TUGboat, Volume 38 (2017), No. 2

Debugging ITEX files — Illegitimi non
carborundum

Barbara Beeton

Abstract

Every IATEX user has, at least once in her career,
been faced with a thorny problem when compilation
shuts down for some obscure reason. How to deal
with simple problems is reasonably well known, but
there are situations when the time-honored methods
fall short.

This article will present strategies and tactics for
dealing with the many types of problems that have
arisen during long experience as a member of the
AMS technical support staff, handling questions from
authors and the editorial staff. Both common and
uncommon glitches will be visited, with a bias toward
avoiding problems in one’s own work —something
for everyone.

1 Background

Last year, the AMS published on the order of 60,000
pages of books and journals, most of them produced
from IATEX files prepared and submitted by authors.
The acceptance of a journal article is based on sci-
entific merit, judged by an editorial committee and
referees reviewing a paper or electronic document;
it might even be handwritten. No consideration is
supposed to be given to the presentation, only to the
content. Books are contracted by the acquisitions
staff, all of whom are professional mathematicians
familiar with TEX, but by no means TEXnically
skilled. What comes in for production is what we
have to deal with.

Assume that the accepted work is prepared in
KTEX (if it is not, it will be (re)keyboarded by a
competent entry operator and delivered in usable
condition); the quality of submissions varies greatly,
providing a wealth of opportunity to test (and im-
prove) one’s debugging skills.

Production is carried out on networked Linux
systems. The available macro library is in three parts:
TEX Live, which is updated at most once a year; local
versions of “public” macro files and fonts (sometimes
including updated versions that will become part of
next year’s TEX Live collection); and macros, fonts
and other tools that are entirely local to AMS. Ev-
erything is archived with Subversion, with archives
of published books and articles extending back a
couple of decades. The versions of (I#)TEX and all
used packages are recorded within the main file for a
published work using the snapshot package, so that
if reprocessing is necessary, the original environment
can be recreated. This setup provides the stability

159

necessary to produce a steady flow of new publica-
tions while handling reprints, revised editions, and
conversion of existing publications to other formats
such as ebooks.

As described so far, this workflow is effective
and reliable once the files representing a manuscript
are ready to be sent to the printer. But all sorts
of things can go wrong before that happy moment.
One guiding principle tops all others: If something
goes wrong, it must be possible to recover a known,
stable starting point quickly and reliably.

2 Preparation— plan ahead

There are certain conventions that, if followed dili-
gently, can make one’s life easier in the long run.
First, choose good tools and become familiar with
them.

The most important tool is a competent editor
or IDE. The author uses emacs, but other options are
available, some for single users on one platform, some
intended for cooperative authoring online, and a num-
ber of alternatives somewhere in between. A list of
such tools can be found in answer to a question on the
TeX.stackexchange site (hereafter “tex.sx” [4]).!

The author also prefers to process files from the
command line. This makes it possible to correct
simple errors, such as misspelled control sequences,
interactively, avoiding delays and the possibility of a
cascade of irrelevant error messages as a consequence
of a possibly trivial error. (But don’t forget to correct
the file as well before the next run.)

Among the features most useful for debugging
are these:

good search facilities;

brace and \begin/\end matching;

multiple windows viewable at the same time;
“go to” a specified line number;

ability to match strings and to ask “how many?”

Another important consideration is how directories
and files are laid out and addressed. It’s advisable to
avoid spaces in file names; not all operating systems
handle such spaces gracefully (or at all). Similarly,
some operating systems are case sensitive — to avoid
problems here, use only the lowercase alphabet for
file names; digits and hyphens are also “neutral” in
this regard, but (extra) periods and characters with
special meanings to TEX (e.g., the underscore) are
best avoided.

Keeping files at a manageable size will pay off
in the long run. For a large work like a book or
dissertation, place each chapter in a separate file,

I LaTeX Editors/IDEs,
http://tex.stackexchange.com/q/339

Debugging KTEX files— Illegitimi non carborundum

160

controlled by a main or “driver” file. This will permit
you to work on just one chapter at a time, taking
advantage of the \includeonly facility. If you have
large tables or figures, placing each in a separate file
can also be handy, as it is then possible to exclude
one with a single % to comment it out (this also
makes it easy to move it to a different place in the
main file if that becomes necessary).

Finally, when preparing files, it’s usually a good
idea to end files other than the main file with a
separate line \endinput; this avoids problems from
garbage that is sometimes added on, unasked, when
a file is shipped from one system to another. And
never put a line \end{document} in any file but the
main driver file.

