
Why didn’t METAFONT catch on?

Dave Crossland
University of Reading, UK
dave (at) lab6 dot com

http://www.understandinglimited.com

Abstract

METAFONT is an algebraic programming language for describing the shapes of
letters, designed and implemented by Knuth as part of the original TEX type-
setting system. It was one of the earliest digital type design systems, and is
completely capable of dealing with the letters of any writing system, has always
been freely available, and is remarkably powerful. Yet it never caught on with
type designers. Why?

“There are three kinds of people. Those that can
count, and those that can’t.”

There is type in typography, but there is also
type in psychology: Personality type.

There are many ways of thinking about per-
sonality type [1] and the famous Myers–Briggs ty-
pology places importance on four attitudes. First,
there is our preference for competition or coopera-
tion, or whether we tend to make decisions logically
or emotionally. Second, our use of language reveals
the way we think, with some people preferring more
abstract language and others preferring more con-
crete language. Third is our attitude to time keep-
ing, which may be exploratory or scheduling, and
fourth is our orientation to socialising, where after
a party we may feel drained or energised.

Put together, these four preferences between
two options yield 16 personality types. The book
Please Understand Me 2 [2] puts them into a co-
hesive system that groups the 16 types into four
temperaments, fleshed out by labels and personified
by Greek gods: Epimethean ‘Guardians,’ Dionysian
‘Artisans,’ Apollonian ‘Idealists,’ and Promethean
‘TEXXies’ ‘Rationalists.’

Such broad theories for how people differ prob-
ably can’t be taken too far, as ultimately people
are all pretty much alike; “what one man can do,
another man can do.” But there is a common senti-
ment that some of us are more abstract in our lan-
guage and more logical in our thinking than others.

Software is pretty abstract and logical, and peo-
ple who become immersed in the world of software
tend to be of a Promethean temperament. The ar-
guments for software freedom especially have that
kind of draw. TEX takes an abstract and logical ap-
proach to digital typography, from concept to usage,
and METAFONT is no exception. But graphic design

is not abstract and logical, for the most part; it is
visual, concrete, more emotional than logical.

Throughout the long history of desktop pub-
lishing, people have generally not found TEX type-
setting intuitive, preferring desktop publishing ap-
plications with graphical user interfaces. Even for
those who go deep enough into graphic design to ar-
rive at type design, METAFONT is almost entirely
ignored — despite being freely available, completely
capable, and remarkably powerful. I believe this
issue of personality type is a primary reason why
METAFONT has not caught on.

Let’s consider type design divorced from the en-
gineering of font software for a moment.

Design happens at various scales at the same
time. In type design, the lowest visible level is that
of the letter, where you are dealing mainly with the
black shapes of the letter. It is obvious what those
are, but there are also the ‘white’ shapes. If you are
not sure what that means, imagine an image of a
letter, and invert it so that the black becomes white
and the white becomes black. Now, look around
you to find a letter printed large on something like
a poster or book cover. Looking at the letter, shift
your awareness to the ‘negative space’ in and around
the letter, and bring these white shapes into percep-
tual focus. It is hard to describe them, but they are
there, and designing them is as important as design-
ing the black shapes.

The next level up is that of words. Here there
are not only the white shapes inside and around the
letters, but those between the letters. At this level
we can also see patterns in the black shapes across
letters; things that look similar, yet are not exactly
the same.

Consider the lowercase n and h. These contain
several similar shapes, but looking closely, you will

418 TUGboat, Volume 29 (2008), No. 3 — Proceedings of the 2008 Annual Meeting



Why didn’t METAFONT catch on?

see that there are slight differences. Balancing these
similarities and differences is a core part of the type
design process. There are strong patterns in some
sets of letters, weaker similarities in other sets, and
some letters that are less typical, yet still look like
they belong with the rest. The letter s is perhaps
the most different, and Knuth wrote an interesting
essay about the peculiarities of that letter [3].

Finally, there is the level of paragraphs. When
a paragraph is set with a typeface, a different im-
pression of the letters emerges. This must be taken
into account at the other levels. Seen in this way, a
type design is a collection of individual glyph shapes
that fits together cohesively at all levels.

We can now see clearly the subtle distinction
between a font and a typeface. The same typeface
can be implemented in a variety of typesetting tech-
nologies — metal, software, even potato — with the
end result appearing the same. A font is a typeface
implemented in software. The term ‘software’ spans
programs and data, and fonts are a peculiar kind of
software because they are both programs and data,
while normally the two have some separation. Ex-
amples of programs within fonts are TrueType hints
and OpenType layout features; these instruct the
computer to display the type in various ways. The
data in a font is the glyph point data and metrics
table data.

There are generally two approaches to imple-
menting typefaces in software. The ‘outline’ ap-
proach involves drawing each letter by interactively
placing points along its outline. This attempts to
be a direct facsimile of drawing letters on paper.
Interpolation between sets of outlines means this
approach can handle the creation of large typeface
families.

