
TUGboat, Volume 31 (2010), No. 1 83

Programming key–value in expl3
Joseph Wright

1 Introduction
Key–value entry, in which a series of 〈key〉 = 〈value〉
statements are given in a comma-separated list, is
a powerful method for specifying a flexible range of
values in (LA)TEX. For the user, this type of input
avoids the need for a very large number of control
macros to alter how a LATEX package or class behaves.
Using key–value input also allows the programmer
to expose a very wide range of internal settings.
Used properly, this should avoid the need for users
to access or modify the internal code of a LATEX
package or class to achieve the desired behaviour.

Programming key–value methods can be con-
fusing, as the link between the user interface and
implementation at the code level is not always ob-
vious. Christian Feuersänger and I have given an
overview of programming key–value input using most
of the LATEX2ε implementations (Wright and Feuer-
sänger, 2010), covering both the broad concepts and
the implementation details.

The new possibilities opened up by the expl3
programming language of LATEX3 (LATEX3 Project,
2010) include providing a new, consistent interface
for creating key–value input. Programming using
expl3 is somewhat different from traditional (LA)TEX,
and I covered the key general concepts for using
expl3 in an earlier TUGboat article (Wright, 2010).
In this article, I will focus on how expl3 implements
key–value methods, with an assumption of some
familiarity with both expl3 and using key–value with
LATEX2ε.

2 Low-level key–value support: l3keyval
The expl3 bundle of modules includes two with key in
their name, l3keyval and l3keys. The two are aimed
at different parts of the programming process, and
most of this article will focus on l3keys. However,
some idea of the place of l3keyval in the larger scheme
is useful.

The l3keyval module provides low-level parsing
of key–value input, used by l3keys but also available
for other purposes. Thus, l3keyval does not do any-
thing beyond split a list first at each comma (that is,
into key–value pairs), and then into a key and value.
It includes the facility to sanitize the category codes
of ‘,’ and ‘=’, and also to ignore spaces if necessary.

The result is that, while l3keyval is crucial for
key–value support using expl3, the exact mechanisms
used are unimportant. This frees us to focus on the
facilities provided by l3keys. (Well, it frees you from

understanding l3keyval: I wrote most of l3keys, so I
have to know what is going on!)

3 The design ideas for l3keys
Perhaps the best package for defining key–value input
using LATEX2ε methods is pgfkeys (Tantau, 2008). It
uses key–value input in the definition of keys them-
selves, and thus uses the power of key–value methods
to help the programmers as well as the end user. The
approach taken by the l3keys module in expl3 is in-
spired by pgfkeys, although programmers familiar
with the latter will find some important differences.

The main design ideas for l3keys were:
• Use of key–value methods for creating keys at
the programming level;
• Separate functions for defining and setting keys
(namely, \keys_define:nn and \keys_set:nn);
• ‘Fit’ with the LATEX3 syntax and variable con-
ventions;
• Rich set of key types, including clear handling
of multiple choices.
Taking these ideas and concepts from pgfkeys,

l3keys introduces the idea of ‘properties’ for keys.
Each valid key name must have at least one property,
to attach some code to the key. By combining a
number of properties, a wide range of effects can be
created without an overly-complex interface.

4 Functions for keys
Keys are created using the \keys_define:nn func-
tion, where the function name follows general expl3
conventions and thus requires two arguments. The
first is the module name with which the keys are
associated. Typically, this will be the same as the
LATEX2ε package or LATEX3 module name being cre-
ated, although it can be more complex. The second
argument for \keys_define:nn is a list of keys, prop-
erties and values, which are then used to set up the
key–value system.
\keys_define:nn { module } {

key-one .property-a:n = value-one ,
key-one .property-b:n = value-two ,
key-two .property-a:n = value-three ,

}
As illustrated, the ‘properties’ of a key are indicated
starting with a full stop (period) character at the end
of the name of the key. (Remember that expl3 code
blocks ignore spaces, so there are no significant spaces
in the example.) In line with expl3 conventions, each
property includes a specification to indicate what
arguments it expects.

The second part of using key–value methods is
setting keys, and is handled by the \keys_set:nn

Programming key–value in expl3

84 TUGboat, Volume 31 (2010), No. 1

function. This also takes the module as the first
argument and a key–value list as the second:
\keys_set:nn { module } {

key-one = value-one ,
key-one = value-two ,
key-two = value-three ,

}
Here, the key–value list is used along with the key
implementation to ‘set’ the keys.

