programs, sectioning commands, cross
references (maybe even with hyperlinks), indexes,
and a table of contents can be quite beneficial for
explaining the program’s purpose and usage to read-
ers. However, having to maintain two versions of a
program—a nicely formatted version with typeset
documentation for human readers and a text-only
version for the compiler — is an approach doomed to
failure as the two versions will inevitably drift apart.

The idea behind a .dtx file is to maintain a
single version of a program yet be able to process it
either as a typeset document or as compilable code.
As far as the latex compiler is concerned, a .dtx file
is an ordinary document; it just happpens to describe

a program. However, when the corresponding .ins

file is processed, the (text-only) program is extracted
from the .dtx file to one or more separate files.

Placing emphasis on providing thorough, type-
set code documentation intertwined with the code
itself is commonly known as literate programming [1].
Literate programming is particularly apropos for doc-
umenting LATEX packages because of the esotericism
of the TEX language and the consequent need for
copious explanation. The mechanisms needed to
implement literate programming in .ins and .dtx

files are provided by two packages that come stan-
dard with all LATEX2ε distributions: Doc [3, 4] for
typesetting, formatting, and indexing LATEX macro
and environment definitions, and, DocStrip [5] for
extracting the code from a literate program while
stripping away all of the commentary.

2 Installer (.ins) files

The first step in preparing a package for distribution
is to write an installer (.ins) file. An installer file
extracts the code from a .dtx file, uses DocStrip to
strip off the comments and documentation, and out-
puts a .sty file. The good news is that a .ins file is
typically fairly short and doesn’t change significantly
from one package to another.

Figure 3 presents a typical .ins file. An .ins

file usually begins with a comment block that states
the package’s copyright notice and license agreement
(lines 1–13). Most of the commands that appear in
an .ins file are provided by the DocStrip package
so that is loaded in line 15. DocStrip is normally
excessively verbose about its operation so Figure 3
includes an invocation of \keepsilent (line 16) to
instruct DocStrip to output only the most important
information.

A package can invoke the \usedir macro (as
on line 18) to specify a preferred installation direc-
tory relative to the root of the TEX directory tree.
In practice, the \usedir call serves primarily as a
comment and is seldom used to automatically place
files in their final destination.

Lines 20–36 of Figure 3 specify a set of comments
to include at the top of every file that the .ins

file generates. Typically, these comments include a
remark that the file is generated plus a repetition of
the package’s copyright notice and license agreement.

The most important line in an .ins file is the
call to \generate. The \generate macro is the
mechanism by which an .ins file instructs DocStrip

how to extract the various package files from an ac-
companying .dtx file. Line 38 of Figure 3 should be
interpreted as the instruction, “Generate a file called
mypackage.sty by extracting all text marked with

306 TUGboat, Volume 29 (2008), No. 2

/* Use the quadratic formula (x=(-b +/- sqrt(b^2-4ac))/2a) to store the two

* roots of ax^2+bx+c=0 in x1 and x2. Return 1 on success, 0 on failure

* (if a=0 or the roots are complex). */

int solve_quadratic (double a, double b, double c, double *x1, double *x2)

{

double discrim = b*b - 4*a*c;

if (a == 0.0 || discrim < 0.0)

return 0;

*x1 = (-b + sqrt(discrim)) / (2*a);

*x2 = (-b - sqrt(discrim)) / (2*a);

return 1;

}

Figure 1: Compiler-readable C code for solving a quadratic equation

solve_quadratic() Use the quadratic formula (x = −b±
√

b2−4ac
2a

) to store the two roots of ax2+bx+c = 0
in x1 and x2. Return 1 on success, 0 on failure (if a = 0 or the roots are complex).
1 int solve_quadratic (double a, double b, double c, double *x1, double *x2)
2 {
3 double discrim = b*b − 4*a*c;
4

5 if (a == 0.0 || discrim < 0.0)
6 return 0;
7 *x1 = (−b + sqrt(discrim)) / (2*a);
8 *x2 = (−b − sqrt(discrim)) / (2*a);
9 return 1;

10 }

Figure 2: Typeset C code for solving a quadratic equation

the tag package in the file called mypackage.dtx.”
The \generate command is fairly flexible in

that a file can be generated from multiple tags spread
across multiple files. In fact, blocks of code can
be shared by multiple generated files. As a fairly
complex example, consider the \generate command
used by LATEX2ε’s classes.ins file to generate all
of the standard LATEX2ε class files and their per-
size helper files. As the excerpt from classes.ins

shown in Figure 4 indicates, both size10.clo and
bk10.clo are produced by extracting all text from
classes.dtx that is marked with the 10pt tag. The
bk10.clo file additionally includes all text marked
with the bk tag. The same bk-tagged text is copied
into bk11.clo and bk12.clo as well.

Returning to our complete example of an .ins

file in Figure 3, DocStrip provides a \Msg macro that
outputs a message to the standard output device. It
is helpful to use \Msg to inform the user what files
were extracted and need to be installed. Lines 40–
53 in Figure 3 output a typical end-of-installation
message. Note the use of \obeyspaces in line 40 to

prevent TEX from collapsing multiple spaces into a
single space in the subsequent \Msg invocations.

An .ins file ends with a call to \endbatchfile,
as shown in line 55.

3 Documented LATEX (.dtx) files

A documented LATEX (.dtx) file contains both the
commented source code and the user documentation
for the package. Running a .dtx file through latex

typesets the user documentation, which usually also
includes a nicely typeset version of the commented
source code.

Due to some Doc trickery, latex actually evalu-
ates a .dtx file twice when generating documentation.
On the first pass, only a small piece of latex driver
code is evaluated. The second time, comments in
the .dtx file are evaluated, as if there were no “%”
preceding them. This can lead to a great deal of
confusion when writing .dtx files and occasionally
leads to some awkward constructions. Fortunately,
once the basic structure of a .dtx file is in place,
filling in the code is fairly straightforward.

TUGboat, Volume 29 (2008), No. 2 307

1 %%

2 %% Copyright (C) 2008 by Your Name Here <you@yournamehere.org>

3 %%

4 %% This file may be distributed and/or modified under the conditions of

5 %% the LaTeX Project Public License, either version 1.3c of this license

6 %% or (at your option) any later version. The latest version of this

7 %% license is in:

8 %%

9 %% http://www.latex-project.org/lppl.txt

10 %%

11 %% and version 1.3c or later is part of all distributions of LaTeX

12 %% version 2006/05/20 or later.

13 %%

14

15 \input docstrip.tex

16 \keepsilent

17

18 \usedir{tex/latex/mypackage}

19

20 \preamble

21

22 This is a generated file.

23

24 Copyright (C) 2008 by Your Name Here <you@yournamehere.org>

25

26 This file may be distributed and/or modified under the conditions of

27 the LaTeX Project Public License, either version 1.3c of this license

28 or (at your option) any later version. The latest version of this

29 license is in:

30

31 http://www.latex-project.org/lppl.txt

32

33 and version 1.3c or later is part of all distributions of LaTeX

34 version 2006/05/20 or later.

35

36 \endpreamble

37

38 \generate{\file{mypackage.sty}{\from{mypackage.dtx}{package}}}

39

40 \obeyspaces

41 \Msg{***}

42 \Msg{* *}

43 \Msg{* To finish the installation you have to move the following *}

44 \Msg{* file into a directory searched by TeX: *}

45 \Msg{* *}

46 \Msg{* mypackage.sty *}

47 \Msg{* *}

48 \Msg{* To produce the documentation run the file mypackage.dtx *}

49 \Msg{* through LaTeX. *}

50 \Msg{* *}

51 \Msg{* Happy TeXing! *}

52 \Msg{* *}

53 \Msg{***}

54

55 \endbatchfile

Figure 3: A typical .ins file

308 TUGboat, Volume 29 (2008), No. 2

\generate{\file{article.cls}{\from{classes.dtx}{article}}

\file{report.cls}{\from{classes.dtx}{report}}

\file{book.cls}{\from{classes.dtx}{book}}

\file{size10.clo}{\from{classes.dtx}{10pt}}

\file{size11.clo}{\from{classes.dtx}{11pt}}

\file{size12.clo}{\from{classes.dtx}{12pt}}

\file{bk10.clo}{\from{classes.dtx}{10pt,bk}}

\file{bk11.clo}{\from{classes.dtx}{11pt,bk}}

\file{bk12.clo}{\from{classes.dtx}{12pt,bk}}

}

Figure 4: Excerpt from LATEX2ε’s classes.ins file

1 % \iffalse meta-comment

2 %

3 % Copyright (C) 2008 by Your Name Here <you@yournamehere.org>

4 % ---

5 %

6 % This file may be distributed and/or modified under the conditions of

7 % the LaTeX Project Public License, either version 1.3c of this license

8 % or (at your option) any later version. The latest version of this

9 % license is in:

10 %

11 % http://www.latex-project.org/lppl.txt

12 %

13 % and version 1.3c or later is part of all distributions of LaTeX

14 % version 2006/05/20 or later.

15 %

16 % \fi

17 %

Figure 5: .dtx header comments

3.1 Package identification

A .dtx file traditionally begins with a copyright and
license notice, which are formatted as in Figure 5.
The significance of the \iffalse . . . \fi construct is
that on latex’s second pass through the .dtx file,
commented lines are processed as if they were un-
commented. To prevent the copyright and license
statement from appearing at the beginning of the
typeset document we wrap them within a condi-
tional that will never be true. The meta-comment

after \iffalse is nothing more than a convention
for indicating that the comment is intended to be
read by a human, not by Doc, DocStrip, or latex.

The next block of .dtx code (Figure 6) identi-
fies the package. On latex’s first pass through the
.dtx file, “%” introduces a comment line, as normal.
Hence, latex sees only the \ProvidesFile com-
mand (line 20) and its optional argument (line 25).
The optional argument must be in the format shown:
package date (yyyy/mm/dd), package version, and
package description. The Doc package parses the
optional argument into three macros— \filedate,

18 % \iffalse

19 %<*driver>

20 \ProvidesFile{mypackage.dtx}

21 %</driver>

22 %<package>\NeedsTeXFormat{LaTeX2e}[2003/12/01]

23 %<package>\ProvidesPackage{mypackage}

24 %<*package>

25 [2008/02/18 v1.0 My sample package]

26 %</package>

27 %

Figure 6: .dtx package identification

\fileversion, and \fileinfo—that can be used
to automatically date-stamp and version-stamp the
documentation. On latex’s second pass through
the file, the \iffalse, which is now executed, tells
latex to disregard the entire block of code shown in
Figure 6.

The remaining lines of Figure 6 are ignored
on both the first and second pass through the file.
However, they still have an important purpose. In
addition to the two latex passes over the .dtx file

TUGboat, Volume 29 (2008), No. 2 309

for producing documentation, latex is also run on
the .ins file to extract the various package files
from the .dtx file. The \generate call on line 38
of Figure 3 associated the tag package with the de-
rived file mypackage.sty. Consequently, all lines
either beginning with %<package> or bracketed be-
tween %<*package> and %</package> are written to
mypackage.sty. Thus, the code in Figure 6 writes to
mypackage.sty the \NeedsTeXFormat line (line 22),
the \ProvidesPackage line (line 23), and the op-
tional argument to \ProvidesPackage (line 25)—
which, as we saw, cleverly also serves as the optional
argument to \ProvidesFile when generating the
package documentation.

\NeedsTeXFormat and \ProvidesPackage are
part of the standard LATEX2ε package-identification
mechanism [6]. (Classes use \ProvidesClass in-
stead of \ProvidesPackage, while other file types
use \ProvidesFile.) \NeedsTeXFormat specifies
the earliest date of the LATEX format itself with
which the package is compatible. (From LATEX,
\show\fmtversion displays the current format date.)
The argument to \ProvidesPackage is written to
the .log file associated with any document that uses
the corresponding package.

3.2 Driver code

When producing documentation from a .dtx file,
the driver code is the first block of code that latex
sees. Figure 7 lists typical driver code. Because
mypackage.ins does not supply a \generate rule
for driver, placing the driver between %<*driver>

and %</driver> ensures that it will not be processed
when generating package files from the .ins file.
ltxdoc is a class designed for typesetting LATEX doc-
umentation; it derives from article but additionally
includes the Doc package and defines a few use-
ful commands for documenting classes and pack-
ages. One of those commands, \EnableCrossrefs
(line 30), specifies that the document’s index should
automatically cross-reference the use of every control
sequence (macro or primitive) in the package code.
\CodelineIndex (line 31) indicates that references
to code in the index should point to the correspond-
ing line number instead of to the corresponding page
number. \RecordChanges (line 32) says to create a
file of package changes that can then be incorporated
automatically into the documentation in a “Change
History” section.

Within the document’s body, the \DocInput call
(line 34 of Figure 7) is the critical line. \DocInput

tells the Doc package to input the .dtx file from
within itself. In this second pass through the .dtx

file, percent characters are not treated as comment

28 %<*driver>

29 \documentclass{ltxdoc}

30 \EnableCrossrefs

31 \CodelineIndex

32 \RecordChanges

33 \begin{document}

34 \DocInput{mypackage.dtx}

35 \PrintChanges

36 \PrintIndex

37 \end{document}

38 %</driver>

39 % \fi

Figure 7: The .dtx driver code

characters but are instead ignored. (The sequence
“^^A” can be used instead of “%” to introduce a com-
ment.) After the code is typeset, the \PrintChanges
call (line 35) typesets a Change History section that
informs the reader about the changes that were made
to the source code in each revision. \PrintIndex

(line 36) typesets an index. Finally, the \fi in line 39
matches the \iffalse in line 18 of Figure 6.

3.3 Code verification

The remainder of this section discusses the part of the
.dtx file that is processed recursively by \DocInput:
the documentation proper. In this part of the docu-
ment, lines beginning with a percent sign are treated
as documentation (i.e., the “%” is stripped and the
result is processed as ordinary LATEX code). Lines
not beginning with a percent sign are both processed
as documentation and written to the .sty file. This
rigmarole is the key to using the same code in both
a typeset document and a LATEX package.

The documentation traditionally begins with
a block of code that may be considered slightly
anachronistic: a document checksum and a test for
unexpected variations in character encoding. The
\CheckSum call in line 40 of Figure 8 takes an ar-
gument representing the total number of backslash
characters in the package code (i.e., in lines not be-
ginning with a percent sign). If the tally is correct,
Doc outputs

* Checksum passed *

If the tally is incorrect, Doc issues an error message:

! Package doc Error: Checksum not passed

(〈incorrect〉<>〈correct〉).
If the tally is 0, Doc outputs the correct tally but
does not issue an error message:

310 TUGboat, Volume 29 (2008), No. 2

40 % \CheckSum{0}

41 %

42 % \CharacterTable

43 % {Upper-case \A\B\C\D\E\F\G\H\I\J\K\L\M\N\O\P\Q\R\S\T\U\V\W\X\Y\Z

44 % Lower-case \a\b\c\d\e\f\g\h\i\j\k\l\m\n\o\p\q\r\s\t\u\v\w\x\y\z

45 % Digits \0\1\2\3\4\5\6\7\8\9

46 % Exclamation \! Double quote \" Hash (number) \#

47 % Dollar \$ Percent \% Ampersand \&

48 % Acute accent \’ Left paren \(Right paren \)

49 % Asterisk * Plus \+ Comma \,

50 % Minus \- Point \. Solidus \/

51 % Colon \: Semicolon \; Less than \<

52 % Equals \= Greater than \> Question mark \?

53 % Commercial at \@ Left bracket \[Backslash \\

54 % Right bracket \] Circumflex \^ Underscore _

55 % Grave accent \‘ Left brace \{ Vertical bar \|

56 % Right brace \} Tilde \~}

Figure 8: .dtx verification code

* This macro file has no checksum!

* The checksum should be 〈number〉!

It is convenient to specify \CheckSum{0} when de-
veloping a package and to replace 0 with the correct
checksum only when the package is ready to be re-
leased.

The character table must appear exactly as
shown in Figure 8, lines 42–56. Doc verifies that
the character table has not been corrupted and out-
puts the following success message:

* Character table correct *

If any character differs from that which was expected,
Doc issues the following error message:

! Package doc Error: Character table

corrupted.

3.4 Miscellaneous initialization

Doc can automatically typeset a list of changes made
in each version of the package code. It is customary
to include an entry for the first version of the code,
as shown in line 57 of Figure 9. The first argument
is the version number in which the change was made;
the second argument is the date the change was made;
and, the third argument is a description of the change.
If \changes is called from within the description of a
macro or environment, the change is associated with
that macro or environment. Otherwise, the change
is categorized as “General”.

The \GetFileInfo macro (line 59) reads the
given file and parses its invocation of \ProvidesFile
(lines 20 and 25 of Figure 6). \GetFileInfo makes

57 % \changes{v1.0}{2008/02/18}{Initial version}

58 %

59 % \GetFileInfo{mypackage.dtx}

60 %

61 % \DoNotIndex{\newcommand,\newenvironment}

Figure 9: Miscellaneous initialization commands

the date part of \ProvidesFile’s argument available
as \filedate, the version as \fileversion, and the
package description as \fileinfo. The documenta-
tion can then use those macros when referring to the
package.

One of Doc’s most useful features is the auto-
matic production of a code index. Every control
sequence defined or used by the package is automati-
cally indexed. However, particularly common control
sequences can be distracting and should be omit-
ted from the index. The \DoNotIndex macro takes
a comma-separated list of control sequences that
should not be indexed. (\DoNotIndex can be — and
usually is — invoked repeatedly, with one line’s worth
of control sequences at a time.) Typically, TEX
primitives such as \if /\else /\fi, \begingroup /
\endgroup, and \def / \edef / \gdef / \xdef ap-
pear as arguments to \DoNotIndex, as do common
macros from the LATEX kernel such as \newcommand /
\renewcommand and \newcounter / \newsavebox /
\newlength. However, a package that redefines
\newcounter, for example, probably would want to
index that control sequence. Producing a good in-
dex takes a lot of judgment; think carefully about
what someone reading the code might be interested
in locating.

TUGboat, Volume 29 (2008), No. 2 311

62 % \title{The \textsf{mypackage} package\thanks{This document

63 % corresponds to \textsf{mypackage}~\fileversion, dated \filedate.}}

64 % \author{Your Name Here \\ \texttt{you@yournamehere.org}}

65 %

66 % \maketitle

67 %

68 % \section{Introduction}

69 %

70
...

71 %

72 % \section{Usage}

73 %

74
...

75 %

76 % \DescribeMacro{\myMacro}

77 % This macro does nothing.\index{doing nothing|usage} It is merely an example. If this were a

78 % real macro, you would put a paragraph here describing what the macro is supposed to do, what

79 % its mandatory and optional arguments are, and so forth.

80 %

81 % \DescribeEnv{myEnv}

82 % This environment does nothing. It is merely an example. If this were a real environment, you

83 % would put a paragraph here describing what the environment is supposed to do, what its

84 % mandatory and optional arguments are, and so forth.

Figure 10: Prose description of the package

\myMacro This macro does nothing. It is
merely an example. If this were a real
macro, you would put a paragraph
here describing what the macro is
supposed to do, what its mandatory
and optional arguments are, and so
forth.

myEnv This environment does nothing. It
is merely an example. If this were
a real environment, you would put
a paragraph here describing what
the environment is supposed to do,
what its mandatory and optional ar-
guments are, and so forth.

Figure 11: Typeset output of \DescribeMacro and

\DescribeEnv

3.5 User documentation

Package documentation usually begins with a few
sections of documentation for the user of the package,
as shown in Figure 10. The \title specification in
lines 62 and 63 is fairly typical in that it sets the
package name with \textsf and uses \thanks to
include a footnote with the package’s version number
and release date. \date is often omitted from the
title block to distinguish the date the document was
printed (\today) from the date the package was last

modified (\filedate).
There is no \begin{document} in Figure 10 be-

cause the \begin{document} already appeared in
the .dtx driver code (Figure 7); the code in Figure 10
is included through the driver code’s invocation of
\DocInput.

