
TUGBOAT Volume 38 (2017), Number 2

BIULETYN GUST Zeszyt 25

TUG@BachoTEX 2017 Conference Proceedings

TUG 2017 110 Conference sponsors, participants, program
114 Jean-Michel Hufflen / TUG@BachoTEX 2017

General Delivery 116 Janusz Nowacki / Calligraphy by Barbara Galińska
118 Maciej Rychły / Released sounds
125 Boris Veytsman / The state of TEX

Futures 126 Hans Hagen / Children of TEX
141 Luigi Scarso / MFLua 0.8—Prologue

Survey 145 Michał Gasewicz / Off topic (completely): Many faces (and types) of beer
147 Jean-Michel Hufflen / History of accidentals in music

Methods 157 Willi Egger / Bookbinding workshop: Making a portfolio
159 Barbara Beeton / Debugging LATEX files— Illegitimi non carborundum

Typography 165 Kumaran Sathasivam, S.K. Venkatesan, Yakov Chandy / Revealing semantics using subtle
typography and punctuation

171 Boris Veytsman and Leila Akhmadeeva / To justify or not to justify? Why bad typography
may be harmful for your readers

173 Boris Veytsman / Making ltxsparklines: The journey of a CTAN contributor into the world
of CRAN

Education 175 Petr Sojka and Vı́t Novotný / TEX in Schools? Just Say Yes: The use of TEX
at the Faculty of Informatics, Masaryk University

Graphics 185 Takuto Asakura / Implementing bioinformatics algorithms in TEX—the Gotoh package,
a case study

Software & Tools 188 Norbert Preining / updmap and fmtutil—past and future changes (or: cleaning up the mess)
193 Siep Kroonenberg / TLaunch, the TEX Live Launcher for Windows
197 Sigitas Tolušis, Arūnas Povilaitis, and Valentinas Kriaučiukas / Xdvipsk: Dvips ready for

OpenType fonts and more image formats

Fonts 202 Jerzy Ludwichowski / GUST e-foundry current font projects
203 Hans Hagen / Variable fonts
208 Bogusław Jackowski, Piotr Strzelczyk, Piotr Pianowski / Parametric math symbol fonts

LATEX 212 LATEX Project Team / LATEX news, issue 27, April 2017
213 Frank Mittelbach / LATEX table columns with fixed widths

Macros 214 Vı́t Novotný / Using Markdown inside TEX documents
218 Grzegorz Murzynowski / GMS, the “General Meta-Scenarios”: A proper extension to the

l3expan package of the expl3 bundle and language, two years later

Bibliographies 238 Dávid Lupták / Typesetting bibliographies compliant with the ISO 690 standard in LATEX
245 Jean-Michel Hufflen / MlBIBTEX now handles Unicode

Publishing 249 Lolita Tolenė / TEX user habits versus publisher requirements
255 Marcin Borkowski / Ten years of work in Wiadomości Matematyczne—an adventure with

LATEX and Emacs hacking

Production Notes 263 Karl Berry / Production notes

Abstracts 264 Streszczenia
270 TUG@BachoTEX 2017 abstracts (de Souza, Egger, Hagen, Hoekwater, Izaola,

Kwiatkowska, Ludwichowski, Miklavec, Mittelbach, Reutenauer,
Scherwentke, Thiriet, Tomaszewski, Twardoch, Vieth)

273 Die TEXnische Komödie: Contents of issue 2/2017

Book Reviews 274 Charles Bigelow / Review and summaries: The History of Typographic Writing—
The 20th century Volume 2 (ch. 1–5), from 1950 to 2000

280 Boris Veytsman / Book reviews: What Is Reading For? and Some Reflections on Reading
and Writing, Culture and Nature, & Sorting Things Out by Robert Bringhurst

282 David Walden / Book review: Paper: Paging Through History by Mark Kurlansky

Hints & Tricks 284 Karl Berry / The treasure chest

Cartoon 285 John Atkinson / Word on the street

News 286 Calendar

Advertisements 287 TEX consulting and production services

TUG Business 288 TUG institutional members

Polska Grupa Użytkowników systemu TEX
(gust.org.pl)

Biuletyn Polskiej Grupy Użytkowników Systemu

TEX (ISSN 1230-5630) is published by GUST.
Zeszyt 25.

TEX Users Group (tug.org)

TUGboat (ISSN 0896-3207) is published by TUG.
Volume 38, Number 2.

TUG individual memberships
2017 dues for individual members are as follows:

Regular members: $105.
Special rate: $75.

The special rate is available to students, seniors, and
citizens of countries with modest economies, as de-
tailed on our web site. Also, anyone joining or re-
newing before March 31 receives a $20 discount:

Regular members (early bird): $85.
Special rate (early bird): $55.

Members also have the option to receive TUGboat

and other benefits electronically, for an additional
discount.

Membership in the TEX Users Group is for the
calendar year, and includes all issues of TUGboat for
the year in which membership begins or is renewed,
as well as software distributions and other benefits.
Individual membership carries with it such rights
and responsibilities as voting in TUG elections. All
the details are on the TUG web site.

TUGboat subscriptions
TUGboat subscriptions (non-voting) are available to
organizations and others wishing to receive TUG-

boat in a name other than that of an individual.
The subscription rate for 2017 is $110.

TUG institutional memberships
Institutional membership is primarily a means of
showing continuing interest in and support for TEX
and the TEX Users Group. It also provides a dis-
counted membership rate, site-wide electronic ac-
cess, and other benefits. For more information, see
tug.org/instmem.html or contact the TUG office.

Trademarks
Many trademarked names appear in these pages. If
there is any question about whether a name is or is
not a trademark, prudence dictates that it should
be treated as if it is.

[printing date: August 2017]

Printed in U.S.A.

TUG Board of Directors

Donald Knuth, Grand Wizard of TEX-arcana
†

Boris Veytsman, President∗

Arthur Reutenauer∗, Vice President

Karl Berry∗, Treasurer
Susan DeMeritt∗, Secretary
Barbara Beeton
Johannes Braams
Kaja Christiansen
Taco Hoekwater
Klaus Höppner
Frank Mittelbach
Ross Moore
Cheryl Ponchin
Norbert Preining
Will Robertson
Herbert Voß
Raymond Goucher, Founding Executive Director †

Hermann Zapf (1918–2015), Wizard of Fonts
∗member of executive committee
†honorary

See tug.org/board.html for a roster of all past and

present board members, and other official positions.

Addresses

TEX Users Group

P.O. Box 2311

Portland, OR 97208

U.S.A.

Telephone

+1 503 223-9994

Fax

+1 815 301-3568

Web

tug.org

tug.org/TUGboat

Electronic Mail

General correspondence,

membership, subscriptions:

office@tug.org

Submissions to TUGboat,

letters to the Editor:

TUGboat@tug.org

Technical support for

TEX users:

support@tug.org

Contact the

Board of Directors:

board@tug.org

Copyright c© 2017 Polska Grupa Użytkowników systemu

TEX and TEX Users Group.

Copyright to individual articles within this publication

remains with their authors, so the articles may not

be reproduced, distributed or translated without the

authors’ permission.

For the editorial and other material not ascribed to a

particular author, permission is granted to make and

distribute verbatim copies without royalty, in any medium,

provided the copyright notice and this permission notice

are preserved.

Permission is also granted to make, copy and distribute

translations of such editorial material into another

language, except that the TEX Users Group must approve

translations of this permission notice itself. Lacking such

approval, the original English permission notice must

be included.

2017 TUG@BachoTEX Conference Proceedings

TEX Users Group • Polska Grupa Użytkowników systemu TEX

Thirty-seventh annual TUG meeting • XXV GUST conference

Bachotek, Poland

April 29–May 3, 2017

Biuletyn Polskiej Grupy Użytkowników
Systemu TEX ZESZYT 25

COMMUNICATIONS OF THE TEX USERS GROUP

TUGBOAT EDITOR BARBARA BEETON

VOLUME 38, NUMBER 2, 2017

PORTLAND, OREGON, U.S.A.

PROCEEDINGS EDITORS TOMASZ PRZECHLEWSKI

KARL BERRY

BOGUS LAW JACKOWSKI

JERZY LUDWICHOWSKI

TUG@BachoTEX 2017 — Premises, predilections, predictions

38th Annual TUG meeting • XXV GUST conference

April 29–May 3, 2017 • Bachotek, Poland

Organizers
Polska Grupa Użytkowników systemu TEX (GUST), gust.org.pl • TEX Users Group (TUG), tug.org

Organizing committee (GUST)
Jolanta Szelatyńska, Chair • Marek Czubenko • Janusz Gumkowski
• Bogus law Jackowski • Jerzy Ludwichowski

Program committee
Bogus law Jackowski, Chair • Jerzy Ludwichowski, Co-chair • Ryszard Kubiak, Secretary
• Karl Berry • Hans Hagen • Mojca Miklavec • Boris Veytsman

Sponsors
• Die Deutschsprachige Anwendervereinigung TEX e.V. (DANTE), www.dante.de
• 7bulls, 7bulls.com
• Information & Communication Technology Centre, Nicolaus Copernicus University, www.uci.umk.pl
• PARCAT Product Information Management, parcat.eu
• Frans Goddijn • Siep Kroonenberg • Sebastian Krüger • Frank Mittelbach
• Volker RW Schaa • Martin Schröder • Boris Veytsman • Alan Wetmore

Participants
Leila Akhmadeeva, Bashkir State Medical University,

Ufa, Russia

Takuto Asakura, Department of Bioinformatics, and
Systems Biology, Faculty of Science, The University
of Tokyo

Nelson H. F. Beebe, Department of Mathematics,
University of Utah, USA

Barbara Beeton, American Mathematical Society, USA

Piotr Bolek, 7bulls.com sp. z o.o., Warszawa, Poland

Marcin Borkowski, Wydział Matematyki i Informatyki,
Poznań, Poland

Andrzej Borzyszkowski, Instytut Informatyki, Gdańsk,
Poland

Gyöngyi Bujdosó, Faculty of Informatics,
University of Debrecen, Hungary

Katarzyna Burakowska, Gdański Archipelag Kultury,
Gdańsk, Poland

Yakov Chandy, TNQ Books & Journals Limited, India

Marek Czubenko, Uniwersytet Mikołaja Kopernika,
w Toruniu, Uczelniane Centrum Informatyczne,
Toruń, Poland

Paulo Ney de Souza, Books in Bytes, USA

Wiktor Dziubiński, tme.eu, parcat.eu, Łódź, Poland

Willi Egger, BOEDE, Sambeek, The Netherlands

Yukitoshi Fujimura, Japan

Deimantas Galčius, VTeX, Vilnius, Lithuania

Michał Gasewicz, Uniwersytet Mikołaja Kopernika,
w Toruniu, Uczelniane Centrum Informatyczne,
Toruń, Poland

Frans Goddĳn, The Netherlands

Eimantas Gumbakis, VTeX, Vilnius, Lithuania

Janusz Gumkowski, GUST, Toruń/Warszawa, Poland

Hans Hagen, PRAGMA ADE, Hasselt, The Netherlands

Taco Hoekwater, Bittext, The Netherlands

Karel Horák, Academy of Sciences,
Institute of Mathematics, Praha, Czech Republic

Jean-Michel Hufflen, FEMTO-ST DISC, France

Andrzej Icha, Akademia Pomorska w Słupsku,
Instytut Matematyki, Słupsk, Poland

Zunbeltz Izaola, Books in Bytes, Spain

Bogusław Jackowski, BOP s.c., Gdańsk, Poland

Paweł Jackowski, GUST, Kraków, Poland

Piotr Kielanowski, Departimento de Fisica,
Centro de Investigation y de Estudios Avanzados,
Mexico City, Mexico

Ewa Kmiecik, GUST, Kraków, Poland

Jacek Kmiecik, GUST, Kraków, Poland

Adam Kolany, GUST, Katowice, Poland

Dorota Kolany, Pałac Młodzieży w Katowicach,
Katowice, Poland

Reinhard Kotucha, DANTE e.V., Hannover, Germany

Harald König, DANTE e.V., Balingen, Germany

110 TUGboat, Volume 38, No. 2 — TUG@BachoTEX 2017 Conference Proceedings

Valentinas Kriaučiukas, VTeX, Vilnius, Lithuania

Siep Kroonenberg, Rijksuniversiteit Groningen,

The Netherlands

Sebastian Krüger, DANTE e.V., GUST, Berlin, Germany

Ryszard Kubiak, Biuro Informatyki Ubezpieczeniowej,

Pachocki i Ziajka s.c., Gdańsk, Poland

Ján Kula, Praha, Czech Republic

Manfred Lotz, CTAN, DANTE e.V., Frankfurt, Germany

Jerzy Ludwichowski, Uniwersytet Mikołaja Kopernika

w Toruniu, Toruń, Poland

Mojca Miklavec, Sežana, Slovenia

Frank Mittelbach, LATEX3 Project, Mainz, Germany

Grzegorz Murzynowski, Transfer Multisort Elektronik,

Sulejówek, Poland

Kristian Nordestgaard, DK-TUG, Denmark

Vít Novotný, The Faculty of Informatics,

Masaryk University, Brno, Czech Republic

Janusz Marian Nowacki, GUST, Grudziądz, Poland

Andrzej Odyniec, Macrologic S.A., Warszawa, Poland

Karel Píška, Institute of Physics, Academy of Sciences,

Praha, Czech Republic

Kaja Podlaska Christiansen, DK-TUG, Denmark

Norbert Preining, TEX Live, TUG, Accelia Inc., Tokyo,

Japan

Tomasz Przechlewski, GUST, Sopot, Poland

Krzysztof Pszczoła, Instytut Matematyki i Kryptologii,

Wojskowa Akademia Techniczna, Warszawa, Poland

Arthur Reutenauer, Enköping, Sweden

Jan Ryćko, LPP S.A., Gdańsk, Poland

Marek Ryćko, GUST, Gdańsk, Poland

Luigi Scarso, NTG, GUST, GuIT, TUG, Padova, Italy

Volker RW Schaa, DANTE e.V., Darmstadt, Germany

Przemysław Scherwentke, Politechnika Wrocławska,

Instytut Matematyki i Informatyki, Wrocław, Poland

Martin Schröder, DANTE e.V., Duisburg, Germany

Agnieszka Sekuła, LPP S.A., Gdańsk, Poland

Petr Sojka, Faculty of Informatics, Masaryk University,

Brno, Czech Republic

Piotr Strzelczyk, BOP s.c., Gdańsk, Poland

Ewa Szelatyńska, Scan-System, Warszawa, Poland

Jolanta Szelatyńska, Uniwersytet Mikołaja Kopernika

w Toruniu, Uczelniane Centrum Informatyczne,

Toruń, Poland

Joanna Szyller, Gdańskie Wydawnictwo Oświatowe,

Gdańsk, Poland

Damien Thiriet, Lycée français René Goscinny,

Warszawa, Poland

Lolita Tolenė, VTeX, Vilnius, Lithuania

Sigitas Tolousis, VTeX, Vilnius, Lithuania

Andrzej Tomaszewski, Acta Poligraphica, Warszawa,

Poland

Adam Twardoch, FontLab Ltd., MyFonts, Berlin,

Germany

Boris Veytsman, George Mason University, USA

Ulrik Vieth, Stuttgart, Germany

Stanisław Wawrykiewicz, GUST, Sopot, Poland

Alan Wetmore, US Army Research Laboratory, USA

Lutz Wirsig, Germany

Marcin Woliński, Instytut Podstaw Informatyki PAN,

Warszawa, Poland

Katarzyna Wójcik, GUST, Warszawa, Poland

Krzysztof Zubik, Gdańsk, Poland

11th ConTEXt Meeting

Butzbach-Maibach

Germany

September 11-17, 2017

meeting.contextgarden.net/2017

BachoTEX 2018

Bachotek

Poland

April 29-May 3, 2018

gust.org.pl/bachotex

Practical TEX 2018

Troy, New York

USA

June 25–27, 2018

tug.org/practicaltex2018

TUG 2018

Rio de Janeiro

Brazil

July 20–22, 2018

tug.org/tug2018

TUGboat, Volume 38, No. 2 — TUG@BachoTEX 2017 Conference Proceedings 111

112 TUGboat, Volume 38 (2017), No. 2

Saturday

08:00 Breakfast

09:00 Conference opening

09:15 Hans Hagen Children of TEX

10:00 Kumaran Sathasivam, S. K. Venkatesan,

Yakov Chandy

Revealing semantics using subtle typography and punctuation

11:00 Coffee break

11:30 Frank Mittelbach Through The Looking Glass — and what Alice found there . . .

12:30 Leila Akhmadeeva, Boris Veytsman To justify or not to justify?

13:00 Przemysław Scherwentke LATEX Restaurant

13:30 Lunch

15:00 Barbara Beeton Debugging LATEX files — Illegitimi non carborundum

15:30 Boris Veytsman Making the ltxsparklines package: A journey of a CTAN

contributor into the world of CRAN

16:00 Coffee break

16:30 Grzegorz Murzynowski The GM scenarios two years later. A complete madness. But —
Turing-complete or not?
Or: how the spirit of l3expan made me conceive and bear
a monster

18:00 Jean-Michel Hufflen MlBIBTEX now deals with Unicode

18:30 Dávid Lupták Typesetting bibliographies compliant with the international
standard ISO 690 in LATEX

19:00 Dinner

21:00 Bonfire

Sunday

00:00 Bonfire (continued)

08:00 Breakfast

09:00 Willi Egger ConTEXt: Tutorial/workshop (for ConTEXt beginners)

11:00 Coffee break

11:30 Work group meetings

13:30 Lunch

14:45 Conference photo

15:00 Willi Egger Bookbinding workshop: Portfolio

15:00 Damien Thiriet Hackaton: Documenting LATEX packages

16:00 Coffee break

16:30 Maciej Rychły, Piotr Bolek Released sounds

17:30 Maciej Rychły, Mateusz Rychły Concert: Released sounds

19:00 Dinner

20:00 TUG & GUST Annual General Meetings

21:30 Michał Gasewicz Off topic (completely): Many faces (and types) of beer

TUG@BachoTEX 2017 Conference Proceedings

TUGboat, Volume 38 (2017), No. 2 113

Monday

08:00 Breakfast

09:00 Ulrik Vieth 10 years of OpenType math font development

10:00 Jerzy Ludwichowski GUST’s e-foundry current font projects

10:30 Sigitas Tolušis, Arūnas Povilaitis,

Valentinas Kriaučiukas

Xdvipsk: dvips ready for OpenType fonts and more image types

11:00 Coffee break

11:30 Adam Twardoch Variable and color OpenType fonts: Chances and challenges

12:30 Hans Hagen, Taco Hoekwater Colorful fonts, an update and peek into the future

13:30 Lunch

15:00 Hans Hagen Variable fonts

15:45 Bogusław Jackowski, Piotr Strzelczyk,

Piotr Pianowski

Parametric math symbol font

16:15 Coffee break

17:00 Adam Twardoch STIX, Fira, Noto and friends: Beautiful new opensource fonts

17:45 Mojca Miklavec, Arthur Reutenauer One rule to break them all

18:30 Mojca Miklavec Automating binary building for TEX Live

20:00 Conference dinner

21:30 Katarzyna Jackowska Concert: “Kapela Hałasów” and “Kapela Jazgódki”

Tuesday

08:00 Breakfast

09:00 Siep Kroonenberg The TEX Live Launcher

09:30 Norbert Preining fmtutil and updmap — past and future changes
(or: cleaning up the mess)

10:00 Luigi Scarso MFLua 0.8

10:30 Coffee break

11:00 Takuto Asakura Implementing bioinformatics algorithms in TEX — the Gotoh
package, a case study

11:15 Lolita Tolenė TEX users habits versus publishers requirements

12:00 Petr Sojka, Vít Novotný TEX in Schools? Just Say Yes: The use case of TEX usage
at the Faculty of Informatics, Masaryk University

12:45 Vít Novotný Using Markdown inside TEX documents

13:30 Lunch

15:00 Jean-Michel Hufflen History of accidentals in music

15:30 Janusz M. Nowacki Calligraphy by Barbara Galińska

15:45 Andrzej Tomaszewski An example of a humanist scholarly book

16:15 Coffee break

16:45 Adam Twardoch CORDIDA! Collaborative Opensource Rapid Digital Internet
Documentation Authoring

17:15 Paulo de Ney Souza TEX Annoyances — what is on the way to a full production
environment

18:00 Paulo de Ney Souza TEX Production — ePub, the new target

18:50 Zunbeltz Izaola, Paulo de Ney Souza DocVar: Manage document variables

19:10 Dinner

Wednesday

08:00 Breakfast

09:00 Anna Beata Kwiatkowska,

Jerzy Ludwichowski

TEX in secondary schools — an idea to be taken up by GUST

10:00 Marcin Woliński bredzenie.sty — Polish language version of lipsum.sty

10:20 Marcin Borkowski What a TEXnician can learn from ten years’ editorial work

11:00 Conference closing

11:15 Coffee break

13:00 Lunch

TUG@BachoTEX 2017 Conference Proceedings

114 TUGboat, Volume 38 (2017), No. 2

TUG@BachoTEX 2017
∗

Jean-Michel HUFFLEN

It is always with great pleasure that I go to the annual
conference of the Polish-speaking group GUST.1 We
are in the countryside, bordered by the Bachotek2

lake, near to Brodnica. The small houses that accom-
modate us look like chalets in the Alps. The only
drawback is that going there by train from Warsaw
is rather lengthy, but the journey through the Pol-
ish countryside is scenic. BachoTEX conferences are
very open and welcome many foreign visitors. If a
presentation is given in Polish, either slides include
an English version, or you will easily find someone
who will translate it by word of mouth. BachoTEX
has already welcomed EuroTEX conferences several
times3 and this year the TUG conference took place
there. So there were more foreign visitors — especially
from the USA — than usual.

Following the conference theme of Premises, predi-

lections, predictions, there was a rich variety of talks.4

Children of TEX was undoubtedly the talk most re-
lated to the theme: Hans Hagen gave us a personal
vision of TEX’s evolution and future. How to solve
tenacious errors and other vexations while process-
ing LATEX files was brilliantly addressed by Barbara
Beeton. Using LATEX within publishing activities was
the subject of the talks of Paulo Ney de Souza, Mar-
cin Borkowski and Lolita Tolenė. In particular, some
pearls of end-users were displayed during this last talk.
The introduction of TEX into academic curricula was
addressed by Petr Sokja and Vít Novotný as part of
experiments conducted at the Masaryk University.5

In another talk, Jerzy Ludwichowski announced a
project that aims to provide resources to students of
a grammar school. Last, a very positive review of an
introductory book for LATEX in Polish was given by
Przemysław Scherwentke.

The installation procedures of TEX Live’s pro-
grams are improved continually; this is what we
could learn from the talks of Siep Kroonenberg, Moj-
ca Miklavec and Norbert Preining. Various pack-

∗ This text is a translation (by the author) of a report
commissioned by the French-speaking group GUTenberg. The
original French version will appear in La Lettre GUTenberg.

1 Grupa Użytkowników Systemu TEX , that is, group of

TEX system users. The display of this group name at its Web
site (http://www.gust.org.pl) reveals the boxes used by TEX
to handle non-space characters’ dimensions and kerning applied
to TEX’s logo.

2 So this BachoTEX conference’s name is a play on words.
3 In 2002, 2007, 2011 and 2013.
4 In addition to the articles and abstracts in this TUGboat

issue, you can get the slides of most talks at the conference’s
Web site: http://www.gust.org.pl/bachotex/2017-en.

5 Located in Brno, Czech Republic.

ages were shown: for managing dynamic documents,
by Boris Veytsman; for structuring documents, by
Vít Novotný; for managing documents’ metadata by
means of variables, by Paulo Ney de Souza, for bioin-
formatics’ algorithms, by Takuto Asakura;6 for gen-
erating Polish texts for testing purposes, by Marcin
Woliński; and for typesetting bibliographies compliant
with the ISO 690, by Dávid Lupták. Last, Grzegorz
Murzynowski gave a very thorough and very didactic
description of some choices related to macro expansion
within the LATEX 3 project.

The tools that revolve around (LA)TEX were not
put away. I personally demonstrated the new ver-
sion of my MlBibTEX7 bibliography processor, which
can now take advantage of Unicode’s features. Luigi
Scarso showed new functions of his MFLua program:
let us recall that it allows functions written using
the Lua programming language to be called within
METAFONT programs.

Many talks dealt with fonts, especially OpenType
ones. This topic encompasses variable fonts, shown by
Hans Hagen, as well as two talks by Adam Twardoch.
We also include the extension of the xdvi program to
process such fonts, demonstrated by Valentinas Kri-
aučiukas, and the very good synthesis of the progress
concerning mathematical OpenType fonts, by Ulrik
Vieth. Bogusław Jackowski spoke about parameter-
isation of mathematical fonts, whereas Hans Hagen
and Taco Hoekwater brought a little relaxation with
a demonstration of a font for child play. Talking
of the future, the current projects of the GUST e-
foundry were presented by the GUST president, Jerzy
Ludwichowski.

Let us now go to typography. I personally greatly
enjoyed Yakov Chandy’s talk about subtleties of punc-
tuation and disambiguation allowed by it. Frank
Mittelbach’s quest for an algorithm finding optimal
pagination gave us a great performance. Experiments
conducted by Boris Veytsman and Leila Akhmadeeva
about text justification, especially within narrow col-
umns, deserve attention. Mojca Miklavec and Arthur
Reutenauer shared with us their experience about
managing hyphenation patterns for TEX. Andrzej
Tomaszewski showed interesting typographic effects
within a poetry book by Ovid. Concerning my talk
about the history of accidentals in music — flat, sharp,
natural signs, . . . — and associated typographic rules,
I link it to this rubric.

This TUG@BachoTEX conference included work-

shops, too. A tutorial for ConTEXt beginners was

6 For several years, a prize for the best talk has been
awarded at the end of a BachoTEX conference, on the basis of
a vote of all participants. This year, Asakura won this prize.

7 MultiLingual BIBTEX.

Jean-Michel HUFFLEN

TUGboat, Volume 38 (2017), No. 2 115

organised by Willi Egger; a second workshop, more
specialised, was connected to packages’ documenta-
tion by Damien Thiriet. Farther from TEX & Co.,
closer to manual work, Willi Egger’s second workshop
prompted participants to make an artist’s portfolio.
Finally, a fourth workshop, hosted by Michał Gase-
wicz, was labelled off topic from the start: it was
devoted to beer tasting!

I cannot forget the relaxation moments that punc-
tuated this conference. Discussions at coffee breaks
were very rich. Unfortunately, the traditional bon-
fire of BachoTEX conferences occurred during a rainy
evening, so most participants took refuge under a shel-
ter, except for those grilling sausages. However we
sang Frère Jacques (Brother John) in many languages,
as well as traditional Polish songs, accompanied on
the guitar and accordion. Going on with musical
attractions, we attended a talk by Piotr Bolek and
Maciej Rychły about relationship between painting
and music, followed by a concert with flutes and
guitars. The second concert was supervised by Kata-
rzyna Jackowska: four musicians — singing, playing
the violin, the accordion, the clarinet — involved us
in dances at the end of the conference’s dinner. To be
exact, I should mention ‘at the end of the first part’,
because after a menu composed of traditional Polish
meals and ending with some imposing pastry showing
the conference’s name, we again saw the arrival of
salted meats, and it set out again for another turn.

To sum up, this was a vintage year for BachoTEX
and TUG. Let me close with thanks to the French-
speaking group GUTenberg once again, for their sup-
port making my participation possible.

⋄ Jean-Michel HUFFLEN
FEMTO-ST (UMR CNRS 6174)

& University of Bourgogne
Franche-Comté

jmhuffle (at) femto-st dot fr

http://members.femto-st.fr/

jean-michel-hufflen

The accompanying photos were taken by Gyöngyi Bujdosó
(first two) and Andrzej Odyniec (second two). Thanks to
them for their permission to include their pictures in this
article.

TUG@BachoTEX 2017

116 TUGboat, Volume 38 (2017), No. 2

Calligraphy by Barbara Galińska

Janusz Nowacki

Again we had the opportunity to meet calligraphy
in Bachotek—that is, creating letters by hand. The
creator of the slides shown is Barbara Galińska, a
calligrapher and typographer from Warsaw. All her
works are of course handmade, with no computer
employed.

Galińska is an architect by training, and works
as a book illustrator, graphic artist, designer and
creator of animated movies. Photography used to be
her great passion; now it is calligraphy.

Her work encompasses all types of script—from
uncial, to many kinds of blackletter, to copperplate,
to modern calligraphy.

She writes, draws, and paints on everything ev-
erywhere—invitations, diplomas, love letters, labels,
advertisements, and book covers. Her works are on
paper, window panes, walls, furniture, people, and
even in sand.

She leads workshops and demonstrations of var-
ious forms of calligraphy. She is most interested in
the variety of ways letters can be written, drawn, or
painted, and she uses a great variety of tools.

These works were presented in April and May
2017 at her solo exhibit in Galeria Pięknych Książek
in Warsaw. Several hundred works by her can be seen
at https://www.behance.net/barbara-galinska.
A few selections are shown here.

⋄ Janusz Nowacki

janusz (at) jmn dot pl

Barbara Galińska in front of the windows to Galeria

Pięknych Książek on the Night of the Museums, Warsaw,

May 20–21, 2017.

Calligraphy by Barbara Galińska

TUGboat, Volume 38 (2017), No. 2 117

Calligraphy by Barbara Galińska

118 TUGboat, Volume 38 (2017), No. 2

Released sounds (Uwolnione dĺwięki)

Maciej Rychły

Abstract

People see the world and become painters. Or they hear the world, and become mu-
sicians. Painters are fortunate, or unfortunate, in that once painted, their work will
endure. The achievements of their predecessors become historicalأ paintingؤ, while
present-day artists seek new solutions in their ownwork. Musicians are unfortunate,
or fortunate, in that their work, the sound, evaporates after each live performance,
regardless of when it was composed, and has to be reanimated anew.

Streszczenie

Ludzie widzą świat. Dlatego mogą być malarzami. Ludzie słyszą świat. Dlatego
mogą byćmuzykami. Malarze są w tej szczęśliwej/nieszczęśliwej sytuacji, ļe obraz kie-
dyś namalowany trwa. Dzieła poprzedników stają się malarstwemإ historycznymؤ,
a współcześni artyści szukają nowych rozwiązań dla własnej twórczości. Muzycy są
w tej szczęśliwej/nieszczęśliwej sytuacji ļe, niezaleļnie od czasu powstania, dziełomu-
zyczne po kaļdymwykonaniu rozpadaإ sięؤ. Muzykamusi być ciągle przywoływana
na nowo.

Pomysł ؤodkodowaniaإ zapisów nutowych z
wybranych obrazów malarstwa polskiego i europej-
skiego oraz przygotowania koncertu zapisanej przez
artystów malarzy muzyki, powstawał kilka lat. Stu-
dia nad rozczytaniem zapisów nutowych z obrazów
rozpocząłem badając dawne obrazy ze scenami mu-
zycznymi, na których grupa muzyków skupiona jest
wokół niewidzialnego zjawiska muzyki. Moļe wy-
dać się absurdalne to, ļe artystów tworzących obrazy
– znaki wizualne, fascynowała taka sytuacja. Sceny
muzyczne są bowiem bardzo częstym malarskim te-
matem.

Od czasu renesansu artyści byli wszechstron-
nie wykształceni. Tworząc obraz traktowany jako
dzieło, zawierali w nim swoją wiedzę na temat kul-
tury. Postacie na obrazach umieszczane są w kon-
tekście przedmiotów, które określają status i profesję
portretowanych. Muzycy umieszczani są wśród in-
strumentów, często trzymają kartki z zapisami utwo-
rów muzycznych. Niektórzy artyści malując swój

autoportret chętnie przedstawiali siebie wśród in-
strumentów muzycznych. Czy znali równieļ sztukę
dĺwięku? Czy zapisy nutowe, które umieszczali
na swoich obrazach noszą ślad muzycznych kompe-
tencji? Jeļeli tak, to obraz taki moļna traktować
jako multimedialnąإ pigułkęؤ która, jeśli poświę-
cimy jej swój czas, zabrzmimuzyką, sprowokuje opo-
wieść, pozwoli wejść nam w utrwaloną przez mala-
rza chwilę. Czasami kartka z nutami skierowana jest
wprost do nas, tak jakby artysta czynił to z wiarą
ļe ktoś, na przykład my dzisiaj, odczyta ten zapis.
Warto teļ pamiętać ļe obrazy, nawet te najbardziej
realistycznie przedstawiające rzeczywistość, nie są fo-
tografiami. Ļaden z elementów obrazu nie pojawił
się przypadkiem. Za kreacją stoi intencja twórcy. Ist-
nieje moļliwość, ļe zapisana na obrazach muzyka
przetrwała do nas tylko w tej formie. Obraz moļna
więc traktować jako rękopis. Uwolnioneإ Dĺwiękiؤ
to pomysł na jedną z wielu rozmów z przeszłością,
czytanie jej znaków.

The idea of decodingmusical notation from se-
lected pieces of Polish and European painting, and
of organising a concert of the music inscribed by
painters in their work, has been taking shape over
several years. I began my forays into reading the
musical notation in paintings by studying old works
with music-related scenes. It might seem odd for
artists working in the visual medium of painting to

be fascinated by the invisible medium of music, but
scenes with a musical theme are a frequent painterly
motif.

Since the Renaissance, artists have often been
people of wide knowledge. A painting they created
and considered a work of art would comprise and
conveymuch of what they knew about culture. The
figures in their paintings are portrayed in the context

Maciej Rychły

TUGboat, Volume 38 (2017), No. 2 119

of objects which determine their status and profes-
sion. Even in their self-portraits some artists read-
ily included instruments. Were they conversantwith
the art of sound? Does the musical notation found
in their paintings bear the traces of musical compe-
tence? If so, then the painting may be treated as a
multimediaأ pillؤ which, given our time and dedica-
tion, will resound with music, provoke a tale, allow
us to slip into the moment captured by the painter.
Sometimes the note-filled sheet is turned towards us,
as if the artist had done this in the hope that some-
body will read the notation.

It should also be remembered that even the
ones which present reality most realistically are not
in fact photographs; none of the elements in a paint-
ing found its way there by accident. Behind the cre-
ation, there is the intentionof the artist. It is possible
that themusic recorded in thepainting survivedonly
in that singular form. The picture may therefore be
approached as a manuscript. Released Sounds are
just one of themany possible dialogueswith the past
and readings of its signs.

Wybrane opowieści/Selected tales

Letterإ Rackؤ Everta Colliera

Na jednym ze swoich obrazów Evert Collier namalo-
wał w roku 1693 w Londynie wszystkie najpotrzeb-
niejsze przedmioty codziennego uļytku – noļyczki,
gazetę, grzebień, pióro. Najwyraĺniej zafascynowało
go ؤwieszadłoإ – إ letter rackؤ. Wśród rzeczy najpo-
trzebniejszych znalazł się teļ flet i zeszyt, w którym
zapisane są menuety. Być moļe te menuety prze-
trwały do naszych czasów wyłącznie dzięki Collie-
rowi.

Letterأ Rackؤ by Evert Collier

In a 1693 painting, Londoner Evert Collier depicted
themundane yet necessary objects of everyday use—
a pair of scissors, a newspaper, two combs, a feather.
He was evidently fascinated by the letter rack, on
which various items could be hung. Among the util-
itarian paraphernalia, there is also a flute and a book
of minuets. Perhaps it is only thanks to Collier that
the minuets have survived until today.

Piekłoإ muzykantówؤ Hieronima Boscha

Spójrzmy na sekwencję zapisaną w księdze umiesz-
czonej przezHieronima Boscha w -PiekleMuzykanإ
tówؤ. Księga znajduje się w lewym skrzydle tryp-
tyku Tysiącletnieإ Królestwoؤ. Widać tam nagich
ludzi przygniecionych nieludzkiej wielkości muzycz-
nymi instrumentami. Zapis ujawnia melodię nasy-
coną trytonami. Tryton to współbrzmienie, na któ-

rym nie moļna zbudować nic sensownego. W Śre-
dniowieczu nazywano go diabelskim krokiem. Czy
Bosch celowo umieścił trytony w zapisanej przez sie-
bie melodii? Czy jest to melodia szczególnie -niepoإ
prawnaؤ, ?ؤzepsutaإ Czy Bosch wierzył, ļe ktoś kie-
dyś odczyta ten zapis i głębiej odczuje piekłomuzycz-
nej niemocy?

Released sounds (Uwolnione dĺwięki)

120 TUGboat, Volume 38 (2017), No. 2

Maciej Rychły

TUGboat, Volume 38 (2017), No. 2 121

’Musiciansأ Hellؤ by Hieronymus Bosch

Let’s take a look at the sequence written in the book
which Hieronymus Bosch placed in the ’Musiciansأ
Hellؤ. This book is found in the right-hand panel
of The Garden of Earthly Delights. In this area of
the panel naked people are crushed by instruments
of extraordinary, inhuman dimensions. The nota-
tion reveals amelody full of tritones. A tritone repre-
sents a futile consonance: one which cannot serve to

construct anything sensible. Since the Middle Ages,
the tritone has been called ‘the devil’s interval’, ‘the
chord of evil’ or ‘diabolus in musica’. Did Bosch de-
liberately put those tritones in his melody? Is this
melody particularly ؤindecentأ or ?ؤcorruptأ Did
Bosch believe that one day someone would read the
notation and have a more profound experience of
the infernal torment of musical impotence?

Pieśń nad pieśniami Caravaggia

Na obrazie Caravaggia Odpoczynekإ w czasie ucie-
czki do Egiptuؤ anioł gra na skrzypcach melodię z
nut, które trzyma Józef. Nutywidać takwyraĺnie, ļe
moļna ustalić wydawcę i odczytać melodię napisaną
przez niderlandzkiego kompozytora Noela Baulde-
weijna do słów Pieśniإ nad pieśniamiؤ.

Caravaggio’s Song of Songs

In Caravaggio’s Rest on the Flight to Egypt, an an-
gel plays a melody on violin, reading themusic from
the sheets held by Joseph. The note-filled staves are
depicted so clearly that it is possible to identify the
publisher and read the melody written by a Dutch
composer, Noel Bauldeweijn, to the verses of The
Song of Songs.

Bukoliki Jeana Baptisty Oudry’ego

Istnieje wiele obrazów, na których tematem są in-
strumentymuzyczne i porozrzucane kartki z nutami.
Wybrałem obraz z muzyką burdonową zapisaną w
1730 roku przez Baptiste Oudry’ego. Arkadia. Bu-
koliki. Sielskość.

The Pastorals of Jean-Baptiste Oudry

There are numerous other paintings in which mu-
sical instruments and scattered sheets of music are
a prominent theme. I have chosen a 1730 still-life
by Jean-Baptiste Oudry featuring a musette bagpipe
and drone music. Arcadia. Pastorals. Idyll.

Released sounds (Uwolnione dĺwięki)

122 TUGboat, Volume 38 (2017), No. 2

Salon Księļnej Czartoryskiej

W podlubelskim pałacu w Kozłówce znajduje się
olejny obraz będący kopią sztychu, który w 1777
roku wykonał Giuseppe Marchi. Izabela

Czartoryska siedzi przy fortepianie. Właśnie
przestała grać. Nutynapulpiciewidaćwyraĺnie. Jest
to zapis polskiego tańca – poloneza. Podobną mu-
zykę moļemy odczytać z obrazu nieznanego francu-
skiego malarza. Obraz znajduje się w poznańskim
Muzeum Instrumentów Muzycznych. Grupa ubra-
nych w orientalne stroje muzyków i reszta zgroma-
dzonych wsłuchuje się w słodkie kaskady tercji, w
muzykę salonu. Słuchacze i muzycy w teatralnej po-
zie, w teatralnych szatach, igrają z historią.

The salon of Duchess Czartoryska

In the palace of Kozłówka near Lublin, there is an
oil painting, a copy of an etching made in 1777 by
Giuseppe Marchi. Izabela Czartoryska is sitting at
the piano. She has just stopped playing. The sheets
of music on the stand are clearly legible: it is a Pol-
ish dance— the polonaise. A similar piece may be
read from the painting by an unknownFrench artist,
found at the Museum of Musical Instruments in
Poznań. A group of musicians, dressed after an ori-
ental fashion, as well as the rest of the people gath-
ered there, listen enraptured to the sweet cascades
of the third, to the music of the salon. In theatri-
cal poses and theatrical guises, the listeners and the
musicians play with history.

Pieśńإ miłosnaؤ Antoin’a Watteau

ObrazyWatteau, malarza łamiącego akademickie ka-
nony, często przedstawiają muzyków i ludzi teatru.
Magnetyzują widza nastrojową aurą. Na obrazie
Theإ love songؤ gitarzysta odkrywa nowe harmonie
w bezpiecznej scenerii ogrodu. Dziewczyna trzyma
nuty. Płynie pieśń miłosna.

Loveأ Songؤ by Antoine Watteau

The paintings by Watteau, an artist who went
against the academic canons, often featuremusicians
and people of the theatre. They mesmerise the be-
holder with an atmospheric aura. In The Love Song
the guitar player discovers new harmonies in the safe
haven of a garden. The girl is holding the music
book. A love song floats through the air.

Maciej Rychły

TUGboat, Volume 38 (2017), No. 2 123

ؤEnchirydonإ Holbaina

.ؤAmbasadorzyإ U stóp dwóchmłodzieńcówwidać
rozmytą tajemniczą plamę. Gdy popatrzymy na ob-
raz zإ ukosaؤ, to w szalonej perspektywie wielkiego
skrótu rozmyta plama staje się ludzką czaszką. Czy
tym akcentem malarz przypomina nam o przemi-
janiu? Gdy patrzymy na obraz naإ wprostؤ, nad
plamą/czaszką widać księgę z nutami, lutnię, flet,
cyrkiel, globus – model Ziemi. Namalowani mło-
dzieńcy mają pewność, ļe opanowali Ziemię, ļe czas
omijaإ ichbokiemؤ, ļe stali się nieśmiertelni, ļe posia-
dają przyrządy do panowania nad czasem i przestrze-
nią. Księga leļąca pod lutnią to EnchirydonMartina
Lutra z 1524 roku. Powstała dziewięć lat wcześniej
niļ obraz Holbaina. Jest to księga pieśni słuļących
nowej liturgii, w której niezrozumiałe juļ łacińskie
teksty Biblii przełoļono na językwspółczesny. Melo-
die pieśni zostały zaczerpnięte z muzyki ludowej. Jo-

han Walter, muzyk współpracujący z Lutrem, dopi-
sał do wybranych melodii trzy harmonizujące głosy .
Czy dawnaniemieckamuzyka ludowaprzetrwała do
naszych czasów złączona ze świętymi tekstami nowej
liturgii? Melodia którą moļna odczytać na obrazie
Holbaina, to jeden z głosów dopisany przezWaltera.

ؤEnchiridionأ by Holbein

The Ambassadors. There is a mysterious, vague
shape at the feet of the two young men. When we
look at the picture obliquely, the bizarre perspec-
tive of great foreshortening reveals a human skull.
Does the painter use this device to remind us of
transience and impermanence? Looking straight, a
number of items can be seen above the shape/skull:
a book of music, a lute, a flute, a compass and a
globe— the model of Earth. The young men in
the painting are certain that they have the ascen-
dancy, that time passesأ them byؤ, that they have
become immortal and have the instruments to dom-
inate time and space. The volume lying under the
lute is Martin Luther’s Enchiridion of 1524. A book
nine years younger than Holbein’s painting. It is a
book of songs for the new liturgy, in which the al-
ready incomprehensible Latin texts of the Bible have
been translated into a contemporary language. The
melodies of the songs originate from folk music. Jo-
hann Walter, a musician collaborating with Luther,
added three harmonised voices to themelodies. Has
the old German folk music survived until today, wo-
ven into the holy verses of new liturgy? The melody
that can be read from Holbein’s painting is one of
the voices composed by Walter. We choose to play
the basic theme, which undoubtedly possesses the
charm and grace of a folk song.

Released sounds (Uwolnione dĺwięki)

124 TUGboat, Volume 38 (2017), No. 2

Taneczny krąg barokowej śmierci

Nieznany barokowymalarz namalował w Krakowie
moralitet. Obraz moļna zobaczyć w kościele bernar-
dynów. Spójrzmy na muzykanta, który siedzi przy
keabordzie z dawnych lat. Śmierć podsuwamu nuty.
Ludzie róļnych stanów złączeni w kręgu tańczą tak,
jak tego chce kostucha. Zapismuzycznyukazuje kon-
stelację rozbitych kropek o molowym trybie. Mu-
zyka zmierza ku ciszy.

The dancing circle of baroque death

In Kraków, an unknown Baroque painter depicted
a morality scene. The painting can be found in the
church of St. Bernardine. Take a look at the mu-
sician who sits at the keyboard of the olden days.
Death passes him the music. People of various es-
tates, joined in a circle, dance to the whim of the
Grim Reaper. The notation shows a constellation
of broken and crumbling dots in a minor key. The
music descends towards silence.

⋄ Maciej Rychły
Poznań
rychly (at) poczta dot onet dot pl

Maciej Rychły

TUGboat, Volume 38 (2017), No. 2 125

The state of TEX

Boris Veytsman

This article is based on my address at the Annual

General Meeting at TUG 2017. I am grateful to

the TUG Board & AGM participants for the dis-

cussion, and, of course, to GUST for the hosting

of BachoTEX!

When we talk about the state of TEX, three things
come to mind: TEX software, TEX community and
the TEX Users Group as part of this community.

While the original Knuthian tex is frozen, TEX

software as a whole is not. Nor should it be. The
world around us changes, so our software must change
if we want to stay relevant. There have been sev-
eral important shifts in digital typesetting, which
presented challenges for us, such as the switch to the
PDF formats, and the advent of first 8-bit encodings
and then Unicode. In response TEX software changed:
modern engines and macro packages natively work
with PDF, Unicode, TTF and OTF fonts.

We have now new challenges, which need to be
addressed. There are new PDF features, which are
not adequately addressed by the free viewers. An-
other important problem is the emergence of PDF

archiving and accessibility standards. Governments
increasingly demand standards compliance from their
contractors. If TEX does not produce compliant out-
put “out of the box”, it will become not relevant
first for government-related publications, then for
big publishers, and then for the rest of the world.
To ensure compliance we need both volunteer de-
velopment effort and some funding. I think we
can reach publishers and other stakeholders about
this. I urge those interested in this issue to join
the TUG Accessibility & Standards Working Group
(https://tug.org/twg/accessibility).

Speaking of TEX community, I must say that
at almost any TEX conference there are concerns
about the decreased popularity of TEX. I do not
necessarily share this feeling. As a TEX consultant
I see among my clients, besides the usual bunch
of publishers, professionals and students of mathe-
matics & “hard” sciences, also rather unexpected
users: lawyers, physicians, biologists, philosophers,
and many others. Still for the future of TEX, we need
to ensure that new generations are exposed to it. I
do not say that everybody should use TEX. Rather
I think those who might like it must be given the
opportunity to learn and use it. We should show the

possibilities of TEX and friends to the students of
schools and universities. We should encourage teach-
ers to share their experience, lesson plans and ideas.
Perhaps we can help to organize competitions among
students and teachers, olympiads, TEX camps and
courses. Again I would like to use this opportunity
to remind about the TUG Education Working Group
(https://tug.org/twg/edutex) and urge those in-
terested in TEX in schools and universities to join.

The efforts described above require coordina-
tion, organization, and, let us be practical, money.
This leads us to the state of the TEX Users Group.
In the old days TUG membership was almost the
only way to get those TEX tapes or the answers to
one’s TEXnical questions. Now with the advent of
the Internet, easy access to distributions and online
forums, the situation has changed. Thus it is not
unexpected that the membership in TUG has con-
siderably dropped. Is TUG itself still relevant or
needed?

I think it is. We need a center to coordinate
development, advocacy and fundraising efforts. TUG

seems to be a natural entity for this — especially
being a tax exempt (in the United States) organiza-
tion. We already serve several TEX-related projects
by collecting money for them, and we can increase
this activity.

However, I think we need to reconsider the role
of TUG membership for TUG. While we always will
serve our members, we need to realize that we also
serve the TEX community in general. We should
accept that many TEX users do not want the com-
mitment of full membership. We should tell these
users that any donation of time or money is welcome
too. We also need to do fundraising among organi-
zational TEX users: publishers, universities, etc. In
other words, we might want to consider behaving as
a charity organization serving the wide community
of TEX users, including, but not limited to, our core
membership.

In conclusion, there are many interesting oppor-
tunities and challenges for us as TEX developers, TEX
users and TUG members. I hope we all will rise to
meet them.

⋄ Boris Veytsman

President, TEX Users Group

borisv (at) lk (dot) net

http://borisv.lk.net

The state of TEX

https://tug.org/twg/accessibility
https://tug.org/twg/edutex

126 TUGboat, Volume 38 (2017), No. 2

Children of TEX

Hans Hagen

1 The theme

Nearly always TEX conferences carry a theme. As
there have been many conferences the organizers
have run out of themes involving fonts, macros and
typesetting and are now cooking up more fuzzy ones.
Take the BachoTUG 2017 theme:

Premises The starting point, what we have, what
do we use, what has been achieved?

Predilections How do we act now, how do we want
to act, what is important to us, what do we miss?

Predictions What is the future of TEX, what we’d
like to achieve and can we influence it?

My first impression with these three P words was:
what do they mean? Followed by the thought: this
is no longer a place to take kids to. But the Internet
gives access to the Cambridge Dictionary, so instead
of running to the dusty meter of dictionaries some-
where else in my place, I made sure that I googled
the most recent definitions:

premise an idea or theory on which a statement or
action is based

predilection if someone has a predilection for some-
thing, they like it a lot

prediction a statement about what you think will
happen in the future

I won’t try to relate these two sets of definitions
but several words stand out in the second set: idea,
theory, action, like, statement and future. Now, as
a preparation for the usual sobering thoughts that
Jerzy, Volker and I have when we staring into a
BachoTEX campfire I decided to wrap up some ideas
around these themes and words. The books that
I will mention are just a selection of what you can
find distributed around my place. This is not some
systematic research but just the result of a few weeks
making a couple of notes while pondering about this
conference.

2 Introduction

One cannot write the amount of TEX macros that I’ve
written without also liking books. If you look at my
bookshelves the topics are somewhat spread over the
possible spectrum of topics: history, biology, astron-
omy, paleontology, general science but surprisingly
little math. There are a bunch of typography-related
books but only some have been read: it’s the visuals
that matter most and as there are no real develop-
ments I haven’t bought new ones in over a decade,
although I do buy books that look nice for our office

display but the content should be interesting too. Of
course I do have a couple of books about computer
(related) science and technology but only a few are
worth a second look. Sometimes I bought computer
books expecting to use them (in some project) but I
must admit that most have not been read and many
will soon end up in the paper bin (some already went
that way). I’ll make an exception for Knuth, Wirth
and a few other fundamental ones that I (want to)
read. And, I need to catch up on deep learning, so
that might need a book.

My colleagues and I have many discussions, es-
pecially about what we read, and after a few decades
one starts seeing patterns. Therefore the last few
years it was a pleasant surprise for me to run into
books and lectures that nicely summarize what one
has noticed and discussed in a consistent way. My
memory is not that good, but good enough to let
some bells ring.

history futurology

science fiction informatics

The first book that gave me this “finally a per-
fect summary of historic developments” feeling is
“Sapiens” by Yuval Noah Harari. The author summa-
rizes human history from a broad perspective where
modern views on psychology, anthropology and tech-
nical developments are integrated. It’s a follow up
on a history writing trend started by Jared Diamond.
The follow up “Homo Deus” looks ahead and is just
as well written. It also integrates ideas from other
fields, for instance those related to development of
artificial intelligence (Dennett, Bostrom, etc.).

Hans Hagen

TUGboat, Volume 38 (2017), No. 2 127

Another inspiration for this talk and article is
the 50 hour lecture series on behavioral biology by
Robert Sapolsky of Stanford University, brought to
my attention by my nephew Bram who visited a few
TEX conferences with me and who is now also forced
to use TEX for assignments and reports. (How come
self-published books used at universities often look
so bad?)

The title of this talk is inspired by the book
“Children of Time” by Adrian Tchaikovsky that I
read recently. There are science fiction writers who
focus on long term science and technology, such as
some of Alastair Reynolds, while others follow up on
recent development in all kind of sciences. One can
recognize aspects of “Superintelligence” by Bostrom
in Neal Asher’s books, insights in psychology in the
older Greg Bear books, while in the mentioned “Chil-
dren of Time” (socio)biological insights dominate.
The main thread in that book is the development of
intelligence, social behaviour, language, script and
cooperation in a species quite different from us: spi-
ders. It definitely avoids the anthropocentric focus
that we normally have.

So how does this relate to the themes of the
BachoTEX conference? I will pick out some ways to
approach them using ideas from the kind of resources
mentioned above. I could probably go on and on
for pages because once you start relating what you
read and hear to this TEX ecosystem and community,
there is no end. So, consider this a snapshot, that
somehow relates to the themes:

premise Let’s look at what the live sciences have to
say about TEX and friends and let’s hope that I
don’t offend the reader and the field.

predilection Let’s figure out what brings us here to
this place deeply hidden in the woods, a secret
gathering of the TEX sect.

prediction Let’s see if the brains present here can
predict the future because after all, according
to Dennett, that is what brains are for.

At school I was already intrigued by patterns in
history: a cyclic, spiral and sinusoid social evolution
instead of a pure linear sequence of events. It became
my first typeset-by-typewriter document: Is history
an exact science? Next I will use and abuse patterns
and ideas to describe the TEX world, not wearing a
layman’s mathematical glasses, but more from the
perspective of live sciences, where chaos dominates.

3 The larger picture

History of mankind can be roughly summarized as
follows. For a really long time we were hunters but
at some point (10K years ago) became farmers. As

a result we could live in larger groups and still feed
them. The growing complexity of society triggered
rules and religion as instruments for stability and
organization (I use the term religion in its broadest
sense here). For quite a while cultures came and
went, and climate changes are among the reasons.

After the industrial revolution new religions were
invented (social, economic and national liberalism)
and we’re now getting dataism (search for Harari
on youtube for a better summary). Some pretty
great minds seem to agree that we’re heading to
a time when humans as we are will be outdated.
Massive automation, interaction between the self and
computer driven ecosystems, lack of jobs and purpose,
messing around with our genome. Some countries
and cultures still have to catch up on the industrial
revolution, if they manage at all, and maybe we
ourselves will be just as behind reality soon. Just
ask yourself: did you manage to catch up? Is TEX a
stone age tool or a revolutionary turning point?

A few decades ago a trip to BachoTEX took
more than a day. Now you drive there in just over
half a day. There was a time that it took weeks:
preparation, changing horses, avoiding bad roads.
Not only your own man-hours were involved. It
became easier later (my first trip took only 24 hours)
and recently it turned into a piece of cake: you don’t
pick up maps but start your device; you don’t need a
travel agent but use the Internet; there are no border
patrols, you can just drive on. (Okay, maybe some
day soon border patrols at the Polish border show
up again, just like road tax police in Germany, but
that might be a temporary glitch.)

Life gets easier and jobs get lost. Taxi and truck
drivers, travel agents, and cashiers become as obso-
lete as agricultural workers before. Next in line are
doctors, lawyers, typesetters, printers, and all those
who think they’re safe. Well, how many people were
needed 400 years ago to produce the proceedings of
a conference like this in a few days’ time span? Why
read the introduction of a book or a review when you
can just listen to the author’s summary on the web?
How many conferences still make proceedings (or go
for videos instead), will we actually need editors and
typesetters in the future? How much easier has it
become to design a font, including variants? What
stories can designers tell in the future when programs
do the lot? The narrower your speciality is, the worse
are your changes; hopefully the people present at
this conference operate on a broader spectrum. It’s a
snapshot. I will show some book covers as reference
but am aware that years ago or ahead the selection
could have been different.

Children of TEX

128 TUGboat, Volume 38 (2017), No. 2

4 Words

Words (whatever they represent) found a perfect
spot to survive: our minds. Then they made it from
speech (and imagination) into writing: carved in
stone, wood, lead. At some point they managed
to travel over wires but no matter what happened,
they are still around. Typesetting as visualization
is also still surrounding us so that might give us a
starting point for ensuring a future for TEX to work
on, because TEX is all about words. There is a lot
we don’t see; imagine if our eyes had microscopic
qualities. What if we could hear beyond 20KHz.
Imagine we could see infrared. How is that with
words. What tools, similar in impact as TEX, can
evolve once we figure that out. What if we get access
to the areas of our brain that hold information? We
went from print to screen and TEX could cope with
that. Can it cope with what comes next?

The first printing press replaced literal copying
by hand. Later we got these linotype-like machines
but apart from a few left, these are already thrown
out of windows (as we saw in a movie a few Bacho-
TEX’s ago). Phototypesetting has been replaced too
and because a traditional centuries old printing press
is a nice to see item, these probably ring more bells
than that gray metal closed box typesetters. Orga-
nizers of TEX conferences love to bring the audience
to old printing workshops and museums. At some
point computers got used for typesetting and in that
arena TEX found its place. These gray closed boxes
are way less interesting than something mechanical
that at least invites us to touch it. How excited can
one be about a stack of TEXLive DVDs?

5 Remembering

Two times I visited the part of the science museum
in London with young family members: distracted
by constantly swiping their small powerful devices,
they didn’t have the least interest in the exhibited
computer related items, let alone the fact that the
couch they were sitting on was a Cray mainframe.
Later on, climbing on some old monument or an old
cannon seemed more fun. So, in a few decades folks
will still look at wooden printing presses but quickly
walk through the part of an exhibition where the
tools that we use are shown. We need to find ways
to look interesting. But don’t think we’re unique:
how many kids find graphical trend-setting games
like Myst and Riven still interesting? On the other
hand a couple of month ago a bunch of nieces and
nephews had a lot of fun with an old Atari console
running low-res bitmap games. Maybe there is hope
for good old TEX.

If indeed we’re heading to a radically differ-
ent society one can argue if this whole discussion
makes sense. When the steam engine showed up,
the metaphor for what went on in our heads was
that technology, It’s a popular example of speakers
on this topic: “venting off steam”. When electricity
and radio came around metaphors like “being on the
same wavelength” showed up. A few decades ago
the computer replaced that model although in the
meantime the model is more neurobiological: we’re
a hormone and neurotransmitter driven computer.
We don’t have memory the way computers do.

How relevant will page breaks, paragraph and
line breaks be in the future? Just like “venting off
steam” may make no sense to the youth, asking a
typesetter to “give me a break” might not make much
sense soon. However, when discussing automated
typesetting the question “are we on the same page”
still has relevance.

Typesetting with a computer might seem like the
ultimate solution but it’s actually rather dumb when
we consider truly intelligent systems. On the large
scale of history and developments what we do might
get quite unnoticed. Say that mankind survives the
next few hundred years one way or the other. Science
fiction novels by Jack McDevitt have an interesting
perspective of rather normal humans millennia ahead
of us who look back on these times in the same way
as we look back now. Nothing fundamental changed
in the way we run society. Nearly nothing from the
past is left over and apart from being ruled by AIs
people still do sort of what they do now. TEX? What
is that? Well, there once was this great computer
scientist Knuth (in the remembered row of names like
Aristotle— I just started reading “The Lagoon” by
Armand Leroi—Newton, Einstein, his will show up)
who had a group of followers that used a program that
he seems to have written. And even that is unlikely
to be remembered, unless maybe user groups manage
to organize an archive and pass that on. Maybe the
fact that TEX was one of the first large scale open
source programs, of which someone can study the
history, makes it a survivor. The first program that
was properly documented in detail! But then we
need to make sure that it gets known and persists.

6 Automation

In a recent interview Daniel Dennett explains that
his view of the mind as a big neural network, one
that can be simulated in software on silicon, is a bit
too simplistic. He wonders if we shouldn’t more tend
to think of a network of (selfish) neurons that group
together in tasks and then compete with each other,
if only because they want to have something to do.

Hans Hagen

TUGboat, Volume 38 (2017), No. 2 129

Maybe attempts to catch the creative mindset
and working of a typesetter in algorithms is futile.
What actually is great typography or good type-
setting? Recently I took a look at my bookshelf
wondering what to get rid of—better do that now
than when I’m too old to carry the crap down (crap
being defined as uninteresting content or bad look-
ing). I was surprised about the on-the-average bad
quality of the typesetting and print. It’s also not
really getting better. One just gets accustomed to
what is the norm at a certain point. Whenever they
change the layout and look and feel of the newspa-
per I read the arguments are readability and ease of
access. Well, I never had such a hard time reading
my paper as today (with my old eyes).

Are we, like Dennett, willing to discard old views
on our tools and models? When my first computer
was an RCA 1802 based kit, that had 256 bytes of
memory. My current laptop (from 2013) is a Dell
Precision workstation with an extreme quad core pro-
cessor and 16 GB of memory and ssd storage. Before
I arrived there I worked with DEC-10, VAX and the
whole range of Intel CPUs. So if you really want to
compare a brain with a computer, take your choice.

I started with TEX on a 4 MHz desk top with
640 MB memory and a 10 MB hard disk. Running
ConTEXt MkIV with LuaTEX on such a machine
is no option at all, but I still carry the burden of
trying to write efficient code (which is still somewhat
reflected in the code that makes up ConTEXt). In
the decades that we have been using TEX we had
to adapt! Demands changed, possibilities changed,
technologies changed. And they keep changing. How
many successive changes can a TEX user handle?
Sometimes, when I look and listen I wonder.

If you look back, that is, if you read about the
tens of thousands of years that it took humans to
evolve (“The mind in the cave” by Lewis-Williams
is a good exercise) you realize even more in what
a fast-paced time we live and that we’re witnessing
transitions of another magnitude.