\keys_define:nn will almost always appear in-
side code blocks, and so does not carry out any sanity
checks on category codes of its input. On the other
hand, \keys_set:nn is likely to handle user input,
and so does carry out these checks. It is also worth
saying that \keys_set:nn will typically be ‘wrapped
up’ in a user-accessible function, say, \modulesetup.
Using the LATEX3 xparse module, this might look like:
\DeclareDocumentCommand

\modulesetup { +m } {
\keys_set:nn { module } {#1}

}
or using traditional LATEX2ε:
\newcommand \modulesetup [1] {

\keys_set:nn { module } {#1}
}

5 Key properties
The most general property that can be given for a
key is .code:n. This associates completely general
code with a particular key name; the value given to
a key when used is available within the code as #1.
\keys_define:nn { module } {

key .code:n = You~gave~input~#1! ,
...

}
As is generally the case with key–value input, we
do not need braces around the code here, as it is
delimited by the comma separating key–value pairs.
The only exception is if the code itself contains , or
= characters, which of course need to be ‘hidden’.

Related to the .code:n property is .code:x.
Following expl3 conventions, the difference here is in
the expansion of the code. .code:n carries out no
expansion, whereas .code:x carries out an \edef-
like procedure:
\tl_set:Nn \l_tmp_tl { You~said }
\keys_define:nn { module } {

key-one .code:x = \l_tmp_tl\~‘‘#1’’,
key-two .code:n = \l_tmp_tl\~‘‘#1’’,

}
\tl_set:Nn \l_tmp_tl { You~typed }
If inside the document body we then do

\keys_set:nn { module } {
key-one = text ,
key-two = more~text ,

}

the result will be to print ‘You said “text”’ followed
by ‘You typed “more text”’.

5.1 Storing values
One of the most common tasks to carry out using key–
value methods is storing values in variables. While
this can be done using the .code:n property, a series
of dedicated properties are available, all of which
follow the same general pattern.
\keys_define:nn { module } {

key-one .dim_set:N = \l_module_dim ,
key-two .int_set:N = \l_module_int ,
key-three .skip_set:N = \l_module_skip ,
key-four .tl_set:N = \l_module_tl ,

}

As illustrated, each property should ‘point’ to a vari-
able to store the value given. While the examples
here use LATEX3-style variables, the properties will
also work with variables following LATEX2ε naming
conventions. Giving the setting instruction:
\keys_set:nn { module } {

key-four = content
}

will set token list variable \l_module_tl to the text
content. (As a reminder, a LATEX3 ‘token list vari-
able’ is a macro which is used as a variable to store
tokens, often text.)

Assignments using the .〈var〉_set:N properties
are local, which is normally what you want. How-
ever, global assignments can also be made, using
the .〈var〉_gset:N properties. These are set up and
used in exactly the same way as the local versions:
\keys_define:nn { module } {

key-one .tl_set:N = \l_module_tl ,
key-two .tl_gset:N = \g_module_tl ,

}
\keys_set:nn { module } {

key-one = text, % Locally
key-two = text % Globally

}

Values can be stored in token list variables either
as-given or with full (\edef) expansion. As the
expansion takes place later it cannot be indicated
using an argument specifier. Instead, two ‘expand
then store’ properties are available:
\keys_define:nn { module } {

key-one .tl_set_x:N = \l_module_tl ,
key-two .tl_gset_x:N = \g_module_tl ,

Joseph Wright

TUGboat, Volume 31 (2010), No. 1 85

}
\tl_set:Nn \l_tmp_tl { text }
\keys_set:nn { module } {

key-one = \l_tmp_tl ,
key-two = \l_tmp_tl ,

}
\tl_set:Nn \l_tmp_tl { changed }

Both \l_module_tl and \g_module_tl will store
‘text’, whereas with the normal .tl_(g)set:N prop-
erty they would simply contain ‘\l_tmp_tl’.

One thing to notice is that l3keys will make sure
every variable we use actually exists. So there is no
need to worry about long lists of declarations along
with an equally long list setting up keys.

5.2 Storing Boolean values
Boolean variables can only take true and false values,
and so can be viewed as a type of multiple choice.
To avoid code duplication, l3keys provides a method
to set LATEX3 Boolean variables using a pre-defined
choice, using the .bool_set:N property. This works
in much the same way as those for setting other
variables, except that it will only accept the values
true and false.
\keys_define:nn { module } {

key .bool_set:N = \l_module_bool
}

It is important to note that LATEX3 Boolean variables
do not work in the same way as TEX or LATEX2ε
\if.. statements. Thus, .bool_set cannot be used
to set the latter: you have to use .code:n.