It is common to begin the package documenta-
tion with an introductory section that describes what
the package does and a usage section that explains
how to use the package. The Doc package provides
two macros that help give a uniform look to usage sec-
tions in package documentation: \DescribeMacro

and \DescribeEnv. Figure 11 displays how Doc

typesets lines 76–84 of Figure 10. Notice that the
macro or environment name is placed in the margin,
where it is easy for a reader to find. Furthermore, the
macro/environment name is automatically indexed,
with the corresponding page number appearing in the
so-called usage style (normally italics) in the index.
Line 77 of Figure 10 shows how to index arbitrary
text in the same style, using \index{〈term〉|usage}.

3.6 Package source code

The documented package source code follows the user
documentation. Because the average user is not inter-
ested in the package’s implementation, Doc enables
a user to avoid including the package’s source code
when building the documentation by inserting a call

312 TUGboat, Volume 29 (2008), No. 2

85 % \StopEventually{}

86 %

87 % \section{Implementation}

88
...

89 % \begin{macro}{\myMacro}

90 % The |\myMacro| macro takes a person’s name

91 % and returns the string ‘‘Hello,

92 % \meta{name}’’.

93 % \begin{macrocode}

94 \newcommand{\myMacro}[1]{%

95 Hello, #1\relax

96 }

97 % \end{macrocode}

98 % \end{macro}

99
...

100 % \Finale

Figure 12: Sample Implementation section

to \OnlyDescription into the .dtx driver code (be-
tween the \documentclass and \begin{document}

lines in Figure 7).
Figure 12 shows how to document the package’s

source code. The entire code should be bracketed be-
tween a call to \StopEventually (line 85) and a call
to \Finale (line 100). \StopEventually takes an
argument, which is the text for all of the sections that
follow the package source code, for example the list
of references or the package’s copyright and license
information. Because the text appears as an argu-
ment to a command, certain LATEX constructs such
as \verb cannot be used within \StopEventually.
Unfortunately, ordinary document sections cannot
simply be placed after the call to \Finale because
\OnlyDescription would still discard them.

It is good practice to use the standard LATEX
sectioning commands within the implementation sec-
tion to organize the code and clarify its structure; for
example, \subsection{Initialization macros},
\subsection{Helper macros}, \subsection{User-
callable macros and environments}, One
of the beauties of literate programming is that any
LATEX code can be used to document a package: ta-
bles, figures, mathematics — whatever is appropriate
for explaining how the package works.

Lines 89–98 of Figure 12 give a sample macro def-
inition. A macro definition starts with \begin{macro}

and the macro name and ends with \end{macro}.
The Doc package puts the macro name in the margin
and includes an index entry with the source-code line
number set in the main style (normally underlined).

Following the \begin{macro} comes the descrip-
tion of what the macro does. The sample description
in Figure 12 uses two convenient features of the Doc

package. First, “|” toggles verbatim mode, which
is convenient for macro documentation that would
otherwise be cluttered with \verb invocations. (This
shortcut is in fact provided by the shortvrb package,
which is included by Doc.) One caveat is that “|”
cannot then be used in a tabular (or other) envi-
ronment without first disabling its verbatim proper-
ties using \DeleteShortVerb and reenabling them
afterwards with \MakeShortVerb. See the Doc doc-
umentation [4] for more information. The second
useful Doc feature that appears in Figure 12 is \meta,
which typesets its argument in italics and within an-
gle brackets, as in “〈name〉”. This is useful for type-
setting metasyntactic variables such as 〈number〉 or
〈length〉.

The macro source code appears, uncommented,
within a macrocode environment. Because of some
behind-the-scenes trickery in how macrocode is han-
dled, there must be exactly four spaces between the
“%” and the \begin{macrocode} (as shown in line 93)
and between the “%” and the \end{macrocode} (as
shown in line 97). When the documentation is
typeset, the lines between \begin{macrocode} and
\end{macrocode} are automatically numbered, and
all control sequences encountered are automatically
indexed in an unadorned style.

While Figure 12 shows only how to define a
macro, environments are defined analogously, us-
ing \begin{environment} / \end{environment} in-
stead of \begin{macro} / \end{macro} but still us-
ing \begin{macrocode} / \end{macrocode} to de-
lineate blocks of LATEX code. Definitions of things
other than macros and environments — lengths, coun-
ters, boxes, etc.— should be placed within a macro

environment.
The sample macro definition given in Figure 12

is typical of short, simple macros. Longer, more com-
plex macros may benefit from additional commentary
within the macro body. In addition, it is common in
LATEX for macros to define other macros. A .dtx file
can handle both of these cases: Figure 13 shows how.
It may be easier to follow Figure 13 by comparing it
to the typeset output, shown in Figure 14. Notice
how the \begin{macro}{\othermacro} is nested
within the \begin{macro}{\complexdef}. Pack-
ages that include a number of short, related defi-
nitions (e.g., a set of \newlength calls) commonly
specify a sequence of \begin{macro} calls followed
by a description of all the definitions as a whole
(e.g., “These lengths represent the jabberwock’s width,
height, and depth”), followed by a single macrocode

environment that includes all of the related declara-
tions back-to-back.

TUGboat, Volume 29 (2008), No. 2 313

% \begin{macro}{\complexdef}

% This is a more sophisticated use of the |macro| and |macrocode| environments than was used in

% Figure 12. Notice the nested |macro| environments and the repeated |macrocode| environments.

% \changes{v1.1}{2008/02/18}{Changed ‘‘Goodbye’’ to ‘‘Hello’’}

% \begin{macrocode}

\DeclareRobustCommand{\complexdef}[1]{%

Hello, #1.

% \end{macrocode}

% You can insert comments anywhere. Just call |\end{macrocode}|, enter your text, and start a

% new |\begin{macrocode}|.

% \begin{macrocode}

How do you like my macro?%

% \end{macrocode}

% \begin{macro}{\othermacro}

% Here we have the |\othermacro| macro defined within the |\complexdef| macro. |macro|

% environments are allowed to nest.

% \begin{macrocode}

\gdef\othermacro{#1}%

}

% \end{macrocode}

% \end{macro}

% \end{macro}

Figure 13: A more complex macro definition

\complexdef This is a more sophisticated use of the macro and macrocode environments than was
used in Figure 12. Notice the nested macro environments and the repeated macrocode

environments.

1 \DeclareRobustCommand{\complexdef[1]{%

2 Hello, #1.

You can insert comments anywhere. Just call \end{macrocode}, enter your text, and
start a new \begin{macrocode}.

3 How do you like my macro?%

\othermacro Here we have the \othermacro macro defined within the \complexdef macro. macro

environments are allowed to nest.

4 \gdef\othermacro{#1}%

5 }

Figure 14: Typeset version of Figure 13

3.7 The change history and index sections

The \changes call in Figure 13 is not typeset in place
but rather schedules a line to be added to the docu-
ment’s Change History section. Because Figure 13’s
\changes call appears within a macro environment
it is assumed to apply to the surrounding macro
instead of to the document as a whole. Figure 15 il-
lustrates how the Change History section may appear
in the typeset documentation. If \changes appears
outside of a macro or environment environment, the
corresponding line in the Change History section lists
“General” in place of a macro/environment name.

Running the .dtx file through latex produces a

Change History

v1.1
\complexdef: Changed “Goodbye”
to “Hello” . 1

Figure 15: Sample Change History section

corresponding .idx file if \CodelineIndex appears
in the driver code and a corresponding .glo file if
\RecordChanges appears in the driver code. The
makeindex program [2] can be used as shown in

314 TUGboat, Volume 29 (2008), No. 2

makeindex -s gind.ist -o 〈package〉.ind \

〈package〉.idx
makeindex -s gglo.ist -o 〈package〉.gls \

〈package〉.glo

Figure 16: Commands for producing an index and a

change history

Figure 16 to convert the .idx file to a typeset index
(.ind) and the .glo file to a typeset change history
(.gls).

3.8 Additional notes about comments

Program comments should not be written between
\begin{macrocode} and \end{macrocode} because
everything within a macrocode environment is type-
set as code, not as formatted text. (Figure 13 shows
the proper way to include inline code comments.)
However, it is possible to write comments that are
not typeset at all (e.g., for documenting a macro
definition that is part of the user documentation, not
of the package itself), In fact, all combinations of
“visible in the user documentation” and “visible in
the .sty file” are possible. Table 1 summarizes the
techniques for achieving each of these combinations.

Table 1: Comment visibility

Appears Appears
Mechanism

in docs in .sty

N N % ˆˆA 〈comment〉
N Y % \iffalse

%% 〈comment〉
% \fi

Y N % 〈comment〉
Y Y %% 〈comment〉

4 Concluding remarks

The advantage of using .ins and .dtx files is that
they encapsulate not only the LATEX-readable pack-
age code but also a human-readable description of
the code. Unlike typical, text-only program com-
ments, documentation produced from .ins and .dtx

files can take advantage of all of LATEX’s typesetting
power —sectioning, cross-references, figures, tables,
mathematics, etc.—coupled with automatic index-
ing of all macro and environment definitions and
uses and automatically pretty-printed code listings.
Because of their ability to facilitate the production
of immensely readable package documentation, .ins
and .dtx files are the most popular way to distribute
LATEX packages and represent a technique that all
LATEX package writers should strongly consider using
for their own packages.

References

[1] Donald E. Knuth. Literate programming.
The Computer Journal, 27(2):97–111,
May 1984. Available from http://www.

literateprogramming.com/knuthweb.pdf.

[2] Leslie Lamport. MakeIndex: An Index Processor
for LATEX, February 17, 1987. Available
from http://www.ctan.org/get/indexing/

makeindex/doc/makeindex.pdf.

[3] Frank Mittelbach. The doc—option. TUGboat,
10(2):245–273, July 1989. Available from
http://www.tug.org/TUGboat/Articles/

tb10-2/tb24mitt-doc.pdf.

[4] Frank Mittelbach. The doc and shortvrb

packages. Distributed as part of LATEX2ε,
February 9, 2004. Document source is available
from http://www.ctan.org/get/macros/

latex/base/doc.dtx.

[5] Frank Mittelbach, Denys Duchier, Johannes
Braams, Marcin Woliński, and Mark Wooding.
The DocStrip program. Distributed as part
of LATEX2ε, July 29, 2005. Available from
http://www.ctan.org/get/macros/latex/

base/docstrip.dtx.

[6] The LATEX3 Project. LATEX2ε for class and
package writers. Distributed with LATEX2ε
as clsguide.dvi, February 15, 2006. Also
available from http://www.ctan.org/get/

macros/latex/doc/clsguide.pdf.

⋄ Scott Pakin

4975 S. Sol

Los Alamos, NM 87544-3794

USA

scott+tb (at) pakin dot org

http://www.pakin.org/~scott

TUGboat, Volume 29 (2008), No. 2 315

ConTEXt basics for users: Indentations

Aditya Mahajan

Abstract

ConTEXt’s indentation mechanism can be a bit con-
fusing. This article explains why ConTEXt indenta-
tion works the way it does and how to set up inden-
tation to achieve desired behaviour.

1 Introduction

In plain TEX, controlling indentation is simple: The
user sets a value for \parindent, and each new para-
graph is indented by that value, unless explicitly be-
gun with \noindent. Environments can provide a
\noindent at the end of their definitions, and if the
user wants to overrule that, he can add an explicit
\indent at the beginning of the next paragraph. For
the most part, LATEX follows the same convention.

So, understanding indentation in plain TEX
and LATEX boils down to this: set a value for
\parindent, and start a new paragraph (i.e., leave
an empty line) whenever you want indentation. For
example, LATEX usually does not indent the first line
after a sectioning command. If you want to indent
the first line after a sectioning command you use the
indentfirst package (which is part of the required
LATEX bundle). If you want to indent the paragraph
after an environment, you leave a blank line after
the end of the environment; if you do not want to
indent after the end of an environment, you do not
leave a blank line. It takes a while to get used to,
but the rules are easy to remember and eventually
you do not need to even think about indentation; it
becomes a matter of habit.

Indentations in ConTEXt are a bit different; and
sometimes difficult to understand. In this article
I hope to explain how ConTEXt does indentations.
First, let’s understand why ConTEXt does inden-
tations differently; why does it not simply follow
the time-tested approach of plain TEX and LATEX?
The way I understand it, the reason is that Hans
Hagen, the author of ConTEXt, prefers spaced out
markup — surrounding each environment by empty
lines — which makes it easy to see where an environ-
ment starts and ends while reading the source file.
However, this style means that the “indentation after
empty lines” paradigm of plain TEX and LATEX can-
not be used for indentations. So, ConTEXt provides
an alternative. As with other things in ConTEXt,
this alternative is consistent and easy to configure;
but if you are used to other TEX formats it takes
some time to get comfortable with it.

2 The basics

Indentation involves two things: when to indent, and
how much to indent. In ConTEXt, these can be spec-
ified using \setupindenting[...]. There are two
types of keys for this command:

1. To specify when to indent: never or always,
(equivalently, no or yes), odd or even, and
first or next.

2. To specify how much to indent: none, small,
medium, big, or a specific dimension. small

corresponds to 1em, medium to 1.5em, and
big to 2em.

Suppose we want to indent all paragraphs by 20pt,
which is the convention followed by this journal:
we can use \setupindenting[20pt, yes]. This is
what one typically uses in a document. The other
keys are needed only for special cases (like typeset-
ting quotations and verses), and we will not talk
about them in this article.

\setupindenting does not take care of indent-
ing after environments, such as ConTEXt’s itemizes
(approximately LATEX itemize and enumerate),
enumerations (≈ LATEX theorem), definitions (≈
LATEX subparagraph), formulas and floats. It also
does not take care of indenting after heads such as
chapters, sections, and subsections.

The setup command of these environments
provides an indentnext key to configure the in-
dentation behaviour after the environment. The
indentnext key can take one of three values: yes,
no, and auto. If indentnext=yes then the para-
graph after the end of the environment is always in-
dented; if indentnext=no then the next paragraph
is never indented; if indentnext=auto then the next
paragraph is indented only if there is a blank space
after the environment. Setting indentnext=auto is
equivalent to the default plain TEX and LATEX be-
haviour.

Let us provide a couple of examples. Suppose
we do not want paragraphs after itemize to be in-
dented; then we can say

\setupitemgroup[itemize][indentnext=no]

If we want paragraphs after section heads to be in-
dented, we can say

\setuphead[section][indentnext=yes]

If we want the paragraphs after all sectioning heads
to be indented, we can say

\setupheads[indentnext=yes]

If we want paragraphs after formulas to be indented
only if we leave a blank space after them, we can say

\setupformulas[indentnext=auto]

316 TUGboat, Volume 29 (2008), No. 2

There is one case that is not taken care of by
\setupindenting and the indentnext key: inden-
tation of paragraphs inside multi-paragraph environ-
ments such as itemizes, descriptions, and enumer-
ations. By default ConTEXt does not indent such
paragraphs. The setup commands of these environ-
ments provides an indenting key to configure the
indentation behaviour of paragraphs inside these en-
vironments. This key takes the same values as the
arguments of \setupindenting command. For ex-
ample, if we set

\setupitemgroup[itemize][indenting={40pt,yes}]

then the following (|-| in ConTEXt indicates a hy-
phen after which further hyphenation is allowed; see
http://www.logosrl.it/context/modules/

current/singles/lang-mis_ebook.pdf for more):

\startitemize

\item This is an example of a multi|-|paragraph

item inside an itemize environment.

This second paragraph is indented by 40pt

(double the normal indentation).

\stopitemize

gives

• This is an example of a multi-paragraph item
inside an itemize environment.

This second paragraph is indented
by 40pt (double the normal indentation).

3 Manual indentation

No matter how careful we are with all the settings,
there are some cases which cannot be taken care of
by automatic indentation, and we have to tell Con-
TEXt how to indent. Plain TEX (and LATEX) provide
the \indent and \noindent commands for explicitly
indenting and preventing indenting of a paragraph.
These commands are defined in ConTEXt but are
not hooked into the ConTEXt indentation mecha-
nism. Instead, ConTEXt provides \indentation and
\noindentation which achieve the same effect.

Notice that in this article, paragraphs after
itemize are not indented. This is because the item-
ize environment has been set up (according to the
general style of the journal) as

\setupitemgroup [itemize] [indentnext=no]

Now, if we want to indent after an itemize, start-
ing the next paragraph with \indent does not work;
to get indentation we have to say \indentation. For
example,

\startitemize[n]

\item A dummy list

\item To check \tex{indent}

\stopitemize

\indent This paragraph is not indented. The

\tex{indent} command does not work here.

\startitemize[n]

\item Another dummy list

\item To check \tex{indentation}

\stopitemize

\indentation This paragraph will be indented

because we used \tex{indentation} instead.

gives

1. A dummy list
2. To check \indent

This paragraph is not indented. The \indent com-
mand does not work here.

1. Another dummy list
2. To check \indentation

This paragraph will be indented because we
used \indentation instead.

4 Beware of typos

ConTEXt defines two more commands not commonly
used: \indenting and \noindenting. \indenting

is similar to \setupindenting and is provided for
backward compatibility; \noindenting is equiva-
lent to \setupindenting[no]. Unfortunately, these
commands sound very similar to \indentation and
\noindentation, thus can be easily used by mis-
take. If you happen to write \noindenting instead
of \noindentation in a document, it can take a
while to debug. I have been bitten by this mistake
once too often so I have invented a mnemonic to
avoid it:

shun (-tion) the -ing—use indentation
I admit, this is not a clever mnemonic, but it has
saved me quite a few trips to the manual.

5 Conclusion

This article explained how indentation works in Con-
TEXt. By default, ConTEXt does not enable any
indentation; the user is expected to set up inden-
tation as he wants. I hope this article has helped
to illustrate how to set up indentation for different
environments.

⋄ Aditya Mahajan
University of Michigan
adityam (at) umich dot edu

TUGboat, Volume 29 (2008), No. 2 317

MetaPost

Kanji-Sudokus: Integrating Chinese
and graphics

Denis Roegel

1 Introduction

Recently, I had the need to get my hands on Werner
Lemberg’s excellent CJK package, for a talk on the
Chinese calendar in which I wanted to use META-
POST figures with Chinese labels. This worked al-
most seamlessly.

Actually, this isn’t quite true, but CJK is better
and better integrated into TEX Live these days, and
writing in Chinese, Japanese or Korean has become
pretty much mundane with an up-to-date TEX envi-
ronment. This wasn’t so even a year ago. Nowadays,
you still need to install various Linux (say) packages,
and one is likely to run into trouble because some
crucial element is missing. For instance, on my lat-
est Ubuntu, the TEX Live setup wasn’t complete
and I was missing some Korean fonts I needed. By
the time you read this, the problem may have been
solved already.

To sum up, with the latest TEX Live 2007 setup,
and perhaps a few additional Linux packages, as
well as the latest Emacs, you are all set for type-
setting beautiful CJK documents! Typesetting CJK

has even become easier, because one can now write
almost everything in UTF-8, without a need to post-
process the input file with Emacs macros (this pro-
cedure used to output a .cjk file which could only
then be processed by LATEX). Now, the file you write
is the file you process, and processing has become
faster.

For METAPOST figures, the matter was also
made easier. Up until recently, when including Chi-
nese in METAPOST, one had first to produce a .cjk

file, which could unfortunately not be processed by
METAPOST. The .cjk file had to be slightly altered
first, because the Emacs macros were not aware of
the METAPOST format. This could have been cor-
rected within the Emacs macros, but in fact, since
the conversion to the .cjk file is now mostly an old
story, the processing problems have also vanished.
So, my advice is not only to switch to the latest TEX
Live and Linux, but also to write CJK in UTF-8. It
works!