Another suggestion: Learn where the log file can
be found, before you ever need to look at one. Some
IDEs hide this from a user; if your job goes south
and you cannot check what is happening by looking
in the log, you are going to have a very difficult time
figuring out how to make things right.

And one more:

Don’t update your system
in the middle of an important project.

New versions of packages can have new, incompatible
features, and old packages can disappear. Of course,
if your hardware decides to conk out at that point,
this is not useful advice. But you do keep a full
current backup, don’t you?

3 Isolate and insulate your testing

Use copies of your files to test.

If the error you're trying to fix isn’t something like
a simple typo, protect yourself against possible dis-
asters: set up a special debugging environment. At
the very least, make a backup of your files, maybe
even a zip of the full working directory tree, and put
it in a safe place. You know your current situation,
and you want to be able to return to it safely.

Under no circumstances make experimental
changes to your only copy of any files.

Better yet, if you have the space, create a separate
test area, identical in all important respects to the
“live” work area, and do your experimenting there.

If the job consists of more than one file, start
by copying only the driver file—the file that reads
in all the others—into the test area. This will be
your guinea pig.

Use a “soft link” to access other files in the
job. For a Linux system, this involves issuing the
command

1n -s (directory name)
and adding the name of that location to the path.

Barbara Beeton

TUGboat, Volume 38 (2017), No. 2

(It should be possible with a web search to find out
how to do this for other systems.)

Process the job interactively. Then simple errors
can be corrected at once, before they spawn mean-
ingless and confusing error messages. (Remember
to make the corrections in both test and real files.)
And if an error is detected that can’t be corrected
interactively (such as an unrecognized or unended
environment), the job can be stopped at once and
the problem fixed before continuing.

Processing a job in nonstop mode (the usual
procedure when launching a compile from within an
IDE) will, of course, list all errors in the log file (up
to a maximum of 100), but a single error that is not
the simple misspelling of a symbol name can cause
a cascade of spurious messages that would not have
been necessary unless the first error was encountered.

More about this approach below, under “Divide
and conquer”.

4 Some tools for interactive diagnosis

Some diagnostic commands are available to send
information to both the terminal and the log file.

e \message{...} writes out a message in the log
and on the screen; it can be used to report when
processing has reached a predetermined point.
For example,

\message{last section, page \number\thepage~~J}
last section, page 904

e \show reports the current meaning of a com-
mand; processing is suspended to permit addi-
tional interaction. Example:

\show\LaTeX
> \LaTeX=macro:
->\protect \LaTeX .
\show\protect
> \protect=\relax.
Following the halt, more input can be inserted
by typing i followed by a command or text.
“Enter” will restart the session.

e \showthe reports the value of a command; pro-
cessing is likewise suspended.
\showthe\hfuzz
> 1.0pt.

A number of tracing commands are available to pro-
vide details of the processing flow. (Caution: tracing
requests can deliver more information than you usu-
ally want, so be selective.) The result is sent only
to the log unless requested otherwise. These are the
tracing commands used most often by the author:

e \tracingoutput can be set to 1 to report, in
symbolic form, the contents of all boxes that are
written to the output;

TUGboat, Volume 38 (2017), No. 2

e \tracingcommands and \tracingmacros give
the gory details of KTEX processing;

e \errorcontextlines=200 sets the maximum
number of lines associated with a single error
message; the default value (5) often shows too
few lines to understand the entire operation;

e \tracingonline directs the report of the other
tracing commands to the screen as well as to
the log.

Details of these commands (and many \tracing. ..
relatives) can be found in The TEXbook [2] or in TEX
by Topic® [1].

5 The log file is your friend

The (I&)TEX log file records every action taken —
what files and fonts are read, assignment of boxes and
counters, redefinition of important commands, and
so on. More importantly, from a debugging point of
view, errors are reported in (sometimes excruciating)
detail, all identified by line number in the source file.

Always check the log file for error messages:

! Undefined control sequence.

1.457 \fobx

{%
Warnings are noted too, but without line number:
LaTeX Warning: There were undefined references.

Interpreting these messages can be a challenge, but
this information should direct your first line of in-
quiry. If the system you are using hides the log file,
ask how to find it. And don’t delete the log file
without looking at it.