The ‘stroke’ approach is where each letter is
constructed by specifying points along the path of
a pen’s stroke, and the attributes of the pen’s nib
at those points. Archetypal pieces can be designed
and used like Lego blocks to construct whole glyphs,
with refinements made for the individual require-
ments of each letter. With parametrisation to make
the shared values of shapes easily adjustable, such
as widening stems or modifying serifs, this approach
can handle a large typeface family in a cohesive and
powerful way.

Today the outline approach is dominant be-
cause it gives instant visual feedback and exacting
control; it is direct and visceral. This means design-
ing type at the level of individual letter shapes is
intuitive and a typeface emerges quickly.

It is especially suited to implementing exist-
ing type designs where all the aspects have already

been thought out; the TEX community provides a
clear example of this in the AMS Euler project [4],
where a team of Stanford students attempted to
digitise a new type design for mathematics that Zapf
had drawn on paper; the developers tried both ap-
proaches and felt tracing outlines was most appro-
priate. FontForge [5] is a vigorously developed free
software font editor application for working in this
way today.

While not suitable for implementing existing
type designs, METAFONT’s abstract and logical na-
ture makes it powerful for dealing with type at the
level of words. While initially slow, it speeds up
later stages of the design process, especially when
covering very large character sets. I think it is ide-
ally suited to developing new type designs where the
designer is not sure of the precise look that they are
trying to capture and want to experiment with a
variety of sweeping changes to their design.

TEXworks [6] attempts to make TEX typeset-
ting more visual and interactive. While still abstract
and logical compared to desktop publishing applica-
tions like Scribus [7], its user interface design and
the SyncTEX technology [8] tightly interconnect the
code and the document, making TEX more visual,
interactive, concrete and emotional.

Today METAFONT source code is written, var-
ious programs are run to generate graphics, then
another program is used to view them. These pro-
grams may be METAFONT, or METAFONT and then
mftrace [9], or METAPOST [10] with MetaType1
[11]. All involve a whole long process that is similar
to writing TEX documents in the traditional man-
ner. But with TEXworks, the TEX source code is
rendered into a document in near real-time, so there
is a very quick Boyd cycle [12] between adjusting the
typesetting code and seeing the document rendered.

Perhaps if there was a graphical user interface
to visualise METAFONT code in near real-time, type
designers who feel writing code is unintuitive could
be more confident about doing so. The simple GUI

shown by Sherif & Fahmy in their Arabic design
work is an example of this [13]. It might even be
feasible to have two-way interaction between code
and rendering, as Inkscape [14] achieves for SVG.
Perhaps then, METAFONT might catch on.

Dave Crossland is an international public speaker
on software freedom and fonts, runs a small busi-
ness doing type and information design and systems
administration, and is a committee member of UK-

TUG. He is currently studying at the University
of Reading’s Department of Typography on the MA

Typeface Design programme.

TUGboat, Volume 29 (2008), No. 3 — Proceedings of the 2008 Annual Meeting 419



Dave Crossland

References

[1] http://en.wikipedia.org/wiki/Category:
Personality_typologies

[2] Keirsey, D. Please Understand Me II:
Temperament, Character, Intelligence. 1998:
Prometheus Nemesis.

[3] Knuth, D. Digital typography. 1999: CSLI.
[4] Knuth, D. & Zapf, H. AMS Euler: A New

Typeface for Mathematics. 1989: Scholarly
Publishing.

[5] http://fontforge.sourceforge.net

[6] http://tug.org/texworks/

[7] http://www.scribus.net

[8] http://itexmac.sourceforge.net/SyncTeX.
html

[9] http://lilypond.org/mftrace/

[10] http://www.tug.org/metapost.html

[11] http://www.ctan.org/tex-archive/fonts/
utilities/metatype1/

[12] Osinga, F. Science, Strategy and War:
The Strategic Theory of John Boyd. 2006:
Routledge.

[13] Sherif, A. and Fahmy, H. Meta-designing
parameterized Arabic fonts for AlQalam. In
this volume, 435–443.

[14] http://www.inkscape.org

[15] http://metafont.tutorial.free.fr

Copyright c© 2008 Dave Crossland. Verbatim copy-
ing and redistribution of this entire article is per-
mitted, provided this notice is preserved.

420 TUGboat, Volume 29 (2008), No. 3 — Proceedings of the 2008 Annual Meeting

http://en.wikipedia.org/wiki/Category:Personality_typologies
http://en.wikipedia.org/wiki/Category:Personality_typologies
http://fontforge.sourceforge.net
http://tug.org/texworks/
http://www.scribus.net
http://itexmac.sourceforge.net/SyncTeX.html
http://itexmac.sourceforge.net/SyncTeX.html
http://lilypond.org/mftrace/
http://www.tug.org/metapost.html
http://www.ctan.org/tex-archive/fonts/utilities/metatype1/
http://www.ctan.org/tex-archive/fonts/utilities/metatype1/
http://www.inkscape.org
http://metafont.tutorial.free.fr