In the evolution of species some tools were in-
vented multiple times, like eyes. You see the same
in our TEX world: multiple (sub)macro packages,
different font technologies, the same solutions but
with an alternative approach. Some disappear, some
stay around. Just like different circumstances de-
mand different solutions in nature, so do different
situations in typesetting, for instance different table
rendering solutions. Sometime I get the feeling that
we focus too much on getting rid of all but one solu-
tion while more natural would be to accept diversity,
like bio-diversity is accepted. Transitions nowadays
happen faster but the question is if, like aeons before,

we (have to) let them fade away. When evolution is
discussed the terms ‘random’, ‘selection’, ‘fit’, and
so on are used. This probably also applies to typog-
raphy: at some point a font can be used a lot, but
in the end the best readable and most attractive one
will survive. Newspapers are printed in many copies,
but rare beautiful books hold value. Of course, just
like in nature some developments force the further
path of development, we don’t suddenly grow more
legs or digits on our hands. The same happens with
TEX on a smaller timescale: successors still have
the same core technology, also because if we’d drop
it, it would be something different and then give a
reason to reconsider using such technology (which
likely would result in going by another path).

7 Quality

Richard Dawkins “The Ancestor’s Tale” is a non-
stop read. In a discussion with Jared Diamond about
religion and evolution they ponder this thread: you
holding the hand of your mother who is handing
her mother’s hand and so on till at some point fish
get into the picture. The question then is, when do
we start calling something human? And a related
question is, when does what we call morality creeps
in? Is 50% neanderthaler human or not?

So, in the history of putting thoughts on paper:
where does TEX fit in? When do we start calling
something automated typesetting? When do we
decide that we have quality? Is TEX so much different
from its predecessors? And when we see aspects of
TEX (or related font technology) in more modern
programs, do we see points where we cross qualitative
or other boundaries? Is a program doing a better job
than a human? Where do we stand? There are fields
where there is no doubt that machines outperform
humans. It’s probably a bit more difficult in aesthetic
fields except perhaps when we lower the conditions
and expectations (something that happens a lot).

For sure TEX will become obsolete, maybe even
faster that we think, but so will other typesetting
technologies. Just look back and have no illusions.
Till then we can have our fun and eventually, when
we have more free time than we need, we might use
it out of hobbyism. Maybe TEX will be remembered
by probably its most important side effect: the first
large scale open source, the time when users met
over programs, Knuth’s disciples gathered in user
groups, etc. The tools that we use are just a step in
an evolution. And, as with evolution, most branches
are pruned. So, when in the far future one looks
back, will they even notice TEX? The ancestor’s
tail turns the tree upside down: at the end of the
successful branch one doesn’t see the dead ends.

Children of TEX

130 TUGboat, Volume 38 (2017), No. 2

Just a thought: CDs and media servers are re-
cently being replaced (or at least accompanied) by
Long Play records. In the shop where I buy my CDs
the space allocated to records grows at the cost of
more modern media. So, maybe at some point retro-
typesetting will pop up. Of course it might skip TEX
and end up at woodcutting or printing with lead.

8 What mission

We rely on search engines instead of asking around
or browsing libraries. Do students really still read
books and manuals or do they just search and listen
to lectures. Harari claims that instead of teaching
kids facts in school we should just take for granted
that they can get all the data they want and that we
should learn them how to deal with data and adapt
to what is coming. We take for granted that small
devices with human voices show us the route to drive
to BachoTEX, for instance, although by now I can
drive it without help. In fact, kids can surprise you
by asking if we’re driving in Germany when we are
already in Poland.

We accept that computer programs help physi-
cians in analyzing pictures. Some wear watches that
warn them about health issues, and I know a few
people who monitor their sugar levels electronically
instead of relying on their own measurements. We
seem to believe and trust the programs. And indeed,
we also believe that TEX does the job in the best
way possible. How many people really understand
the way TEX works?

We still have mailing lists where we help each
other. There are also wikis and forums like stack
exchange. But who says that even a moderate bit of
artificial intelligence doesn’t answer questions bet-
ter. Of course there needs to be input (manuals,
previous answers, etc.) but just like we need fewer
people as workforce soon, the number of experts
needed also can be smaller. And we’re still talking
about a traditional system like TEX. Maybe the
social experience that we have on these media will
survive somehow, although: how many people are
members of societies, participate in demonstrations,
meet weekly in places where ideas get exchanged,
compared to a few decades ago? That being said, I
love to watch posts with beautiful ConTEXt solutions
or listen to talks by enthusiastic users who do things
I hadn’t expected. I really hope that this property
survives, just like I hope that we will be able to see
the difference between a real user’s response and one
from an intelligent machine (an unrealistic hope I
fear). Satisfaction wins and just like our neurolog-
ical subsystems at some point permanently adapt
to thresholds (given that you trigger things often

enough), we get accustomed to what TEX provides
and so we stick to it.

9 Intelligence versus consciousness

Much of what we do is automated. You don’t need to
think of which leg to move and what foot to put down
when you walk. Reacting to danger also to a large
extent is automated. It doesn’t help much to start
thinking about how dangerous a lion can be when it’s
coming after you, you’d better move fast. Our limbic
system is responsible for such automated behaviour,
for instance driven by emotions. The more difficult
tasks and thoughts about them happen in the frontal
cortex (sort of).

astronomy informatics

future science earth science

For most users TEX is like the limbic system:
there is not much thinking involved, and the easy
solutions are the ones used. Just like hitting a nerve
triggers a chain of reactions, hitting a key eventually
produces a typeset document. Often this is best
because the job needs to get done and no one really
cares how it looks; just copy a preamble, key in the
text and assume that it works out well (enough).
It is tempting to compare TEX’s penalties, badness
and other parameters with levels of hormones and
neurotransmitters. Their function depends on where
they get used and the impact can be accumulated,
blocked or absent. It’s all magic, especially when
things interact.

Hans Hagen

TUGboat, Volume 38 (2017), No. 2 131

Existing TEX users, developers and user groups
of course prefer to think otherwise, that it is a posi-
tive choice by free will. That new users have looked
around and arrived at TEX for good reason: their
frontal cortex steering a deliberate choice. Well, it
might have played a role but the decision to use TEX
might in the end be due to survival skills: I want to
pass this exam and therefore I will use that weird
system called TEX.

All animals, us included, have some level of intel-
ligence but also have this hard to describe property
that we think makes us what we are. Intelligence
and consciousness are not the same (at least we know
a bit about the first but nearly nothing about the
second). We can argue about how well composed
some music is but why we like it is a different matter.

We can make a well thought out choice for using
TEX for certain tasks but can we say why we started
liking it (or not)? Why it gives us pleasure or maybe
grief? Has it become a drug that we got addicted to?
So, one can make an intelligent decision about using
TEX but getting a grip on why we like it can be hard.
Do we enjoy the first time struggle? Probably not.
Do we like the folks involved? Yes, Don Knuth is a
special and very nice person. Can we find help and
run into a friendly community? Yes, and a unique
one too, annoying at times, often stimulating and
on the average friendly for all the odd cases running
around.

Artificial intelligence is pretty ambitious, so
speaking of machine intelligence is probably better.
Is TEX an intelligent program? There is definitely
some intelligence built in and the designer of that
program is for sure very intelligent. The designer
is also a conscious entity: he likes what he did and
finds pleasure in using it. The program on the other
hand is just doing its job: it doesn’t care how it’s
done and how long it takes: a mindless entity. So
here is a question: do we really want a more intelli-
gent program doing the job for us, or do those who
attend conferences like BachoTEX enjoy TEXing so
much that they happily stay with what they have
now? Compared to rockets tumbling down and/
or exploding or Mars landers thrashing themselves
due to programming errors of interactions, TEX is
surprisingly stable and bug free.

10 Individual versus group evolution

After listening for hours to Sapolsky you start get-
ting accustomed to remarks about (unconscious) be-
haviour driven by genes, expression and environment,
aimed at “spreading many copies of your genes”. In
most cases that is an individual’s driving force. How-
ever, cooperation between individuals plays a role in
this. A possible view is that we have now reached a
state where survival is more dependent on a group
than on an individual. This makes sense when we
consider that developments (around us) can go way
faster than regular evolution (adaptation) can han-
dle. We take control over evolution, a mechanism
that needs time to adapt and time is something we
don’t give it anymore.

Why does TEX stay around? It started with an
individual but eventually it’s the groups that keeps
it going. A too-small group won’t work but too-large
groups won’t work either. It’s a known fact that
one can only handle some 150 social contacts: we
evolved in small bands that split when they became
too large. Larger groups demanded abstract beliefs
and systems to deal with the numbers: housing, food
production, protection. The TEX user groups also
provide some organization: they organize meetings,
somehow keep development going and provide in-
frastructure and distributions. They are organized
around languages. According to Diamond new lan-
guages are still discovered but many go extinct too.
So the potential for language related user groups is
not really growing.

Some of the problems that we face in this world
have become too large to be dealt with by individuals
and nations. In spite of what anti-globalists want we
cannot deal with our energy hunger, environmental
issues, lack of natural resources, upcoming technolo-
gies without global cooperation. We currently see a
regression in cooperation by nationalistic movements,
protectionism and the usual going back to presumed
better times, but that won’t work.

Local user groups are important but the number
of members is not growing. There is some coopera-
tion between groups but eventually we might need
to combine the groups into one which might succeed
unless one wants to come first. Of course we will
get the same sentiments and arguments as in regular
politics but on the other hand, we already have the
advantage of TEX systems being multi-lingual and
users sharing interest in the diversity of usage and
users. The biggest challenge is to pass on what we
have achieved. We’re just a momentary highlight and
let’s not try to embrace some “TEX first” madness.

Children of TEX

132 TUGboat, Volume 38 (2017), No. 2

art history

astronomy history

11 Sexes

Most species have two sexes but it is actually a
continuum controlled by hormones and genetic ex-
pression: we just have to accept it. Although the
situation has improved there are plenty of places
where some gender relationships are considered bad
even to the extent that one’s life can be in danger.
Actually having strong ideas about these issues is
typically human. But in the end one has to accept
the continuum.

In a similar way we just have to accept that TEX
usage, application of TEX engines, etc. is a continuum
and not a batch versus WYSIWYG battle any more.
It’s disturbing to read strong recommendations not
to use this or that. Of the many macro packages that
showed up only a few were able to survive. How do
users of outlines look at bitmaps, how do DVI lovers
look at PDF. But, as typesetting relates to esthetics,
strong opinions come with the game.

Sapolsky reports about a group of baboons
where due to the fact that they get the first choice of
food the alpha males of pack got poisoned, so that the
remaining suppressed males who treated the females
well became dominant. In fact they can then make
sure that no new alpha male from outside joins the
pack without behaving like they do. A sort of social
selection. In a similar fashion, until now the gather-
ings of TEXies managed to keep its social properties
and not been dominated by for instance commerce.

In the animal world often sexes relate to ap-
pearance. The word sexy made it to other domains
as well. Is TEX sexy? For some it is. We often
don’t see the real colors of birds. What looks gray
to us looks vivid to a bird which sees in a different
spectrum. The same is true for TEX. Some users
see a command line (shell) and think: this is great!
Others just see characters and keystrokes and are
more attracted to an interactive program. When
I see a graphic made by MetaPost, I always note
how exact it is. Others don’t care if their interactive
effort doesn’t connect the dots well. Some people
(also present here) think that we should make TEX
attractive but keep in mind that like and dislike are
not fixed human properties. Some mindsets might
as well be the result from our makeup, others can be
driven by culture.

12 Religion

One of Sapolsky’s lectures is about religion and it
comes in the sequence of mental variations including
depression and schizophrenia, because all these relate
to mental states, emotions, thresholds and such (all
things human). That makes it a tricky topic which
is why it has not been taped. As I was raised in
a moderate Protestant tradition I can imagine that
it’s an uncomfortable topic instead. But there are
actually a few years older videos around and they are
interesting to watch and not as threatening as some
might expect. Here I just stick to some common
characteristics.

If you separate the functions that religions play
into for instance explanation of the yet unknown, so-
cial interactions, control of power and regulation of
morals, then it’s clear why at TEX user group meet-
ings the religious aspect of TEX has been discussed
in talks. Those who see programs as infallible and
always right and don’t understand the inner working
can see it as an almighty entity. In the Netherlands
church-going diminishes but it looks like alternative
meetings are replacing it (and I’m not talking of
football matches). So what are our TEX meetings?
What do we believe in? The reason that I bring up
this aspect is that in the TEX community we can find
aspects of the more extremist aspects of religions: if
you don’t use the macro package that I use, you’re
wrong. If you don’t use the same operating system
as I do, you’re evil. You will be punished if you
use the wrong editor for TEX? Why don’t you use
this library (which, by the way, just replaced that
other one)? We create angels and daemons. Even
for quite convinced atheists (it’s not hard to run into
them on youtube) a religion only survives when it
has benefits, something that puzzles them. So when

Hans Hagen

TUGboat, Volume 38 (2017), No. 2 133

we’re religious about TEX and friends we have to
make sure that it’s at least beneficial. Also, maybe
we fall in Dennett’s category of “believers who want
to believe”: it helps us to do our job if we just be-
lieve that we have the perfect tool. Religion has
inspired visual and aural art and keeps doing that.
(Don Knuth’s current musical composition project is
a good example of this.)

Scientists can be religious, in flexible ways too,
which is demonstrated by Don Knuth. In fact, I’m
pretty sure TEX would not be in the position it is in
now if it weren’t for his knowledgeable, inspirational,
humorous, humble, and always positive presence.
And for sure he’s not at all religious about the open
source software that he sent viral.

I’m halfway through reading “The Good Book
of Human Nature” (An Evolutionary Reading of the
Bible) a book about the evolution of the bible and
monotheism which is quite interesting. It discusses
for instance how transitions from a hunter to a farmer
society demanded a change of rules and introduced
stories that made sense in that changing paradigm.
Staying in one place means that possessions became
more important and therefore inheritance. Often
when religion is discussed by behavioral biologists,
historians and anthropologists they stress this cul-
tural narrative aspect. Also mentioned is that such
societies were willing to support (in food and shelter)
the ones that didn’t normally fit it but added to the
spiritual character of religions. The social and wel-
coming aspect is definitely present in for instance Ba-
choTEX conferences although a bystander can wonder
what these folks are doing in the middle of the night
around a campfire, singing, drinking, frying sausages,
spitting fire, and discussing the meaning of life.

Those who wrap up the state of religious af-
fairs, do predictions and advocate the message, are
sometimes called evangelists. I remember a TEX con-
ference in the USA where the gospel of XML was
preached (by someone from outside the TEX com-
munity). We were all invited to believe it. I was
sitting in the back of the crowded (!) room and that
speaker was not at all interested in who spoke before
and after. Well, I do my share of XML processing
with ConTEXt, but believe me: much of the XML

that we see is not according to any gospel. It’s prob-
ably blessed the same way as those state officials get
blessed when they ask and pray for it in public.

It can get worse at TEX conferences. Some
present here at BachoTEX might remember the PDF

evangelists that we had show up at TEX conferences.
You see this qualification occasionally and I have
become quite allergic to qualifications like architect,
innovator, visionary, inspirator and evangelist, even

worse when they look young but qualify as senior. I
have no problem with religion at all but let’s stay
away from becoming one. And yes, typography also
falls into that trap, so we have to be doubly careful.

philosophy science history

science behavioral biology

13 Chaotic solutions

The lectures on “chaos and reductionism” and “emer-
gence and complexity” were the highlights in Sapol-
sky’s lectures. I’m not a good narrator so I will not
summarize them but it sort of boils down to the fact
that certain classes of problems cannot be split up in
smaller tasks that we understand well, after which
we can reassemble the solutions to deal with the
complex task. Emerging systems can however cook
up working solutions from random events. Examples
are colonies of ants and bees.

The TEX community is like a colony: we cook
up solutions, often by trial and error. We dream
of the perfect solutions but deep down know that
esthetics cannot be programmed in detail. This is
a good thing because it doesn’t render us obsolete.
At last year’s BachoTEX, my nephew Teun and I
challenged the anthill outside the canteen to typeset
the TEX logo with sticks but it didn’t persist. So
we don’t need to worry about competition from that
end. How do you program a hive mind anyway?

When chaos theory evolved in the second half
of the previous century not every scientist felt happy

Children of TEX

134 TUGboat, Volume 38 (2017), No. 2

about it. Instead of converging to more perfect pre-
dictions and control in some fields a persistent un-
certainty became reality.

After about a decade of using TEX and writing
macros to solve recurring situations I came to the
conclusion that striving for a perfect TEX (the engine)
that can do everything and anything makes no sense.
Don Knuth not only stopped adding code when he
could do what he needed for his books, he also stuck
to what to me seems reasonable endpoints. Every
hard-coded solution beyond that is just that: a hard-
coded solution that is not able to deal with the
exceptions that make up most of the more complex
documents. Of course we can theorize and discuss
at length the perfect never-reachable solutions but
sometimes it makes more sense to admit that an able
user of a desktop publishing system can do that job
in minutes, just by looking at the result and moving
around an image or piece of text a bit.

There are some hard-coded solutions and presets
in the programs but with LuaTEX and MPlib we try
to open those up. And that’s about it. Thinking
that for instance adding features like protrusion or
expansion (or whatever else) always lead to better
results is just a dream. Just as a butterfly flapping
its wings on one side of the world can have an effect
on the other side, so can adding a single syllable to
your source completely confuse an otherwise clever
column or page break algorithm. So, we settle for
not adding more to the engine, and provide just a
flexible framework.

A curious observation is that when Edward
Lorenz ran into chaotic models it was partially due to
a restart of a simulation midway, using printed float-
ing point numbers that then in the computer were
represented with a different accuracy than printed.
Aware of floating point numbers being represented
differently across architectures, Don Knuth made
sure that TEX was insensitive to this so that its out-
come was predictable, if you knew how it worked
internally. Maybe LuaTEX introduces a bit of chaos
because the Lua we use has only floats. In fact, a
few months ago we did uncover a bug in the backend
where the same phenomena gave a chaotic crash.

In chaos theory there is the concept of an attrac-
tor. When visualized this can be the area (seemingly
random) covered by a trajectory. Or it can be a
single point where for instance a pendulum comes
to rest. So what is our attractor? We have a few
actually. First there is the engine, the stable core of
primitives always present. You often see programs
grow more complex every update and for sure that
happened with ε-TEX, pdfTEX, X ETEX and LuaTEX.
However there is always the core that is supposed

to be stable. After some time the new kid arrives
at a stable state not much different from the parent.
The same is true for MetaPost. Fonts are somewhat
different because the technology changes but in the
end the shapes and their interactions become stable
as well. Yet another example is TEX Live: during a
year it might diverge from its route but eventually
it settles down and enters the area where we expect
it to end up. The TEX world is at times chaotic, but
stable in the long run.

So, how about the existence, the reason for it
still being around? One can speculate about its fu-
ture trajectory but one thing is sure: as long as we
break a text into paragraphs and pages TEX is hard
to beat. But what if we don’t need that any more?
What if the concept of a page is no longer relevant?
What if justified texts no longer matter (often de-
signers don’t care anyway)? What if students are
no longer challenged to come up with a nice looking
thesis? Do these collaborative tools with remote TEX
processing really bring new long term users or is TEX
then just one of the come-and-go tools?

14 Looking ahead

In an interview (“World of ideas”) Asimov explains
that science fiction evolved rapidly when people lived
long enough to see that there was a future (even for
their offspring) that is different from today. It is (at
least for me) mind boggling to think of an evolution of
hundreds of thousands of years to achieve something
like language. Waiting for the physical being to
arrive at a spot where you can make sounds, where
the brain is suitable for linguistic patterns, etc. A
few hundred years ago speed of any developments
(and science) stepped up.

TEX is getting near 40 years old. Now, for
software that is old! In that period we have seen
computers evolve: thousands of times faster process-
ing, even more increase in memory and storage. If
we read about spaceships that travel at a reasonable
fraction of the speed of light, and think that will not
happen soon, just think back to the terminals that
were sitting in computer labs when TEX was devel-
oped: 300 baud was normal. I actually spent quite
some time on optimizing time-critical components
of ConTEXt but on this timescale that is really a
waste of time. But even temporary bottlenecks can
be annoying (and costly) enough to trigger such an
effort. (Okay, I admit that it can be a challenge, a
kind of game, too.)

Neil Tyson, in the video “Storytelling of science”
says that when science made it possible to make
photos it also made possible a transition in painting
to impressionism. Other technology could make the

Hans Hagen

TUGboat, Volume 38 (2017), No. 2 135

exact snapshot so there was new room for inner
feelings and impressions. When the Internet showed
up we went through a similar transition, but TEX
actually dates from before the Internet. Did we also
have a shift in typesetting? To some extent yes,
browsers and real time rendering is different from
rendering pages on paper. In what space and time
are TEXies rooted?

We get older than previous generations. Quot-
ing Sapolsky “. . . we are now living well enough and
long enough to slowly fall apart.” The opposite is
happening with our tools, especially software: it’s
useful lifetime becomes shorter and changes faster
each year. Just look at the version numbers of oper-
ating systems. Don Knuth expected TEX to last for
a long time and compared to other software its core
concept and implementation is doing surprisingly
well. We use a tool that suits our lifespan! Let’s not
stress ourselves out too much with complex themes.
(It helps to read “Why zebras don’t get ulcers”.)

15 Memes

If you repeat a message often enough, even if it’s
something not true, it can become a meme that gets
itself transferred across generations. Conferences
like this is where they can evolve. We tell ourselves
and the audience how good TEX is and because we
spend so many hours, days, weeks, months using it,
it actually must be good, or otherwise we would not
come here and talk about it. We’re not so stupid
as to spend time on something not good, are we?
We’re always surprised when we run into a (potential)
customer who seems to know TEX. It rings a bell,
and it being around must mean something. Somehow
the TEX meme has anchored itself when someone
attended university. Even if experiences might have
been bad or usage was minimal. The meme that TEX
is the best in math typesetting is a strong survivor.

There’s a certain kind of person who tries to get
away with their own deeds and decisions by point-
ing to “fake news” and accusations of “mainstream
media” cheating on them. But to what extent are
our stories true about how easy TEX macro packages
are to use and how good their result? We have to
make sure we spread the right memes. And the user
groups are the guardians.

Maybe macro packages are like memes too. In
the beginning there was a bunch but only some sur-
vived. It’s about adaptation and evolution. Maybe
competition was too fierce in the beginning. Like
ecosystems, organisms and cellular processes in biol-
ogy we can see the TEX ecosystem, users and usage,
as a chaotic system. Solutions pop up, succeed, sur-
vive, lead to new ones. Some look similar and slightly

different input can give hugely different outcomes.
You cannot really look too far ahead and you cannot
deduce the past from the present. Whenever some-
thing kicks it off its stable course, like the arrival of
color, graphics, font technologies, PDF, XML, ebooks,
the TEX ecosystem has to adapt and find its stable
state again. The core technology has proven to be
quite fit for the kind of adaptation needed. But still,
do it wrong and you get amplified out of existence,
don’t do anything and the external factors also make
you extinct. There is no denial that (in the computer
domain) TEX is surprisingly stable and adaptive. It’s
also hard not to see how conservatism can lead to
extinction.

genetics physics

history science

16 Inspiration

I just took some ideas from different fields. I could
have mentioned quantum biology, which tries to ex-
plain some unexplainable phenomena in living crea-
tures. For instance how do birds navigate without
visible and measurable clues. How do people arrive
at TEX while we don’t really advertise? Or I could
mention epigenetics and explorations in junk DNA.
It’s not the bit of the genome that we thought that
matters, but also the expression of the genes driven
by other factors. Offspring not only gets genetic
material passed but it can get presets. How can the
TEX community pass on Knuth’s legacy? Do we need
to hide the message in subtle ways? Or how about
the quest for dark matter? Does it really exist or do

Children of TEX

136 TUGboat, Volume 38 (2017), No. 2

we want (need) it to exist? Does TEX really have
that many users, or do we cheat by adding the users
that are enforced during college but don’t like it at
all? There’s enough inspiration for topics at TEX
conferences, we just have to look around us.

17 Stability

I didn’t go into technical aspects of TEX yet. I
must admit that after decades of writing macros
I’ve reached a point where I can safely say that
there will never be perfect automated solutions for
really complex documents. When books about neural
networks show up I wondered if it could be applied
(but I couldn’t). When I ran into genetic algorithms
I tried to understand its possible impact (but I never
did). So I stuck to writing solutions for problems
using visualization: the trial and error way. Of
course, speaking of ConTEXt, I will adapt what is
needed, and others can do that as well. Is there a
new font technology? Fine, let’s support it as it’s no
big deal, just a boring programming task. Does a
user want a new mechanism? No problem, as solving
a reduced subset of problems can be fun. But to
think of TEX in a reductionist way, i.e. solving the
small puzzles, and to expect the whole to work in
tandem to solve a complex task is not trivial and
maybe even impossible. It’s a good thing actually,
as it keeps us on edge. Also, ConTEXt was designed
to help you with your own solutions: be creative.

I mentioned my nephew Bram. He has seen part
of this crowd a few times, just like his brother and
sister do now. He’s into artificial intelligence now.
In a few years I’ll ask him how he sees the current
state of TEX affairs. I might learn a few tricks in the
process.

In “The world without us” Weisman explores
how fast the world would be void of traces of hu-
mankind. A mere 10.000 years can be more than
enough. Looking back, that’s about the time hunters
became farmers. So here’s a challenge: say that
we want an ant culture that evolves to the level of
having archaeologists to know that we were here at
BachoTEX . . . what would we leave behind?

Sapolsky ends his series by stressing that we
should accept and embrace individual differences.
The person sitting next to you can have the same
makeup but be just a bit more sensitive to depres-
sion or be the few percent with genes controlling
schizophrenic behaviour. He stresses that knowing
how things work or where things go wrong doesn’t
mean that we should fix everything. So look at this
room full of TEXies: we don’t need to be all the same,
use all the same, we don’t need some dominance, we
just need to accept and especially we need to under-

stand that we can never fully understand (and solve)
everything forever.

Predictions, one of the themes, can be hard. It’s
not true that science has the answer to everything.
There will always be room for speculation and maybe
we will always need metaphysics too. I just started
to read “What we cannot know” by Sautoy. For sure
those present here can not predict how TEX will go
on and/or be remembered.

18 Children of TEX

I mentioned “Children of time”. The author lets
you see their spidery world through spider eyes and
physiology. They have different possibilities (eye-
sight, smell) than we do and also different mental
capabilities. They evolve rapidly and have to cope
conceptually with signals from a human surveillance
satellite up in the sky. Eventually they need to deal
with a bunch of (of course) quarrelling humans who
want their place on the planet. We humans have
some pre-occupation with spiders and other crea-
tures. In a competitive world it is sometimes better
to be suspicious (and avoid and flee) that to take a
risk of being eaten. A frequently used example is
that a rustle in a bush can be the wind or a lion, so
best is to run.

We are not that well adapted to our current en-
vironment. We evolved at a very slow pace so there
was no need to look ahead more than a year. And so
we still don’t look too far ahead (and choose politi-
cians accordingly). We can also not deal that well
with statistics (Dawkins’s “Climbing Mount Proba-
bility” is a good read) so we make false assumptions,
or just forget.

Does our typeset text really look that good on
the long run, or do we cheat with statistics? It’s
not too hard to find a bad example of something
not made by TEX and extrapolate that to the whole
body of typeset documents. Just like we can take a
nice example of something done by TEX and assume
that what we do ourselves is equally okay. I still
remember the tests we did with pdfTEX and hz.
When Hàn Thé̂ Thành and I discussed that with
Hermann Zapf he was not surprised at all that no
one saw a difference between the samples and instead
was focusing on aspects that TEXies are told to look
at, like two hyphens in a row.

A tool like TEX has a learning curve. If you don’t
like that just don’t use it. If you think that someone
doesn’t like that, don’t enforce this tool on that
someone. And don’t use (or lie with) statistics. Much
better arguments are that it’s a long-lived stable tool
with a large user base and support. That it’s not
a waste of time. Watching a designer like Hermann

Hans Hagen

TUGboat, Volume 38 (2017), No. 2 137

Zapf draw shapes is more fun than watching click and
point in heavily automated tools. It’s probably also
less fun to watch a TEXie converge towards a solution.

Spiders are resilient. Ants maybe even more.
Ants will survive a nuclear blast (mutations might
even bring them benefits), they can handle the im-
pact of a meteorite, a change in climate won’t harm
them much. Their biggest enemy is probably us,
when we try to wipe them out with poison. But, as
long as they keep a low profile they’re okay. TEX
doesn’t fit into the economic model as there is no
turnaround involved, no paid development, it is often
not seen at all, it’s just a hit in a search engine and
even then you might miss it (if only because no one
pays for it being shown at the top).

We can learn from that. Keeping a low pro-
file doesn’t trigger the competition to wipe you out.
Many (open source) software projects fade away:
some big company buys out the developer and stalls
the project or wraps what they bought in their own
stuff, other projects go professional and enterprise
and alienate the original users. Yet others abort
because the authors lose interest. Just like the ideals
of socialism don’t automatically mean that every
attempt to implement it is a success, so not all open
source and free software is good (natured) by princi-
ple either. The fact that communism failed doesn’t
mean that capitalism is better and a long term win-
ner. The same applies to programs, whether success-
ful or not.

Maybe we should be like the sheep. Dennett
uses these animals as a clever species. They found a
way to survive by letting themselves (unconsciously)
be domesticated. The shepherd guarantees food,
shelter and protection. He makes sure they don’t
get ill. Speaking biologically: they definitely made
sure that many copies of their genes survived. Cows
did the same and surprisingly many of them are
related due to the fact that they share the same
father (something now trying to be reverted). All
TEX spin-offs relate to the same parent, and those
that survived are those that were herded by user
groups. We see bits and pieces of TEX end up in
other applications. Hyphenation is one of them.
Maybe we should settle for that small victory in a
future hall of fame.

When I sit on my balcony and look at the fruit
trees in my garden, some simple math can be applied.
Say that one of the apple trees has 100 apples per
year and say that this tree survives for 25 years (it’s
one of those small manipulated trees). That makes
2.500 apples. Without human intervention only a
few of these apples make it into new trees, otherwise
the whole world would be dominated by apple trees.

Of course that tree now only survives because we
permit it to survive, and for that it has to be humble
(something that is very hard for modern Apples).
Anyway, the apple tree doesn’t look too unhappy.

A similar calculation can be done for birds that
nest in the trees and under my roof. Given that the
number of birds stays the same, most of energy spent
on raising offspring is wasted. Nevertheless they seem
to enjoy life. Maybe we should be content if we get
one enthusiastic new user when we demonstrate TEX
to thousands of potential users.

Maybe, coming back to the themes of the con-
ference, we should not come up with these kinds of
themes. We seem to be quite happy here. Talking
about the things that we like, meeting people. We
just have to make sure that we survive. Why not
stay low under the radar? That way nothing will
see us as a danger. Let’s be like the ants and spi-
ders, the invisible hive mind that carries our message,
whatever that is.

When Dennett discusses language he mentions
(coined) words that survive in language. He also
mentions that children pick up language no matter
what. Their minds are made for it. Other animals
don’t do that: they listen but don’t start talking
back. Maybe TEX is just made for certain minds.
Some like it and pick it up, while for others it’s just
noise. There’s nothing wrong with that. Predilection
can be a user property.

19 The unexpected

In a discussion with Dawkins the well-spoken astro-
physicist Neil deGrasse Tyson brings up the following.
We differ only a few percent in DNA from a chimp
but quite a lot in brain power, so how would it be if
an alien that differs a few percent (or more) passes
by earth. Just like we don’t talk to ants or chimps or
whatever expecting an intelligent answer, whatever
passes earth won’t bother wasting time on us. Our
rambling about the quality of typesetting probably
sounds alien to many people who just want to read
and who happily reflow a text on an ebook device,
not bothered by a lack of quality.

Children of TEX

138 TUGboat, Volume 38 (2017), No. 2

astrobiology quantum biology

astrophysics economics

We tend to take ourselves as reference. In “Rare
Earth”, Ward and Brownlee extrapolate the possi-
bility of life elsewhere in the universe. They are not
alone in thinking that while on one hand applying
statistics to these formulas of possible life on planets
there might also be a chance that we’re the only in-
telligent species ever evolved. In a follow up, “Life as
we do not know it” paleontologist and astrobiologist
Ward (one of my favourite authors) discusses the
possibility of life not based on carbon, which is not
natural for a carbon based species. Carl Sagan once
pointed out that an alien species looking down to
earth can easily conclude that cars are the dominant
species on earth and that the thingies crawling in
and out them are some kind of parasites. So, when
we look at the things that somehow end up on pa-
per (as words, sentences, ornaments, etc.), what is
dominant there? And is what we consider dominant
really that dominant in the long run? You can look
at a nice page as a whole and don’t see the details
of the content. Maybe beauty hides nonsense.

When TEXies look around they look to similar
technologies. Commands in shells and solutions done
by scripting and programming. This make sense in
the perspective of survival. However, if you want to
ponder alternatives, maybe not for usage but just
for fun, a completely different perspective might be
needed. You must be willing to accept that commu-
nicating with a user of a WYSIWYG program might
be impossible. If mutual puzzlement is a fact, then

they can either be too smart and you can be too
dumb or the reverse. Or both approaches can be
just too alien, based on different technologies and
assumptions. Just try to explain TEX to a kid 40
years younger or to an 80 year old grandparent for
that matter. Today you can be very clever in one
area and very stupid in another.

In another debate, Neil deGrasse Tyson asks
Dawkins the question why in science fiction movies
the aliens look so human and when they don’t, why
they look so strange, for instance like cumbersome
sluggish snails. The response to that is one of puzzle-
ment: the opponent has no reference of such movies.
In discussions old TEXies like to suggest that we
should convert young users. They often don’t under-
stand that kids live in a different universe.

How often does that happen to us? In a world
of many billions TEX has its place and can happily
coexist with other typesetting technologies. Users
of other technologies can be unaware of us and even
create wrong images. In fact, this also happens in the
community itself: (false) assumptions turned into
conclusions. Solutions that look alien, weird and
wrong to users of the same community. Maybe some-
thing that I present as hip and modern and high-TEX
and promising might be the opposite: backward, old-
fashioned and of no use to others. Or maybe it is, but
the audience is in a different mindset. Does it mat-
ter? Let’s just celebrate that diversity. (So maybe,
instead of discussing the conference theme, I should
have talked about how I abuse LuaTEX in controlling
lights in my home as part of some IoT experiments.)

20 What drives us

I’m no fan of economics and big money talk makes
me suspicious. I cannot imagine working in a large
company where money is the drive. It also means
that I have not much imagination in that area. We
get those calls at the office from far away countries
who are hired to convince us by phone of investments.
Unfortunately mentioning that you’re not at all in-
terested in investments or that multiplying money is
irrelevant to you does not silence the line. You have
to actively kill such calls. This is also why I proba-
bly don’t understand today’s publishing world where
money also dominates. Recently I ran into talks by
Mark Blyth about the crisis (what crisis?) and I wish
I could argue like he does when it comes to type-
setting and workflows. He discusses quite well that
most politicians have no clue what the crisis is about.

I think that the same applies to the management
of publishers: many have no clue what typesetting
is about. So they just throw lots of money into the
wrong activities, just like the central banks seem

Hans Hagen

TUGboat, Volume 38 (2017), No. 2 139

to do. It doesn’t matter if we TEXies demonstrate
cheap and efficient solutions.

Of course there are exceptions. We’re lucky to
have some customers that do understand the issues
at hand. Those are also the customers where authors
may use the tools themselves. Educating publishers,
and explaining that authors can do a lot, might be
a premise, predilection and prediction in one go!
Forget about those who don’t get it: they will lose
eventually, unfortunately not before they have reaped
and wasted the landscape.

Google, Facebook, Amazon, Microsoft and oth-
ers invest a lot in artificial intelligence (or, having all
that virtual cash, just buy other companies that do).
They already have such entities in place to analyze
whatever you do. It is predicted that at some point
they know more about you then you know yourself.
Reading Luke Dormehl’s “The Formula” is revealing.
So what will that do with our so-called (disputed by
some) free will? Can we choose our own tools? What
if a potential user is told that all his or her friends use
WhateverOffice so they’d better do that too? Will
subtle pressure lead them or even us users away from
TEX? We already see arguments among TEXies, like
“It doesn’t look updated in 3 years, is it still good?”
Why update something that is still valid? Will the
community be forced to update everything, sort of
fake updates. Who sets out the rules? Do I really
need to update (or re-run) manuals every five years?

Occasionally I visit the Festo website. This is a
(family owned) company that does research at the
level that used to be common in large companies
decades ago. If I had to choose a job, that would
be the place to go to. Just google for “festo bionic
learning network” and you understand why. We lack
this kind of research in the field we talk about today:
research not driven by commerce, short term profit,
long term control, but because it is fundamental fun.

Last year Alan Braslau and I spent some time
on BibTEX. Apart from dealing with all the weird as-
pects of the APA standard, dealing with the inconsis-
tently constructed author fields is a real pain. There
have been numerous talks about that aspect here at
BachoTEX by Jean-Michel Hufflen. We’re trying to
deal with a more than 30-year-old flawed architec-
ture. Just look back over a curve that backtracks
30 years of exponential development in software and
databases and you realize that it’s a real waste of
time and a lost battle. It’s fine to have a text based
database, and stable formats are great, but the lack
of structure is appalling and hard to explain to young
programmers. Compare that to the Festo projects
and you realize that there can be more challenging
projects. Of course, dealing with the old data can

be a challenge, a necessity and eventually even be
fun, but don’t even think that it can be presented as
something hip and modern. We should be willing to
admit flaws. No wonder that Jean-Michel decided to
switch to talking about music instead. Way more fun.

Our brains are massively parallel bio-machinery.
Groups of neurons cooperate and compete for atten-
tion. Coming up with solutions that match what
comes out of our minds demands a different approach.
Here we still think in traditional programming solu-
tions. Will new ideas about presenting information,
the follow up on books come from this community?
Are we the innovative Festo or are we an old dinosaur
that just follows the fashion?

21 User experience

Here is a nice one. Harari spends many pages ex-
plaining that research shows that when an unpleasant
experience has less unpleasantness at the end of the
period involved, the overall experience is valued ac-
cording to the last experience. Now, this is something
we can apply to working with TEX: often, the more
you reach the final state of typesetting the more
it feels as all hurdles are in the beginning: initial
coding, setting up a layout, figuring things out, etc.

It can only get worse if you have a few left-over
typesetting disasters but there adapting the text can
help out. Of course seeing it in a cheap bad print can
make the whole experience bad again. It happens.
There is a catch here: one can find lots of bad-looking
documents typeset by TEX. Maybe there frustration
(or indifference) prevails.

I sometimes get to see what kind of documents
people make with ConTEXt and it’s nice to see a
good looking thesis with diverse topics: science, phi-
losophy, music, etc. Here TEX is just instrumental,
as what it is used for is way more interesting (and
often also more complex) than the tool used to get it
on paper. We have conferences but they’re not about
rocket science or particle accelerators. Proceedings
of such conferences can still scream TEX, but it’s the
content that matters. Here somehow TEX still sells
itself, being silently present in rendering and presen-
tations. It’s like a rootkit: not really appreciated
and hard to get rid of. Does one discuss the future
of rootkits other than in the perspective of extinc-
tion? So, even as an invisible rootkit, hidden in the
workings of other programs, TEX’s future is not safe.
Sometimes, when you install a Linux system, you
automatically get this large TEX installation, either
because of dependencies or because it is seen as a
similar toolkit as for instance Open (or is it Libre)
Office. If you don’t need it, that user might as well
start seeing it as a (friendly) virus.

Children of TEX

140 TUGboat, Volume 38 (2017), No. 2

22 Conclusion

At some point those who introduced computers in
typesetting had no problem throwing printing presses
out of the window. So don’t pity yourself if at some
point in the near future you figure out that profes-
sional typesetting is no longer needed. Maybe once
we let machines rule the world (even more) we will
be left alone and can make beautiful documents (or
whatever) just for the joy, not bothering if we use
outdated tools. After all, we play modern music on
old instruments (and the older rock musicians get,
the more they seem to like acoustic).

There are now computer generated compositions
that experienced listeners cannot distinguish from
old school. We already had copies of paintings that
could only be determined forgeries by looking at
chemical properties. Both of these (artificial) arts
can be admired and bring joy. So, the same applies
to fully automated typeset novels (or runtime ren-
dered ebooks). How bad is that really? You don’t
dig channels with your hand. You don’t calculate
logarithmic tables manually any longer.

However, one of the benefits of the Internet is
watching and listening to great minds. Another is
seeing musicians perform, which is way more fun
that watching a computer (although googling for
“animusic” brings nice visuals). Recently I ran into
a wooden musical computer made by “Wintergatan”
which reminded me of the “Paige Compositor” that
we use in a LuaTEX cartoon. Watching something
like that nicely compensates for a day of rather bor-
ing programming. Watching how the marble machine
x (mmx) evolves is yet another nice distraction.

Now, the average age of the audience here is
pretty high even if we consider that we get older.
When I see solutions of ConTEXt users (or experts)
posted by (young) users on the mailing list or stack
exchange I often have to smile because my answer
would have been worse. A programmable system
invokes creative solutions. My criterion is always
that it has to look nice in code and has some elegance.
Many posted solutions fit. Do we really want more
automation? It’s more fun to admire the art of
solutions and I’m amazed how well users use the
possibilities (even ones that I already forgot).

One of my favourite artists on my weekly “check
youtube” list is Jacob Collier. Right from when I ran
into him I realized that a new era in music had begun.
Just google for his name and “music theory interview”
and you probably understand what I mean. When
Dennett comments on the next generation (say up to
25) he wonders how they will evolve as they grow up
in a completely different environment of connectivity.

I can see that when I watch family members. Al-
ready long ago Greg Bear wrote the novel “Darwin’s
Children”. It sets you thinking and when looking
around you even wonder if there is a truth in it.

There are folks here at BachoTEX who make
music. Now imagine that this is a conference about
music and that the theme includes the word “future”.
Then, imagine watching that video. You see some
young musicians, one of them probably one of the
musical masterminds of this century, others instru-
mental to his success, for instance by wrapping up
his work. While listening you realize that this next
generation knows perfectly well what previous gen-
erations did and achieved and how they influenced
the current. You see the future there. Just look at
how old musicians reflect on such videos. (There are
lots of examples of youth evolving into prominent
musicians around and I love watching them). There
is no need to discuss the future, in fact, we might
make a fool of ourselves doing so. Now back to this
conference. Do we really want to discuss the future?
What we think is the future? Our future? Why
not just hope that in the flow of getting words on a
medium we play our humble role and hope we’re not
forgotten but remembered as inspiration.

One more word about predicting the future.
When Arthur Clarke’s “2001: A Space Odyssey” was
turned into a movie in 1968, a lot of effort went into
making sure that the not so far ahead future would
look right. In 1996 scientists were asked to reflect on
these predictions in “Hal’s Legacy”. It turned out
that most predictions were plain wrong. For instance
computers got way smaller (and even smaller in the
next 20 years) while (self-aware) artificial intelligence
had not arrived either. So, let’s be careful in what
we predict (and wish for).

23 No more themes

We’re having fun here, that’s why we come to Bacho-
TEX (predilection). That should be our focus. Mak-
ing sure that TEX’s future is not so much in the
cutting edge but in providing fun to its users (predic-
tion). So we just have to make sure it stays around
(premise). That’s how it started out. Just look at
Don Knuth’s 3:16 poster: via TEX and METAFONT

he got in contact with designers and I wouldn’t be
surprised if that sub-project was among the most
satisfying parts. So, maybe instead of ambitious
themes the only theme that matters is: show what
you did and how you did it.

⋄ Hans Hagen

Pragma ADE

http://pragma-ade.com

Hans Hagen

TUGboat, Volume 38 (2017), No. 2 141

MFLua 0.8—Prologue

Luigi Scarso

Abstract

Reflections on the roles of TEX, LuaTEX, METAFONT

and MFLua, in the spirit of the theme of the TUG@
BachoTEX 2017 conference.

1 Introduction

The opening talk of the TUG@BachoTEX 2017 meet-
ing, given by Hans Hagen, was explicitly focused on
the theme of the conference:

Premises —the starting point, what we have, what
do we use, what has been achieved,

Predilections —how do we act now, how do we want
to act, what is important to us and what do we
miss,

Predictions —what is the future of TEX, what we’d
like to achieve and can we influence it.

Reading the draft of the proceedings, I started
to mentally note some thoughts, and later I decided
to try to organize them in a consistent way. The
original paper was supposed to be focused on the
technical details of MFLua 0.8, the new version of MF-
Lua shipped with TEX Live 2017, but I have decided
to postpone that to a future paper, preferring a more
narrative one here. I consider this a kind of prologue
that tries to explain the motivations behind LuaTEX
and MFLua—of course, from my personal point of
view.

2 Philosophy and history

Hans’ talk touched several themes, from artificial
intelligence to religion and chaos theory, viewed from
the point of view (quite popular nowadays) that
mixes “hard” science (as math, physics, information
theory, biology) with “soft” science (psychology, soci-
ology, anthropology). Curiously, philosophy is often
left out from these considerations— the thing doesn’t
disturb so much the philosophers because for them
“everything follows from philosophy”—but as a re-
sult the conclusions always look a bit too provisional.
Sometimes the mix returns a blurred image, some-
times a defined one that is already outdated by the
course of events, but seldom does a guiding principle
emerge from the past to the future; more often, the
becoming is sensed as movement that nullifies the
past and hides the future.

We can assume as indisputable at least two
“facts”: 1) the spread of global communication and
2) the mathematisation of the society. The first had
a big impulse about six hundred years ago, with
Gutenberg, but now the time required to exchange

a message is roughly several thousand times faster
than 100 years ago, and sender and recipient can be
almost anywhere—a novel situation for the human
race. The sensation that the quality of the global
communication is not high enough, the naturalness
of our act of communicating and the presumption
to know that the global communication is not so
global after all, hide from us the re-evolutionary step
forward we have made in the last 30 years: many
common people in the world can communicate easily
and cheaply. The distinction between synchronous
and asynchronous communication, as also between
human agent and artificial agent, is irrelevant: we ex-
change knowledge on a daily basis—and knowledge
is a subject of philosophy.

The other fact is rooted in the past, some five
hundred years ago, when Galileo asserted that Na-
ture has its own language, and that it is a mathe-
matical language. Being both a mathematician and
a philosopher, Galileo understood that math is a
common language also of mankind, and his observa-
tions of Jupiter showed the disruptive power of these
facts: suddenly we (as mankind, not only a “select
few”) can understand the universe—and perhaps
we can control it. From here the process of describ-
ing Nature with the language of mathematics— the
mathematisation of Nature—started (slowly) down
its own path.

It’s a successful process. Another important
milestone (from our perspective) was reached with
Hilbert in 1900, when his second problem began
reflections on formal systems and computations. Af-
ter only 100 years (i.e., four times faster than the
previous step from Galileo), supported by the funda-
mental results by several first-class mathematicians
and logicians such as Gödel, Turing and Church,
this mathematisation process manifested a twofold
consequence.

Firstly, the transition from the initial determin-
ism to the probabilistic description of Nature. It
could be considered as completion of Hume’s reflec-
tions on causality: if at the elementary level Heisen-
berg’s uncertainty principle rules, then the Universe
cannot be completely understood (and hence con-
trolled)—or, which is the same, the future is not
completely determined from the past: we still have
chances to learn from the past to make a better
future. Secondly, by means of information theory
and computer science, math has started to come
into human society (from western society and slowly
reaching the rest of the world) in a pervasive man-
ner: not only the mechanisation and automation of
the means of production (the hard part) but the
informatisation of the services (the soft part).

MFLua 0.8—Prologue

142 TUGboat, Volume 38 (2017), No. 2

This, again, is possible because math is a com-
mon language of mankind, and, as such, it does not
prevent the course of the global communication: the
two facts in some way reinforce each other. The
mathematisation of Nature affirms the indetermin-
ism of reality; the mathematisation of the society
tends to the determinism of its components and re-
lations. Both these tendencies reconcile themselves
into the ontology —which masked itself behind the
more fascinating term of semantic web.

3 TEX and LuaTEX

The other important assertion from Galileo about
math and Nature is the need for an alphabet of the
math language. It’s a recurring theme: classical
Greek and Latin first and English now have been the
“lingua franca” that translates our subjective, private,
internal and a-symbolic language to a common and
shareable one with fixed symbols. It’s interesting to
observe how our languages, under the pressure of
the global communication, are evolving by accepting
new visual symbols (emoticons), showing how fast a
language can adapt itself to new demands. The need
for a unified math alphabet was always secondary
to correctness of reasoning—even logic has been
somewhat timid in this area—but in the second half
of the 20th century the pressure of mathematisation
and global communication was so high that now, in
retrospect, the birth of TEX appears as obvious and
unavoidable.

TEX is the answer to the eternal question in
math: “Can we do it better?”, where the problem in
this case is the exchange of math knowledge. Without
formulas (i.e. algebra) and graphics (i.e. geometry)
pure prose is “only” philosophy. As soon as we move
to logic, the need for an alphabet emerges as the way
to avoid the ambiguity of pure prose, and to produce
compact and “portable” proofs—and from here it
spreads into math.

Different alphabets play against this need, slow-
ing down the process of mathematisation, but, on
the other hand, the same process needs new symbols
when creating new descriptions of concepts (as with
category theory) or reality. It was only by means of
Knuth that this problem found an optimal solution.
Being (for that time) a unique combination of math-
ematician, computer scientist (winner of a Turing
Award) and typographer, the solution was a macro
programming language (TEX) to write math as a
mathematician would like to, a procedural language
(METAFONT), clearly rooted in algebra and geom-
etry, to create new fonts (hence alphabets), while
a similar language (METAPOST) was developed a

bit later for graphics. Finally a “device independent”
(DVI) final format of the document, easily portable to
other formats. Another procedural language, WEB

(Pascal-based), was used to write the tex family of
programs, and this raised another problem: a pro-
gram is a mathematical proof and as such it must be
written. Literate programming was Knuth’s answer,
of course using TEX.

The distinctiveness of theorems is that they are
forever (like diamonds and extinctions): after 2500
years, the Pythagorean theorem still doesn’t show
any wear patterns. Is it the same for TEX? Of course
the line-breaking algorithm is still valid (and that a
page-breaking algorithm is still NP) and TEX has no
known bugs (only “features”) so, if the theorem is “Is
this language correct?” for which the tex program is
the proof, we can say again yes. But is the language
still suitable for the mathematisation of the society?
How does it behave with the exponential growth of
communication?

Quite surprisingly, for a 40-year-old program,
TEX stands up well. A set of macros, LATEX, is almost
a standard de facto; the concept of literate program-
ming, not as widespread as it should be, has made
it possible to extend the program, ultimately result-
ing, after some intermediate steps, in the pdfTEX
engine. A quick look at https://arxiv.org/help/
stats/2016_by_area/index shows about one hun-
dred thousand submissions for 2016, and the rate is
increasing: most of them are in (LA)TEX and arXiv,
as well as pdfLATEX, still accepts documents that
compile to DVI. Even without taking into account
other sources, it’s wrong to conclude that the role of
TEX was and is marginal in this process.

On the other side, METAFONT, after an initial
period, was never adopted in the mainstream as such
but always subsumed by other font formats: one of
the main purposes of pdfTEX was, besides natively
supporting the PDF format, using the Type 1 font
format by Adobe, even though it lacks full support
for the more widespread TrueType format developed
by Microsoft.

The next challenge, that of the OpenType for-
mat, was taken up by X ETEX and, later, by LuaTEX.
During the first decade of the 21st century the coex-
istence of three engines was easily resolved by spe-
cializing the LATEX format (and with LuaTEX, the
ConTEXt format), apparently showing that the new
engines, ultimately, are not as significant a change
compared to the original one. The GUST team, with
the active support of almost all TEX user groups, has
managed to produce Type 1, TrueType and Open-
Type Latin Modern versions of Computer Modern

Luigi Scarso

https://arxiv.org/help/stats/2016_by_area/index
https://arxiv.org/help/stats/2016_by_area/index

TUGboat, Volume 38 (2017), No. 2 143

using METAPOST and AFDKO (Adobe Font Devel-
opment Kit for OpenType), and later FontForge,
safeguarding the ability to create new alphabets.

As mentioned, apparently these were minor ad-
justments of Knuth’s solution but, under the surface,
they reveal a lack of being able to keep up with
the environment. Right from the start, the global
communication pushed TEX to interact with other
languages, going outside the realm of math symbols
and “standard” English (i.e. that used in scientific
publications). The hyphenation capability of TEX
was the answer but the Unicode standard and Open-
Type demand greater flexibility and, outside TEX,
WEB and METAFONT, are simply ignored. Ω and
NTS tried to create a new starting point, but perhaps
they used an abstract-to-concrete approach which
led to overwhelming complexity.

LuaTEX was something different. The pragmatic
approach of “implementation-over-specification”, the
incremental update cycle (always release a runnable
program, even if incomplete or with known bugs) and
the “extend (not replace!) the capabilities of TEX”
paradigms were the keys to avoiding death due to
complexity. First, the original source was completely
rewritten in CWEB, translating the original WEB

source, gaining the ability to feasibly use modern ex-
ternal libraries to deal with Unicode and OpenType.
Second, the introduction of Lua in addition to TEX
for typesetting documents. Initially Lua was a glue
language, a sort of “hub” to connect the TEX core
with the other libraries (the PDF backend, the Open-
Type loader, the Unicode module, the METAPOST

library) but gradually, starting as an extension of
\scantokens, this has changed. Lua interacts with
TEX as a companion language which lives, being pro-
cedural, in an space orthogonal to the traditional
macro language.

The potential of this orthogonal pair is still un-
folding: at the beginning, Lua was used as an input
adapter, then its dynamic loading feature was ex-
plored, with the SWIGLIB project, through work on
how to extend the features of LuaTEX at runtime.
Suddenly LuaTEX can become a graphics converter
program, or a tool for number theory, or a Post-
Script interpreter, or load at runtime a different text
shaper—and the latest release pushes the dynamic
loading feature forward, avoiding the compilation
of a separate wrapper module. Again, this was an
evolution (or “extension”) of the \write18 macro—
with the prominent difference that calling an external
program is many times slower than calling a func-
tion (of course it must be compared with the time
required to typeset the document). This opens a new

perspective: TEX not only to write about math but
to do math.

Lua interacts also with the TEX internals. With
the nodelib module the procedural nature of Lua
sheds new light on some complex TEX mechanisms
and, in interacting with the PDF backend or with
the font loader, opens new ways to do old things or
even make new ones possible. For example, ConTEXt
MKiV was the first format to produce PDF/A-2a—
thus revealing the need for a widespread and freely
available validator—and exporting a faithful copy
of the PDF in XML from a TEX source is now more
a CSS issue than anything else. The integration
of METAPOST into LuaTEX leads, on the path of
the virtual fonts, to artificial fonts: the font can
be created directly by TEX injecting a METAPOST

outline (as well as a bitmap, perhaps from META-
FONT). For the first time TEX gets back the control
of the alphabet, even if it’s outside the mainstream
of OpenType—but still inside PDF. And again, by
writing a new font loader in Lua, it is possible to
manage color fonts and even variable fonts, reaching,
probably after many years, a new breakthrough: TEX
goes beyond the known tools, being the only one (at
the present moment) able to produce a valid PDF

with this new font technology—which, it must be
said, looks very similar to METAFONT.

But there is also the other side of the coin: the
reference format is now PDF, not DVI.

4 MFLua

As seen in the previous section, METAFONT was
quickly considered outdated—again a consequence
of the global communication: the rising rate of docu-
ment exchange led to consuming more data on video
screens than on printed paper, and the antialiasing
technology of PDF viewers, given the already exist-
ing outline format, was not suitable for handling
bitmaps. But, as described in The METAFONTbook,
METAFONT internally uses outlines, and these are
clearly written to the log file with tracingall.

In the light of the above, the use of Lua to
manage these outlines looks like a natural step, but
there are fundamental differences. It should never
be forgotten that these are carefully designed math
programs and being in line with the time, talking
of math, is a double edged sword. The experience
of METAPOST, with the translation of the original
WEB source code to CWEB, shows that when the
math is tightly coupled with the implementation and
the semantics of the program is complex, bug-free
translations come at a price—on the other side, the
four different numeric modes of METAPOST (scaled,

MFLua 0.8—Prologue

144 TUGboat, Volume 38 (2017), No. 2

double, decimal and binary) was another area that
deserved to be explored. METAFONT doesn’t need
to be modernized, scaled numerics are not “showing
their age”, nor is the concept of the pen outdated: in
short, there is no need to translate the METAFONT

WEB source code.
The role of Lua then is simply to collect enough

data from the METAFONT state (in practice, outlines
and bitmaps), store them into tables, and let the
user manage these tables. And this can be done by
merely adding a few procedures in the original source
code, by means of a traditional change file, and, as
with LuaTEX, the two interpreters can talk between
themselves by mean of scantokens. In this sense,
MFLua started as METAFONT plus a logging facility.

There is another key difference between LuaTEX
and MFLua: in the latter, Lua is not really orthogo-
nal to METAFONT. This was clear after the first use
case, the natural one: take a METAFONT font and
produce an OpenType version. ConcreteOT, an Open-
Type proof-of-concept font developed from Concrete
Roman, shows that the design of the font must con-
sider the outlines as output right from the beginning:
Lua is not of great help to elaborate the outlines af-
ter the bitmap is drawn; they are too closely tailored
to the image. It’s only while METAFONT is doing
its job—producing clean outlines—that Lua can
add value: the sourcecode-regular presentation at the
meeting shows that the natural role of Lua is the
backend, i.e. translating the now abstract METAFONT

code into a font instance.
It’s now possible to have an SVG font, or ttx, and

nothing prevents us from having FontForge output,
or OTF directly: it’s only a matter of having a clear

specification. So, suddenly MFLua puts METAFONT

back in the game of font design: it took only a
few days to modify the ttx backend and make from
sourcecode-regular a proof-of-concept variable font.

5 Today’s challenges

It may seem that “just adding a scripting language”
is the solution, and yes it is a solution, or better
a counter-measure, but only to the pressure of the
global communication. Today challenges require fast
answers, which are better managed by loading code
at runtime, avoiding hardcoded solutions.

On the other side, the ongoing mathematisation
of society demands a stronger and stronger grounding
in math. What TEX and METAFONT show is that,
in the long run, this is more important than the
choice of the language of implementation, and, to a
lesser extent, of the language implemented. We need
to be careful talking about the future of TEX: SQL

and COBOL are older than TEX and there are no
signs that they are dying—and they do not occupy
niche sectors either. At the latest meeting, there
was a talk by the GUST team about LuaTEX as a
font editor ; we have seen, perhaps for the first time,
that TEX can even go a little further in implementing
solutions and that Lua can give a fresh impulse for
the development of new strategies for page breaking.
Let’s take all these as good omens: the future is still
to be written.

⋄ Luigi Scarso
luigi dot scarso (at) gmail dot com

Luigi Scarso

TUGboat, Volume 38 (2017), No. 2 145

Off topic (completely):
Many faces (and types) of beer

Micha l Gasewicz

Abstract

Welcome to the world of beer tasting! Are you ready
to learn about the diversity and richness of the oldest
alcoholic beverage on Earth? Stop associating beer
with the common, cheap, non-absorbing drink which
doesn’t require a second thought. Smell, taste and
have fun! This article summarizes beers included in
the BachoTEX 2017 beer tasting with short descrip-
tions.

Beer is associated with tasteless, golden beverages
whose only purpose of existence is to make watching
football games more pleasant. In theory this is true
because 90% of consumed beer is pale lager and it is
often difficult to find anything else in some regular
grocery stores. Gigantic breweries, more similar to
modern factories, produce enormous amounts of beer
that does not need to taste good, it only needs to
be cheap to produce. Beer is something more — this
is one of the oldest beverages in the world and it is
made in more than 100 different styles; to be honest,
the number of combinations of different kinds of malt,
hops from different corners of the world, yeast strains
and all kinds of additions is endless.

During the tasting I tried to introduce partici-
pants to the wide world of beer. I told a bit about
its history and a bit about the newest trends. I chose
Polish beers that represent traditional Polish styles
and some new-wave variants.

This year we tried the following. All photos are
courtesy of Harald König.

Toruńskie Piernikowe Jasne
(Gingerbread Pale Beer from Toruń)

Poland is known for its mead and
honey beer, because of the clear and
intense taste of honey. A nearby
town — Toruń — is famous for gin-
gerbread with honey being one very
important ingredient. In this beer
we have the taste of honey beer with
a lot of root spices used in ginger-
bread. Many visitors to Toruń can-
not leave the city without trying this
unique gingerbread beer.

Piwo z Grodziska — edycja
specjalna Piwobranie 2016
(Beer from Grodzisk — Special Edition
2016)

Grodziskie is the only style of beer
coming from Poland (other styles
are historical beers with unknown
recipes). This is a light, low-alcohol,
wheat beer, but very unusual, be-
cause it is made with the usage of
wheat malt smoked with oak wood.
Bottle conditioning caused inconsis-
tent overcarbonation — that is the
reason to call this beer Polish cham-
pagne. The brewery in Grodzisk was
closed in the 1990s, but craft brew-
eries started to brew this style and
the original brewery was reopened a few years ago.
This special edition of grodziskie beer is enhanced
by the addition of Earl Grey tea.

Fruit Wheat — Grand Champion 2016

This beer was brewed in Browar
Zamkowy Cieszyn as the winning
recipe in the biggest homebrew com-
petition in Poland. Judges chose this
beer brewed by Piotr Machowicz as
the best one from around 350 en-
tries. Usually wheat beer is refresh-
ing by itself and in this case huge
amounts of dry frozen strawberries
were added. Fruits enhanced the
aroma and taste in a very pleasant
way and gave a bit of acidity. It is a
great thirst quencher for hot summer
days.