Not every line number reported in an error mes-
sage clearly identifies the exact line where the prob-
lem is located. The scope of math content (what is
between $ signs or other math specifiers) is not per-
mitted to include paragraph breaks, so a missing $
may not be reported until the next paragraph break,
which may be a number of lines later in the input.
(This restriction is also the reason that blank lines
are not permitted within multi-line math display en-
vironments.) The other error associated with math
mismatches is

! Missing $ inserted.
when a closing $ is forgotten. This too is limited
to the current paragraph, and should be easy to
diagnose and repair.

An error within a figure, table, or multi-line
display will also usually report the line number at
the end of the environment, rather than on the line
where it occurs, but again, the scope is relatively
limited.

2 In TEX Live; access with texdoc texbytopic.

161

Another reason for a report far away from where
the error occurred is an unmatched group — an errant
{, \bgroup, \begingroup or \begin{(env)}. In the
case of a mismatched environment, this error will be
reported as
I LaTeX Error: \begin{(envl)} on input line

nnn ended by \end{(env2)}

This will be reported as soon as the (incorrect) end
is encountered and the line number should be correct.
A mismatched grouping element, on the other hand,
will not be reported until the end of the job, and then
not even as the usual warning. The report consists
of several lines:

(\end occurred inside a group at level m)

semi simple group (level m) entered

at line nnn (x)

bottom level
Here, m will identify how many of these open groups
remained at the end of the job. z will identify the
unmatched grouping element: \begingroup, or { for
either { or \bgroup. Again, the line number should
be correct, just not in the place where the omission
occurred.

Other possible error messages are shown in the
documentation of various packages. Most messages
include some line number, and in general localization
is reasonably good; this is often enough to locate
an error so it can be corrected without having to
progress to more complicated searching steps. As
soon as the error is identified and the fix verified,
you can correct your real file, continue with the main
task, and forget about the copies, which have now
performed their intended function.

But, you may ask, when the job consists of
multiple files, how can one be sure in which file the
reported line number actually exists? See the next
section.

The important lesson here is this:

Don’t delete the log file until after you’ve
extracted every bit of useful information.

It has also been suggested to the author that saving
a log file for even longer (under a different name) has
merit, as it makes possible the comparison of two
logs when there is a question about what changed
between two runs.

6 E pluribus unum—but which one?

Let us assume that the error was reported in a text
file, not a package.

When the log file reports a line number, the first
reaction is to look in the main file. But if that file is
only 95 lines long, and the reported line number is
2345, that does not compute.

Debugging KTEX files— Illegitimi non carborundum

162

Make a copy of the log file, and work backward
from the relevant error message. If some pages have
actually been output, the page number (shown in
square brackets: [17]) can point to a chapter, which
ideally should be in a file of its own. Failing that,
eliminate material that is, for this purpose, useless.

Messages about overfull boxes can be ignored —
delete those lines. A matching pair of parentheses
will usually enclose a file name and some more ma-
terial. Look for a “completed” parenthesized group,
such as

(C:/tech-support/debug/preface.tex

Preface

(11 [2]

)
and delete the whole group. What will finally remain
is an opening parenthesis followed by a file name —
the name of the file that was open when the error
was reported. The reported line number should be
found there.

But what if the line number was reported only
at the end of the job, a 1level m situation? Here’s
where an extra \end{document} comes into play.

Keep working only with test files.
Don’t touch the real files until the source
of the problem is identified.

Start from the end of the driver file and insert
\end{document} between two \include statements.
The “binary” approach is appropriate here —start
in the middle. (More about this under “Divide and
conquer”.) Process what’s left. If the level m
condition is still reported, the target file is in the
first half; if it’s absent, look in the last half. Comment
out \include statements that have been absolved of
blame, and move \end{document} around until the
target file is identified. This gets more complicated,
of course, if m > 1, but the principle is the same.

7 Housecleaning

At some point, you will find the file where you think
the error should be. Maybe you have a tightly defined
line number. But maybe you still have only a general
idea of where to look. Since you want to process
only one file, clean out the clutter so it won’t cause
confusion.

Modify the driver file. adding an \includeonly
line that specifies only the suspect file. Comment
out commands that will include irrelevant pieces that
aren’t launched with an \include command:

e unnecessary (for the test) packages;
e \tableofcontents;
e anything related to the bibliography;

e \printindex.

Barbara Beeton

TUGboat, Volume 38 (2017), No. 2

Clean out your suspect file too. Don’t worry about
destroying the file; this is a copy, right? Here are the
things that can be removed — carefully.

e lines commented with % at the beginning;

e lines between \begin and \end{comment},
inclusive;

e lines between \iffalse ... \fi, inclusive
(this is equivalent to a comment).