2 A small example

I will illustrate the integration of Chinese and META-
POST with a small example. I will draw a Sudoku

grid, not with Hindu-Arabic numerals, but with Chi-
nese numerals. These numerals are 一 (1), 二 (2),

三 (3), 四 (4), 五 (5), 六 (6), 七 (7), 八 (8), and

九 (9).
A typical Sudoku problem reads as follows (this

example from Wikipedia):

8 7 9

4 1 9 5

6 2 8

7 2 6

4 8 3 1

8 6 3

9 8 6

6 1 9 5

5 3 7

2.1 The grid

The whole Sudoku problem can be drawn as follows
in METAPOST:

beginfig(1);

string sol[];

drawgrid(1.5pt,.5pt);

% first row at the bottom

% last row at the top

sol1="000080079";sol2="000419005";

sol3="060000280";sol4="700020006";

sol5="400803001";sol6="800060003";

sol7="098000060";sol8="600195000";

sol9="530070000";

fillgrid(sol)(false);

endfig;

The drawgrid macro is straightforward; it pro-
duces the horizontal and vertical lines (with u being
for instance equal to 1 cm):

def drawgrid(expr tha,thb)=

pickup pencircle scaled thb;

for i=0 upto 9:

draw (i*u,0)--(i*u,9u);

draw (0,i*u)--(9u,i*u);

endfor;

pickup pencircle scaled tha;

for i=0 upto 3:

draw (3i*u,0)--(3i*u,9u);

draw (0,3i*u)--(9u,3i*u);

endfor;

enddef;

318 TUGboat, Volume 29 (2008), No. 2

2.2 Filling the grid

In order to fill the grid, we need to access the posi-
tion (i, j), where i is the column and j is the row, all
numbered from 1 at the bottom-left cell. We there-
fore define the following macro, which takes i, j and
a label that it centers in the middle of the cell. In
our case, the label is scaled 200%, but how much
you scale depends on the dimensions of the frame
and on the base size of the font.

def pos(expr i,j,l)=

label(l scaled 2,((i-.5)*u,(j-.5)*u));

enddef;

2.3 Cell entries

In order to put, say, the value 3 at position (2,9), we
could write

pos(2,9,btex 3 etex);

However, we want to be more general and draw
our figures from the string array sol. That way,
some program can produce a problem and/or a so-
lution, and the problem can easily be plugged into
our macros. So, instead, we could write

pos(2,9,TEX(s));

where s is a string provided to the TEX macro. The
latter is defined by loading the package TEX:

input TEX;

This, however, is not very efficient, because it
will call TEX up to 81 times. And besides, it won’t
take care of Chinese numerals when we need them.
So, we are looking for something more flexible. The
latexmp METAPOST package will suit our needs.
The previous label is now obtained with

pos(2,9,textext(s));

One of the advantages of the latexmp package
is that it will require only two runs of LATEX, and not
one for every label. This package also makes it easy
to load LATEX packages, in particular for Chinese.
So, our METAPOST file will begin as follows:

input latexmp;

setupLaTeXMP(class="article",

packages="CJKutf8",

preamble=(

"\let\N\newcommand"

&"\N\0{}\N\1{一}\N\2{二}\N\3{三}"

&"\N\4{四}\N\5{五}\N\6{六}\N\7{七}"

&"\N\8{八}\N\9{九}"

&"\AtBeginDocument{"

& "\begin{CJK}{UTF8}{bsmi}}"

&"\AtEndDocument{\end{CJK}}"));

This preamble will load the CJKutf8 package,
which is what we need for UTF-8 input. It then
defines the commands \0 (for void), \1 (Chinese nu-
meral 1), \2 (Chinese numeral 2), etc., up to \9.

Then, we start an appropriate (for these char-
acters) CJK environment at the \begin{document}

hook:

\AtBeginDocument{

\begin{CJK}{UTF8}{bsmi}}

and we close the environment at the end of the doc-
ument:

\AtEndDocument{\end{CJK}}

2.4 Putting all the pieces together

We now have a definition of cell values, we can draw
a grid, and we have macros for Chinese numerals.
What’s next? Well, we want to be able to do two
kinds of things: draw problems, and draw solutions.
For our purposes, a problem is merely an array of
cell values with some cells being equal to 0. These
0s will be displayed as empty cells. In addition to
this switch, we want to display the non-void values
either with Hindu-Arabic numerals or with Chinese
numerals.

Our coding of cell values makes this rather easy,
because we will use (for instance) 4 for the Hindu-
Arabic numeral, and \4 for the Chinese numeral. So,
care must be taken of this additional \ when needed.
The special case of 0 must also be considered, be-
cause the Hindu-Arabic numeral 0 must not be dis-
played, whereas the Chinese \0 can be displayed,
since it is void.

The ‘0’ switch is handled with the zerospace

macro. This macro takes a character s and replaces
this character by a space only when it is 0 and when
the output uses Hindu-Arabic numerals.

def zerospace(expr chinese,s)=

if not chinese and (s="0"): " "

else: s fi

enddef;

Finally, filling the grid is done with fillgrid.
The first parameter is the name of the string array
and the second parameter is a switch for Chinese
or Hindu-Arabic numerals. substring is used to
isolate the character of interest.

def fillgrid(text grid)(expr chinese)=

for i=1 upto 9:for j=1 upto 9:

pos(j,i,textext(if chinese: "\" & fi

zerospace(chinese,

substring(j-1,j) of grid[i])));

endfor;endfor;

enddef;

TUGboat, Volume 29 (2008), No. 2 319

The result is then as follows for the problem
and the solution, with Chinese numerals:

八 七 九

四 一 九 五

六 二 八

七 二 六

四 八 三 一

八 六 三

九 八 六

六 一 九 五

五 三 七

三 四 五 二 八 六 一 七 九

二 八 七 四 一 九 六 三 五

九 六 一 五 三 七 二 八 四

七 一 三 九 二 四 八 五 六

四 二 六 八 五 三 七 九 一

八 五 九 七 六 一 四 二 三

一 九 八 三 四 二 五 六 七

六 七 二 一 九 五 三 四 八

五 三 四 六 七 八 九 一 二

3 Conclusion

This example demonstrates how straightforward the
integration of Chinese and METAPOST has become.
What remains to be done is to link these macros with
a general problem solving algorithm for Sudokus.

⋄ Denis Roegel
LORIA, BP 239
54506 Vandœuvre-lès-Nancy
FRANCE

roegel (at) loria dot fr

http://www.loria.fr/~roegel

Hints & Tricks

Interesting loops and iterations —
second helping

Pawe l Jackowski

Abstract

Where on earth does a programmer have to imple-
ment a loop construct himself? In TEX! TEX as
a programming language is akin only to itself. Its
interesting feature, rarely to be found among pro-
gramming languages, is the lack of a built-in loop
construct. However, thanks to TEX dealing per-
fectly well with recursive definitions and its ability
to check conditions there are no obstacles to defin-
ing DIY loops. It has been done by Donald Knuth
in plain TEX, extended by Alois Kabelschacht, Kees
van der Laan, Marcin Woliński and many others and
used by every practicing TEXie. This article sums
up what every TEXie should know about loops. We
will not shy away from dirty tricks which users need
not know about.

Taking on \loop

Let’s yet again review the traditional plain-ish loop
definition ([1], p. 352):

\def\loop#1\repeat{%

\def\body{#1}\iterate}

\def\iterate{%

\body \let\next\iterate

\else \let\next\relax\fi \next}

\let\repeat=\fi

The definition is pretty readable and understand-
able thanks to the supporting macros suggestively
named \next and \body. However, an unnecessary
assignment is performed at every iteration. This
assignment gives a meaning to the \next instruc-
tion as well as the \body instruction which, in
principle, should not be used anywhere else. As
the instructions are hidden from the user a name
conflict can easily arise.

There are several well-known enhancements of
this traditional definition which use \expandafter

This is a translation of the article “Ciekawe pętle
i iteracje na drugą nóżę”, which first appeared in
Biuletyn GUST nr 22 (2005), 3–6. Reprinted by
permission. Translation by Jerzy Ludwichowski.

320 TUGboat, Volume 29 (2008), No. 2

instead of the scratch \next macro. For example,
from [2]:

\def\loop#1\repeat{%

\def\body{#1}\iterate}

\def\iterate{%

\body\expandafter\iterate\fi}

or even simpler, from [6]:

\def\loop#1\repeat{%

\def\iterate{%

#1\expandafter\iterate\fi}%

\iterate}

In the first case we are getting rid of the superfluous
definition of \next and in the second also of the
definition of \body. In yet another construction (for
an extended description see [3]) the whole contents
of the loop is executed outside of a conditional block
\if...\fi:

\def\loop#1\repeat{%

\def\body{#1}\iterate}

\def\iterate{%

\body\else\etareti\fi\iterate}

\def\etareti\fi\iterate{\fi}

A summary of these and other solutions may be
found in [4].

A loop in a loop

The above constructs, though correct and elegant,
do not allow loop nesting. In each of them the first
operation remembers the content of the loop in an
instruction. Embedding it would cause a conflict
for the inner and outer loops.

Is there a way out? Yes. At the cost of slightly
slowing the loop one may use a macro parameter
instead of a definition. For example, instead of
repeating the \body at every \iterate, we can set
the repeated code fragment as an argument of the
\iterate instruction. For convenience the \long

prefix is used, to enable the use of \par within the
loop. We also define the \gobbleone macro, which
is called just before processing leaves the loop and
gobbles the superfluous argument just after the \fi

ending the conditional.

\long\def\loop#1\repeat{%

\iterate\gobbleone{#1}}

\long\def\iterate\gobbleone#1{%

#1\expandafter\iterate\fi

\gobbleone{#1}}

\long\def\gobbleone#1{}

The \gobbleone definition plays a second role —
it delimits the \iterate macro (i.e., is a macro

delimiter). When the \iterate instruction is being

executed, the immediately following \gobbleone is
swallowed as an unused fragment of the parameter.
At the end of the loop \iterate is skipped, but
\gobbleone swallows the loop content argument.

This loop might be used like the traditional
form, the difference being that it can be nested, as
shown in the following example:

\count100=9

\loop{\count101=65 % ASCII ‘A’

\advance\count100 by-1

\ifnum\count100>0

\leavevmode\loop

\char\count101 \the\count100

\advance\count101 by1

\ifnum\count101<73 \space

\repeat\par

}\repeat

The code produces something akin to a chess
field. The row elements are typeset by the inner
loop and the rows are produced by the outer loop.

A8 B8 C8 D8 E8 F8 G8 H8

A7 B7 C7 D7 E7 F7 G7 H7

A6 B6 C6 D6 E6 F6 G6 H6

A5 B5 C5 D5 E5 F5 G5 H5

A4 B4 C4 D4 E4 F4 G4 H4

A3 B3 C3 D3 E3 F3 G3 H3

A2 B2 C2 D2 E2 F2 G2 H2

A1 B1 C1 D1 E1 F1 G1 H1

One should note the use of grouping in the outer
loop block:

\loop{...\loop...\repeat...}\repeat

This group affects only the scope of the ar-
gument reading. The content of the outer loop is
not executed within the group. Thanks to this,
the outer loop can use the assignments done in the
inner loop. Grouping is necessary — without it TEX
would cease reading the outer loop just after seeing
the first \repeat.

Let it resolve

The capabilities of TEX do not end in incrementing
and checking the counter value. Moreover, TEX
iterations are not restricted to \loop...\repeat

constructions. Often there is a need to execute
some procedure for each token of a group, in a
context where assignments cannot be used (e.g.,
when creating definitions with \edef, \xdef, inside
\write-s, \special-s and \mark-s). Here it is
worth citing the beautiful-in-its-simplicity macro
\fifo, described in more detail in [3]:

TUGboat, Volume 29 (2008), No. 2 321

\def\fifo#1{\ifx\ofif#1\ofif\fi

\process#1\fifo}

\def\ofif#1\fifo{\fi}

In the example below \fifo is used to create a
crib sheet of codes of some diacritics:

\def\process#1{(#1 -> \number‘#1)}

\immediate\message

{\fifo áéó\ofif}

Counting of iterations is replaced here by
executing the \process instruction for consecutive
arguments. At the start of each iteration \ifx

checks if the just-found argument is the \ofif

token. The latter both delimits the token list and
is a macro ending the condition executed after the
last iteration.

Number games

No one needs convincing that expandable macros
(without assignments) are more convenient. But
how can assignments be avoided in loops operat-
ing on numbers? The most typical use of loops
is repeating code some defined number of times.
The previously shown \loop...\repeat constructs
achieve this by iteratively incrementing or decre-
menting a counter, but this requires assignments.

The task is not hopeless, however. As the
preceding example shows, the \number instruction
expands “on the fly” any TEX representation of a
number into its decimal form. In the basic version
of TEX every arithmetic operation requires an as-
signment. To the rescue comes ε-TEX, which offers
several convenient operations that allow dodging
inconvenient assignments. The \numexpr instruc-
tion will serve as an example. It executes, in an
expandable way, the basic operations on numbers
(addition, subtraction, multiplication and division).

Let us use \numexpr to build a \replicate

macro which repeats an arbitrary piece of code a
given number of times. The first parameter is the
number of repetitions, the second is the content of
the loop.

\long\def\replicate#1#2{%

\ifnum\numexpr#1>0

#2\replicate{#1-1}{#2}\fi}

The loop starts with the check for the counter being
positive, i.e., if the repetition should be executed.
If so, then the contents of the loop, given as the
second parameter, is executed and then a recursive
call is being made to the \replicate procedure
with the counter subtracted by 1 and the second
parameter unchanged.

This construct suffers from two serious draw-
backs. First, each repetition is executed within
accumulating \ifnum...\fi blocks, which threat-
ens catastrophe if a large number of iterations is
required. Second, the length of the first parameter
of the macro is increased by two at each turn of
the loop, hence during the check of the counter
value TEX must each time evaluate an ever longer
expression of the form \numexpr100-1-1-1....

Therefore let us try to modify the \replicate

macro so as to execute each repetition outside of
the \ifnum...\fi condition and give the parameter
representing the counter a more elegant form.

\long\def\replicate#1#2{%

\ifnum\numexpr#1>0

#2\expandafter\replicate\expandafter

{\number\numexpr#1-1\expandafter}%

\else

\expandafter\gobbleone

\fi{#2}}

Again we start by checking if the loop counter is
positive, i.e., if the repetition should be executed. If
so, the content of the loop (the second parameter) is
processed, after which \expandafter in connection
with \number\numexpr decrements the counter by
one and enters the \replicate procedure with the
new value of the counter. The second parameter to
the \replicate procedure is passed on unchanged
and immediately follows the \fi instruction ending
the conditional. When the counter reaches 0 (or if
we mischievously start the loop with the parameter
being not greater than 0), \expandafter kills the
remaining \fi after which the already described
\gobbleone procedure swallows the superfluous
parameter.

We use here the previously mentioned beneficial
feature of the \number instruction which causes the
macros following it to be expanded completely,
i.e., until the decimal representation of the number
is produced. During the expansion of \numexpr,
\expandafter is executed which as if in passing
(during the number expansion!) causes the loop
condition block to disappear. TEX then “notices”
that the expression cannot be expanded further and
returns to the \replicate instruction. The latter
is executed with the numerical argument in decimal
representation and the second argument being the
immutable loop content. This happens outside of
the conditional block.

Here is an example of \replicate in a context
in which the traditional TEX loop with assignment
would fail. The \replicate macro is expandable
and can be nested.

322 TUGboat, Volume 29 (2008), No. 2

\immediate\message

{\replicate{100+1}

{I will be using eTeX%

\replicate{3}{!} }}

Let’s move on to a more complicated example. We
will try to define a \fixed macro which puts the
digit 0 in front of all other digits in such a way
as to complement the number to a set length. For
example,

\fixed{4}{12}

should expand to 0012. We begin by defining a
helper macro to “measure” the length of a sequence.

\long\def\abacus#1{\addabacus#10}

\long\def\addabacus#1#2#3{%

\ifx#3#1#2\else

\expandafter\addabacus

\expandafter#1\expandafter

{\number\numexpr#2+1\expandafter}%

\fi}

The \abacus macro (from Latin: a calculating tool)
counts tokens appearing between a pair of two other
tokens.

\count100=\abacus|Llanfairpwllgwyngyll%

gogerychwyrndrobwllllantysiliogogogoch|

\edef\numofletters{%

\abacus\relax Antidisestablish%

mentarianism\relax}

At each turn of the loop the macro tests if the
upcoming token is the delimiting token of the
measured sequence. If not, the macro in the already
described manner increments the counter by 1 and
moves on to the next iteration. If yes, it simply
returns its counter which is the number of tokens
between the freely chosen delimiters.

Now, we can use \replicate and \abacus to
define a macro to pad the sequence with a chosen
character to a given length.

\def\fixedprefix#1#2#3{%

\expandafter\replicate\expandafter

{\number

\numexpr#1-\abacus\relax#2\relax}

{#3}#2}

If we now write

\edef\test{\fixedprefix{4}{ab}{*}}

the \test instruction will be assigned the value of
**ab. It remains to construct a specialized version
of the \fixedprefix macro which will format
numbers in such a way that they will have the
specified number of digits by prepending with zeros
if needed. Because the \fixed macro should operate
on numbers, the first operation to be performed is

to expand the argument to a sequence of digits only.
We know this trick already.

\def\fixed#1#2{%

\expandafter\fixedzero\expandafter

{\number\numexpr#1\expandafter}%

\expandafter{\number\numexpr#2}}

\def\fixedzero#1#2{%

\fixedprefix{#1}{#2}{0}}

We also know that TEX expands numbers tirelessly
until the end. We also know that it has no prob-
lems with long sequences of tokens swallowed as
arguments. The \rnum (read number) macro pre-
sented below exploits both TEXniques of iteration
to read numbers in different notations, from binary
to hexadecimal.

\def\rnum#1#2{\dornum{#1}{0}#2\relax}

\def\dornum#1#2#3{\ifx#3\relax#2\else

\expandafter\dornum\expandafter

{\number

\numexpr#1\expandafter}\expandafter

{\number

\numexpr#1*#2+"#3\expandafter}%

\fi}

We thus taught TEX to understand what, e.g.,
1 000 000 000 000 means in binary notation:

\count100=\rnum{2}{1000000000000}

The reader may have noticed the character ‘"’ which
was used in the second-to-last line of the \dornum

macro. As is known, for TEX this means: “read the
digits as hexadecimal”. Without it, TEX would not
properly understand the digits A through F.

For dessert we propose the \xnum macro, which
does the opposite of \rnum. It rewrites deci-
mal numbers into other notations, from binary to
hexadecimal and, of course does this in a fully
expandable way. If the reader made it to this point,
he should have no problems in understanding the
following code. However, those who do not use
ε-TEX deserve two explanations.

1. If during calculating \numexpr ε-TEX encoun-
ters the \relax token, it immediately stops
reading the expression and \relax disappears
without a trace.

2. If \numexpr contains non-integer division, the
result will be rounded, unlike in TEX, where it
will be truncated to the integer part.

More about ε-TEX constructions is in [5].