ART 9 — Oatmeal Hoptart

Berliner Weisse is very light, low-
alcohol, sour wheat beer coming
from Berlin. The Stu Mostów brew-
ery from Wroc law in collaboration
with Bristol Brewing from Colorado
made beer which is at the same time
slightly sour and very smooth from
oat flakes and has a fruity aroma
from aromatic American and Aus-
tralian hops varieties. This combi-
nation was greatly appreciated by
beer enthusiasts, causing this brew
to skyrocket in the rankings.

Off topic (completely): Many faces (and types) of beer

146 TUGboat, Volume 38 (2017), No. 2

Vermont IPA

India Pale Ale from Vermont (or
New England IPA, or Northeast IPA)
is a new trend in new-wave brewing.
In this style, the focus is on getting
a fruity aroma from aromatic Amer-
ican hops and perfect drinkability.
On the other hand, bitterness does
not have to be as intense as in a typ-
ical IPA. The use of a special yeast
strain and no filtration cause such
beers to become very hazy and the
colour often resembles juice.

Miss Big Foot

Brewed by the Birbant brewery for
the Piwna Stopa (Beer Foot) pub
with the pub owners’ recipe. Smok-
ing is a very important process in
Polish cuisine. In this stronger ver-
sion of stout they used traditional
Polish smoked plums, muscovado
sugar and vanilla. The addition of
smoked plums gives a brand new
kind of smokiness, different than
smoked malt, and it also brings some
fruit notes. Even though outside
Poland smoked plums are not pop-
ular, beers with this ingredient gain
top rankings worldwide.

Imperator Ba ltycki

Polish breweries are specialists in
brewing Baltic porters and they are
very often awardees at international
contests. Baltic porters are ap-
preciated for the rich and complex
chocolate and caramel sweetness de-
veloping into dark fruit sweetness.
Baltic Emperor is brewed as an impe-
rial, even stronger, version of Baltic
porter which has even more richness,
thickness and deliciousness. No won-
der this beer is considered one of the
best Polish beers.

Beers presented during this tasting are only a few
representatives of all beer styles. I encourage you to
taste beer on your own. You only need to find an
unusual beer and think about its aroma and taste.
You can take some notes or compare your feelings
with some reviews. This will be a very good first
step into the wide world of beer.

⋄ Micha l Gasewicz

Toruń

Poland

genn (at) umk dot pl

Micha l Gasewicz

TUGboat, Volume 38 (2017), No. 2 147

History of accidentals in music∗

Jean-Michel HUFFLEN

Abstract

Signs used throughout music scores in order to change
a note’s pitch slightly are well-known: the sharp ()
to raise it, the flat () to lower it, and the natural
() to restore it to its normal pitch. First we give the
etymology of these names, then we show that the con-
ventions used in the past are very different from those
used nowadays, especially if we consider double acci-
dentals. In addition, accidentals present interesting
typographic problems because there are several con-
ventions with precise meanings: accidentals left to
the note (with or without parentheses) or upwards.

Accidental signs used in classical or popular mu-
sic are included in Unicode, as have some signs used
for micro-intervals, such as quarter tones. From our
point of view, the selection made by Unicode is debat-
able. In order to clarify the situation, we show the ac-
cidentals mainly used for micro-intervals in musique
orientale and contemporary music. This article re-
quires only basic knowledge in reading music scores.
Keywords History, accidentals’ origin, putting acci-
dentals, music typography, micro-intervals, Unicode.

Streszczenie

Znaki używane w zapisie nutowym w celu niewiel-
kiej zmiany wysokości dźwi

֒
eku s

֒
a powszechnie znane:

krzyżyk () do podniesienia, bemol () do obniżenia i
kasownik () do anulowania innych znaków. Najpierw
zostanie omówiona etymologia tych nazw, nast

֒
epnie

zaś to, że konwencje używane w przeszłości bardzo
si

֒
e różniły od obecnych, zwłaszcza jeśli weźmie si

֒
e

pod uwag
֒
e podwójne znaki chromatyczne. Na doda-

tek znaki chromatyczne sprawiaj
֒
a ciekawe problemy

typograficzne, gdyż istnieje kilka konwencji przypisy-
wania im precyzyjnego znaczenia: znaki chromatycz-
ne na lewo od nuty (w nawiasach b

֒
adź bez nich) albo

podniesione.
Do unikodu wł

֒
aczono znaki chromatyczne uży-

wane w muzyce klasycznej i popularnej, jak też nie-
które znaki używane do oznaczania mikrointerwałów,
takich jak ćwiartki dźwi

֒
eków. Z naszego punktu wi-

dzenia można dyskutować z tym doborem znaków.
W celu wyjaśnienia sytuacji zostan

֒
a pokazane znaki

chromatyczne używane do oznaczania mikrointerwa-
łów w muzyce orientalnej i współczesnej. Do zrozu-
mienia tej prezentacji wystarczy jedynie podstawowa
znajomość zapisu nutowego.
Słowa kluczowe Historia, pochodzenie znaków chro-
matycznych, umieszczanie znaków chromatycznych,
typografia muzyczna, mikrointerwały, Unicode.

∗ Polish title: Historia znaków chromatycznych w muzyce.

Introduction

Within music scores, an accidental is a sign usually
put before a note figure, signalling a slight change of
its pitch. Let us consider the keys of a piano, white
keys are denoted by letters from ‘A’ to ‘G’,1 whereas
black keys are reached by means of accidentals. These
signs are well-known: the sharp () raises a note’s
pitch by a semitone,2 the flat () lowers it by a semi-
tone, and the natural () restores it to its normal
pitch. In LATEX, these signs are respectively produced
by the commands \sharp, \flat, and \natural in
math mode.

From a typographic point of view, writing ac-
cidentals in music scores obeys rules that are not
always precisely known. Besides, these rules have
evolved over time. In addition, there are many other
signs related to accidentals, some of which are in-
cluded in Unicode [32]. We personally think that
the selection made by Unicode is quite debatable.
So the purpose of this article is to give an overview
of the conventions related to accidentals. We dis-
cuss the etymology of these signs in the first section,
then the rules are given in Section 2. Section 3 is
devoted to some remarks about characters, software
and encodings’ organisation. In Section 4, we study
accidentals for micro-intervals — smaller than semi-
tones — used in musique orientale3 and also in con-
temporary music. Reading this article requires only
basic knowledge of music scores. Readers interested
in precise definitions of music terminology can con-
sult [16]. More information about historical points
can be found in [1], and also in [22], but in French.
To help readers situate musicians cited throughout
the article, we give their dates, either in the text or
in the bibliography.

1 Origins

In the early Middle Ages, three modes were known.
These modes cannot be viewed as ‘modern’ scales

1 In the English-speaking world. Some other countries —
including France, Spain, Italy and Russia — use names coined
by Guido d’Arezzo (991 or 992–after 1033) after the verses of
a Latin hymn in honour of John the Baptist: ut ré, mi, fa, sol,
la, for C, D, E, F, G, A. Later, the si name was added for B
in the xvith century, and ut was renamed to do in the xviith
century; the origins of these last two names are controversial.

2 The interval between two notes played by adjacent notes
on a piano, regardless of colour.

3 This French term encompasses Andalusian classical music,
beginning in the Emirate of Cordoba in the ixth century, and
including music of countries of North Africa, Near and Middle
East. In English, the word ‘oriental’ is most commonly used
to refer to the Far East, whereas ‘orientale’ in French is often
applied to the Near or Middle East. That is why we use the
French expression.

History of accidentals in music

148 TUGboat, Volume 38 (2017), No. 2

-rests a-per-cëut'un lieu so -li -

6*

(= I{)

Figure 1: Nicolas Bernier (1664–1734), Diane,
excerpt [6, p. 3].

including 7 degrees, since they were based on hexa-
chords, that is, 6-note groups. They were:

• the natural hexachord4 (hexachordum naturale):
C, D, E, F, G, A;

• the soft hexachord (hexachordum molle):
F, G, A, B , C, D;

• the hard hexachord (hexachordum durum):
G, A, B, C, D, E.

Thus, only the B note could be flattened.5 The ‘ ’
sign derives from a round b (b rotundum) — origi-
nally written ‘ ’ — in connection with the soft hex-
achord; the French name bémol comes from medieval
French bé mol6 for soft b. The signs ‘’ and ‘’ de-
rive from a square b (b quadratum) — originally writ-
ten ‘’ — in connection with the hard hexachord; the
French name bécarre () comes from medieval French
bé quarré.7 The natural and sharp signs are both de-
rived from this ‘square b’ using two different ways to
extend sides of this square. The French name dièse
(for ‘sharp’) comes from the Latin word diesis: ini-
tially, this word denoted a quarter tone interval in
ancient music; at the Roman Empire’s end, it was
used for a semitone interval. To conclude the etymol-
ogy questions, it seems that the English name ‘sharp’
(resp. ‘flat’) comes from ‘so high (resp. low) as to be
out of tune’.

Let us go back to the natural and sharp signs.
The difference between them was vague for a long
period of time. Often, ancient scores used sharps in
order to raise a note lowered previously. For such a
sharp sign, as shown in Fig. 1, a natural sign would

4 As an example, the Hymn to John the Baptist (cf. supra)
is written using this mode. Guido d’Arezzo was unable to use
this piece to give a name to the B note, since it does not appear
within this natural hexachord.

5 In addition, let us mention that at this time, scribes were
hesitating over whether ‘B’ denotes B or B . This ambiguity is
removed by the German notation system, still in use today: ‘B’
stands for B , ‘H’ for B. This system is also in use in Central
and Eastern Europe, and in Scandinavia. Also, hexachords’
names have survived in the German words for the modes of
‘classical’ tonal scales: moll for minor, Dur for Major.

6 In modern French: bé mou.
7 In modern French: bé carré.

Figure 2: G minor scale.

be substituted in modern notation. In fact, these two
signs were clearly separated only at the beginning
of the classical era. During the pre-classical period,
modern scales — C Major, F Major, G Major, etc. —
were progressively emerging, from the xvth to the
xviith century. The first ‘actual’ sharp in use was F,
then the second flat — E  — came, and so on: C, A ,
G, D , D, G , A, C , E, F , B. The notion of
enharmonic intervals appeared, e.g., A  and G are
the same note, although they have different names.8

Double accidentals, such as double sharp () and
double flat (), were introduced in the xviith cen-
tury.9 They raise or lower a note’s pitch by two
semitones. Initially, the goal was to express sensible
notes10 for some minor scales, e.g., F is the sensible
note of the G minor scale, as shown in Fig. 2. The 
sign was introduced before the  sign,11 whereas the
 sign was coined before the  sign.

2 Rules

Most of the rules we give hereafter are well-known for
musicians. We examine them from a typographical
point of view.

2.1 Restoring accidentals

Often, accidentals are implicit in scores from the Mid-
dle Ages. In other words, an accidental may be omit-
ted whenever it was obvious for the musicians of the
time, who were used to restoring them.12 When mod-
ern music gravers restore such implicit accidentals,

8 In fact, that is true only for instruments based on twelve-
tone equal temperament, e.g., a piano in today’s standard tun-
ing. Dealing with other temperaments is outside this article’s
scope. In addition, let us remark that such enharmonic notes
are not limited to those which are played using black keys of a
piano: as a counter-example, E and F are enharmonic, too.

9 [9, §45] gives another — old — notation for the double
sharp:

.

.

.

.

, surrounded by four dots. We personally have never
seen this sign in any score, even very old ones.

10 A sensible note is located just below a scale’s basic note
and is attracted by it, so a sensible note must be at a distance
of a semitone. Only modes — major and minor — with sensible
notes are used in classical harmony.

11 The  sign does not belong to any ‘classical’ scale; it has
been introduced ‘symmetrically’ to the  sign.

12 This may seem surprising, but analogously, many jazz
scores today let some details remain implicit: for example,
rhythms in jazz scores are often simplified forms in comparison
to what jazz musicians actually play. Chords in jazz scores are
often simplified, too.

Jean-Michel HUFFLEN

TUGboat, Volume 38 (2017), No. 2 149

ual)bua

Figure 3: P. Attaingnant [2, no. 19]: Basse dance,
start.

Figure 4: G. Gershwin [12, p. 5]: 1st movement,
7 bars after §2.

they have to put them above or below the correspond-
ing note head — not at the left — as shown in Fig. 3.
Such an accidental only applies to the corresponding
note, not to the following ones.13

2.2 More double accidentals

As mentioned in §1, a sharp sign sometimes had a rel-
ative effect in ancient scores, since it could be used to
raise a note already lowered. This view — which ap-
pears strange nowadays — has survived through the
ages in the use of the double signs  ,  , and   [7,
§82]. For example, if a double flattened note is fol-
lowed by the same note with a ‘single’ flat sign, it

13 Thus the repetition of the  sign for two adjacent notes
within the bass voice of Fig. 3. Let us also notice a kind of
polytonality, usual in the music of this time. Contrary to what
many people think, polytonality and polymodality were not
introduced in the xxth century.

Figure 5: J.-M. Hufflen [15], bar 132.

was incorrect to insert the  sign. Using   means
that the first  sign cancels one of the two semitones
of , so the note can now be flattened. As shown
in Fig. 4, the same sign is sometimes used after a
sharpened note, before flattening it. Symmetrically,
the use of   is analogous to that of  . The   sign
means that a note is restored at its normal pitch af-
ter the use of  or . Nowadays this complicated
rule — it introduces ‘compound’ signs that are actu-
ally useless — becomes more and more obsolete, and
a ‘simple’ accidental sign always denotes its original
effect, regardless of accidentals used before.

2.3 Accidentals and bars

In most music scores [7, §79], an accidental sign takes
effect for the following note and any repetition of that
note at the same octave and in the same bar, unless
cancelled by another accidental. If a note is tied into
the following bar, the accidental takes effect just un-
til this tie’s end. If a system of multiple staves is used,
an accidental used on one staff never affects others.
This convention gradually emerged over the xviiith
century. Before, accidentals only applied to immedi-
ately repeated notes or short groups for which it was
obvious that the accidental should go on.14 In some
scores from the xixth century, accidentals apply to
the same notes in the same bar, regardless of octaves.
The standard rules can be observed in the example
given in Fig. 5. The  sign used with the circled A
note at the staff for the piano’s right hand avoids any
ambiguity but is formally useless: first, this note is
not at the same octave as the A  at the immediate
left, and second the A  at the same octave and inside
the same bar does not belong to the same staff.

Some contemporary composers use accidentals
regardless of bars, that is, accidentals are not con-
tinued until a bar’s end. The last scores of Hans-
Werner Henze (1926–2012) are examples where ac-
cidentals apply only to one note or immediately re-

14 Let us recall that at this time, some accidentals were im-
plicit, supplied by interpreters.

History of accidentals in music

150 TUGboat, Volume 38 (2017), No. 2

Poco

ffit-r-t-
îr

Poco plù mæso {t- tm-l ltr Il,
r"1o' F

I

t,:,ToI.''æ=
qfr

(2!

2vniI
roll

(t)

De rtt.
4--fr

1,:,1oI",ffi

Figure 6: W. Lutosławski [21, p. 30], before
Section 72.

peated notes. As other — non-limitative — examples,
accidentals apply to only one note in the last scores
of Witold Lutosławski and Henryk Mikołaj Górecki
(1933–2010). W. Lutosławski uses repeated notes
without heads when an accidental applies to some
adjacent notes — as shown in Fig. 6 — whereas H. M.
Górecki explicitly repeats the same accidental before
each repeated note.15

When in doubt, music composers and publishers
sometimes put extra accidentals down, even if they
are ‘formally’ useless. Such accidentals are called
courtesy or cautionary. For example, if a note has
an accidental within a bar, such a courtesy acciden-
tal within the next bar allows an interpreter not to
be confused about this note’s pitch. In particular,
courtesy accidentals should be used for notes with
lengthy ties at a new system’s beginning. Courtesy
accidentals should be surrounded by parentheses, but
in practice, this convention is often not followed and
courtesy accidentals are written as ‘actual’ acciden-
tals.16

2.4 Key signatures

A key signature is a set of sharps or flats associated
with a scale. The placement of accidentals on key
signatures obeys precise rules about the succession
of sharps or flats and their placement, depending on
the clef used,17 but now music software programs gen-
erating scores do that correctly. So we just give some
examples in Fig. 7:

• (a), (c), (f) use the well-known treble clef,
• (b) uses the tenor clef, devoted to the high

range of instruments such as the bassoon,
cello, or trombone,

15 Let us remark that  signs become useless if such con-
ventions — that accidentals apply to one note only — are used
with empty key signature scores (cf. §2.4).

16
. . . as we did for the circled note in Fig. 5. The score [15]

has been typeset with MuseScore [24].
17 Different key signatures may be used in musique orientale

and popular music, but this is outside this article’s scope.

Figure 7: Key signatures.

Figure 8: J.-M. Hufflen [15], bars 143–144.

• (d) uses the mezzo-soprano clef
and (e) the soprano clef.18

In (e) and (f), we can remark that if a key signature
changes throughout a piece, the accidentals absent in
the new key signature should be cancelled by  signs,
as shown in Fig. 7-(e,f). We can observe that this
rule is less used nowadays, so  signs in a key signa-
ture change are only used when the new signature is
empty, as shown in Fig. 8.

Let us mention that in pre-classical music, some
key signatures seem to be incorrect, especially for
minor scales. For example, a piece that appears to
be in G minor uses the D minor key signature, as
shown in Fig. 3. More generally, minor scales some-
times use a key signature with one flat fewer, or one

18 Nowadays, these two keys are no longer in frequent use.
The soprano key is still used scholastically (in harmony
exercises), while the mezzo-soprano key is only used for
transposition purposes. To give an idea about relationships
among these keys, let us mention that examples (a–e) begin
with notes at the same pitch.

Jean-Michel HUFFLEN

TUGboat, Volume 38 (2017), No. 2 151

Figure 9: Modern and baroque key signatures for
melodic minor scales.

more sharp, or an empty signature for D minor. More
examples — including ‘incomplete’ key signatures for
major scales — can be found in [8]. A complete ex-
planation is given in [11]. We can demystify this mo-
dus operandi about minor scales:19 it allows ascend-
ing melodic minor scales20 to be specified with as few
accidentals as possible, with respect to the key sig-
nature’s signs, as shown in Fig. 9 for the ascending
melodic scale of G minor.

3 Intermezzi

The previous sections are based on ‘purely’ musical
material; now, we give some details related to com-
puter science and music software.

3.1 ‘’ vs ‘#’

Often the characters ‘’ (U+266F) and ‘#’ (U+0023)

are confused. They are graphically different since
the latter is a combination of level horizontal strokes
and right-tilting vertical ones, whereas the former is
based on vertical strokes and slanted horizontal ones.
The ‘#’ character is the number sign and is present on
standard keyboards, so it often replaces ‘’ in prac-
tice. A good example is the name of the C# pro-
gramming language [23], written with a number sign
but pronounced ‘C sharp’.

19 The explanation of this modus operandi about major
scales would need the introduction of ancient modes, out of
this article’s scope.

20 In this scale, the third is minor, the sixth and seventh are
major [7, §151.II]. As pictured in Fig. 9, the sixth and seventh
are minor within a descending melodic minor scale. In classical
harmony, such melodic minor scales should be used only for a
melody, the successive chords harmonising a melody are based
on the harmonic minor scale, as defined in Fig. 2 for the G
minor scale.

\version "2.18.0"

\score {

\new Staff {

\clef "treble" \time 3/4

\accidentalStyle Score.default

r8 bes'8 fes'4. ges'8 | ees'2 f'4 |

r8 a'8[d'8. cis'16] g'4 |

}

\layout {}

}

Figure 10: Example using LilyPond.

3.2 Accidentals in Unicode

In Unicode [32], the ‘basic’ accidentals — , ,  — are
encoded in the Miscellaneous Symbol Block (U+266D,
U+266E, U+266F). The other accidentals are encoded
in the Musical Symbol Block, from the code-point
U+1D12A to U+1D133. The first two code-points of
this range are for  and .

3.3 Coding more musical signs

Presently, Unicode has retained only a few musical
signs from the multitude of signs used through the
ages. Let us mention the SMuFL21 project. This
is a specification providing a standard way of map-
ping musical symbols required by conventional music
notation into the Private Use Area in Unicode’s Ba-
sic Multilingual Plane (U+E000–U+F8FF). In particu-
lar, all the symbols introduced in the following have
been mapped. In addition, several music software
packages — e.g., MuseScore [24] — use this encoding.

3.4 Accidentals and LilyPond

The GNU22 LilyPond music engraver [29] provides a
character-based language to specify the rhythm and
pitch of a note — a short introduction and example
are given in [14]. When LilyPond compiles a piece’s
specification into a music score, it uses accidental
styles to decide whether or how accidentals actually
appear. These accidental styles — w.r.t. LilyPond’s
terminology, they may be viewed as strategies — in-
clude [20]:

default accidentals are inserted or are implicit,
according to common practice,

modern some courtesy accidentals, without
parentheses, are added to avoid ambiguity,

neo-modern accidentals are repeated if the same
note appears again in the same bar, unless this
note is immediately repeated,

21 Standard Music Font Layout. See http://smufl.org

for more technical details.
22 Recursive acronym: Gnu’s Not Unix.

History of accidentals in music

152 TUGboat, Volume 38 (2017), No. 2

Figure 11: Examples of accidental styles for Fig. 10.

dodecaphonic every note gets an accidental sign,
including natural signs,

forget accidentals are not remembered at all.

The styles:

modern-cautionary, neo-modern-cautionary,
teaching

are respectively similar to:

modern, neo-modern, dodecaphonic,

except extra accidentals are surrounded by parenthe-
ses, as cautionary accidentals. As a very short ex-
ample, Fig. 10 gives a LilyPond specification of the
Tema’s beginning of Arnold Schoenberg’s Variations
for Orchestra [28, p. 7, bars 34–36]. For each note,
its accidental is given as ‘...is’ for , ‘...es’ for ,
and no suffix for . Results according to some of Lily-
Pond’s accidental styles are given in Fig. 11. Other
customisation features are available: for example, al-
lowing the use of double accidentals such as  ,  ,
and  ; inserting or removing the accidental of a tied
note at the start of a new system, and more.

In addition, let us mention that the lilyglyphs

package23 allows music glyphs pictured by LilyPond
to be handled by means of TEX-like commands, pro-
vided that X ELATEX [18] or LuaLATEX [13] are used.24

We have personally added some new commands, but
all the glyphs for ‘basic’ accidentals used throughout
this article come from this package.

4 Accidentals for micro-intervals

4.1 What are micro-intervals?

Micro-intervals are smaller than semitones. In the
23 Included in the TEX Live distribution.
24 All these commands — including redefinitions of the com-

mands \flat, \natural, and \sharp — are to be used in text
mode.

i:hn [.{a u--f Ç Faî'

- &*a zntscknb'ae

Figure 12: A. Berg [4, p. 53]: bars 274–277.

early xxth century, composers started to use such in-
tervals, in particular, quarter tones.25 At this time,
these intervals were specified by means of ad hoc nota-
tions: for example, Alban Berg in his Chamber Con-
certo (premiered in 1927, cf. Fig. 12). A later example
is given by the last movement of Béla Bartók’s Sonata
for Solo Violin26 [3], written in 1944. Some com-
posers built totally new organisations of sounds and
intervals. Two historical and representative exam-
ples are Alois Hába (1893–1973) and Ivan Wyschne-
gradsky (cf. [36]); both went in this direction after the
First World War. In addition, quarter tones are used
in some popular music, especially musique orientale,
but this music is not really based on quarter tones, in
the sense that classical music may be viewed as based
on semitones (for example, in classical scales, the in-
terval between B and C). In fact, musique orientale
does not deal with quarter tones between adjacent
notes: in addition to tones and semitones, it uses
great tones (5/4 tone), and small tones (3/4 tone).
Expressing this organisation by means of our occiden-
tal notation causes quarter tone notations to appear,
but this interval does not exist in musique orientale.

Other divisions of tones have existed, too. For
example, Maurice Ohana (1913–1992) utilised a divi-
sion of tones by three,27 and I. Wyschnegradsky di-
vided a tone into 12 parts, and more (!) [34]. As men-
tioned in §3.2, some accidentals for micro-intervals

25 [6] explains that the evolution of music, throughout the
ages, has developed chords incorporating more and more
sounds, according to the successive harmonic notes within har-
monic series (first the octave, then the fifth, before the third,
and so on). In particular, the introduction of micro-intervals
at this time can be explained by this theory [6, p. 77–79].

26 This sonata was composed for violinist Yehudi Menuhin
(1916–1999). In a letter dated April 21, 1944, B. Bartók wrote
that ‘quarter tone steps may be eliminated and replaced by
alternative versions.’ He would have liked ‘to hear both played
versions, and then decide if it is worth while to use these 1/4
tones.’ Unfortunately, he never heard this work before his
death, and the alternatives, only retained within the Menuhin
edition, are often played instead.

27 According to his notation, raising a note by a third tone
(resp. 2/3 tone) is signalled by ‘/’ (resp. ‘//’) to the left of the
note head. Third tones were also used in the last movement of
B. Bartók’s Sonata for Solo Violin [3, bars 58–62], although
an alternative version, retained by Y. Menuhin, avoids them
(cf. footnote 26).

Jean-Michel HUFFLEN

TUGboat, Volume 38 (2017), No. 2 153

rJ-

-J- -J--J-

-J--J-
rJ-

Figure 13: A. Schnittke [27, p. 2]: 1st movement,
Section 3.

belong to the Unicode encoding, but they do not spec-
ify the more frequent and more precise intervals.

4.2 Exact micro-intervals

As a semitone is the exact division of tones by two,
a quarter tone is the exact division of semitones by
two, that is, this division yields something precise.28

If quarter tones are used throughout a score, some
explanations make the signs’ meaning precise. Even
if there is no ‘official’ standardisation, the more fre-
quently used signs are  for a half sharp, raising a
note by a quarter tone,29 and  for a sharp and half,
raising a note by three quarter tones. In particular,
these notations are used by Iannis Xenakis [37]. Al-
ternative notations exist:  and .

A half flat, lowering a note by a quarter tone is
often denoted by , with a flat and half, lowering a
note by three quarter tones, by , alternative nota-
tions being  and .

As examples, we can see the notations used by
Alfred Schnittke in Figs. 13 and 14. Those used by
Krzysztof Penderecki, Ivan Wyschnegradsky, and Wi-
told Lutosławski are shown in Figs. 15–17. In these
scores, the glyphs for half sharps and sharps and a flat
are quite similar. Concerning half flats and flats and
a half, A. Schnittke and W. Lutosławski use ‘open’
glyphs for half flats. K. Penderecki uses black-filled
flats for half flats and  for flats and a half. More de-
tails about these notations and variants can be found
in [17]. Let us observe that none of them have been

28 We assume an equal temperament (cf. footnote 8, on
p. 148). In any case, unequal temperaments complicate the
definition of quarter tones, but still lead to precise results.

29 As mentioned in §3.3, all the signs introduced in the
present section have been included in the mapping done as
part of the SMuFL project. For example, the code point of the sign is U+E282.

con rard

-r

r,,

-

-

--i-

-
I con sord. I I

Figure 14: A. Schnittke [27, p. 42]: 3rd movement,
Section 7.

included into Unicode. The glyphs defined by Uni-
code at present are 4 (U+1D132) and 4 (U+1D133):
we have never seen them in any score.

We end this short study of quarter tones with
giving two examples of modes within musique orien-
tale in Fig. 18: rast and soznak (cf. [5, p. 2] & [10,
p. 38]). In considering the rast mode, we can notice
a small tone between the 2nd and 3rd degrees and a
great tone between the 3rd and 4th degree. If you are
interested in such modes, you can find more details
in [5, 10].

4.3 Approximate micro-intervals

Table 1 lists signs derived from the classical acciden-
tals and expressing indeterminate pitch [33, p. 138–
139]. We include the corresponding code-point for
those included in Unicode, preceded by ‘⋆’ if the
Unicode’s glyph is slightly different.30 An up (resp.
down) arrow means that the note is to be slightly
raised (resp. lowered). For example, if an interpreter
plays C (half sharp) for C, that is correct but not

required; the notation merely expresses that this note
must be located between C and than C. In addition,
it should be closer to C than C. An up-down arrow

means ‘around’ the corresponding note, e.g., C may

be slightly higher or lower than C. We can imag-
ine only with difficulty such a notation when several
instrumentalists play the same part, e.g., all the vio-
lins of a symphonic orchestra, but it has been used in
chamber music, an example being given in Fig. 19.

Other notations expressing the same behaviour
come from the breaks in the voice in Byzantine chant:
/, /, /, as shown in Fig. 20.

5 Conclusion

Handling accidentals in music scores is error-prone,

30 The arrow of the Unicode character U+1D131 is at the
bottom right corner, whereas the ‘actual’ sign’s arrow is at the
bottom left corner, as shown in Table 1.

History of accidentals in music

154 TUGboat, Volume 38 (2017), No. 2

l-B

Irn 9-m

17-

l-5

vt
6^r0

r-5

IZC

6't0

nf
Figure 15: K. Penderecki [26, p. 10]: Section 9.

POCO CreSC.

Figure 16: I. Wyschnegradsky [35, p. 34]: Prelude X,
bars 24–27.

Figure 17: W. Lutosławski [21, p. 4]: cadenza.

Figure 18: Two examples of modes within
musique orientale.

 (U+1D12C)  -

 (U+1D12D)  (U+1D130)

 -  ⋆(U+1D131)

 (U+1D12E)  -

 (U+1D12F)

Table 1: Signs for approximate micro-intervals.

Press the baw strougly (scratching noise)

col leqno,
tratro

l3l
P PPP

col leono- Arco, o'd'
ttl.tratlo I.t*--

u."î!.f#i" r.oyco,ora

l5r
?

f'à
Figure 19: G. Ligeti [19, p. 16]: 2nd movement,
bars 48–49.

especially for older scores. Often musicologists doubt
their interpretation. However this system has been
in use for several centuries, and some attempts to re-
place them — e.g., [25] — have failed. From a point of
view of software generating music scores, LilyPond’s
modus operandi seems to us to be good, in the sense
that we can precisely customise a score’s final look.
Such advanced functions do not exist in MusiXTEX
[30] or MuseScore [24]. With respect to Unicode, we
speak in favour of adding accidental signs for exact
quarter tones. Of course, Unicode does not aim to
incorporate all new notations in contemporary music,
but including these signs may be interesting for type-
setting studies about musique orientale. As far as
we know, most of the references about this topic use
signs for exact quarter tones, not signs for approxi-
mate ones, as defined in Unicode.

6 Acknowledgements

Many thanks to the Polish translators: Ryszard Ku-
biak for the abstract and Jerzy B. Ludwichowski for

Jean-Michel HUFFLEN

TUGboat, Volume 38 (2017), No. 2 155

ANNUNCIATION
Moving forward

V
sopra

4
2

Figure 20: J. Tavener [31, p. 29]: Section N, 2nd
movement, beginning.

the keywords. Thanks to GUTenberg, the French-
speaking TEX Users Group, that offered me a grant
for participating in this TUG@BachoTEX 2017 con-
ference. I am also grateful to this definitive version’s
proofreaders: Karl Berry and Barbara Beeton. Last
but not at least, Brian Bartling and Gail Berry pro-
vided valuable advice about some points related to
musical terminology.

References

[1] Denis Arnold, ed.: The New Oxford
Companion to Music. Oxford University Press.
1983.

[2] Pierre Attaingnant (~1494–1551 ou 1552) :
Danceries à 4 parties (second livre, 1547).
Heugel & Cie. Édition par Raymond Meylan.
1993.

[3] Béla Bartók (1881–1945): Sonata for Solo
Violin. Boosey & Hawkes. Urtext edition.
1994.

[4] Alban Berg (1885–1935): Kammerkonzert, Bd.
423. Philarmonia. 1925.

[5] Elie Bohbot : Abrégé théorique et pratique de
musique orientale traditionelle à 1/4 de ton.
Initiation des musiciens occidentaux au 1/4 de
ton. Gérard Billaudot, éditeur. 1983.

[6] Jacques Chailley (1910–1999) : Traité
historique d’analyse harmonique. 2e édition.
Alphonse Leduc. 1977.

[7] Jacques Chailley et Henri Challan

(1910–1977) : Théorie complète de la musique,
1er volume. Alphonse Leduc. 1947.

[8] Arcangelo Corelli (1653–1713): Concerti
grossi for 2 Violins, Violoncello, Strings and
Basso continuo, op. 6/1–12. Eulenburg,
London. 1997.

[9] Adolphe-Léopold Danhauser (1835–1896) :
Théorie de la musique. Éditions Henry
Lemoine, Paris. Édition revue et corrigée par
Henri Rabaud. 1929.

[10] Salah El Mahdi : La musique arabe. Alphonse
Leduc, Paris. Juillet 1983.

[11] Laurent Fichet : Le langage musical baroque :
éléments et structures. Minerve. 2014.

[12] George Gershwin (1898–1937): Concerto in F
for Piano and Orchestra, Vol. 1819. Eulenburg,
London. 1987.

[13] Hans Hagen: “The Luafication of TEX
and ConTEXt”. In: Proc. BachoTEX 2008
Conference, pp. 114–123. April 2008.

[14] Jean-Michel Hufflen: “A Comparison of
MusiXTEX and LilyPond”. In: Tomasz
Przechlewski, Karl Berry and Jerzy B.
Ludwichowski, eds., Twenty Years After.
Proc. BachoTEX 2012 Conference, pp. 103–108.
Bachotek, Poland. April 2012.

[15] Jean-Michel Hufflen: “Dijon Concerto, for
Trombone, String Orchestra, and Piano”.
2015.

[16] Arthur Jacobs (1922–1996): The New Penguin
Dictionary of Music. 4th edition. Penguin
Books. 1988.

[17] Franck Jedrzejewski : Dictionnaire des
musiques microtonoales. L’Harmattan. 2004.

[18] Jonathan Kew: “X ETEX in TEX Live and
beyond”. TUGboat, Vol. 29, no. 1, pp. 146–150.
EuroBachoTEX 2007 proceedings. 2007. https:

//tug.org/TUGboat/tb29-1/tb91kew.pdf.
[19] György Ligeti (1923–2006): String Quartet

No. 2, Vol. 6639. B. Schott’s Söhne, Mainz.
1968.

[20] LilyPond. March 2014. http://www.lilypond.

org/doc/v2.18/Documentation/web/index.

html.
[21] Witold Lutosławski (1913–1994): Concerto

for Cello and Orchestra. PWM, London. 1971.
[22] Brigitte Massin et Jean Massin, rédacteurs

en chef : Histoire de la musique occidentale.
Fayard. Octobre 1985.

[23] Microsoft Corporation: Microsoft C#
Specifications. Microsoft Press. 2001.

[24] MuseScore Handbook. April 2017.
http://musescore.org.

History of accidentals in music

156 TUGboat, Volume 38 (2017), No. 2

[25] Nicolas Obouhow (1892–1954) : « L’harmonie
totale ». La revue musicale, Vol. 290–291,
p. 25–70. Août 1972.

[26] Krzysztof Penderecki (1933–):
”
Als Jakob

erwachte“, Bd. 6623. B. Schott’s Söhne, Mainz.
1975.

[27] Alfred Garrievich Schnittke (1934–1998):
Concerto Grosso for Two Violins, Harpsichord
(Also Piano) and String Orchestra, Vol. 488.
Philarmonia. 1977.

[28] Arnold Schoenberg (1874–1951): Variationen
für Orchester, op. 31, Bd. 12 196. Universal
Edition. 1956.

[29] Lambert M. Surhone, Mariam T. Tennoe

and Susan F. Henssonow, eds.: GNU

LilyPond. VDM Verlag Dr. Muller
Aktiengesellschaft & Co. KG. September
2010.

[30] Daniel Taupin, Ross Mitchell and
Andreas Egler: MusiXTEX. Using TEX
to Write Polyphonic or Instrumental
Music. Version T.104. January 2002.
https://ctan.org/pkg/musixtex.

[31] John Tavener (1944–2013): The Protecting
Veil, for cello and string orchestra, Vol. 59030.
Chester Music, London, UK. 1993.

[32] The Unicode Consortium: Unicode 9.0.0.
June 2016. http://www.unicode.org/

versions/Unicode9.0.0/.

[33] Hans Vogt, mit Maja Bard, Mathias
Bielitz, Hans-Peter Haller, Hans-Peter
Raiß und Angelus Seipt: Neue Musik seit
1945. 3. Auflage. Philipp Reclam, Stuttgart.
1982.

[34] Ivan Wyschnegradsky (1893–1979) :
« L’ultrachromatisme et les espaces non
octaviants ». La revue musicale, Vol. 290–291,
p. 71–141. Août 1972.

[35] Ivan Wyschnegradsky: 24 Preludes in
Quarter-Tone System, op. 22, Vol. 418.
Mitrofan Petrovich Belaieff, Frankfurt. 1979.

[36] Ivan Wyschnegradsky : Manuel d’harmonie
à quarts de ton. Éditions Max Eschig, Paris.
1980.

[37] Iannis Xenakis (1922–2001) : Nuits, musique
pour 12 voix mixtes. Éditions Salabert. 1969.

⋄ Jean-Michel HUFFLEN
FEMTO-ST (UMR CNRS 6174)

& University of Bourgogne
Franche-Comté

16, route de Gray
25030 Besançon Cedex
France
jmhuffle (at) femto-st dot fr

http://members.femto-st.fr/

jean-michel-hufflen

Jean-Michel HUFFLEN

TUGboat, Volume 38 (2017), No. 2 157

Bookbinding workshop: Making a portfolio

Willi Egger

Material

2 Board 320 × 225 mm

1 Spine cover material 350 × 50 mm

(book cover cloth)

1 Corner cover material 100 × 100 mm

(book cover cloth)

2 Outside cover paper 350 × 220 mm

1 Inside spine cover paper 313 × 50 mm

(black)

2 Inside cover paper 313 × 215 mm

(black)

1 Side flap paper 300 × 125 mm

(black)

2 Top/bottom flap paper 210 × 125 mm

(black)

2 Piece of twill-ribbon 200 mm

Board and paper should in any case be cut such that
the grain direction is along the spine of the portfolio.

You need bookbinders glue (PVA) for gluing the book
cover cloth parts to the boards and for gluing the
twill-ribbon in place.

You need paste for gluing all paper parts to the
portfolio.

Figure 1: The result of participation in the workshop

by a happy attendee who wasn’t as careful as she

should have been to make sure all the pieces were

aligned properly. —bb

Instructions

— On each board, make a recess with an incision
through the board:

20 mm 20mm

50mm

Figure 2: Layout of the recess

Figure 3: Recess and incision

— Glue the spine cover material and the boards
together, distance 10 mm:

10 / 11 cm

10 / 11 cm

Base line of triangle

Figure 4: Corner cover material

Bookbinding workshop: Making a portfolio

158 TUGboat, Volume 38 (2017), No. 2

— Cut the edge cover material diagonally in order
to get 4 triangles, as shown above.

— Draw two lines along the shorter sides of the
triangles, which are 15 mm from the sides.

— Glue the triangles on the outside of the boards,
cut about 1 board thickness outside the corner of
the board under 45 degrees. Turn in first the top
turn-in, and after forming the corner-covering
turn in the other turn-in.

— Prepare the outside cover paper. Use paste to
glue it onto the boards. Paste down the turn
ins.

— Open the previously prepared incision with a
cutter. Cut the twill-band in half. Push one
end of each piece through the incision from the
outside. Cut the end square and glue it neatly
into the recess.

— Paste the spine inside cover paper into place.

— Paste the inside cover paper on the boards.

2.5 mm

2.5 mm

2.5 mm

Figure 5: Inside cover material

— Cut the paper flaps to shape, as shown below,
and crease 4 lines.

— Glue the three flaps onto one of the boards.

40 mm 15 mm

15 mm

max. 4 mm

40 mm

Figure 6: Flaps

Now your portfolio is finished! However, before using
it, let it dry under weight in order to keep it flat!

⋄ Willi Egger

w dot egger (at) boede dot nl

Willi Egger

TUGboat, Volume 38 (2017), No. 2 159

Debugging LATEX files— Illegitimi non
carborundum

Barbara Beeton

Abstract

Every LATEX user has, at least once in her career,
been faced with a thorny problem when compilation
shuts down for some obscure reason. How to deal
with simple problems is reasonably well known, but
there are situations when the time-honored methods
fall short.

This article will present strategies and tactics for
dealing with the many types of problems that have
arisen during long experience as a member of the
AMS technical support staff, handling questions from
authors and the editorial staff. Both common and
uncommon glitches will be visited, with a bias toward
avoiding problems in one’s own work—something
for everyone.

1 Background

Last year, the AMS published on the order of 60,000
pages of books and journals, most of them produced
from LATEX files prepared and submitted by authors.
The acceptance of a journal article is based on sci-
entific merit, judged by an editorial committee and
referees reviewing a paper or electronic document;
it might even be handwritten. No consideration is
supposed to be given to the presentation, only to the
content. Books are contracted by the acquisitions
staff, all of whom are professional mathematicians
familiar with LATEX, but by no means TEXnically
skilled. What comes in for production is what we
have to deal with.

Assume that the accepted work is prepared in
LATEX (if it is not, it will be (re)keyboarded by a
competent entry operator and delivered in usable
condition); the quality of submissions varies greatly,
providing a wealth of opportunity to test (and im-
prove) one’s debugging skills.

Production is carried out on networked Linux
systems. The available macro library is in three parts:
TEXLive, which is updated at most once a year; local
versions of “public” macro files and fonts (sometimes
including updated versions that will become part of
next year’s TEXLive collection); and macros, fonts
and other tools that are entirely local to AMS. Ev-
erything is archived with Subversion, with archives
of published books and articles extending back a
couple of decades. The versions of (LA)TEX and all
used packages are recorded within the main file for a
published work using the snapshot package, so that
if reprocessing is necessary, the original environment
can be recreated. This setup provides the stability

necessary to produce a steady flow of new publica-
tions while handling reprints, revised editions, and
conversion of existing publications to other formats
such as ebooks.

As described so far, this workflow is effective
and reliable once the files representing a manuscript
are ready to be sent to the printer. But all sorts
of things can go wrong before that happy moment.
One guiding principle tops all others: If something
goes wrong, it must be possible to recover a known,
stable starting point quickly and reliably.

2 Preparation—plan ahead

There are certain conventions that, if followed dili-
gently, can make one’s life easier in the long run.
First, choose good tools and become familiar with
them.

The most important tool is a competent editor
or IDE. The author uses emacs, but other options are
available, some for single users on one platform, some
intended for cooperative authoring online, and a num-
ber of alternatives somewhere in between. A list of
such tools can be found in answer to a question on the
TeX.stackexchange site (hereafter “tex.sx” [4]).1

The author also prefers to process files from the
command line. This makes it possible to correct
simple errors, such as misspelled control sequences,
interactively, avoiding delays and the possibility of a
cascade of irrelevant error messages as a consequence
of a possibly trivial error. (But don’t forget to correct
the file as well before the next run.)

Among the features most useful for debugging
are these:

• good search facilities;

• brace and \begin/\end matching;

• multiple windows viewable at the same time;

• “go to” a specified line number;

• ability to match strings and to ask “how many?”

Another important consideration is how directories
and files are laid out and addressed. It’s advisable to
avoid spaces in file names ; not all operating systems
handle such spaces gracefully (or at all). Similarly,
some operating systems are case sensitive— to avoid
problems here, use only the lowercase alphabet for

file names ; digits and hyphens are also “neutral” in
this regard, but (extra) periods and characters with
special meanings to TEX (e.g., the underscore) are
best avoided.

Keeping files at a manageable size will pay off
in the long run. For a large work like a book or
dissertation, place each chapter in a separate file,

1 LaTeX Editors/IDEs,
http://tex.stackexchange.com/q/339

Debugging LATEX files— Illegitimi non carborundum

160 TUGboat, Volume 38 (2017), No. 2

controlled by a main or “driver” file. This will permit
you to work on just one chapter at a time, taking
advantage of the \includeonly facility. If you have
large tables or figures, placing each in a separate file
can also be handy, as it is then possible to exclude
one with a single % to comment it out (this also
makes it easy to move it to a different place in the
main file if that becomes necessary).

Finally, when preparing files, it’s usually a good
idea to end files other than the main file with a
separate line \endinput; this avoids problems from
garbage that is sometimes added on, unasked, when
a file is shipped from one system to another. And
never put a line \end{document} in any file but the
main driver file.

Another suggestion: Learn where the log file can
be found, before you ever need to look at one. Some
IDEs hide this from a user; if your job goes south
and you cannot check what is happening by looking
in the log, you are going to have a very difficult time
figuring out how to make things right.

And one more:

Don’t update your system

in the middle of an important project.

New versions of packages can have new, incompatible
features, and old packages can disappear. Of course,
if your hardware decides to conk out at that point,
this is not useful advice. But you do keep a full
current backup, don’t you?

3 Isolate and insulate your testing

Use copies of your files to test.

If the error you’re trying to fix isn’t something like
a simple typo, protect yourself against possible dis-
asters: set up a special debugging environment. At
the very least, make a backup of your files, maybe
even a zip of the full working directory tree, and put
it in a safe place. You know your current situation,
and you want to be able to return to it safely.

Under no circumstances make experimental

changes to your only copy of any files.

Better yet, if you have the space, create a separate
test area, identical in all important respects to the
“live” work area, and do your experimenting there.

If the job consists of more than one file, start
by copying only the driver file— the file that reads
in all the others— into the test area. This will be
your guinea pig.

Use a “soft link” to access other files in the
job. For a Linux system, this involves issuing the
command
ln -s 〈directory name〉
and adding the name of that location to the path.

(It should be possible with a web search to find out
how to do this for other systems.)

Process the job interactively. Then simple errors
can be corrected at once, before they spawn mean-
ingless and confusing error messages. (Remember
to make the corrections in both test and real files.)
And if an error is detected that can’t be corrected
interactively (such as an unrecognized or unended
environment), the job can be stopped at once and
the problem fixed before continuing.

Processing a job in nonstop mode (the usual
procedure when launching a compile from within an
IDE) will, of course, list all errors in the log file (up
to a maximum of 100), but a single error that is not
the simple misspelling of a symbol name can cause
a cascade of spurious messages that would not have
been necessary unless the first error was encountered.

More about this approach below, under “Divide
and conquer”.

4 Some tools for interactive diagnosis

Some diagnostic commands are available to send
information to both the terminal and the log file.

• \message{...} writes out a message in the log
and on the screen; it can be used to report when
processing has reached a predetermined point.
For example,

\message{last section, page \number\thepage^^J}

last section, page 904

• \show reports the current meaning of a com-
mand; processing is suspended to permit addi-
tional interaction. Example:
\show\LaTeX

> \LaTeX=macro:

->\protect \LaTeX .

\show\protect

> \protect=\relax.

Following the halt, more input can be inserted
by typing i followed by a command or text.
“Enter” will restart the session.

• \showthe reports the value of a command; pro-
cessing is likewise suspended.
\showthe\hfuzz

> 1.0pt.

A number of tracing commands are available to pro-
vide details of the processing flow. (Caution: tracing
requests can deliver more information than you usu-
ally want, so be selective.) The result is sent only
to the log unless requested otherwise. These are the
tracing commands used most often by the author:

• \tracingoutput can be set to 1 to report, in
symbolic form, the contents of all boxes that are
written to the output;

Barbara Beeton

TUGboat, Volume 38 (2017), No. 2 161

• \tracingcommands and \tracingmacros give
the gory details of LATEX processing;

• \errorcontextlines=200 sets the maximum
number of lines associated with a single error
message; the default value (5) often shows too
few lines to understand the entire operation;

• \tracingonline directs the report of the other
tracing commands to the screen as well as to
the log.

Details of these commands (and many \tracing...

relatives) can be found in The TEXbook [2] or in TEX

by Topic2 [1].

5 The log file is your friend

The (LA)TEX log file records every action taken—
what files and fonts are read, assignment of boxes and
counters, redefinition of important commands, and
so on. More importantly, from a debugging point of
view, errors are reported in (sometimes excruciating)
detail, all identified by line number in the source file.

Always check the log file for error messages:
! Undefined control sequence.

l.457 \fobx

{%

Warnings are noted too, but without line number:
LaTeX Warning: There were undefined references.

Interpreting these messages can be a challenge, but
this information should direct your first line of in-
quiry. If the system you are using hides the log file,
ask how to find it. And don’t delete the log file
without looking at it.

Not every line number reported in an error mes-
sage clearly identifies the exact line where the prob-
lem is located. The scope of math content (what is
between $ signs or other math specifiers) is not per-
mitted to include paragraph breaks, so a missing $

may not be reported until the next paragraph break,
which may be a number of lines later in the input.
(This restriction is also the reason that blank lines
are not permitted within multi-line math display en-
vironments.) The other error associated with math
mismatches is
! Missing $ inserted.

when a closing $ is forgotten. This too is limited
to the current paragraph, and should be easy to
diagnose and repair.

An error within a figure, table, or multi-line
display will also usually report the line number at
the end of the environment, rather than on the line
where it occurs, but again, the scope is relatively
limited.

2 In TEX Live; access with texdoc texbytopic.

Another reason for a report far away from where
the error occurred is an unmatched group—an errant
{, \bgroup, \begingroup or \begin{〈env〉}. In the
case of a mismatched environment, this error will be
reported as
! LaTeX Error: \begin{〈env1〉} on input line

nnn ended by \end{〈env2〉}
This will be reported as soon as the (incorrect) end
is encountered and the line number should be correct.
A mismatched grouping element, on the other hand,
will not be reported until the end of the job, and then
not even as the usual warning. The report consists
of several lines:
(\end occurred inside a group at level m)

semi simple group (level m) entered

at line nnn (x)

bottom level

Here, m will identify how many of these open groups
remained at the end of the job. x will identify the
unmatched grouping element: \begingroup, or { for
either { or \bgroup. Again, the line number should
be correct, just not in the place where the omission
occurred.

Other possible error messages are shown in the
documentation of various packages. Most messages
include some line number, and in general localization
is reasonably good; this is often enough to locate
an error so it can be corrected without having to
progress to more complicated searching steps. As
soon as the error is identified and the fix verified,
you can correct your real file, continue with the main
task, and forget about the copies, which have now
performed their intended function.

But, you may ask, when the job consists of
multiple files, how can one be sure in which file the
reported line number actually exists? See the next
section.

The important lesson here is this:

Don’t delete the log file until after you’ve

extracted every bit of useful information.

It has also been suggested to the author that saving
a log file for even longer (under a different name) has
merit, as it makes possible the comparison of two
logs when there is a question about what changed
between two runs.

6 E pluribus unum—but which one?

Let us assume that the error was reported in a text
file, not a package.

When the log file reports a line number, the first
reaction is to look in the main file. But if that file is
only 95 lines long, and the reported line number is
2345, that does not compute.

Debugging LATEX files— Illegitimi non carborundum

162 TUGboat, Volume 38 (2017), No. 2

Make a copy of the log file, and work backward
from the relevant error message. If some pages have
actually been output, the page number (shown in
square brackets: [17]) can point to a chapter, which
ideally should be in a file of its own. Failing that,
eliminate material that is, for this purpose, useless.

Messages about overfull boxes can be ignored—
delete those lines. A matching pair of parentheses
will usually enclose a file name and some more ma-
terial. Look for a “completed” parenthesized group,
such as
(C:/tech-support/debug/preface.tex

Preface

[1] [2]

)

and delete the whole group. What will finally remain
is an opening parenthesis followed by a file name—
the name of the file that was open when the error
was reported. The reported line number should be
found there.

But what if the line number was reported only
at the end of the job, a level m situation? Here’s
where an extra \end{document} comes into play.

Keep working only with test files.

Don’t touch the real files until the source

of the problem is identified.

Start from the end of the driver file and insert
\end{document} between two \include statements.
The “binary” approach is appropriate here—start
in the middle. (More about this under “Divide and
conquer”.) Process what’s left. If the level m

condition is still reported, the target file is in the
first half; if it’s absent, look in the last half. Comment
out \include statements that have been absolved of
blame, and move \end{document} around until the
target file is identified. This gets more complicated,
of course, if m > 1, but the principle is the same.

7 Housecleaning

At some point, you will find the file where you think
the error should be. Maybe you have a tightly defined
line number. But maybe you still have only a general
idea of where to look. Since you want to process
only one file, clean out the clutter so it won’t cause
confusion.

Modify the driver file. adding an \includeonly

line that specifies only the suspect file. Comment
out commands that will include irrelevant pieces that
aren’t launched with an \include command:

• unnecessary (for the test) packages;

• \tableofcontents;

• anything related to the bibliography;

• \printindex.

Clean out your suspect file too. Don’t worry about
destroying the file; this is a copy, right? Here are the
things that can be removed—carefully.

• lines commented with % at the beginning;

• lines between \begin and \end{comment},
inclusive;

• lines between \iffalse ... \fi, inclusive
(this is equivalent to a comment).

Make sure that all groups are completely specified.
This means matching all \begin and \end environ-
ments and all methods of “bracing”. Check for these
elements using your editor’s “how-many” function:

• number of opening braces { = number of
closing braces } (sometimes the string % } is
added when an opening brace stands alone in
the code, so be aware of this possibility);

• number of \begin{ = number of \end{ ;

• number of \begingroup = number of
\endgroup ;

• number of \bgroup = number of \egroup ;

• number of \[= number of \] ;

• number of $ signs is even, as is number of $$.

Process what’s left, and look at the log for help as
you go along.

Many problems are the result of an “unmatched”
condition, so you might get lucky and not have to go
any further. But let’s assume it’s still unidentified.

8 Divide and conquer

What you want to do is isolate the paragraph, or
the smallest portion of the file, that is triggering the
error. (Work with a copy, and keep another copy,
just in case.)

Find a good paragraph break halfway through
the file. Insert \endinput preceded by a blank line.
Make sure it doesn’t split up a \begin/\end pair or
any group. Process this reduced file. If no error is
reported, the problem is in the last (unprocessed)
half. Remove the part that works, and keep moving
\endinput until the source of the problem is located.
If the solution is obvious, fix it and test. Apply the
fix to the full test copy and try processing it. Once
you are sure the fix is correct, insert it in the real

version and test again.
But what if the solution isn’t obvious?
If what remains is still too large for you to

identify the problem quickly—perhaps it is a long
proof, with steps presented as a list—make a copy
of the file under another name and keep only the
test material in the “working” file. (Many times
this author has modified her copy, which is not the
one that the driver file will input. This leads to
exasperation.)

Barbara Beeton

TUGboat, Volume 38 (2017), No. 2 163

Reduce the size of this file by commenting out
items that look harmless. Don’t delete anything yet—
what you think is harmless may actually be part of
the problem. Keep iterating this process until there
is no way to get rid of more material without also
eliminating the (not yet located) error. This is now
your “minimum (non-)working example”, an “MWE”.

Examine what’s left in the file, and

Pay attention to the clues in the log.

Of course, once you know what needs to be fixed
and how to fix it, you can verify this by making
the necessary changes in your test file and rerunning
LATEX to confirm. If this works, install the fix in
your real file, process it, and if you find no other

problems, you’re on your way!
If you do find more problems, it’s back to the

start, but now you know how to proceed.
One area hasn’t yet been addressed—an error

reported before

\begin{document}

is found. See below.
And there are more techniques that you can

apply yourself, before calling for help.

9 Sometimes, more drastic action is
required

In this section, we’re still discussing problems in the
body of the document.

Once a problem has been reduced to an MWE,
it’s time to take advantage of the available diagnos-
tic tools to obtain more information. In addition to
the commands shown on page 160 in the section on
interactive diagnosis, these are also useful. (More de-
tailed information on these commands can be found
in TEX by Topic [1].)

• \tracingmacros reports the details of macro
expansion, along with the values of the argu-
ments.

• \showboxdepth specifies the number of box lev-
els to display, usually set to \maxdimen for trac-
ing.

• \showboxbreadth specifies the number of suc-
cessive elements displayed on each level.

There are more, but these are generally the most
useful.

If you are desperate, and a real masochist, you
can specify \tracingall, but sorting through this
information will tax both your patience and your
sanity, and usually a “simpler” approach can be
found. See the definition of \tracingall in the file
plain.tex to see what is unleashed.

But if you have to resort to tracing, there may
be an easier way.

10 In case more help is needed

Some useful resources are available online. You may
not be the first to encounter a particular problem.

The archives at tex.sx [4] are a good place to
look. If you don’t find anything resembling the prob-
lem in your file, ask a new question. (You should
register if you’re not already a participant in the fo-
rum.) For best results, include a complete MWE; you
already have one—the mimimum (non-)working ex-
ample that you have been struggling with. Clean out
any commented material, and, if appropriate (and
possible), “anonymize” it by substituting dummy
text; make it as minimal as possible while still demon-
strating the problem. Include relevant lines from the
log of the example you’re posting, and an explanation
of what you’ve tried. The participants in the forum
are knowledgeable and friendly, and they enjoy a
good puzzle—but they do need enough information
to be able to experiment, and providing an MWE

that they can copy and paste will yield results more
quickly than if guesswork is needed.

11 Errors reported before \begin{document}

• Make a copy of the log file, and find the open
file.

• If this isn’t a \usepackage, back up until you
find one.

• Do you have experience of LATEX internals?

• No. This is a good time to seek expert advice.
Go to tex.sx [4]. If the problem hasn’t been
reported, post a question. Be specific, and
include your preamble and log.

• Yes. Figure out what the problem is.
Check reports at tex.sx [4].
If it hasn’t been reported, notify the package
author.

This ends the discussion of problems that may occur
in your files. The next section describes an actual
problem of the author that took far too long to
understand, and, in the end, wasn’t really a “LATEX
problem”, although that’s where it reared its ugly
head.

12 A real puzzlement

Once in a while, not even tracing can direct you to
the solution of the problem.

Two facts are important:

• I live and work in the U.S. and my workstation
is set up with (presumably appropriate) local
defaults, i.e., ASCII.

• I compile from the command line, and don’t use
\batchmode or \nonstopmode.

Debugging LATEX files— Illegitimi non carborundum

164 TUGboat, Volume 38 (2017), No. 2

What showed up on the screen:
Overfull \hbox (23.1113pt too wide) in paragraph at lines 3288--3301

\OML/cmm/m/it/10.95 A$\T1/ptm/m/n/10.95 , as in

The corresponding content of the log:
Overfull \hbox (23.1113pt too wide) in paragraph at lines 3288--3301

\OML/cmm/m/it/10.95 A$\T1/ptm/m/n/10.95 , as in Ÿ[], is a degree-

What was in the source file:
..., as in \S\ref{SS:changing}, is a degree-1 ...

Figure 1: A most puzzling problem

A few months ago, a file was persistently stall-
ing before processing was finished, locking my screen.
In order to regain control, it was necessary to open
another session and kill the job. This allowed me to
enter ctrl-C to the stalled session, to return to a
prompt. The last thing shown on the screen was a
partial report of an overfull box. Enough text was
present to be able to locate the problem area in the
source . . . except that the source looked perfectly
valid. (See figure 1.) There was, fortunately, a log
produced, albeit incomplete.

After going through the steps described above,
I managed to cut the file down to a single, brief,
paragraph; if I removed anything more from the
beginning of the paragraph, the error didn’t occur.
The problem appeared to be related to the overfull
box. At this point, I sought help from someone with
more systems knowledge than I have.

After looking closely at what was on the screen
and what it corresponded to in the log, we noticed
a “strange” character— Ÿ. (This is in position "78

in the cmsy font, and is Unicode character U+0178.)
Since I’m used to working with English texts, and
only infrequently deal with accents, I’m not used
to seeing non-ASCII characters, and certainly not
in a log from an entirely English text. What was
happening was that the physical environment I’ve
been working in is not set up to recognize UTF-8
input, and the screen was freezing as a result.

The workaround I was given was to put this line
into a file named .i18n in my home directory:
LANG="en_US.utf8"

This doesn’t solve the problem entirely— the file still
freezes the screen, but the job completes, and I can
issue ctrl-C to regain a prompt. But figuring out
the problem and how to get around it were sorely
trying.

Sometimes what one thinks is a LATEX bug isn’t.
Keep an open mind.

13 Oddments (post-conference additions)

There are some easily identified problems that oc-
cur frequently, but the source may not be generally
known. This seems a worthwhile place to identify
them.

• The Missing character: warning
There is no ; in font nullfont!

is almost invariably the result of a syntax er-
ror—a missing semicolon— in a tikzpicture.
Other repeating punctuation characters citing
nullfont may also be associated with some tikz
expression.

• Similar warnings citing other fonts need to be
researched. No line number is given in the log,
but the number of the last completed page will
be there. Compare the input with the output
to see what is missing.

14 Acknowledgments

Thanks to GUST for hosting TUG’17 at Bachotek
along with their annual meeting, and thanks to the
participants whose questions after my talk provided
interesting and helpful new ideas.

References and resources

[1] Victor Eijkhout, TEX by Topic: A TEXnician’s

Reference, Addison-Wesley (U.K.), 1991.
eijkhout.net/texbytopic/texbytopic.html

or texdoc texbytopic .

[2] Donald E. Knuth, The TEXbook,
Addison-Wesley, Reading, 1986.

[3] Leslie Lamport, LATEX, A Document

Preparation System, 2nd edition,
Addison-Wesley, Reading, 1994.

[4] tex.stackexchange.com, a question and
answer forum with extensive archives.