Make sure that all groups are completely specified.
This means matching all \begin and \end environ-
ments and all methods of “bracing”. Check for these
elements using your editor’s “how-many” function:

e number of opening braces { = number of
closing braces } (sometimes the string % } is
added when an opening brace stands alone in
the code, so be aware of this possibility);

e number of \begin{ = number of \end{;

e number of \begingroup = number of
\endgroup;

e number of \bgroup = number of \egroup;

e number of \[= number of \] ;

e number of $ signs is even, as is number of $$.

Process what’s left, and look at the log for help as
you go along.

Many problems are the result of an “unmatched”
condition, so you might get lucky and not have to go
any further. But let’s assume it’s still unidentified.

8 Divide and conquer

What you want to do is isolate the paragraph, or
the smallest portion of the file, that is triggering the
error. (Work with a copy, and keep another copy,
just in case.)

Find a good paragraph break halfway through
the file. Insert \endinput preceded by a blank line.
Make sure it doesn’t split up a \begin/\end pair or
any group. Process this reduced file. If no error is
reported, the problem is in the last (unprocessed)
half. Remove the part that works, and keep moving
\endinput until the source of the problem is located.
If the solution is obvious, fix it and test. Apply the
fix to the full test copy and try processing it. Once
you are sure the fix is correct, insert it in the real
version and test again.

But what if the solution isn’t obvious?

If what remains is still too large for you to
identify the problem quickly — perhaps it is a long
proof, with steps presented as a list —make a copy
of the file under another name and keep only the
test material in the “working” file. (Many times
this author has modified her copy, which is not the
one that the driver file will input. This leads to
exasperation.)

TUGboat, Volume 38 (2017), No. 2

Reduce the size of this file by commenting out
items that look harmless. Don’t delete anything yet —
what you think is harmless may actually be part of
the problem. Keep iterating this process until there
is no way to get rid of more material without also
eliminating the (not yet located) error. This is now
your “minimum (non-)working example”, an “MWE”.

Examine what’s left in the file, and

Pay attention to the clues in the log.

Of course, once you know what needs to be fixed
and how to fix it, you can verify this by making
the necessary changes in your test file and rerunning
ETEX to confirm. If this works, install the fix in
your real file, process it, and if you find no other
problems, you're on your way!

If you do find more problems, it’s back to the
start, but now you know how to proceed.

One area hasn’t yet been addressed — an error
reported before

\begin{document}

is found. See below.

And there are more techniques that you can
apply yourself, before calling for help.

9 Sometimes, more drastic action is
required

In this section, we’re still discussing problems in the
body of the document.

Once a problem has been reduced to an MWE,
it’s time to take advantage of the available diagnos-
tic tools to obtain more information. In addition to
the commands shown on page 160 in the section on
interactive diagnosis, these are also useful. (More de-
tailed information on these commands can be found
in TgX by Topic [1].)

e \tracingmacros reports the details of macro
expansion, along with the values of the argu-
ments.

e \showboxdepth specifies the number of box lev-
els to display, usually set to \maxdimen for trac-
ing.

e \showboxbreadth specifies the number of suc-
cessive elements displayed on each level.

There are more, but these are generally the most
useful.

If you are desperate, and a real masochist, you
can specify \tracingall, but sorting through this
information will tax both your patience and your
sanity, and usually a “simpler” approach can be
found. See the definition of \tracingall in the file
plain.tex to see what is unleashed.

But if you have to resort to tracing, there may
be an easier way.

163

10 In case more help is needed

Some useful resources are available online. You may
not be the first to encounter a particular problem.

The archives at tex.sx [4] are a good place to
look. If you don’t find anything resembling the prob-
lem in your file, ask a new question. (You should
register if you're not already a participant in the fo-
rum.) For best results, include a complete MWE; you
already have one— the mimimum (non-)working ex-
ample that you have been struggling with. Clean out
any commented material, and, if appropriate (and
possible), “anonymize” it by substituting dummy
text; make it as minimal as possible while still demon-
strating the problem. Include relevant lines from the
log of the example you're posting, and an explanation
of what you’ve tried. The participants in the forum
are knowledgeable and friendly, and they enjoy a
good puzzle—but they do need enough information
to be able to experiment, and providing an MWE
that they can copy and paste will yield results more
quickly than if guesswork is needed.