\def\hexdigit#1{%

\expandafter\hexdigits

\number\numexpr#1\relax\relax}

\def\hexdigits#1\relax

{\ifcase#1

TUGboat, Volume 29 (2008), No. 2 323

0\or1\or2\or3\or4\or5\or

6\or7\or8\or9\or A\or

B\or C\or D\or E\or F\fi}

\def\xnum#1#2{%

\expandafter\doxnum\expandafter

{\number

\numexpr#1\expandafter}\expandafter

{\number\numexpr#2}}

\def\doxnum#1#2{%

\ifcase

\ifnum#2<\numexpr#2/#1*#1\relax

0 \else1 \fi

\expandafter\doxnumdown\or

\expandafter\doxnumup\fi

{#1}{#2}}

\def\doxnumdown#1#2{%

\ifnum#1>#2 \else

\expandafter\doxnum\expandafter

{\number#1\expandafter}\expandafter

{\number\numexpr#2/#1-1\expandafter}\fi

\hexdigit{#2-(#2/#1-1)*#1}}

\def\doxnumup#1#2{%

\ifnum#1>#2 \else

\expandafter\doxnum\expandafter

{\number#1\expandafter}\expandafter

{\number\numexpr#2/#1\expandafter}\fi

\hexdigit{#2-#2/#1*#1}}

% test

\count100=\rnum{2}{1000000000}

\immediate\message

{\xnum{16}{\count100}}

Bibliography

[1] Donald E. Knuth: The TEXbook (1990),
Addison-Wesley.

[2] Alois Kabelschacht: \expandafter vs. \let

and \def in conditionals and a generalization
of plain’s \loop. TUGboat, Volume 8 (1987),
No. 2, 184–185.

[3] Kees van der Laan: FIFO and LIFO sing the
BLUes. Biuletyn GUST, nr 4 (1992), 20–26.

[4] Marcin Woliński: O pewnych konstrukcjach
warunkowych i iteracyjnych [On some condi-
tional and iterative constructs]. Biuletyn GUST,
nr 7 (1996), 5–9.

[5] Peter Breitenlohner: The ε-TEX Manual, Ver-
sion 2, February 1998, 9.

[6] Victor Eijkhout: The bag of tricks. TUGboat,
Volume 21 (2000), No. 1, 91.

⋄ Pawe l Jackowski
GUST
P dot Jackowski (at) gust dot org dot pl

324 TUGboat, Volume 29 (2008), No. 2

Glisterings

Peter Wilson

The raging waves doth belching upwardcast
The wretched wrackes that round about doe
fleete,
The silken sayles and glistering golden
Mast,
Lies all to torne and trodden under feete.

The Ship of safegarde, Barnabe Googe

The aim of this column is to provide odd hints or
small pieces of code that might help in solving a
problem or two while hopefully not making things
worse through any errors of mine.

Corrections, suggestions, and contributions will
always be welcome.

The main topic this time is macro definition.
Questions about this, particularly with respect to
LATEX, are fairly regular on the comp.text.tex news-
group. But first. . .

The lines are fallen unto me in pleasant
places; yea I have a goodly heritage.

Psalm 16, verse 6

1 More on paragraphs

Donald Knuth sent me a version of the following
code saying

‘I’ve found this macro to be useful for check-
ing out a \parshape specification before clut-
tering it up with actual text.’

% parshape.tex, featuring a possibly useful

% macro by Don Knuth, April 2007

% \parshapetest{n} will typeset n lines of

% horizontal rules using the current

% paragraph shape (as specified by

% \hangindent, \hangafter, \parshape, or

% none of the above)

\def\parshapetest#1{%

\leavevmode%% DEK originally had \indent here

\count255=1 \loop

\ifnum\count255<#1

\null\leaders\hrule\hfil\null\break

\advance\count255 by 1 \repeat

\null\leaders\hrule\hfil\hskip-\parfillskip

\null\par}

Unfortunately it was too late to incorporate it into
the last column [8] which was about how to typeset
variously shaped paragraphs. It was doubly unfor-
tunate because when I tried using \parshapetest

on some of the examples I found that I had misun-
derstood some aspects of paragraph setting.

\parshapetest{〈num〉} draws 〈num〉 lines ac-
cording to the current paragraph shape specifica-
tion, which doesn’t sound very exciting but can save
a lot of fiddling trying to get the right number of
words for a more realistic trial layout.

For instance, I tried this example from [8]

\begingroup

\hangindent=3pc \hangafter=-2

\parshapetest{4}

\endgroup

which, to my surprise, resulted in:

What I hadn’t realised was that even with spec-
ifying \hangindent and \hangafter, \parindent

was applied to the first line of the shaped paragraph.
The effect that I had expected is obtained as below.

\begingroup

\parindent=0pt

\hangindent=3pc \hangafter=-2

\parshapetest{4}

\endgroup

which results in:

Following this I tried the \hangfrom example
from the same column which demonstrated a hang-
ing paragraph. The macro was defined as:

\newcommand*{\hangfrom}[1]{%

\setbox\@tempboxa\hbox{{#1}}%

\hangindent \wd\@tempboxa

\noindent\box\@tempboxa}

And a demonstration is:

\hangfrom{\Rightarrow\space}

\parshapetest{3}

⇒

Here’s a more interesting paragraph shape, and
the result of testing it:

\newdimen\zide

\zide=\baselineskip

\newcommand*{\aparshape}{%

\parshape=10 0pt 10\zide % 1

0pt 10\zide % 2

9\zide \zide % 3

8\zide \zide % 4

6\zide \zide % 5

4\zide \zide % 6

2\zide \zide % 7

TUGboat, Volume 29 (2008), No. 2 325

\zide \zide % 8

0pt 10\zide % 9

0pt 10\zide % 10

}

\aparshape

\noindent\parshapetest{10}

Try using this paragraph shape with a text of
76 ‘z’ characters with spaces between each, like this:

\aparshape

\noindent

z z z z z z z z z z z z z z z z z z

etc

Replying to a request on the comp.text.tex

newsgroup by Stephen Moye, Paul Vojta [7] posted
the following code1 for setting the first line of a para-
graph flushleft, the next centered and the final line
flushright.

\newcommand*{\leftcenterright}{%

\leftskip=0pt plus 1fil

\rightskip=0pt plus 1fil

\parfillskip=0pt plus -1fil

\parindent=0pt

\everypar={\hskip0pt plus -1fil}}

This should either be used in a group, or you can
use the following macro to return to the regular
paragraph style, where you have previously specified
\myparindent as the normal value of \parindent.

\newcommand*{\regularpar}{%

\leftskip=0pt plus 0pt minus 0pt

\rightskip=\leftskip

\parfillskip=0pt plus 1fil

\parindent=\myparindent

\everypar{}}

Following is an example of a \leftcenterright
paragraph, typeset from:

\leftcenterright

First line \\ Second line \break

Third line \break Last line \par

\regularpar

First line
Second line
Third line

Last line
1 For convenience I have put Paul’s code into a macro.

Who will change old lamps for new? . . . new
lamps for old ones?

Arabian Nights: The History of Aladdin

2 LATEX’s defining triumvirate

The macro provided by LATEX for defining new com-
mands is somewhat simpler than the TEX macro
upon which it is based. This is the LATEX one:
\newcommand{〈cmd〉}[〈num〉][〈arg1 〉]{〈defn〉}
where 〈cmd〉 is the name, including the backslash
(e.g., \amacro), of the new macro being defined and
〈defn〉 is the definition of the new macro, which may
be simply some text to be typeset or something very
complex. The optional 〈num〉 argument specifies the
number of arguments that the new macro will take;
if given this must be at least one and at most nine.
The new macro will take an optional argument if
〈arg1 〉 is given, where 〈arg1 〉 is the default value
of the first argument. The macro resulting from
\newcommand is, in TEX terms, a long macro, mean-
ing that an argument may consist of more than one
paragraph or, equivalently, include a \par. There
is also a star form of the command (\newcommand*)
which creates a macro where paragraph(s) are not
allowed in an argument to the new macro. If 〈cmd〉
has been defined previously LATEX will give an error
message.

The LATEX macro
\renewcommand{〈cmd〉}[〈num〉][〈arg1 〉]{〈defn〉}
and its companion \renewcommand*, are similar to
\newcommand except that they change the definition
of 〈cmd〉, which must have been defined earlier, oth-
erwise LATEX will complain.

The third member of LATEX’s macro definition
macros is:
\providecommand{〈cmd〉}[〈num〉][〈arg1 〉]{〈defn〉}
which acts like \newcommand if 〈cmd〉 has not been
defined, otherwise it silently does nothing. Again,
there is a starred version of the command.

If you want to make sure that your definition
for 〈cmd〉 is used regardless of whether or not it has
been defined before you can do this:

% ensure \amacro is defined

\providecommand{\amacro}{}

% change the definition

\renewcommand{\amacro}...

Within the 〈defn〉 argument to the macros the
use of the first argument, if any, is denoted by #1,
the second by #2, and so on up to the ninth which is
denoted by #9. The arguments can be used as many
times as needed and in any order.

A question that pops up now and then on the
comp.text.tex newsgroup is how to define a macro
that takes more than nine arguments. The answer is

326 TUGboat, Volume 29 (2008), No. 2

to split it up into two or more macros each of which
handles a portion of the required number. For, say,
11 arguments:

\newcommand{\xiargs}[9]{%

% 9 args used here then

\xtrargs}

\newcommand{\xtrargs}[2]{%

% use last 2 args here

% #1 and #2 are the apparent 10th & 11th args

}

The user calls \xiargs with the 11 arguments, and
\xiargs processes the first 9 of these. It then calls
\xtrargs, which is effectively hidden from view, to
process the remaining 2 arguments. If you need to
use, say, the 4th argument within \xtrargs this can
be easily accomplished:

\newcommand{\xiargs}[9]{%

% 9 args used here then

\xtrargs{#4}}

\newcommand{\xtrargs}[3]{%

% #1 here is #4 from \xiargs and

% #2 and #3 are the apparent 10th & 11th args

}

As a lead in to the next section, here is another
way of getting the 4th argument into \xtrargs:

\newcommand{\xiargs}[9]{%

% 9 args used here including

\def\ivarg{#4}%

% then

\xtrargs}

\newcommand{\xtrargs}[2]{%

% #1 and #2 are the apparent 10th & 11th args

% call \ivarg for original 4th arg

}

where \def is the TEX command for defining a com-
mand.

This kind of code can obviously be extended to
handle as many arguments as you wish, but after a
while it might be easier to use the keyval package [3],
or the later extension called xkeyval [2], which pro-
vide a very different approach. You name each ar-
gument and the user can use as many or as few of
these as he deems necessary.

He who can properly define and divide is to
be considered a god.

Novum Organum, Francis

Bacon quoting Plato

3 TEX’s dictator

TEX has an all-purpose command for defining new
macros, namely \def. There are too many aspects
to this to cover them all in a short article; Knuth [5,
ch. 20] provides the definitive explanation, but you

may find that Eijkhout [4, ch. 11] or Abrahams et

al. [1, chs. 4 and 9] are more accessible or helpful.
The syntax of the \def command is unlike any-

thing you see in an author’s view of LATEX.
\def〈cmd〉〈paramspec〉{〈defn〉}
As in the LATEX formulation, 〈cmd〉 is the name,
including the backslash (e.g., \amacro), of the new
macro being defined and 〈defn〉 is the definition of
the new macro, just as with LATEX. Note that there
are no braces around 〈cmd〉.

The 〈paramspec〉 is where you specify the ap-
pearance of any arguments to 〈cmd〉. Each argu-
ment is denoted by #1, #2, etc., in 〈paramspec〉;
these must be in numerical order, and spaces within
〈paramspec〉 are significant. Below are two equiva-
lent pieces of (LA)TEX code:

\newcommand*{\amacro}[2]{....} % LaTeX

\def\amacro#1#2{....} % TeX

... \amacro{foo}{bar} ... % (La)TeX

That finishes the simple bit, except to say that if you
need an argument to consist of one or more para-
graphs, by including a blank line or a \par, then
the macro must be long. Also TEX gives no warning
if you \def a macro that has already been defined —
it just throws the old definition away. Be careful of
this as it is not a good idea to inadvertently rede-
fine some vital macro that you did not know existed.
Anyway, here are two more equivalent pieces of code:

\renewcommand{\amacro}[2]{....} % LaTeX

\long\def\amacro#1#2{....} % TeX

... \amacro{A paragraph\par}{bar} ... % (La)TeX

When the 〈paramspec〉 consists only of param-
eters (the #1 etc.) they are said to be undelimited ;
simplistically these correspond to LATEX’s manda-
tory arguments. On the other hand, if any non-
parameter tokens (that is, anything except a #n or
the opening { of the {〈defn〉}) occur after a #n then
that parameter is said to be delimited. When the
new macro is called, the argument for a delimited
parameter does not end until TEX encounters the de-
limiting character(s). Internally, LATEX uses delim-
ited parameters to implement optional arguments.

Suppose we need a macro that looks like this:
\where{foo}(x,y)

where foo, x and y are the arguments to \where.
The LATEX commands described above can’t handle
this, but TEX can:

\def\where#1(#2,#3){#1 in #2 #3}

and calling
\textit{%

\where{A nightingale sang}(Berkely,Square)}

results in
A nightingale sang in Berkely Square

TUGboat, Volume 29 (2008), No. 2 327

Perhaps you need a command that comes in two
versions, as \newcommand does. The LATEX kernel in-
cludes a macro called \@ifnextchar, whose syntax
is like this:
\@ifnextchar〈char〉{〈yes〉}{〈no〉}
It looks to see if the next non-space character in the
input text is 〈char〉. If it is it executes the 〈yes〉
argument, otherwise it executes the 〈no〉 argument.
The kernel also provides the next command:
\@ifstar{〈yes〉}{〈no〉}
which looks to see if the next character is a * and
if it is it gobbles up the * and executes the 〈yes〉
argument, otherwise it executes the 〈no〉 argument.
It is defined as follows:

\long\def\@firstoftwo#1#2{#1}

\def\@ifstar#1{%

\@ifnextchar *{\@firstoftwo{#1}}}

Now you can define your own (un)starred com-
mand pair, like this:

\makeatletter % if not in a .cls or .sty file

\def\maybestar{%

\@ifstar{\@maybestarS}{\@maybestar}}

% handle starred version

\def\@maybestarS#1#2{Star (#1) and (#2).}

% handle plain version

\def\@maybestar#1#2{(#1) and (#2).}

\makeatother % if not in a .cls or .sty file

The end result is a macro with a starred and un-
starred version that takes two arguments. A pair of
example results are:
\maybestar*{1st}{2nd} → Star (1st) and (2nd).
\maybestar{1st}{2nd} → (1st) and (2nd).

If you would like to use another character, say
a ?, in place of the *, here’s a way of doing it.

\def\maybeQ{%

\@ifnextchar ?{\@maybeQ}{\@maybe}}

\def\@maybeQ#1#2#3{Query (#2) and (#3).}

\def\@maybe#1#2{(#1) and (#2).}

Unlike the starring code where \@ifstar got rid of
the * the \@maybeQ macro has to discard the ? which
is the first character it will see; TEX treats a single
character2 as an argument so \@maybeQ is defined
such that it throws away its first argument.

A pair of example results are:
\maybeQ?{1st}{2nd} → Query (1st) and (2nd).
\maybeQ{1st}{2nd} → (1st) and (2nd).

Maybe you would like a LATEX command that
takes two optional arguments and one required one.
Heiko Oberdiek has produced a comprehensive pack-
age for creating such macros [6] but as another TEX
example here is a simple method that might be use-
ful for the odd occasion. The result will be a LATEX

2 More precisely, a token, but now is not the time to get
into all that.

macro, \twoopt, that takes one required and two op-
tional arguments. The defaults for the two optional
arguments are to be ‘opt1’ and ‘opt2’, respectively
and unimaginatively.

\def\twoopt{%

\@ifnextchar [{\@twoopt}{\@twoopt[opt1]}}

\def\@twoopt[#1]{%

\@ifnextchar [%

{\@@twoopt{#1}}{\@@twoopt{#1}[opt2]}}

\def\@@twoopt#1[#2]#3{%

1 (#1) 2 (#2) 3 (#3)}

Don’t forget that this has to be defined when LATEX
thinks that @ is a letter. Trying this out we get:
\twoopt{no opts} → 1 (opt1) 2 (opt2) 3 (no opts)
\twoopt[foo]{one opt} → 1 (foo) 2 (opt2) 3 (one
opt)
\twoopt[bar][baz]{two opts} → 1 (bar) 2 (baz)
3 (two opts)

References

[1] Paul W. Abrahams, Karl Berry, and
Kathryn A. Hargreaves. TEX for the

Impatient. Addison-Wesley, 1990. Available on
CTAN in info/impatient.

[2] Hendri Adriaens. The xkeyval package,
2005. Available on CTAN in latex/macros/

contrib/xkeyval.

[3] David Carlisle. The keyval package, 1999.
Available on CTAN in latex/macros/

required/graphics.

[4] Victor Eijkhout. TEX by Topic, A TEXnician’s

Reference. Addison-Wesley, 1991. ISBN

0-201-56882-9. Available at http://www.
eijkhout.net/tbt/.

[5] Donald E. Knuth. The TEXbook.
Addison-Wesley, 1984. ISBN 0–201–13448–9.

[6] Heiko Oberdiek. The twoopt package:
Definitions with two optional arguments,
1999. Available on CTAN in latex/macros/

contrib/oberdiek.

[7] Paul Vojta. Re: New York Times headline
style. Post to comp.text.tex newsgroup,
10 July 2007.

[8] Peter Wilson. Glisterings. TUGboat,
28(2):229–232, 2007.

⋄ Peter Wilson
18912 8th Ave. SW
Normandy Park, WA 98166
USA
herries dot press (at)

earthlink dot net

328 TUGboat, Volume 29 (2008), No. 2

The Treasure Chest

This is a list of selected new packages posted to
CTAN (http://www.ctan.org) from July 2007–May
2008, with descriptions based on the announcements
and edited for brevity.

Entries are listed alphabetically within CTAN

directories. A few entries which the editors subjec-
tively believed to be of especially wide interest or
otherwise notable are starred; of course, this is not
intended to slight the other contributions!

Hopefully this column and its companions will
help to make CTAN a more accessible resource to the
TEX community. Comments are welcome, as always.

biblio

aichej in biblio/bibtex/contrib/misc

BibTEX style file for the American Institute of Chem-

ical Engineers Journal.

bib2ml in biblio/bibtex/utils

Perl script converting BibTEX databases to HTML,
XML, or SQL.

fbs in biblio/bibtex/contrib/misc

BibTEX style file for Frontiers in Bioscience.

text2bib in biblio/bibtex/utils

PHP script to references to BibTEX.

fonts

* Asana-Math in fonts

An OpenType math font with almost all mathe-
matical Unicode symbols and the MATH OpenType
table supported by X ETEX and Word 2007.

cyklop in fonts

OpenType, Type 1, and support files for the Cyklop
typeface, a very high contrast display design.

fge in fonts

A font for Frege’s Grundgesetze der Arithmetik.

gfsbaskerville in fonts/greek/GFS

The venerable Baskerville design with complete sup-
port for Greek (only).

hwkatakana in fonts

Half-width Katakana Type 1 fonts in the SJIS en-
coding, based on the Wadalab fonts.