⋄ Barbara Beeton

American Mathematical Society

Providence, RI, USA

bnb (at) ams dot org

Barbara Beeton

TUGboat, Volume 38 (2017), No. 2 165

Revealing semantics using subtle

typography and punctuation

Kumaran Sathasivam, S.K. Venkatesan and
Yakov Chandy

Abstract

The semantics of a language has deeply nested struc-
tures, which is revealed by typography using a hierar-
chy of paragraphs, with different font sizes and styles.
At the paragraph level, a paucity of typographical
features forces us to use punctuation heavily to re-
veal semantics. Paragraphs are further broken into
smaller semantic units such as sentences using end-
punctuation and initial capitals. Sentences are fur-
ther broken down using semi-colons, colons, commas
and hyphens into even smaller chunks. Word-spaces
are used to break language into the smallest atoms
of semantics, namely words or phrases. In this paper,
we look at newer devices, both typographic settings
and punctuation elements, that can disambiguate
and reveal deeply nested semantic structures.

“To reveal art and conceal the artist is art’s
aim.” — Oscar Wilde

1 Introduction

The indivisible elements, the atoms as it were, of the
written forms of languages like English are letters.
But reading text built of these basic units alone is
a difficult exercise. An elaborate set of conventions,
auxiliary symbols (punctuation symbols), spacing
and typography are used in publishing today as aids
to reading, as removers of obstacles to understanding.
The salutary effects that these jointly have will be
readily appreciated by a comparison of the first two
sentences of this paragraph with a version written
entirely in uppercase and unencumbered by punctua-
tion symbols or word spaces (Figure 1). Text was, in
fact, written historically thus. There was no spacing,
paragraphing or punctuation in manuscripts before
the development of printing (Boorstin, 1983).

Uppercase characters are still used amidst low-
ercase characters. Uppercase letters are used to
display title and headings in a prominent way, simi-
lar to how they were used to display text in ancient
Roman buildings. Uppercase letters are also used as
the beginning character of prominent names (proper
nouns) and later evolved to shorter form initials, ab-
breviations and acronyms. They are also used at the
beginning of a sentence as a device to prominently
mark the beginning. Special uppercase characters
are used as dropped capitals in some books as a
decorative element at the beginning of a chapter or
other part of the document.

THEINDIVISIBLEELEMENTSTHE

ATOMSASITWEREOFWRITTEN

ENGLISHARELETTERSBUTREADING

TEXTBUILTOFTHESEBASICUNITS

ALONEISADIFFICULTEXCERCISE

Figure 1: Text in uppercase only, stripped of
punctuation symbols and word spaces.

The lowercase letters started initially in the
cursive italic form, but now they have evolved their
own upright roman form. Bold and display fonts have
more or less replaced the necessity of displaying title
and heading in uppercase characters. Interestingly,
another form known as the small-caps has evolved
from capital letters with its own variety of lowercase
characters, an interesting hybrid in typography.

Fonts may be broadly classified into serifs and
sans-serifs. Slab serifs are a significant subgroup
of serif fonts, usually with relatively thick strokes
and with flat, rectangular serif shapes. Apart from
these we have other categories of fonts used, such as
monospaced fonts, used to display telegrams (such as
in Wikileaks messages) or computer code and other
types of fonts such as Gothic and script fonts to
reveal specific content or context.

At the paragraph level, the document title, head-
ings, paragraphs, footnotes are distinguished by ty-
pographic elements such as use of different font styles
and font sizes. However, once we come down to the
paragraph level, except for occasional embellishments
with bold and italic, upper- and lowercase charac-
ters, we are left with only the punctuation marks to
describe the underlying structure of the sentences.
The role of punctuation transcends that of merely
providing assistance for the eye; it now encompasses
interpretation of text. In other words, punctuation
is vital for the meaning of written material.

It is therefore not surprising that the first known
use of punctuation is related to a system that was
used to help the delivery of speeches from written
texts. This system dates back to the fifth century BC,
when the Greeks introduced vertically arranged dots
in text. Subsequently, when Greek playwrights (for
example, Aristophanes and Euripides) wrote drama,
they used symbols to distinguish the ends of phrases
so that the play’s cast knew when to pause. Even
relatively recently, school children have learned to
associate punctuation marks with pauses in reading.
One mnemonic poem actually quantifies the duration
of the pause associated with each major punctuation
symbol:

Revealing semantics using subtle typography and punctuation

166 TUGboat, Volume 38 (2017), No. 2

Figure 2: The dramatic change in meaning that
a single comma can introduce is illustrated by this
example. [Source: http://www.themodernausten.com/

2012/09/04/teacher-tuesdays-9-4-12/]

Charles the First walked and talked half

an hour after his head was cut off.

Charles the First walked and talked; half

an hour after, his head was cut off.

Figure 3: In this example, the meaning of the
first sentence is intriguing though rather macabre.
A semi-colon and a comma change the meaning of the
same string of words entirely, to something more likely.
[Source: The American Printer, 1885 edition]

The stop point out, with truth, the time of
pause
A sentence doth require at ev’ry clause.
At ev’ry comma, stop while one you count;
At semicolon, two is the amount;
A colon doth require the time of three;
The period four, as learned men agree.

The semantic role of punctuation is easily high-
lighted using a couple of well-known facetious exam-
ples (Figure 2, Figure 3). Thus a particular string of
words can have different meanings, depending on the
punctuation. In fact, a particular sequence of words
can even have two opposite meanings (Figure 4).

This is not paradoxical. If such texts with dif-
ferent meanings are delivered orally, they are spoken
very distinctly, depending on the intended meaning.
The written forms, since they are reduced to iden-
tical strings of symbols, require auxiliary support,
marking up, in the form of punctuation to make the
distinction.

2 Evolution of punctuation

Punctuation was developing rapidly at a time when
large numbers of copies of the Bible were produced by
copyists in Europe, in the fifth century AD. These
copies were designed for reading aloud, and so a
range of marks were introduced in the text. An early

Woman, without her man, is nothing.

Woman: without her, man is nothing.

Figure 4: The first of these sentences emphasizes
the importance of men; the second, the importance of
women.

version of initial capitals (the use of lowercase letters
to write sentences, except for the first letter of the
sentence, which is in uppercase) made its appear-
ance at this time. In the eighth century AD, Irish
scribes introduced the practice of separating words.
This was a major step in semantics, as now words
began to have a standalone existence, making them
candidates for a study on their own, reinforcing a so-
cially shared context, through the use of dictionaries.
The English language also evolved as an isolating
language, making isolation of words possible, but at
the same time increasing the importance of the posi-
tion of the words, creating a need for position-based
syntax and grammar. Over the next several cen-
turies, the movement was from words to phrases and
several systems of punctuation appeared, some of
them disappearing after a spell of popularity, others
persisting unchanged or evolving with time.

The use of movable type and the rise of printing
in Europe in the 15th century led to an increase in
the amount of material printed and in its readership.
The printing press spread to hundreds of cities in
Europe within decades. It is estimated that by 1500
the printing presses of western Europe had produced
20 million volumes. The need for a standard sys-
tem of punctuation was keenly felt. Two printers of
Venice, both named Aldus Manutius, one the grand-
son of the other, are credited with the invention of
such a system. To the printers Aldus Manutius are
attributed the development of punctuation practices
that continue to this day, such as the one of ending
sentences with full stops, and the development of
symbols such as the modern comma. The younger
Manutius said in 1566 that the main object of punc-
tuation was the clarification of syntax. The trend of
punctuation reflecting sentence structure continued.
Notable in this context is Ben Jonson’s book English
Grammar, published posthumously in 1640, which
provided the foundation for the punctuation rules
followed today. This is not to say that there is total
agreement about the rules of punctuation — there is
still some range in punctuation usage.

Printing presses spread further, and in the 16th
century they produced between 150 and 200 mil-
lion copies. In the 19th century, the hand-operated
press was replaced with the steam-powered rotary

Kumaran Sathasivam, S.K. Venkatesan and Yakov Chandy

http://www.themodernausten.com/2012/09/04/teacher-tuesdays-9-4-12/
http://www.themodernausten.com/2012/09/04/teacher-tuesdays-9-4-12/

TUGboat, Volume 38 (2017), No. 2 167

press, which allowed printing to be performed on an
industrial scale.

3 Punctuation rules and style manuals

As early as the late 17th century, manuals (such as
Moxon’s Mechanick Exercises, 1683–1684) were being
produced for the printing trade. With the passage of
time, these increasingly addressed the general reader.
One of the most successful printing manuals of the
19th century, The American Printer, was published
in 18 editions between 1866 and 1893. The preface
to the first edition of this manual said that ‘Authors
and publishers, as well as typographical amateurs,
may consult the volume with profit; and indeed, any
intelligent person will find it a serviceable companion.’
The American Printer (15th edition, 1885) touches
very lightly upon the subject of punctuation when
it outlines the work of the proof-reader: ‘The com-
positor is bound to “follow the copy,” in word and
sentiment, unless, indeed, he meets with instances
of wrong punctuation or false grammar, (and such
instances are not rare,) which his intelligence enables
him to amend.’

Just what correct punctuation might be was
being defined by academic presses around this time
and in the early 20th century, by which time they
were drawing up their own rules or standards for ty-
pography. Horace Hart, controller of the Oxford Uni-
versity Press (OUP), had worked some three decades
at printing establishments, compiling best practices
over this period. In 1893 these were printed as a
single broadsheet page for use at the OUP. They
developed over the years, and were published in 1904.
Hart’s Rules quickly became a source of authoritative
instructions of not just typesetting style but also En-
glish usage, grammar and punctuation. Similarly, in
the 1890s a proofreader at the University of Chicago
Press had drawn up a single sheet of typographic
fundamentals. In 1906, the Chicago Manual of Style
(CMS) was published as a book. The CMS16 (2010)
is now in its 16th edition, and its guidelines have
been shaped by ideas from both within the press
itself and outside. The print version of CMS16 has
more than a thousand pages, and there are more than
2000 hyperlinked paragraphs online. The Web site
of the CMS says that it ‘has become the authorita-
tive reference work for authors, editors, proofreaders,
indexers, copywriters, designers, and publishers’.

Editors and other users of style manuals tend
to follow their prescriptions slavishly although the
manuals themselves point out that there is nothing
hard and fast about their ‘rules’:

As always, most Chicago rules are guidelines,
not imperatives; where options are offered,

the first is normally our preference. Users
should break or bend rules that don’t fit their
needs, as we often do ourselves. Some advice
from the first edition (1906), quoted in the
twelfth and thirteenth editions and invoked in
the fourteenth, bears repeating: “Rules and
regulations such as these, in the nature of
the case, cannot be endowed with the fixity
of rock-ribbed law. They are meant for the
average case, and must be applied with a
certain degree of elasticity.” (CMS15, 2003)

The desire to adhere zealously to the guidelines
of style manuals possibly arises in response to the
intricacy of the rules: the CMS and the New York
Public Library’s style manual (Sutcliffe, 1994) devote
close to 50 pages each to the use of punctuation
symbols alone. It is evident that the prescriptions
have been drawn up with great thoroughness to deal
with every conceivable situation that may arise when
using punctuation symbols.

Perhaps as a caution against overenthusiastic
enforcement of the recommendations, CMS15 re-
minds users that ‘[p]unctuation should be governed
by its function, which is to promote ease of reading.
Although punctuation, like word usage, allows for
subjectivity, authors and editors should be aware
of certain principles lest the subjective element ob-
scure meaning. The guidelines offered in this chapter
[Punctuation] draw for the most part from traditional
American practice.’ In other words, the essence of
punctuation is to disambiguate.

4 Semantic inadequacies in current

methods of punctuation and typography

The rules of punctuation are evolving continuously.
New, revised editions of style manuals are published
periodically. To quote words from Wikipedia, ‘The
rules of punctuation vary with language, location,
register and time and are constantly evolving.’ This
continuous evolution of punctuation is due partly to
developments in the language and partly to the fact
that the ‘rules’ laid out in style manuals are often
merely descriptive. Further, some aspects of these
rules are rather whimsical. As a result, there are inad-
equacies in the prescriptions regarding punctuation.
In Box 1 we present two cases where redundancy is
present in the rules of punctuation.

In fact, there are serious limits to how well even
the traditional function of punctuation, namely, indi-
cating how text is to be read, can be carried out. As
the Wikipedia entry on ‘Punctuation’ puts it, ‘Even
today, formal written modern English differs subtly
from spoken English because not all emphasis and
disambiguation is possible to convey in print, even

Revealing semantics using subtle typography and punctuation

168 TUGboat, Volume 38 (2017), No. 2

Box 1: Redundancy in punctuation rules.

• Demarcation of sentences. Sentences
are clearly marked off using both
end-punctuation (full stops, question
marks, exclamation marks) and initial
capital letters. It would be more rational
for a style manual to prescribe the use of
a single sentence-separation punctuation
symbol.

• ‘Which’ versus ‘that’. A distinction is made
by style manuals, most American ones,
between the relative pronouns ‘which’ and
‘that’. These manuals prescribe the use
of ‘that’ with a restrictive purpose, to
narrow a category or identify a particular
term being talked about. ‘Which’, on
the other hand, is recommended for
nonrestrictive use, not to identify a
particular item or narrow a class but
to add something about an item that
has already been identified. The style
manuals redundantly prescribe that
‘which’, when used nonrestrictively,
should always be preceded by a comma, a
parenthesis or a dash (CMS15, page 230).

Person 1: (Aggressively) Where did you get
that?
Person 2: (Inquisitively) What?

Figure 5: Playwrights must provide stage directions
to indicate how lines are to be spoken by actors.
[Source: http://www.tes.com]

with punctuation.’ Nowhere are these limits felt more
keenly than in play scripts, where the dramatist must
liberally add adverbial stage instructions (Figure 5).
Furthermore, we present in Box 2 a couple of in-
stances we found where there may be ambiguity even
when the rules of punctuation are followed faithfully.

The development of punctuation is proceeding
perhaps faster than ever before. New punctuation
symbols have been proposed. Houston (2013) de-
scribes the deliberate creation of a symbol to convey
a mixture of surprise and doubt. This symbol, known
as the interrobang, enjoyed some popularity during
the late 1960s and early 1970s. It was lost in the
transition of the printing industry from hand-set, hot
metal printing to phototypesetting. Houston (2013)

Box 2: Ambiguity in punctuation rules.

• The comma in an unclear role. The comma is
used in a great many situations. Sometimes,
it is not clear what role it is playing. For
instance, according to one CMS15 rule, ‘A
word, abbreviation, phrase, or clause that is
in apposition to a noun is set off by commas
if it is nonrestrictive — that is, omittable,
containing supplementary rather than
essential information.’ The first example
provided for such a use of the comma
is ‘The committee chair, Gloria Ruffolo,
called for a resolution’. Another CMS rule
describes the use of the Oxford comma:
‘Items in a series are normally separated
by commas . . . When a conjunction joins
the last two elements in a series, a comma —
known as the serial or series comma or the
Oxford comma — should appear before the
conjunction. The first example provided
for this rule is ‘She took a photograph
of her parents, the president, and the
vice president.’ If, however, the sentence
‘She took a photograph of her father,
the president, and the vice president’ is
encountered, how is the reader to interpret
it? Did she take a photograph of three
persons? Or was her father the president,
so that she took a photograph of only
two persons, namely her father and the
vice president? This type of ambiguity is
encountered when the Oxford comma is
followed.

• A relative clause ambiguity. Sometimes it is
difficult to distinguish between interrogative
and nominal relative noun clauses. An
example is the sentence ‘I forgot what
he asked for.’ One interpretation is ‘I
know what he asked for. But I forgot to
bring it.’ In this case, the object of the
sentence is a relative noun clause. Another
interpretation is ‘I do not know any longer
what it is he asked for.’ Here, the object is
an interrogative noun clause.

also describes how, even more recently, a new symbol,
the sarcasm mark, was proposed by a blogger who
observed that written sarcasm was regularly misinter-
preted as sincerity in online interactions. The need
for enhanced disambiguation through new punctu-
ation has been both necessitated and facilitated by

Kumaran Sathasivam, S.K. Venkatesan and Yakov Chandy

http://www.tes.com

TUGboat, Volume 38 (2017), No. 2 169

the development of electronic communication. Smi-
leys, emojis, emoticons and sarcasm tagging have
all gained widespread recognition and usage through
text messages and emails. It is quite possible that
these new punctuation symbols will be absorbed into
regular print typography.

5 Extending the LATEX solution for deep

structures

Like XML and HTML, LATEX provides a mechanism
for separation between style and content. The user
provides hints and hooks for the typesetting engine
and the typesetting engine then provides the render-
ing, incorporating some hyphenation and justifica-
tion of paragraphs, and paginating the document.
There is now adequate computer power to take LATEX
typesetting to higher levels of sophistication.

We note that the rules of punctuation and ty-
pography need to be revisited. We believe that the
present setting provides opportunities to advance
disambiguation, for both the human reader and the
machine reader, through imaginative typography and
punctuation.

First we construct some simple solutions to ex-
isting disambiguation problems, before we move on
to the general problem of structure and semantics.

• The comma in a dual role. We could disam-
biguate the sentence ‘She took a photograph of
her father, the president, and the vice president.’
in the following ways: ‘She took a photograph of
her father ,the president, and the vice president.’
Here we try to convey the information that her
father is the president by putting ‘the president’
within parenthetical comma, which is comma
that is shifted after the word-space to indicate
the parenthetical nature of it. Likewise, when
there is a list with items containing coordinating
conjunctions, and there is no Oxford comma,
we would compress, expand or letterspace the
text automatically. The example we have is the
sentence ‘We had ice cream, fish and chips and
strawberries and cream at the tennis match.’
We could disambiguate this by writing it this
way: ‘We had ice cream, fish · and · chips and
strawberries · and · cream at the tennis match.’
We hope that the typography of LATEX will be
clever enough to distinguish this nesting indi-
cated here through curly braces and provide
subtle typographic effects to indicate the nested
structure. When Zapf’s hz-program squeezed or
stretched individual characters by a few percent-
age points or letterspaced text (to avoid rivers)
in the mid-1990s, it was considered sacrilege by
purists. Be that as it may, these features, which

Zapf referred to as ‘micro-typographic features’,
have entered LATEX and other typesetting pro-
grams. We believe that these features, when
used appropriately, will serve the purpose of
disambiguation.

• Relative clause ambiguity. Can we disambiguate
the following sentence? ‘I forgot what he asked
for.’ As mentioned above, this has two possible
interpretations:

1 I forgot that he asked for something;

2 I cannot remember what it was that he
asked for.

The solution:

1 ‘I forgot¿ what he asked for.’

2 ‘I forgot what¿ he asked for.’

We hope that the introduction of new punctu-
ation after ‘forgot/what’ solves the problem. It
may require subtle education of both the readers
and authors.

• Sentence break. The sentence demarcation prob-
lem from Box 1. A simple solution would be to
introduce a hidden (nonprinting) demarcation
symbol between sentences. We could introduce
a new character, say a square dot, ‘ ’ (a small
version of the Halmos square box). This would
provide unambiguous information to a ‘machine
reader’.

At present, with all the progress in AI, especially
Deep Learning, there are now quite a few natural
language processing (NLP) libraries that could also
be used by the LATEX engine to interpret the in-
put and produce typeset output as desired, with
options to switch on/off such features by the authors
of LATEX. Such interactive NLP systems can also
query the author when in doubt. Of course, all this
becomes feasible only if we have a rich set of font fam-
ilies with subtle variations and a set of new glyphs
for proposing new punctuation marks. A sentence
tagged with parts of speech by NLP, with additional
indicators introduced by LATEX authors, can provide
a wide scope for LATEX to typeset the output with
subtle typographic variations revealing the underly-
ing structure. Noun phrases and verb phrases can
be indicated by either a different font-face variant
and/or replacing word-spaces within the phrases by
a middle dot, ‘·’, as in the example, ‘We had ice
cream, fish · and · chips and strawberries · and · cream
at the tennis match.’

Zapf’s ‘micro-typographic features’ have entered
LATEX and other typesetting programs, and these
features along with newer typefaces for representing
grammatical structures and parts of speech will help
us evolve language and typography to higher levels.

Revealing semantics using subtle typography and punctuation

170 TUGboat, Volume 38 (2017), No. 2

6 Conclusion

Evolution of style, typography and punctuation have
been studied in some detail here. In this article we
have also indicated the flavour of the interesting new
world that lies before us, while at the same time
indicating the need for a huge family of fonts in the
great tradition of Knuth’s computer modern font or
even a myriad of fonts in the MetaPost tradition. We
also need a repertoire of new glyphs for punctuation,
to express ourselves fully in writing as we would
indicate in speech (in tonal variations) and actions
(hand, head movements) in our real life. There are
quite a few glyphs in musical notation that can give
us the inspiration and direction: �
 � � ♩ ♮ ♭ ♯.
Music is an interesting area to start searching for,
as it was here in our conception of music that our
baby steps in speech and language took shape; there
could be something interesting that we left behind
in our early creative outpourings.

References

Boorstin, D. J. (1983). The Discoverers.
Random House.

CMS15 (2003). The Chicago Manual of Style.
The University of Chicago Press, 15th edition.

CMS16 (2010). The Chicago Manual of Style.
The University of Chicago Press, 16th edition.

Houston, K. (2013). Shady Characters:

The Secret Life of Punctuation, Symbols & Other

Typographical Marks. W.W. Norton & Company.

Sutcliffe, A. J. (1994). The New York Public

Library Writer’s Guide to Style and Usage.
The New York Public Library and The Stonesong
Press Inc.

⋄ Kumaran Sathasivam
Writer and cosultant, Chennai, India
kumaran.sathasivam (at) gmail dot com

⋄ S.K. Venkatesan
TNQ Books and Journals, Chennai, India
skvenkat (at) tnqsoftware dot co dot in

⋄ Yakov Chandy
TNQ Books and Journals, Chennai, India
yakov (at) tnq dot co dot in

Kumaran Sathasivam, S.K. Venkatesan and Yakov Chandy

TUGboat, Volume 38 (2017), No. 2 171

To justify or not to justify?

Why bad typography may be harmful for

your readers

Boris Veytsman and Leila Akhmadeeva

1 Introduction

One of the most well-known algorithms in TEX is the
famous hyphenation algorithm, which implements
true justification. Some other computer typesetting
systems do not bother with hyphenation, just in-
creasing spacing between the words until the lines
of text have the same width. While this method is
frowned upon by typesetters, it is a valid question
whether it makes a measurable difference for read-
ers. This question is especially important for readers
with cognitive impairments, for example, post-stroke
patients.

In one of our previous works [1] we studied
the difference in reading speed and comprehension
between justified hyphenated text, and ragged right
non-hyphenated text. It showed that justified texts
were read slightly faster than ragged right, but on
delayed (see below) tests gave slightly worse results.
However, one can argue that in [1] we measured two
different factors: justification and hyphenation, and
their influence was confounding. Fortunately, TEX
allows us to separate them, and study hyphenation
and justification separately.

In this work we compared the speed of read-
ing and comprehension of two sets of unhyphenated
texts: justified (“sloppily justified”, using LATEX ter-
minology), and ragged right. We measured these
factors for post-stroke patients.

2 Experimental methods

The experimental methods were the same as in our
previous papers [1–4]. A group of n = 20 post-stroke
patients (Ufa, Russia) was given two texts, A and B.
Each text was typeset with LATEX using ParaType
Serif fonts. Half of the participants were given text A
justified and text B ragged right, while the other
half had text B justified and text A ragged right.
The participants were asked to read the text. After
a minute they marked their current reading position.
Immediately after the reading the participants were
given a multiple choice test (10 questions with 4 vari-
ants of answers to choose from). To test long-term
memory, we repeated the test 60 minutes later.

The Babel package and \selectlanguage{nil}

was used to switch off hyphenation. The justified
texts were typeset with the setting \sloppy. The
ragged right texts were typeset with \raggedright.

0.0

0.5

1.0

1.5

2.0

−100 −50 0 50

c
o

u
n

t

Figure 1: Histogram of difference between justified
and ragged right in reading speed results (words per
minute).

0

2

4

6

−2 0 2 4

c
o

u
n

t

Figure 2: Histogram of difference between justified
and ragged right in immediate comprehension results
(correct answers).

3 Results

The results of the experiment are shown in Figures 1,
2 and 3. While there is no noticeable difference
between justified and ragged right texts with re-
spect to reading comprehension (in either immediate
or delayed tests), there is a difference in reading
speed: sloppily justified texts are being read signifi-
cantly slower : p = 0.01. The average difference was
−32.3 words per minute.

To justify or not to justify? Why bad typography may be harmful for your readers

172 TUGboat, Volume 38 (2017), No. 2

0

1

2

3

4

−2 0 2

c
o

u
n

t

Figure 3: Histogram of difference between justified
and ragged right in delayed comprehension results
(correct answers).

4 Discussion

The results of this study provide an interesting com-
plement to the conclusions of [1], where the difference
in speed of reading between justified and ragged right
texts was quite small— unlike our present results.

It is unknown what causes this difference be-
tween “sloppily” justified and ragged right texts.
One can speculate that uneven spacing between the
words produced by “sloppy” justification disturbs
reading, especially for patients with cognitive chal-
lenges.

Of course our sample was quite small. However,
if the results hold, they might have important prac-
tical implication. Namely, they suggest that it is
better not to justify at all than to justify without
hyphenation. Or, to say it succinctly, \sloppy is not
your friend.

Acknowledgments

We gratefully acknowledge the TUG Bursary grant
which made possible the participation of one of the
authors in the conference. We are grateful to Darya
Popenova, Irina Muhamadieva and Albina Kireeva
for their help with the experiments.

References

[1] Leila Akhmadeeva, Rinat Gizatullin, and Boris
Veytsman. Are justification and hyphenation
good or bad for the reader? First results.
TUGboat, 37(2):148–151, 2016. https://tug.

org/TUGboat/tb37-2/tb116akhmadeeva.pdf.

[2] Leila Akhmadeeva, Ilnar Tukhvatullin,
and Boris Veytsman. Do serifs help in
comprehension of printed text? An experiment
with Cyrillic readers. Vision Research, 65:21–24,
2012.

[3] Boris Veytsman and Leila Akhmadeeva.
Towards evidence-based typography: First
results. TUGboat, 33(2):156–157, 2012.
https://tug.org/TUGboat/tb33-2/

tb104veytsman-typo.pdf.

[4] Leila Akhmadeeva and Boris Veytsman.
Typography and readability: An experiment
with post-stroke patients. TUGboat,
35(2):195–197, 2014. https://tug.org/

TUGboat/tb35-2/tb110akhmadeeva.pdf.

⋄ Boris Veytsman
Systems Biology School &

Computational Materials
Science Center, MS 6A2

George Mason University
Fairfax, VA, 22030, USA
borisv (at) lk (dot) net

http://borisv.lk.net

⋄ Leila Akhmadeeva
Bashkir State Medical University
3 Lenina Str.
Ufa, 450000, Russia
la (at) ufaneuro (dot) org

http://www.ufaneuro.org

Boris Veytsman and Leila Akhmadeeva

https://tug.org/TUGboat/tb37-2/tb116akhmadeeva.pdf
https://tug.org/TUGboat/tb37-2/tb116akhmadeeva.pdf
https://tug.org/TUGboat/tb33-2/tb104veytsman-typo.pdf
https://tug.org/TUGboat/tb33-2/tb104veytsman-typo.pdf
https://tug.org/TUGboat/tb35-2/tb110akhmadeeva.pdf
https://tug.org/TUGboat/tb35-2/tb110akhmadeeva.pdf

TUGboat, Volume 38 (2017), No. 2 173

Making ltxsparklines: The journey of a

CTAN contributor into the world of CRAN

Boris Veytsman

Edward Tufte defines a sparkline as [. . .] a small

intense, simple, word-sized graphic with typographic

resolution. Sparklines mean that graphics are no

longer cartoonish special occasions with captions and

boxes, but rather sparkline graphics can be everywhere

a word or number can be: embedded in a sentence, ta-

ble, headline, map, spreadsheet, graphic. Data graph-

ics should have the resolution of typography [5].
For example, to convey an idea of the evolution

over time of TUG membership, we can just insert
in the text a simple graph . This graph,
better than many words, describes the growth of
membership in the pre-Internet era, when the only
way to get TEX was to join TUG—and the relative
stability for many years now.

Similarly, the famous data set about the flow of
Nile at Aswan can be described by a simple word-like
graph with the gray line showing
the interquartile range.

The “resolution of typography” mentioned by
Tufte is the natural realm of TEX. Naturally there
is a LATEX package sparklines [2] implementing these
small graphs. In this package, the code producing a
typical sparkline looks like this:

\begin{sparkline}{10}

\sparkrectangle 0.3 0.8

\sparkdot 0.5 0.62 gray

\sparkdot 1 0.2 black

\spark 0 0 0.1 0.95 0.2 0.8 0.3

0.3 0.4 0.52 0.5 0.62 0.6

0.7 0.7 0.5 0.8 0.4 0.9

0.25 1 0.2 /

\end{sparkline}

While the package is quite versatile, and can make
many different kinds of sparklines, it leaves all calcu-
lations to the user. It would be much more convenient
to plot data using a simple command. While it is
possible to write a TEX-only interface for this pack-
age from a data processing software also written in
pure TEX, for example, datatool [4], in this paper
we describe a different approach based on R [3]

Many of us are quite familiar with R. Some,
like me, learned to love it after the brilliant lecture
by Uwe Ziegenhagen at TUG 2010 [8]. An R-using
TEXnician spends most of her time editing and com-
piling .rnw files. These files look like LATEX, but
contain “chunks” of R code. Processed by R, these
files become .tex files, with R code substituted for
the calculation results, figures, etc. The result is a

typeset document containing the full report of the
research project.

Thus it was a natural decision for me to write
an R interface to LATEX sparklines package. This in-
terface is released as the R package ltxsparklines [6].

The package defines a single R command, named,
naturally enough, sparkline. It outputs a LATEX
sparkline environment. The command has a num-
ber of possible arguments. Below these arguments
are listed with the default values:

sparkline(x = NULL, y = NULL,

xspikes = NULL, yspikes = NULL,

xdots = NULL, ydots = NULL,

dotcolor = NULL,

width =

getOption("ltxsparklines.width"),

rectangle =

c(NA, NA),

xlim = c(NA, NA),

ylim = c(NA, NA),

clip =

getOption("ltxsparklines.clip"),

na.rm =

getOption("ltxsparklines.na.rm"),

bottomline =

getOption("ltxsparklines.bottomline"),

bottomlinelength =

NA,

bottomlinex =

getOption("ltxsparklines.bottomlinex"),

startdotcolor =

getOption("ltxsparklines.startdotcolor"),

enddotcolor =

getOption("ltxsparklines.enddotcolor"),

output =

getOption('ltxsparklines.output'))

The options are fully documented in the package
itself. Here we describe the general idea.

Three kinds of sparklines can be created: lines
(defined by x and y) , bars (defined by
xspikes and yspikes) , and dots (de-
fined by xdots and ydots) . It is possible
to combine them, for example, . One can
set both x and y coordinates, or just y coordinates.
In the latter case the sequence 1, 2, . . . will be used
for the missing x coordinates. Alternatively thee
command can be given a time series as an argument,
and in this case the time/date values will be used
for x coordinates, and the value of the series for y

coordinates.
Other arguments can change the appearance

of the graphics. Compare, for example, the re-
sult of the call sparkline(c(2, 20, 1, 16, 4),

Making ltxsparklines: The journey of a CTAN contributor into the world of CRAN

174 TUGboat, Volume 38 (2017), No. 2

ylim=c(0, 8), xlim=c(2, 5)): ,
and the similar call clipping the output:
sparkline(c(2, 20, 1, 16, 4), ylim=c(0, 8),

xlim=c(2, 5), clip=TRUE): .
There are several color-related options, so one

can create bright and distinct sparklines.
With this package the sparklines in the begin-

ning of this paper were typeset as simple as

TUG membership

sparkline(xspikes=tug$Date,

yspikes=tug$Members,

ylim=c(0,NA))

Nile flow

sparkline(Nile,

rectangle=quantile(Nile,

c(0.25, 0.75)),

enddotcolor='black',

width=20)

Here tug is a data frame, obtained by reading
the comma separated file tug.csv using R function
read.csv, and Nile is the time series included in
the standard R distribution.

There are two ways to generate .tex files from
R: the more traditional Sweave package [1,8] and the
newer and spiffier knitr [7]. (A review of the recent
book on knitr was published in TUGboat 35:1: tug.
org/books/reviews/tb109reviews-xie.html.) As
might be expected, the ltxsparklines package works
with both.

This is my first contribution to CRAN, The Com-
prehensive R Archive Network, and it was interesting
for me to observe the differences between CRAN and
CTAN. (By the way, CTAN was the first archive
network of this kind, and other projects like CRAN

and CPAN (for Perl developers) used our site as an
inspiration.)

It looks as if CRAN has a more strict editorial
policy than either CTAN or CPAN. Each package
must follow a certain structure including detailed
documentation, and contributions not obeying this
are automatically rejected by the site upload scripts.
After the contribution is approved by the robots,
there is the next line: human maintainers. My pack-
age was accepted after several rounds of e-mail ex-
changes with CRAN admins, and anecdotally this
is rather the rule than an exception. One of the
problems was the compilation of examples. While
the official policy of CRAN allows for documentation
in PDF format, the admins really wanted it to be
compilable on their machines from sources. This was
problematic since CRAN machines had a rather old
TEX installation, and my examples needed a fairly
recent version of LATEX sparklines package (some of

the recent changes in the LATEX package were written
by me to facilitate R interface). At the end I just
included the full code in my LATEX source rather
than call \usepackage{sparklines}. I would ven-
ture to say that the interaction with CTAN (or, for
this matter, CPAN) admins is easier for the authors
than dealing with CRAN. On the other hand, I can
understand the rationale behind CRAN strictness.

In summary, it was fun for me to write my first R
package. I hope it might be useful for fellow TEXers
to create dynamic reports with R.

References

[1] Friedrich Leisch and R-core. Sweave

User Manual, November 2016. https:

//stat.ethz.ch/R-manual/R-devel/library/

utils/doc/Sweave.pdf.

[2] Andreas Loeffler and Dan Luecking. Sparklines,
December 2016. https://ctan.org/pkg/

sparklines.

[3] R Development Core Team. R: A Language

and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna,
Austria, 2011.

[4] Nicola L.C. Talbot. User Manual for datatool

bundle, July 2016. https://ctan.org/pkg/

datatool.

[5] E.R. Tufte. Beautiful Evidence. Graphics Press,
2006.

[6] Boris Veytsman. Package ‘ltxsparklines’,
January 2017.
CRAN: https://CRAN.R-project.org/
package=ltxsparklines

Github: https://github.com/borisveytsman/
ltxsparklines.

[7] Yihui Xie. Dynamic Documents with R

and knitr. Chapman and Hall/CRC, Boca
Raton, Florida, 2nd edition, 2015. ISBN
978-1498716963.

[8] Uwe Ziegenhagen. Dynamic reporting with
R/Sweave and LATEX. TUGboat, 31(2):189–192,
2010. https://tug.org/TUGboat/tb31-2/

tb98ziegenhagen.pdf.

⋄ Boris Veytsman

Systems Biology School &

Computational Materials

Science Center, MS 6A2

George Mason University

Fairfax, VA, 22030, USA

borisv (at) lk (dot) net

http://borisv.lk.net

Boris Veytsman

tug.org/books/reviews/tb109reviews-xie.html
tug.org/books/reviews/tb109reviews-xie.html
https://stat.ethz.ch/R-manual/R-devel/library/utils/doc/Sweave.pdf
https://stat.ethz.ch/R-manual/R-devel/library/utils/doc/Sweave.pdf
https://stat.ethz.ch/R-manual/R-devel/library/utils/doc/Sweave.pdf
https://ctan.org/pkg/sparklines
https://ctan.org/pkg/sparklines
https://ctan.org/pkg/datatool
https://ctan.org/pkg/datatool
https://CRAN.R-project.org/package=ltxsparklines
https://CRAN.R-project.org/package=ltxsparklines
https://github.com/borisveytsman/ltxsparklines
https://github.com/borisveytsman/ltxsparklines
https://tug.org/TUGboat/tb31-2/tb98ziegenhagen.pdf
https://tug.org/TUGboat/tb31-2/tb98ziegenhagen.pdf

TUGboat, Volume 38 (2017), No. 2 175

TEX in Schools? Just Say Yes: The use of

TEX at the Faculty of Informatics, Masaryk

University

Petr Sojka and Vít Novotný

Abstract

Students at Masaryk University (MU) use TEX for
many purposes, such as writing theses, essays, and
papers. It is also used by the staff for teaching elec-
tronic publishing and literate programming, for writ-
ing scientific papers, quizzes and teaching resources,
and for generating documents and web pages from
university databases by the university information
system. TEX and related technologies have been sys-
tematically supported and deployed at the Faculty
of Informatics of MU (FI MU) for more than two
decades. In this paper, we describe the TEX-related
support and projects that we have realized at vari-
ous levels. These include the design of the Faculty’s
visual identity, resources for teaching electronic pub-
lishing, and for database publishing directly from the
University’s information system. We evaluate the
outcomes, and consider some possible future deploy-
ments of TEX-related technologies. With the data
analytics of fithesis3 class support and its use at MU,
we give arguments why the answer to the often-asked
question in the title is in the affirmative, at least for
computer science schools like ours and for authoring
math publications.

Why not just hope that in the flow of getting
words on a medium we play our humble role

and hope we’re not forgotten but remembered
as inspiration. (Hans Hagen, [7, p. 32])

1 Introduction — basic premises

TEX was born at a university, in the Stanford Com-
puter Science Department, but primarily for one
project of its author. Should it be used and taught
widely in schools? Such questions have often been
asked and answered [22, 4, 19]. Under which premises
and for what purposes should TEX and its friends
be used in schools? The most appropriate answer is
that it depends on the type of school, on the tasks,
and on the end users:

• TEX as a programming (macro) language?
Probably not.

• TEX as an example of a literate programming
paradigm? Maybe.

• TEX as a low level typesetting tool? In some
cases, it depends on the type of school.

• TEX in the LATEX format as a reusable scientific
authoring markup tool? Probably yes.

Figure 1: Hàn Thế Thành studied at FI MU in Brno
from 1991 through 2001

• TEX as a community building tool? No reason
not to.

Working in academia for more than a quarter of a
century, let us share our experience with TEX in the
context of the Institute of Computer Science and the
FI MU in Brno. The rest of this paper should be
understood in this light; the implications are specific
to this type of school, place, time and other factors.

Historia magistra vitae (Latin proverb)

2 History of TEX at Czech schools — just a

predilection or an objective good?

Let us start with some historical remarks.

1980s TEX found its way to Czechoslovakia at the
end of the eighties, and was probably first used by
the dissidents when preparing books and booklets
that were forbidden to be printed officially [5]. For
this reason, Czech diacritics had to be added to
Computer Modern fonts [47].

1990s Within a year of the Velvet Revolution, the
Czechoslovak TEX Users Group (CSTUG) was found-
ed. With the vast majority of the individual and insti-
tutional members of CSTUG being part of academia,
high schools and universities became natural hubs of
TEX know-how.

To put this into a historical context — Hàn Thế
Thành (Figure 1) came from socialist Vietnam and
started to learn Czech at a Czech school and sub-
sequently enrolled in the FI MU. The first Internet
ADSL 56 kbps line from Linz in Austria was rented by
the consortium of Czech universities to share. And
at 290 kB, latex.tex was easy to both search and
edit even on a PC XT with 640 kB of memory and
two floppy diskettes.

As TEX began to gain momentum, a group of
enthusiasts decided to organize a TEX conference in
Prague [48]. Thus, EuroTEX 92 was born with about
300 participants from all over the world. TEX started
to be used for book and database publishing [40].

TEX in Schools? Just Say Yes: The use of TEX at the Faculty of Informatics, Masaryk University

176 TUGboat, Volume 38 (2017), No. 2

A new Czechoslovak variant of the Computer
Modern fonts (csfonts) was created. Math jour-
nals started switching to TEX. Czechoslovak Math-

ematical Journal, Applications of Mathematics, and
Mathematica Bohemica in Prague, Archivum Mathe-

maticum in Brno, and Mathematica Slovaka in Brati-
slava all used TEX as their primary typesetting tool.

Thus the community was already starting to
grow. Groups of mathematicians started to type-
set their reviews for the German Zentralblatt Math

journal, and (LA)TEX courses started to find their
way into schools, primarily as tools for typesetting
mathematics. One such a course was even taught at
TUG 1993 in Aston, UK.

At that time, the first author was working at the
Institute of Computer Science, Masaryk University,
and promoted the use of TEX there. There was a se-
ries of popular articles about TEX published in a uni-
versity bulletin Zpravodaj MU and in CSTUG’s bul-
letin Zpravodaj CSTUG. MU became an institutional
member of TUG. TEX was actively supported and
customized versions of TEX supporting the Latin2
input encoding were created and compiled on shared
TEX installations within the university.

The first computer science faculty in the Czech
Republic — the Faculty of Informatics, Masaryk Uni-
versity, Brno (FI MU) — was founded in 1994. Jiří
Zlatuška, a proponent of TEX, became its first dean.
The faculty logo was designed by the first author as
a ligature FI based on Escher’s Penrose triangle, as
seen in Figure 2. The motto of the logo comes from
Blaise Pascal’s Pensées: “The eternal silence of these
infinite spaces terrifies me”.

Figure 2: The logo of the Faculty of Informatics: the
ligature FI, as a symbol of quality typography, was
implemented in METAFONT [49]. The optically scaled
Computer Modern letters in the circular text were
recursively joined using the ligature mechanism of
METAFONT.

Figure 3: An example of a timetable for the 1MI

study group at FI MU in 1994.

TEX became the mainstay of everyday life at
the Faculty. There was a need to typeset timetables,
e.g. for lecture rooms, for individuals and for study
groups. TEX has proven itself to be an ideal tool
for the job (see Figure 3). TEX has been used for
the typesetting of almost all database outputs of the
Faculty administration [26], including phone directo-
ries, course catalogues — as seen in Figure 4 — and
study diplomas.

A course on electronic document preparation
opened in 1994. It was designed as a blend of both
the theory and practice [18] of document preparation.
The course teaches students about how information is
transferred from the mind of an author via a markup
language (LATEX) to the reader’s mind. They are
taught about the separation of form and content and
about the particulars of both paper and digital out-
put formats of PDF and (X)HTML. Since document
development and program development have much
in common, the students are taught to use versioning
systems and automation tools such as make. As far
as TEX is concerned, the students learn both the
practicalities, such as the typesetting of documents
with an emphasis on theses, and the theory covering
TEX’s line-breaking and hyphenation algorithms.

Every effort was made to ensure the Faculty was
a safe playground to experiment with TEX toys and
tools, for the benefit of all, and as part of the stud-
ies [27]. For students like Hàn Thế Thành, TEX was
the obvious choice for typesetting their essays and
theses. Hàn Thế Thành picked TEX and the recently
designed PDF format as the topic of his Master’s
thesis. TEX has been extensively used by the staff
for their academic output and most research publi-
cations have been prepared in TEX. The Faculty’s
technical report series has been designed in its own

Petr Sojka and Vít Novotný

TUGboat, Volume 38 (2017), No. 2 177

Figure 4: The syllabus of the Electronic publishing course typeset in Minion by
pdftex as a part of the Yellow book of courses taught at FI MU in 2004.

LATEX style with Hermann Zapf’s Palatino as the
faculty’s primary font.

To automate the typesetting of longer texts and
database publishing, quality hyphenation was re-
quired. The results of the first author’s research [45,
32] were reported at TUG 1995 (and elsewhere), where
the first author met Donald Knuth and took the
photo in Figure 5. Don was subsequently invited to
Brno to receive his twentieth honorary doctorate.

When he arrived in Brno, Don saw his Computer
Modern fonts on the timetables of public transport
tram stops (see Figure 7). He was delighted to see
the fruits of his ‘labour of love’ being used on the
other side of the globe, both in theory and in practice.
He mentioned this in his inaugural speech (Figure 6)
when he became the first recipient of an honorary
doctorate from FI MU.

In 1996, Hàn Thế Thành defended his masters
thesis [10]; the program called tex2pdf [31] was
presented to the TEX community at the TUG 1996
conference in Dubna, Russia. The program caught
the eye of the TEX community and was subsequently
renamed pdftex and its manual was drafted [15].

The new toy needed users willing to test it in
day-to-day TEX authoring work. We maintained
faculty-wide installations for multiple operating sys-
tems that shared the same texmf trees; in addition,

Figure 5: Donald Knuth’s finger raised when talking
to Jiří Zlatuška at the TUG 1995 conference in Florida;
photo taken by Petr Sojka.

we kept historical TEX Live installations and made
them available via a module switching mechanism.
Twenty years later, most TEX Live versions of the
past are still installed and ready to use; this makes
it easy for authors to go back in time and retypeset
decades-old material. Lowering the bar for starting
with TEX, by having the tools ready to use and a
local community ready to help, made TEX the go-to

TEX in Schools? Just Say Yes: The use of TEX at the Faculty of Informatics, Masaryk University

178 TUGboat, Volume 38 (2017), No. 2

Figure 6: Donald Knuth’s talk at the Faculty of Informatics, Masaryk University, Brno, 1996

Figure 7: Brno public transport timetables featuring
Computer Modern fonts during Knuth’s visit to Brno
in March 1996.

system for authoring long documents such as books
or theses. The fithesis LATEX class for typesetting

theses was designed, installed and offered to the stu-
dents. They were given a small booklet “Getting
started with TEX at FI” on enrollment day at the
Faculty.

There were conferences being organized by the
Faculty, e.g. Gödel in 1996, and a multiconference on
the Mathematical Foundations of Computer Science
(MFCS) in 1998. TEX was used for typesetting all
conference materials from a single textual database;
Figure 9 shows one example of this material. In the
Seminar on Linux and TEX (SLT) organized mainly
by the students themselves, Linux and TEX enthu-
siasts developed not only an interesting research
program, but also the icons seen in Figures 8 and 10
drawn by Petra Rychlá.

The information system of the Faculty, also de-
veloped partly by the students [26], generated most
of its output via a secure independent sandboxed
TEX installation. Data for the course catalogue were
acquired from the teachers using web forms, then vali-
dated, converted to LATEX, and typeset. The DTD for
the validation of the submitted data enabled the use
of special entities &TeX; and &LaTeX; ,. Hyphen-
ation pattern were further improved [33] to minimize
errors in automated workflows. Students were moti-
vated to actively participate in TEX-related projects.
Mirka Misáková implemented Gutenberg-like justi-
fication in METAFONT as a part of her thesis [21],
Jan Pazdziora studied line and page breaking al-
gorithms [25], and Pavel Janík studied digital font
formats [16]. Most of NT S [50] was programmed in
Brno by the MU alumnus, Karel Skoupý [30].

Petr Sojka and Vít Novotný

TUGboat, Volume 38 (2017), No. 2 179

Figure 8: Icons for the Seminar on Linux and TEX (SLT ’98), drawn by Petra Rychlá.

Figure 9: A personalized invitation card typeset for
the participants of the MFCS ’98 conference held at
FI MU.

Figure 10: The logo of the Seminar on Linux and
TEX(SLT), drawn by Petra Rychlá.

2000s Hàn Thế Thành consulted on further pdftex

improvements [11] with Herman Zapf, and conducted
several microtypographic experiments together with
Hans Hagen who came to give a special course on Ty-
pographic Programming in Brno. In October 2000,
Hàn Thế Thành finished his dissertation [12], and

left Brno after 11 years of study. He returned to
Vietnam, secured his family financially and for a
short while worked in Vietnamese academia [13, 14].

As the power of electronic documents and de-
mand for them was increasing, new coursebooks and
interactive teaching materials were created [6]. There
was demand for animations in PDF [34], for the au-
tomation of multiple choice testing [36], and for inter-
active teaching materials in PDF and JavaScript [35].
TEX’s notation was so common for the University
math teachers that they demanded an extension of
the interface for creating online quizzes that would
enable them to directly input LATEX formulae using
a special and element. Math formu-
lae were rendered on the fly via a pipe of LATEX to
dvipng. The software for the automated scanning
and evaluation of test sheets generated by TEX [9],
an extended version of patgen called opatgen that
enabled the direct use of UTF-8 patterns [2, 1, 39],
and the software for producing animated PDFs in
pdftex [8] may serve as examples of other TEX-
related tools that have been designed and developed
by students and staff at FI. The reuse of textbook
content authored in TEX for multiple output devices
was also requested. We have been able to show that,
given that form and content are separated in the
markup, several different outputs can be easily gen-
erated via TEX, namely PDFs suitable for printing,
PDFs suitable for reading on a screen, HTML for
web-enabled devices, and XHTML/MathML for fully
standards-compliant web-enabled devices [42] with-
out the monstrous systems of large publishers. Our
TEX-based production system is used by most of
journals delivering to the DML-CZ library [29, 43].

At the time when TEX and Knuth became widely
known, many software businesses started to move
to Brno, which is now known as the Silicon Valley

TEX in Schools? Just Say Yes: The use of TEX at the Faculty of Informatics, Masaryk University

180 TUGboat, Volume 38 (2017), No. 2

Figure 11: The Czech translation of TAOCP, Vol. 1,
published by Computer Press in 2008.

of Central Europe. Consequently, a publisher based
in Brno had the Art of Computer Programming
(TAOCP) translated into Czech (by a FI MU alumnus)
and retypeset from Knuth’s sources (Figure 11).

2010s Leveraging their TEX typesetting know-how,
the students and alumni of FI MU joined several
projects related to digital mathematical libraries,
namely DML-CZ and EuDML. A TEX-based workflow
for journal publishing has been developed with an
automated export of an archival version that would
be stored in the digital library. The Archivum Math-

ematicum journal published by MU uses the tools
and the workflow developed for DML-CZ [44, 38].
Several related tools have been developed: an effi-
cient PDF recompression technique [41] and the TEX
math indexing and searching algorithm from the
MIaS project [20] deployed in EuDML [46]. As blind
students needed to study math from TEX-authored
textbooks, support for Czech Braille output has been
prepared as part of a master thesis [17].

The creation of TEX-related software has been
supported by the dean’s research project program
and offered as a topic for theses. The second author
of this paper, supervised by the first author, created
a new version of the fithesis class [23] with fine-tuned
support for all nine faculties of Masaryk University.
Thousands of students across the university now au-

thor their theses in LATEX with the ability to discuss
problems via a dedicated forum in the university in-
formation system. Students have also started to file
pull requests to customize style options of other fac-
ulties, a sign of a growing faculty-local TEX support
community.

Another development was triggered by the in-
ability of markdown to prevent the occurrence of
Czech vowelless prepositions at the end of lines
in FI MU senate minutes, which is a grave error
according to Czech typography rules. The new
markdown.tex macro package that enables the pro-
cessing of markdown documents directly in TEX solves
this issue as a tiny side-effect [24].

The fruits of separating form and content were
recently reaped when Masaryk University changed
the visual style for their documents. Changes in the
TEX-based workflow were minimal and did not affect
the authors much — a muletter style file for prepar-
ing letters, and a thesis review document template
were put on the Faculty’s GitLab server shortly after
the new visual style was released and smoothed the
transition significantly.

The use of TEX at MU currently celebrates a
quarter century of support and development, where
students and staff have contributed significantly both
to the questions and solutions in the digital typogra-
phy world and especially within the 40-year-old TEX
family.

So, maybe instead of ambitious themes, the
only theme that matters is: show what you did

and how you did it. (Hans Hagen, [7, p. 32])

3 Where we are now and what’s next —

predictions

Nelson Beebe predicted the future of TEX more than
a decade ago [3]. The world we live in constantly
changes, and while most predictions still hold, some
have to be revisited. We have tried to evaluate the
influence of the TEX tools and predilections using
statistical data about theses defended not only at
FI MU, but across the entire university.

With the creation of the fithesis3 LATEX class,
the level of support for thesis writing entered a new
era [23]. Templates in fithesis3 were prepared for each
of the nine faculties of Masaryk University. Writing
a thesis is now just a few clicks away even if the
author does not have a working local TEX installa-
tion. Enchanted by the ease of the authoring process
and the beauty of the resulting documents, it seems
likely that many will install TEX on their devices at
some stage. Cloud TEX environments enable much
faster learning by example than before, and allow for

Petr Sojka and Vít Novotný

TUGboat, Volume 38 (2017), No. 2 181

online consulting, commenting by supervisors, and
collaborative debugging.

The portability, stability, reliability, and style
uniformity enforced implicitly by visible markup, the
ease of writing math, as well as the aesthetic and
visual qualities of the output are the main benefits
compared to WYSIWYG editor alternatives. This is
attractive for students, as can be seen in Figure 12.

In parallel, a beamer theme fibeamer has been
developed and made available in TEX Live and cloud
TEX platforms to allow the students to prepare their
presentations for thesis defense without having to
bother about the visual style of their slides. This
appears to be especially attractive for the students
of the Faculty of Arts — see Figure 13.

Approximately 40,000 students study at Masa-
ryk University and all theses defended are archived
in the university information system. We have used
heuristics to detect whether a thesis has been written
in TEX on a sample of 44,875 theses submitted at
MU from 2010 through 2015. It is estimated that the
number of theses written in TEX across the entire
University steadily increased from 5.67 % in 2010 to
6.28 % in 2014. Extrapolating this trend indicates
that 100 % of theses will be written in TEX by 2783 ,.

Theses written using TEX had been awarded
grade A statistically significantly more often and
grades C and D statistically significantly less often
than theses not written using TEX [23]. The awarded
grades are summarized in Table 1 and in Figure 14.
There is clear evidence that theses written in TEX
received better grades than theses written using dif-
ferent tools. It remains to be shown that the grades
students received for theses written in TEX are con-
sistently better than the grades the students received
for their state exams — the hypothesis is that using
TEX helped the students reach grades that do not
correspond to their ability to study in general.

To conclude, the main lessons learned from TEX
at MU are:

• Sustainable support for [thesis] writing in TEX
and incentives for community building by univer-
sity are very important. There should ideally be
a playground where students and faculty mem-
bers can play and experiment together, work on
joint projects, and have fun.

• Using TEX in the daily agenda of the university
is motivating, and is a win-win situation for both
students and faculty members — the students
learn new things while the faculty administra-
tion and teaching is effective and enjoyable.

• The TEX typesetting kernel gives visually ap-
pealing results, often superior when compared

to other alternatives, especially when math type-
setting is needed, as in STEM education.

• Contrary to most WYSIWYG alternatives, the
use of TEX gives consistent results, is produc-
tive and efficient for database and automated
publishing, and for long documents containing
math. It is a safe choice, especially when there
is official support.

• The separation of form and content and TEX
as a fixed point in document authoring is an-
other benefit academics recognize in their ever-
changing world: it allows reusing content in dif-
ferent portable forms and formats that appear
over time.

• The usage of TEX as a typesetting kernel in a
university information system has paid off in
decades of use.

Young, smart students who enjoy playing with
TEX document tools are constantly appearing, join-
ing the community, and taking on ambitious new
TEX-related projects and challenges. This allows the
retiring faculty members to take a well-earned rest.

References

[1] David Antoš. PATLIB, Pattern Manipulation
Library. Master’s thesis, 2002. Masaryk University,
Brno, Faculty of Informatics (advisor: Petr Sojka),
is.muni.cz/th/3077/fi_m/.

[2] David Antoš and Petr Sojka. Pattern
Generation Revisited. In Simon Pepping,
editor, Proceedings of the 16th European TEX

Conference, Kerkrade, 2001, pages 7–17, Kerkrade,
The Netherlands, September 2001. NTG.
www.ntg.nl/EuroTeX/2001/.

[3] Nelson H. F. Beebe. 25 Years of TEX and
METAFONT: Looking back and looking
forward — TUG 2003 keynote address. TUGboat,
25(1):7–30, 2004. tug.org/TUGboat/tb25-1/

beebe-2003keynote.pdf.

[4] Al Cuoco. TEX in schools: Why not? TUGboat,
12(2):303–304, June 1991. tug.org/TUGboat/

tb12-2/tb32letters.pdf.

TEX in Schools? Just Say Yes: The use of TEX at the Faculty of Informatics, Masaryk University

182 TUGboat, Volume 38 (2017), No. 2

0

1000

2000

3000

4000

5000

6000

2015-11-01

2016-01-01

2016-03-01

2016-05-01

2016-07-01

2016-09-01

2016-11-01

2017-01-01

2017-03-01

2017-05-01

Faculty of Economics and Administration

Faculty of Informatics

Faculty of Sports Studies

Faculty of Social Studies

Faculty of Law

Faculty of Medicine

Faculty of Education

Faculty of Arts
Faculty of Science

Figure 12: The cumulative number of views of the fithesis3 document class in the online service of Overleaf.

0

2000

4000

6000

8000

10000

12000

2015-11-01

2016-01-01

2016-03-01

2016-05-01

2016-07-01

2016-09-01

2016-11-01

2017-01-01

2017-03-01

2017-05-01

Faculty of Economics and Administration

Faculty of Informatics
Faculty of Sports Studies
Faculty of Social Studies

Faculty of Law
Faculty of Medicine

Faculty of Education

Faculty of Arts

Faculty of Science

Figure 13: The cumulative number of views of the fibeamer beamer theme in the online service of Overleaf.

A B C D E F

With TEX (at the Faculty of Science)

Without TEX (at the Faculty of Science)

With TEX (at the Faculty of Informatics)

Without TEX (at the Faculty of Informatics)

Figure 14: A box plot of the grades of theses written and defended during 2010–2015
at the Faculty of Informatics (FI MU), the Faculty of Science (Sci MU).

Petr Sojka and Vít Novotný

TUGboat, Volume 38 (2017), No. 2 183

Table 1: The contingency table of the numbers of marks awarded to theses written
and defended during 2010–2015 with Pearson’s goodness-of-fit measure (E − O)2/E
between the expected (E) and the observed (O) numbers of marks awarded to theses
written using TEX.

Grade Without TEX E(with TEX) O(with TEX) (E − O)2/E

A 15,476 988 1,181 37.858
B 9,999 638 587 4.093
C 7,926 506 381 30.799
D 4,020 257 194 15.248
E 2,783 178 128 13.853
F 1,979 126 145 2.771

Total 42,183 2,692 2,692 104.623

[5] Barbara Day. The Velvet Philosophers. A&C Black,
1999.

[6] Zuzana Došlá, Roman Plch, and Petr Sojka.
Matematická analýza s programem Maple: 2.
Nekonečné řady. CD-ROM, www.math.muni.cz/

~plch/nkpm/, December 2002.

[7] Hans Hagen. Children of TEX. In Przechlewski
et al. [28], pages 18–32.

[8] Jan Holeček and Petr Sojka. Animations in a
pdfTEX-generated PDF. TUGboat, 25:35–41, April
2004.

[9] Miroslav Hrad and Petr Sojka. Automation of
Typesetting and Scanning of Forms (in Czech).
Zpravodaj CSTUG, 12(3–4):123–139, 2002.

[10] Hàn Thế Thành. Portable Document Format and
Typesetting System TEX (in Czech). Master’s
thesis, April 1996. Masaryk University, Brno,
Faculty of Informatics (advisor: Jiří Zlatuška).

[11] Hàn Thế Thành. Improving TEX’s Typeset
Layout. TUGboat, 19(3):284–288, September 1998.
tug.org/TUGboat/tb19-3/tb60than.pdf.

[12] Hàn Thế Thành. Micro-typographic extensions
to the TEX typesetting system. TUGboat,
21(4):317–434, December 2000. tug.org/TUGboat/

tb21-4/tb69thanh.pdf.

[13] Hàn Thế Thành. Margin kerning and font
expansion with pdfTEX. TUGboat, 22(3):146–148,
September 2001. tug.org/TUGboat/tb22-3/

tb72thanh.pdf.

[14] Hàn Thế Thành. Micro-typographic extensions of
pdfTEX in practice. TUGboat, 25(1):35–38, 2004.
tug.org/TUGboat/tb25-1/thanh.pdf.

[15] Hàn Thế Thành and Sebastian Rahtz. The pdfTEX
user manual. TUGboat, 18(4):249–254, December
1997. tug.org/TUGboat/tb18-4/tb57than.pdf.

[16] Pavel Janík. Digital Font Formats in Computer
Typesetting (in Czech). Master’s thesis, March
2000. Masaryk University, Brno, Faculty of Science
(advisor: Petr Sojka), is.muni.cz/th/3267/fi_m/.

[17] Martin Jarmar. Conversion of Mathematical
Documents into Braille. Master’s thesis,
January 2012. Masaryk University, Brno,
Faculty of Informatics (advisor: Petr Sojka),
is.muni.cz/th/172981/fi_m/.

[18] Donald E. Knuth. Theory and practice. Keynote
address for the 11th World Computer Congress
(Information Processing ’89), August 1989.

[19] Simon Laube. TEX in Schools: Just Say Yes!
TUGboat, 36(3):188–189, 2015. tug.org/TUGboat/

tb36-3/tb114laube.pdf.

[20] Martin Líška. Evaluation of Mathematics Retrieval.
Master’s thesis, January 2013. Masaryk University,
Brno, Faculty of Informatics (advisor: Petr Sojka),
is.muni.cz/th/255768/fi_m/.

[21] Miroslava Misáková. Typography of Quality
in Computer Typesetting (in Czech). Master’s
thesis, 1998. Masaryk University, Brno,
Faculty of Informatics (advisor: Petr Sojka),
is.muni.cz/th/2660/fi_m/.

[22] Konrad Neuwirth. TEX in Schools: Just
Say No. TUGboat, 12(1):171–174, March 1991.
tug.org/TUGboat/tb12-1/tb31kneuwirth.pdf.

[23] Vít Novotný. Form of Theses Written in LATEX
(in Czech). Bachelor’s thesis, 2015. Masaryk
University, Brno, Faculty of Informatics (advisor:
Petr Sojka), is.muni.cz/th/409729/fi_b/.

[24] Vít Novotný. Using Markdown inside TEX
Documents. In Przechlewski et al. [28], pages
50–53.

[25] Jan Pazdziora. Algorithms of Line and Page
Breaking in Computer Typesetting (in Czech).
Master’s thesis, 1997. Masaryk University, Brno,
Faculty of Informatics (advisor: Petr Sojka),
is.muni.cz/th/2644/fi_m/.