11 Errors reported before \begin{document}

e Make a copy of the log file, and find the open
file.

e If this isn’t a \usepackage, back up until you
find one.

e Do you have experience of IMTEX internals?

e No. This is a good time to seek expert advice.
Go to tex.sx [4]. If the problem hasn’t been
reported, post a question. Be specific, and
include your preamble and log.

e Yes. Figure out what the problem is.
Check reports at tex.sx [4].
If it hasn’t been reported, notify the package
author.

This ends the discussion of problems that may occur
in your files. The next section describes an actual
problem of the author that took far too long to
understand, and, in the end, wasn’t really a “I¢TEX
problem”, although that’s where it reared its ugly
head.

12 A real puzzlement

Once in a while, not even tracing can direct you to
the solution of the problem.
Two facts are important:

e [live and work in the U.S. and my workstation
is set up with (presumably appropriate) local
defaults, i.e., ASCII.

e I compile from the command line, and don’t use
\batchmode or \nonstopmode.

Debugging KTEX files— Illegitimi non carborundum

164

What showed up on the screen:

TUGboat, Volume 38 (2017), No. 2

Overfull \hbox (23.1113pt too wide) in paragraph at lines 3288--3301
\OML/cmm/m/it/10.95 A$\T1/ptm/m/n/10.95 , as in

The corresponding content of the log:

Overfull \hbox (23.1113pt too wide) in paragraph at lines 3288--3301
\OML/cmm/m/it/10.95 A$\T1/ptm/m/n/10.95 , as in Y[], is a degree-

What was in the source file:

., as in \S\ref{SS:changing}, is a degree-1

Figure 1: A most puzzling problem

A few months ago, a file was persistently stall-
ing before processing was finished, locking my screen.
In order to regain control, it was necessary to open
another session and kill the job. This allowed me to
enter ctrl-C to the stalled session, to return to a
prompt. The last thing shown on the screen was a
partial report of an overfull box. Enough text was
present to be able to locate the problem area in the
source ... except that the source looked perfectly
valid. (See figure 1.) There was, fortunately, a log
produced, albeit incomplete.

After going through the steps described above,
I managed to cut the file down to a single, brief,
paragraph; if I removed anything more from the
beginning of the paragraph, the error didn’t occur.
The problem appeared to be related to the overfull
box. At this point, I sought help from someone with
more systems knowledge than I have.

After looking closely at what was on the screen
and what it corresponded to in the log, we noticed
a “strange” character— Y. (This is in position "78
in the cmsy font, and is Unicode character U+0178.)
Since I'm used to working with English texts, and
only infrequently deal with accents, I'm not used
to seeing non-ASCII characters, and certainly not
in a log from an entirely English text. What was
happening was that the physical environment I’ve
been working in is not set up to recognize UTF-8
input, and the screen was freezing as a result.

The workaround I was given was to put this line
into a file named .118n in my home directory:

LANG="en_US.utf8"
This doesn’t solve the problem entirely — the file still
freezes the screen, but the job completes, and I can
issue ctrl-C to regain a prompt. But figuring out
the problem and how to get around it were sorely
trying.

Sometimes what one thinks is a M TEX bug isn’t.
Keep an open mind.

Barbara Beeton

13 Oddments (post-conference additions)

There are some easily identified problems that oc-
cur frequently, but the source may not be generally
known. This seems a worthwhile place to identify
them.

e The Missing character: warning
There is no ; in font nullfont!
is almost invariably the result of a syntax er-
ror — a missing semicolon —in a tikzpicture.
Other repeating punctuation characters citing
nullfont may also be associated with some tikz
expression.

e Similar warnings citing other fonts need to be
researched. No line number is given in the log,
but the number of the last completed page will
be there. Compare the input with the output
to see what is missing.

14 Acknowledgments

Thanks to GUST for hosting TUG’17 at Bachotek
along with their annual meeting, and thanks to the
participants whose questions after my talk provided
interesting and helpful new ideas.

References and resources

[1] Victor Eijkhout, TgX by Topic: A TEXnician’s
Reference, Addison-Wesley (U.K.), 1991.
eijkhout.net/texbytopic/texbytopic.html
or texdoc texbytopic.

[2] Donald E. Knuth, The TEXbook,
Addison-Wesley, Reading, 1986.

[3] Leslie Lamport, IATEX, A Document
Preparation System, 2nd edition,
Addison-Wesley, Reading, 1994.

[4] tex.stackexchange.com, a question and
answer forum with extensive archives.

© Barbara Beeton
American Mathematical Society
Providence, RI, USA
bnb (at) ams dot org