* lxfonts in fonts

Revived LATEX slide fonts for both text and math.

umtypewriter in fonts

Four OpenType fonts supporting Latin, Greek, and
Cyrillic scripts.

graphics

automata in graphics/metapost/contrib/macros

Draw finite state machines, graphs, trees, etc.

bpolynomial in graphics/metapost/contrib/macros

Draw polynomial functions up to degree three.

dot2tex in graphics

Convert Graphviz-format graphs to LATEX-friendly
formats.

graphicxsp in graphics

Embed graphics in PDF output once, and support
the Adobe transparency imaging model.

pgfplots in graphics/pgf/contrib

Normal and logarithmic plots using TikZ/PGF.

pgf-soroban in graphics/pgf/contrib

Draw a Japanese abacus using TikZ/PGF.

pst-cox in graphics/pstricks/contrib

Draw two-dimensional projections of complex reg-
ular polytopes (after Coxeter).

pst-diffraction in graphics/pstricks/contrib

Draw diffraction patterns for different geometric
forms of apertures for monochromatic light.

pst-optexp in graphics/pstricks/contrib

Facilitate sketching of optical experimental setups.

pst-pad in graphics/pstricks/contrib

Draw attachment surfaces for friction and adhesion
models.

pst-solides3d in graphics/pstricks/contrib

Draw solids in three-dimensional perspective.

pst-soroban in graphics/pstricks/contrib

Draw a Japanese abacus using PSTricks.

tableau-variations in graphics/metapost/contrib/

macros

Create variation tables in MetaPost.

info

compact in info/symbols/compact

Beamer-style list of common symbols, including the
variations in txfonts.

dtxgallery in info

Collection of minimal .dtx examples.

l2tabues in info/l2tabu/spanish

Spanish translation of l2tabu.

* latex-brochure in info

Publicity flyer for LATEX; please print and post wher-
ever appropriate.

lshort-slovenian in info/lshort/slovenian

Slovenian translation of lshort.

mpman-ru in info/metapost/doc/russian

Russian translation of the MetaPost user’s guide.

* texbytopic in macros/latex/contrib

Victor Eijkhout’s excellent TEX reference book TEX

by Topic, now available under the GNU Free Doc-
umentation License.

xetexref in info

Unofficial reference documentation for X ETEX.

TUGboat, Volume 29 (2008), No. 2 329

language

mx in language/spanish/nonstandard

Babel support for typesetting Spanish with Mexi-
can conventions.

ptex in language/japanese

A high-quality Japanese TEX system by ASCII Co.,
compatible with teTEX-based systems. Released
under the modified BSD license.

macros/latex/contrib

addlines in macros/latex/contrib

Enhancements of \enlargethispage.

ametsoc in macros/latex/contrib

Official American Meteorological Society LATEX tem-
plate files.

boldtensors in macros/latex/contrib

Provide bold Latin and Greek characters within
\mathversion{normal}, by using ~ and " as pre-
fix characters.

catechis in macros/latex/contrib

Support for catechisms: question-and-answer, com-
ments on answers, etc.

changepage in macros/latex/contrib/misc

Locally changing text width or other page layout
based on odd/even pages; compatible with memoir,
unlike chngpage.

chemscheme in macros/latex/contrib

Support for a chemical scheme float type with au-
tomatic numbering.

chemstyle in macros/latex/contrib

Formatting chemistry documents (successor to the
rsc bundle).

confproc in macros/latex/contrib

Class for conference proceedings.

constants in macros/latex/contrib

Label/reference system for (families of) constants,
e.g., in a proof.

* datatool in macros/latex/contrib

Database operations and charts within LATEX, pos-
sibly created from external CSV, TSV, etc. files.

dotarrow in macros/latex/contrib

Extendable dotted arrows (like \xrightarrow).

dprogress in macros/latex/contrib

Log LATEX’s progress through the document, out-
putting section headers, equation numbers, etc.

ecclesiastic in macros/latex/contrib

Typesetting Latin in an ecclesiastical style.

ed in macros/latex/contrib

Editorial notes for LATEX documents.

edmargin in macros/latex/contrib

Support for endnote sections in critical editions.

environ in macros/latex/contrib

Collect body text inside an environment.

epspdfconversion in macros/latex/contrib

Do EPS-to-PDF conversion on the fly from within
LATEX.

errata in macros/latex/contrib

Recording errata in LATEX documents and then high-
lighting changes.

etoolbox in macros/latex/contrib

Programming facilities for LATEX class and package
authors, including but not limited to support for
new ε-TEX primitives.

euproposal in macros/latex/contrib

Support for FP7 proposals.

fouridx in macros/latex/contrib

Enable left subscripts and supersets; alternative to
\sideset and \leftidx.

frletter in macros/latex/contrib

Typeset French-style letters (in any language).

frontespizio in macros/latex/contrib

Typeset thesis frontispiece in Italian style.

gaceta in macros/latex/contrib

Support for the journal La Gaceta de la Real So-

ciedad Matemática Española.

hexgame in macros/latex/contrib

Draw a hexagonal game board.

ifplatform in macros/latex/contrib

Conditionals for testing the current operating sys-
tem (using -shell-escape).

ijmart in macros/latex/contrib

LATEX class for the Israel Journal of Mathematics.

image-gallery in macros/latex/contrib

Generate overview page of a photo gallery, possibly
adjusting photo sizes.

isonums in macros/latex/contrib

Display numbers in math mode according to ISO-

31-0, regardless of input format.

jsclasses in macros/latex/contrib

Classes supporting Japanese, including jsarticle

and jsbook.

lcyw in macros/latex/contrib

LATEX support for the CM Cyrillic fonts.

mathexam in macros/latex/contrib

LATEX package for typesetting exams, including space
for students to show work.

mciteplus in macros/latex/contrib

Reimplementation of mcite with support for physics-
style grouping of multiple citations; compatible with
REVTEX4.

mfpic4ode in macros/latex/contrib

Draw direction fields and other differential equation
support.

newspaper in macros/latex/contrib

Typesetting newsletters to resemble newspapers.

nostarch in macros/latex/contrib

Official LATEX for No Starch Press.

notes2bib in macros/latex/contrib

Integrate footnotes, endnotes, and other notes in a
bibliography.

330 TUGboat, Volume 29 (2008), No. 2

numname in macros/latex/contrib

Convert a numerical number to the English spelled-
out name of the number.

perltex in macros/latex/contrib

Define LATEX macros in terms of Perl code.

philex in macros/latex/contrib

Dynamically cross-reference to names and contents
of environments.

sagetex in macros/latex/contrib

Embed Sage code and plots into LATEX.

sfmath in macros/latex/contrib

Switch all mathematics typesetting to sans serif.

show2e in macros/latex/contrib

Support for \show variants suited to LATEX 2ε’s com-
mands and environments, and other debugging help.

shipunov in macros/latex/contrib

Bundle with support for field biologists, Russian-
language authors, and much more.

siunitx in macros/latex/contrib

Comprehensive package for typesetting values with
units.

stex in macros/latex/contrib

(LA)TEX support for mathematical knowledge man-
agement, via allowing semantic markup without leav-
ing the document format.

stringstrings in macros/latex/contrib

Large collection of expandable routines for string
processing.

subdepth in macros/latex/contrib

Unify math subscript height.

tablor in macros/latex/contrib

Create tables for signs and variations using XCAS

for calculus and MetaPost for drawing.

ted in macros/latex/contrib

Token list editor: substitutions and display of to-
kens.

theoremref in macros/latex/contrib

Variants of \label and \ref for theorem-like envi-
ronments.

thinsp in macros/latex/contrib

A stretchable \thinspace for LATEX.

* translator in macros/latex/contrib

Open translation platform, compatible with babel.

turnstile in macros/latex/contrib

Support for logicians’ turnstile sign.

upmethodology in macros/latex/contrib

Support for Unified Process methodologies (UP or
RUP).

varsfromjobname in macros/latex/contrib

Select hyphen-separated pieces of \jobname.

vxu in macros/latex/contrib

Classes for Växjö University, Sweden.

xargs in macros/latex/contrib

Define macros with many optional arguments.

xskak in macros/latex/contrib

Extensions to skak for chess typesetting, including
saving information for later use.

macros/latex/exptl

biblatex-dw in macros/latex/exptl/biblatex-contrib

Support for humanities-style citations and more, for
biblatex.

biblatex-mla in macros/latex/exptl/biblatex-contrib

Support for MLA-style parenthetical citations and
bibliographies in biblatex.

gcite in macros/latex/exptl

German-style citations, providing a small amount
of bibliographic information in a footnote on the
page where each citation is made.

thmtools in macros/latex/exptl

Keyval interface to \newtheorem, a \listoftheorems

command, hyperref compatibility, and more theo-
rem extensions.

macros/omega

tamil-omega in macros/omega/latex/contrib

Typeset the Tamil script using Omega.

macros/xetex

xecyr in macros/xetex/latex

Support for Cyrillic languages in X ELATEX + babel.

support

acroweb in support

Scripts for creating interactive tests in AcroTEX
from web databases.

autolatex in support

Automate generation of large-scale LATEX projects.

ctantools in support

Search LATEX packages on CTAN.

delig in support

Java program to disable misplaced ligatures in LATEX
documents, for example “Auflage” in German.

fastpictex in support

Preprocessor for PiCTEX to ease creation of line
graphs, bar graphs, x-y graphs, etc.

graphconv in support

Windows program to convert Graph (http://www.
padowan.dk/graph/) files to PSTricks.

jlm in support/jed

LATEX mode for the JED editor.

miktex_update in support

Automate updating and installing of new packages
of an existing MiKTEX installation.

texcount in support

Count number of words in LATEX text, with color
output. Also available as a web service: http://

folk.uio.no/einarro/Comp/texwordcount.html.

vc in support

Version control for (LA)TEX, supporting Subversion
and Git.

TUGboat, Volume 29 (2008), No. 2 331

Reviews

Book review:

Fonts & Encodings by Yannis Haralambous

Ulrik Vieth

Yannis Haralambous,
translated by
P. Scott Horne,
Fonts & Encodings,
O’Reilly Media,
1016+xx pp.,
first edition:
September 2007,
ISBN 0-596-10242-5,
US$59.99. http:

//www.oreilly.

com/catalog/

9780596102425

Yannis Haralambous is well-known in the interna-
tional TEX community, not only as a co-founder of
the Omega project, but also for his numerous contri-
butions as a developer of fonts for various languages.
It only seems fitting that Yannis has undertaken the
job of writing a comprehensive book on the topic of
fonts and encodings.

The original edition, entitled Fontes & Codages,
appeared in 2004, but only in French. Now, a long-
awaited English translation as Fonts & Encodings,
prepared by P. Scott Horne, has recently become
available, published by O’Reilly Media Inc.

Contents

Amounting to a bit more than 1000 pages, the book
matches the size of The LATEX Companion, Second

Edition. It appears quite impressive, not only re-
garding its sheer size, but also regarding the broad
range of topics covered as well as the depth of the
coverage and the level of detail. In some cases the
author has spent dozens of pages documenting some
arcane details of font formats, which have so far been
lacking a comprehensive or accessible documentation
from other sources.

The book consists of a main body of 14 chap-
ters of some 600 pages, followed by an appendix of
7 chapters amounting to another 400 pages.

As the author makes clear in the introduction,
various groups of readers may benefit from different
parts of the book without having to read all of it:
Some chapters are mostly encoding-specific, dealing
with characters on the input side, some are mostly

font-specific dealing with glyphs on the output side,
while other chapters find themselves in the middle
ground, having to deal with font and encoding top-
ics simultaneously. Some chapters are accessible to
end users interested in installing and using fonts,
while others are of interest only to font designers or
developers of font-related software.

The first part of the book starts with encoding-
specific topics. Chapter 1 provides an overview of
the history of encodings before Unicode, ranging
from 7-bit ASCII and various 8-bit ISO encodings
to 16-bit East-Asian encodings. Chapters 2–4 cover
the Unicode standard, starting with an overview of
the symbols and scripts included in the standard
and moving on towards more and more complex
implementation details. Chapter 5 completes this
part with a presentation of some useful tools for
using Unicode input on various system platforms.

The second part covers the topic of font man-
agement on various system platforms and operates
somewhere in the gray area between fonts and en-
codings. Chapters 6–8 each cover similar topics for
the Macintosh, Windows and Unix/X11 platforms.
While the description of the Macintosh platform is
rather detailed in discussing the differences of font
handling between MacOS 9 and Mac OS X, the de-
scription of the Unix/X11 platform only covers some
very basic and old-fashioned X11 tools. Here, one
could have wished for some more extensive cover-
age of font management in modern Linux desktop
environments such as KDE or Gnome.

The following two chapters discuss platform-
independent usage of fonts in TEX/Omega systems
and on the Web. Chapter 9 starts with an overview
of high-level font selection in LATEX/NFSS2, followed
by a detailed description of low-level font installation
for dvips. The remainder of the chapter then dis-
cusses numerous examples of creating virtual fonts
using fontinst to implement specific effects needed
in various scripts. Chapter 10 concludes this part
with a coverage of fonts on the Web using either
(X)HTML/CSS or alternatively SVG.

The final part of the book covers font-specific
topics. Chapter 11 covers various classifications of
Latin typefaces and simultaneously provides a nicely-
illustrated overview of the history of the most impor-
tant typeface designs. Chapters 12–13 then discuss
creating, editing and optimizing PostScript, True-
Type, and OpenType fonts using tools such as Font-

Lab and FontForge. Chapter 14 finally introduces the
concepts of advanced typographic features provided
in OpenType or AAT fonts and discusses ways of
enriching fonts using these facilities.

The appendix of the book mostly consists of

332 TUGboat, Volume 29 (2008), No. 2

the detailed descriptions of font formats. Starting
from bitmap fonts and TEX-related font formats and
moving on to PostScript, TrueType, OpenType and
AAT fonts, practically all relevant font formats are
covered in detail in Appendices A–E.

Finally, Appendix F discusses the principles of
font design in METAFONT and derived systems such
as METAPOST, MetaFog and MetaType 1.

Commentary

Considering the size of the book, it is understand-
able that several years have passed from the time
of writing the manuscript to the publication of the
English translation. Unfortunately, because of this,
some chapters of the book are in risk of becoming
out-of-date rather quickly. For most of the material,
we have to assume that the English edition of 2007
only represents the state of the art of 2003.

For many chapters serving as a reference, such
a delay is not much of a problem, as the descriptions
of encodings or font file formats remain unchanged
and permanently valid. On the other hand, it is
regrettable that especially the chapter about TEX has
completely missed or overlooked some very important
developments of the last few years.

As one example, when describing the details of
font installation, the author only covers TEX/Omega
with dvips, while PDFTEX isn’t mentioned in this
context, even though most of the description would
be applicable to both systems in TEX Live systems.
(In fact, PDFTEX isn’t mentioned anywhere at all in
the book, perhaps because it didn’t support Omega
at that time.)

As another example, Hàn Thé̂ Thành, the prin-
cipal author of PDFTEX, is mentioned only once in
the context of Vietnamese fonts, while his signifi-
cant achievements regarding the implementation of
micro-typographic features of PDFTEX have been
neglected completely. This is even more surprising
as the author spends some pages discussing an exam-
ple where the effect of margin kerning, which would
have been accessible in PDFTEX, is simulated in a
rather cumbersome way using virtual fonts created
by fontinst.

Regarding examples of extensions of Computer
Modern fonts, the author suggests the CM-Super

fonts, while the (by now) much more popular Latin
Modern fonts are mentioned only in passing as an
example of a MetaType 1 application.

Finally, when it comes to discussing ways of
using advanced typographic features of OpenType
or AAT fonts in TEX, the author only offers some
hints about his own research work in the Omega 2

project (which hasn’t progressed beyond the pro-
totype stage), while the (by now) readily-available
newcomer X ETEX remains unmentioned.

To be fair, one has to admit that the success
and importance of these recent developments in the
TEX world could not have been foreseen at the time
of writing in 2003. Nevertheless, it could have been
possible to include some additions and/or revisions
by the time of the English translation of 2007.

It is rather unfortunate that the opportunity
for updates was missed here; this would have made
the book much more useful and valuable for TEX
users interested in making use of the very latest of
developments in font technology.

Despite these shortcomings, the book remains a
valuable resource for TEX users and software devel-
opers, who are deeply interested in font technology
and encodings. There is no other book providing
a similar coverage in the broad range of topics and
the deep level of detail in a single volume. To get
anywhere near it, one would have to collect dozens of
references from a variety of sources — and one would
still be left with some gaps to fill.

In summary, this book is certainly recommend-
able. Nevertheless, some additions and/or revisions
would be very desirable for future editions.

As a final remark, the reviewer would like to
mention a little curiosity: like some other modern
textbooks, this book also features a separate index
of persons besides the usual general-purpose index.
However, unlike other books, the author seems to
have been rather liberal as to which kinds of persons
are referenced in the index.

This way, authors of font software and tools not
only find themselves in the glorious company of some
the most famous font designers of history, but also
in the vicinity of rather questionable political figures
(e. g. Lenin, Hitler, Mao) as well as some fictional
or literary characters (e. g. Sherlock Holmes, James
Bond, James T. Kirk), which are only mentioned in
passing in some light-hearted comments.

While the reviewer (who at one time was a
contributor to fontinst) wishes to express thanks
for the opportunity of being included in this unique
selection of people, he also wishes to express serious
doubts as to whether it is really helpful to the reader
to include fictional characters in the person index in
the same way as technical people.

⋄ Ulrik Vieth
Vaihinger Straße 69
70567 Stuttgart
Germany
ulrik dot vieth (at) arcor dot de

TUGboat, Volume 29 (2008), No. 2 333

Software review: TEXCAD for Windows

Bernd S. W. Schroeder

Overall Rating: 5.0 (highest rating possible)

1 Description

This program is a well-done adaptation of the classic
DOS TEXCAD to the Windows platform. TEXCAD

for Windows is a drawing program that provides a
visual way to produce pictures in LATEX picture envi-
ronments. It virtually eliminates the need to remem-
ber the way LATEX encodes pictures as most types
of pictures can be generated quickly with TEXCAD.
TEXCAD for Windows is freely available for down-
load.

The review below considers three categories and
assigns a rating in each.

2 Category: Content quality

Rating: 5.0

2.1 Strength(s):

• Grid-based drawing program with a default grid
in millimeters. Step length for the mouse can
be adjusted under Options (Zoom Factor). A
zoom factor of 10 provides steps of length 1/10
mm.

• Supports all functions that are available via the
LATEX picture environment. Functions are se-
lected via self-explanatory pull-down menus.

Editor’s note: This is a peer review by the MERLOT

Mathematics Review Panel, published online January 16,
2004 (www.merlot.org). Reprinted by permission. TEXCAD

is written by Gautier de Montmollin, who maintains a site
at www.mysunrise.ch/users/gdm/texcad.htm. Adapted for
TUGboat and screenshots provided by Steve Peter.

• Except for some text, TEXCAD for Windows
shows a picture that is what LATEX will produce.

• Graphical editing features such as mirror copy
and rotated copies.

• For Bezier curves the two tangent lines that de-
termine the curve are displayed.

• Circles of any size can be drawn with TEXCAD

(this feature of TEXCAD32 was not accessible
in recent Windows versions because TEXCAD32
would not run).

2.2 Concern(s):

• A feature for connecting objects so that when
one is dragged the others adjust would be nice.
This can clash with the limited number of slopes
of lines that LATEX allows though, so it is un-
derstandably not available.

• For fine tuning, it would be nice if one could
move the cursor one step at a time with the
cursor keys. (This was helpful in the original
TEXCAD.)

3 Category: Potential effectiveness as a
teaching tool

Rating: 5.0

3.1 Strength(s):

• Generation of LATEX picture environments that
are sufficient for many mathematical graphics
and very compact.

• Several functions (lines with any slope, bezier
vectors) are geared towards eradicating some of
the LATEX picture environment’s limitations.

• TEXCAD for Windows interfaces with MiKTEX
to allow preview of the actual LATEX picture in
a very efficient edit-view-edit cycle.

3.2 Concern(s):

• The tips of Bezier vectors sometimes completely
cover the end of the Bezier curve, and a little

334 TUGboat, Volume 29 (2008), No. 2

stub sticks out of the triangle that is the tip of
the arrow. This occurs only for high curvature
near the tip of the vector and going into the
code for the picture environment can fix this
problem easily. (Note: Gautier de Montmollin
says this has been fixed.)