[26] Jan Pazdziora and Michal Brandejs. University
Information System Fully Based on WWW. In
ICEIS 2000 Proceedings, pages 467–471. Escola
Superior de Tecnologia do Instituto Politécnico de
Setúbal, 2000. is.muni.cz/auth/clanky/2000_

ICEIS.pl.

TEX in Schools? Just Say Yes: The use of TEX at the Faculty of Informatics, Masaryk University

184 TUGboat, Volume 38 (2017), No. 2

[27] Zuzana Popelková. Macros for Typesetting
of Timetables (in Czech). Bachelor’s thesis,
January 2001. Masaryk University, Brno,
Faculty of Informatics (advisor: Libor Škarvada),
is.muni.cz/th/3839/fi_b/.

[28] Tomasz Przechlewski, Karl Berry, and Jerzy
Ludwichowski, editors. XXV Miȩdzynarodowa

Konferencja Użytkowników Systemu TEX:

Materiały konferencnyjne. GUST, 2017.
[29] Michal Růžička. Automated Processing of

TEX-typeset Articles for a Digital Library. In
Sojka [37], pages 167–176. dml.cz/dmlcz/702564.

[30] Karel Skoupý. NT S: a New Typesetting System.
TUGboat, 19(3):318–322, September 1998.
tug.org/TUGboat/tb19-3/tb60nts.pdf.

[31] Petr Sojka, Hàn Thế Thành, and Jiří Zlatuška.
The Joy of TEX2PDF — Acrobatics with
an alternative to DVI format. TUGboat,
17(3):244–251, 1996. tug.org/TUGboat/tb17-3/

tb52sojk.pdf.
[32] Petr Sojka. Notes on compound word hyphenation

in TEX. TUGboat, 16(3):290–296, September 1995.
tug.org/TUGboat/tb16-3/tb48soj2.pdf.

[33] Petr Sojka. Hyphenation on Demand. TUGboat,
20(3):241–247, 1999. tug.org/TUGboat/tb20-3/

tb64sojka.pdf.
[34] Petr Sojka. Animations in PDF. In Proceedings of

the 8th SIGCSE Annual Conference on Innovation

and Technology in Computer Science Education,

ITiCSE 2003, page 263, Thessaloniki, 2003.
Association for Computing Machinery.

[35] Petr Sojka. Interactive Teaching Materials in PDF
using JavaScript. In Proceedings of the 8th SIGCSE

Annual Conference on Innovation and Technology

in Computer Science Education, ITiCSE 2003,
page 275, Thessaloniki, 2003. Association for
Computing Machinery.

[36] Petr Sojka. Rapid Evaluation using Multiple
Choice Tests and TEX. In Proceedings of the

8th SIGCSE Annual Conference on Innovation

and Technology in Computer Science Education,

ITiCSE 2003, page 265, Thessaloniki, 2003.
Association for Computing Machinery.

[37] Petr Sojka, editor. Towards a Digital Mathematics

Library, Birmingham, UK, July 2008. Masaryk
University. dml.cz/dmlcz/702564.

[38] Petr Sojka. Digitization Workflow in the
Czech Digital Mathematics Library. In
Ruyong Feng, Wen-shin Lee, and Yosuke Sato,
editors, Computer Mathematics, pages 147–156.
Springer-Verlag, October 2014.

[39] Petr Sojka and David Antoš. Context Sensitive
Pattern Based Segmentation: A Thai Challenge. In
Pat Hall and Durgesh D. Rao, editors, Proceedings

of EACL 2003 Workshop on Computational

Linguistics for South Asian Languages —

Expanding Synergies with Europe, pages 65–72,
Budapest, April 2003.

[40] Petr Sojka, Rudolf Červenka, and Martin
Svoboda. TEX for database publishing. In Zlatuška
[48], pages 53–58.

[41] Petr Sojka and Radim Hatlapatka. Document
Engineering for a Digital Library: PDF
recompression using JBIG2 and other
optimization of PDF documents. In Proceedings

of the ACM Conference on Document Engineering,

DocEng 2010, pages 3–12, Manchester, September
2010. Association for Computing Machinery.
portal.acm.org/citation.cfm?id=1860563.

[42] Petr Sojka and Roman Plch. Technological
Challenges of Teaching Mathematics in a Blended
Learning Environment. International Journal of

Continuing Engineering Education and Life-Long

Learning, 18(5-6):657–665, 2008.

[43] Petr Sojka and Jiří Rákosník. From Pixels
and Minds to the Mathematical Knowledge in
a Digital Library. In Sojka [37], pages 17–27.
dml.cz/dmlcz/702564.

[44] Petr Sojka and Michal Růžička. Single-source
publishing in multiple formats for different
output devices. TUGboat, 29(1):118–124, 2008.
tug.org/TUGboat/tb29-1/tb91sojka.pdf.

[45] Petr Sojka and Pavel Ševeček. Hyphenation in TEX
— Quo Vadis? TUGboat, 16(3):280–289, September
1995. tug.org/TUGboat/tb16-3/tb48soj1.pdf.

[46] Wojtek Sylwestrzak, José Borbinha, Thierry
Bouche, Aleksander Nowiński, and Petr
Sojka. EuDML—Towards the European
Digital Mathematics Library. In Petr Sojka,
editor, Proceedings of DML 2010, pages 11–24,
Paris, France, July 2010. Masaryk University.
dml.cz/dmlcz/702569.

[47] Jiří Zlatuška. Automatic generation of virtual fonts
with accented letters for TEX. Cahiers GUTenberg,
10–11:57–68, September 1991.

[48] Jiří Zlatuška, editor. Proceedings of the 7th

European TEX Conference, Prague, 1992. Masaryk
University, Brno, September 1992.

[49] Jiří Zlatuška. When METAFONT does it alone.
TUGboat, 16(3):227–232, September 1995.
tug.org/TUGboat/tb16-3/tb48zlat.pdf.

[50] Jiří Zlatuška. NT S: Programming Languages
and Paradigms. In EuroTEX Proceedings, pages
241–246, Heidelberg, 1999. DANTE.

⋄ Petr Sojka
The Faculty of Informatics at Masaryk University
Brno, Czech Republic
sojka (at) fi dot muni dot cz

⋄ Vít Novotný
The Faculty of Informatics at Masaryk University
Brno, Czech Republic
witiko (at) mail dot muni dot cz

Petr Sojka and Vít Novotný

TUGboat, Volume 38 (2017), No. 2 185

Implementing bioinformatics algorithms in

TEX — the Gotoh package, a case study

Takuto Asakura

Abstract

TEX is appropriate for implementing many bioinfor-
matics algorithms because they can be programmed
with short codes, calculated with a limited range
of numbers, and produce visual results. As a case
study, I present Gotoh, a LATEX package which im-
plements the Gotoh algorithm, a popular biological
sequence alignment algorithm.

1 Motivation

TEX makes for a good programming language to
implement many bioinformatics algorithms, such as
those for sequence alignment. There are several rea-
sons for this.

First, code for such algorithms tends to be brief.
While it is theoretically possible to program even
complex algorithms with TEX since it is a Turing
machine, it is difficult to write algorithms requiring
lengthy source code. Sequence alignment algorithms
can be stated with a few lines of recursions.

Secondly, the calculation processes use only a
limited range of numbers (usually integers), making
it possible to easily store them in TEX’s registers.
Though the exact limit of what TEX can handle de-
pends on the computing environment, they are usu-
ally within the range of what is required by bioin-
formatics algorithms.

Thirdly, bioinformatics algorithms often build
visual output such as charts and strings. These re-
sults can be easily incorporated into documents pro-
duced by TEX. They can also be utilized as LATEX
packages. As LATEX is one of the most widely used
front-end systems for typesetting academic papers,
it is convenient for researchers if the algorithms that
generate contents that go directly into the papers
are available as LATEX packages. Users of the pack-
ages do not need to execute any commands other
than latex, and they are freed from the hassles of
installing and understanding dedicated tools. It is
also possible to link seamlessly with a number of
other LATEX packages.

Finally, the stability of the TEX macro language
provides for a long-lasting code repository for bioin-
formatics algorithms. Since the primitives designed
by Knuth are extremely stable (Knuth, 1990), an
implementation that uses these primitives will con-
tinue to function for a long time. However, this
might not be necessarily true for implementations
using primitives which are available in other engines.

A
1 2 3 4 5

G A C T A

G A . G A

B

G

A

C

T

A

G A G A
0 −7 −8 −9 −10

−7 1 −8 −7 −10

−8 −6 2 −5 −6

−9 −9 −5 1 −6

−10 −10 −10 −6 0

−11 −11 −11 −11 −5

Figure 1: A. An example of pairwise DNA sequence
alignment. Here, the third column is a gap, the fourth
column is a mismatch and the others are matches.
B. The edit graph corresponding to the matrix H. The
squiggly arrows () show the result of trace back.

Here, I consider the Gotoh algorithm, a popular
sequence alignment algorithm and implement it in
TEX. I also show how to produce publication-ready
output by combining my package with other LATEX
packages.

2 Sequence alignment

Sequence alignment is often used in bioinformat-
ics to compare the similarity of biological sequences
such as DNA, RNA, and amino acid sequences. In
the pairwise sequence alignment problem, we are
given a pair of sequences

A ≡ a1a2a3 . . . am, B ≡ b1b2b3 . . . bn

where ai and bj are chosen from a finite alphabet,
e.g. {A, T, G, C}, and the output is a sequence align-
ment (Figure 1A).

The Longest Common Subsequence (LCS) prob-
lem, which is strongly related to the diff utility, can
be considered as a simple form of sequence align-
ment in which we score 1 for a match and 0 for a
gap. The optimal score sm,n can be evaluated with
the following dynamic programming recursion:

si,j = max







si−1,j

si,j−1

si−1,j−1 + 1.

Sequence alignment can be solved by a similar
approach, though scoring schemes can be slightly
more complex, e.g.

match = c+, mismatch = c
−

,

g(l) = −d − (l − 1)e,

Implementing bioinformatics algorithms in TEX — the Gotoh package, a case study

186 TUGboat, Volume 38 (2017), No. 2

where c+, c
−

, d, e are fixed integers, and g(l) is a
penalty for an l-length gap. One of the most well-
known solutions for the problem is the Needleman–
Wunsch algorithm (Needleman and Wunsch, 1970;
Waterman, Smith, and Beyer, 1976), which calcu-
lates the optimal score using the recursion:

Hi,j = max







Hi−1,j−1 + cij

Hi−k,j + g(k)
Hi,j−k + g(k)

(1)

where

cij =

{

c+ if ai = bj (match)
c

−
otherwise (mismatch).

After calculating the entries of the dynamic pro-
gramming matrix H, an optimal alignment can be
obtained by trace back of the edit graph (Figure 1B).

3 The Gotoh package

Whereas the Needleman–Wunsch algorithm requires
O(m2n) time, the Gotoh algorithm (Gotoh, 1982)
solves the same problem in O(mn) time. The Gotoh

package is an implementation of this algorithm. It
is available from CTAN.

3.1 Algorithm

The Gotoh algorithm uses the following formulae
transformed from Equation (1):

Mi+1,j+1 = max
{

Mij , Ix
ij , I

y
ij

}

+ cij

where

Ix
i+1,j = max

{

Mij − d, Ix
ij − e, I

y
ij − d

}

and

I
y
i,j+1 = max

{

Mij − d, I
y
ij − e

}

.

An optimal alignment can be obtained by trace
back of the three edit graphs corresponding to the
matrices M, Ix, Iy. I omit the details.

3.2 Usage and features

The Gotoh package provides two commands: \Gotoh

for executing the algorithm and \GotohConfig for
setting parameters with a key–value interface. The
package is implemented with only primitives spec-
ified by Knuth and some LATEX macros; it also re-
quires the xkeyval package (Adriaens, 2014).

The usage of \Gotoh is simple (Figure 2). This
command takes two sequences, assigns the optimal
score to \GotohScore, and returns the alignment
to \GotohResultA and \GotohResultB. Macros to
store the score and results can be changed with the
\GotohConfig command as follows.

\GotohConfig{

score = \GotohScore,

result A = \GotohResultA,

result B = \GotohResultB}

A \Gotoh{〈sequence A〉}{〈sequence B〉}

B \Gotoh{ATCGGCGCACGGGGGA}{TTCCGCCCACA}

\texttt{\GotohResultA} \\

\texttt{\GotohResultB}

C ATCGGCGCACGGGGGA

TTCCGCCCAC.....A

Figure 2: Usage of \Gotoh. A. Command syntax.
B and C. Simple example input and its output.
This alignment was calculated with the default
parameters of the Gotoh package, which are shown in
Equation (2), and the optimal score is −6.

The Gotoh package by default uses the scoring
parameters:

c+ = 1, c
−

= −1, d = 7, e = 1. (2)

They also can be set with \GotohConfig as follows.

\GotohConfig{

match = 1, mismatch = -1, d = 7, e = 1}

3.3 Collaborating with TEXshade

TEXshade is a LATEX package designed for typeset-
ting, shading, and labeling preprocessed sequence
alignments (Beitz, 2000). This package is also avail-
able from CTAN. The Gotoh package can be easily
combined with this package.

For example, suppose you define the following
macros in the preamble of a LATEX document.

% output file

\newwrite\FASTAfile

\def\writeFASTA#1{%

\immediate\write\FASTAfile{#1}}

% print alignment

\newcommand{\PrintAlignment}[3][\relax]{%

\Gotoh{#2}{#3}%

\immediate\openout\FASTAfile=\jobname.fasta

\writeFASTA{> Seq 1ˆˆJ\GotohResultA}%

\writeFASTA{> Seq 2ˆˆJ\GotohResultB}%

\immediate\closeout\FASTAfile

\texshade{\jobname.fasta}#1\endtexshade}

At this point, by simply including \PrintAlignment

in the document, the Gotoh algorithm is executed,
the result is formatted by TEXshade, and is output
directly in your article (Figure 3).

Note that \PrintAlignment communicates be-
tween the two packages via a FASTA file, a simple
and standard bioinformatics format for recording se-
quences. This is because TEXshade does not have any
user interface to read sequences directly from LATEX
sources (Beitz, 2011). Even so, this macro requires
only one latex execution.

Takuto Asakura

TUGboat, Volume 38 (2017), No. 2 187

A \PrintAlignment[〈TEXshade commands〉]{〈sequence A〉}{〈sequence B〉}

B

seq1GGAGTGAGGGGAGCAGTTGGGCTGAAGATGGTCAACGCCGAGGGAACG 48
seq2 CGCATGCGGAGTGAGGGGAGCAGTTGGG.AACAGATGGTC.CCGCCGAGGGACCG 53
consensus *******!!!!!!!!!!!!!!!!!!!!!* !!!!!!!!* !!!!!!!!!! !!

seq1 GTAAAGGCGACGG....AGCTGTGGCAGACCTGGCTTCCTAACCACGTCCCGTGT 99
seq2 GT.GGGCAGACGGGGCCAGCTGTGGCAGACACTGGCTTCTAACCACCGAACGT.T 106
consensus !!* ! !!!!!****!!!!!!!!!!!!! ! ! !!!!!!!! !!!*!

seq1 TTTGCGGCTCCGCGAGGACTG 120
seq2 CTTTCCGCTCCG.......GG 120
consensus !! ! !!!!!!******* !

Figure 3: Usage of the macro \PrintAlignment. A. Command syntax. The first
argument 〈TEXshade commands〉 is optional. B. A sample output.

4 Future directions

It would be conceivable to add to Gotoh a few user
interfaces for easier cooperation with other packages
that deal with biological sequences. Functional ex-
tensions to display more detailed information, such
as edit graphs, may also be beneficial. It will be in-
teresting to develop related packages, for instance,
one which provides the functionality of multiple-
sequence alignments.

Furthermore, it is also interesting to write TEX
implementations of algorithms producing visual re-
sults to be incorporated into documents. For exam-
ple, it would be useful if LATEX packages for printing
source code such as listings have a diff function.

5 Acknowledgements

I would like to thank Shun Sakuraba for his engaging
lecture on the Gotoh algorithm which inspired me to
develop this package. I am grateful to Anish M. S.
Shrestha for helping with the manuscript.

References

Adriaens, Hendri. “The xkeyval package (v2.7a)”.
https://ctan.org/pkg/xkeyval, 2014.

Beitz, Eric. “TEXshade: shading and labeling of
multiple sequence alignments using LATEX 2ε”.
Bioinformatics 16(2), 135–139, 2000.

Beitz, Eric. “The TEXshade package (v1.24)”.
https://ctan.org/pkg/texshade, 2011.

Gotoh, Osamu. “An improved algorithm for
matching biological sequences”. Journal of

Molecular Biology 162(3), 705–708, 1982.

Knuth, Donald E. “The future of TEX and
METAFONT”. TUGboat 11(4), 1990. https:

//tug.org/TUGboat/tb11-4/tb30knut.pdf.

Needleman, Saul B., and C. D. Wunsch. “A
general method applicable to the search for
similarities in the amino acid sequence of two
proteins”. Journal of Molecular Biology 48(3),
443–453, 1970.

Waterman, Michael S, T. F. Smith, and W. A.
Beyer. “Some biological sequence metrics”.
Advances in Mathematics 20(3), 367–387, 1976.

⋄ Takuto Asakura
The University of Tokyo
Department of Bioinformatics and

Systems Biology
2-11-16 Yayoi
Bunkyo, Tokyo, 113-0032
Japan
tkt.asakura (at) gmail dot com

Implementing bioinformatics algorithms in TEX — the Gotoh package, a case study

https://ctan.org/pkg/xkeyval
https://ctan.org/pkg/texshade
https://tug.org/TUGboat/tb11-4/tb30knut.pdf
https://tug.org/TUGboat/tb11-4/tb30knut.pdf

188 TUGboat, Volume 38 (2017), No. 2

updmap and fmtutil — past and future
changes (or: cleaning up the mess)

Norbert Preining

Abstract

This article serves first as an introduction to two of
the central utility programs in any TEX Live instal-
lation, updmap and fmtutil, describing the general
functionality as well as the syntax of the configura-
tion files. In addition, we report on changes that
we have carried out over the last few years relat-
ing to the operation mode. These changes include
switching to multiple configuration files, and the user-
mode versus system-mode changes to be introduced
in TEX Live 2017. Last but not least, we close with
a list of best practices to help guide users.

If you only want to know how best to install
fonts (or formats) and are not particularly
interested in the details, jump to Section 5.

1 Introduction

Two central utility programs in any TEX installa-
tion are updmap, responsible for creating font maps
for various programs, and fmtutil, responsible for
(re)creating format dumps.

For many years the venerable shell scripts by
Thomas Esser were used on Unix-like systems with
only minimal changes. For Windows, TEX Live used
binary programs developed independently. Having
two independent implementations hindered devel-
opment of new features. Thus, some years ago
we started rewriting them in Perl: first updmap

(TEX Live 2012), and later fmtutil (2015).
With the rewrites in place, the first new feature

added was already a considerable change in inter-
nal behavior: While the original shell scripts used a
single configuration file, the new versions read con-
figuration files on a per-tree basis. This helped users
preserve their configuration across TL upgrades, and
gave OS distributions better ways of integration into
their respective packaging infrastructure.

With TEX Live 2017, we will go further and elim-
inate the biggest source of confusion: Users invoking
the scripts in the so-called user mode (in contrast
to system mode), thus generating local configuration
files shadowing the global ones. The origin of this con-
fusion is the widespread misinformation to call simply
updmap (fmtutil) when the available fonts change.

TEX Live 2017 and later disable calls to updmap

and fmtutil without an explicit mode request. This
means that users who unknowingly call them will
get a warning message — and hopefully afterwards
will use the right mode.

1.1 Layout of the article

Section 2 will start with an explanation of the func-
tionality of the scripts and how they fit into a TEX
(Live) installation. While the general functionality
of these scripts will be similar in other TEX distribu-
tions, some options described here are probably not
available in other installations. In this section we
also introduce the original system and user modes.

Section 3 describes the changes introduced with
multiple configuration files, and explains how this
can be used in single and multi-user environments.

Section 4 introduces the changed operational
mode introduced in TEX Live 2017.

Section 5 has recommendations and best prac-
tices for dealing with local fonts and formats.

A running example for the installation of the
MathProII fonts will exhibit the usage changes.

2 Functionality of updmap and fmtutil

Although updmap and fmtutil are central to TEX
operations and are automatically executed on many
occasions, both scripts have remained relatively mys-
terious and are often misused.

2.1 updmap

Many of the fonts shipped in a TEX system are
PostScript Type 1 fonts. The original TEX does not
know anything about this (or any glyph) font format;
it only uses the metrics from TFM files. The output
drivers on the other hand need to know how TFM

names map to glyphs. Typical output drivers are

pdf(la)tex the TEX engine extended with direct
PDF output. Since producing PDF needs the
actual fonts, pdftex is also an output driver.

dvips the classical output driver. TEX engines can
produce DVI (DeVice Independent) files, which
can be translated to PostScript (or other) for-
mats. To do this, the fonts have to be embedded.

(x)dvipdf(m(x)) the family of DVI-to-PDF con-
verters. Instead of going to PostScript first,
these programs support direct translation of
DVI into PDF. X ETEX uses one of these in the
background. Japanese users often use dvipdfmx,
since it has good support for Japanese fonts.

xdvi online X11 display program, which of course
needs access to the fonts to render the glyphs.

These output drivers have supported font map-
ping in slightly different ways, changing over the
years, and here is where updmap comes into the game:
It reads a list of specifications, and creates configu-
ration files in the needed formats.

Norbert Preining

TUGboat, Volume 38 (2017), No. 2 189

2.1.1 What does updmap do?

Font definitions are necessarily a complicated beast
in the TEX world; many components have to play
well together for the final document to contain the
correct fonts. Here is an overview of the main items
necessary to understand updmap:

font definition maps a TFM file name to an exter-
nal font (font name and file name), with optional
additional transformations. A simple example:

eufm10 EUFM10 <eufm10.pfb

which says that the TFM name eufm10 should
be resolved by a font internally named EUFM10,
which is defined in the file eufm10.pfb. Far
more complex font definitions are possible, cater-
ing to different encodings and more, but the
basic purpose of mapping a TFM to an external
font always remains.

font map file is a file of font map definitions, nor-
mally collecting together related fonts from a
package. The above definition for eufm10 is
contained in euler.map, which contains all the
Euler-related font definitions.

updmap config file lists the font map files, with
additional specifications concerning bitmap vs.
outline fonts, as well as a few settings for updmap

itself (details in the next section). Continuing
our example, in a normal TEX Live installa-
tion the font map file euler.map is listed in
texmf-dist/web2c/updmap.cfg:

Map euler.map

generated files Finally, updmap generates configu-
ration files in various formats (see above).

Output drivers don’t have (or need) the slightest
idea that updmap and the related intermediate files
even exist; they only read the ultimately-generated
configuration file to determine which fonts are avail-
able. This means that if, somewhere in the middle,
one of the steps fails or is incorrect, the output will
probably not have the right fonts.

2.1.2 Configuration of fonts in updmap.cfg

The central configuration file for updmap is (always)
named updmap.cfg. In former times, only the first
one found by the Kpathsea library was used, but
now all updmap.cfg files are read (see below). Each
updmap.cfg can contain the following items:
1. Empty lines, comments beginning with ‘#’; these
are ignored.

2. Map directives, in one of the forms:
Map foo.map

MixedMap bar.map

KanjiMap baz.map

Map is used for fonts that are available only in Post-
Script Type 1 format; MixedMap is for fonts where
both Metafont and PostScript variants are present;
and KanjiMap is for creating the special Kanji map
file.

3. updmap configuration lines, of the form
〈settingName〉 〈value〉
with the following setting names and values (* indi-
cates the default):
dvipsPreferOutline values *true, false

Whether dvips prefers bitmaps or outlines,
when both are available.

dvipsDownloadBase35 values *true, false

Whether dvips includes the 35 standard
PostScript fonts in its output.

pdftexDownloadBase14 values *true, false

Whether pdftex includes the 14 standard
PDF fonts in its output.

pxdviUse values true, *false

Whether maps for pxdvi (Japanese-patched
xdvi) are under updmap’s control.

(ja|sc|tc|ko)Embed, jaVariant values strings
Controls kanji font embedding for Japanese
(ja), Simplified Chinese (sc), Traditional
Chinese (tc), and Korean (ko).

LW35 values *URWkb, URW, ADOBEkb, ADOBE

Controls which fonts are used for the 35
standard PostScript fonts.

The ..Embed and the jaVariant settings were added
to the TEX Live implementation recently, and might
not be supported in other TEX distributions.

2.2 fmtutil

In the years long ago, when memory was scarce,
computers slow, and Knuth went forth to create the
most advanced typesetting system, he devised a way
to speed things up and at the same time conserve
space: format dumps. This is not the place for details
but in short, you can think of them as dumps of the
state of the program (TEX, Metafont, . . .) after a
(slow, painful) initialization, which can be easily and
quickly loaded and used as a starting point for actual
typesetting and font design work.

When there was only one TEX program and one
Metafont program, managing these dumps was a
simple task, but over time the situation grew more
complex: more programs, more formats, various ad-
ditions for internationalization. Nowadays, we’re at
a point that people often do not know what is going
on when a formats are rebuilding message appears.

2.2.1 What does fmtutil do?

Written long ago by Thomas Esser for his teTEX,
fmtutil supports specifying the available format in

updmap and fmtutil — past and future changes (or: cleaning up the mess)

190 TUGboat, Volume 38 (2017), No. 2

a line-based configuration file, and for rebuilding
them in various ways. The script has served the TEX
community for many years. The shell script mentions
a first change in 2001, but the script is much older
than that (considerably predating TEX Live).

2.3 Configuration of fonts in fmtutil.cnf

fmtutil is a rather friendlier colleague than updmap,
with no need for all the complicated layers of defi-
nitions. The configuration files for fmtutil, named
fmtutil.cnf, define the formats which can be made.
The most commonly used format is LATEX, but there
are many more, some of which are quite esoteric (e.g.,
utf8mex).

Each format definition is on exactly one line,
and consists of four parts:
〈fmtname〉 〈engine〉 〈hyphenfile〉 〈options〉
Let us look at two examples from TEX Live:

aleph aleph - *aleph.ini

latex pdftex language.dat

-translate-file=cp227.tcx *latex.ini

The first one defines the format aleph, the second
one the format latex. (The second is broken across
lines only for TUGboat; in the actual source file, it’s
all on one line.)

name aleph, latex — the first item in a format
definition is the format name, which (usually)
coincides with the program name.

engine aleph, pdftex — the second item defines
the base engine, the program that is run to load
the definitions and dump the image. As shown,
sometimes the format and the engine have the
same name. For the LATEX format, TEX Live
has used the pdfTEX engine for many years.

hyphenfile -, language.dat — the third item spec-
ifies a file name for hyphenation pattern defini-
tions, or a literal - to indicate that no patterns
are used.

options — the rest of the line comprises command
line arguments passed to the engine. In the
aleph line we see that only one file is passed to
the engine, while in the latex case we also pass
an additional option.

As specified on its own command line, fmtutil

reads fmtutil.cnf, invokes some or all of the engines
with the respective options in turn, and puts the
resulting dump files in the right place so that the
engine can load the dump.

2.4 Previous behavior and system mode
vs. user mode

The original shell scripts read only one configura-
tion file, found by searching with Kpathsea. This is

the very same method TEX uses to find files when
they are read (e.g., via \include) To cater for user-
supplied font maps, the original updmap program
allowed for enabling and disabling, adding and re-
moving individual entries from the configuration file.

While this approach works nicely in a single
user installation where the user has complete con-
trol over all files, in a multi-user setting it would be
chaos if users changed a system-wide configuration
file, adding their private fonts. Thus, soon after their
inception, Thomas Esser added an additional system
mode to these scripts, distinguished from the normal
invocation style in user mode. The only difference be-
tween user mode and system mode is where generated
files are saved: In user mode this was the directory
defined by the Kpathsea variable TEXMFVAR, while in
system mode it was TEXMFSYSVAR.

System mode was specified by invoking the pro-
gram under the name updmap-sys (fmtutil-sys),
while user mode was the default.

This was the state of affairs for more than a
decade. The advantages of this system were that all
configurations were contained in a single file, and the
operation mode was easy (easier?) to understand.

In my case, as I had purchased the MathProII
fonts, every year and on every computer I used I had
to manually disable the open-source clone enabled by
default in belleek.map, add the necessary map file
for the MathProII fonts, and run updmap. While this
is not much to do, it is easy to forget and error-prone.

3 Per tree configuration

With the Perl reimplementation of the scripts we
have also switched to a different way of handling
configuration files: the two programs now read not
just a single configuration file, but all configuration
files found, in a stacked manner, meaning that files
read later can override parameters from those read
earlier. Override here means the following: disabling
a map that is enabled in a lower level configuration
file, and changing settings from a value set in a lower
level configuration file.

To see which configuration files will be used,
these two commands will output the list of all con-
figuration files used by the two programs:
kpsewhich -all updmap.cfg

kpsewhich -all fmtutil.cnf

This new method allows configuration of avail-
able fonts and formats to be put in the same tree
where the respective fonts or formats are installed.
Formerly, activation of a map file or format would
not survive (re)installing a release of TEX Live. Now,
local fonts can be installed under TEXMFLOCAL, and
listed in TEXMFLOCAL/web2c/updmap.cfg, and they

Norbert Preining

TUGboat, Volume 38 (2017), No. 2 191

will automatically be picked up across updates.
Similarly, users can have personal fonts or for-

mats without needing to maintain a copy of the
system’s updmap.cfg or fmtutil.cnf.

3.1 Default locations searched

By default, updmap and fmtutil check the following
directories for updmap.cfg and fmtutil.cnf, in the
order given.

User mode only: TEXMFCONFIG/web2c

TEXMFVAR/web2c

TEXMFHOME/web2c

Both user and TEXMFLOCAL/web2c

system modes: TEXMFSYSCONFIG/web2c

TEXMFSYSVAR/web2c

TEXMFDIST/web2c

with these default values for those variables:
TEXMFSYSCONFIG TL/YYYY/texmf-config

TEXMFSYSVAR TL/YYYY/texmf-var

TEXMFDIST TL/YYYY/texmf-dist

TEXMFLOCAL TL/texmf-local

TEXMFHOME ~/texmf

TEXMFCONFIG ~/.texliveYYYY/texmf-config

TEXMFVAR ~/.texliveYYYY/texmf-var

Making use of this information, let’s continue
the previous example of the MathProII fonts. As
mentioned above, TEX Live ships the free Belleek
fonts which use the same TFM names; thus, we have
to disable belleek.map and add mtpro2.map:

1. Put the MathProII files, including mtpro2.map,
in TEXMFLOCAL.

2. Edit TEXMFLOCAL/texmf/web2c/updmap.cfg:

• disable Belleek by adding
#! Map belleek.map

• enable MathProII by adding
Map mtpro2.map

3. Run updmap-sys.

Now, when I update my TEX Live installation
from one year to the next no additional work is
needed: updmap find the local configuration file, duly
disabling the one map and activating the other.

Similarly, these per-tree configuration files have
brought considerable simplification for distributors
like Debian (indeed, this was the original reason why
I implemented this feature).

4 Explicit user mode in TL 2017

4.1 What was the problem?

Let’s suppose a user wants to add a private font to
the TEX setup (as I had to do during my studies,
when I purchased the Lucida fonts for writing my
thesis). The steps were these:

• Copy updmap.cfg into TEXMFHOME;

• add the additional map entries to it;
• run updmap.

In itself this was not a problem. The problem comes
when the fonts on the system side change (because
of an update or addition of new font packages): The
user had to re-execute these steps, every time. Not
doing so would leave the user with outdated infor-
mation; in the worst case (but unfortunately a very
common case!), some font definitions would no longer
be correct, and thus output files would be broken.

The reason was mentioned above: The configura-
tion files for the output drivers generated by updmap

in the user’s home directory override the ones in the
system directory.

We might hope for users to know about this
problem, but unfortunately the Internet is full of
instructions on how to install fonts for LATEX, and the
typical recommendation is to call updmap, and not
updmap-sys. From my experience as the maintainer
of the TEX Live packages in Debian, as well as from
the TEX Live mailing lists, I can report that this is
the single most common point of failure.

That is, most users were simply unaware that
calling updmap (as is, thus in user mode) creates
copies of configuration files which will never be up-
dated unless the user calls updmap again; system
changes in the meantime are immaterial.

For fmtutil the problem is the same: Format
dumps would remain in the user’s home directory
and never be updated. As a glaring example, I recall
a Debian bug report where a user had called fmtutil

once, and years later some LATEX packages stopped
working, because he still used the format dump from
years ago, all unknowing.

4.2 New operation mode

For TL17, we (that is Karl Berry and I) decided to
try to get out of this interminable chaos once and
for all. Thus, from now on user mode cannot be
invoked by calling updmap or fmtutil as is; to acti-
vate user mode, it’s now required to give the option
-user, or call the separate scripts updmap-user or
fmtutil-user. To summarize:

System mode is invoked by using updmap-sys

or fmtutil-sys, or by giving the -sys option.
User mode is invoked by using updmap-user or

fmtutil-user, or by giving the -user option.
Calling updmap or fmtutil without -sys or

-user now results in a fatal error, with a link to
an explanatory web page.

Our hope is that this will prevent some (per-
haps many) users from hurting themselves by unin-
tentional switching to user mode. Furthermore, by
introducing this new behavior we are explicitly in-

updmap and fmtutil — past and future changes (or: cleaning up the mess)

192 TUGboat, Volume 38 (2017), No. 2

validating plenty of documentation on the web that
we know to be wrong, and force users to make a
conscious decision. We will see next year how it has
worked out!

5 Best practice and use cases

There is probably only one thing we should write
here, and if you take one thing from this article, it
should be this one:

Use system mode.

Anything else will very likely cause trouble. One
might ask, so why didn’t we abolish user mode com-
pletely? Indeed, we pondered this, but firstly, it
would be a radical step after so many years, and
secondly, there remain rare cases where user mode
is needed; see the following use cases.

5.1 Use cases

The following use cases are also listed on a TUG page
(tug.org/texlive/scripts-sys-user.html); the
scripts refer to this same page in case of missing
mode specifications.

5.1.1 Single user computer — add fonts

One of the most common cases: One user, one com-
puter, TEX Live is installed system-wide, and fonts
should be available to all (1) users of the machine:

• put the fonts into TEXMFLOCAL according to the
TDS (tug.org/tds);

• enable the font map(s) in the file
TEXMFLOCAL/web2c/updmap.cfg;

• run (once) updmap-sys (no options needed).

Future (re)installations of TEX Live will pick up
these local fonts automatically.

5.1.2 Multi-user computer — add
system-wide fonts

A common need in a department or company with
organization-specific fonts, which all users should
have access to: This case is handled exactly like the
previous case, without any changes.

5.1.3 Multi-user computer — private user
fonts

This is the only case where user mode is required:
A computer with multiple users, but some fonts are
private to specific users. Here we cannot install
the fonts system-wide, as other users would gain
access to them. Thus TEXMFHOME is used instead of
TEXMFLOCAL, and updmap-user is run:

• Put fonts into TEXMFHOME, following the TDS;

• enable the font map(s) in
TEXMFHOME/web2c/updmap.cfg;

• run (once) updmap-user.

A repeated warning is necessary here, because
this is the prime case of misbehavior we have seen:
After doing this, changes in the font setup of the sys-
tem are invisible until updmap-user is rerun. Thus,
we recommend running it regularly, e.g., from Unix
cron, to make sure no discrepancy creeps in between
the fonts as actually installed and those registered
in the per-user updmap.cfg.

5.1.4 Single user computer — additional
formats

While it is uncommon for users create their own
formats, in principle the procedure is the same as
with updmap. In most cases, the additional formats
need not be private, so following the first use case
above is suggested:

• adjust TEXMFLOCAL/web2c/fmtutil.cnf

• run (once) fmtutil-sys (no options needed).

5.2 Switching back to system mode

Last but not least, here is how to switch back to
system mode if by chance one has called updmap or
fmtutil in user mode. This is never done automati-
cally, and (at least for now) there is no interface to
the two programs to allow easily switching.

To switch back to system mode, what has to be
done is to remove the following directory trees (after
backing them up, of course):

• for updmap: TEXMFVAR/fonts/map

• for fmtutil: TEXMFVAR/web2c

where under normal circumstances, TEXMFVAR is
~/.texliveYYYY/texmf-var.

6 Conclusion

We hope that the changes made over the last years
have made these programs easier to use, and a bit
more protective for the casual user. But one should
not forget that they are central configuration pro-
grams for TEX, so messing around with them always
bears some risk.

Final exhortation: Use System Mode!

⋄ Norbert Preining

Accelia Inc., Tokyo, Japan

norbert (at) preining dot info

http://tug.org/texlive/

scripts-sys-user.html

Norbert Preining

TUGboat, Volume 38 (2017), No. 2 193

TLaunch, the TEX Live Launcher

for Windows

Siep Kroonenberg

Abstract

The TEX Live Launcher offers Windows users of a
network TEX Live installation similar conveniences
as a locally-installed TEX Live. It is easy to integrate
additional TEX-related software.

This paper describes the launcher and its con-
figuration. As an example, it shows how it is used
at the Rijksuniversiteit Groningen.

1 Overview

The TEX Live launcher gives users on Windows work-
stations easy access to a TEX Live installation already
present on the network.

The launcher interface contains menus and but-
tons to invoke programs, and to access related local
and online resources (see figure 1).

It also takes care of the usual Windows-specific
configuration: at first run, TEX Live is added to the
search path and relevant filetype associations are
set up.

Because of prior experience with users running
the initializer or installer when they really want to
run the already initialized or installed TEX Live, I
opted for a launcher that configures itself automati-
cally, without requiring a separate initialization step.

Users can replace the default TEX editor from
within the launcher interface, either with an editor
defined in an ini file or with a third-party editor
present on the filesystem (see figure 2).

For the sake of full access to the Windows API,
I wrote the launcher in C. It has no dependencies
whatsoever, aside from a TEX Live installation and
Windows version 7 or later.

The launcher makes it easy for the TEX Live in-
stallation maintainer to add menu- or button controls
and filetype associations for additional TEX-related
software.

Filetypes, menus and buttons are defined in a
Windows ini file. If necessary, pre- and post configu-
ration script files can be configured as well.

The ini file included in TEX Live provides func-
tionality more or less equivalent to the classic Win-
dows TEX Live installation.

In the following sections, we have a more de-
tailed look at the launcher and its configuration. The
package documentation contains the full details.

Section 6 looks at the TEX Live installation
at the Rijksuniversiteit Groningen, for which the
launcher was created.

Figure 1: The default TEX Live Launcher

Figure 2: Selecting a custom editor

2 The ini file

The launcher reads its configuration from a con-
ventional Windows ini file with sections, definitions
and comment lines. If the TEX Live installation
contains Windows binaries, then tlaunch.exe will
be in the bin/win32 directory, and tlaunch.ini in
texmf-dist/web2c.1 A custom ini file, supporting
different software or with localized strings, can be
placed in a higher-priority tree.

It is also possible to place tlaunch.exe and
tlaunch.ini together in the root of the installation.

In general, entries which refer to non-existent
items are silently ignored.

2.1 Strings

There is a Strings section for string variables. String
variable names are case-insensitive. Some string
variables, such as %TLCONFIG%, are required. This
variable indicates the directory where the “forgetter”
(see section 3) will be placed.

The optional variables %PRE_CONFIG%, %POST_

CONFIG% and %PRE_FORGET% are the names of scripts
to be run before and after configuration, and before
forgetting respectively. The default values of these
variables are empty strings.

Some variables are just conveniences to simplify
subsequent definitions.

Some string variables, such as %tlroot% and
%version%, can be used outright because they are
already set when the launcher starts parsing the
ini file. Environment variables, e.g. %appdata% or

1 If during installation non-default options are selected for

file associations or path adjustment, then a second, modified

copy will be written to texmf-var/web2c.

TLaunch, the TEX Live Launcher for Windows

194 TUGboat, Volume 38 (2017), No. 2

%UserProfile% can also be used outright. See the
package documentation for the full list.

A few example string definitions:

[Strings]

TLNAME=TeX Live %VERSION%

; tlaunch configuration directory

TLCONFIG=%userprofile%\.texlive%VERSION%\tlaunch

TLSCRIPTS=%tlroot%\scripts

POST_CONFIG=%TLSCRIPTS%\post_config.cmd

; optional announcement text

ANNOUNCE=TeX Live Launcher with extras

2.2 Filetype associations

In Windows, the association of a filename extension
with a program is indirect: an extension is associated
with a filetype and a filetype is associated with a
command. An example of a filetype definition in the
ini file:

[FT:TL.TeXworks.edit.%VERSION%]

COMMAND="%tlroot%\bin\win32\TeXworks.exe"

EXTENSIONS=.tex .cls .sty

The name of the ini file section consists of the
filetype name with an ‘FT:’ prefix. When a file with
a listed extension is double-clicked in a file man-
ager, Windows will run COMMAND with the (quoted)
filename appended. If a more complex command
is required, e.g. with parameters coming after the
filename, the section can define a more complex
command-line with a SHELL_CMD entry.

2.3 Menus and buttons

The ini file can contain a buttons section and sections
for menus, with the latter indicated by an MN: prefix
to the section name. Within the section entries, the
key is the string to be displayed and the value is the
action to be taken.

In the case of a button, the display string is put
underneath the button (see figure 1). The launcher
tries to find a suitable icon to place on the button
itself, but has a fallback icon if it cannot find any-
thing. This fallback icon is used for the Quit button
in figure 1.

A few examples:

[MN:File]

Browse installation=explorer.exe "%tlroot%\.."

Quit=FU:quit

[MN:Viewers]

PostScript Viewer=FT:TL.PSView.view.%VERSION%

DVI Viewer=FT:TL.DVIOUT.view.%VERSION%

[MN:Documentation]

LaTeX Introduction=SO:%tlroot%\...\lshort.pdf

FAQ=SO:%tlroot%\...\newfaq.pdf

[Buttons]

LaTeX Editor=FU:default_editor

Select default editor...=FU:editor_select

Quit=FU:quit

The value, which is the associated action, can
take several forms:

• No prefix: a command to be executed.

• With a prefix FT:, the associated action is the
COMMAND of the indicated filetype, which should
be defined earlier in the file.

• Prefix SO: (shell object) meaning in this case
a file or url that Windows should know how to
open.

• Prefix SC: indicates a script object defined ear-
lier in the ini file; see the package documenta-
tion.

• Prefix FU: indicates a predefined function; see
the package documentation.

2.4 The General section

The most important options in this section replicate
options from the TEX Live installer:

Filetypes Allowed values are none, new (default)
and overwrite

searchpath Allowed values are 0 and 1 (default)

Both entries and the section itself are optional. For
example:

[General]

FILETYPES=new

SEARCHPATH=1

3 Forgetting

The launcher has functions to undo and redo config-
uration, which can be assigned to menu items. How-
ever, the installation may not be under the user’s
control and may no longer be around when the con-
figuration is to be cleared out.

Therefore, the launcher creates a so-called for-
getter as part of its first-time initialization. This
forgetter consists of a copy of the launcher and a
modified copy of the configuration file, both placed
under the user’s profile. This copy knows from its
location that it is intended to run as forgetter and
not as launcher.

4 Scripts

The launcher can run scripts and command-line util-
ities, and display their output in a window. The ini
file can specify scripts for e.g. supplemental initializa-
tion and cleanup (see section 2.1). Section 6.1 shows
some examples. It is also possible to assign scripts
to menu entries and to buttons. More about scripts
is in the package documentation.

Siep Kroonenberg

TUGboat, Volume 38 (2017), No. 2 195

Figure 3: The TEX Live Launcher at the

Rijksuniversiteit Groningen

5 Launcher-based installations

The 2017 TEX Live installer offers the option of cre-
ating a launcher-based installation, as an alternative
to creating menu shortcuts. If this option is selected,
then no path adjustment is done and no filetype
associations are created by the installer itself. The
installer invokes the launcher with a special option
to ‘install’ itself, i.e. to create a start menu shortcut
and an uninstaller registry entry for itself. In case
of a single-user install, it also performs a first-time
initialization.

With such an installation, the TEX Live installer
no longer has direct dealings with the Windows API,
or with the Perl modules providing API access.

For purposes of trying out the launcher, TEX
Live includes a script tlaunchmode which can switch
the installation between classic and launcher mode
without reinstalling TEX Live.

6 The launcher at the

Rijksuniversiteit Groningen

Workstations at our university are mostly centrally
managed. Typically, users have a centrally managed
Start menu on their Windows workstation. The IT

people put the TEX Live Launcher in this menu, so
users are just one click away from starting to use
TEX Live.

Settings are centrally backed-up on logout and
restored on login. So a user’s desktop looks very
similar, whatever physical workstation [s]he works
on. This same desktop is also available remotely.
In addition, users have a network share for storing
their own files. This share is also available from any
workstation on which they log in.

6.1 Additional software

The additional programs at our university include:

• More editors: TeXnicCenter and TeXstudio.
Both offer extensive assistance in editing math.

• The PDF viewer SumatraPDF. This viewer pro-
vides source–PDF synchronization for TeXnic-
Center, which has no built-in PDF viewer.

• The Java-based bibliography manager JabRef.

• The epspdf GUI with bundled single-file Tcl/Tk
runtime (https://ctan.org/pkg/epspdf).

• The pseudo-WYSIWYG LYX LATEX editor.

There are menu items for additional documen-
tation, such as the LATEX classes for the university
house style. Controls for the TEX Live Manager and
for uninstalling TEX Live itself are omitted, since
those tasks are reserved for the maintainer of the
installation.

All these programs were installed on a scratch
system and from there copied into the TEX Live
installation tree. ‘Installed’ this way, most of them
run more or less ok from their new location.

However, some fixes were desirable and were
implemented via a postconfig script (see section 2.1):

TeXnicCenter While TeXnicCenter can autocon-
figure itself nicely for MiKTEX, it asks TEX
Live users a series of questions about what is
where. To spare users those questions, I wrote a
vbscript which emulates the MiKTEX autocon-
figuration for TEX Live, and which is invoked
by the postconfig script.

TeXstudio This editor by default checks at startup
whether there is a new version. The postconfig
script turns this option off in an existing or
newly-created TeXstudio configuration file.

TEXworks borrows some dictionaries from TeX-
studio.

SumatraPDF This PDF viewer also tests for up-
dates, which are dealt with in the same way as
for TeXstudio. It also requires a registry setting
to specify that this is not a portable installation,
and it should store its settings under the user’s
profile.

LYX First-time initialization can take a very long
time. Therefore, a LYX user configuration direc-
tory has been prepared in advance. The post-
config script copies it to the user’s profile.2

The launcher documentation contains a file rug.zip

with slightly sanitized versions of the scripts and
configuration files actually used at our university
installation.

7 Problems

7.1 Non-roaming filetype associations

In a standard Roaming Profiles setup, filetype as-
sociations do not roam. I plan to add an option to
the launcher to restore missing filetype associations

2 There is also a shared LYX configuration file which had

to be patched, but this is not a task for a per-user postconfig

script.

TLaunch, the TEX Live Launcher for Windows

196 TUGboat, Volume 38 (2017), No. 2

on login. This is not a problem with the centrally-
managed desktops at our university. On the other
hand, on those centrally-managed desktops some
filetype associations are pre-empted and cannot be
permanently changed. This includes PDF files.

7.2 Search path

Another problem associated with our desktop man-
agement software is that programs ignore the user
search path.

This is not a problem for software started from
the launcher.

Some programs do not absolutely need TEX Live
on the search path. Others, such as TEXworks and
the DVI- and PostScript viewers included in TEX
Live, are invoked via a wrapper which takes care of
the search path. But for TeXstudio I had to provide
a wrapper myself to take care of the search path.

And then the university offers software such as
R and WinEdt which also need LATEX on the search
path, but which are not under my control; the IT

department has to handle these.

7.3 Uninstalling

The third problem I want to mention is uninstalling
under Windows 10. This is not specific to the
launcher.

There are two ways to give a user access to an
uninstaller:

• Via a Start menu item. However, Windows 10
may somehow decide not to display such an
item.

• Via an uninstaller registry key. This way, it will
show up in Settings / Apps / Apps & features.
However, Windows may decide to pop up a User
Account Control (UAC) prompt even if it is a
user install. Still, a user-installed launcher can

be uninstalled via right-clicking its icon under
the Start menu, or from within the launcher
itself.

8 Finding out more

Earlier, I mentioned the tlaunch manual. If you
have a fully updated 2016 or a later installation of
TEX Live with Windows platform support, then you
should have the tlaunch binary and documentation
on your system. But you can also visit its CTAN

directory at https://ctan.org/pkg/tlaunch.
For experimentation, you can run the script

tlaunchmode mentioned at the end of section 5.
With this script you can switch an existing TEX
Live installation to launcher mode and back.

⋄ Siep Kroonenberg

Groningen

The Netherlands

siepo (at) cybercomm dot nl

Siep Kroonenberg

TUGboat, Volume 38 (2017), No. 2 197

Xdvipsk: Dvips ready for OpenType fonts

and more image formats

Sigitas Tolušis, Arūnas Povilaitis and
Valentinas Kriaučiukas

Abstract

We present two extensions to dvips. One allows
flexible inclusion of bitmap images and was imple-
mented on top of the FreeImage library. The second
extension solves quite a long-standing task: adding
OpenType font support to dvips. Our extended
dvips, xdvipsk, goes the “LuaTEX way” in Open-
Type font management: it works on DVI files com-
piled by LuaTEX and expects to find the necessary
Unicode map files, obtained as by-products of the
compilation. The providing of these map files is en-
sured by a special LATEX package.

1 Motivation and history

The Dvips(k) page [5] says that “it would be great
to add OpenType and perhaps TrueType support to
dvips”.

We had our own motivation too. We saw that
complete elimination of the PostScript stage from
our publishing workflow LATEX→PDF would be ei-
ther very costly or almost impossible, for different
reasons. Among them are requirements to produce
web-optimized PDF, use of Adobe’s Acrobat Distiller
and of other local utilities built into the workflow go-
ing through PostScript.

Some dvips shortcomings, such as restricted
support of graphic formats, can be quite easily com-
pensated for by graphics preprocessing tools. An
attempt to use OpenType fonts meets bigger prob-
lems. It is possible to transform one OT font to many
new Type1 fonts, but then one needs to introduce
the new fonts in TEX styles and ensure their correct
use in LATEX texts. As a side effect of this, all advan-
tages of OpenType fonts are lost. Plus, these steps
are painful, so the wish to avoid them by extending
dvips is natural.

The locally used versions of dvips were mod-
ified long ago (before 2000), but behavior modifi-
cations were not deep, like ignoring unknown and
recognizing private specials, and writing a log file.
As the dvips program was not actively developed
at that time, the local patching to new versions of
dvips was an easy task.

About five years ago, more advanced handling
of graphic files was implemented, based on the Free-
Image [6] library. Standard dvips mainly works
with EPS files only, so all non-EPS graphics had to
be converted into EPS format. It allows restricted

use of bitmap images (BMP, PCX, PICT formats, no
scaling or rotation), but this is not exposed in the
main documentation [8]. The extended dvips now
accepts BMP, PCX, TIFF, JPEG, PNG formats and
performs the same actions as with EPS: scaling, ro-
tating, trim, viewport (but the graphics package
does not yet implement the operations of clipping,
trimming and viewport).

The work on providing OpenType font support
started about a year ago, when possible components
were tested; later they were connected into a work-
ing chain. The current stage of xdvipsk develop-
ment can probably be characterized as beta.

The program name xdvipsk starts with ‘x’ de-
noting the Unicode (OT fonts) extension and ends
with ‘k’ denoting use of the Kpathsea library (as
with dvipsk). The standard Kpathsea library (from
TEX Live) does not work with our main development
environment on MS Windows (Visual Studio), so it
was separately compiled for xdvipsk.

2 New options

New features of the extended dvips can be switched
on or off using new command-line options. The
summary of the options, presented in Fig. 1, is out-
put when xdvipsk is called with no arguments or
with the standard --help option. For more con-
venient review, in this presentation the new options
are printed in frame-boxes. A more detailed descrip-
tion of the new options, as included in the documen-
tation (again differing only in formatting details) is
as follows:

-g Mode of logging into the file named
〈dvi file name〉.xdvips.log;
default on. For a successful run, the log file
contains only the message !!!Success!!!.

-H 32-bit turbo mode for inclusion of PostScript
graphics (writes EPS files directly to PS file) us-
ing 10 MB dynamic buffer; default off.

-I〈pixel-form filters〉 Resizing mode for bitmap im-
ages included with em: graph specials; default
off. 〈pixel-form filters〉 is a comma-separated
tuple of up to four pairs 〈pixel-form〉:〈filter〉,
where 〈pixel-form〉 can be one of

BW: black/white 1-bit pixels,
GR: gray 8-bit pixels,
RGB: colored 24-bit pixels,
CMYK: colored 32-bit pixels,

and 〈filter〉 can be one of the following:

b: box filter,
t: bilinear filter,
B: B-spline filter,
m: Mitchell–Netravali bicubic filter,

Xdvipsk: Dvips ready for OpenType fonts and more image formats

198 TUGboat, Volume 38 (2017), No. 2

Usage: dvips [OPTION]... FILENAME[.dvi]

Convert DVI input files to PostScript.

Options:

-a* Conserve memory, not time -A Print only odd (TeX) pages

-b # Page copies, for posters e.g. -B Print only even (TeX) pages

-c # Uncollated copies -C # Collated copies

-d # Debugging -D # Resolution

-e # Maxdrift value -E* Try to create EPSF

-f* Run as filter -F* Send control-D at end

-g* write log file -G* Shift low chars to higher pos.

-h f Add header file -H* Turbo mode for PS graphics

-i* Separate file per section -I* Resize mode for emTeX graphics

-j* Download T1 fonts partially -J* Download OpenType fonts partially

-k* Print crop marks -K* Pull comments from inclusions

-l # Last page -L* Last special papersize wins

-m* Manual feed -M* Don't make fonts

-mode s Metafont device name

-n # Maximum number of pages -N* No structured comments

-noomega Disable Omega extensions

-noptex Disable pTeX extensions

-noluatex Disable LuaTeX extensions

-noToUnicode Disable ToUnicode CMap file generation for OpenType fonts

-o f Output file -O c Set/change paper offset

-p # First page -P s Load config.$s

-pp l Print only pages listed

-q* Run quietly -Q* Skip VTeX private specials

-r* Reverse order of pages -R* Run securely

-s* Enclose output in save/restore -S # Max section size in pages

-t s Paper format -T c Specify desired page size

-u s PS mapfile -U* Disable string param trick

-v Print version number and quit -V* Send downloadable PS fonts as PK

-W* Extended search for emTeX graphics

-x # Override dvi magnification -X # Horizontal resolution

-y # Multiply by dvi magnification -Y # Vertical resolution

-z* Hyper PS -Z* Compress bitmap fonts

= number f = file s = string * = suffix, '0' to turn off

c = comma-separated dimension pair (e.g., 3.2in,-32.1cm)

l = comma-separated list of page ranges (e.g., 1-4,7-9)

Figure 1: Xdvipsk option summary with new options indicated.

l: Lanczos-windowed sinc filter,
c: Catmull–Rom and Overhauser splines,
r: resample image (remove rows and columns

in the bitmap),
wi: MS Windows GDI filter, where i = 1, 2, 3, 4

means modes blackonwhite, whiteon-

black, coloroncolor and halftone,
respectively.

Not all 〈pixel form〉:〈filter〉 combinations are
possible:

• filters wi can be used on MS Windows sys-
tems only and just for BW, GR, and RGB

pixel forms; for CMYK, any wi filter is re-
placed by the r filter;

• on Linux and other systems, filters wi are
also changed to r filter;

• for monochrome graphics, only filters r and
wi are applicable.

-I (without filters) Resizing mode with the follow-
ing filter tuples:

BW:w1,GR:w3,RGB:w3,CMYK:r on Windows;
BW:r,GR:r,RGB:r,CMYK:r on other systems.

-j Type 1 fonts partial download; default off (con-
trary to dvips).

-J Download only needed characters from OT fonts;
default on.

-noluatex Disable LuaTEX extensions and support
of OpenType fonts.

-noToUnicode Omit generation of map (to Unicode)
files for OT fonts, which can be used by Acrobat
Distiller to enable text search; default on.

-Q Mode of skipping VTeX specials: any content of
\special commands prefixed with mt:, vtex:,
MC:, BMC: or EMC: is silently ignored; default off.

-W Extended search mode for image files indicated
by em: graph specials: when no file with the
specified name is found, the file names with
other extensions (.pcx, .bmp, .tif, .jpg, .png)
are tried; default off.

Sigitas Tolušis, Arūnas Povilaitis and Valentinas Kriaučiukas

TUGboat, Volume 38 (2017), No. 2 199

3 Extension for graphics

The extension for bitmap images does not require
changes to the user-level syntax; the LATEX com-
mand \includegraphics should work as described
in the documentation of graphics and graphicx [2];
that is, after inclusion in the preamble of either
\usepackage[〈driver〉]{graphics}

or
\usepackage[〈driver〉]{graphicx}

where the file 〈driver〉.def contains all the neces-
sary declarations and is registered in graphics.sty

(examples can be found in the presentation [10]).
As xdvipsk accepts images in formats BMP, JPEG,
PCX, PNG, and TIFF, they should all be declared
in the form of graphic inclusion rules in the driver
file, most likely dvips.def:

\@namedef{Gin@rule@.tif}#1{{bmp}{.tif.bb}{#1}}

\@namedef{Gin@rule@.tiff}#1{{bmp}{.tiff.bb}{#1}}

\@namedef{Gin@rule@.jpeg}#1{{bmp}{.jpeg.bb}{#1}}

\@namedef{Gin@rule@.jpg}#1{{bmp}{.jpg.bb}{#1}}

\@namedef{Gin@rule@.png}#1{{bmp}{.png.bb}{#1}}

Several things for authors of TEX packages and
papers to know:

• Bitmap image file names are included in DVI

files inside arguments of \special commands
with prefix em: graph (the name has roots in
the time of the EmTEX distribution).

• Bitmaps can be of different color models: BW,
gray, RGB, CMYK, indexed RGB.

• The program ignores the content of \special

commands with unknown prefixes.

• For more precise image positioning, Xdvipsk in-
serts the PostScript HiResBoundingBox.

4 How Xdvipsk works with OpenType

fonts

Our solution comes from the decision to use Open-
Type font information directly, as with LuaTEX and
the luaotfload package [9]. The current version of
luaotfload operates with only one writable cache,
which incorporates file paths specific to an OS, which
for us is inconvenient. Our production environment
contains different operating systems: Linux servers,
Linux and Windows workstations, and a shared TEX-
tree resource with multiple TEX Live versions on a
Linux server, accessible by Windows clients through
the local network. We wanted to have things as flex-
ible as possible in presence of different OSes.

Some additional tools are necessary for xdvipsk

to work:

1. PostScript header file texcid.pro is used for
inclusion of OpenType fonts in PostScript files.

It is an analogue of texps.pro that is used in
case of Type 1 fonts.

2. A LATEX package luafonts, which is just an
interface to Lua code generating two additional
maps. It is loaded like any other LATEX package:

\usepackage{luafonts}

One map generated by the package at compilation
time is analogous to psfonts.map and contains in-
formation about OpenType fonts used in a particu-
lar article. The map format is as follows:

〈tfm name〉␣〈ps name〉␣〈texfont name〉␣>〈file name〉

where 〈tfm name〉 is the same as what is written
in the DVI file by LuaTEX, and 〈ps name〉 and 〈file

name〉 come from luaotfload Lua tables. This 〈ps

name〉 is a PostScript font name and 〈texfont name〉
is an internal font name seen by luaotfload as
fullname. 〈file name〉 is modified so that the di-
rectory prefix, corresponding to the actual TEX tree
used, is replaced by variable $SELFAUTOPARENT. Ex-
amples of 〈tfm name〉, 〈file name〉 and 〈ps name〉 are
given, respectively, in Figs. 2, 3 and 4.

Another map generated by luafonts stores in-
formation about characters. It consists of triples
〈internal tex character code〉, 〈opentype font glyph

index〉, 〈unicode equivalent〉; examples are in Fig. 5.
These maps are used by Xdvipsk (a) to find

CIDs (character identifiers [1]) for insertion in PS

files and (b) to prepare tounicode cmaps [3], like
the one shown in Fig. 6. They are needed for search-
ing in PDF files. A utility make2unc was created to
incorporate tounicode cmaps for PDF.

4.1 Process in steps

Step 1. Run dvilualatex 〈article〉.tex

where file 〈article〉.tex uses luafonts:

Input: 〈article〉.tex

tex/luatex/luafonts/luafonts.sty

tex/luatex/luafonts/luafonts.lua

...

Output: 〈article〉.dvi

.xdvipsk/〈ps name〉.encodings.map

...

.xdvipsk/〈article〉.opentype.map

Step 2. Run xdvipsk 〈article〉.dvi:

Input: 〈article〉.dvi

.xdvipsk/〈ps name〉.encodings.map

...

.xdvipsk/〈article〉.opentype.map

texmf-dist/dvips/base/texcid.pro

...

Xdvipsk: Dvips ready for OpenType fonts and more image formats

200 TUGboat, Volume 38 (2017), No. 2

FandolFang-Regular

FandolFang-Regular:mode=node;script=latn;language=DFLT;+tlig;

TeXGyreAdventor

TeXGyreAdventor/B

TeXGyreAdventor/BI

TeXGyreAdventor/I

TeXGyreAdventor:mode=node;script=latn;language=DFLT;+pnum;+onum;

[lmroman10-bold]:+tlig;

[lmroman10-italic]:+tlig;

[lmroman10-regular]:+tlig;

Figure 2: Examples of 〈tfm name〉.

