
How to develop your own document class — our experience

Niall Mansfield
UIT Cambridge Ltd.
PO Box 145
Cambridge, England
tug08 (at) uit dot co dot uk

Abstract

We recently started re-using LATEX for large documents — professional computing
books — and had to convert an old (1987) LATEX 2.09 custom class to work
with LATEX 2ε. We first tried converting it to a stand-alone .cls file, which the
documentation seemed to suggest is the thing to do, but we failed miserably.
We then tried the alternative approach of writing an “add-on” .sty file for the
standard book.cls. This was straightforward, and much easier than expected.
The resulting style is much shorter, and we can use most standard packages to
add extra features with no effort.

This paper describes our experience and the lessons and techniques we learned,
which we hope will encourage more people to write their own styles or classes.

1 Where we started from

Years ago I wrote a book The Joy of X [1], about
the X window system. It was in an unusual format
called STOP [5], as enhanced by Weiss [6], summa-
rized graphically in Figure 1. In 2008 I wanted to
write another book in the same format [2, 3]. It has
several interesting features that make it excellent for
technical books, although those details are not rele-
vant here. Suffice it to say that STOP required us to
change how parts, chapters, sections and sub-sections
are handled, and to provide extra sectional units at
the beginning and end of each chapter. We also had
to provide a summary table of contents, and for each
chapter a per-chapter table of contents (TOC) on the
first page of the chapter, and use PostScript fonts,
which in 1987 was a non-trivial task.

Back in 1987 a colleague of mine, Paul Davis,
very kindly wrote the necessary style file for this
format, and it worked very well. However, in the
meantime the world had moved on from LATEX 2.09
to LATEX 2ε. The challenge was to provide the func-
tionality of the old style, but under LATEX 2ε.

2 First attempt — failure

Where do you start when developing a new style or
class? The document LATEX2ε for class and package
writers says:

if the commands could be used with any doc-
ument class, then make them a package; and
if not, then make them a class.

I took this to mean “We should write a class”. I
wrongly went one step further, and thought it also
meant we should start our own class from scratch.

Figure 1: A STOP sub-section or “module”

(Another reason for thinking this was that at least
one major publisher seems to have gone this route.)

In fact the same document continues “There are
two major types of class: those like article, report
or letter, which are free-standing; and those which
are extensions or variations of other classes — for
example, the proc document class, which is built on
the article document class.” What I ought to have
done is started work on an “extension” or “variation”
class, but I didn’t realize it.

So I tried to convert the old .sty to LATEX 2ε,
and failed miserably. (This wasn’t surprising, be-
cause LATEX 2.09 style files consisted of plain TEX
code, which I have always found very difficult to
understand.) The end-product was something that
almost worked, but had lots of small bugs, and when
I fixed one problem, the change caused new problems
elsewhere.

356 TUGboat, Volume 29 (2008), No. 3 — Proceedings of the 2008 Annual Meeting

How to develop your own document class — our experience

Another, equally large, disadvantage of this ap-
proach was that even if it had worked, the effort
to maintain it would have been huge. None of the
standard LATEX 2ε packages would have worked, so if
we needed any changes — even “simple” things like
changing the page size — we’d have had to code them
by hand ourselves.

Lesson A: whether you call your file a class
or a style doesn’t matter much — it’s just a
matter of a name. What is important is not
to start from scratch, but to build, as far as
possible, using existing code.
At this point we almost gave up and considered

using Quark Xpress or InDesign. But luckily someone
noticed the minitoc package, which looked like it
might give us exactly what we needed for our per-
chapter TOC, if only we could use it. We decided to
try again.

3 Second attempt — a short blind alley

We threw away everything we had and started again
from scratch. We tried book.cls plus minitoc. This
addressed one of our most difficult requirements —
the per-chapter TOC — and did it so well that we
were encouraged to persevere, thank goodness.

We copied the book.cls file as uitbook.cls,
and started adding our own modifications to this.
After a few days this became messy, especially when
bug-fixing: it wasn’t obvious which was our code
(where the bugs were likely to be) and which was the
original code.

Lesson B: in LATEX, the way to modify stan-
dard code is usually not to modify the original
file. Instead, extract just the piece that you
want to change, save it as something.sty and
modify just that little file. Then do
\usepackage{something.sty}.