4 Category: Ease of use for both students
and faculty

Rating: 5.0

4.1 Strength(s):

• Simple, matter-of-fact documentation included
in English (dvi format).

• Once it is started the interface is highly intu-
itive. Mouse movements plus the left button
(select) and the right button (escape/cancel)
are all that is needed to run the whole appli-
cation.

• TEXCAD is an executable that can be started
through Windows Explorer, My Computer or
on the command line. Shortcuts can be created.

4.2 Concern(s):

None.

5 Other issues and comments

The original TEXCAD is a program back from the
days when DOS was the operating system on PCs.
TEXCAD was firmly ahead of its time. The limita-
tions of TEXCAD are mostly the limitations of the
LATEX picture environment, so they cannot be held
against this program. The new Windows version
eradicates just about all problems that the review-
ers saw in the original program.

Gautier de Montmollin is planning to further
improve the program and add some of the features
mentioned in this review.

⋄ Bernd S. W. Schroeder
Edmondson/Crump Professor and

Program Chair
Program of Mathematics and

Statistics
Louisiana Tech University
Ruston, LA 71272

Warnings

\looseness on the loose

Frank Mittelbach

Question:

This paragraph was set twice with a small value
for \emergencystretch. The first time it was
set without any other special adjustments, the
second time we also used -1 as the value for
the \looseness parameter. Can you explain
why the two paragraphs are broken differently
into lines even though the use of \looseness

couldn’t shorten the paragraph?

This paragraph was set twice with a small
value for \emergencystretch. The first time
it was set without any other special adjust-
ments, the second time we also used -1 as the
value for the \looseness parameter. Can you
explain why the two paragraphs are broken
differently into lines even though the use of
\looseness couldn’t shorten the paragraph?

Answer: When \looseness has a non-zero value,
TEX always runs through all line breaking passes:
breaking without hyphenation, breaking with hy-
phenation, and (if \emergencystretch is non-zero
as it is, for example, inside multicols) with the emer-
gency stretch. But adding \emergencystretch to
every line means that the line breaks chosen in the
first paragraph may fall in different fitting classes so
that at different places \adjdemerits are charged,
thus making the original solution less attractive.

In fact the situation could even be worse: if a
long paragraph can be broken into lines by just us-
ing \pretolerance, then a setting of \looseness to
+1 might in fact result in a paragraph with one line
less —all that would be required is that breaking us-
ing \tolerance to get a default line count two lines
less than with \pretolerance (a real life example
is left to the reader).

⋄ Frank Mittelbach

http://www.latex-project.org

First published in Die TEXnische Komödie 2007/4, p. 41.

TUGboat, Volume 29 (2008), No. 2 335

Abstracts

MAPS 35 (Spring 2007)

MAPS is the publication of NTG, the Dutch language
TEX user group. Their web site is http://www.ntg.
nl.

Hans Hagen, Taco Hoekwater, The MPlib
Project; p. 4

MetaPost as a reusable component.

Hans Hagen, Tokens in LuaTEX; pp. 5–8
Discussion of token parsing in LuaTEX.

Taco Hoekwater, Integrating the pool file;
pp. 9–10

This short article discusses the method that is
used in MetaPost and LuaTEX (since adopted in all
other TEX family programs) to integrate the string
pool file into the program.

This method allows the redistribution of a single
updated executable in place of both a program and
a data file, and this makes updating those programs
easier on both the user and the developer.

Willi Egger, PGF/TikZ; pp. 11–17
For those who are looking for an alternative to

external graphic drawing tools, PGF/TikZ offers a
wealth of possibilities. PGF is a macro package that,
together with its user interface TikZ, comprises a
kind of ‘graphics language’ to build graphics inside
the text as inline graphics or as pictures of larger size.
PGF was originally written for LATEX, but it is now
also available for use within ConTEXt. The package
comes with a large set of libraries for different kinds
of graphics. There is extensive documentation and a
tutorial. For support a mailing list and web site are
available. Users of the package with ConTEXt have
to install the xkeyval package version 1.8. PGF and
TikZ are distributed under the GNU Public License
version 2.

External graphics for LATEX, Siep
Kroonenberg; pp. 18–26

In this article, we discuss graphics file formats,
software to create graphics, and procedures to con-
vert them to LATEX and pdfLATEX-compatible for-
mats.

Hans Hagen, Taco Hoekwater, Review:
Alphabetgeschichten; pp. 27–29

[Printed in TUGboat 28:2.]

Richard Hirsch, Folding Sheets for a Modular
Origami Dodecalendar; pp. 30–36

Twelve square sheets of paper can be folded in
such a way that they can be assembled to a pentagon
dodecahedron (origami). The single units are called
modules, hence the name modular. If the sheets
bear calendrical information at the right places, the
dodecahedron shows the calendar for each month on
its faces: the dodecalendar.

In this article we let MetaPost calculate piece
by piece the information that needs to be printed on
the module paper to enable us to fold the modules
and assemble the dodecahedron.

Mojca Miklavec, ConTEXt user meeting 2007;
pp. 37–42

[Printed in TUGboat 28:2.]

Michael Guravage, EuroBachoTeX 2007;
pp. 43–50

[Printed in TUGboat 28:2.]

Frans Goddijn, MiKTEX installeren valt erg
mee [Installing MiKTEX easier than expected];
pp. 51–54

The author’s personal experiences installing MiK-
TEX.

[Received from Taco Hoekwater]

336 TUGboat, Volume 29 (2008), No. 2

Die TEXnische Komödie

Contents of issues 2007/2–2008/1

Editor’s note: Die TEXnische Komödie is the jour-
nal of DANTE e.V., the German-language TEX user
group. The journal’s web site is
http://www.dante.de/dante/DTK/.

2007/2

André Miede, Academic final theses with
classicthesis; pp. 39–44

There are dozens of college-specific templates
for a final thesis out there, each describing a special
set of formal requirements. This article describes a
solution, which emphasizes typographic beauty and
offers a formal base for a thesis.

Joachim Schlosser, Large documents with
LATEX — versioning, variants, automation and
change tracking; pp. 45–67

LATEX has always supported large documents,
but work-flows can be simplified and automated to
a higher degree regarding modularisation, change
tracking and preprint processing. This article aims
to inspire without claiming to be the only feasible
solution.

Rolf Niepraschk, Tips and Tricks: pdfLATEX,
bitmap graphics and dimension px; pp. 68–69

pdfTEX supports a new length unit called px.
A px is the distance between two screen dots of the
resolution presumed by pdfTEX.

2007/3

Frank Mittelbach, Robin Fairbairns,

Werner Lemberg, LATEX font encoding;
pp. 22–59

The article describes the font encoding support
in LATEX and the resulting imitations for new encod-
ings. Furthermore it includes a detailed description
of all the currently registered encodings.

An English version (encguide.tex) is part of
the LATEX distribution.

Jürgen Fenn, Joachim Schlosser: Writing
scientific papers with LATEX; pp. 65–68

Review of Wissenschaftliche Arbeiten mit LATEX

schreiben. Leitfaden für Anfänger, by Joachim
Schlosser (Verlag, Readline: Heidelberg 2007).

2007/4

Jürgen Fenn, Bibliography management with
Firefox, Zotero and BibTEX; pp. 20–26

The article presents the new bibliography man-
agement tool Zotero, which can be integrated as a
Firefox plugin. Zotero can handle BibTEX data.

Stephan Hennig and Herbert Voß, The font
package initials; pp. 27–40

This article shows how the font package initials

can be used in LATEX documents.

Frank Mittelbach, \looseness on the loose;
p. 41

(Published in this issue of TUGboat.)

Herbert Voß, The listings package and
UTF-8 encoding; pp. 45–56

The listings package is the de facto standard
for the output of program code. The package has
excellent possibilities to format code sequences, but
it does not support UTF-8 encoding. Using a trick,
however, it is possible to get around this problem
for single tokens.

Markus Kohm, How to process the contents of a
KOMA-Script variable as macro; pp. 48–59

The KOMA-Script class scrlttr2 offers a new
LATEX element: variables. The defined interfaces
to the variables are the commands \newkomavar,
\setkomavar, \usekomavar and \ifkomavarempty.
But what to do when, e.g., you would like to test if
a variable has a certain non-empty content?

Jürgen Fenn, Anselm Lingnau: LATEX Hacks;
pp. 56–58

Review of the new publication LATEX Hacks.

Tipps & Techniken für professionellen Textsatz by
Anselm Lingnau (O’Reilly: Köln u. a. 2007).

Jürgen Fenn, M. Goossens, F. Mittelbach,
S. Rahtz, D. Roegel, H. Voß: The LATEX Graphics
Companion; pp. 59–61

Review of the LATEX Graphics Companion, sec-
ond edition.

2008/1

Stephan Hennig, Some remarks on the article
‘Hyphenation Exception Log for German
hyphenation patterns, version 1’; pp. 7–17

This article raises some questions not answered
by Werner Lemberg’s articles (in DTK 2/2003 and
2/2005) on hyphenation patterns and exceptions.

Volker RW Schaa, Herman Zapf received the
Goethe medallion; pp. 18–21

On December 11, 2007, in the Wiesbadener
Staatskanzlei, our honorary member Prof. Dr. h.c.
Hermann Zapf was awarded the Goethe-Plakette
(‘badge of honor’), the highest award of the Hessian
Ministry of Science and the Arts.

Ulrik Vieth, Yannis Haralambous: Fonts &

Encodings; pp. 22–25
(Published in this issue of TUGboat.)

TUGboat, Volume 29 (2008), No. 2 337

Eutypon 16–20

Editor’s note: Eutypon is the journal of the Greek
TEX Friends, the Greek TEX user group. The jour-
nal’s web site is http://www.eutypon.gr/eutypon.

Eutypon 16–19 triple issue, October 2007

Erik Meijer, Citations, reference list, and author
index with apacite; pp. 1–31

The apacite package can be used with LATEX
and BibTEX to generate citations and a reference list,
formatted according to the rules of the American
Psychological Association. Furthermore, apacite
contains an option to (almost) automatically gener-
ate an author index as well. A recent addition is
the support of different languages. The package can
be customized in many ways. This paper describes
the apacite package, paying special attention to its
idiosyncrasies and how the problems associated with
these have been solved. (Article in English.)

Athanassios Protopapas, apa.cls: A genuine
LATEX solution for psychological research articles;
pp. 33–52

Psychological research manuscripts must usually
conform to the guidelines of the American Psycho-
logical Association (APA) publication manual. The
LATEX document class apa.cls implements the struc-
tural requirements of the manual, so that authors
have to concern themselves only with manuscript
content. By separating appearance from content,
in LATEX fashion, apa.cls can provide visually dis-
tinct outputs from the same manuscript file, thus
producing manuscript-format or journal-style docu-
ments by switching a processing option. This article
presents a bit of history and context for the devel-
opment of apa.cls, noting the critical importance
of an active online community of developers and
users. There are several technical issues involved in
handling the requirements of the APA manual, and
these are discussed here along with their solution pro-
vided in apa.cls. The special macros and options of
apa.cls are presented, with examples, on the topics
of titles/headers, sectioning, lists, floats, typefaces,
appendices, internationalization, and conditionals.
(Article in English.)

Thomas A. Schmitz, Greek support for the
ConTEXt macro package; pp. 53–67

This paper describes the implementation of sup-
port for typesetting ancient (polytonic) Greek in
ConTEXt. ConTEXt is a macro package for TEX. It
allows for a great deal of flexibility and customiz-
ability. Support for typesetting polytonic Greek was
lacking. The article describes in detail what was

needed to typeset Greek with ConTEXt. It discusses
the most frequently used input methods (Unicode
and transliterated ASCII babel input), fonts and en-
codings and some of the problems that had to solved.
It also describes some of the challenges and new pos-
sibilities which luaTEX, the designated successor to
pdfTEX, is bringing. (Article in English.)

Apostolos Syropoulos, The X ETEX typesetting
machine; pp. 69–74

X ETEX is a new typesetting machine with many
elements borrowed from ε-TEX and Ω. X ETEX allows
the direct use of TrueType and OpenType fonts.
This paper is a short presentation of X ETEX and its
capabilities as well as a presentation of the xgreek

package. (Article in Greek.)

Dimitrios Filippou, Half a century of Helvetica

and one century of grotesque; pp. 75–84
This year [2007] marks the 50th anniversary

since the Helvetica fonts were put into circulation,
and the event has received considerable attention
from media of all kinds: the printed media, the elec-
tronic media, even from cinematographers. However,
behind the media noise, one easily discovers that
Helvetica did not fall from the heavens half a century
ago. The roots of Helvetica lie in the German realis-
tic grotesque typefaces of the end of the 19th century,
which in turn have their roots in the first British
jobbing typefaces of 1816–1834. This article is a
short presentation of Helvetica, from its ancestors to
its imitators. (Article in Greek.)

Eutypon 20, April 2008

Vassilios Tsagkalos, The Greek Font Society
and Georgios D. Matthiopoulos; pp. 1–9
(Published in this issue of TUGboat.)

Dimitrios Filippou, Jean Kefalinos and
Emmanuel Ch. Kasdaglis: two fighters for quality
typography; pp. 11–21

Jean Kefalinos (b. Alexandria, Egypt, in 1894;
d. Athens, Greece, in 1957) is considered as one of
the best engravers of Modern Greece. But, beyond
being a unique engraver, Kefalinos was also an excep-
tional book designer and decorator. Emmanuel Ch.
Kasdaglis (b. Piraeus, Greece, in 1924; d. Athens,
Greece, in 1998) was the man who brought into light
the work and contribution of Jean Kefalinos in Greek
typography. Kasdaglis started as a print shop cor-
rector to help his meager family income. In 1966,
he became the first director of the National Bank
of Greece Cultural Foundation, now an institution
renowned for its outstanding publications. As a book
editor for nearly five decades, Kasdaglis contributed

338 TUGboat, Volume 29 (2008), No. 2

enormously in the preservation and institutionalisa-
tion of book æsthetics in Greece, in a period when
the low-cost sloppy print became the norm of Greek
typographers. (Article in Greek.)

Werner Lemberg, Unicode support for the Greek
LGR encoding; pp. 23–36

Up to now, only the ucs package has provided
Unicode support for Greek. This article describes
new support files for the LGR encoding which does the
same (and even more) for LATEX’s default inputenc

mechanism. The files described in this article can
be downloaded from http://www.latex-project.

org/cgi-bin/ltxbugs2html?pr=babel/4015. (Ar-

ticle in English.)

Ioannis K. Dimakos, TEX in the field of statistics:
The power of free software; pp. 37–47

The statistical programming environment named
R, a free software package, is presented in this article.
This environment, in conjuction with the flexibility,
ease of use and capabilities of TEX and its associated
programs, offers every author the ability to create
high fidelity mathematical and statistical texts, along
with the necessary graphics. (Article in Greek.)

Georgios Georgiou, Experiences with X ETEX;
pp. 49–51

First experiences of using X ELATEX for typeset-
ting Greek texts. (Article in Greek.)

Apostolos Syropoulos, TEXniques; pp. 53–55
Practical solutions for the common TEXxie: de-

tecting the appropriate compiler for a given .tex file;
putting diagonal lines in table cells; fixing overfull
paragraphs. (Article in Greek.)

ArsTEXnica

Contents of issue #4 (October 2007)

Editor’s note: ArsTEXnica is the journal of guIt,
the Italian TEX user group. The journal’s web site
is http://www.guit.sssup.it/arstexnica.

Massimiliano Dominici, Editoriale [From the
editor]; p. 3

A short overview of the present issue.

Lapo F. Mori and Maurizio W. Himmelmann,
Scrivere il curriculum vitæ con LATEX [How to write
a curriculum vitæ with LATEX]; pp. 5–15

This paper presents the tools that are currently
available to prepare a curriculum vitæ with LATEX,
with a critical analysis of packages and classes.

Claudio Beccari and Andrea Guadagni,
La progettazione di un’opera di consultazione:
l’edizione del Prontuario dell’ingegnere con LATEX
[The design of a reference book: The production of
the Engineer’s Quick Reference Book with LATEX];
pp. 16–24

(Published in this issue of TUGboat.)

Massimo Caschili, Introduzione a PSTricks [An
introduction to PSTricks]; pp. 25–44

PSTricks is a powerful graphic system estab-
lished by a large number of extensions; it offers many
tools to produce pictures, graphical representations
and figures with high-quality effects and an high-
quality typographical performance.

Luciano Battaia, LATEX nella Scuola Media
Superiore: applicazioni didattiche con PSTricks
[LATEX in secondary high school: didactic use of
PSTricks]; pp. 45–50

The aim of this paper is to promote the use of
LATEX, and in particular PSTricks with its extensions,
in secondary high school and to debate the positive
influences of this fact on math teaching.

The paper is not a technical introduction to
PSTricks: rather it reflects the author’s ideas con-
cerning the real possibility of reconciling both “old
fashioned” school programs and LATEX strategies.
The techniques discussed here have been used in a
course at Liceo Scientifico Grigoletti, Pordenone.

Agostino De Marco, Illustrazioni tridimensionali
con Sketch/LATEX/PSTricks/TikZ nella didattica
della Dinamica del Volo [Three-dimensional
illustrations with Sketch/LATEX/PSTricks/TikZ in
the teaching of flight dynamics]; pp. 51–68

This article shows how combining LATEX with
the package PSTricks or with TikZ can be used to
produce advanced, nice-looking illustrations. As a
matter of fact, the creation of drawings representing
three-dimensional scenes with scientific or non-trivial
annotations is possible with LATEX. One of the goals
of the article is introducing the program Sketch, by
Eugene Ressler, and how one can manipulate and
put in place objects in a three-dimensional scene by
means of its intuitive scripting language. The output
of Sketch is a set of PSTricks or TikZ commands that
can be included by a master LATEX document to pro-
duce the final picture. The technique proposed here
enables overcoming the limitations encountered by
PSTricks or TikZ users when it comes to representing
non-trivial three-dimensional scenes.

As a teacher of engineering subjects related to
flight dynamics, I report some concrete examples

TUGboat, Volume 29 (2008), No. 2 339

that may help to better understand the potential of
Sketch and of the workflow proposed in the article.

Norbert Preining, TEX Live’s new infrastructure;
pp. 69–73

Since the release of TEX Live 2007 a new infra-
structure for TEX Live distribution and management
has been developed. This article presents the reasons
for this switch, the ideas behind the new infrastruc-
ture, software developed, and ways to incorporate
this new infrastructure. We will close with a look
at what new features this new infrastructure could
bring to the TEX (Live) world.

Klaus Höppner, Typesetting tables with LATEX;
pp. 74–77

From a LATEXoligist’s point of view, LATEX is a
perfect tool to typeset nearly everything in a beauti-
ful manner. Without any doubt, LATEX can typeset
tables, but it is easy to produce bad tables with
ugly lines and text touching the lines. This talk is
intended to introduce how to typeset tables with
LATEX on a beginners’ level, mentioning some typo-
graphic aspects, showing some packages that help
the author in formatting tables and concluding with
how to typeset tables with page breaks. [This article
was published in TUGboat 28:3, http://tug.org/

TUGboat/Articles/tb28-3/tb90hoeppner.pdf.]

Gianluca Gorni and Stphane Matiz, Inserire
equazioni LATEX in grafici di Mathematica

[Including LATEX equations in graphics generated
through Mathematica]; pp. 78–81

In this article we introduce a solution for creat-
ing graphics with the LATEX fonts. This solution is
meant for users who create pictures in Mathematica
to be included in LATEX documents. With a single
command within the Mathematica front end

TeXClipping[LATEX syntax, options]

we get a graphical object Graphics for Mathematica:
a simple set of polygons that gives the same impres-
sion as its corresponding font and that integrates
perfectly in the Mathematica context.