>$SELFAUTOPARENT/texmf-dist/fonts/opentype/public/fandol/FandolFang-Regular.otf

>$SELFAUTOPARENT/texmf-dist/fonts/opentype/public/tex-gyre/texgyreadventor-regular.otf

>$SELFAUTOPARENT/texmf-dist/fonts/opentype/public/tex-gyre/texgyreadventor-bold.otf

>$SELFAUTOPARENT/texmf-dist/fonts/opentype/public/tex-gyre/texgyreadventor-bolditalic.otf

>$SELFAUTOPARENT/texmf-dist/fonts/opentype/public/tex-gyre/texgyreadventor-italic.otf

>$SELFAUTOPARENT/texmf-dist/fonts/opentype/public/tex-gyre/texgyreadventor-regular.otf

>$SELFAUTOPARENT/texmf-dist/fonts/opentype/public/lm/lmroman10-bold.otf

>$SELFAUTOPARENT/texmf-dist/fonts/opentype/public/lm/lmroman10-italic.otf

>$SELFAUTOPARENT/texmf-dist/fonts/opentype/public/lm/lmroman10-regular.otf

Figure 3: Examples of 〈file name〉.

FandolFang-Regular

TeXGyreAdventor-Regular

TeXGyreAdventor-Bold

TeXGyreAdventor-BoldItalic

TeXGyreAdventor-Italic

TeXGyreAdventor-Regular

LMRoman10-Bold

LMRoman10-Italic

LMRoman10-Regular

Figure 4: Examples of 〈ps name〉.

Output: 〈article〉.ps

...

.xdvipsk/〈article〉-cid〈num〉.tounicode

...

where 〈num〉 is a font index in the DVI file and is
used here to have distinct file names.

Step 3. Convert the PostScript file to PDF (using
Ghostscript, Acrobat or any other tool):

Input: 〈article〉.ps

Output: 〈article〉.pdf

Step 4. Add tounicode cmaps to the PDF file us-
ing make2unc utility:

Input: 〈article〉.pdf

...

.xdvipsk/〈article〉-cid〈num〉.tounicode

...

Output: 〈article〉.pdf (searchable)

59964,707,00AF

59965,708,00AF

59966,709,00200331

59967,710,0304

59968,711,02DA

59969,712,0020030A0301

59970,713,0020030A0301

59971,714,030A

59972,715,02DC

Figure 5: An excerpt from a map, specifying TEX
characters’ OpenType glyph indices and Unicode
equivalence codes.

5 Development environment

At present, we use a rather split and mixed envi-
ronment, compared with the TEX Live build ecosys-
tem. As mentioned above, the main development
and building of executables is done on a MS Win-
dows workstation using the Visual Studio 2013 IDE.

In parallel, we build the code on two more ar-
chitectures: Linux and Mac OS X. For these, we are
quite close to the TEX Live build environment except
for prebuilt architecture-dependent versions of tiff,
lzma and jbig libraries for xdvipsk and MuPDF [7]
library for make2unc. There is no doubt that this
is easier than incorporating the mentioned libraries
into the TEX Live build ecosystem in the proper way.
It allowed us to provide, with minimum effort, our
time-limited solution for incorporating OpenType
fonts into a Dvips-based workflow.

Sigitas Tolušis, Arūnas Povilaitis and Valentinas Kriaučiukas

TUGboat, Volume 38 (2017), No. 2 201

/CIDInit /ProcSet findresource begin

12 dict begin

begincmap

/CMapName /t6-cid002 def

/CMapType 2 def

/CIDSystemInfo <<

/Registry (TeX)

/Ordering (BHCDARZO+002)

/Supplement 0

>> def

1 begincodespacerange

<0000> <FFFF>

endcodespacerange

24 beginbfchar

<001D> <0061>

<0024> <0062>

<002E> <002C>

<0030> <0064>

<0033> <0065>

<0042> <0049>

<0043> <0069>

<0049> <006C>

<004C> <006D>

<004E> <006E>

...

<040B> <0037>

<040E> <0036>

<0415> <0033>

<0419> <0032>

endbfchar

endcmap

CMapName currentdict /CMap defineresource pop

end

end

Figure 6: An example of a tounicode map.

Other needed libraries are taken from TEX Live
distributions. The current xdvipsk version is based
on dvips 5.996, web2c+kpathsea 6.22, TEX Live
2016.06.07, jpeglib 9b, libpng 1.62, libtiff 4.06,
zlib 1.2.8.

Comparing with the dvips source, the changes
in the code structure are the following:

• New modules:

charcode.c emspecialex.c

luamap.c sfntload.c

utarray.h uthash.h

writecid.c

and texcid.lpro — a PostScript procset with
comments.

• Removed modules:

emspecial.c

• Changes made in 22 modules. All changes are
tagged with markers:

//AP--begin

//AP--end

• New directories:

graflib: simplified and adapted code from the
FreeImage [6] library;

otflib: adapted code from dvipdfmx [4].

6 Availability

The source code is available from https://github.

com/vtex-soft/texlive.xdvipsk.

References

[1] Adobe Systems Inc. Adobe CMap and CIDFont

Files Specification, June 1993. Version 1.0.
https://www.adobe.com/content/dam/Adobe/en/

devnet/font/pdfs/5014.CIDFont_Spec.pdf.

[2] David P. Carlisle. Packages in the ‘graphics’

bundle. The LATEX3 Project, December 2016.
http://mirrors.ctan.org/macros/latex/

required/graphics/grfguide.pdf.

[3] Cmap — character to glyph index mapping table.
https://www.microsoft.com/typography/

otspec/cmap.htm. Visited 2017-04-10.

[4] Dvipdfmx — an extended version of dvipdfm.
https://ctan.org/pkg/dvipdfmx, March 2010.

[5] Dvips(k). https://tug.org/dvips/, April 2017.

[6] The FreeImage project. http://freeimage.

sourceforge.net/, April 2017.

[7] MuPDF. http://mupdf.com/.

[8] Tomas Rokicki. Dvips: A DVI-to-PostScript

Translator, April 2016.
https://tug.org/texlive/Contents/live/

texmf-dist/doc/dvips/dvips.pdf.

[9] Elie Roux, Khaled Hosny, and Philipp Gesang.
The luaotfload package, January 2017.
https://ctan.org/pkg/luaotfload.

[10] Sigitas Tolušis, Arūnas Povilaitis, and Valentinas
Kriaučiukas. Xdvipsk: dvips ready for
opentype fonts and more image formats.
http://www.gust.org.pl/bachotex/2017-pl/

presentations/stolusis-etal-1-2017.pdf,
May 2017. Slides of presentation at
TUG@BachoTEX 2017.

⋄ Sigitas Tolušis
VTeX, Mokslininkų 2a, Vilnius

LT-08412, Lithuania
sigitas (at) vtex dot lt

⋄ Arūnas Povilaitis
VTeX, Mokslininkų 2a, Vilnius

LT-08412, Lithuania
arunasp (at) vtex dot lt

⋄ Valentinas Kriaučiukas
VTeX, Mokslininkų 2a, Vilnius

LT-08412, Lithuania
valius (at) vtex dot lt

Xdvipsk: Dvips ready for OpenType fonts and more image formats

202 TUGboat, Volume 38 (2017), No. 2

GUST e-foundry current font projects

Jerzy B. Ludwichowski

Abstract

This is a short description of GUST’s e-foundry plans
for the more or less immediate future. Until now
they have not been presented widely, but only in a
different form to some LUG boards.

Introduction

For readers not familiar with the GUST e-foundry
(http://www.gust.org.pl/projects/e-foundry),
a list of its achievements follows:

• text fonts: Latin Modern, TEX Gyre fonts (seven
families), Antykwa Pó ltawskiego, Antykwa
Torunska, Kurier, Iwona, Cyklop.

• OTF math fonts (6 of the total 10 free and 3
commercial available): Latin Modern Math, four
TEX Gyre Math fonts (Bonum, Pagella, Schola,
Termes), TEX Gyre DejaVu Math.

Various proposals have been made to the team
to do more work based on its members’ OTF math
fonts expertise. The resulting projects are briefly
outlined here.

Math symbols subsets

Define subsets of math symbols for several uses:

• a sans-serif font (with the MATH table and a lim-
ited repertoire of glyphs); to be used in headings
and slides;

• a heavy font (with the MATH table and a lim-
ited repertoire of glyphs); again, to be used in
headings and for slides;

• a monospaced font (without the MATH table),
to be used with text editors

• a text font for technical texts (in-line references
to symbols and quoting of simple formulas with-
out deploying the math fonts machinery);

This is a study project, with no direct deliverables,
except for the selection of glyphs. It is, however,
prerequisite for most of the following projects.

A sans-serif math OpenType font

Make a sans-serif OpenType math font, based on
DejaVu, with an eye on doing the same for other
sans-serif fonts; for use in headings.

A heavy math OpenType font

Starting from the heavy version of one of the TEX
Gyre OTF math fonts, possibly TEX Gyre Termes,
with an eye on doing the same for other serif fonts.
Also for use in headings.

A monospace font with math symbols

A monospace (text) font enhanced with math sym-
bols without extensibles (a proper subset of math
symbols required), most probably DejaVu based; for
use in editing and source code. The main difficulties:

• “squeezing” of wide math symbols into the mono-
spaced dimensions;

• the incompleteness of the Unicode standard (e.g.,
the incomplete set of superscript glyphs) may
turn out to be troublesome.

Enhancing the TEX Gyre text fonts

The TEX Gyre fonts will certainly benefit from en-
hancement with a subset of math symbols. Possible
(open) problems:

• might require a revision of glyph selection,
sans-serif OTF math and heavy OTF math.

• should sans-serif fonts also be enhanced?
• and should they share the same repertoire

of extra glyphs?

It makes little sense to enhance the TEX Gyre Chorus
(the Zapf Chancery replacement) font with math
oriented glyphs. In addition:

• The fonts do require maintenance;
• until now done only when requests or bug re-

ports were received.

To keep uniformity and spare users unpleasant
surprises this must involve all GUST fonts, even when
no changes/modifications ensue. This should be done
carefully, on a planned schedule; the team proposes
regular yearly (calendar) revisions.

Enhancements to existing fonts

The GUST e-foundry’s math fonts will profit from be-
ing enhanced with math kerns and math oriented fea-
tures like variant extra alphabets, e.g., double-struck
or calligraphic, implemented using the “stylistic set”
features, ss01–ss20.

Summary

The priorities will certainly influence the order in
which the projects will be tackled, but the glyph
selection is the prerequisite.

As there is a considerable amount of work in-
volved in all of these projects, we requested fund-
ing from some TEX user groups. Support has been
promised from: NTG, CSTUG, CG (Context Group),
DANTE e.V., TUG, GUST (non-material). Given
time, the team will work on the projects, even with-
out funds.

⋄ Jerzy B. Ludwichowski

GUST, Poland

jerzy.ludwichowski (at) gmail dot com

Jerzy B. Ludwichowski

http://www.gust.org.pl/projects/e-foundry

TUGboat, Volume 38 (2017), No. 2 203

Variable fonts

Hans Hagen

1 Introduction

History shows the tendency to recycle ideas. Often
quite some effort is made by historians to figure
out what really happened, not just long ago, when
nothing was written down and we have to do with
stories or pictures at most, but also in recent times.
Descriptions can be conflicting, puzzling, incomplete,
partially lost, biased, . . .

Just as language was invented (or evolved) sev-
eral times, so were scripts. The same might be true
for rendering scripts on a medium. Semaphores came
and went within decades and how many people know
now that they existed and that encryption was in-
volved? Are the old printing presses truly the old
ones, or are older examples simply gone? One of the
nice aspects of the internet is that one can now more
easily discover similar solutions for the same problem,
but with a different (and independent) origin.

So, how about this “new big thing” in font tech-
nology: variable fonts. In this case, history shows
that it’s not that new. For most TEX users the names
METAFONT and MetaPost will ring bells. They
have a very well documented history so there is not
much left to speculation. There are articles, books,
pictures, examples, sources, and more around for
decades. So, the ability to change the appearance
of a glyph in a font depending on some parameters
is not new. What probably is new is that creating
variable fonts is done in the natural environment
where fonts are designed: an interactive program.
The METAFONT toolkit demands quite some insight
in programming shapes in such a way that one can
change look and feel depending on parameters. There
are not that many meta fonts made and one reason is
that making them requires a certain mind- and skill
set. On the other hand, faster computers, interactive
programs, evolving web technologies, where real-time
rendering and therefore more or less real-time tweak-
ing of fonts is a realistic option, all play a role in
acceptance.

But do interactive font design programs make
this easier? You still need to be able to translate
ideas into usable beautiful fonts. Taking the common
shapes of glyphs, defining extremes and letting a
program calculate some interpolations will not always
bring good results. It’s like morphing a picture of
your baby’s face into yours of old age (or that of your
grandparent): not all intermediate results will look
great. It’s good to notice that variable fonts are a
revival of existing techniques and ideas used in, for

instance, multiple master fonts. The details might
matter even more as they can now be exaggerated
when some transformation is applied.

There is currently (March 2017) not much in-
formation about these fonts so what I say next may
be partially wrong or at least different from what is
intended. The perspective will be one from a TEX
user and coder. Whatever you think of them, these
fonts will be out there and for sure there will be
nice examples circulating soon. And so, when I ran
into a few experimental fonts, with PostScript and
TrueType outlines, I decided to have a look at what
is inside. After all, because it’s visual, it’s also fun
to play with. Let’s stress that at the moment of this
writing I only have a few simple fonts available, fonts
that are designed for testing and not usage. Some
recommended tables were missing and no complex
OpenType features are used in these fonts.

2 The specification

I’m not that good at reading specifications, first of
all because I quickly fall asleep with such documents,
but most of all because I prefer reading other stuff
(I do have lots of books waiting to be read). I’m also
someone who has to play with something in order to
understand it: trial and error is my modus operandi.
Eventually it’s my intended usage that drives the
interface and that is when everything comes together.

Exploring this technology comes down to: locate
a font, get the OpenType 1.8 specification from the
Microsoft website, and try to figure out what is in the
font. When I had a rough idea the next step was to
get to the shapes and see if I could manipulate them.
Of course it helped that in ConTEXt we already can
load fonts and play with shapes (using MetaPost).
I didn’t have to install and learn other programs.
Once I could render them, in this case by creating a
virtual font with inline PDF literals, a next step was
to apply variation. Then came the first experiments
with a possible user interface. Seeing more variation
then drove the exploration of additional properties
needed for typesetting, like features.

The main extension to the data packaged in a
font file concerns the (to be discussed) axis along
which variable fonts operate and deltas to be applied
to coordinates. The gdef table has been extended
and contains information that is used in gpos fea-
tures. There are new hvar, vvar and mvar tables
that influence the horizontal, vertical and general
font dimensions. The gvar table is used for TrueType
variants, while the cff2 table replaces the cff table
for OpenType PostScript outlines. The avar and
stat tables contain some meta-information about
the axes of variations.

Variable fonts

204 TUGboat, Volume 38 (2017), No. 2

It must be said that because this is new tech-
nology the information in the standard is not always
easy to understand. The fact that we have two ren-
dering techniques, PostScript cff and TrueType ttf,
also means that we have different information and
perspectives. But this situation is not much different
from OpenType standards a few years ago: it takes
time but in the end I will get there. And, after all,
users also complain about the lack of documentation
for ConTEXt, so who am I to complain? In fact, it will
be those ConTEXt users who will provide feedback
and make the implementation better in the end.

3 Loading

Before we discuss some details, it will be useful to
summarize what the font loader does when a user
requests a font at a certain size and with specific
features enabled. When a font is used the first time,
its binary format is converted into a form that makes
it suitable for use within ConTEXt and therefore Lua-
TEX. This conversion involves collecting properties
of the font as a whole (official names, general di-
mensions like x-height and em-width, etc.), of glyphs
(dimensions, Unicode properties, optional math prop-
erties), and all kinds of information that relates to
(contextual) replacements of glyphs (small caps, old-
style, scripts like Arabic) and positioning (kerning,
anchoring marks, etc.). In the ConTEXt font loader
this conversion is done in Lua.

The result is stored in a condensed format in a
cache and the next time the font is needed it loads in
an instant. In the cached version the dimensions are
untouched, so a font at different sizes has just one
copy in the cache. Often a font is needed at several
sizes and for each size we create a copy with scaled
glyph dimensions. The feature-related dimensions
(kerning, anchoring, etc.) are shared and scaled when
needed. This happens when sequences of characters
in the node list get converted into sequences of glyphs.
We could do the same with glyph dimensions but
one reason for having a scaled copy is that this copy
can also contain virtual glyphs and these have to be
scaled beforehand. In practice there are several layers
of caching in order to keep the memory footprint
within reasonable bounds.1

When the font is actually used, interaction be-
tween characters is resolved using the feature-related
information. When for instance two characters need
to be kerned, a lookup results in the injection of a

1 In retrospect one can wonder if that makes sense; just

look at how much memory a browser uses when it has been

open for some time. In the beginning of LuaTEX users won-

dered about caching fonts, but again, just look at how much

browsers cache.

kern, scaled from general dimensions to the current
size of the font.

When the outlines of glyphs are needed in Meta-
fun the font is also converted from its binary form
to something in Lua, but this time we filter the
shapes. For a cff this comes down to interpreting
the charstrings and reducing the complexity to
moveto, lineto and curveto operators. In the pro-
cess subroutines are inlined. The result is something
that MetaPost is happy with but that also can be
turned into a piece of a PDF.

We now come to what a variable font actually
is: a basic design which is transformed along one or
more axes. A simple example is wider shapes:

We can also go taller and retain the width:

Here we have a linear scaling but glyphs are not
normally done that way. There are font collections
out there with lots of intermediate variants (say from
light to heavy) and it’s more profitable to sell each
variant independently. However, there is often some
logic behind it, probably supported by programs that
designers use, so why not build that logic into the font
and have one file that represents many intermediate
forms. In fact, once we have multiple axes, even when
the designer has clear ideas of the intended usage,
nothing will prevent users from tinkering with the
axis properties in ways that will fulfil their demands
but hurt the designers’ eyes. We will not discuss that
dilemma here.

When a variable font follows the route described
above, we face a problem. When you load a TrueType
font it will just work. The glyphs are packaged in
the same format as static fonts. However, a variable
font has axes and on each axis a value can be set.
Each axis has a minimum, maximum and default.
It can be that the default instance also assumes
some transformations are applied. The standard
recommends adding tables to describe these things
but the fonts that I played with each lacked such
tables. So that leaves some guesswork. But still, just
loading a TrueType font gives some sort of outcome,
although the dimensions (widths) might be weird
due to lack of a (default) axis being applied.

An OpenType font with PostScript outlines is
different: the internal cff format has been upgraded
to cff2 which on the one hand is less complicated
but on the other hand has a few new operators—

Hans Hagen

TUGboat, Volume 38 (2017), No. 2 205

which results in programs that have not been adapted
complaining or simply quitting on them.

One could argue that a font is just a resource
and that one only has to pass it along but that’s
not what works well in practice. Take LuaTEX. We
can of course load the font and apply axis values so
that we can process the document as we normally
do. But at some point we have to create a PDF. We
can simply embed the TrueType files but no axis
values are applied. This is because, even if we add
the relevant information, there is no way in current
PDF formats to deal with it. For that, we should
be able to pass all relevant axis-related information
as well as specify what values to use along these
axes. And for TrueType fonts this information is
not part of the shape description so then we in fact
need to filter and pass more. An OpenType Post-
Script font is much cleaner because there we have the
information needed to transform the shape mostly
in the glyph description. There we only need to
carry some extra information on how to apply these
so-called blend values. The region/axis model used
there only demands passing a relatively simple table
(stripped down to what we need). But, as said above,
cff2 is not backward-compatible so a viewer will
(currently) simply not show anything.

Recalling how we load fonts, how does that trans-
late with variable changes? If we have two characters
with glyphs that get transformed and that have a
kern between them, the kern may or may not trans-
form. So, when we choose values on an axis, then not
only glyph properties change but also relations. We
no longer can share positional information and scale
afterwards because each instance can have different
values to start with. We could carry all that infor-
mation around and apply it at runtime but because
we’re typesetting documents with a static design it’s
more convenient to just apply it once and create an
instance. We can use the same caching as mentioned
before but each chosen instance (provided by the
font or made up by user specifications) is kept in the
cache. As a consequence, using a variable font has
no overhead, apart from initial caching.

So, having dealt with that, how do we proceed?
Processing a font is not different from what we al-
ready had. However, I would not be surprised if users
are not always satisfied with, for instance, kerning,
because in such fonts a lot of care has to be given to
this by the designer. Of course I can imagine that
programs used to create fonts deal with this, but
even then, there is a visual aspect to it too. The
good news is that in ConTEXt we can manipulate
features so in theory one can create a so-called font
goodie file for a specific instance.

4 Shapes

For OpenType PostScript shapes we always have
to do a dummy rendering in order to get the right
bounding box information. For TrueType this in-
formation is already present but not when we use a
variable instance, so I had to do a bit of coding for
that. Here we face a problem. For TEX we need the
width, height and depth of a glyph. Consider the
following case:

The shape has a bounding box that fits the
shape. However, its left corner is not at the origin.
So, when we calculate a tight bounding box, we
cannot use it for actually positioning the glyph. We
do use it (for horizontal scripts) to get the height and
depth but for the width we depend on an explicit
value. In OpenType PostScript we have the width
available and how the shape is positioned relative to
the origin doesn’t much matter. In a TrueType shape
a bounding box is part of the specification, as is the
width, but for a variable font one has to use so-called
phantom points to recalculate the width and the test
fonts I had were not suitable for investigating this.

At any rate, once I could generate documents
with typeset text using variable fonts it became time
to start thinking about a user interface. A variable
font can have predefined instances but of course a
user also wants to mess with axis values. Take one
of the test fonts: Adobe Variable Font Prototype. It
has several instances:

extralight I t l o o k s l i k e t h i s ! weight=0 contrast=0

light I t l o o k s l i k e t h i s ! weight=150 contrast=0

regular I t l o o k s l i k e t h i s ! weight=394 contrast=0

semibold I t l o o k s l i k e t h i s ! weight=600 contrast=0

bold I t l o o k s l i k e t h i s ! weight=824 contrast=0

black high contrast I t l o o k s l i k e t h i s ! weight=1000 contrast=100

black medium contrast I t l o o k s l i k e t h i s ! weight=1000 contrast=50

black I t l o o k s l i k e t h i s ! weight=1000 contrast=0

Such an instance is accessed with:

\definefont[MyLightFont]

[name:adobevariablefontprototypelight*default]

The Avenir Next variable demo font (currently)
provides:

regular It looks like this! weight=400 width=100

medium It looks like this! weight=500 width=100

bold It looks like this! weight=700 width=100

heavy I t look s like this! weight=900 width=100

condensed It lookslikethis! weight=400 width=75

medium condensed It lookslikethis! weight=500 width=75

bold condensed It looks likethis! weight=700 width=75

heavy condensed It looks like this! weight=900 width=75

Variable fonts

206 TUGboat, Volume 38 (2017), No. 2

Before we continue I will show a few examples
of variable shapes. Here we use some Metafun magic.
Just take these definitions for granted.

\startMPcode

draw outlinetext.b ("\definedfont

[name:adobevariablefontprototypeextralight]%

foo@bar")

(withcolor "gray")

(withcolor red withpen pencircle scaled 1/10)

xsized .45TextWidth ;

\stopMPcode

\startMPcode

draw outlinetext.b ("\definedfont

[name:adobevariablefontprototypelight]%

foo@bar")

(withcolor "gray")

(withcolor red withpen pencircle scaled 1/10)

xsized .45TextWidth ;

\stopMPcode

\startMPcode

draw outlinetext.b ("\definedfont

[name:adobevariablefontprototypebold]%

foo@bar")

(withcolor "gray")

(withcolor red withpen pencircle scaled 1/10)

xsized .45TextWidth ;

\stopMPcode

\startMPcode

draw outlinetext.b

("\definefontfeature[whatever]%

[axis={weight:350}]%

\definedfont

[name:adobevariablefontprototype*whatever]%

foo@bar")

(withcolor "gray")

(withcolor red withpen pencircle scaled 1/10)

xsized .45TextWidth ;

\stopMPcode

The results are shown in figure 1. What we see
here is that as long as we fill the shape everything
will look as expected but using an outline only won’t.
The crucial (control) points are moved to different
locations and as a result they can end up inside the
shape. Giving up outlines is the price we evidently
need to pay. Of course this is not unique for variable
fonts although in practice static fonts behave better.
To some extent we’re back to where we were with
METAFONT and (for instance) Computer Modern:
because these originate in bitmaps (and probably
use similar design logic) we also can have overlap
and bits and pieces pasted together and no one will
notice that. The first outline variants of Computer
Modern also had such artifacts while in the static
Latin Modern successors, outlines were cleaned up.

The fact that we need to preprocess an instance
but only know how to do that when we have got-

Figure 1: Four variants

ten the information about axis values from the font
means that the font handler has to be adapted to
keep caching correct. Another definition is:

\definefontfeature[lightdefault]

[default]

[axis={weight:230,contrast:50}]

\definefont[MyLightFont]

[name:adobevariablefontprototype*lightdefault]

Here the complication is that where normally
features are dealt with after loading, the axis feature
is part of the preparation (and caching). If you want
the virtual font solution you can do this:

\definefontfeature[inlinelightdefault]

[default]

[axis={weight:230,contrast:50},

variableshapes=yes]

\definefont[MyLightFont]

[name:adobevariablefontprototype

*inlinelightdefault]

When playing with these fonts it was hard to see
if loading was done right. For instance not all values
make sense. It is beyond the scope of this article, but
axes like weight, width, contrast and italic values get
applied differently to so-called regions (subspaces).
So say that we have an x coordinate with value
50. This value can be adapted in, for instance, four
subspaces (regions), so we actually get:

x
′ = x+ s1 × x1 + s2 × x2 + s3 × x3 + s4 × x4

The (here) four scale factors sn are determined
by the axis value. Each axis has some rules about
how to map the values 230 for weight and 50 for
contrast to such a factor. And each region has its
own translation from axis values to these factors.
The deltas x1, . . . , x4 are provided by the font. For
a PostScript-based font we find sequences like:

1 〈setvstore〉
120 [10 -30 40 -60] 1 〈blend〉 ... 〈operator〉
100 120 [10 -30 40 -60] [30 -10 -30 20]

2 〈blend〉 ... 〈operator〉

A store refers to a region specification. From
there the factors are calculated using the chosen
values on the axis. The deltas are part of the glyph
specification. Officially there can be multiple region
specifications, but how likely it is that they will be
used in real fonts is an open question.

Hans Hagen

TUGboat, Volume 38 (2017), No. 2 207

For TrueType fonts the deltas are not in the
glyph specification but in a dedicated gvar table.

apply x deltas [10 -30 40 -60] to x 120

apply y deltas [30 -10 -30 20] to y 100

Here the deltas come from tables outside the
glyph specification and their application is triggered
by a combination of axis values and regions.

The following two examples use Avenir Next
Variable and demonstrate that kerning is adapted to
the variant.

\definefontfeature[default:shaped][default]

[axis={width:10}]

\definefont[SomeFont]

[file:avenirnextvariable*default:shaped]

C
-0.144

omingback totheuseof typefaces inelectr
-0.072

onicpublishing: manyof thenew
typogr

-0.072

aphersr
-0.072

eceivetheirknowledgeandinforma
-0.120

tionabouttherulesoftypogr
-0.072

a-
phyfr

-0.072

ombook
-0.072

s, fr
-0.072

omcomputermagazinesortheinstructionmanualswhichthey
getwiththepur

-0.072

chaseof aPCorsof
-0.144

twar
-0.072

e. T
-0.072

her
-0.072

eisnot somuchbasicinstruction,
asofnow

-0.432

,asther
-0.072

ewasintheolddays,showingthedif
-0.144

fer
-0.072

encesbetweengoodand
badtypogr

-0.072

aphicdesign. Manypeoplear
-0.072

ejust fascina
-0.120

tedbytheirPC’
-0.432

strick
-0.072

s, and
thinktha

-0.120

tawidely--pr
-0.072

aisedpr
-0.072

ogr
-0.072

am,calleduponthescr
-0.072

een,willmak
-0.144

eeverything
automa

-0.120

ticfr
-0.072

omnowon. HermannZ
-0.144

apf

\definefontfeature[default:shaped][default]

[axis={width:100}]

\definefont[SomeFont]

[file:avenirnextvariable*default:shaped]

C
-0.144

oming back to the use of typefaces in electr
-0.216

onic publishing:
many of the new typogr

-0.144

aphers r
-0.216

eceive their knowledge and in-
forma

-0.120

tion about the rules of typogr
-0.144

aphy fr
-0.216

om book
-0.072

s, fr
-0.216

om com-
puter magazines or the instruction manuals which they get with
the pur

-0.216

chase of a PC or sof
-0.144

twar
-0.216

e. T
-0.216

her
-0.216

e is not so much basic in-
struction, as of now

-0.432

, as ther
-0.216

e was in the old days, showing the
dif

-0.216

fer
-0.216

ences between good and bad typogr
-0.144

aphic design. Many
people ar

-0.216

e just fascina
-0.120

ted by their PC’
-0.576

s trick
-0.072

s, and think tha
-0.120

t
a widely--pr

-0.144

aised pr
-0.216

ogr
-0.144

am, called up on the scr
-0.216

een, will mak
-0.216

e
everything automa

-0.120

tic fr
-0.216

om now on. Hermann Z
-0.144

apf

5 Embedding

Once we’re done typesetting and a PDF file has to
be created there are three possible routes:

• We can embed the shapes as PDF images (inline
literal) using virtual font technology. We cannot
use so-called xforms here because we want to
support color selectively in text.

• We can wait till the PDF format supports such
fonts, which might happen but even then we
might be stuck for years with viewers getting
there. Also documents need to get printed, and
when printer support might arrive is another
unknown.

• We can embed a regular font with shapes that
match the chosen values on the axis. This solu-
tion is way more efficient than the first.

Once I could interpret the right information in
the font, the first route was the way to go. A side

effect of having a converter for both outline types
meant that it was trivial to create a virtual font
at runtime. This option will stay in ConTEXt as
pseudo-feature variableshapes.

When trying to support variable fonts I tried to
limit the impact on the backend code. Also, process-
ing features and such was not touched. The inclusion
of the right shapes is done via a callback that re-
quests the blob to be injected in the cff or glyf

table. When implementing this I actually found out
that the LuaTEX backend also does some juggling
of charstrings, to serve the purpose of inlining sub-
routines. In retrospect I could have learned a few
tricks faster by looking at that code but I never re-
alized that it was there. Looking at the code again,
it strikes me that the whole inclusion could be done
with Lua code and some day I will give that a try.

6 Conclusion

When I first heard about variable fonts I was confi-
dent that when they showed up they could be sup-
ported. Of course a specimen was needed to prove
this. A first implementation demonstrates that in-
deed it’s no big deal to let ConTEXt with LuaTEX
handle such fonts. At the conference Adam Twar-
doch demonstrated the website axis-praxis.org,
and we currently can support most of the fonts there
quite well.

Of course we need to fill in some gaps which can
be done once we have complete fonts. And then of
course users will demand more control. In the mean-
time the helper script that deals with identifying
fonts by name has been extended and the relevant
code has been added to the distribution. At some
point the ConTEXt Garden will provide the LuaTEX
binary that has the callback.

I end with a warning. On the one hand this tech-
nology looks promising but on the other hand one can
easily get lost. Probably most such fonts operate over
a well-defined domain of values but even then one
should be aware of complex interactions with features
like positioning or replacements. Not all combina-
tions can be tested. It’s probably best to stick to
fonts that have all the relevant tables and don’t de-
pend on properties of a specific rendering technology.

Although support is now present in the core
of ConTEXt the official release will happen at the
ConTEXt meeting in 2017. By then I hope to have
tested more fonts. Maybe the interface has also been
extended by then because after all, TEX is about
control.

⋄ Hans Hagen

Pragma ADE

http://pragma-ade.com

Variable fonts

208 TUGboat, Volume 38 (2017), No. 2

Parametric math symbol fonts

Bogusław Jackowski, Piotr Strzelczyk and
Piotr Pianowski

1 Introduction

In 2007, Microsoft released their math-equipped MS

Office along with the math OpenType (OTF) font
Cambria. In the past 10 years, a dozen more OTF

math fonts have been released — half of which were
developed by the GUST e-foundry [4, p. 908].

Given the huge number of font vendors (see, e.g.,
[2]) and the correspondingly huge number of offered
fonts, the nearly negligible number of math OTF fonts
is somewhat puzzling. Leaving aside the reasons
for such a state of the art, one conclusion seems
obvious: math OTF fonts, despite having a well-
defined standard which is undoubtedly an important
advantage, are not particularly popular.

Thus, the question arises: is concentrating ef-
forts on generating more math fonts reasonable? As
far as the TEX society is considered, the answer is
equivocal: yes and no. Certainly, TEXies are in-
terested in typesetting math texts, as TEX is still
the best tool for this purpose, therefore they would
gladly use a broad variety of math fonts. However,
TEXies do not actually need complete OTF math
fonts. Thanks to new TEX engines, notably LuaTEX,
math fonts can be assembled out of already exist-
ing text fonts and a “math trunk” — a set of math
symbols from another font.

Below we present the idea of assembling math
fonts on the fly using the LuaTEX engine. We will
try to justify that this approach is less laborious
than the making of a regular math font, yet general
enough for TEX users.

2 What is a math font?

The contents of an OTF (also called Unicode) math
font is specified by Microsoft documentation [9], and
the Unicode Consortium report on Unicode support
for mathematics [12]. The former specifies a special
MATH table, a pivotal table for math OTF fonts. It
contains information about glyph chains, stretchable
glyphs, positioning of subscripts and superscripts,
fractions, etc. The latter defines component alphabet
sets (scripts) that are expected to be present in
a math OTF font. The required components of a
typical math OTF font are schematically shown in
Figure 1.

As one can see, a math OTF font is, in fact,
a collection of various fonts assembled into one en-
tity. One of the reasons, the most important in our
opinion, behind this arrangement is that nowadays

F
ig

u
re

1

Composites (subfonts) of a math OTF font:

operating systems do not enable flexible handling
of user-defined families (collections) of fonts — for-
matting editors usually handle 4-member families
comprising regular, regular italic, bold and bold italic
variants. TEX users, however, are not bound to fol-
low that restriction. The solution proposed in this
paper follows from this observation.

3 Subscripts and superscripts

Subscripts and superscripts (by tradition, of the 1st

and 2nd order) are obligatory for typesetting math;
therefore, math fonts are expected to contain special
glyphs which can be used for this purpose, also used
in fractions and as root degree in radicals; for the
sake of brevity, we’ll call these glyphs pars pro toto
subscripts. They are accessed by the OTF feature
mechanism, more precisely by the math extension
feature ssty [10, 11].

Neither the Microsoft documentation nor the
Unicode Consortium report ([9] and [12]) mentioned
above specify which glyphs should be accompanied
by subscripts; in the GUST e-foundry fonts, we have
tried to limit their number, nevertheless, they make
up about 30 percent of all glyphs.

Bogusław Jackowski, Piotr Strzelczyk and Piotr Pianowski

TUGboat, Volume 38 (2017), No. 2 209

F
ig

u
re

2

Computer Modern, optical (fancy) scaling:

AMS Euler, non-uniform scaling:

TEX Gyre, non-uniform scaling:

default, uniform scaling:

The outlines of the subscripts have the normal
size. The MATH table contains the scaling coefficient
by which the rendering engine is expected to scale
down the glyph uniformly before the placement. If
the respective subscript glyph is absent from the font,
the original glyph is used.

A pity that only uniform scaling is allowed. If
non-uniform scaling were allowed, the extra glyphs
for subscripts would be unnecessary.

Donald E. Knuth decided to scale all fonts non-
linearly (typographers prefer the term “optically”)
in his Computer Modern family of fonts [1]: corre-
sponding glyphs from fonts having different design
sizes have different proportions, thus including the
fonts having the design size 7 pt and 5 pt, used as
subscripts of the 1st and 2nd order, respectively.

It turns out, however, that fairly decent visual
results can be achieved by non-uniform scaling, i.e.,
by scaling down and widening the glyph at the same
time. This approach was successfully used in the
renowned Euler font [6], designed by Hermann Zapf,
belonging to the basic collection of TEX fonts. We
are not aware of any complaints about the inelegance
or illegibility of Euler subscripts. Following the Euler
project, we have employed the same method in our
GUST e-foundry fonts. The appearance of subscripts
generated with various methods is shown in Figure 2.

The point is that the non-uniform scaling can be
done by the modern TEX engines on the fly; therefore,
the presence of subscript glyphs in a math font is
not essential for TEX users.

4 LuaTEX as a “font assembler”

In order to assemble several component (sub)fonts
into a single math OTF font, advanced software is
generally needed, such as, e.g., the excellent Font-
Forge editor [7]. TEX wizards, however, or more
precisely LuaTEX wizards, are in a better position —

F
ig

u
re

3
F

ig
u

re
3
a

F
ig

u
re

3
b

F
ig

u
re

3
c

they do not need a font editor at all. Font assem-
bly can be programmed in TEX (using the package
unicode-math [5]). Once a wizard devises (and re-
leases) a relevant script, others can adapt it to their
needs. This is exactly our case: starting from Lua-
TEX code for loading OTF fonts, we were able to
prepare a script for “blending” a given math OTF

font with a few other selected fonts. Figure 3 shows
an example, the beginning of our LuaTEX script for

Parametric math symbol fonts

210 TUGboat, Volume 38 (2017), No. 2

F
ig

u
re

4

mixing the TEX Gyre DejaVu OTF math font with
the DejaVu sans-serif variant.

Such a relatively simple header allows even in-
experienced users to easily type math formulas with
a chosen main font (in general, an arbitrary text
font, DejaVu sans-serif in this case) along with the
math symbols, i.e., braces, radicals, etc., taken from
a chosen math font (in general, a math OTF font,
TG DejaVu Math in this case) — see Figures 3a–3c.

Not only subscript sizes and proportions can
be defined on the fly; also sidebearings can be con-
trolled by appropriate font family definitions using
the LuaTEX font loading option extend and the Lua-
TEX (originally from pdfTEX) primitive command
\letterspacefont, respectively.

5 What else do we need?

In the previous section we substantiated the state-
ment that LuaTEX can be used, in a sense, as a
“poor man’s font editor”. What cannot be easily han-
dled from within LuaTEX? The answer is: subtle
details should be taken into account, provided that
one cares — we do.

As we emphasized in our paper on the GUST

e-foundry font projects [4, p. 326], an important as-
pect of a math font is the visual harmonizing of the
alphanumeric glyphs and the symbols. Seemingly
trivial glyphs, such as operator and relational sym-
bols, may serve as a convenient example: they have
slightly different shapes in each of our math fonts —
see Figure 4 above. Another example is the optical
similarity between the shape of integrals and the
letter ‘long s’, which in turn is similar to the letter
‘f’ [4, p. 326].

Such details, in principle, could be controlled
from within LuaTEX; however, we would consider
this to be overloading the functionality of LuaTEX.
Furthermore, we prefer to fiddle around with glyph

shapes using MetaType 1 [3], our favorite MetaPost-
based tool.

6 How to tackle the problem?

We can pinpoint the problem to solve as follows:
given (say, by a customer) a font, add an adequate,
i.e., optically consistent, math companion to be used
in LuaTEX with the given font. The solution consists
of a few more or less obvious steps:

⋄ prepare a generic set of LuaTEX macros;

⋄ prepare a generic set of MetaPost/MetaType 1
macros for generating the basic set of math
symbol glyphs;

⋄ for this set of MetaPost/MetaType 1 macros,
prepare a set of relevant parameters for a given
font controlling ovalness, incisions, thickness of
stems, x-height, etc.

The good news is that all the steps listed above
are to a great extent accomplished or at least com-
menced:

⋄ we use LuaTEX with the unicode-math pack-
age [5, 8], in our office (heavily exploiting Hans
Hagen’s font handling macros — thanks!);

⋄ a lion’s share of MetaType 1 macros which we
use for generating GUST e-foundry fonts can
also be used for this purpose;

⋄ moreover, the MetaType 1 macros are, of course,
parameterized — this is why we were able to
release a new math OTF font once a year on
average.

Our experience is thus optimistic, although it
does not mean that nothing remains to be done. On
the contrary. Putting it figuratively: it takes a few
minutes to saw a plank, burnishing it takes a few
hours. So far, we “have sawn the plank”.

Bogusław Jackowski, Piotr Strzelczyk and Piotr Pianowski

TUGboat, Volume 38 (2017), No. 2 211

7 Conclusions

A canonical math OTF font has many advantages,
such as, e.g., universality — it can be used with vari-
ous programs and various operating systems. At the
same time, it is a “frozen” (unmodifiable) object —
it is impossible to modify it without employing a
font editor; e.g., none of the subfonts can be replaced
with a user-chosen variant.

The method described in this paper is, on one
hand, certainly less universal as it is restricted to the
TEX environment, but, on the other hand, provides
a flexible tool that may prove useful (we hope) in
practical applications.

Our thinking about implementing such an ap-
proach was triggered by customers’ demands, who
(rarely, but still) wanted to have math formulas type-
set with their “flagship” font; unfailingly, it was
none of the dozen math fonts mentioned in Section 1.
Needless to say, the making of a respective complete
math OTF font was not feasible.

Thus, we have a natural motivation to continue
the work on this subject. We believe that before long
we will be able to notify the TEX community about
some results.

8 Acknowledgements

Permanent and hearty thanks go to Hans Hagen for
providing us with a marvelous pastime.

All trademarks belong to their respective owners
and have been used here for informational purposes
only.

References

Presentations, publications and packages:

[1] Donald E. Knuth, Computer Modern
Typefaces, Computers & Typesetting, vol. E,
Addison-Wesley, Reading, Massachusetts, 1986

[2] Luc Devroye, Font vendors,
http://luc.devroye.org/vendors.html

[3] Bogusław Jackowski, Janusz M. Nowacki,
Piotr Strzelczyk,
MetaType 1: A MetaPost-based engine for
generating Type 1 fonts, 2001
Article: http://www.ntg.nl/maps/26/15.pdf

Presentation: http://www.gust.org.pl/

bachotex/2015/presentations/

2015BJackowski.pdf

Download: https://ctan.org/pkg/

metatype1

[4] Bogusław Jackowski, Piotr Strzelczyk,
Piotr Pianowski, GUST e-foundry font
projects, TUGboat, Vol. 37 (2016), No. 3,
pp. 317–336, https://tug.org/TUGboat/

tb37-3/tb117jackowski.pdf

[5] Will Robertson, Philipp Stephani,
Khaled Hosny, Experimental Unicode
mathematical typesetting: The unicode-math
package, ver. 0.8d, 2017
https://ctan.org/pkg/unicode-math

General purpose documentation:

[6] AMS Euler typeface, https://en.wikipedia.

org/wiki/AMS_Euler

[7] FontForge — George Williams and the
FontForge project contributors
http://fontforge.github.io/en-US/

[8] LuaTEX Reference Manual, ver. 1.0.4, 2017
http://www.luatex.org/svn/trunk/manual/

luatex.pdf

[9] MATH — The mathematical typesetting table,
updated 2017
https://www.microsoft.com/typography/

OTSPEC/math.htm

[10] OpenType specification, ver. 1.8.1,
updated 2017
https://www.microsoft.com/en-us/

Typography/OpenTypeSpecification.aspx

[11] Registered features — definitions and
implementations (p–t), updated 2017
https://www.microsoft.com/typography/

otspec/features_pt.htm

[12] Unicode Technical Report #25. Unicode
Support for Mathematics, revision 15, 2017 —
Barbara Beeton, Asmus Freytag,
Murray Sargent III

http://unicode.org/reports/tr25/

All links were tentatively accessed 2017-06-09.

⋄ Bogusław Jackowski

Gdańsk, Poland

b_jackowski (at) gust dot org dot pl

⋄ Piotr Strzelczyk

Gdynia, Poland

p.strzelczyk (at) gust dot org dot pl

⋄ Piotr Pianowski

Trąbki Wielkie, Poland

p.pianowski (at) bop dot com dot pl

Parametric math symbol fonts

212 TUGboat, Volume 38 (2017), No. 2

LATEX News
Issue 27, April 2017

Contents

ISO 8601 date format 1

Further TU encoding improvements 1

Disabling hyphenation 1

Discretionary hyphenation 1

Default document language 1

Line spacing in parboxes 1

ISO 8601 date format

Since before the first releases of LATEX 2ε, LATEX has
used a date format in the form yyyy/mm/dd. This has
many advantages over more conventional formats, as it
is easy to sort and avoids the unfortunate ambiguity
between different communities as to whether 01/02/2017
is the 1st of February or 2nd of January.

However there is another date format, formalised by
the International Standard ISO 8601. The basic format
defined by this standard is functionally equivalent to
the LATEX format, but using - rather than /. This date
format is now supported in many Operating Systems
and applications (for example the date --iso-8601

command in Linux and similar systems).
From this release, LATEX will accept ISO format date

strings in the date argument of \ProvidesPackage,
\usepackage, etc. Currently we recommend that you do
not use this format in any packages that need to work
with older LATEX releases; the latexrelease package may
be used with older releases to add this functionality.
This change is handled in a special way by latexrelease:
The package always adds support for ISO dates whatever
format date is requested; this is required so that the
necessary date comparisons may be made.

The new functionality can be seen in the startup
banner which advertises LaTeX2e <2017-04-15>.

Further TU encoding improvements

The 2017/01/01 release saw the introduction of the new
TU encoding for specifying Unicode fonts with LuaTEX
and X ETEX. There were a number of small corrections
and additions in the patch releases updating 2017/01/01,
and a further addition in this release, notably extended
support for the dot-under accent, \d.

Disabling hyphenation

The existing LATEX code for \verb and verbatim had
some issues when used with fonts that were not loaded
with hyphenation disabled via setting \hyphenchar to
−1. In this release these verbatim environments use
a \language setting, \l@nohyphenation, that has no
hyphenation patterns associated.

The format ensures that a language has been allocated
with this name. For most users this will in fact be no
change as the standard babel language has for a long
time allocated a language with this name.

In order that page breaks in verbatim do not influence
the language used in the page head and foot, the format
now normalises the language used in the output routine
to a default language as described below.

Discretionary hyphenation

The LATEX definition of \- has been adjusted so that
it will insert the current font’s \hyphenchar, as would
the TEX primitive. A comment in source2e has given
this new definition since the first releases of LATEX 2ε,
and in this release we finally acted upon this comment.
Previously \- always inserted a - at a break point even
if a different character would be used for automatic
hyphenation with the current font.

Default document language

A new integer parameter \document@default@language

is introduced; this is initialised to −1 but is set at
\begin{document} to the language in force at that
time if it has not been set by preamble code. This is
very similar to the handling of the default color, and is
used in a similar way to normalise the settings for page
head and foot as described above. Users should not
normally need to set this explicitly but it is expected
that language packages such as babel may set this if the
default behaviour is not suitable.

Line spacing in parboxes

Inside a \parbox LATEX normalises the baseline spacing.
However it has not previously reset \lineskiplimit.
This meant that lines of a paragraph that have ascenders
or descenders could be set with closer line spacing than
lines without. This can easily happen if you use a
\parbox in an AMS alignment, as they use a relatively
large value of \lineskiplimit. As usual, the latexrelease

package may be used to force the older behavior.

LATEX News, and the LATEX software, are brought to you by the LATEX3 Project Team; Copyright 2017, all rights reserved.

LATEX News #27

TUGboat, Volume 38 (2017), No. 2 213

LATEX table columns with fixed widths

Frank Mittelbach

While attending a workshop on ConTEXt at the TUG

2017 conference in Bachotek, I was introduced to
some of the table generating macros of ConTEXt.

The functionality they offer1 is not very different
from what is offered through LATEX environments,
sometimes with similar, sometimes with somewhat
different syntax.

But there was one noticeable exception: In
LATEX, simple columns that are either centered or
aligned left or right always automatically calculate
their width based on the content of the cells. If a
fixed column width is needed, then one needs a rather
complicated set of constructions (using p columns
and setting up the alignment manually) resulting in
rather unreadable source documents. In contrast,
ConTEXt offers a simple preamble specification, such
as lw(3cm) for something like “make this column
3cm with the material left aligned”.

This seems like a natural task, so I was a little
surprised that I have never seen LATEX users com-
plain about the missing functionality or more pre-
cisely about the roundabout way that is necessary to
achieve this2 in a LATEX tabular environment, e.g.,
>{\raggedright\arraybackslash}p{3cm}).

On the other hand, given \newcolumntype pro-
vided by the array package, it should be fairly easy to
provide a reasonable interface for such task. So my
thought was to provide a column type w that takes
two arguments: the alignment (such as c, l or r) and
a dimension specifying the columns width. With that
we can then specify a left-aligned column of 3 cen-
timeters as w{l}{3cm} or even shorter as wl{3cm}.
And since new column types can be defined from
existing ones, we could shorten this further through
a declaration such as

\newcolumntype{C}[1]{wc{#1}}

\newcolumntype{L}[1]{wl{#1}}

\newcolumntype{R}[1]{wr{#1}}

so that the necessary preamble specification then
simply becomes L{3cm}.

Simple LATEX code

So how can we generate columns with a fixed width?
A simple approach is to put each cell into a \makebox

as this command allows making boxes of a specific

1 Perhaps more accurately the functionality presented dur-

ing the workshop — this was most certainly only a fraction of

that is possible.
2 And this is not exactly equivalent either, if the material

overflows the available space.

width (first optional argument) and allows specify-
ing the alignment within the box (second optional
argument).

The array package supports the preamble speci-
fiers >{...} and <{...} through which we can put
material before and after the cell content. However,
they do not allow us to use the cell content as an
argument to a command we place into >{...}, so
instead we need to use a slightly more elaborate way
using the lrbox environment.

So first we load the array package (if that hasn’t
happened already) and then we allocate a box register
to temporarily hold the cell content.

\usepackage{array} \newsavebox\cellbox

Then we define the w column type as follows:

\newcolumntype{w}[2]{%

Before the cell content we start an lrbox environ-
ment to collect the cell material into the previously
allocated box \cellbox.

>{\begin{lrbox}\cellbox}%

Then comes a specifier for the cell content. We use l,
but that doesn’t matter as in the end we will always
put a box of a specific width (#2) into the cells of
that column, so c or r would give the same result.

l%

At the end of the cell we end the lrbox environment
so that all of the cell content is now in box \cellbox.
As a final step we put that box into a \makebox using
the optional arguments of that command to achieve
the correct width and the desired alignment within
that width.

<{\end{lrbox}%

\makebox[#2][#1]{\usebox\cellbox}}}

The code above only uses high-level LATEX constructs.
It could be made slightly more efficient by using
internal functions.

Going more low-level

One of the issues with the code from the previous
section is that it will always set its text at natural
width even when that overflows the available space
(as the box register is copied). Furthermore, using
\makebox with optional arguments means that an
overflow will be silently accepted, as that command
uses \hss internally for alignment. Thus an overprint
needs to be detected visually.

Both can be appropriate depending on the cir-
cumstances, but often enough some squeezing and
a warning if something overflows may be the more
appropriate action. Therefore a second version (tab-
ular column type W) to address these limitations can
be helpful as well.

LATEX table columns with fixed widths

214 TUGboat, Volume 38 (2017), No. 2

A possible implementation for this could be:

\newcolumntype{W}[2]

{>{\begin{lrbox}\cellbox}%

l%

<{\end{lrbox}%

\let\hss\hfil

\makebox[#2][#1]{\unhbox\cellbox}}}

This is a bit sneaky, as it temporarily disables \hss,
but given that the cell content is supposed to be
fairly plain LR material this should be sufficient in
essentially all cases.

Example usage

After providing this declaration we can now easily
code tables with all or some column widths fixed,
e.g.,

\begin{tabular}{|l|wr{12mm}|Wr{12mm}|r|}

flexible & fixed (w)

& fixed (W) & flexible \\

123 & 123 & 123 & 123 \\

123456789 & 123456789

& 123456789 & 123456789 \\

a b c d e & a b c d e

& a b c d e & a b c d e

\end{tabular}

This gives the following result:

flexible fixed (w) fixed (W) flexible
123 123 123 123
123456789 123456789 123456789 123456789
a b c d e a b c d e a b c d e a b c d e

Observe the overfull box marks in the third row as
the material is wider than 12mm) while in the second
column it overflows silently in rows 1, 3 and 4 (the
latter being squeezed enough to fit in column 3).
Also notice that W always overflows to the right while
w overflows away from the alignment (i.e., to the left
if the alignment is r).

Outlook

In my opinion it makes sense to predefine the w and
W column types in the array package, as the short
specifications such as wc{1cm} should be very useful
to many people.

On the other hand C, L or R are likely to be used
already for other purposes (e.g., indicating math
columns), so it seems better to only mention those
as one way to make use of the w or W column type if
people desire to do so.

⋄ Frank Mittelbach

Mainz, Germany

frank.mittelbach (at)

latex-project (dot) org

https://www.latex-project.org

Using Markdown inside TEX documents

Vít Novotný

Abstract

Markdown is a lightweight markup language that
makes it easy to write structurally simple documents
using a clean and straightforward syntax. Although
various tools for rendering Markdown documents via
TEX exist, they tend to be built on top of TEX rather
than in TEX.

This paper briefly presents existing tools and
introduces a macro package for plain-based TEX for-
mats that takes a different approach. By making
it possible to put snippets of Markdown-formatted
text into arbitrary TEX documents and exposing
TEX macros that control the rendering of Markdown
elements, the package provides a convenient way of
introducing Markdown into existing TEX workflows.

1 Introduction

TEX is a fine tool for typesetting many kinds of
documents. It may, however, not always be the
best language for writing them. Markup languages
based on SGML and XML make it possible for an
author to focus on the content of their documents
without having to worry about the error messages
produced by commands and unforeseen macro pack-
age interactions. The resulting documents can then
be transformed not only to various TEX formats, but
also to other output formats that bear no relation
to the TEX world.

When preparing structurally simple documents,
however, SGML and XML with their bulky syntax
may feel too heavy-handed. For these kinds of docu-
ments, lightweight markup languages that exchange
raw expressive power for clean and simple syntax are
often the best choice. In this paper, I will focus on
the lightweight markup language of Markdown [2].

Although the language of Markdown was origi-
nally envisioned as an HTML preprocessor, its syntax
is agnostic to the output format, which makes Mark-
down useful as a general document markup language.
Tools that provide conversion from Markdown to
various TEX formats are therefore readily available.
One of the better-known free open-source programs
that enable conversion from Markdown to TEX is
Pandoc [4]. Dubbed a Swiss Army Knife by its
author, Pandoc enables the conversion between an
impressive number of markup languages (e.g. LATEX,
ConTEXt, HTML, XML Docbook) and output for-
mats (e.g. ODF, OOXML, or PDF). The tool has
already been reviewed in TUGboat by Massimiliano
Dominici [1].

TUGboat, Volume 38 (2017), No. 2 215

Pandoc is a powerful multi-target publishing
software and its ability to perform lossy conversions
(such as from LATEX to HTML) makes it extremely
useful for document manipulation in general. How-
ever, if our sole goal is to use Markdown markup
inside TEX documents, Pandoc displays several weak-
nesses.

The ability to redefine the correspondence be-
tween Markdown elements in the input and TEX
macros in the output is limited. Processing the fol-
lowing Markdown document:

- Single underlines/asterisks denote _emphasis_.

- Double them for **strong emphasis**.

- The *two* __may be__ _freely *mixed*_.

in Pandoc v1.17.2 using the command pandoc -f

markdown -t latex produces the following LATEX
document:

\begin{itemize}\tightlist

\item Single underlines/asterisks denote

\emph{emphasis}.

\item Double them for \textbf{strong emphasis}.

\item The \emph{two} \textbf{may be}

\emph{freely \emph{mixed}}.

\end{itemize}

While it is possible to redefine the produced LATEX
macros in theory, altering base macros such as \item

or \textbf may break the document in subtle ways.
The output is also not fixed and may vary between
different versions of Pandoc.

Another desirable feature is sandboxing. Mark-
down is a static markup language without program-
ming capabilities and may be used by ordinary users
without much training. If Markdown documents
are submitted to a system and then automatically
typeset using TEX, then these documents should cer-
tainly not be able to crash or halt the compilation,
or to execute external programs using the \write18

command and similar mechanisms. Pandoc does not
offer much in these regards, since it permits TEX
macros in the input Markdown documents. There
exist complex rules for deciding whether or not an
occurrence of a TEX special character should be kept
or removed; the following document:

This {will} 2^n \begin{get} r~moved and \this

{won’t} \begin{equation}2^n\end{equation}2^n.

when converted with Pandoc becomes:

This \{will\} 2\^{}n \textbackslash{}begin\{%

get\}r\textasciitilde{}moved and \this{won’t}

\begin{equation}2^n\end{equation} \(2^n\).

Apparently, the aim is to enable the use of mathemat-
ics and simple TEX macros while retaining baseline
compatibility with standard Markdown documents
that may contain portions resembling plain TEX.

As a result, users are limited in their ability to use
TEX inside their Markdown documents, but there is
still plenty of rope left for halts, crashes, and external
command execution.

Another inconvenience of Pandoc is its lack of
integration with the TEX distributions. TEX docu-
ments without external dependencies and written
in stable formats such as plain TEX require virtu-
ally no maintenance. The use of external assets and
actively developed formats such as ConTEXt will re-
quire some attention each time there is a major TEX
distribution release. Software outside TEX distribu-
tions such as Pandoc throws more variables into the
mix, since different versions may produce different
output even if the TEX distribution stays the same.
Besides the trickier maintenance, Pandoc’s absence
from TEX distributions also means that it is unavail-
able in major TEX services such as the collaborative
text editors at http://www.sharelatex.com/ and
http://www.overleaf.com/.

Other major tools for rendering Markdown, such
as MultiMarkdown, were reviewed and found to be
plagued by similar design choices. With this knowl-
edge, I decided to prepare a macro package for render-
ing Markdown inside TEX that would take a different
approach. The goals were:

• to make it easy to specify how individual Mark-
down elements should be rendered,

• to provide sandboxing capabilities, and

• to make sure that the package required nothing
more than what was present in standard TEX
distributions.

2 The markdown.tex package

2.1 Architectural overview

The block diagram in figure 1 summarizes the high-
level structure of the package. Working from the
bottom of the diagram upwards, I will now describe
the individual layers.

The translation from Markdown to TEX is done
by the Lunamark Lua library [3]. The library was
modified, so that it would not depend on external
libraries and so that it would produce an intermediate
plain TEX representation of the input Markdown
document. This means that instead of Pandoc’s TEX
representation (repeated here from the previous page
for ease of reference),

\begin{itemize}\tightlist

\item Single underlines/asterisks denote

\emph{emphasis}.

\item Double them for \textbf{strong emphasis}.

\item The \emph{two} \textbf{may be}

\emph{freely \emph{mixed}}.

\end{itemize}

Using Markdown inside TEX documents

http://www.sharelatex.com/
http://www.overleaf.com/

216 TUGboat, Volume 38 (2017), No. 2

LATEX layerConTEXt layer

Plain TEX layer

Lua layer

User code

Figure 1: A block diagram of the package

the library will produce the following representation:

\markdownRendererUlBeginTight

\markdownRendererUlItem

Single underlines/asterisks denote

\markdownRendererEmphasis{emphasis}.

\markdownRendererUlItemEnd

\markdownRendererUlItem

Double them for

\markdownRendererStrongEmphasis{strong

emphasis}.

\markdownRendererUlItemEnd

\markdownRendererUlItem

The \markdownRendererEmphasis{two}

\markdownRendererStrongEmphasis{may be}

\markdownRendererEmphasis{freely

\markdownRendererEmphasis{mixed}}.

\markdownRendererUlItemEnd

\markdownRendererUlEndTight

This representation has two useful properties: it
works with any TEX format that uses the same spe-
cials as plain TEX does and it represents the logical
structure of the input Markdown document in terms
of macros that can be freely redefined by the user.

The plain TEX layer exposes the capabilities
of the Lua library as TEX macros and provides de-
fault definitions for the \markdownRenderer〈Name〉
macros from the intermediary representation. Macro
package developers are encouraged to redefine the
\markdownRenderer〈Name〉Prototype macros that
correspond to the default definitions. When the
LuaTEX engine is used, the Lua library is accessed di-
rectly. Otherwise, the shell escape (\write18) mech-
anism is used (see [5, sec. 3.2.5] for details).

The LATEX and ConTEXt layers correct for some
idiosyncrasies of the respective TEX formats and
provide user-friendly variants of several macros from
the plain TEX layer and sane default definitions for
the \markdownRenderer〈Name〉 macros. Developers
are encouraged to contribute layers for other formats.

2.2 Usage examples

This section contains examples for markdown.tex (ver-
sion 2.5.3). These should give an idea of the capabil-
ities of the package. The examples are in LATEX for
ease of exposition. As noted in the previous section,
the LATEX layer of the package is reasonably thin
and the examples can therefore be easily adapted
for the plain TEX and ConTEXt layers. For brevity,
the examples will contain only the body of a LATEX
document assuming the following preamble:

\documentclass{article}

\usepackage{markdown,graphicx}

To typeset the examples, you can use the lualatex or
pdflatex -shell-escape commands. For further
information, see the package documentation [5].