4 Third attempt — success!

So we started again, leaving book.cls unchanged,
and created our own file uitbook.sty to contain all
our changes. The convention we settled on is:
• If something is just a convenience — e.g. a macro

that is merely a shorthand to save typing but
doesn’t add any new functionality — we create
a small .sty for it, and then \RequirePackage
that. In this way we can re-use the same conve-
nience tools with other classes.

For example, we defined about 12 macros for
including graphics or verbatim examples of pro-
gram code, with or without captions, and with
captions in the usual place below the figure or
alternatively beside the figure (to save vertical

space). These don’t do anything new, but they
all take the same number of arguments in the
same order; if a particular variant doesn’t actu-
ally need them all, we can just leave the irrele-
vant ones empty. This makes it easy to change
a figure from “no caption” to “side caption” or
to “normal caption” with a couple of keystrokes.
All these macros are in uit-figures.sty.

• Where we make substantial changes, e.g. to
the sectioning mechanism or to the format of
page headings, we include it directly in our file
uitbook.sty.

To cheer ourselves up after previous failures,
we did all the easy bits first. Those included the
convenience macros mentioned above, and the dozens
of \RequirePackage calls to the packages that we
needed:

caption chngpage color colortbl
courier crop endnotes fancyvrb
framed geometry graphicx helvet
hhline ifthen latexsym layout
makeidx mathpazo mcaption minitoc
nextpage paralist relsize showidx
sidecap ulem url wrapfig

At this point things were looking good. We had a
style that worked. However, several STOP-specific
features were still missing, so that’s what we had to
implement next.

The document LATEX2ε for class and package
writers describes the boilerplate for a class or pack-
age — analogous to telling a C programmer that he
needs a main() function, and how to use #include
statements. What it doesn’t tell you is how the
standard classes work, and the common techniques
they use. In the following sections we’ll explain the
techniques that we came across.

5 The hard bits 1 —over-riding existing
functionality

We needed to change the TOC entry for Parts. This
is handled in the \l@part function in book.cls.
We copied this function to our uitbook.sty, and
modified it there. The change involved was only a
single line — to use a different font, and insert the
word “Part” — but it illustrates a couple of important
points:

Lesson C: copying a piece of standard code
in LATEX, and changing your own version of
it is a bit like over-riding a method in object-
oriented programming. Everything that you
haven’t changed continues to work as before,
but as soon as the relevant function (macro)

TUGboat, Volume 29 (2008), No. 3 — Proceedings of the 2008 Annual Meeting 357

Niall Mansfield

Figure 2: How LATEX hooks work

is called — \l@part in our example — the new
code is used instead of the old (Figure 2).

Lesson D: you don’t have to understand ev-
erything to make a change to something rela-
tively small. As long as you change as little as
possible, you probably won’t break anything
else. In our case, even though \l@part con-
tains lots of complex stuff, we were confident
that our minor format changes would work,
because we didn’t modify anything else.

By the way, many functions or macros in the
package and class files are defined using the TEX
primitive \def, instead of LATEX’s \newcommand. If
you redefine an existing command with \def, you
don’t get an error, unlike \newcommand’s behavior.

6 The hard bits 2 —LATEX hooks

The first clue we got about how LATEX2 packages
work with class files, i.e. how they modify their be-
havior, was reading ltsect.dtx— the documented
version of the sectioning code in core LATEX2. It has
a comment: “Why not combine \@sect and \@xsect
and save doing the same test twice? It is not possible
to change this now as these have become hooks!”

What’s a hook? In the Emacs programmable
editor, hooks are used to customize the editor’s be-
havior. For example, before-save-hook is a list
of Lisp functions that should be run just before a
file is saved. By default the list is empty, but by
adding your own functions to the list, you can have
Emacs perform any special actions you want, such as
checking the file into a version control system as well
as saving it, etc. Emacs provides about 200 hooks,
letting you customize most aspects of its behavior.

In LATEX a hook is slightly different. It’s a
named function or macro that some other part of the
system is going to call. For example, in Section 5 we
used \l@part as a hook. As we saw, by redefining

\l@part, you can change how the TOC entries for
your Parts are printed. The hook mechanism and
the “over-riding functionality” technique above are
more or less the same thing.