Claudio Beccari, I font per le slide LATEX
resuscitati [LATEX slide fonts revived]; pp. 82–87

(Published in this issue of TUGboat.)

Massimiliano Dominici, Utilizzo di caratteri
TrueType con LATEX. Un esempio pratico: i
Fell Types [TrueType fonts in LATEX, a concrete
example: the Fell Types]; pp. 88–102

This paper explains how TEX can make the
best use of the features of a TrueType font. For

this purpose, the paper shows the installation of a
collection of fonts, the Fell Types, full of nonstandard
features that TEX can be taught to manage in a
transparent way for the user.

Jean-Michel Hufflen, Guidelines for
Bibliographical Citations in LATEX; pp. 103–110

After a short overview of the schemes used for
bibliographical citations, we give some guidelines for
using some packages of LATEX 2ε and bibliography
styles of BibTEX in order to write adaptable citations,
i.e., texts where switching one citation scheme to
another is easy.

The PracTEX Journal 2007-3–2008-1

The PracTEX Journal is an online publication of the
TEX Users Group. Its web site is http://tug.org/

pracjourn. All articles are available there.

The PracTEX Journal 2007-3, August 2007

Issue theme: Tools for TEX and LATEX users.

Francisco Reinaldo, From the Editor

The Editors, News from Around: Upcoming
conferences in Pisa and Cluj (Romania); LATEX
workshop in Berkeley

From the Readers, Feedback

Theresa Song Loong, The beginner’s forest of
LATEX

Images kept floating away, and keeping the style
within one project both beautiful and consistent took
up a lot of time. I have never been really content
with a word processor. For a large project containing
lots of math formulas, I assumed that learning to
use LATEX would take as much time as trying to
input the maths in a word processor. The final
result was beautiful, but I was very wrong about
how much time it would consume: using Greek fonts,
making tables, using some packages, and trying to
solve issues by reading incomprehensible package
documentation (some of which didn’t even explain
how to use the package, only how it was coded) was
very time-consuming indeed.

Antero Neves, A minha experiência em LATEX
[Article is in Portuguese.]

340 TUGboat, Volume 29 (2008), No. 2

Arne Henningsen, Tools for collaborative writing
of scientific LATEX documents

Collaborative writing of documents requires a
strong synchronisation among authors. This paper
describes a possible way to organise the collabora-
tive preparation of scientific LATEX documents. The
presented solution is primarily based on the version
control system Subversion. The paper describes how
Subversion can be used together with several other
software tools and LATEX packages to organise the
collaborative preparation of LATEX documents.

Arthur Buchsbaum and Francisco Reinaldo,
A tool for logicians

turnstile is a LATEX package that allows typeset-
ting of the mathematical logic symbol, “turnstile”,
in all of the various ways it is used. This package was
developed because there was no easy way in LATEX
to typeset this symbol in its various forms, and place
expressions above and below the crossbar.

Charilaos Skiadas and Thomas Kjosmoen,
LATEXing with TextMate

This article discusses the TextMate text edi-
tor and its many capabilities that make working
with LATEX documents a lot easier. Some of its fea-
tures include syntax highlighting, various methods
for automatic insertion of text (such as the begin-
end blocks in environments and automatic labels for
section commands), lookup of labels and cite keys
based on partial matches, as well as tools for dealing
with large projects.

TextMate is designed with the user in mind,
so it is easy to customize it to your needs. During
its short lifetime (about two and a half years) it
has gained many supporters and has become a very
popular text editor for the MacOSX platform, and
especially among LATEX users, as can be seen from
the large number of LATEX related questions on the
TextMate mailing list.

In addition to this article, the first author’s
weblog can be used as a starting point for learning
more about using TextMate for LATEX:
http://skiadas.dcostanet.net/afterthought

Vinicius Provenzano, A LATEX2ε “Linux-like”
environment on Mac OSX

Free and commercial LATEX2ε implementations
for Mac OSX are available on the Internet. If you
have always used a Mac, the best starting point is to
download and install one of these systems. However if
you have always used Linux and now find yourself in
front of a brand new Mac OS X machine and have no
time to learn new tools from scratch, your best option
would be to use your familiar Linux applications on
Mac OS X. This paper aims to show you how to install

and configure a Linux-like LATEX2ε environment in
Mac OSX, using Fink, teTEX and Kile.

Jérôme Laurens, Will TEX ever be WYSIWYG

or the pdf synchronization story
Why can editing Plain, LATEX or ConTEXt doc-

uments be such a pain? Of course, we can use ded-
icated text editors and environments that are very
handy, but we are far from the efficient graphical
user interface of a modern word processor. In this
article, we will point out some of the reasons why
TEX has no WYSIWYG (What You See Is What You
Get) user interface and we will discuss the possible
remedies. One of them is the pdf synchronization
implemented in the pdfsync package. This technol-
ogy will be explained, and we will see its benefits
and its limitations. Finally, we consider routes to-
wards a better user experience. Here, we are mainly
concerned with LATEX and pdf output.

Alexander Tsyplakov, TpX—a drawing tool
for LATEX

This article describes TpX, a lightweight, easy-
to-use graphical editor for the Windows platform,
presents guidelines for its use, and discusses some
features and limitations.

Duvvuri Venugopal, Tools for creating
bibliographic databases for use with BibTEX

By using BibTEX we can easily change the style
of bibliography/references according to the style of
the journal. But creating bibliographic databases for
use with BibTEX is very cumbersome. This article
describes the various software tools available for cre-
ating bibliographic databases easily, particularly for
the Windows platform.

Uwe Ziegenhagen, LATEX document management
with Subversion

From the single-author composition of a bache-
lor’s thesis to the creation of a book by a team, there
are many occasions where version management of a
document may be helpful. With the aim of overcom-
ing the shortcomings of CVS (Concurrent Version
System) the Subversion version control system was
implemented.

In this article I will describe the Subversion
setup on Windows and Linux systems, the elementary
steps of document management and various LATEX
packages working hand in hand with Subversion.

Martin Scharrer, Version control of LATEX
documents with svn-multi

This paper describes how to use the Subversion
software to version control your LATEX files while also
placing the current revision information in your doc-
ument using the package svn-multi (v1.3 or later).

TUGboat, Volume 29 (2008), No. 2 341

It covers all steps needed to set up and use Subver-
sion, and to manage multi-file documents. Usage
examples are provided for both basic and advanced
features, to allow the reader to get the most out of
the package.

David Walden, Travels in TEX Land: Fonts,
self-publishing and another reason I like TEX

In this column in each issue I muse on my wan-
derings around the TEX world. Section 1 of this
column describes some work I did organizing my
experiences of using different fonts within TEX. Sec-
tion 2 describes use of an external processor in com-
bination with TEX. Section 3 gives an update on my
self-publishing efforts using TEX.

The Editors, Ask Nelly: How do I create inline
numbered lists the LATEX way?

The Editors, Distractions — Alea iacta est!

The PracTEX Journal 2007-4, December 2007

Issue theme: Teaching LATEX and TEX.

Paul Blaga and Lance Carnes, From the
Editor

The Editors, News from Around: Conferences
in Pisa and Cluj (Romania); LATEX workshop in
Berkeley; Helvetica —the movie

Paul Blaga, Teaching LATEX: Why and how?
We discuss some of the problems related to the

process of learning LATEX and the opportunities pre-
sented by a LATEX course. We also propose a syllabus
for such a course and briefly mention some of the
LATEX books which, in our opinion, are suitable to
be adopted as course material.

Vincent Verfaille, A new package for conference
proceedings

The new confproc package is a simple and effi-
cient solution to build conference proceedings. Built
from scripts developed for the DAFx-06 proceedings,
it deals with various aspects: layout issues, table
of contents, index of authors, maybe a general bib-
liography, etc. It combines the pdfpages package
(to include PDF papers), the hyperref package (to
provide hyperlinks) and other packages; and it runs
pdfLATEX.

Kumar M Senthil, LATEX tools for life scientists
(BioTEXniques?)

LATEX has been a long time favorite of mathe-
maticians and physicists. However, many packages
are now available that have tremendously extended
the capabilities of LATEX beyond routine typesetting
and provide biologists new avenues to not only type-
set documents, but also help in the visualization of

membrane proteins and in the analysis of DNA or
amino acid sequences by multiple sequence align-
ment. I will discuss with examples some of the LATEX
packages and tools that are presently available for
the biologists. Some scientific journals (for biological
research) now accept (LA)TEX formatted manuscripts,
although they are still a rarity. This article will
provide references for those sources that might be
helpful to prospective authors from life sciences who
want to submit manuscripts in (LA)TEX format. This
article is written from the perspective of a biologist
who might be interested in creating better documents
using LATEX & friends.

Rohit Vishal Kumar, Using LATEX for writing a
thesis

LATEX has been successfully used for typeset-
ting widely different document formats. However,
the complexity of typesetting some commonly used
documents acts as a deterrent for some people who
would like to use LATEX for their work. Over the
years, I have noticed students who come to LATEX
eager in their anticipation of using LATEX, lose their
enthusiasm midway, and revert back to using Word.
In this article, I have tried to described my own expe-
riences of typesetting a doctoral thesis using widely
available packages, in the hope that students can see
the ease with which LATEX can be used for complex
work.

Wybo Dekker, The ctable package
The ctable package provides a \ctable com-

mand for typesetting table and figure floats. You
will not need to type the usual nested begin. . . end
sequences, as \ctable is a command, not an environ-
ment. \ctable takes only four arguments, but the
optional first one may hold many key=value pairs
and makes ctable very flexible and extensible. It
uses Simon Fear’s booktabs package for better verti-
cal spacing around horizontal rules and it provides
facilities for making table footnotes.

Nicola Talbot, Teaching LATEX for a staff
development course

I taught LATEX at the University of East Anglia
from 1997 to 2004 as part of the staff development
course. In this article I will describe the headaches
and lessons I learnt which helped me improve the
course. This article is intended to assist those who
are planning to teach LATEX in a practical environ-
ment.

S. Parthasarathy, Brevity is the soul of wit:
How LATEX can help

This essay is about using “lists” in LATEX. Lists
are very useful, in presenting material in a crisp

342 TUGboat, Volume 29 (2008), No. 2

and compact form. This makes technical documents,
less verbose, and easier to follow. The author hopes
that this paper will make LATEX enjoyable for more
people.

Keith Jones, Writing your dissertation using
LATEX

The old adage, “You can lead a horse to water,
but you can’t make it drink,” applies when trying to
convince students to change to LATEX for writing their
thesis or dissertation. Students like to stay in their
“comfort” zone and do not look favorably toward the
work of learning a new software system. To date I
have convinced one professor and two students to use
LATEX as their primary document formatting system.

Jonathan Fine, Interactive TEX training and
support

It is today practical and helpful to provide TEX
as a web service. This allows us a new approach to
learning TEX.

Lapo Mori and Maurizio Himmelmann, Writing
curriculum vitæ with LATEX

This paper presents the tools that are currently
available to prepare the curriculum vitæ with LATEX
with a critical analysis of packages and classes.

David Walden, Travels in TEX Land: Benefits of
thinking a little bit like a programmer

In this column in each issue I muse on my wan-
derings around the TEX world. Section 1 of this
column provides another illustration of the benefit
of defining a few simple macros for a particular TEX
project. Section 2 gives another example of using
an external processor in combination with TEX. Sec-
tion 3 gives another example.

The Editors, Ask Nelly: How do I write matrices
in the text?

The Editors, Distractions—Music scores with
LATEX

The PracTEX Journal 2008-1, April 2008

Issue theme: LATEXniques.

Yuri Robbers, From the Editor

The Editors, News from Around: TEX program
updates; Bigelow introduces Grotesque; Day of
LATEX; Keming (?)

Lapo Mori, Writing a thesis with LATEX
This article provides useful tools to write a thesis

with LATEX. It analyzes the typical problems that

arise while writing a thesis with LATEX and suggests
improved solutions by handling easy packages. Many
suggestions can be applied to book and article styles,
as well.

Jim Hefferon, LATEX goes with the flow
One advantage of TEX and friends is that they

fit naturally into a work flow where there are many
tools, each good at its own job. This paper gives an
example involving a system for doing class evalua-
tions online.

Ista Zahn, Learning to Sweave in APA style
Until recently I used Microsoft Word and clones

such as OpenOffice to write academic manuscripts, as
do most in my field. The standard software toolkit for
many psychology professors and graduate students
also includes SPSS for performing statistical analyses,
and perhaps EndNote or similar reference manager
software for generating bibliographies. These tools
work, but my experience suggests that LATEX-based
solutions have significant advantages. This article
describes how to use Sweave to write LATEX docu-
ments in APA style, complete with results, tables,
and figures generated by R.

Yogeshwarsing Calleecharan, Using BibTEX
to produce customized layouts

Normal LATEX and TEX usage does not require
touching existing .bst files nor creating new ones.
However, BibTEX offers several interesting commands
which can be used to do many things apart from
bibliography generation. In this article, it is demon-
strated how customized layouts for a database can
be created without much trouble.

David Walden, Travels in TEX Land: Another
ornament for “thought breaks”

In this column in each issue I muse on my wan-
derings around the TEX world. I suggested at the
end of section 2 of my last column that I would con-
tinue my investigation of colors and TEX in this issue.
However, I was distracted for much of the period
between issues by a health problem (now resolved).
Thus, in this issue I only have time to touch briefly

again on a topic from my column in TPJ 2005-4—
another ornament to use for “thought breaks”.

The Editors, Ask Nelly: How do I find the files
required to compile my document?

The Editors, Distractions—Spirograph with
PSTricks

TUGboat, Volume 29 (2008), No. 2 343

TUG Business

TUG financial statements for 2007

David Walden, TUG treasurer

This financial report for 2007 has been reviewed by
the TUG board but has not been audited. It may
change slightly when the final 2007 tax return is
filed. As a tax-exempt organization, TUG’s annual
information returns are publicly available on our web
site: http://www.tug.org/tax-exempt.

Revenue (income) highlights

Membership dues revenue was slightly up (at the
end of December 2007 we had 1567 paid members,
about 75 more than in 2006); conference income
was substantially up; and interest income was up
somewhat. However, product sales and contributions
income were down more substantially (much of the
decrease in contributions was because 2006 income
included an atypical, one-time contribution of $5K).
So altogether, revenue decreased 4 percent from 2006
to 2007.

Cost of Goods Sold and Expenses highlights

Payroll, office expenses, and TUGboat production
and mailing continue to be the major expense items.

The shipping expense of the 2007 TEX Collection
software was budgeted in 2006 (when, as it turned
out, no software was shipped). However, we had
significant postage/delivery expenses as we shipped
TUGboat issues to many individuals who joined TUG

after the normal mailings had been made. TUG-

boat expenses were nevertheless down in 2007 from
2006 because we produced three normal issues in
2007, and no extra-expensive EuroTEX proceedings
as happened in 2006.

Overall, expenses are up about $3K in 2007
because of a modest cost-of-living increase in payroll
and increased contributions made by TUG.

The bottom line

Subtracting ‘Cost of Goods Sold’ from ‘Income’, we
are essentially flat from 2006 to 2007 — the savings
in COGS mostly offsets the decrease in revenue. As

expenses are up about $3K, the net income is down a
little under $3K in 2007 — down $2,683, to be exact.

Typically we have a prior year adjustment that
takes place early in the year to compensate for some-
thing that had to be estimated at the time the books
were closed for the year on December 31. We had a
small positive prior year adjustment in 2007 versus a
larger negative adjustment in 2006, and year to year
the difference is $2,244. Netting ‘Prior Year Adjust-
ments’ with ‘Net Ordinary Income’, the overall net
income for 2007 is a very positive gain of $15,408
(though down 2.8 percent from 2006).

Balance sheet highlights

Thus, for the second year in a row, TUG’s end-of-year
asset level is much higher than the previous year’s
level — up over $26K from 2006 to 2007.

The ‘Committed Funds’ come to TUG specifi-
cally for designated projects: the LATEX project, the
TEX Development fund, and so forth. They have
been allocated accordingly and are disbursed as the
projects progress. TUG charges no overhead for ad-
ministering these funds.

‘Prepaid Member Income’ is member dues that
were paid in 2007 for 2008 and beyond. Most of
this liability (the 2008 portion) was converted to
‘Membership Dues’ for 2008 on January 2008. The
payroll liabilities are for 2006 state and federal taxes
due January 15, 2007.

Summary

TUG was in essentially the same financial condition
at the end of 2007 as at the end of 2006 and is in a rel-
atively strong position overall. However, there is no
fee increase for 2008 despite inflationary tendencies,
and the TUG board is planning to increase direct
TUG contributions (fund more TEX development) in
2008 as well as cover the cost of producing and ship-
ping the software and another expensive EuroTEX
proceedings in 2008 (already shipped as TUGboat

29:1). In other words, we will be using some of the
2006-to-2007 asset increase in 2008 to further our
fundamental goals and benefits.

TUG continues to work closely with the other
TEX user groups and ad hoc committees on many
activities to benefit the TEX community.

344 TUGboat, Volume 29 (2008), No. 2

 TUG 12/31/2007 (versus 2006) Balance Sheet

Dec 31, 07 Dec 31, 06

ASSETS

Current Assets

Total Checking/Savings 160,490 133,790

Accounts Receivable 254 395

Other Current Assets 1,327

Total Current Assets 162,071 134,185

Fixed Assets 3,726 5,224

TOTAL ASSETS 165,797 139,409

LIABILITIES & EQUITY

Liabilities

Software Delay until 2007 6,500

Committed Funds 24,413 9,322

Prepaid member income 4,075 1,710

Payroll Liabilities 1,080 1,057

Total Current Liabilities 29,568 18,589

TOTAL LIABILITIES 29,568 18,589

Equity

Unrestricted 120,820 104,972

Net Income 15,409 15,848

Total Equity 136,229 120,820

TOTAL LIABILITIES & EQUITY 165,797 139,409

 TUG 2007 (versus 2006) Revenue and Expenses

Jan - Dec 07 Jan - Dec 06

Ordinary Income/Expense

Income

Membership Dues 101,956 101,669

Product Sales 7,667 11,776

Contributions Income 5,423 11,376

Practical TeX Conference 2,909

Conference Classes 965

Annual Conference 6,827 -275

Interest Income 5,901 4,589

Advertising Income 230 370

Total Income 128,004 133,379

Cost of Goods Sold

TUGboat Prod/Mailing 25,130 28,998

Software Production/Mailing 1,111 6,500

Postage/Delivery - Members 6,296 2,702

Conf Expense, office + overh 1,164 1,651

Member Renewal 335

Copy/Printing for members 55 60

Total COGS 34,091 39,911

Gross Profit 93,913 93,468

Expense

Contributions made by TUG 5,750 3,000

Office Overhead 11,653 12,229

Payroll Exp 59,863 58,622

Professional Fees 200 318

Depreciation Expense 1,498 1,667

Total Expense 78,964 75,836

Net Ordinary Income 14,949 17,632

Other Income/Expense

Other Income

Prior year adjust 459 -1,785

Total Other Income 459 -1,785

Net Other Income 459 -1,785

Net Income 15,408 15,847

TUG

Institutional

Members

Aalborg University, Department
of Mathematical Sciences,
Aalborg, Denmark

Aware Software, Inc.,
Midland Park, New Jersey

American Mathematical Society,
Providence, Rhode Island

Banca d’Italia, Roma, Italy

Center for Computing Sciences,
Bowie, Maryland

Certicom Corp.,
Mississauga, Ontario, Canada

CSTUG, Praha, Czech Republic

Florida State University,
School of Computational Science
and Information Technology,
Tallahassee, Florida

IBM Corporation,
T J Watson Research Center,
Yorktown, New York

Institute for Defense Analyses,
Center for Communications
Research, Princeton, New Jersey

MacKichan Software,
Washington/New Mexico, USA

Marquette University,
Department of Mathematics,
Statistics and Computer Science,
Milwaukee, Wisconsin

Masaryk University, Faculty of
Informatics, Brno, Czech Republic

Moravian College, Department
of Mathematics and Computer
Science, Bethlehem, Pennsylvania

MOSEK ApS, Copenhagen,
Denmark

New York University,
Academic Computing Facility,
New York, New York

Princeton University,
Department of Mathematics,
Princeton, New Jersey

Springer-Verlag Heidelberg,
Heidelberg, Germany

Stanford Linear Accelerator Center
(SLAC), Stanford, California

Stanford University,
Computer Science Department,
Stanford, California

Stockholm University, Department
of Mathematics, Stockholm, Sweden

University College, Cork,
Computer Centre, Cork, Ireland

University of Delaware,
Computing and Network Services,
Newark, Delaware

Université Laval,
Ste-Foy, Québec, Canada

Universiti Tun Hussein
Onn Malaysia,
Pusat Teknologi Maklumat,
Batu Pahat, Johor, Malaysia

University of Oslo,
Institute of Informatics,
Blindern, Oslo, Norway

Vanderbilt University,
Nashville, Tennessee

TEX Users Group
Membership Form

2008

Promoting the use

of TEX throughout

the world.

mailing address:

P. O. Box 2311

Portland, OR 97208-2311 USA

shipping address:

1466 NW Naito PKWY, Suite 3141

Portland, OR 97209-2820 USA

phone: +1 503-223-9994

fax: +1 206-203-3960

email: office@tug.org

web: http://www.tug.org

President Karl Berry

Vice-President Kaja Christiansen

Treasurer David Walden

Secretary Susan DeMeritt

Executive Director Robin Laakso

TUG membership rates are listed below. Please check the appropriate boxes and
mail the completed form with payment (in US dollars) to the mailing address at
left. If paying by credit/debit card, you may alternatively fax the form to the
number at left or join online at http://tug.org/join.html. The web page also
provides more information than we have room for here.