Sandboxing disables hybrid markup and is en-
abled by default. As a result, the following example:

\begin{markdown}

$\sqrt{x^2 + y^2}$

\end{markdown}

will produce $\sqrt{x^2 + y^2}$. To enable the use
of hybrid markup, the hybrid option needs to be
specified. The following example:

\begin{markdown*}{hybrid}

$\sqrt{x^2 + y^2}$

\end{markdown*}

will produce
√

x2 + y2 as expected. You may also
create a partial sandbox; the following example en-
ables the use of non-breaking spaces:

\begin{markdown*}{renderers={tilde=~}}

Bartel~Leendert van~der~Waerden

\end{markdown*}

With hybrid markup, using underscores and
backticks may produce unexpected results. That is
because Markdown uses underscores for emphasis
and backticks for inline verbatim text, whereas LATEX
uses underscores for math subscripts and backticks
for opening quotation marks. Preceding characters
with a backslash disables their special meaning in
Markdown, as the following example shows:

\begin{markdown*}{hybrid}

\‘\‘This is a quote with $a_{subscript}$.’’

\end{markdown*}

This, however, makes the text difficult to both read
and write. Alternatively, you can disable backticks
and underscores in Markdown, as the following ex-
ample shows:

\begin{markdown*}{hybrid, codeSpans=false,

underscores=false}

‘‘This is a quote with $a_{subscript}$.’’

\end{markdown*}

Emphasis can still be denoted via asterisks.

Vít Novotný

TUGboat, Volume 38 (2017), No. 2 217

Since the standard Markdown syntax covers only
the essentials, the package supports a number of syn-
tax extensions that allow you to mark up moderately
complex content without hybrid markup. The fol-
lowing example gives a taste of what is available:

\begin{markdown*}{citations, contentBlocks,

footnotes, inlineFootnotes}

[^1] and ^[inline footnotes] are highly useful,

as shown in the table below.

/table.csv

The table was borrowed from @doe12 [p. 34].

[^1]: Footnotes

\end{markdown*}

See [5, sec. 2.1.2] for the full list of syntax extensions.
The Markdown syntax permits online images,

but the package currently does not handle these
in any special way. Therefore, if you would like
to download and typeset online images, you will
need to provide your own implementation. One such
implementation is shown in the following example:

\begingroup

\catcode‘\@=11

\catcode‘\%=12

\catcode‘\^^A=14

\global\def\markdownRendererImage#1#2#3#4{^^A

\immediate\write18{^^A

if printf ’%s’ "#3" | grep -q ^http; then

OUTPUT="$(printf ’%s’ "#3" | md5sum |

cut -d’ ’ -f1).^^A

$(printf ’%s’ "#3" |

sed ’s/.*[.]//’)";

if ! [-e "$OUTPUT"]; then

wget -O "$OUTPUT" ’#3’ || rm "$OUTPUT";

convert "$OUTPUT" png:"$OUTPUT";

fi;

printf ’%s%%’ "$OUTPUT" > \jobname.fetched;

else

printf ’%s%%’ "#3" > \jobname.fetched;

fi}^^A

{\everyeof={\noexpand}^^A

\edef\filename{\@@input"\jobname.fetched" }^^A

\includegraphics[width=\textwidth]{\filename}}}

\endgroup

\begin{markdown}

![TUGboat](https://tug.org/tugboat/noword.jpg)

The Communications of the TeX Users Group

\end{markdown}

Note that this implementation expects a Unix-like
operating system with a Bourne-compatible shell. It
also assumes that the md5sum, wget, and convert

binaries are installed and that the TEX engine has
shell access, among other things.

3 Conclusions

With the new markdown.tex package, it is now pos-
sible to typeset Markdown documents in TEX with-
out the need for external tools. This notably en-
ables the use of Markdown in collaborative text
editors such as http://www.sharelatex.com/ and
http://www.overleaf.com/, and in other services
where tools from outside TEX distributions are un-
available.

The package also gives the authors full control
over how individual Markdown elements are rendered
and how much access to TEX markup the Markdown
documents have. The former encourages creative
domain-specific use of the Markdown syntax and the
latter enables the use of TEX for the unsupervised
typesetting of user-submitted Markdown documents.

Acknowledgements

I gratefully acknowledge the funding received from
the Faculty of Informatics at the Masaryk University
in Brno for the development of the package.

I would also like to thank John MacFarlane,
the creator of the Lunamark Lua library, for having
released Lunamark under a permissive license that
enabled its inclusion into the package.

References

[1] Massimiliano Dominici. An overview of Pandoc.
TUGboat, 35(1):44–50, 2014. http://tug.org/

TUGboat/tb35-1/tb109dominici.pdf (visited
on 2016-08-15).

[2] John Gruber. Daring Fireball: Markdown,
2013. http://daringfireball.net/projects/

markdown/ (visited on 2016-08-15).

[3] John MacFarlane. Lunamark, 2012. http://jgm.

github.io/lunamark/doc/ (visited on 2016-08-
17).

[4] John MacFarlane. Pandoc: A universal document
converter, 2016. http://pandoc.org/ (visited
on 2016-08-15).

[5] Vít Novotný. A Markdown Interpreter for

TEX, 2017. https://ctan.org/pkg/markdown

(visited on 2017-04-10).

⋄ Vít Novotný

Nad Cihelnou 602

Velešín, 382 32

Czech Republic

witiko (at) mail dot muni dot cz

https://github.com/witiko

Using Markdown inside TEX documents

http://www.sharelatex.com/
http://www.overleaf.com/
http://tug.org/TUGboat/tb35-1/tb109dominici.pdf
http://tug.org/TUGboat/tb35-1/tb109dominici.pdf
http://daringfireball.net/projects/markdown/
http://daringfireball.net/projects/markdown/
http://jgm.github.io/lunamark/doc/
http://jgm.github.io/lunamark/doc/
http://pandoc.org/
https://ctan.org/pkg/markdown

218 TUGboat, Volume 38 (2017), No. 2

GMS, the ‘General Meta-Scenarios’:
A proper extension to the l3expan package
of the expl3 bundle and language, two years
later

Grzegorz Murzynowski

Abstract

This paper presents the current state of the GM-
Scenarios, an esoteric mini-language of one-char in-
structions covering and extending the functionalities
of the l3expan package of the expl3/LATEX3 bundle.

In an automata approach, the GMSs are de-
scribed as a DPDA, deterministic pushdown automa-
ton and a respective context-free language, and the
arguments (not quite formal) are given to back this
point of view.

A diagram of what I believe to be the automa-
ton actually implemented, and a formal grammar
that I believe to be a grammar of the GM-Scenarios
language, are included.

In the final remarks, I accept the friendly cri-
tiques received about the GMSs at TUG@BachoTEX
2017, and reply in an “I’m fixing that” manner.

Contents

1 Why again? 219
1.1 The name 219

2 A brief history of logistic growth of resources
or: What do we take for granted 219

3 The inspiratio: l3expan 222
3.1 The Pandora’s box of new letters . . 222
3.2 “Let’s make it shorter and don’t re-

peat…”, or: how the GMSs began . . 222
3.3 GMS as a nano-Copernican revolution

(against l3expan (?)) 224

4 GMS: the automaton 224
4.1 The automaton: diagram 225

5 GMS: the formal language, and program 226
5.1 The ⟨\⋮⋮ macro⟩ and ⟨specification⟩ 226
5.2 The destination, ⟨τ⟩ 229
5.3 The pre-ps. and pickers, ⟨(π*ϖ*)*⟩ . 229
5.4 The meta-operators, ⟨ϡ⟩ 231
5.5 The general permutations, or the ⟨FSM⟩

without grouping 231
5.6 Parsing the braces, or: ⟨BDSM⟩ . . . 232
5.7 The ⟨subs’n’refs⟩ 233

5.7.1 The replacements, ‘=:’ 233
5.7.2 “The arguments from beyond”,

‘⁁’ 233
5.7.3 Snapshots and references, ‘※’ 234

6 Rough budgeting, a.k.a. cost estimation 235

7 Friendly critiques at TUG@BachoTEX 2017 236

8 Final remarks 237
8.1 “Thank Heavens, it’s not the Premium

Class” 237
8.2 The end, or ἔͼχαͽ͸Ͷ 237

Motto:

Pani domu zaś, wydawszy przedtem dokładne wskazówki,

sama powinna siedzieć przy stole wesoła i uśmiechnięta,

i co najwyżej dawać służbie oczami znaki, gdy tego zaj-

dzie potrzeba.

Concerning the lady of the house, she should sit at the

table cheerfully and smiling and, having given the service

exact instructions before, now give them signs with her

eyes only if it is necessary.

Marja Ochorowicz-Monatowa,

“Uniwersalna książka kucharska”, 1910

Disclaimer 1. It’s not Computer Science.
I mean, I hope it to be so metaphorically, i.e.,

I hope the matter discussed in this paper is “crazy”.
But it should be mentioned, and at the very be-
ginning, that this paper is not a scientific article,
and not on automata theory in particular. It’s just
a presentation of a certain TEX program or set of
macros, and the Reader should not be misled by the
computer-scientific terms used.

The automaton and formal language presented
in this paper might be at the very best considered an
example or exercise, and the statements, especially
those concerning the automaton’s and language’s
classes, and computational complexity of the algo-
rithm/program, considered hypotheses to be proven
or disproved, or adjusted in their assumptions.

I’m not a computer scientist, i.e., I’m not edu-
cated in the theories of Computer Science, I’m just
an “aspiring TEXnician” who hasn’t even read the
entire TEXbook (you don’t use any quotation marks
around the name of a Sacred Book, do you?), and
just practices TEX in as Epicurean way as he [I] can.
The only argument that might accrue to my benefit
is that writing programs in TEX gets me my daily
bread, and I’m still alive, and, moreover not sued
for industrial sabotage or such.

Disclaimer 2. About (Non-)ASCII chars and the
tailored font Ubu Stereo.

The expl3 language is kept strictly ASCII. Any
characters outside of ASCII that occur in this paper,
especially those from the “distant far-aways” of the
Unicode, or even from the Private Use Area (PUA

henceforth), are a sin of “mine, and mine only”.
Their rôle, and the rôle of expl3 in making me

use them, is discussed in section 3.

Grzegorz Murzynowski

TUGboat, Volume 38 (2017), No. 2 219

All of them, as coming from different scripts, in-
cluding the Chinese Traditional ‘記’ U+8A18 ‘write
down, record, remember’, and ‘用’ U+7528 ‘use, ap-
ply, make use of’, and Math Fette Fraktur, and some
even FontForge’d by myself, occur all together just
in one (and only one) font in the world, named Ubu
Stereo, based on Ubuntu Mono Regular, and en-
riched with glyphs only from fonts licensed freely.

1 Why again?

This paper follows my presentation at TUG@Bacho-
TEX 2017 and summarizes the present state of the
GMS mechanism that I conceived in the beginning of
the year 2015 as a “just a bit more friendly interface
to the l3expan macros”. While the general concept
of the machine (automaton) remains the same, and
so do most of its operators and constructs, there are
new concepts I have added since, and, which might
be more important, “now first it seems my thought
begins to span it.” 1

Which in turn gives the hope that I’ll present
the subject in a more understandable manner this
time.

Compared to the TUGboat 36:3 (2015) paper,
the new things are:

• the name of the machinery, GM-Scenarios in-
stead of GMOA;

• a meta-reflection discussed in sec. 3.3;

• shift in understanding from “DFA with Mysteri-
ous Something” to DPDA, Deterministic Push-
Down Automaton;

• deprecating the pre-processors and pickers “ho-
monymic” with the l3expan counterparts;

• a handful of new pre-ps. and pickers, ‘𝕯𝖉’,
‘āĂăĄ⌦’, ‘Zz’;

• new aliases for those now deprecated: ‘Aa’, ‘Ää’,
‘Ee’, ‘Ēē’, ‘˰˱’, ‘˲˳’,

• the “subs’n’refs” mechanism in FSM s;

• the “arguments from beyond” in FSM s;

• pure-ASCII and HTML-like alternate forms of
operators.

What has to be mentioned, or: confessed, is
that the GMS machinery is still in a state of devel-
opment, and at the time of submitting this paper,
some of the new things are not quite operational yet.

Much of this intense development comes from
the fact I use the GMSs intensely, anywhere I can
use my own TEX packages, [the source] of this paper
being no exception.

1 Walt Whitman / Ralph Vaughan Williams, “A Sea Sym-
phony”: “O vast Rondure”.

1.1 The name

Why did I transition from GMOA, “General Ma-
nipulation Of Arguments”, to GMS, “General Meta-
Scenarios”? The obvious part is, why the two initial
(nomen-omen) letters remain the same.

False humility makes me say I should put my
name on my work so that Humankind knows who to
blame. But that aspect should not be overestimated,
Gustav Mahler has the same initials, and were this
paper and its dereference of no other use, may the
mention of him and his cosmic The Eighth advocate
me in die illa tremenda 😉 .

But, concerning the “G”, the mechanism is in
fact quite general. My everyday work is program-
ming in TEX, XƎLATEX to be precise, and I believe
the fact I’m still employed by the same Company,
and paid, is quite an argument for its usability and
usefulness, at least in my hands. Quite general, dare
I say, because the first thing it does is cover the func-
tionality of l3expan.

The “GMOA” name focused attention on the
ability of the machine to pre-process the arguments
for a single expl3-function (usually, a macro). But
the GMSs do more than that: they set and rearrange
parts of the code before it’s actually run.

Further, because the mechanism operates on
the “future” program code, it truly can be called
“meta-”. And, because it tells how that “future”
code should be executed, truly can it be called “sce-
nario”. And, a “scenario” rather than “didascalia”
or “markup”, as it is separated from the code it op-
erates on.

Now, with just a tiny little modal collapse, i.e.,
the reasoning step “If sth. might be, then let it
be”, we get— let the mechanism be called “Meta-
Scenarios”, quod erat demonstrandum.

2 A brief history of logistic growth
of resources
or: What do we take for granted

Have you ever read the LATEX2ε sources? Thank
Heavens, it’s richly commented, and the sub-struc-
tures, which in a more usual language would be
called “subroutines” and “functions”, or “classes”
and “methods”, are presented in pseudocode before
they’re actually expressed in TEX.

An excerpt of it is presented in Fig. 1.
Why is it so obscure, why do even the primi-

tives not bear shorter names, not for saving memory
(negligible), but for the sake of readability?

LATEX2ε has been written in the times when
memory was so precious and scarce, that William
Henry Gates III, even though he didn’t utter exactly
those famous words, actually was thinking, as “all”

GMS two years later. A complete madness. But—Turing-complete or not?

220 TUGboat, Volume 38 (2017), No. 2

\def\declare@robustcommand#1{%
\ifx#1\@undefined\else\ifx#1\relax\else

\@latex@info{Redefining \string#1}%
\fi\fi

\edef\reserved@a{\string#1}%
\def\reserved@b{#1}%
\edef\reserved@b{\expandafter\strip@prefix%

\meaning\reserved@b}%
%<autoload> \aut@global
\edef#1{%
\ifx\reserved@a\reserved@b
\noexpand\x@protect
\noexpand#1%

\fi
\noexpand\protect
\expandafter\noexpand\csname
\expandafter\@gobble\string#1 \endcsname

}%
...

}

Figure 1: A fragment of the LATEX 2ε source,
File d: ltdefns.dtx, 2004/09/18 v1.3g

of his contemporaries, that 640 kB of RAM would be
enough for “anything”, and “at least for 10 years”.

In those times “this new TEX format, LATEX”,
had to do some serious “garbage collection” in order
to run at all and finish the job.

That’s where \@onlypreamble comes from, and
that’s why not only was the code written with as few
new macros as possible, but also with reusing names,
those reuses sometimes irrelevant to their contents
and goal.

That’s where DocStrip comes from, whose pri-
mary task was to Strip the comments (Documenta-
tion) from the files, so as not to slow down their
reading in.

Also, it was pure TEX not ε-TEX, whose expand-
able primitive \strcmp is neatly wrapped in expl3’s
\str_if_eq[_x]:nn[TF], and \str_case:nn[TF], and also
with no \numexpr or \dimexpr that allow expandable
integer or dimen computations.

Let us think a moment, if we could write a TEX
program or document that (with all the fonts, libr-
aries, macro packages &c.!) works in no more than
500 kB of RAM. Yes, 500 kilo bytes, not megabytes.

So, in that time, and in those extreme condi-
tions, that was the “optimum and beyond”. Let’s
have this in mind and see what we take for granted
in these days’ plenty, and the programmatic indul-
gence it’s causing.

Now, consider the following fragment of File r:
lĤssdcl.dtx, dated: 2005/09/27, v3.0k, giving the def-
inition of \DeclareMathSymbol:

\edef\reserved@a{\noexpand\in@{%
\string\mathchar}{\meaning#1}}%

\reserved@a
\ifin@
...

It’s the shortest example I’ve found so far of
what could be named “repetitive programmatic con-
structs”.

A macro is \edefed just to put it in the input
stream immediately after it’s defined. As can eas-
ily be guessed, it’s done to give well-prepared argu-
ments to the macro \@in, that checks whether its #1
is a sub-string, or rather, a sub-tokenlist of #2, and
sets the Boolean switch \ifin@ accordingly.

What is at hand at the point we wish to use
\@in needs to be expanded in a certain way first.

Those “certain ways” of expanding first, and,
in my version, not only expanding, we call pre-
processing henceforth.

This particular schema above, with the macro
\@in “frozen” with \noexpand, first argument con-
sisting of \string and a c.s.(1), and the second of
\meaning and a (supposed) c.s.(2), repeats on pre-
vious and subsequent pages quite a few times, just
with different control sequences (1) and (2).

And that is just one schema, and the simplest/
shortest, of many found just from the beginning till
File r.

Then, maybe following The Sources’ example,
most (LATEX2ε-style) macro packages and document
classes repeat the same manner of repeating those
“repetitive programmatic patterns”. Not even with
short aliases for \expandafter and \noexpand (cf. re-
mark 3 on p. 236.)

“Repetitive programmatic patterns”. Do you
see the irony? Isn’t the very essence of computer
programming to make the machine do the repeti-
tions, if possible?

Let’s repeat: this “if possible” is the answer to
the question of why the LATEX2ε Authors repeat so
many things: in those times, not-repeating them was
not possible. But nowadays, it is. Let’s see what has
l3expan got to offer.2

For the sake of disambiguation, let’s assume
that ‘#1’ of the above code is the c.s. token ‘\life’.
And don’t forget to set the catcode of ‘@’ to 11 ‘let-
ter’, because with expl3, ‘@’ is ‘other’ by default.

2 As a topic not fully relevant to the GMS, we skip the dis-
cussion on naming ‘\@in’ “the expl3 way”, with ‘:nn’ signature,
and generating its ‘:oo’ variant.

Grzegorz Murzynowski

TUGboat, Volume 38 (2017), No. 2 221

Let us recall that the expl3 catcode regime is
that ASCII underscore ‘_’ and colon ‘:’ are made let-
ters, blanks are ignored, including blank lines, and
tilde ‘~’ is made space10 instead.3

In addition, there is Hungarian notation in the
“function” names, i.e., the “function” ’s signature
added in its name after the colon, and other smart
naming conventions.

All this results in the first impression, at least
mine, “what the […] is this??”, but then, when you
get used to it, in growing and growing appreciation
of the readability and “spaciousness” of the code.
Also, you may see that errors are less likely to occur,
and when they do, they are easier to backtrace.

Now, back to the example.

[\char_set_catcode_letter:N \@]

\::o \::o \:::
\in@ {\string\mathchar}{\meaning\life}

The expl3-function \::o in the first step gets
the respective ⟨balanced text⟩, i.e., the argument,
next to “itself”, i.e., to the 2nd-step macro. That
next macro hits the ⟨text⟩ with \expandafter over
the opening brace, and then the 3rd macro, that
had been put next to \expandafter, puts the just-hit
argument in the “storage of processed arguments”,
and passes control further.

As the \::macros are essential for understand-
ing further in this paper, let me explain them in
more detail. The definitions are translated here to
“Traditional TEX”. In real l3expan they all use the
expl3 aliases and/or wrappers for the primitives.

\long\def \::o #1 \::: #2#3 {
\expandafter __exp_arg_next:nnn
\expandafter {#3} {#1} {#2} }

\long\def __exp_arg_next:nnn #1#2#3 {
#2 \::: { #3 {#1} } }

So, the one-level expansion of the first \::o in the
example above, results in:

#1 ->\::o % “the tail of pre-ps. sequence” in general.

#2 ->\@in
#3 ->\string\mathchar

\expandafter __exp_arg_next:nnn
\expandafter {\string\mathchar }

{\::o } {\@in }

and after the \expandafter’s fire, we get

(\string)
__exp_arg_next:nnn {\mathchar} {\::o } {\@in }

3 Not “ASCII tilde of catcode 10 ‘space’ ”, because it’s not
made “funny space” of the character code 0x7e via the \lccode
trick, just honestly via \catcode=, ifx you know the difference.

[\ to illustrate the fact that the backslash, and thus
the whole control sequence, is “dead”.]

Then __exp_arg_next:nnn restores the order.
Let’s see that in slow motion.

__exp_arg_next:nnn #1#2#3 -> {#2\::: {#3{#1}}}
#1 ->\mathchar, % no space after the former c.s. is

another sign it’s “dead”

#2 ->\::o ,
#3 ->\@in

and thus we get:

\::o \::: {\@in {\mathchar}}
plus what was already there,

{\meaning \life }
After performing two-level expansion of “this other
\::o”, i.e., replacing it with its definition, and firing
the \expandafter’s, we get

(\meaning)
__exp_arg_next:nnn {> \mathchar"2A.} % \life is

usually ‘> undefined’, but once you give it some

Deep Thought… 😉

{} {\@in {\mathchar}}
and after expansion of __exp_arg_next:nnn,

\::: {\@in {\mathchar}{> \mathchar"2A.}}
Now, the mysterious Triple Colon4 Macro \:::

that served as the delimiter of the tail of the pre-
processors in/for the \::’s (“Double-Colon-with-a-
Letter” Macros). After all the \::’s have expanded,
it comes out as the “identity” macro, \@firstofone
from LATEX2ε:

> \:::=\long macro:
#1->#1.

and the braces covering the main macro and all the
pre-processed arguments disappear, as if the End
of Time came “and all things previously hidden are
now revealed”:

\@in {\mathchar}{> \mathchar"2A.}
This way, we saw “in slow motion”, how the

“repetitive programmatic patterns” found in the
LATEX2ε sources and LATEX2ε-style macro packages
and document classes, might be vastly simplified and
made more readable using the macros defined in the
l3expan package.

And “here comes Mommie!” 5 —here come I,
and say: look at those repeating backslashes and
colons. What if we delegate repeating them to the
machine, and we ourselves type just what’s essential,
i.e., the final letters?

4 A Polish cartoon series “Kapitan Bomba” gives the term
“triple colon” quite another meaning while describing the
“Kurvinox” alien species’ anatomy.

5 Patrick Swayze in [spoiler alert] the opening scene of “To
Wong Foo, thanks for everything, Julie Newmar”.

GMS two years later. A complete madness. But—Turing-complete or not?

222 TUGboat, Volume 38 (2017), No. 2

3 The inspiratio: l3expan

3.1 The Pandora’s box of new letters

Let me make another apparent digression, which is
in fact an important explanation I owe the Readers
and, maybe even more, the LATEX3 Team.

Having the guts and nerve to abandon the Plain
and LATEX2ε convention of making ‘@’ catcode 11
‘letter’, and to make letters of ‘_’ and ‘:’ instead,
is a huge inspiration and broadens my mind hori-
zons, comparable with some kind of spiritual en-
lightenment, or with Dostoyevskian “Но Ϯсьли БоϬа
нϮт, тоϬϭа ϫсё ϭоϫольно…” [‘But, if there’s no God,
then anything is allowed…’].

I perceive this bold move as the main inspira-
tion for my own attempts to “think out of the box”.
In my implementation it comes out more like Pan-
dora’s box, as has been kindly and amiably pointed
out to me at this BachoTEX, as I’ll discuss later.

In order to observe the naming conventions of
expl3, especially the division of a c.s. into “scope”
and module parts, and seeing the need for a more
structured module part, I chose the letter ‘ˈ’ (Mod-
ifier Letter Vertical Line, U+02C8), with catcode 11
‘letter’ in XƎTEX (as it is in Unicode), as the “unof-
ficial” word separator.

__gmeˈint_…:…

denotes a module-local LATEX3-function of the mod-
ule ‘gme’, and its submodule ‘int’.

I use yet another letter, ‘ᔥ’, U+1525 Canadian
Syllabics SH, as the character separating the final
part of a c.s., intended to describe its particular role
in a multi-step construct, or in a family of macros,
e.g.:

\_makeˈgay:nnn
\_makeˈgayᔥtheˈYuletide:nn
\_makeˈgayᔥGigiˈtoday:nn

On the other hand, choosing a character rare
enough so it could serve as an ideogram, like ‘⚸’
U+26B8 Black Moon Lilith, or the one discussed
next, let us structure the module part of names just
with it and abbreviated description, like

\⚸int_… \⚸tl_… \⚸dim_…

which I use to name my additions and “comple-
tions” 6 to the expl3 respective modules.

As you see, it becomes “…тоϬϭа ϫсё ϭоϫолно”
(‘…then anything is allowed’), indeed. But— for the

6 The fact that some of my views, such as expecting an
Esperanto-like symmetry from “the new LATEX programmers’
language”, e.g., the Boolean constants, i.e., ‘\bool_const:Nn’,
just like there’s any other ‘\⟨type⟩_const:Nn[…]’, diverge a bit
from what’s actually there in expl3, neither does make it “in-
complete”, nor diminishes the utter respect and gratitude I
have for its Authors. Hence the quotation marks.

good cause of brevity, as brevity means better read-
ability.

3.2 “Let’s make it shorter and don’t
repeat…”, or: how the GMSs began

Going still further in this direction, I make a letter
also of ‘⋮’, U+22EE, Vertical Ellipsis (there’s also the
Triple Colon character, U+2AF6, maybe it would be
preferable), to get a symbol similar and referring to
the Double and Triple Colons of l3expan, yet at the
same time saying “I differ from them, be careful, I
might be orthogonal!”

As already mentioned, one of my goals is to
make code short and as free from repetitions as pos-
sible. This attitude resembles that of Webern to-
wards music, toutes proportions gardées. And so
with the TEX code making use of the GMS.7

Returning to the main narrative, let’s replace
Double-Colon-with-a-Letter s with Just-a-Letter s,
i.e., let’s trim leading ‘\::’, and precede the whole
thing with a two-(newly-declared)-letter word \⋮⋮.
Since I’m “thinking in type not in sound”, I’ve no
idea how to pronounce this ideogram. What first,
or rather who comes to my mind, is Aja.

\::o \::o \:::
\@in {\string\mathchar }{\meaning\life }

\⋮⋮ I o o : …

And that’s what the core and chronologically earli-
est part of the GMS does. Translates a sequence of
letters into the sequence of l3expan \::’s.

One thing that needs explaining is the letter
‘I’, which doesn’t correspond to any of the l3expan
“Double-Colon-with-a-Letter”s of the line above.

I found it a bit confusing in the l3expan conven-
tion that the first token, i.e., the assumed “function”
for which the assumed arguments are pre-processed,
is not reflected in the DCwL s, or rather is, but at
the very end, in the Triple Colon. While thinking
of what’s going on here not as preparing arguments
for a “function”, but as a sequence of operators ap-
plied to a sequence of ⟨text⟩s (cf. sec. 3.3, p. 224), it
becomes clear that the Identity operator is missing
in the l3expan notation, and that’s the ‘I’ in mine.

Then the desire for Symmetry wakes up and
joins in, another monster conceived of LATEX3 in-

spiratio,8 namely, from looking at the “data types”

7 Typical reaction of a person listening to “normal” [West-
ern] music at first hearing of a piece by Webern is: “What??
It’s not music, it’s some separate and random sounds!” The
analogy with GMS holds.

8 The Latin verb “inspiro” means ‘to breathe into [some-
thing/someone]’, and is used in the Vulgate and hence in the
Christian narrative to describe G*d giving life to the first
human after making his body out of earthly dust or clay,

Grzegorz Murzynowski

TUGboat, Volume 38 (2017), No. 2 223

and their declarators, setters, and naming conven-
tions—a desire to make the pre-processing mech-
anism fully symmetric with respect to braced- and
unbracedness of the results, as the N- and n-type ar-
guments and l3expan pre-processors already do. Ap-
parently. And, not quite, as Frank Mittelbach ex-
plained himself at BachoTEX 2015, correcting my
(mis)understanding and thus unmasking the idea
of “braced/unbraced” result to be “mine and mine
only”.9

While the original expl3’s idea of N- and n-type
arguments refers to un- and bracedness of the argu-

ments, i.e., the input, my (mis)understanding, and
the idea stemming from it in GMS, refers to un-
and bracedness of the results, i.e., to whether the
pre-processed ⟨balanced text⟩ should be “returned”
in braces: when the letter is lowercase, or without
them: when the letter is uppercase.

Therefore, “I’ve made my decision”10 to depre-
cate the l3expan operators (letters), and maybe turn
off handling of them in the future.

So, the convention of GMS is that the lowercase
letters correspond to “returning” the pre-processed
{⟨text⟩} in braces, while the uppercase “return” the
⟨text⟩ unbraced, which might seem strange at first
glance, e.g., when the pre-processor hits a multi-
letter control sequence with \string, but is useful,
e.g., in defining a macro with parameters delimited
with detokenized (‘other’-ised) characters, e.g., pt or
macro -> .

The idea of a set of operations closed in some
aspects is usually a good idea, unless we are not
scarce of memory or time, and these days we are
not, oh, no, we aren’t.

Also, while opposing or at best “orthogonal” to
the concepts and conventions of expl3 at first glance,
this {⟨lower⟩}/⟨upper⟩ convention fits with the more
general paradigm of making the language fully reg-
ular, much as Esperanto is.

For those two reasons, i.e., not to mislead from
the original expl3 concepts, and to observe the {⟨low-
er⟩}/⟨upper⟩ result convention, I replaced the ASCII

lowercase ‘o’ with the Latin lowercase a, ‘a’, and thus
the example use of \⋮⋮ should be rewritten to:

\::o \::o \:::
\@in {\string\mathchar }{\meaning\life }

\⋮⋮ I a a : …

But “that’s [not] all, folks”, since the goal is to
make the code short. And \string is used so often
that it’s worth its own pre-processor. And here it is:

and also, conceiving the Child by the Most Venerable Virgin
“from G*d’s Spirit”.

9 cf. “Evita”, “Eva’s Final Broadcast”.
10 cf. “RuPaul Drag Race”.

‘s’/‘S’. Also, \meaning might be very useful in some
applications, and although I personally haven’t yet
had such a need, introducing a new pre-processor
for it is a matter of five minutes of adding the re-
spective macros, plus [indefinite time] to choose the
letter/symbol.

I chose ‘𝖉’ and ‘𝕯’, having in mind that ‘m’
stands in the ancient xparse, and also in gmcommand,
for ‘mandatory argument’, and perhaps the most fa-
mous question about meaning is Freia’s “Was deutet
die Name?” in the finale of “Das Rheingold”. Then,
math Fraktur because ASCII ‘D’ is already taken by
the expl3 “Don’t” pseudo-signature.

With these “particulations”, the example turns
into a five-token GM-Scenario with one mandatory
separator char between ‘\⋮⋮’ and the pre-processors
(remember it’s not a space10 in the expl3 or gme3u8
catcode regimes, it’s an ignored char [space]9, so it’s
not even officially read, yet it establishes the limit
of a multi-letter control sequence, without which it
would be ‘\⋮⋮Is’ (a bit like, say, alcoholic addiction
of a parent, which is not talked about, yet keeps the
children from inviting friends home), and just three
tokens of things processed. Let’s put it all together:

\edef\reserved@a{%
\noexpand\in@{\string\mathchar}{%

\meaning#1}}%
\reserved@a % The LATEX2ε sources

\::o \::o \:::
\@in {\string\mathchar}{\meaning\life }% expl3

\⋮⋮ Is𝖉 : \@in \mathchar \life % GMS

Note that the 2nd and 3rd ⟨text⟩s are written with-
out braces, since they are not necessary either for
syntax correctness or for clarity, the latter provided
by simplicity of this particular GMS.

By the way, all component macros and primi-
tives of l3expan’s “function” \::o, and thus also of
GMS’s \⋮⋮ …a… :, are expandable.

This is the case with all the l3expan and GMS

pre-processors, if only their very nature allows it,
i.e., if the pre-processing does not involve an assign-
ment (other than this one and only assignment of
\relax to a c.s. raised by …‹׋\‘ ׌\ ’).

As mentioned earlier, l3expan provides various
types of arguments’ pre-expansion.

The \::f preprocessor applies \romannumeral-̀ 0,
which expands argument tokens until the first un-
expandable token is seen. Because -`0 is a complete
⟨number⟩ in the sense of The TEXbook, even if the
argument expands to digit(s), \romannumeral is satis-
fied with the -`0 and, as this number is negative (mi-
nus the character code of character ‘0’, namely −48),

GMS two years later. A complete madness. But—Turing-complete or not?

224 TUGboat, Volume 38 (2017), No. 2

expands to ε (empty sequence of tokens). Thus we
get an “AFAP” (‘As Far As Possible’) expansion.
Not many things move me as deeply as this trick.

Some of the pre-processors rendering the value
of a LATEX3 variable also use \romannumeral-`0, de-
pending on the LATEX3 variable’s type. The current
implementation of the _tl type, for instance, as pa-
rameterless macros and not, e.g., as \toks registers,
allows for rendering their values with just an ’׊\‘
(\expandafter), or even using that LATEX3 variable
“as is”.

So far, the things described might be considered
just another user interface for l3expan, maybe more
user-friendly, if anything. Also, the operators that
l3expan “lacks” are just superpositions of one that
already exists, most often the [o]/a, with some of
TEX’s expandable primitives, like Ðð for ‘\::o◦\the’,
\::ð…(·) == \::o…(\the(·)).

So, what are the real enhancements I’ve made?

3.3 GMS as a nano-Copernican revolution
(against l3expan (?))

Besides “stripping off one backslash and two colons”
shown in the previous section, probably the most im-
portant enhancement made by me (if it may at all be
attributed to me with such a strong inspiration11),
and fundamental for any further development, is a
change of the point of view, quite Copernican in this
nano-scale:

Thinking of (l3expan and) the GM-Scenarios not
as pre-processors of (individual) arguments for an
expl3 function or macro, but—
as a sequence of operations applied, not necessar-

ily 1:1, to a sequence of ⟨text⟩s, where ⟨text⟩ is an

undelimited or delimited argument of a resp. macro.

“(?)” in the section’s title, because it’s not very
likely that expl3’s Authors do not realize the power of
l3expan, rather they deliberately abstain from using
it in its full glory (if they do in fact), and the “rev-
olution” declared above is more of a shift of my own
understanding of l3expan. Like Dr. Pierre Abelard
says in the preface to his famous “Sic et non”: “It’s
rather us lacking G*d’s grace [ability] to read [and
understand] than them [the Authors] lacking G*d’s
grace [ability] to write.”

Let’s go back to the excerpt from the LATEX2ε
sources and think of it this way: in the end, we wish
to give TEX a two-parameter (undelimited) macro

11 It’s infinitely easier to expand/develop something than
to invent it in the first place. l3expan does things I’ve never
thought of in the 11 years of my TEXnician’s life. Or, if I
ever did, it was: “Nah… it’s impossible; you just can’t hit the
2nd undelimited argument with \expandafter since you don’t
know how many tokens there are in the first one”.

\@in with both of the arguments hit with some ex-
pandable operators.

What would be (conceptually) done, is:

1. hit the 1st argument with \string,
2. hit the 2nd argument with \meaning,
3. prepare \@in to go first,

4. put the tokens resulting from 1 next to \@in to
go 2nd,

5. put the tokens resulting from 2 next to those
of 4.

What if we wish to prepare the arguments as
described above, but instead of knowing the “func-
tion” they are for already, give a placeholder for it
and be able to pass any relevant macro “later”, i.e.,
as an argument?

Or, if we wish to pass those arguments twice,
for two different “functions”? For instance, having
a c.s.(1) and an ⟨integer expression⟩(2), first declare
(1) as an ‘_int’ variable, and then initialize it with
(2)?

One of the “basic needs” l3expan does not sat-
isfy, is—changing the arguments’ order. Another is
replicating them, as LATEX2ε’s \@dblarg does, for in-
stance. And yet another, grouping ⟨text⟩s together
in one common pair of braces. The latter two ac-
tions are the reason why I mentioned it’s not always
a 1:1 correspondence.

Consider the following GMS:

\def \whatˈsˈtheˈQuestion #1 {
\⋮⋮ ♮ מ sל 𝖉ם : \mathchar \life #1 }

Knowing that the Musical Natural [Pitch] Sign ‘♮’
declares a “natural permutation”, I hope it’s clear,
what those “underlined digits” mean. How many
of them might there be, i.e., how many ⟨text⟩s can
an \⋮⋮ handle at a time? Currently, up to 25, re-
ferring the first 9 with ,פ…ל and then with ,د…ץ for
the “uppercase” pre-processing, or ,״…׬ ٛ…׵ for
“lowercase”.

But anyway, the last operator counts for the
un- or bracedness, so even though the ,’מ‘ ,’ל‘ and
’ם‘ are all “uppercase”, only the ⟨text⟩ referred to as
’מ‘ is rendered without braces, while the other with,
because of the lowercase ‘s’ and ‘𝖉’.

And this, and other features, are worth a sec-
tion of their own, so—

4 GMS: the automaton

The above example of changing the order of argu-
ments is rather simple. And, seeing what is referred
to as ,’ל‘ ,’ם‘ and ,’מ‘ poses no problem.

But when there are more ⟨text⟩s to make a per-
mutation of, it seems more reasonable to label them
with some numbers. The following example uses

Grzegorz Murzynowski

TUGboat, Volume 38 (2017), No. 2 225

the characters ‘Opening Lenticular Bracket Ordi-
nal Number Omega’, ‘ω’, put at PUA+E9EA, and
‘Closing Lenticular BracketOrdinal NumberOmega’,
‘ω’, at PUA+E9EB. (Both of them designed by me,
together with the plain ‘Ordinal Number Omega’,
ω, PUA+E9E9).12

‘ω’ starts a part of a GMS being a permuta-
tion of ⟨text⟩s with possible repetitions and group-
ing, and additional pre-processing of them. Let’s
call it: Finite Sequence Manipulation, hence-
forth FSM.13

‘ω’ delimits the (explicitly labelled) sequence
of ⟨text⟩ that’ll become the elements of this FSM,
so that all may be absorbed by an internal macro
delimited with this char.

(By the way, those two chars are declared in my
Emacs as matching parentheses, so they are high-
lighted properly.)

[\gmeˈˈˈon] % set the gme3u8/expl3 catcodes

\pdef % \protected\def

\makeˈexhyphen #1 {
\⋮⋮ I ω ל ⟦ Ä≕2ם סלם⟦ {װםן}מ : % a \GMS

\lccode
1 `
2 \c_catcode_active_tl
3 \lowercase
4 {\protected\def }
5 {\penalty\exhyphenpenalty \hskip%

\c_zero_skip }
6 #1 % two tokens in definition, but replaced with a

single char in runtime.

ω
\⚸_catcode∷ `#1\⚸_active∷

}

[\gmeˈˈˈoff]

What we consider the automaton in this paper,
is a set of macros that pass control to each other
subsequently, just like states and transitions of a
deterministic push-down automaton, and initialized
by the macro \⋮⋮ (or another of the family, as will
be discussed later), and finished by a colon.

In the example above, the GM-Scenario is the
code commented as such, starting with ‘\⋮⋮’ and fin-

12 The Ordinal Number ω not the Cardinal ℵ0 because
in the context of permutations, the ordering is fundamental,
and the proper name for the Cardinal ℵ0 in its Ordinal aspect
is ω.
Then, ω not some arbitrary symbol, because “Sky is the

limit”, theoretically number of ⟨text⟩s handled in an FSM is
arbitrary (finite), and limited only by the capacities of the
hardware and Time of our Universe, as the computing com-
plexity of this part of GMS’s seems to be at least O(n2) Time,
and at least O(n) Space.

13 The religious allusion of this acronym is deliberate, may
He be always al dente.

ishing with ‘:’, if we take the syntactic approach, or
all the code starting with \⋮⋮, and finishing with
‘ω’, if we look semantically. (It is not always clear
where a GMS in the latter sense ends, since its in-
structions might be determined dynamically in the
“runtime”, thanks to the “interᴿuptions”.)

The letter ‘I’ refers to the first ⟨balanced text⟩
following the colon, i.e., \lccode, and says ‘just take
it and return as is, but without braces’. Then, the
‘ω’ sign declares a labelled FSM, which means,
that the automaton should now expect a permuta-
tion, possibly with repetitions, additional pre-pro-
cessing, and grouping, of a certain number of ⟨bal-
anced texts⟩, and that those ⟨texts⟩ have been al-
ready labelled, i.e., each of them preceded by proper
alpha-digit (not necessarily starting from 1 and keep-
ing the “increment by 1” rule), and that after all
those texts there’s the delimiter ‘ω’, so that absorb-
ing all the permutation elements is performed in a
one-level expansion of a macro with a ω-delimited
parameter.

Then, the fragments ,’ל‘ ,’סלם‘ and ’מ‘ are trans-
lated into macros “get the element with the label
(·)”, and put those elements in given order. Only,
before the element with the label ‘2’ is taken, the
translation of the fragment ‘⟦ Ä≕2ם ⟧’ hits that el-
ement with the “double \expandafter”, and replaces
the original with the result of that 2-level expansion.
We’ll discuss this in more detail in section 5.7.

Then, the part ’װםן‘ translates into grouping
the elements 4, 2, and 5 in one pair of braces
together, and the element 5 within braces by itself.
We discuss the grouping (bracing) mechanism, and
its consequences in terms of the hierarchy class of
the automaton, in section 5.6.

4.1 The automaton: diagram

Presenting the GM-Scenarios automaton, we use the
following conventions:

• the symbol “_•” denotes ‘an arbitrary represen-
tative of the class •’, where “•” is the (usually
one-character) name of the class, which may be
homonymic with one of its members, or even
the only one. One can think of it like an abbre-
viated Ruby Manual convention of typing an in-
stance of a class, say, ‘Array’ as ‘an_Array’, just
with the preposition stripped off; or, as sort-of
conforming to the expl3 convention of indicat-
ing the type of a variable (a data carrier) with
underscore and type at the end of its name.

• “↓·” means ‘push (·) down the stack’, where
(·) is 1 for an opening brace, or i for an opening
‘⟦’ bracket, which is used to mark the start of
⟨subs’n’refs⟩, and matching with ‘⟧’.

GMS two years later. A complete madness. But—Turing-complete or not?

226 TUGboat, Volume 38 (2017), No. 2

• “↑: 1¦0¦i” ‘pop from the stack, and then there’s
1¦0¦i resp. on top of the stack’. Note that the
symbol i might be considered the initial symbol
for the ⟨subs’n’refs⟩ sub-stack.

• “[⟨action⟩]” ‘an action, usually assignment, per-
formed “sideways” with a default value, in case
of a transition that skips some intermediate sta-
te(s).

• “ _• ” ‘I’m not a usual label, in fact, I’m a sub-
automaton’. Both of those sub-automata are
depicted in the same figure.

5 GMS: the formal language, and program

There’s a theorem about a correspondence between
finite automata and formal languages, namely, cou-
pling a formal language with an automaton that
recognises it.

And since a formal language might be described
with a formal grammar, there’s also a natural corre-
spondence between automata and formal grammars,
namely, that A ∼ G iff ∃L such that L is the lan-
guage recognised by automaton A, and at the same
time is defined by formal grammar G.

In this sense, the automaton depicted in fig. 2,
and the grammar described in fig. 3, do correspond
with one another.

Therefore, henceforth, I’ll be describing the lan-
guage, freely switching between its formal grammar,
and the automaton recognising it.

And, since this is not Computer Science, just
a presentation of a program, I’ll be also explaining
how the program works, which from the point of
view of Automata Theory is all “side effects” at best.

5.1 The ⟨\⋮⋮ macro⟩ and ⟨specification⟩

The tokens of a ⟨specification⟩ are hit with \string
one-by-one so they get catcode 12 “other”, except
those expanded within an “interᴿuption”.

The {1 and }2 tokens may be used as they are,
and if the ⟨\⋮⋮-macro⟩ works straightforwardly (only
\⋮⋮ does, as for now), they don’t even have to be
balanced.14 Also, their “rôle” might be played by ⦃
and ⦄, as they’re recatcoded to letters in the gme3u8
catcode regime, and might be translated in macros
that work faster than the main GMS machinery.

Since the main iterating macro has one unde-
limited parameter, even in the usual catcode regime
the blank chars are skipped and may serve just to

14 To be precise, each token of the GMS-charclass ‘{’ has to
be balanced with a token of GMS-charclass ‘}’, but the cat-
codes are irrelevant now as all the tokens are hit with \string
one-by-one. Also, it’s possible, e.g., to generate missing }’s
in an “interᴿuption” using \Ucharcat.

improve readability. Of course, in the expl3 regime,
they are already ignored on the TEX reading level.

\⋮⋮ is a parameterless macro of the initial state,
called KN, ‘[I] Know Nothing’. It first \expandafters
\string and then launches the macro. ’׋׉‘ is a one-
letter c.s. equivalent to \csname, Tironian Et U+E970
’׉‘ another escape char, and ’׊׉‘ is \expandafter:

\⋮⋮ -> ׋׉ ׊׉ __⋮¹_s¨KN:N \string

Other ⟨\⋮⋮-macro⟩s do the same at some point,
only first they absorb an entire ⟨specification⟩ as
an argument delimited with ‘:’11, and either check
if such a specification has already been parsed and
recorded (predefined), and use the pre-defined if so,
or perform the predefinition instead of reorganising
subsequent ⟨text⟩s, or, \⋮⋮_用記ˈ…, are control se-
quences which the ⟨specification⟩ is part of.

We’ll discuss the basic version, ‘\⋮⋮’.
The subsequent characters of ⟨specification⟩ are

hit with \string and picked one-by-one, their “char-
class” is determined, and proper transitions are per-
formed accordingly, which TEXnically amounts to
inserting further and further “telescopic” \csname’s,
i.e., the sequences of tokens that could and should
be transformed into a control sequence at the very
moment the matching \endcsname is seen. Except,
the immediate predecessor of such an \endcsname is
\expandafter, and the token next to \endcsname is
another \csname:

\csname name-1 \expandafter\endcsname
\csname name-2 …
… \endcsname

I think of this trick as an (architecture) arc or a
bridge; and I think of \csname …\endcsname as the
stator(s) of an electric motor, which make(s) the
stuff between them spin. Hence the Ubu Stereo/
PUA signs based on Japanese quotation marks:

׋׉ name-1 ׉ name-2 ׉ … ׌׉

So, as a “side-effect” of parsing of the GMS of sec-
tion 4, a translation is made:

prepareˈɹ⧼ɷ⧽:w_⋮⋮__׉ I::׉
prepareˈFSMˈω:w_⋮⋮׉ F1¨׉ I¨׉
refsᔥstartטsubs_⋮⋮__׉ ⦃0⦄¨׉
F2¨׉ :inˈF¨׉ BÄ¨׉ I¨׉ ↓↓refsᔥטsubs¨׉ ⦃0⦄¨׉
≕F¨2¨׉ ↓↓refsᔥטsubs¨׉

resumeˈFSM_⋮⋮__׉ ⦃0⦄¨׉
F2¨׉ I¨׉ F1¨׉ I¨׉ F6¨׉ I¨׉ F3¨׉ I¨׉
Bε¨׉ B4¨׉ ؛B¨׉ Bͽ¨׉ B2¨׉ ؛B¨׉ Bͽ¨׉
B5¨׉ Bؚ¨׉ Bͽ¨׉ ꟼi¨׉ q__⋮⋮_FSMˈcrawᔥstart׉ 6
ɹᔥyield:w_⋮⋮__׉ :::׉ {}

where ’׉‘ symbolizes the ’׉‘ arch in the “⋮¹-run”
(parsing-translation), and then, after turning them

Grzegorz Murzynowski

TUGboat, Volume 38 (2017), No. 2 227

kN kD FS pR0

BS0 pR1

SR pRi

BSi pRi1

FA

_τ

_Ϡ [τ := ɷ]

_Λ [τ := ɷ]

_ :

_Ϡ

_Λ

_ .

_ :

_ρ

_ { ↓1

_ ;

_ .

_ :

_⟦ ↓i

_π

_ρ

_ ,

_{
↓
1

_ ;

_ .

_ :

_}
1↑

:0

_ { ↓1

_ } 1↑ : 1

_ρ

_⟧
i↑
: 1

_⟦
↓
i

_π

_ρ

_ } 1↑ : 0

_ { ↓1 _ } 1↑ : 1

_ρ

_ { ↓1

_π

_ρ

_⟧
i↑
: 0

_{
↓
1

_}
1↑

:i

_ { ↓1

_ } 1↑ : 1

_ρ

_π

_ρ

_ } 1↑ : i

_ { ↓1 _ } 1↑ : 1

_Ϡ : _ρ :

•

Pϡ

kD

_ϡ

_π

_ϖ

_π

_ϖ

•

P* RI

PwY

pR•

_*
_λ

_π

_^
_λ

_ρ

_Λ :

k• kL fC FS pR0

BS0

_Λ _# [mC := xpl.] _λ [№ := λ]

_ρ [mC := max.]

_ { ↓1 [mC := max.]

Figure 2: The GM-Scenarios deterministic push-down automaton.

GMS two years later. A complete madness. But—Turing-complete or not?

228 TUGboat, Volume 38 (2017), No. 2

The meta-conventions and symbols defined elsewhere:

• ⟨opt. ⟨punct.x⟩⟩ – 0 or 1 punctuation character x, x ∈ {‘.’, ‘;’, ‘.’}
• + ᴿ – “interᴿuption” – ᴿ⟨an ᴿ-code⟩¦×⟨args. for \prg_replicate:nn, with #2 a sub-⟨specification⟩⟩

¦ᴮ⟨expl3-⟨Boolean variable⟩⟩⟨T-arg.⟩⟨F-arg.⟩¦ᵇ⟨expl3-⟨Boolean expression⟩⟩⟨T-arg.⟩⟨F-arg⟩¦[an &ASCII;]
• + &ASCII; – right side of the rule should be doubled with the pure-ASCII, HTML-entity-like aliases of

the symbols just-listed, in the form of &⟨pure-ASCII alias⟩;, and also with ‘&U+⟨hex⟩;’ aliases, e.g.,
ð ≡ &{the}; ≡ &U+00F0;, Ð ≡ &the^; ≡ &U+00D0;,

• ⟨an ᴿ-code⟩ – a(ny) TEX code that ᴿ-expands to a part of a ⟨specification⟩, where ᴿ denotes the
\romannumeral -`0 trick.

The grammar:

⟨GMS⟩ ::= ⟨\⋮⋮-macro⟩⟨specification⟩:
⟨\⋮⋮-macro⟩ ::= \⋮⋮ | \⋮⋮_ˀ記ט用記 | \⋮⋮_記記 | \⋮⋮_用記 | \⋮⋮_用記ˈ + &ASCII; + ᴿ
⟨specification⟩ ::= ⟨1st dest.⟩⟨FSoO⟩⟨subseq. specification⟩
⟨1st dest.⟩ ::= ε | ⟨τ⟩
⟨τ⟩ “ͽ͸ ͽέʹ͸ͻ”, ‘destiny/destination’ ::= ɳ | ɷ | ɸ + &ASCII; + ᴿ
⟨subseq. specification⟩ ::= ε | ⟨dest.reset⟩⟨FSoO⟩⟨subseq. specification⟩
⟨dest.reset⟩ ::= . | ⟨opt. .⟩⟨τ⟩
⟨FSoO⟩ “Finite Sequence of Operators” ::= ε | ⟨SAlos⟩⟨opt. ;⟩⟨FSoO⟩ | ⟨FSM⟩⟨opt. ;⟩⟨FSoO⟩
⟨SAlos⟩ “Stand-Alone’s” ::= ⟨(π*ϖ*)*⟩ | ⟨SAlos⟩⟨ϡ⟩⟨π⟩⟨SAlos⟩
⟨(π*ϖ*)*⟩ ::= ⟨π*⟩⟨(π*ϖ*)*⟩ | ⟨ϖ*⟩⟨(π*ϖ*)*⟩
⟨π*⟩ “the pre-p’s” ::= ε | ⟨π⟩⟨π*⟩
⟨π⟩ “a pre-processor” ::= c | f | n | N | o | T | F | v | V | x % l3expan’s, deprecated

| A | a | Ä | ä | Ć | ć | Ð | ð |𝕯 | 𝖉 | E | e | Ē | ē | I | i | K | k |  |  | R | r | S | s | ˰ | ˱ | ˲ | ˳ | Z | z
+ &ASCII; + ᴿ| Ṅ | ṅ | Ḋ | ḋ | Ḟ | ḟ | Ġ | ġ

⟨ϖ*⟩ “the special pickers” ::= ε | ⟨ϖ⟩⟨ϖ*⟩
⟨ϖ?⟩ “optional picker” ::= ε | ⟨ϖ⟩ | i | I + ᴿ
⟨ϖ⟩ “a special picker” ::= p % l3expan’s, deprecated

| H | h | Ħ | ħ |Ƕ | Ɨ | ɨ | ā⟨δ⟩ | Ă⟨δ⟩ | ă⟨δ⟩ | Ą⟨δ⟩ |⌦⟨δ⟩ | Q | q | Ꝗ | ꝗ + &ASCII; + ᴿ
⟨ϡ⟩ “a star prefix” ::= ⁎ (Low Asterisk U+204E) | ⁑ (Double Asterisk U+2051) + &ASCII; + ᴿ
⟨FSM⟩ “Finite Sequence Manipulation” ::= ⟨labellity⟩⟨opt.cardinality⟩⟨FSM w. mCard.⟩
⟨labellity⟩ ::= ε | ⟨Λ⟩
⟨Λ⟩ ::= ♮ (musical Natural sign) |ω |ω + ᴿ
⟨opt.cardinality⟩ ::= ε | |⟨λ⟩|
⟨FSM w. mCard.⟩ “FSM with [known] metaCardinality” ::= ⟨FSM chunk⟩⟨opt. ,⟩ ⟨FSM w. mCard.⟩
⟨FSM chunk⟩ ::= ⟨(ρπ*)*⟩ | ⟨BDSM⟩ | ⟨subs’n’refs setting⟩
⟨(ρπ*)*⟩ “render-pointers w. pre-processors” ::= ε | ⟨ρ⟩⟨π*⟩⟨(ρπ*)*⟩ | ⟨ρ\r⟩⟨π⟩⟨π*⟩⟨(ρπ*)*⟩
⟨ρ⟩ “a render-pointer” ::= ל | ם | מ | ן | נ | ס | ע | ף | פ | ץ | צ | ק | ר | ש | ת | ئ | ا | ب | ة | ت | ث | ج | ح | خ | د

׬| ׭| ׮| ׯ| װ| ױ| ײ| ׳| ״| ׵| ׶| ׷| ׸| ׹| ׺| |ْ |ٓ |ٔ |ٕ |ٖ |ٗ |٘ |ٙ |ٚ |ٛ + ᴿ
| ^⟨λ⟩ | _⟨λ⟩

⟨ρ\r⟩ “a no-render pointer”, or “bare pointer” ::= *⟨λ⟩ (ASCII asterisk and an FSM label) + ᴿ
⟨λ⟩ “an FSM label” ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P + ᴿ
⟨BDSM⟩ “Braces’n’Digits Sequence Manipulation” ::= {⟨FSM chunk⟩}⟨π*⟩
⟨subs’n’refs setting⟩ “substitutions and references setting” ::= ⟦ ⟨subs’n’refs⟩ ⟧ + ᴿ
⟨subs’n’refs⟩ ::= ⟨s.un.prefix⟩⟨λ⟩ | ⟨FSM chunk⟩⟨s.bin.infix⟩⟨λ⟩ | ⟨s.amb.prefix⟩⟨ϖ?⟩⟨λ⟩ | ⟨FSM chunk⟩

| ⟨subs’n’refs⟩⟨subs’n’refs⟩
⟨s.un.prefix⟩ “subs’n’refs prefix operator” ::= ※ + ᴿ
⟨s.bin.infix⟩ “subs’n’refs binary infix operator” ::= ≕ ؜| + ᴿ
⟨s.amb.prefix⟩ “subs’n’refs ‘ambiguary’ prefix operator” ::= ⁁ + ᴿ

Figure 3: A formal grammar of GMS.

Grzegorz Murzynowski

TUGboat, Volume 38 (2017), No. 2 229

all in control sequences “backwards” from right to
left, the escape chars of the resulting macros.

Not wishing to repeat everything that has al-
ready been said in the TUGboat 36:3 (2015) paper,
let’s just restate that:

• ‘\¨F2’ is a macro of the ⟨FSM⟩ part, performing
“Get the element 2 from the “shelf” and put
it on the “slab”.

• ‘\¨I’ is “Put the result of previous pre-process-
ing to the FSM’s result storage, without the
outer braces.

• ‘\¨Bε’ begins the ⟨BDSM⟩ part, and is an “empty
⟨text⟩” argument for further binary operation of
reverse concatenation, denoted with—

• ‘\¨Bͽ’, that takes the two most recently pro-
cessed ⟨partial result⟩s, and (conceptually) glues
them into one, in reverse order.

• ‘\¨B؛’ is a BDSM unary of “No wrap”/“Strip
off the braces”—“Pass it further in an open
envelope”, while

• ‘\¨Bؚ’ is (also unary) “Pass it further in a sealed
envelope”, i.e., “Wrap it in braces”.

• ‘\¨ꟼi’ finishes the ⟨BDSM⟩ part and puts its re-
sult into the enclosing ⟨FSM⟩’s result container.
The Epigraphic Reversed P, U+A7FC, ‘ꟼ’, in-
dicates “Reverse Polish Notation”, as this is
what’s going on in the ⟨BDSM⟩’s.

And the result of running this, is:

\⚸_lccode∷ `* % a \noexpand-ed active char acquired

by two-level expansion of \c_active_tl.

`#1
\⚸_lowercase∷ {\⚸_pdef∷ *}{

\⚸_penalty∷ \⚸_exhyphenpenalty∷
\⚸_hskip∷ \c_zero_skip }

The transitions are labeled not with particular
characters but with equivalence classes of: ⟨π⟩s, ⟨τ⟩
(destination tokens) &c.

It’s probably not a significant savings of mem-
ory or other costs of computation, but a great sim-
plifying of the code. And making it more change-
and development-robust as e.g., adding a new argu-
ment type, which is denoted with a char of equiva-
lence class ⟨π⟩, does not require any changes in the
automaton.

5.2 The destination, ⟨τ⟩

Parsing of a ⟨specification⟩ starts with determina-
tion of the “destination”, i.e., the way the result of
the next ⟨FSoO⟩ is yielded:

ε If no explicit destination token is given,15 the
usual “just once” is assumed, as l3expan’s \::/

15 I.e., the first char met is none of ɷ ɸ ɳ.

__exp_arg_next:nnn do. This is equivalent to
the use of ɷ.

ɷ Greek letter small sigma final form, the open
variant, for “ͼ;Ͷαγωγή ͹͸ʹύ” /synagoge poly/,
‘gather (as) many’ (with intended associations
with the correlation between social diversity and
open-mindedness of people). Therefore let us
call this “just once and multi”.

ɸ stands for “ͼ;Ͷαγωγή ͵όͶ͸” /synagoge mono/,
‘gather [as] one’, Greek letter small sigma mid-
dle form, the closed variant, to be associated
with enclosing of all the picked and pre-pro-
cessed arguments in one common resulting pair
of braces. (“Just once and as one”.) Useful if a
GMS (is expandable and) is to prepare a single
argument or {⟨balanced text⟩}.

ɳ for Greek “ͷαͶα”, ‘[use] again’: the result is put
back as input for further parts of the specifica-
tion, quite like the ruminants do.

5.3 The pre-ps. and pickers, ⟨(π*ϖ*)*⟩

Most of these letters directly correspond to an expl3
“argument type” and the respective \:: macro, or
extrapolate their ideas, even maybe towards a kind
of a completeness or full(er) symmetry.

With respect to their actions, they could be di-
vided in four groups:

𝟙 the identity operators, Ii (TEXnically, they pick

an undelimited argument, so they can be also
described as “pickers”);

⚗ the pre-processors (TEXnically also pickers, as
above);

✔ the special pickers, picking a delimited argu-
ment, but not applying anything to it;

✘ the discarders (or destroyers), picking an un- or
delimited argument and discarding it.

We have
⟨π⟩ = 𝟙 ∪⚗,
⟨ϖ⟩ = ✔ ∪✘,

and the main reason for distinguishing between (the
𝟙 s and) the ⚗ s (the ⟨π⟩ s), and the ✔ s and ✘ s (the
⟨ϖ⟩ s) is that the latter are not allowed in ⟨FSM⟩s,
and in fact don’t make much sense there.

So, let us see what they do. The ones hom-
onymic with l3expan “argument types” are enclosed
in [square brackets]. The group assignment of the
above four is indicated, and the symbols ’ך‘ and
‘ˀי’ denote non-expandability and uncertain ex-
pandability, resp. The symbol ‘ˀ✘’ means ✘ group

GMS two years later. A complete madness. But—Turing-complete or not?

230 TUGboat, Volume 38 (2017), No. 2

assignment uncertain. No symbol concerning ex-
pandability at an operator means it’s expandable.16

[o] A a ⚗ One-level expansion with \expandafter. (As
currently implemented in l3expan.)

Ä ä ⚗ Two-level expansion with \expandafter. Used
by me for pre-processing of macros that should
be expanded to their content and that content
hit once more, e.g.:

\def\number_of_page:{\the\c@page}

[c] Ć ć ⚗ The uppercase is just an alias for c, i.e., ap-
plying ׌׉·׋׉ before passing the argument on
without braces. The lowercase ć does the same
only passes the result on in braces. What could
be it useful for? First, for all the TEX primitives
that require a {⟨balanced text⟩}. Then, for the
constructs like

name 1 ׉ name 2 …

Ð ð ⚗(Latin letter Eth/eth) Hits the argument with
\the. In the current implementation of expl3,
it’s almost equivalent to V for some expl3 data
types, namely: _int, _dim and _skip.