Hooks are fundamental to how LATEX packages
work: they let the package over-ride the standard
operation with something different. As an example,
consider the shorttoc.sty package, which is useful
if you want a one-page summary table of contents
before the main TOC, for example. The package
contains only about 40 lines of code, and in essence,
all it does is call the standard table of contents,
having first redefined the variable \c@tocdepth to a
small value to show only the top levels of contents.
In effect, shorttoc.sty is using all the standard
table-of-contents macros as hooks, although it hasn’t
changed any of them.

Lesson E: hooks aren’t documented (as far
as we’ve been able to see). In fact they can
never be exhaustively documented, because
any package author can just copy any function
(as we did with \l@part earlier) and over-
ride it with their own code, thus using that
function as a hook. In real life, the only way
you can determine the important hooks is
by looking at the important packages, to see
which functions they over-ride.

Lesson F: when you copy a chunk of stan-
dard code, change the absolute minimum you
can get away with. The reason is you don’t
really know what parts of it might be used as
hooks, or what might happen if you remove
a call from it to some other hook. Resist the
temptation to tidy or “improve” the code.

7 The hard bits 3 —adding extra
functionality

(This section describes a technique that you will often
come across, and which you might find useful.)

Let’s say you want to change some function so
that it continues to do exactly what it does at present,
but does something extra in addition, i.e. the new
is a superset of the old. Here’s a real but slightly
weird example. The author of a book [4] was using
superscripts in his index for a special purpose. We
needed a list of the superscripts, and it was difficult
to get this from the source files. Using the TEX
primitive \let, you can assign a whole function to
a new variable, and then call the same old function
but with the new name. We used this as follows:

\let\origsuper=\textsuperscript
\renewcommand{\textsuperscript}[1]
{\origsuper{XXX(#1)XXX}}

358 TUGboat, Volume 29 (2008), No. 3 — Proceedings of the 2008 Annual Meeting

How to develop your own document class — our experience

This “saves” the original \textsuperscript defini-
tion as \origsuper (Figure 3). Then it redefines
\textsuperscript, to call the original, unaltered
function, but with a modified argument, so that the
superscripted text is still superscripted, but is sur-
rounded by the strings XXX(...)XXX, which we can
then easily search for.1

Figure 3: Adding extra functionality to a macro

8 The hard bits 4 —plain TEX’s syntax

In 1987 I found plain TEX incomprehensible, and
nothing has changed. Using LATEX is non-trivial, but
it’s powerful and the results are more than worth
the effort required. For me, the same is not true of
plain TEX: it’s too low level, and too complex. Its
syntax is weird. Instead of helping you do what you
know you need to do, the syntax gets in your way
and makes things hard for you. (As an example, we
recently found an “off by one” error in a standard
package. To fix it, all that was needed was to change
‘if X > Y’ to ‘if X >= Y’, but plain TEX doesn’t
let you express things like that, so we had to get
someone more experienced in plain TEX to change
the code to do the equivalent.)

So, while plain TEX is wonderful and is the foun-
dation on which LATEX is built, it’s not for everyone.
(Or, it’s for almost no-one?)

Our feeble “solution” to this problem is to avoid
it, and when that’s not possible, to copy code from
packages that work, and hope that LuaTEX (www.
luatex.org) will eventually make it easier to code
complex or low-level macros.

1 catdvi file.dvi | tr -s " \t" "\n" |

fgrep ’XXX(’ | sort -u

9 The hard bits 5 — indirection in
macro names

(Again, this section describes a common technique
that you need to understand, although you might
not use it often yourself.)

The TEX commands \csname . . . \endcsname
let you construct a “control sequence” name, i.e.
a macro, programatically and then invoke it. The
following is equivalent to \textbf{fat cat}:

\newcommand{\mymac}{textbf}
\csname \mymac \endcsname{fat cat}

The first line defines the variable mymac to be the
string textbf, and the second line uses the variable
to construct a macro name and invoke it, passing
the argument ‘fat cat’ to it. Being able to invoke a
function or macro programatically like this, instead of
having to hard-code its literal name in your .sty file,
makes it possible to handle many similar but slightly
different cases compactly and with little duplication
of common code.

The sectioning mechanism uses this technique
frequently, to construct names of variables or func-
tions related to the level of the current “sectional
unit”2 (SU), such as the macros \l@part, \l@chapter,
\l@section, etc. We’ll look at this in more detail
in the next section, but for now, here’s a simple
but artificial example of how it works. We define a
macro \T, whose first argument is the style in which
its second argument is to be printed:

\newcommand{\T}[2]
{\csname text#1\endcsname{#2}}

Make stuff \T{bf}{heavy}
or \T{it}{slanty}. The end.