5.3 Values assumed, required, forbidden
Some keys can assume a particular value is meant if
only the key name is given. This is often the case
with keys which can be set only to true or false:
giving the key name alone is usually the same as
given the true value. This is referred to by l3keys as
a default value, and is set up using the .default:n
property:
\keys_define:nn { module } {

key .code:n = Do stuff with #1! ,
key .default:n = yes

}

With the settings above
\keys_set:nn { module } { key }

and
\keys_set:nn { module } { key = yes }

are entirely equivalent.
Alternatively, rather than assume a particu-

lar value is meant if the key name alone is given,

you might wish to always require a value or for-
bid one entirely. This can be controlled using the
.value_required: and .value_forbidden: prop-
erties, both of which act in an obvious way:
\keys_define:nn { module } {

key-one .code:n = Do stuff with #1,
key-one .value_required: ,
key-two .code:n = Do other stuff ,
key-two .value_forbidden: ,

}

In both cases, error messages result if the requirement
is not met.

5.4 Choices
One very useful thing to do using key–value input
is to provide a list of predetermined choices. These
can then be used to set up potentially complicated
code patterns with a simple interface.

A key is made into a multiple choice by setting
the .choice: property, but this does not create any
valid choices! Each choice is created as a ‘subkey’:
\keys_define:nn { module } {

key .choice:,
key / choice-a .code:n = Choice-a code ,
key / choice-b .code:n = Choice-b code ,
key / choice-c .code:n = Choice-c code ,

}

As shown, each choice is given in the format 〈key〉
/ 〈choice〉: the / character marks the boundary
between the key and subkey names. It is likely that
there will be some similarity between the implement-
ation for different keys, but this is not necessary for
the system to work.

To avoid the need to duplicate code between
choices with very similar implementations, an auto-
mated system is available. First, the shared code
is set up using the .choice_code:n property. A
comma-separated list of choices is then given using
the .generate_choices:n property.
\keys_define:nn { module } {

key .choice_code:n = {
Do something using either
\l_keys_choice_tl or
\l_keys_choice_int.

},
key .generate_choices:n = {

choice-a, % Choice 0
choice-b, % Choice 1
choice-c, % Choice 2
...

}
}

Programming key–value in expl3

86 TUGboat, Volume 31 (2010), No. 1

As illustrated, within the code \l_keys_choice_tl
and \l_keys_choice_int are available. The name
of the current choice (for example choice-b) is as-
signed to \l_keys_choice_tl, its numeric position
in the list (for example 1 for choice-b) is assigned
to \l_keys_choice_int. Notice that this is indexed
from 0!

5.5 Keys setting keys
The final property provide by l3keys is for creating
so-called meta keys: keys which themselves set other
keys. Using the .meta:n property, we can provide a
short-cut to set several things in one go.
\keys_define:nn { module } {

key-one .code:n = Some code ,
key-two .code:n = Other code ,
key-three .meta:n = {

key-one = Value ,
key-two = Value ,

}
}
It is possible to pass on the argument given to a
meta-key to its ‘children’ using #1:
\keys_define:nn { module } {

key-one .code:n = Something with #1 ,
key-two .code:n = Other thing #1 ,
key-three .meta:n = {

key-one = #1 ,
key-two = #1 ,

}
}
Almost always, the data for a meta key needs to be
wrapped in braces, as it contains , and = characters.

6 Unknown keys and choices
The ability to handle input which has not been pre-
viously defined is important for flexible key–value
methods. Each time a key is set using \keys_set:nn,
after looking for the key itself l3keys checks for a spe-
cial unknown key before issuing an error message.
This key is set up in the same way as any other,
and can carry out whatever function is appropriate.
The name of the unknown key is available within the
unknown key as \l_keys_key_tl, and can therefore
be used by the attached code. A simple example
would be to issue a customised error message if a key
is unknown:
\keys_define:nn { module } {

unknown .code:n = {
\msg_error:nnx { module }

{ unknown-key } { \l_keys_key_tl }
}

}

More sophisticated use might include creating new
keys from this data, storing information in custom
variables and so on.

7 LATEX2ε package options
As LATEX3 development is still at the stage of creating
low-level structures, the most likely use of l3keys is
with LATEX2ε packages and classes. To enable the
methods described here to be used with LATEX2ε
package and class options, a support package l3keys2e
is available to enable the appropriate processing.

As is true with any key–value package, any op-
tions created with l3keys are simply keys that have
been defined when option processing takes place. So
creating options means first using \keys_define:nn
for set up, then processing the option list with the
\ProcessKeysOptions function. This takes a single
argument: the name of the module.
\keys_defined:nn { module } {

option-one .code:n = ... ,
option-two .code:n = ... ,
...

}
\ProcessKeysOptions { module }

8 An example
Putting everything together can be challenging start-
ing from a bare description of the methods available.
In my general key–value article, I included a short ex-
ample package to illustrate some of the major ideas.
I’ll use the same scenario here, which also means that
readers can compare the l3keys approach directly to
keyval- and pgfkeys-based solutions.