Status (check one) New member Renewing member

Automatic membership renewal in future years
Using the same payment information; contact office to cancel.

Rate Amount

Regular membership for 2008 $85

Special membership for 2008
You may join at this special rate if you are a
senior (62+), student, new graduate, or from a country with a
modest economy. Please circle accordingly.

$55

Subscription for 2008 (non-voting) $95

Institutional membership for 2008
Includes up to eight individual memberships.

$500

Don’t ship any physical benefits (TUGboat, software)
TUGboat and software are available electronically.

deduct $20

Purchase last year’s materials:

TUGboat volume for 2007 (3 issues) $20
TEX Collection 2007

DVD with proTEXt, MacTEX, TEX Live, CTAN.

$10

TEX Live CD 2007 $10
proTEXt CD 2007 $10
CTAN 2007 on CD $15

Voluntary donations (see https://www.tug.org/donate.html)

General TUG contribution
Bursary Fund contribution
TEX Development Fund contribution
CTAN contribution
TEX Gyre fonts contribution
LATEX 3 contribution
LuaTEX contribution
MacTEX contribution

Total $

Tax deduction: The membership fee less $35 is generally deductible, at least in the US.

Multi-year orders: To join for more than one year at this year’s rate, just multiply.

Payment (check one) Payment enclosed Visa MasterCard AmEx

Account Number: Exp. date:

Signature:

Privacy: TUG uses your personal information only to send products, publications, notices, and (for voting members)
official ballots. TUG does not sell or otherwise provide its membership list to anyone.

Name

Department

Institution

Address

City State/Province

Postal code Country

Email address

Phone Fax

Position Affiliation

2008

May 15 – 16 Seventh annual Friends of
St Bride Library Conference, “Seeking
inspiration: Creative thinking around the
design process”, London, England.
stbride.org/events_education/events

May 28 – 31 DANTE: Exhibitor at LinuxTag, Berlin,
Germany. www.dante.de

Jun 24 – 28 SHARP 2008, “Teaching and Text”,
Society for the History of Authorship,
Reading and Publishing, Oxford
Brookes University, Oxford.
ah.brookes.ac.uk/conference/sharp2008

Jun 25 – 29 Digital Humanities 2008, Association of
Literary and Linguistic Computing /
Association for Computers and
the Humanities, Oulu, Finland.
www.ekl.oulu.fi/dh2008

Jul 6 –
Aug 2

Wells College Book Arts Center,
Summer Institute, Aurora, New York.
www.wells.edu/bkarts/info.html

Jul 15 – 20 TypeCon 2008: Punkt (10th anniversary),
Buffalo, New York. www.typecon.com

TUG 2008 — TEX’s 30th birthday

University College Cork, Ireland

Jul 20 Workshops

Jul 21 – 24 The 29th annual meeting of the TEX
Users Group. www.tug.org/tug2008

Aug 11 – 15 SIGGRAPH 2008, “Evolve”,
Los Angeles, California.
www.siggraph.org/events/s2008

Aug 12 – 15 Balisage: The Markup Conference,
Montréal, Québec. www.balisage.net

Aug 20 – 25 Second International ConTEXt
User Meeting, Bohinj, Slovenia.
meeting.contextgarden.net

Sep 1 – 4 Book history workshop, École de
l’institut d’histoire du livre,
Lyon, France. ihl.enssib.fr

Sep 16 – 19 ACM Symposium on Document
Engineering, São Paolo, Brazil.
www.documentengineering.org

346 TUGboat, Volume 29 (2008), No. 2

Calendar

Sep 17 – 21 Association Typographique Internationale
(ATypI) annual conference,
“The Old · The New”, St. Petersburg,
Russia. www.atypi.org

Oct 4 – 5 Oak Knoll Fest XV, “Celebrating a
‘Hot Metal Man’ ”, honoring
Henry Morris and his 50th anniversary
in printing, New Castle, Delaware.
www.oakknoll.com/fest

Oct 6 Journée GUTenberg & Assemblée
générale, Paris, France.
www.gutenberg.eu.org/manifestations

Oct 10 – 12 American Printing History Association
2008 annual conference, “Saving the
History of Printing”, Grolier Club
and Columbia University, New York,
New York. www.printinghistory.org

Oct 16 – 18 Guild of Book Workers,
Standards of Excellence
Annual Seminar, Toronto, Ontario.
palimpsest.stanford.edu/byorg/gbw

Oct 25 – 27 The Sixth International Conference on
the Book, “Save, Change or Discard:
Tradition and Innovation in the World of
Books”, Catholic University of America,
Washington, DC. b08.cgpublisher.com

Dec 8 – 10 XML 2008 Conference, Arlington,
Virginia. xmlconference.org

2009

Jan 8 – 10 College Book Art Association Biennial
Conference, “Art, Fact, and Artifact: The
Book in Time and Place”, University of
Iowa Center for the Book, Iowa City,
Iowa. www.uiowa.edu/~ctrbook/

events/CBAA_conference.shtml

TUG 2009

University of Notre Dame, South Bend, Indiana

Jul 27 – 31 The 30th annual meeting of the TEX
Users Group. www.tug.org/tug2009

Aug 31 –
Sep 4

EuroTEX 2009, The Hague,
The Netherlands.
www.ntg.nl/EuroTeX2009

Status as of 15 May 2008

For additional information on TUG-sponsored events listed here, contact the TUG office
(+1 503 223-9994, fax: +1 206 203-3960, e-mail: office@tug.org). For events sponsored
by other organizations, please use the contact address provided.

TEX Users Group 2008 Conference

University College Cork

Cork, Ireland

21–24 July 2008

http://tug2008.ucc.ie/

✁

TEX’s 30th birthday

Interfaces to TEX

Workshops

Presentations

Hosted by the Human Factors Research Group (http://hfrg.ucc.ie)

The information here comes from the consultants
themselves. We do not include information we know
to be false, but we cannot check out any of the
information; we are transmitting it to you as it was
given to us and do not promise it is correct. Also, this
is not an official endorsement of the people listed here.
We provide this list to enable you to contact service
providers and decide for yourself whether to hire one.

TUG also provides an online list of consultants at
http://tug.org/consultants.html.

Martinez, Mercè Aicart

Tarragona 102 4o 2a

08015 Barcelona, Spain
+34 932267827
Email: m.aicart (at) menta.net

Web: http://www.edilatex.com

We provide, at reasonable low cost, TEX and LATEX
typesetting services to authors or publishers world-
wide. We have been in business since the beginning of
1990. For more information visit our web site.

Peter, Steve

310 Hana Road
Edison, NJ 08817
+1 732 287-5392
Email: speter (at) dandy.net

Specializing in foreign language, linguistic, and

348 TUGboat, Volume 29 (2008), No. 2

TEX Consultants

technical typesetting using TEX, LATEX, and ConTEXt,
I have typeset books for Oxford University Press,
Routledge, and Kluwer, and have helped numerous
authors turn rough manuscripts, some with dozens of
languages, into beautiful camera-ready copy. I have
extensive experience in editing, proofreading, and
writing documentation. I also tweak and design fonts.
I have an MA in Linguistics from Harvard University
and live in the New York metro area.

Veytsman, Boris

2239 Double Eagle Ct.
Reston, VA 20191
+1 703 860-0013
Email: borisv (at) lk.net

Web: http://borisv.lk.net

TEX and LATEX consulting, training and seminars.
Integration with databases, automated document
preparation, custom LATEX packages, conversions and
much more. I have about twelve years of experience in
TEX and twenty-five years of experience in teaching &
training. I have authored several packages on CTAN

and published papers in TEX related journals.

olume 29, Number 2 2008

TUGBOAT Volume 29 (2008), No. 2

Table of Contents (ordered by difficulty)

Introductory
303 Edward Barrett / Porting TEX Live to OpenBSD

• history, process, and fruition of porting TEX Live to a system distribution
232 Barbara Beeton / Editorial comments

• typography and TUGboat news
231 Karl Berry / From the President

• TUG at the JMM; Google Summer of Code; interviews; The PracTEX Journal; conferences
240 Peter Flynn / Typographers’ Inn

• METAFONT fonts; Type 1 (PostScript) fonts; new forum, old forum; 2008 TUG meeting in Cork
283 Hans Hagen, Taco Hoekwater and Volker RW Schaa / Reshaping Euler: A collaboration with Hermann Zapf

• illustrated report of updating the Euler math font
315 Aditya Mahajan / ConTEXt basics for users: Indentation

• overview of controlling paragraph indentation in ConTEXt
333 Bernd Schroeder / Software review: TEXCAD for Windows

• review of this GUI program for the LATEX picture environment
242 Vassilios Tsagkalos / The Greek Font Society

• background, goals, and accomplishments of the GFS; interview with Georgios Matthiopoulos, type designer
331 Ulrik Vieth / Book review: Fonts & Encodings by Yannis Haralambous

• review of this multi-faceted book which is now available in English

Intermediate
278 Claudio Beccari / lxfonts: LATEX slide fonts revived

• a greatly revised and expanded sans serif font collection for presentations
246 Claudio Beccari and Andrea Guadagni / Designing and producing a reference book with LATEX

• issues in designing a reference book for screen and print publication
328 Karl Berry / The treasure chest

• selected new CTAN packages from July 2007 through May 2008
288 John Bowman and Andy Hammerlindl / Asymptote: A vector graphics language

• discussion of this powerful graphics program, with extensive comparisons to MetaPost
270 Victor Eijkhout / Character encoding

• introduction to character encodings, emphasizing Unicode and UTF-8
255 Massimo Guiggiani and Lapo Mori / Suggestions on how not to mishandle mathematical formulæ

• best practices for composing math, especially for non-mathematicians
264 John Rankin / Wikipublisher: A Web-based system to make online and print versions of the same content

• a free software system for creating high-quality printed documents from PmWiki markup
317 Denis Roegel / Kanji-Sudokus: Integrating Chinese and graphics

• using the CJK package and MetaPost to produce Sudoku grids

Intermediate Plus
295 Hans Hagen / The Luafication of TEX and ConTEXt

• progress report on the LuaTEX implementation and its use in ConTEXt
334 Frank Mittelbach / \looseness on the loose

• altered line breaks even when \looseness has no effect of its own
305 Scott Pakin / Good things come in little packages: An introduction to writing .ins and .dtx files

• a tutorial on creating LATEX package files
324 Peter Wilson / Glisterings

• more on paragraphs regular; LATEX’s defining triumvirate; TEX’s dictator

Advanced
233 Donald Knuth / The TEX tuneup of 2008

• the 2008 updates to TEX, METAFONT, Computer Modern, et al.
320 Paweł Jackowski / Interesting loops and iterations — second helping

• review of loop definitions from the original to fully expandable ones via ε-TEX

Contents of other TEX journals
338 ArsTEXnica: Contents of issue 4 (2007)
336 Die TEXnische Komödie: Contents of issues 2007/2–2008/1
337 Eutypon: Contents of issues 16–20 (2007–2008)
335 MAPS: Contents of issues 35 (2007)
339 The PracTEX Journal: Contents of issues 2007-3–2008-1

Reports and notices
239 Barbara Beeton / Hyphenation exception log
343 David Walden / TUG financial statements for 2007
344 Institutional members
345 TUG membership form
346 Calendar
347 TUG 2008 announcement
348 TEX consulting and production services

TUGBOAT

Volume 29, Number 2 / 2008

General Delivery 231 From the president / Karl Berry

232 Editorial comments / Barbara Beeton

TEX 3.1415926 is here, and other Knuthian references; Phyllis Winkler, RIP;
New domain name for CervanTEX; Interactive typography courses by
Jonathan Hoefler; A helpful CTAN feature: “get”; Recreating the Gutenberg
press; Copy-editing the wayward apostrophe; A font game for your amusement

233 The TEX tuneup of 2008 / Donald Knuth

239 Hyphenation exception log / Barbara Beeton

Typography 240 Typographers’ Inn / Peter Flynn

242 The Greek Font Society / Vassilios Tsagkalos

246 Designing and producing a reference book with LATEX: The Engineer’s Quick

Reference Handbook / Claudio Beccari and Andrea Guadagni

255 Suggestions on how not to mishandle mathematical formulæ /

Massimo Guiggiani and Lapo Mori

Electronic Documents 264 Wikipublisher: A Web-based system to make online and print versions of the
same content / John Rankin

270 Character encoding / Victor Eijkhout

Fonts 278 lxfonts: LATEX slide fonts revived / Claudio Beccari

283 Reshaping Euler: A collaboration with Hermann Zapf / Hans Hagen,

Taco Hoekwater and Volker RW Schaa

Software & Tools 288 Asymptote: A vector graphics language / John Bowman and Andy Hammerlindl

295 The Luafication of TEX and ConTEXt / Hans Hagen

303 Porting TEX Live to OpenBSD / Edward Barrett

LATEX 305 Good things come in little packages: An introduction to writing .ins and .dtx files /

Scott Pakin

ConTEXt 315 ConTEXt basics for users: Indentation / Aditya Mahajan

Multilingual MetaPost 317 Kanji-Sudokus: Integrating Chinese and graphics / Denis Roegel

Hints & Tricks 320 Interesting loops and iterations— second helping / Pawe l Jackowski

324 Glisterings: More on paragraphs regular; LATEX’s defining triumvirate; TEX’s dictator
/ Peter Wilson

328 The treasure chest / Karl Berry

Reviews 331 Book review: Fonts & Encodings by Yannis Haralambous / Ulrik Vieth

333 Software review: TEXCAD for Windows / Bernd Schroeder

Warnings 334 \looseness on the loose / Frank Mittelbach

Abstracts 335 MAPS: Contents of issue 35 (2007)

336 Die TEXnische Komödie: Contents of issues 2007/2–2008/1

337 Eutypon: Contents of issues 16–20 (2007–2008)

338 ArsTEXnica: Contents of issue 4 (2007)

339 The PracTEX Journal : Contents of issues 2007-3–2008-1

TUG Business 343 TUG financial statements for 2007 / David Walden

344 TUG institutional members

345 TUG membership form

News 346 Calendar

347 TUG 2008 announcement

Advertisements 348 TEX consulting and production services

TUGBOAT Volume 29 (2008), No. 2

Table of Contents (ordered by difficulty)

Introductory

303 Edward Barrett / Porting TEX Live to OpenBSD

• history, process, and fruition of porting TEX Live to a system distribution
232 Barbara Beeton / Editorial comments

• typography and TUGboat news
231 Karl Berry / From the President

• TUG at the JMM; Google Summer of Code; interviews; The PracTEX Journal; conferences
240 Peter Flynn / Typographers’ Inn

• METAFONT fonts; Type 1 (PostScript) fonts; new forum, old forum; 2008 TUG meeting in Cork
283 Hans Hagen, Taco Hoekwater and Volker RW Schaa / Reshaping Euler: A collaboration with Hermann Zapf

• illustrated report of updating the Euler math font
315 Aditya Mahajan / ConTEXt basics for users: Indentation

• overview of controlling paragraph indentation in ConTEXt
333 Bernd Schroeder / Software review: TEXCAD for Windows

• review of this GUI program for the LATEX picture environment
242 Vassilios Tsagkalos / The Greek Font Society

• background, goals, and accomplishments of the GFS; interview with Georgios Matthiopoulos, type designer
331 Ulrik Vieth / Book review: Fonts & Encodings by Yannis Haralambous

• review of this multi-faceted book which is now available in English

Intermediate

278 Claudio Beccari / lxfonts: LATEX slide fonts revived
• a greatly revised and expanded sans serif font collection for presentations

246 Claudio Beccari and Andrea Guadagni / Designing and producing a reference book with LATEX
• issues in designing a reference book for screen and print publication

328 Karl Berry / The treasure chest
• selected new CTAN packages from July 2007 through May 2008

288 John Bowman and Andy Hammerlindl / Asymptote: A vector graphics language
• discussion of this powerful graphics program, with extensive comparisons to MetaPost

270 Victor Eijkhout / Character encoding
• introduction to character encodings, emphasizing Unicode and UTF-8

255 Massimo Guiggiani and Lapo Mori / Suggestions on how not to mishandle mathematical formulæ
• best practices for composing math, especially for non-mathematicians

264 John Rankin / Wikipublisher: A Web-based system to make online and print versions of the same content
• a free software system for creating high-quality printed documents from PmWiki markup

317 Denis Roegel / Kanji-Sudokus: Integrating Chinese and graphics
• using the CJK package and MetaPost to produce Sudoku grids

Intermediate Plus

295 Hans Hagen / The Luafication of TEX and ConTEXt
• progress report on the LuaTEX implementation and its use in ConTEXt

334 Frank Mittelbach / \looseness on the loose
• altered line breaks even when \looseness has no effect of its own

305 Scott Pakin / Good things come in little packages: An introduction to writing .ins and .dtx files
• a tutorial on creating LATEX package files

324 Peter Wilson / Glisterings
• more on paragraphs regular; LATEX’s defining triumvirate; TEX’s dictator

Advanced

233 Donald Knuth / The TEX tuneup of 2008
• the 2008 updates to TEX, METAFONT, Computer Modern, et al.

320 Paweł Jackowski / Interesting loops and iterations —second helping
• review of loop definitions from the original to fully expandable ones via ε-TEX

Contents of other TEX journals

338 ArsTEXnica: Contents of issue 4 (2007)
336 Die TEXnische Komödie: Contents of issues 2007/2–2008/1
337 Eutypon: Contents of issues 16–20 (2007–2008)
335 MAPS: Contents of issues 35 (2007)
339 The PracTEX Journal: Contents of issues 2007-3–2008-1

Reports and notices

239 Barbara Beeton / Hyphenation exception log
343 David Walden / TUG financial statements for 2007
344 Institutional members
345 TUG membership form
346 Calendar
347 TUG 2008 announcement
348 TEX consulting and production services