This produces:
Make stuff heavy or slanty. The end.

10 The hard bits 6 —changing sectioning

The most difficult thing we had to do was change
how sectioning works. (We had to do this because
our STOP format has to print both section- and
sub-section headings on sub-sections.)

For a beginner, sectioning is difficult in three
separate ways:

1. There are many functions involved: sections,
subsections and lower are defined in terms of
\@startsection, which then uses \@sect (or
\@ssect if it’s a “starred” sectioning command,
which in turn calls \xsect); all these are com-
plex, and written in plain TEX, which makes life
difficult.

2 A sectional unit is a part, chapter, section, subsection,
etc.

TUGboat, Volume 29 (2008), No. 3 — Proceedings of the 2008 Annual Meeting 359

www.luatex.org
www.luatex.org

Niall Mansfield

The way we got over this was by document-
ing the functions. This is a work in progress,
so we’ve made the rudimentary documentation
available on our Web site (uit.co.uk/latex).

2. Sectioning uses indirection a lot. Because the
same functions (\@startsection, etc.) handle
many different levels of sectioning, they use in-
direction to refer to various parameters for the
SU being operated on. For example:

• The counters \c@part, \c@chapter,
\c@section, \c@subsection, . . . hold the
number of the respective SU.

• The macros \thepart, \thechapter,
\thesection, . . . specify how the respec-
tive counter is formatted. E.g. book.cls
defines:
\renewcommand \thesection
{\thechapter.\@arabic\c@section}

so that the numbering on a section will be
of the form “4.9”.

• Similarly, the variables \l@part,
\l@chapter, \l@section, . . . are what are
used to create the table-of-contents entry
for the respective SU.

The first argument to the \@startsection and
\@ssect functions is the type of the current
SU, and the functions use this to construct the
relevant item they need, as in:

\csname l@#1\endcsname

This technique isn’t intrinsically difficult, but
until you’re aware of it, the sectioning mecha-
nism can appear incomprehensible.

3. Functions seem to do funny things with their
arguments. We cover this in the next section.

11 The hard bits 7 —plain TEX really is a
macro processor

The file book.cls defines:
\newcommand\section
{\@startsection {section} ...

i.e. a \section is just a call to \@startsection
with 6 arguments, the first of which is the type
of the current SU, as we explained above. However
\@startsection then calls \@sect with 7 arguments,
even though \@sect is defined to take 8 arguments.
And then you realize that \section was defined
to take no arguments of its own at all! What’s
happening? Why isn’t \section defined to take
some arguments, like this:

\newcommand\section[1]
{...}

since \section is always called with a name argu-
ment, as in \section{Thanks}?

Figure 4: Macro processor—output processing

This starts to make sense only when you realize
that plain TEX behaves as a classical, stack-oriented,
macro processor (which also typesets!). Initially you
can consider the input stack to contain the whole
input file. The processor reads input from the file,
i.e. removes it from the stack. It just copies the input
to the output, unless it’s either a macro definition,
or a macro invocation, in which case it’s evaluated
and the result is pushed back onto the input stack,
to be re-processed. To make this concrete, let’s look
at a few simple examples for the m4 macro processor.
The following input has no macros or anything else
special, so it’s copied to the output without change:

% echo ’Hello, world.’ | m4
Hello, world.

as shown in Figure 4. The slightly more complex:

define(‘showarg’, ‘my arg is $1’)
A showarg(mouse) A

defines a simple macro that takes a single argument.
Run it and see what you get:

% m4 ex1.m4
A my arg is mouse A

Now let’s have one macro reference another indi-
rectly:

define(‘concat’, ‘$1$2’)
define(‘showarg’, ‘my arg is $1’)
B concat(quick, brown) B
C showarg(fox) C
D concat(sho, warg)(jumps) D

and run this:

% m4 example.m4
B quickbrown B
C my arg is fox C
D my arg is jumps D

The B and C lines are straightforward, but line D is
tricky: concat(sho, warg) is read from the stack,
leaving only:

(jumps) D

But what we’ve just read — concat(sho, warg)—
evaluates to showarg, so the string {showarg} is

360 TUGboat, Volume 29 (2008), No. 3 — Proceedings of the 2008 Annual Meeting

uit.co.uk/latex

How to develop your own document class — our experience

Figure 5: Macro result pushed back onto stack

pushed back onto the stack (Figure 5). The top of
the stack now looks like:

showarg(jumps) D

which is re-evaluated as a call to showarg with argu-
ment jumps. In other words, (jumps) was left lying
on the stack, and it was picked up as an argument
to a macro in due course.