Consider the following situation. The inexperi-
enced LATEX user who asked for a small package for
the last article has come back, and wants to be at
the cutting edge. So they’ve asked if you can rewrite
your code from before using expl3. What they want
is a package to provide one user macro, \xmph, which
will act as an enhanced version of \emph. As well as
italic, it should be able to make its argument bold,
coloured or a combination. This should be control-
lable on loading the package, or during the document.
Finally, a de-activation setting is requested, so that
the \xmph macro acts exactly like \emph. This latter
setting should be available only in the preamble, so
that it will apply to the entire document body.

Looking back over your earlier solution, there is
not too much to change. You decide to follow LATEX3
conventions and adjust some of the option names
slightly:
• inactive, a key with no value, which can be
given only in the preamble;

Joseph Wright

TUGboat, Volume 31 (2010), No. 1 87

• use-italic, a Boolean option for making the
text italic;
• use-bold and use-colour, two more Boolean
options with obvious meanings;
• colour, a string option to set the colour to use
when the use-colour option is true.

You also anticipate that US users would prefer the
option names use-color and color, and so you
decide to implement them as well.

Things are going to look a bit different from a
traditional LATEX2ε package, but hopefully things
will not be too bad! The first stage is to declare
the code as a LATEX3 package, and to load color for
colour support, l3keys2e to do the option processing,
and xparse to make user commands the LATEX3 way.
\RequirePackage{color,l3keys2e,xparse}
\ProvidesExplPackage

{xmph} {2010/01/02}
{2.0} {Extended emph}

The next stage is to set up the key–value input, and
set the default values (red italic text).
\keys_define:nn { xmph } {

colour
.tl_set:N = \l_xmph_colour_tl ,

color
.meta:n = { colour = #1 } ,

inactive
.code:n =

\cs_set_eq:NN \xmph \emph ,
use-bold

.bool_set:N = \l_xmph_bold_bool ,
use-colour

.bool_set:N = \l_xmph_colour_bool ,
use-color

.bool_set:N = \l_xmph_colour_bool ,
use-italic

.bool_set:N = \l_xmph_italic_bool ,
}
\keys_set:nn { xmph } {

colour = red ,
use-italic

}
With everything set up, any load-time options can be
dealt with using the \ProcessKeysOptions function.
\ProcessKeysOptions { xmph }
For the code implementing everything, the pattern
here is the same as in the LATEX2ε version. The
formatting functions are wrapped up one inside an-
other.
\NewDocumentCommand \xmph { m } {

\xmph_emph:n {
\xmph_bold:n {

\xmph_colour:n {#1}}}}
\cs_new:Nn \xmph_bold:n {

\bool_if:NTF \l_xmph_bold_bool {
\textbf {#1}

}{#1}}
\cs_new:Nn \xmph_colour:n {

\bool_if:NTF \l_xmph_colour_bool {
\textcolor { \l_xmph_colour_tl } {#1}

}{#1}}
\cs_new:Nn \xmph_emph:n {

\bool_if:NTF \l_xmph_italic_bool {
\emph {#1}

}{#1}}

The last job to do is to disable the inactive at the
end of the preamble. That simply means setting the
option to do nothing.
\AtBeginDocument {

\keys_define:nn { xmph } {
inactive .code:n = { }

}
}

9 Conclusions
Key–value methods are a powerful way to provide
users with a clear interface to code internals. expl3
adds the ability to create key–value input to LATEX,
along with the many other programming refinements
it provides. By including this in the base layer of
LATEX3, the confusion between LATEX2ε implementa-
tions is avoided. This should mean that more people
can get to grips with using key–value methods in
their packages, and do so more reliably.

References
LATEX3 Project. “The expl3 package”. Available from

CTAN, macros/latex/contrib/expl3, 2010.
Tantau, Till. “pgfkeys”. Part of the TikZ and pgf

bundle, available from CTAN, graphics/pgf,
2008.

Wright, Joseph. “LATEX3 programming: External
perspectives”. TUGboat 31, 2010.

Wright, Joseph, and C. Feuersänger. “Implementing
key–value input: an introduction”. TUGboat 31,
2010.

� Joseph Wright
Morning Star
2, Dowthorpe End
Earls Barton
Northampton NN6 0NH
United Kingdom
joseph dot wright (at)

morningstar2 dot co dot uk

Programming key–value in expl3

macros/latex/contrib/expl3
graphics/pgf

	Introduction
	Low-level key–value support: l3keyval
	The design ideas for l3keys
	Functions for keys
	Key properties
	Storing values
	Storing Boolean values
	Values assumed, required, forbidden
	Choices
	Keys setting keys

	Unknown keys and choices
	LaTeX2e package options
	An example
	Conclusions