The same thing happens in LATEX. In the fol-
lowing code:

Foo \textbf{cat} bar. (A)
\newcommand{\Ttwo}[2]
{\csname text#1 \endcsname{#2}}

Foo \Ttwo{bf}{cat} bar. (B)
\newcommand{\Tone}[1]
{\csname text#1 \endcsname}

Foo \Tone{bf}{cat} bar. (C)
Foo \newcommand{\Tzero}{textbf}
\csname \Tzero \endcsname{cat} bar. (D)

each line produces the same output:
Foo cat bar. (A)
Foo cat bar. (B)
Foo cat bar. (C)
Foo cat bar. (D)

However, in lines (C) and (D) the string {cat} is
not specified as an argument to the Txxx macro
we defined — it’s left lying around, conveniently sur-
rounded by braces, and is picked up later.

This technique is used in the sectioning code.
When you write ‘\section{Thanks}’, the macro
\section is invoked with no arguments, leaving
the string {Thanks} on the stack. \section calls
\@startsection, which calls \@sect with 7 argu-
ments; but \@sect needs 8 arguments, so it picks up
{Thanks} from the top of the stack, so it’s happy,
and we don’t get any errors.

12 The results, and lessons learned

Our original LATEX 2.09 style file had 1400 lines of
code, excluding comments.

Our new LATEX 2ε style file has 300 lines of code,
excluding comments: 34 are \RequirePackages, 150
lines make up 54 \newcommands for convenience-type
functions that we ought to have isolated in separate
files had we been disciplined enough, and 15 lines
make up 11 \newenvironments. The other large
chunk of code is 35 lines for our modified version of
\@sect.

Not only is our new style file much shorter, it’s
easier to understand and maintain, and is much more
flexible than our old one. We can use most standard
packages to add extra features with no effort, because
we still provide all the hooks that add-on packages
rely on. Moreover, the standard class and style files
have had years of debugging and are very robust
and reliable. By re-using as much as possible, and
minimizing the amount of code changed, we’ve ended
up with a stable system. We’ve had almost no bugs,
and the ones we did have we were able to fix quickly
and cleanly.

13 Thanks

Lots of people very kindly helped us over the years,
with advice and pieces of code. These include, but are
not limited to: Donald Arseneau, Barbara Beeton,
Timothy Van Zandt, and lots of other patient and
helpful people on the texhax@tug.org mailing list.

References

[1] Niall Mansfield. The Joy of X. Addison-Wesley,
1986.

[2] Niall Mansfield. Practical TCP/IP — Designing,
using, and troubleshooting TCP/IP networks
on Linux and Windows (first edition).
Addison-Wesley, 2003.

[3] Niall Mansfield. Practical TCP/IP — Designing,
using, and troubleshooting TCP/IP networks
on Linux and Windows (second edition). UIT

Cambridge Ltd., 2008.
[4] Jan-Piet Mens. Alternative DNS Servers —

Choice and deployment, and optional SQL/

LDAP back ends. UIT Cambridge Ltd., 2008.
[5] J.R. Tracey, D.E. Rugh, and W.S. Starkey.

STOP: Sequential Thematic Organization of
Publications. Hughes Aircraft Corporation,
Fullerton, CA, 1965.

[6] Edmond H. Weiss. How to Write a Usable User
Manual. ISI Press, 1985.

TUGboat, Volume 29 (2008), No. 3 — Proceedings of the 2008 Annual Meeting 361

	Where we started from
	First attempt-failure
	Second attempt-a short blind alley
	Third attempt-success!
	The hard bits 1-over-riding existing functionality
	The hard bits 2-LaTeX hooks
	The hard bits 3-adding extra functionality
	The hard bits 4-plain TeX's syntax
	The hard bits 5-indirection in macro names
	The hard bits 6-changing sectioning
	The hard bits 7-plain TeX really is a macro processor
	The results, and lessons learned
	Thanks