ð is equivalent to V and Ð to VI. v is equivalent
⁎cð in stand-alone contexts or cð as ⟨π s⟩ of an
⟨FSM⟩ or ⟨BDSM⟩.

However, due to the “Don’t rely on imple-
mentation” rule, one should always use the v or
V specifier to render the value of an expl3 data
carrier.

𝕯𝖉 ⚗ Hits the argument with \meaning. (“Was
𝖉eutet die Name?”)

[x] E e ך⚗ Submit the argument to \edef. The lower-
case e translates to the \::x macro of l3expan/
expl3 which in its current implementation “re-
turns” the “result” in braces. The uppercase
variant “returns” the “result” without braces
and is not present in expl3.

Ē ē ך⚗ Submit the argument to, approximately,
\protected@edef in the sense of LATEX2ε. (We
can think of the horizontal bar over the \edef
“e”’s as a protective shield.)

[p] H h ✔ Pick a #{-delimited argument and return it
without braces (H, p) or wrapped in braces (h).

Ħ ħ ✘ Pick a #{-delimited argument and discard it.

Ƕ ✔ Pick everything until the digit (⟨FSM⟩-label
⟨λ⟩) 1 and “return” without braces, leaving the
⟨λ⟩ 1 at input. (Used to jump right to a la-
belled FSM.) (Latin Capital Letter HV, shape
modified in my Ubu Stereo font.)

16 Like, toutes proportions gardées, in Orthodox Jewish
districts or state(s), “If something isn’t terefah by its very
nature, in which case there’s a warning, then it’s kashrut.”

I i 𝟙 Identity operation, braced or unbraced with
respect to the lettercase.

Ɨ ɨ ✘ Pick and discard an undelimited argument.

K k ⚗\detokenize the argument.

ā⟨δ⟩ Ă⟨δ⟩ ✔ˀי Pick an argument delimited with the de-
limiter ⟨δ⟩; if ⟨δ⟩ is not yet declared, i.e., there’s
no internal macro with a parameter delimited
with it to do the job, define it dynamically (and
not expandably, in this case).

ă⟨δ⟩ Ą⟨δ⟩
⌦⟨δ⟩

✘ˀי Pick and discard an argument delimited
with ⟨δ⟩, possibly declaring ⟨δ⟩ dynamically, as
with ‘ā’ and ‘Ă’ above.

[N] [n] 𝟙 No pre-processing. Equivalent to i/I in the
current implementation of l3expan; listed sepa-
rately here in observance of the admonition in
“The LATEX3 Interfaces” by The LATEX3 Project
[Team?]17 (henceforth “L3Interfaces”): “the im-
plementation should not be relied upon”.

  ⚗ Hit the argument, which should be a single
character token, with (expandable) in- or decre-
ment by 1 respectively (expandable).

Q q ✔ Pick an argument delimited with \q_stop.

Ꝗ ꝗ ✘ (Latin Capital/Small Letter Q with Stroke
through Descender, U+A756/U+A757) Pick
and discard an argument delimited with \q_stop.

[f] R r ⚗ Apply \romannumeral -`0 to the argument.
This fully expands the leading token(s) of the
argument until an unexpandable token is seen.
So, it’s called f for “full” and not called so by
myself for “until first unexpandable”. I chose
the letters ‘R’/‘r’ to refer clearly to the primitive
\romannumeral, as this expansion is not “full” in
principle; and if might be described without it,
that would be “\expandafter quantum satis”.

S s ⚗ Hit the argument with \string. It’s worth
underlining that the uppercase version “returns”
the result without braces, which for a control
sequence means at least two “bare” tokens.

[V] ˰ ˱ ⚗ (expl3: Latin Capital Letter V; me: Cyrillic
letter Izhitsa, U+0474/U+0475.) Render the
value of a data carrier (an expl3 “variable” or
“constant”), given as a control sequence. Re-
lated to ð and Ð, see above.

[v] ˲ ˳ ⚗ (expl3: Latin letter lowercase v; me: Cyrillic
letter Izhitsa with Kendima, U+0476/U+0477.)
Render the value of a data carrier given as a
name (first submit the argument to .(׌׉·׋׉

Z z ✘ˀˀי Insert the resp. ⟨text⟩ in the stream of
this GMS translation (⋮⋮-run macros).

17 as of May 18, 2016.

Grzegorz Murzynowski

TUGboat, Volume 38 (2017), No. 2 231

Since ‘Z’ is considered a symbol of things last
or ultimate, and with this operator/s you can
do literally anything, “from ‘A’ to ‘Z’ ”.18

Dangerous, experimental, liability excluded
to the maximum extent permitted by Law.

Don’t use it unless you read and understood
its current implementation.

Ṅ ṅ
Ḋ ḋ
Ġ ġ

⚗ Submit the argument to \the\numexpr, \the
\dimexpr, or \the\glueexpr respectively, i.e., in
one-level expansion evaluate the argument as
\int_eval:n, \dim_eval:n, and \skip_eval:n do
in the everyday expl3. (Added in July, 2017.)

Ḟ ḟ ⚗ Applies \fp_eval:n to the argument, that is,
“floating point” evaluation in the sense of expl3.
(Added in August, 2017.)

When used as ⟨SAlos⟩, the ⟨(π*ϖ*)*⟩ (pre-ps.
and pickers) refer to / are applied to subsequent
arguments from the input.

When following a ⟨ρ⟩, the ⟨π⟩ s refer to / are
applied to the resp. ⟨λ⟩th argument from the input,
counting as explained later.

When following a close brace in a ⟨BDSM⟩, in-
cluding the outermost, the ⟨π⟩ s refer to that ⟨BDSM⟩
as if it were a single argument taken from the input,
and a ⟨ϖ⟩ raises an error.

5.4 The meta-operators, ⟨ϡ⟩

The ⁎ and ⁑ meta-operators are allowed only in the
⟨SAlos⟩, and modify actions of (π*ϖ*)*. By return-
ing a pre-processed ⟨text⟩ to input, they allow mul-
tiple operations on the same ⟨text⟩ without launch-
ing the (more expensive) ⟨FSM⟩/gBDSM machine.
They don’t increase the expressive power of the lan-
guage, as they might be expressed as follows:

• ‘⁎⟨π⟩’ ≡ ‘ɳ⟨π⟩.’

• ‘⁑⟨π⟩’ ≡ ‘ɳ .לל♮ ⟨π⟩.’

The ᴿ meta-operator (or rather: interruptor)
suspends parsing of ⟨specification⟩, hits whatever is
next with \romannumeral -`0, i.e., “the f-type ex-
pansion” in the L3Interfaces, and then hopefully re-
sumes parsing. That allows you to branch the very
specification of a given GMS, not only its arguments.
Including nesting of GMS’s. Does it increase ex-
pressive power? Yes. It brings virtually the whole
“mouth” of TEX into the GM-Scenarios, and that’s
Turing-complete (cf. an expandable implementation
of lambda calculus at ctan.org/pkg/lambda-lists and
a more general discussion at tex.stackexchange.com/
questions/35039/why-isnt-everything-expandable .)

18 Also, Zelenka’s Missæ ultimæ might be recalled as a
mnemo.

And that (the “interᴿuptions”) let you write code in
a more “meta” way. And more obscure, yet shorter.

× is a shorthand for ᴿ\prg_replicate:nn, which
means it requires two pairs of braces to come next,
the first containing a ⟨number specification⟩ and the
second the things you wish to replicate. This way,
instead of

\⋮⋮ … ↓↓↓↓↓↓↓↓ …:

you can type

\⋮⋮ … ×8↓ … :

(As you may have noticed, at this point I do rely
on the current implementation of \prg_replicate:nn,
namely, on its expandability.19)

Let’s now deal with the “render-pointers” ⟨ρ⟩s,
that is, the general permutations.

5.5 The general permutations, or the ⟨FSM⟩
without grouping

The processing of a “general permutation” can be
described as two stages: (Stage One) preparation of
the “shelf” or “substrates’ storage”, or “craw”, and
then (Stage Two) picking labelled elements from
the “shelf” and putting on the “slab”20 (a permu-
tation consists of or is applied to elements (of some
set), not arguments, isn’t it?).

As labels, the “bare” digits and Latin capital
letters are used: ‘1’..‘9’, ‘A’..‘P’. This is safe since the
(GMS’s) arguments’ contents are “invisible” to TEX’s
macro argument scanner, thanks to the braces. Two
important arguments for this choice are:

• these chars are easy to type in (for the “explicit
labels” version), at least with Western input de-
vices;

• no one changes their catcodes (not even me).

The “shelf” is functionally a one-dimensional
array (a vector). For each label ⟨λ⟩, an accessor
or “Fetch!” macro ‘¨F⟨λ⟩’ exists that resp. render-
pointer translates to. It “gets a copy” of the ⟨text⟩
put next to ⟨λ⟩ on the “shelf” onto the “slab”, i.e.,
absorbs that ⟨text⟩, and puts one copy of it on the
“slab”, and another copy back on the “shelf”.

Then the ⟨π⟩ s are applied (if any), and the re-
sult is appended to what’s already in the “result
container”.

It seems expensive, O(ls
2), ls being the length

of ⟨specification⟩, and it would probably be more
effective to define index-named macros whose con-
tents would be the ⟨FSM⟩’s elements. Then access

19 But why does the L3Interfaces indicate expandability
of its “functions” if one should not rely on implementation?
(That makes me feel confused 😉 .)

20 “Let’s go to the lab ’n’see what’s on the slab”, “The
Rocky Horror Picture Show”.

GMS two years later. A complete madness. But—Turing-complete or not?

ctan.org/pkg/lambda-lists
tex.stackexchange.com/questions/35039/why-isnt-everything-expandable
tex.stackexchange.com/questions/35039/why-isnt-everything-expandable

232 TUGboat, Volume 38 (2017), No. 2

to any of them would cost just one ׋׉ … ׌׉ plus one
one-level expansion of it. But practically, for up to
25 ⟨text⟩s for an ⟨FSM⟩, it works just fine.

But when implemented the way it is now, it
stays expandable. Why is that so important? I’m
not quite sure. First of all, it’s more fun. But also,
many TEX and ε-TEX primitives expand macros in
search of {⟨balanced text⟩} to absorb. Then, if a
GMS is expandable, it is possible to write, e.g.,

\toks\<number>= \⋮⋮ ω {…} : 1 … ω

and get the scenario to return the {⟨text⟩} for the
\toks assignment.

In addition, the prefixes \global, \outer, and
\protected expand expandable tokens, so that’s pos-
sible to define, say, \⚸_def:Nn that computes and
sets the proper parameters string out of its #1’s sig-
nature, and at the same time accepts prefixing with
\global or \protected, and acts accordingly.21

So, it seems we are handling a dynamic-length
data structure within purely expandable sub-TEX.
Are we really? Not quite. It is dynamic in length
and expandable only up to the largest number for
which “shelf”-preparing and -referring macros were
previously defined. For now, this number is 25, as
I haven’t needed more so far, especially since more
than 10 already makes a GMS a tool of “Security
by Obscurity” rather than of shortening the code or
making it more bug-robust.

5.6 Parsing the braces, or: ⟨BDSM⟩

In the first go, as presented in the previous paper, I
perceived the GMS as a DFA (Deterministic Finite
Automaton) “with Mysterious Something” that al-
lowed it to handle the braces properly.

That “Mysterious Something” had been imple-
mented as the native TEX’s argument scanner with
additional tricks to roll back the effect of ‘\string{’,
in a sense, and instead put a special token ‘ꟼ’ next to
the outermost closing brace, translated to the ‘\¨ꟼ’
macro mentioned above.

Currently my understanding is that those tricks
are not necessary, and we can process the ⟨specifi-
cation⟩ char-by-char until a colon ‘:’, which allows
to use not only the braces {1 and }2 as the group
opening and group closing symbols, but also other
characters I’d give this charclass(es), e.g., ‘⦃’ and ‘⦄’.

The only thing we need to do is add another
argument to the relevant states and transitions, one
which bears the nesting level.

21 \⚸_def:Nn is actually defined this way in gme3u8, while
l3expan’s \cs_new:Nn contains a preliminary/auxiliary \def any
prefix is “earthed” at, or even raises an error.

And what is such an argument, i.e., an integer
(Natural) number, that’s initially 0, and is increased
by 1 with each opening brace, and decreased by 1
with each closing? It’s nothing (in a sense) other
than a pushdown stack (i.e., a stack with top-only
access), with the initial symbol 0 and just one sym-
bol pushed down or popped, 1. Then, we can think
of the number representing current nesting depth of
braces as the stack storing this many 1’s.

In this sense, the GMS automaton is a DPDA,
Deterministic Pushdown Automaton.

The (informal) argument that it’s a proper
DPDA (not a Turing Machine), is that it does only
what fig. 2 depicts. In particular, it rejects (raises
an error at) the ⟨BDSM⟩ braces and ⟨subs’n’refs⟩
double-stroke brackets interlacing

\⋮⋮ … ♮ {⟦}⟧ ; … :

while all three ‘♮ {}⟦⟧ ;’, ‘♮ {⟦⟧} ;’, and ‘♮ ⟦{}⟧ ;’
are accepted.

Then, the depth of the BDSM braces is limited
only by the capacity of TEX (and at the ⋮¹-run it’s
about memory not the maximum group level, since
there are no “groups” (that belong to the seman-
tics), just syntax, i.e., the symbols of the GMS lan-
guage’s alphabet). This means it’s stronger than a
Deterministic Finite Automaton, since it’s capable
of recognizing the Dyck language.

The “stack integer” is implemented as a single
character interpreted as a number via ‘`’ (TEX back-
quote), and expandably in- or decremented thanks
to \numexpr and \Ucharcat.

I consider it a data type and call it ‘ą’, hence
the ‘’ and ‘’ pre-processors using the expandable
in- and decrement mentioned above.

With setting the number 0 to be represented
by the character ‘0’, the maximum character num-
ber available in XƎTEX is 1114063. So, far far more
than the maximum grouping level handled by TEX,
so it can parse (accept and translate into the rear-
rangement macros) far deeper nesting than TEX can
execute.

If we meet an opening brace when 0 is at the top
of the stack, we move to the BDSM sub-automaton,
and do basically the same things as we do in the FSM

states, but pushing or popping 1’s down or from the
stack.

Once 0 is seen again, i.e., once all the 1’s are
popped from the stack, we know that the outermost
opening brace (of this BDSM) has been matched, so
we possibly apply some ⟨π⟩s to it, and then yield,
and move back to the state of general FSM.

Grzegorz Murzynowski

TUGboat, Volume 38 (2017), No. 2 233

The case of “subs’n’refs” is conceptually analo-
gous, although the current implementation is more
tricky than honestly “automaton-ic”.

5.7 The ⟨subs’n’refs⟩

Whenever the automaton, being already in some of
the ⟨FSM⟩ states, meets an opening ‘⟦’ bracket, it
conceptually pushes yet another symbol down the
stack, and moves us into the “subs’n’refs” sub-aut-
omaton(s).

This new symbol may be considered the initial
symbol of the ⟨subs’n’refs⟩ sub-stack. Then, again,
whenever an opening brace is met, 1 is pushed down,
and popped at meeting a closing brace. Seeing that
“yet another symbol” on top of the stack after a
closing brace was popped, says that that brace is
outermost with respect to this ⟨subs’n’refs⟩.

As you see, the matter discussed gets a bit com-
plex, and hence I chose i as that “yet another sym-
bol”. 😉

The ⟨subs’n’refs⟩ cannot be nested, and that’s
why only one i is allowed on the stack, and why
there’s no ‘⟦’- or ‘⟧’-labelled edge between two states
of the ⟨subs’n’refs⟩ sub-automaton.

The ⟨subs’n’refs⟩ sub-automaton might also be
considered two distinct sub-automata, one reached
from the general ⟨FSM⟩ states and returning to them,
and the other from the ⟨BDSM⟩, and going back to
that ⟨BDSM⟩.

The difference lies on the top of the stack (lit-
erally) before pushing down the symbol i, and af-
ter popping it: if the ⟨subs’n’refs⟩ sub-automaton
is reached from a general ⟨FSM⟩, 0 is on top of the
stack, and if the ⟨subs’n’refs⟩ has been reached from
within a ⟨BDSM⟩ state, then 1 is on top of the stack.

The diagram is complex already; so as not to
make it messy, those two sub-automata have been
merged, in a sense. Instead of drawing the two inde-
pendently, only the “foreign” edges are drawn as dis-
tinct, while the states and the “domestic” edges are
present once, and the two sub-automata are topo-
logically homeomorphic.22

5.7.1 The replacements, ‘=:’

Consider the part ‘⟦ Ä≕2ם ⟧’ of the example in sec-
tion 4. As has already been mentioned, this part
of ⟨specification⟩, and more precisely, of its ⟨FSM⟩,
translates into macros that replace the original ele-
ment 2 with its “double ”׊׉ expansion, prepared to
be returned without braces.

22 The macros for the two are separate, though, because
within ⟨BDSM⟩ the local “shelf” and “slab” are prepared
slightly differently, and so the parameter delimiters differ.

So far, there is no “symbol i” used in the imple-
mentation. The transition to the ⟨subs’n’refs⟩ part
of the automaton is implemented with “memoriz-
ing” current nesting level, which would be the cur-
rent length of the stack in the terms of this paper,
as a(nother) numchar, and confronting it with the
{}-nesting level at ⟧, i.e., at the end of ⟨subs’n’refs⟩.

This is done in a way similar to the “usual” pro-
cessing of the ⟨FSM⟩ elements, i.e., by taking a copy
of the element into the “operation table” or “slab”,
applying the ⟨π⟩s, and, here comes the difference,
putting the result not in the “result container”, but
back in the “craw” or “shelf”, effectively replacing
it at the given label.23

The idea of this sub-automaton stemmed ex-
actly from the craving for “as few repetitions as
possible”, namely, in situations where I’d apply the
same sequence of pre-processors ⟨π*⟩ to the same
element of an ⟨FSM⟩ more than once.

In the given example, it’s a bit of an overkill, as
the element 2 is used only in two copies. But, even
twice might be too many, if we think of the points
to remember to change something, say, a single ’׊׉‘
to “double-׊׉”.

In this example, the render-pointer ⟨ρ⟩ at the
left side of ‘≕’ corresponds with the label ⟨λ⟩.

But it’s not a sine qua non. The mechanism is
general enough (at no additional cost) to process any
correct ⟨FSM⟩ put on the left (including ⟨BDSM⟩),
and make the replacement of it at the label typed
on the right side of the ‘≕’ “assignment” symbol.

And, I used quotation marks for the word “as-
signment”, because the replacement operator ‘≕’
(binary infix) is expandable.

5.7.2 “The arguments from beyond”, ‘⁁’

Also expandable is the “ambiguary” prefix opera-
tion ⁁⟨ϖ?⟩⟨λ⟩, that gets the next argument from the
“input”, i.e., from beyond all the “slabs”, “shells”,
“fridges” and “containers” of the ⟨FSM⟩ and of the
entire ⟨specification⟩, and puts it as the element
⟨λ⟩, thus replacing whatever was there before.

It also works if there was nothing at that label
earlier, i.e., if ⟨λ⟩ was until now immediately followed
by another label, or by a delimiter of the “shelf”.
(Garbage warning as above.)

Again, it’s done with macros with a parameter
delimited by the respective label(s).

23 With the assumption that such replacements are “not
too many”, and in order to allow “empty labels”, the old
version of an element remains “at the back”, and is discarded
only at the very end. (Garbage warning.)

GMS two years later. A complete madness. But—Turing-complete or not?

234 TUGboat, Volume 38 (2017), No. 2

Since this feature was implemented only last
week, only an undelimited argument picker is han-
dled at the moment. But other pickers are in pec-

toris, as described in the Grammar, fig. 3.
Also, in this (early) version of this functional-

ity, presence of the label ⟨λ⟩ already in the slab is
assumed and required.

Again, this feature emerged from a need (or
will) to be able to write a GMS consisting mostly of
an FSM, and make an anonymous function of it,24

and yet declare the FSM with labels, as it’s more
readable this way.

The example which follows is based on a quasi-
iterator used in some really real TEX program. First
of all (conceptually), there is a list of control se-
quences that should be at some point defined (or
not, that’s why it’s not done on the “ground level”
of code). Then, if they are defined (and only if),
they should be initialized, as they’re defined as vari-
ables (of various types). Then, if they joined in the
action, it has to be known how to set them (s), and
also, how to reset (rs). That makes a 4-tuple of
things for each of those control sequences, with the
(s) function used also in (rs), only with the special
value (rsv), and that (rsv) is specified as the 4th
element of each tuple.

Each of those control sequences requires specific
“methods” of its own, and initialization is performed
once if at all, so instead of defining macros, I used
a GMS to allow the contents of the braces (*), i.e.,
that anonymous 1-argument function, to be put by
the loop, and given control sequence (*b) as the ar-
gument.

...
{⟨initializations of:⟩} \g___auxˈל_str
...
{ % (*)

\⋮⋮ ω ⟦⁁5⟧ נל :מנם } % declare & init. box to

empty \hbox

{ \⋮⋮ ω ⟦⁁5⟧ :ןנם } % reset the box to void

{ % (**)

1 \box_new:N
2 {\⚸_global∷\⚸_setbox∷}
3 {=\hbox{}}
4 \c_⚸_void_box
5

ω
}
\c___auxˈל_box % (*b)

...

24 Although at the time of writing this feature I was not
aware it was to be an anonymous function. Not only am I
not a computer scientist, but also not a graduate of a formal
course of computer programming 😸 .

Thus, when the code (*) and (**) are put (with-
out braces), and followed by the c.s. (*b), the first
thing done, written down as ‘⟦⁁5⟧’, is absorbing (*b)
to the 5.

And then the initialization is performed, i.e.,
the result of the above GMS is:

\box_new:N \c___auxˈל_box
\⚸_global∷ \⚸_setbox∷ \c___auxˈל_box =

\hbox {}

The optional picker ⟨ϖ?⟩, if present, makes the
machine pick not the next ⟨text⟩ undelimited, but
delimited as specified with the ⟨ϖ?⟩ (for symmetry,
specifying ‘i’ or ‘I’ is also allowed).

Note, by the way, that any GMS might be con-
sidered an anonymous function (unless a “predef” of
it is made), and also an explicit sequence of l3expan
‘\::’ ’s, but not the ‘inline’ (1st) arguments of the
expl3 \⟨type⟩_map_inline:n[n|N] iterators, as the lat-
ter are internally assigned a (one-parameter) macro
in the usual way, only hidden.

5.7.3 Snapshots and references, ‘※’

Described last, as unexpandable by their nature, are
the ※⟨λ⟩ operations, ‘snapshot the element ⟨λ⟩ and
make a reference to it’.

The idea is very simple: allow referencing the
permutation elements within the reorganized code,
so as not to be forced to divide everything into the
“before the element/argument part” and “after ~~
part”.

So, putting ‘⟦ ›… ※7 ›… ⟧’ within an ⟨FSM⟩,
makes a “snapshot” of the element 7 as it is at the
point of ⋮⋮-run of the (translation of) this operator,
available as the contents of an expandable macro,
or, speaking in expl3, a _tl variable, that may be
rendered via ’7※׉‘ to get that contents wrapped in
\unexpanded, or via ,’7⁜׉‘ for not protected.

Nesting one GMS within another is allowed, and
to avoid messing up the snapshots and references in
such a case, a record of its level (depth) is kept,
and updated expandably as long as purely expand-
able ⟨subs’n’refs⟩ are used, which is checked by the
automaton in the ⋮⋮-run.

For now, only ‘※’ and ’؜‘ ⟨subs’n’refs⟩ opera-
tors “destroy expandability”, the latter being a su-
perposition of expandable ‘≕’ and ‘※’, as follows.

The binary infix operator ,’؜‘ used as
‘⟦›…⟨FSM⟩؜⟨λ⟩›…⟧’,

first replaces the element ⟨λ⟩ with the result of the
⟨FSM⟩ from the left side, and then also makes a
snapshot of it, referrable as described above, via
⟨λ⟩※׉ for “\unexpanded’ed”, or ,⟨λ⟩※׉ for “bare”.

Grzegorz Murzynowski

TUGboat, Volume 38 (2017), No. 2 235

To be honest, I’ve used this mechanism only a
few times so far, as it denies expandability by its
very nature. Each of those few uses is large, of more
than 10 elements, therefore I’ll show just fragments
of the simplest one.

\⋮⋮ ω 9؜מ⟧ % (curr. contents of) 3 is put on 9,

and made ※9

⟦Ć≕7ם
ל װע % the c.s. built above is now defined

... :
...
2 { c___ #1 transitionˈfrom⧼ #2 ⧽ᔥvia⧼ 9⁜׉

⧽ᔥresult_clist }
3 { #3 }
9
...
ω

Note how the “snap’n’ref” is used: the primary goal
of this feature is to allow putting placeholders in
the subject code, and have them replaced with the
respective element. Somewhere in the middle of the
text, and possibly, also nested.

So, there are the placeholders in the middle of
⟨text⟩ of an element. And, they are valid only within
their respective ⟨FSM⟩, thanks to the record of GMS

nesting mentioned above, and checking it.
And outside their own FSM, those placeholders/

references issue an error. So, to make any use of
them, one has to apply some kind of full expansion
to the elements that contain them.

And here it is: the element 2 is a long csname
built with ,9⁜׉ and the ‘Ć’ operator, i.e., ,׌׉·׋׉ per-
forms such expansion. The resulting c.s. is put in-
stead of the original {⟨text⟩}.

Note BTW, that the c.s. raised from 2 is not
put instead of it(self), but at 7. That’s because ‘#3’
being the contents of the dereference 9, is “alive”,
and “then” expands to something other than “now”.

6 Rough budgeting, a.k.a. cost estimation

If we take the “interᴿuptions” into account, the es-
timation is simple: anything is possible, including
arbitrary elongation of the resulting “interᴿuption”-
less ⟨specification⟩. That elongation might come
from, e.g., ‘×⟨N⟩{⁎i}, where N is a decimal or hex.
representation of a positive integer.

Then the resulting length of ⟨specification⟩ be-
comes O(BlN), where B is the base of the represen-
tation of N used, and lN its length in this represen-
tation.

So, in the full-featured version, potentially “ex-
ponentially explosive”, but no more so than any loop
accepting numerical limits in power-position nota-
tion.

What about GM-Scenarios with “interᴿuptions”
put aside, i.e., the proper DPDA of it?

What basic operations should we consider here?
If we think of each operator as a (constant) sequence
of macros, as the definition of the operators does not
change in the runtime, and getting the next ⟨text⟩
from input as just one step (unit cost), then the time
cost of a GMS that doesn’t involve ⟨FSM⟩ is, putting
ls as the length of ⟨specification⟩, O(ls).

Then, including ⟨FSM⟩ in our consideration, we
see that one character (plus a constant number of
its “context”), may result in apparently arbitrarily
large numbers of ⟨text⟩s to take from input.

\⋮⋮ … ♮|7|; … :

But it cannot happen, as the alphabet (not Uni-
code, not the charset handled by the TEX engine
used, but the theoretical alphabet of the language
considered) is finite,25 so there is an upper bound for
the numbers expressible with the ⟨λ⟩’s, so, as we’re
in the realm of Naturals, there exists the maximum
of those numbers. Let’s denote it by M . Then,
including ⟨FSM⟩’s in this “budgeting”, we get an es-
timation

O(ls) +O(M·ls) = O(ls),

still within linear time.
But, is the assumption of the unit cost of get-

ting new ⟨text⟩ reasonable, no matter how far we
have to jump over the tail of ⟨specification⟩, and
over the partial result, i.e., the storage of the ⟨text⟩s
already processed?

It seems not. As the ⟨specification⟩ is executed,
the partial result “pessimistically” grows at the same
rate as the ⟨specification⟩ shortens, and we have to
jump over both of them in order to get the next
⟨text⟩ for pre-processing. So, if we consider “jump
over one ⟨text⟩” a unit cost, the estimation becomes

O(ls)
2
, it seems. Still, polynomial time, not so bad

(it seems).
The space cost appears even nicer, as no ⟨text⟩

at the input can be copied more than ls times, and
there can be one ⟨FSM⟩“shelf” at a time, so no more
than M additional ⟨text⟩s at a time. That allows
the following estimation of the space cost SC:

SC ≤ 2ls +M,

with given alphabet and fixed set of ⟨ρ⟩’s and ⟨λ⟩’s,
M is constant, and so we get O(2ls+M), and that’s
just O(ls). Just great, it seems.

25 …and the language is too weak to express a description
like “The largest number expressible with less than 70 char-
acters”!😉 ̇

GMS two years later. A complete madness. But—Turing-complete or not?

236 TUGboat, Volume 38 (2017), No. 2

However, consider

\⋮⋮ ɳ♮{ללל}. : a % (s1)

\⋮⋮ ɳ♮{ללל}. ɳ♮{ללל}. : a % (s2)

\⋮⋮ ɳ♮{ללל}. ɳ♮{ללל}. ɳ♮{ללל}. : a % (s3)

...

It looks we’ve found an “exponential explosion”,
as each next ‘ɳ♮{ללל}.’ replicates the result of the
previous one three times, and n times in general, n
being the number of s’’ל‘ within braces.

Even though the length of ⟨specification⟩ grows
by n+K, K = 4 being fixed, so it’s not exactly 3ls/n

but more like 3ls/(n+K) —still exponential. Both in
time and space, as it’s the partial result that grows
so fast.

But this is a weird and theoretical example.26

In practice, let me repeat, it works just fine, as users
intuitively avoid the ‘ɳ’ “destination”, and don’t do
such silly things as mere replication of one ⟨text⟩;
the previous estimation, of O(ls

2) time and O(ls)
space, seems to hold in all reasonable cases.

7 Friendly critiques at TUG@BachoTEX
2017

The respective section in the GMOA paper was called
“Real-life uses of GMOA”. I’m not sure whether such
a machinery, which with its full features is rather an
esoteric language than a friendly tool for reasonable
users, might be much used in “real life”. I’m afraid
that, by mere using of it, the respective part of “life”
would be made “un-real”. At least, in the sense of
total obscurity for anyone else but me.

That’s the most important thing my colleagues,
or better say: friends, pointed out after the presen-
tation of GMS at TUG@BachoTEX 2017.

In more detail, it’s because:

1. using “distant” and PUA Unicodes does not help
at all, since most users are still in pure ASCII, at
least concerning the control layer, like control
sequences and special characters;

2. it’s too complex and obscure, and for most peo-
ple it’s simply easier and clearer to write the
same code twice, or more times, than to try
to decipher from the one-character instructions
how the pieces should be repeated, and how
modified;

3. “\expandafter does strange and complex things,
therefore it should have a long and strange name,
and not single-character!”, and similar argu-
ment about other primitives;

4. it doesn’t seem useful, “… and I understood, it
doesn’t have to be: because you don’t develop

26 Remember Murphy’s Law?

it to be useful, you develop it as your artistic
expression.”

@ rem. 1, I totally agree. Also, not even yet
shown, non-English control sequences, such as the
eschatological-appearing ‘__⋮⋮_αɵɴκαɹαɸɹαθείˈFSM’
(‘apokatastathei FSM’, reminding one of the Neo-
Platonic or Gnostic visions of Apokatastasis at the
End of Time), changed to ‘__⋮⋮_SטRᔥresumeˈFSM’
herein, along with all other Greek or Latin ones.

And, to ease typing of ⟨specification⟩s to those
few who may not be completely familiar with things
like Opening Lenticular Bracket Ordinal Number
Omega, PUA+E9EA ‘ω’, I provide a pure ASCII and
HTML-like “input method”: in the most general ver-
sion, one may type ‘&U+⟨hex⟩;’, and then \Ucharcat
·12 will be applied to ⟨hex⟩, i.e., the resp. char12
rendered, as if it were there in the first place.

Then, there are some “ASCII approximations”
of the symbols, like ‘&w[;’ and ‘&w];’ for ‘ω’ and ‘ω’,
or ‘&VY;’ for the Capital Izhitsa with Kendima, ‘˲’,
or ‘&{the};’ for ‘ð’.

The ‘&…;’ “entities” are (more or less) “interᴿ-
uptions”, and can be used anywhere. They are trans-
lated internally to the respective original symbols,
so using a native Unicode engine remains obligatory.

For the pointer-renderers of ⟨FSM⟩ elements,
i.e., the ⟨ρ⟩ symbols of the formal grammar, the
HTML-like forms: ‘&_1;’…‘&_9;’, ‘&_A;’…‘&_P;’ for the
“lowercase” ,’ٛ‘…’׬‘ and ‘&^1;’…‘&^9;’, ‘&^A;’…‘&^P;’
for “uppercase” ,’פ‘…’ל‘ .’د‘…’ץ‘

To avoid possible confusion of ‘&_1;’ and ,’ל‘
think of ASCII Underscore as the sign of “generic
sub-ness”, as in standard TEX for subscripts, so may
it be also for lowercase, and of the graphical ele-
ment ’ݢ‘ “double underline” as the proofreading sign
“make this uppercase”.

But in case of the ⟨ρ⟩ “render-pointers”, the
HTML-like notation is not necessary, i.e., the ‘&’ and
‘;’ might be omitted, and ‘_9’ is also fine, as shown
both in the automaton graph in fig. 2, and in the
formal grammar in fig. 3.

@ rem. 2, I admit: yes, GMS are complex, and
maybe even mad, and might easily become obscure.
But, and this is one of its goals, they allow reduc-
ing the number of repetitions of at least some parts
of code to 1, and that in turn makes things fix-
able at just one point. For instance, having defined
two macros that differ only with the printed text,
and put the same skips before it, if I wish later to
change the amounts, then, having used \⋮⋮ properly,
I change “both” of them only once, namely, at the
label ‘A’:

Grzegorz Murzynowski

TUGboat, Volume 38 (2017), No. 2 237

\GMS &w[; ^1^2 ^7 {^A^3^9}
^1^4 ^7^8 {^A^8 _5 ^9} :

1 \def
2 \macroל 3 {indigo}
4 \macroם 5 {indigenous}
7 {#1#2#3} 8 {#4} 9 {#2}
A {\hskip 17pt\relax } % later changeable

&w];

As with probably all things in this world, it’s
a matter of balance. Here, between only the primi-
tives at one extreme, and just one active character
expanding to the entire document, at the other. Oh,
not even one: an empty file, that expands to the en-
tire document thanks to \everyeof.

For me, that balance seems to be in the l3expan
iterators and in not too long, but on the other hand,
nontrivial, GM-Scenarios.

@ rem. 4, I also admit that the main reason I’m
doing this is fun, or, to put it in a less hedonistic
way, intense intellectual satisfaction.

But, again, that doesn’t exclude usefulness per

se, and striving to make GMS meet not only my
requirements, but also those of other people, might
be as much fun, and as much art.

@ rem. 3, let me just say:
′

as in: (f(x)·g(x))′ = f ′(x)g(x) + f(x)g′(x). 😸

8 Final remarks

8.1 “Thank Heavens, it’s not the Premium
Class”

At the end, let’s recap the question posed in the title.
We already know GMS’s are a complete madness.
But—are they Turing-complete?

The answer has already been given, and this
answer is: No.

Ignoring the “interᴿuptions”, the27 automaton
is deterministic pushdown, and the GMS language
appears to be context-free.

So, it’s not a Premium Class machine, i.e., Tur-
ing, and that’s a relief in a sense, as it shows I did
not “rewrite TEX in TEX” [yet].

On the other hand, the GM-Scenarios allow for
making parts of code noticeably shorter, clearer, and
less repetitive, and this way more readable and bug-
robust. Provided that they (GMS s) are kept at bay
on their own, i.e., not too long, and not too complex.

27 Actually, an automaton, since there exist many au-
tomata equivalent to the one just presented, in the sense of
recognizing exactly the same language.

8.2 The end, or ἔͼχαͽ͸Ͷ
When I think of all those symbols, the automaton,
its states and transitions, adding “the arguments
from beyond”, the correspondence between it and
the formal language of GMS, the most “finale-al” fi-
nale I know of, the eschatological and apokatasthatic
“Chorus Mysticus” in the cosmic Mahler Eighth Sym-

phony comes in handy. 😉

Alles Vergängliche All things under Transition

Ist nur ein Gleichnis; are just a Symbol;

Das Unzulängliche, What l3expan couldn't express,

Hier wird's Ereignis; here is performed;

Das Unbeschreibliche, What could not be described,

Hier ist es getan; here is just done;

Das Ewigweibliche les Femmes Puissantes,

Zieht uns hinan. protect and bring us beyond.

— Goethe, “Faustus”
28

&

Mahler, the Eighth Symphony

⋄ Grzegorz Murzynowski
PARCAT.eu
g.murzynowski (at) parcat dot eu
natror.croolik.sryc (at) gmail dot com

28 English translation mine, adapted and adjusted for the
needs of this paper.

GMS two years later. A complete madness. But—Turing-complete or not?

238 TUGboat, Volume 38 (2017), No. 2

Typesetting bibliographies compliant with
the ISO 690 standard in LATEX

Dávid Lupták

Abstract

The preparation of bibliographic references and ci-
tations compliant with the international standard
ISO 690 is required by many institutes worldwide.
However, the typesetting of bibliographies conform-
ing to the respective standard is not yet supported
in the LATEX document preparation system. The
biblatex-iso690 package has been revised and im-
proved to fully meet the requirements of the inter-
national standard and thus greatly simplifies the
typesetting of bibliographies for all kinds of informa-
tion resources.

1 Introduction

Writing an article, paper or any other kind of work
requires incorporating other resources which need to
be referenced and cited properly. The preparation
of bibliographic references and citations is mainly
required to comply with the international standard
ISO 690 in Czech academia (Kratochvíl et al., 2011).
This article briefly introduces the standard ISO 690
and then describes various existing software imple-
mentations that incorporate the standard. It then
details the typesetting of bibliographies in the LATEX
preparation system and finally describes the package
biblatex-iso690, the first complete implementation in
LATEX that is compliant with the latest version of
the standard ISO 690.

2 International standard ISO 690

The preparation of bibliographic references and cita-
tions was done in accordance with the international
standard ISO 690:1987 (ISO 690 , 1987) for printed
resources and ISO 690-2:1997 (ISO 690-2 , 1997) for
electronic information resources. These two versions
of the standard were unified and replaced by a new
version ISO 690:2010 (ISO 690 , 2010) in 2010. On
national levels, translations of such standards are
provided by offices for standards (ISO members) (In-
ternational Organization for Standardization, 2015),
with status at least equal to that of the original
standard. Examples of such translations are Czech
ČSN ISO 690:2011 (ČSN ISO 690 , 2011), Slovak STN
ISO 690:2012 (STN ISO 690 , 2012) and German DIN
ISO 690:2013 (DIN ISO 690 , 2013).

2.1 Terminology

There are two key terms regarding the standard (ISO

690 , 2010) which need to be explicitly defined for
clear understanding of this paper. They are:

citation an indication within the text or other form
of content of a relevant reference;

reference data describing a resource or part thereof,
sufficiently precise and detailed to identify it and
to enable it to be located.

2.2 Consistency principle

The international standard ISO 690 does not pre-
scribe a particular style of reference or citation. The
examples used in the standard are not prescriptive
as to style and punctuation. These facts embrace
two findings:

1. the separation of form and content is preserved,

2. the standard cannot be considered as a citation
style (Hála, 2013).

At the same time, it is recommended that a uniform
style, format and punctuation scheme be used for
all references in a document, regardless of the par-
ticular style being used. It is up to the creator of
the references to meet this requirement, drawing on
examples shown in the standard itself, in various
national interpretations, or in typical typesetting of
bibliographies.

3 Typesetting of bibliographies in LATEX

The LATEX document preparation system provides
three possibilities for typesetting bibliographies (Tal-
bot, 2013). The first approach is to use LATEX itself
to generate the bibliographies, while the other two
adhere to the principle of separation of form and
content and benefit from creating an external data-
base of bibliographic data and using an application
to generate the output.

3.1 Standard LATEX

The thebibliography environment for references
and the \cite command family for citations are
available in LATEX. Each single reference is then
mentioned as \bibitem with its unique identifier in
the thebibliography environment.

\documentclass{...}

\begin{document}

... \cite{label01} ...

\begin{thebibliography}{〈widest label〉}
\bibitem{label01}

Author. \emph{Title: subtitle}. ...

...

\end{thebibliography}

\end{document}

This snippet of code shows the basic syntax of this
approach and reveals how impractical it is for a
large number of citations (Talbot, 2012). The main
drawbacks are:

Dávid Lupták

TUGboat, Volume 38 (2017), No. 2 239

1. all entries listed in the thebibliography envi-
ronment are typeset, regardless of whether they
are cited,

2. every bibliography entry has to be entered and
formatted manually for every desired bibliogra-
phy style,

3. bibliography references are not sorted, but out-
put in the order in which they are listed in the
thebibliography environment.

ISO 690 does not prescribe any guidelines for dealing
with the first disadvantage, but such results do not
follow the general recommendations for bibliogra-
phies (Talbot, 2013). Regarding the second limita-
tion, it is very difficult to ensure the consistency of
references; regarding the third drawback, it is impos-
sible to output references in the correct order for any
method of citation introduced in the standard.

What is missing from this approach is reusability
of the bibliographic entries and scalability of the
list. On the other hand, one of its great strengths
is relatively fast document compilation, as it only
needs to be compiled twice using the TEX engine.

3.2 BIBTEX

The preferred method of generating a bibliography
is to create an external bibliography database (see
section 3.4) and use an application to generate the
output (Talbot, 2013). Such applications can deal
with typesetting references in the correct order, solv-
ing the third issue. Also, based on the selected
bibliography style, solving the second issue, they
generate thebibliography environment which can
then be input into the document. One typical repre-
sentative of this method is BibTEX, which adheres
to the principle of separating the form and content.

The \bibliographystyle command is used to
define the desired bibliography formatting style; the
\bibliography command specifies an external bibli-
ography database to use and also the location where
the list of references is to be printed. The \cite fam-
ily commands are used to create citations within the
document text pointing to the desired references. It
is also possible to use the \nocite command to add
the bibliography entry to the list of references with-
out printing a citation within the text, addressing
the first problem.

\documentclass{...}

\bibliographystyle{〈formatting style〉}
\begin{document}

... \cite[〈additional info〉]{〈list of labels〉} ...

\bibliography{〈list of database files〉}
\end{document}

While this brief introduction to BibTEX seems promis-
ing, it conceals a raft of problems, not least of which

is that development of the BibTEX program is stag-
nant (Patashnik, 1994; Patashnik, 2003). The main
disadvantages and limitations are as follows:

1. input encoding problems (“BibTEX”, 2010)
(although an alternative solution is available),1

2. designing your own BibTEX styles is rather diffi-
cult (Patashnik, 1988) (although an alternative
solution for making BibTEX styles is available),2

3. a shortage of citation customizations (Shell et
al., 2007) (although more flexible solutions are
available),3

4. absence of contemporary fields widely used nowa-
days, e.g. the url field (although an alternative
solution is available),4

5. lack of translations and multilingual bibliogra-
phies (Harders, 2002) (although an alternative
solution is available).5

To typeset your document properly, it is necessary
to compile your document at least three times us-
ing the TEX engine and at least once more with
the BibTEX program. The overall procedure to be
applied (Markey, 2009) is as follows:

LATEX (BibTEX LATEX)+ LATEX

Generating a bibliography using BibTEX in compari-
son with the plain LATEX introduces more complexity,
but it does successfully mitigate most of the afore-
mentioned limitations.

3.3 BIBLATEX

Another option for generating a bibliography via an
external database and an application for compiling
it is the BibLATEX package of LATEX. This package
is a complete reimplementation of the bibliographic
facilities provided by LATEX, usually referred to as a
successor of an ancient BibTEX package (“BibTEX”,
2010; Hufflen, 2011). Formatting the bibliography is
entirely controlled by TEX macros, while processing
a bibliography database file (see also section 3.4) can
use the new biber backend program (Lehman et al.,
2016).

The usage of BibLATEX differs slightly from tra-
ditional BibTEX since it provides more advanced
bibliographic facilities for use with LATEX. From the
user’s perspective, a different syntax is noticeable.
Formatting styles are specified as a load-time pack-
age option in the optional argument to \usepackage.

1 https://www.ctan.org/pkg/bibtex8bit
2 https://www.ctan.org/pkg/custom-bib
3 https://www.ctan.org/pkg/natbib, https://www.ctan.

org/pkg/cite
4 https://www.ctan.org/pkg/natbib, https://www.ctan.

org/pkg/babelbib
5 https://www.ctan.org/pkg/babelbib

Typesetting bibliographies compliant with the ISO 690 standard in LATEX

https://www.ctan.org/pkg/bibtex8bit
https://www.ctan.org/pkg/custom-bib
https://www.ctan.org/pkg/natbib
https://www.ctan.org/pkg/cite
https://www.ctan.org/pkg/cite
https://www.ctan.org/pkg/natbib
https://www.ctan.org/pkg/babelbib
https://www.ctan.org/pkg/babelbib
https://www.ctan.org/pkg/babelbib

240 TUGboat, Volume 38 (2017), No. 2

Bibliography database files are specified in the docu-
ment preamble with the \addbibresource command
using the full name of the file (including .bib ex-
tension). The list of references is generated with
the \printbibliography command; it is output at
the position of this command in the document. To
create citations within a text of a document, the
\cite command and its variants are used. The basic
structure is as follows:

\documentclass{...}

\usepackage[...]{biblatex}

\addbibresource{database01.bib}

\addbibresource{database02.bib}

\begin{document}

\cite{...}

...

\printbibliography

\end{document}

BibLATEX successfully overcomes many of the limita-
tions found in BibTEX, the most important of which
are (“BibLATEX”, 2016):

1. full Unicode support,

2. highly customizable sorting and bibliography
labels,

3. polyglossia and babel support for automatic lan-
guage switching for bibliographic entries and
citations,

4. more entry types and fields,

5. ease of designing new bibliography and citation
styles.

This list could be extended to cover more of the
rich functionality provided by the BibLATEX pack-
age (Lehman et al., 2016). There are very few draw-
backs to this package, a notable exception being
the incompatibility of BibLATEX auxiliary files when
submitting to a journal (“Biblatex: submitting to a
journal”, 2011).

Document compiling is analogous to the BibTEX
approach. First, a document is compiled by TEX
engine, followed by running biber on a generated
auxiliary .bcf file, and then compiled by the TEX
engine once again. Thus, the BibLATEX schema for
compiling a document is as follows:

latex document[.tex]

biber document[.bcf]

latex document[.tex]

The file extensions are optional.

3.4 Bibliography database (.bib file)

For the sake of completeness, it is necessary to in-
troduce the bibliography database .bib file as well.
This file contains bibliography entries: each entry has
a specific type (the word after @), a unique label and

a number of tags (key–value pairs) defining resource
data. The general schema of an entry looks like the
following (“BibTeX Format Description”, 2006):

@〈entry type〉{〈label〉,
〈field〉 = {〈value〉},

...

〈field〉 = {〈value〉},

}

All of the entry types supported by BibTEX can
be used directly, or via an alias also supplied with
the BibLATEX package. BibLATEX introduces more
types in addition to the traditional ones, with the
possibility of defining completely new ones.

The same situation applies to entry fields. The
BibLATEX package provides backward compatibility
with all of the BibTEX fields and adds extra ones. In
addition to regular fields, there are so-called special
fields which can contain additional settings related to
an entry, e.g. to specify the language on a per-entry
basis for multilingual bibliographies.

3.5 Summary

The basic functionality of LATEX for generating a
bibliography can be appropriately used for a small
number of citations in a document. However, in
the case of a large number of citations, it is best
to use an external bibliographic application. This
approach adheres to the principle of separating the
form and content, which results in high scalability
and reusability of bibliography entries and makes
working with references more flexible and efficient.

Besides BibTEX — the traditional representative
of this method — many other applications based
on it are in existence. However, all of them in-
herit the limitations of BibTEX. This is mainly
the case with the formatting styles used, although
some applications work towards replacing the BST
(BibTEX STyle) language with more modern lan-
guages — mostly XML (Hufflen, 2011; Hufflen, 2008).

It emerges from the large variety of options for
typesetting a bibliography in LATEX (Talbot, 2013;
Mittelbach et al., 2004) that the best choice nowadays
is the BibLATEX package with its backend application
biber (Hufflen, 2011; Kime et al., 2016).

4 ISO 690 implementations

This section introduces existing software products,
tools and services which incorporate the ISO 690 stan-
dard. The first two mentioned here are designed to be
used with the LATEX document preparation system;
the CSL language is covered thanks to its newfound
popularity and the OPmac-bib package because it is
a rare example among all available packages which
delivers full support for this particular standard. A

Dávid Lupták

TUGboat, Volume 38 (2017), No. 2 241

more comprehensive overview of the available solu-
tions can be found in the author’s bachelor’s thesis —
written in Slovak (Lupták, 2016).

4.1 czechiso

For the Czech versions of the standard — ČSN ISO
690:1996 (ČSN ISO 690 , 1996) and ČSN ISO 690-
2:2000 (ČSN ISO 690-2 , 2000) — there is an unof-
ficial formatting style, czechiso, created by David
Martinek in 2006 (Martinek, 2006). This imple-
mentation does not meet the requirements of the
standard precisely, as it lacks some of the required
fields for bibliographic entries. Many of the functions
responsible for printing out a reference correctly are
in need of rewriting to fully conform to the standard.

4.2 biblatex-iso690

The first version of the bibliography and citation style
for BibLATEX conforming to the standard ISO 690
dates back to 2011. This implementation was based
on the previous versions of the standards (ČSN ISO

690 , 1996; ČSN ISO 690-2 , 2000) and on its Czech
interpretation (Bratková, 2008). The package was
created by Michal Hoftich (Hoftich, 2011). As with
czechiso, this solution did not precisely adhere to the
standards. Many issues related to the functionality
of the package as well as the usage of this style were
reported on the homepage of the project. Thanks to
completely revamping the style in 2016, the package
fully meets the requirements of the standard at its
current stage of development (see also subsection 5).

4.3 The CSL language

The Citation Style Language (CSL) is an open XML
based language for working with bibliographies. It
became popular with the release of the Zotero refer-
ence manager in 2006 (Fenner, 2010).

The main advantage of this language is its XML
syntax, closely followed by its popularity, open source
initiative and the versatility of CSL (Ansorge et al.,
2013). Another undisputed benefit is its almost uni-
versal application, as testified to by the extensive
list of products using CSL styles that appears on the
official web page of the CSL project (Zelle, 2016a).
The best known are Zotero, Papers and Mendeley.

The CSL style repository has over 8 000 styles,
including 15 styles for the ISO 690 standard. These
styles differ in their localization and methods of
citation, hence the vast number of styles for just one
standard. All of them contain minor deviations from
the standard ISO 690. CSL is not, however, without
its limitations (Zelle, 2016b):

• limited support for customizing the label format,

• limited support for legal styles (Multilingual
Zotero can be used as an alternative),

• limited support for citing items in multiple lan-
guages within a single document (Multilingual
Zotero can be used as an alternative),

• limited support for entering date ranges into the
date field (no entry is generated).

It should be added that BibLATEX does not suffer
from these limitations (Lehman et al., 2016).

4.4 OPmac-bib

The OPmac package defines additional macros on top
of plain TEX, providing functionality similar to core
LATEX. The additional package, OPmac-bib, comes
with it and is available for bibliography functionality.
No external program for generating a bibliography is
needed, as everything is handled by TEX macros and
the librarian.tex package created by Paul Isambert.
The OPmac package was created by Petr Olšák and
has been shipping with the csplain package since 2015.
More details about the OPmac package can be found
in another article (Olšák, 2016).

OPmac-bib can process all of the traditional
types and fields of BibTEX and furthermore, it intro-
duces new fields which are commonly needed when
working with bibliographies nowadays. These fields
are, for example, url, doi or lang, which eliminate
the need of using a note field for providing such data.
Hence it is possible to output this data in the correct
order in accordance with the standard.

While BibTEX lacks many needed types and
fields, OPmac-bib has improved the situation consid-
erably. But still, the standard is so complex that
even OPmac-bib does not handle all of the require-
ments that the standard introduces. OPmac-bib can,
however, deal with this very reasonably. The pack-
age provides some versatile fields which can be used
for entering bibliographic data along with the for-
matting macros to customize the field. Hence one
can achieve the desired output: option and ednote

are examples of such fields.
The option field can be used for entering other

titles, translations of titles, etc. This field allows the
correct output conforming to the latest version of
the standard to be achieved.

The ednote field can be used for entering sec-
ondary authors or other additional information. The
formatting of this field is not further processed, so
the entered value is output as is. Hence one has to be
careful to conform to the standard when entering the
data. Typical examples of such data are translators
or originators of multiple editions.

Typesetting bibliographies compliant with the ISO 690 standard in LATEX

242 TUGboat, Volume 38 (2017), No. 2

The availability of these additional fields and full
customization allows for generating a bibliography
that conforms to the standard ISO 690.

5 The biblatex-iso690 package

Of all the implementations incorporating ISO 690
mentioned in the previous section, only one is rele-
vant to typesetting a bibliography in LATEX, namely
the biblatex-iso690 package. The original implemen-
tation deviated from the standard, but since its re-
view, the biblatex-iso690 package is fully compliant
with the latest version of the international standard
ISO 690.

The original biblatex-iso690 package contained
the following defects and drawbacks:

• followed outdated editions of the standard,
• incorrect order of elements,
• redundant or missing punctuation,
• missing some types of resources,
• missing some required elements,
• missing creator secondary responsibility,
• obsolete and deprecated code.

An analysis of the original state of biblatex-iso690

resulted in its complete reimplementation. Printing
the bibliography elements in the correct order in a ref-
erence was crucial, but not the only change. Almost
all macros, commands and definitions for parsing
fields from the .bib database file were refactored.
Many requirements of the standard could be met
simply by using the author interface of the BibLATEX
package. For other requirements, it was necessary
to refine some of the low-level macros, and still oth-
ers were left to the programmer of the bibliography
database as they could not be solved algorithmically.
The known limitations are:

• lack of support for the running notes citation
method,

• url addresses wrapping,
• algorithmic solution for (not) printing a first

edition of a resource,
• algorithmic solution for (not) printing only

the first publisher,
• algorithmic solution for (not) printing only

the first location (e.g., of publication),
• the term Anon for anonymous works,
• localization string nodate for no date.

5.1 Methods of citation

The ISO 690 standard prescribes three citation meth-
ods of information resources. The first is the afore-
mentioned running notes method, then there is the so-
called Harvard system (also known as author-date),
and lastly the numeric system. In the biblatex-iso690

package they are available as iso-authoryear and
iso-numeric. The formatting style is specified as a
package option when loading BibLATEX, e.g.

\usepackage[style=iso-numeric]{biblatex}

5.2 Package options — customization

ISO 690 does not prescribe any particular style, for-
mat or punctuation scheme for the references to
be used. Frequently requested customizations (to
style, format or punctuation scheme) are available
as biblatex-iso690 package options. These are:

• spacecolon=[true|false] changes the print-
ing of colons in subtitles and publication infor-
mation:

– Place : Publisher

– Place: Publisher

• pagetotal=[true|false] prints a total num-
ber of pages of a resource as optional information
in square brackets:

– Place : Publisher, 2008 [60 p.]

– Place : Publisher, 2008

• shortnumeration=[true|false] distinguishes
volumes and pagination typographically:

– . . . 2011, 32(3), 289–301

– . . . 2011, vol. 32, no. 3, pp. 289–301

• thesisinfoinnotes=[true|false] to specify
the position of thesis information:

– . . . Available from: 〈url〉. BT. MU, FI, Brno.
Supervisor Petr SOJKA

– . . . BT. MU, FI, Brno. Supervisor Petr
SOJKA. Available from: 〈url〉

5.3 Integration into the fithesis3 class

fithesis3 is the official document class for the typeset-
ting of theses at Masaryk University (Brno, Czech
Republic) in LATEX (Novotný et al., 2015). This class
has been designed for easy style extensibility and
for local files from other academic institutions. It
was also an obvious request to integrate the biblatex-

iso690 package into the fithesis3 template. This in-
tegration has been done in cooperation with the
maintainer of the fithesis3 package — Vít Novotný —
and consists of the following steps:

• the bib key added to the package metadata
section, which can be used to specify a list of
.bib database files,

• the citation method is loaded automatically
based on the selected faculty,

• the list of references is printed automatically at
the end of a document,

Dávid Lupták

TUGboat, Volume 38 (2017), No. 2 243

• all bibliography management can also be set up
manually (see section 3.3).

\documentclass{fithesis3}

\thesissetup{

...

bib = {database.bib}

...

}

\begin{document}

... \cite{...} ...

\end{document}

5.4 Availability

As already mentioned, until now there was no official
support for the ISO 690 standard in LATEX. However,
biblatex-iso690 package has acquired official status
after the revision and is now available from CTAN as
the package biblatex-iso690. Under the same name it
is also available in the TEX Live distribution since
TEX Live 2016.

6 Summary

This paper describes typesetting a bibliography in
LATEX, compliant with the international standard
ISO 690. The standard was introduced at the begin-
ning, followed by considerations of three methods of
typesetting a bibliography in LATEX. There are many
implementations incorporating the standard ISO 690
but the biblatex-iso690 package holds the most inter-
est: after its initial implementation in 2011, it was
revised in 2016 to fully meet the requirements of the
most recent version of the standard. References in
this article are generated using the reimplemented
package biblatex-iso690, to serve as a demonstration.

Acknowledgements

I gratefully acknowledge the funding received from
the Faculty of Informatics at the Masaryk University
in Brno for the development of the package.

I would also like to acknowledge Michal Hoftich,
Vít Novotný and Moritz Wemheuer for their contin-
uous support while developing the package and Petr
Sojka for supervising the whole project. And special
thanks to James Thomas, Barbara Beeton and Karl
Berry for their careful proofreading of this paper.

References

BIBTEX: Process bibliographies for LATEX, etc. 2010.
CTAN: The Comprehensive TEX Archive Network
[online] [visited on 2016-05-14]. Available from:
https://www.ctan.org/pkg/bibtex.

BIBLATEX: Sophisticated Bibliographies in LATEX, 2016.
CTAN: The Comprehensive TEX Archive Network
[online] [visited on 2016-05-14]. Available from:
https://www.ctan.org/pkg/biblatex.

ANSORGE, Libor; KRATOCHVÍL, Jiří, 2013. Popis
šablony ČSN ISO 690:2011 v jazyce CSL pro citační
manažer Zotero. ProInflow. Vol. 5, no. 2. ISSN
1804-2406. Available also from:
http://pro.inflow.cz/sites/default/files/

pdfclanky/Kratochvil_Ansorge_Sablona_0.pdf.

Biblatex: submitting to a journal, 2011. TEX – LATEX Stack
Exchange [online] [visited on 2016-05-14]. Available
from: http://tex.stackexchange.com/questions/

12175/biblatex-submitting-to-a-journal.

BibTeX Format Description, 2006. BibTeX.org
[online] [visited on 2017-05-08]. Available from:
http://www.bibtex.org/Format.

BRATKOVÁ, Eva (comp.), 2008. Metody citování
literatury a strukturování bibliografických záznamů
podle mezinárodních norem ISO 690 a ISO 690-2:
metodický materiál pro autory vysokoškolských
kvalifikačních prací [online]. Verze 2.0, aktualiz.
a rozšíř. Praha: Odborná komise pro otázky
elektronického zpřístupňování vysokoškolských
kvalifikačních prací, Asociace knihoven vysokých
škol ČR [visited on 2016-02-02]. Available from:
http://www.evskp.cz/SD/4c.pdf.

ČSN ISO 690: Dokumentace – Bibliografické citace – Obsah,
forma a struktura, 1996. Praha: Český normalizační
institut. Třídící znak 01 0197.

ČSN ISO 690: Informace a dokumentace – Pravidla pro
bibliografické odkazy a citace informačních zdrojů,
2011. Praha: Úřad pro technickou normalizaci,
metrologii a státní zkušebnictví. Třídící znak 01 0197.

ČSN ISO 690-2: Informace a dokumentace – Bibliografické
citace – Část 2: Elektronické dokumenty nebo jejich
části, 2000. Praha: Český normalizační institut. Třídící
znak 01 0197.

DIN ISO 690: Information und Dokumentation –
Richtlinien für Titelangaben und Zitierung von
Informationsressourcen, 2013. Berlin: DIN Deutsches
Institut für Normung e. V.

FENNER, Martin, 2010. Citation Style Language:
An Interview with Rintze Zelle and Ian Mulvany.
Gobbledygook [online] [visited on 2016-04-16]. Available
from: http://blogs.plos.org/mfenner/2010/09/

24/citation-style-language-an-interview-with-

rintze-zelle-and-ian-mulvany/.

HÁLA, Tomáš, 2013. Komentář k nové revizi normy ČSN
ISO 690 – Pravidla pro bibliografické odkazy a citace
informačních zdrojů. Zpravodaj Československého
sdružení uživatelů TEXu. Vol. 23, no. 2, pp.
107–112. ISSN 1211-6661. Available from DOI:
10.5300/2013-2/107.

HARDERS, Harald, 2002. Multilingual bibliographies:
Using and extending the babelbib package. TUGboat.
Vol. 23, no. 3/4, pp. 344–353. Available also from:
https://www.tug.org/TUGboat/tb23-3-4/

tb75harders.pdf.

HOFTICH, Michal, 2011. The biblatex-iso690 package: ISO
690 style for BIBLATEX [GIT] [visited on 2016-12-29].
Available from:
https://github.com/michal-h21/biblatex-iso690.

HUFFLEN, Jean-Michel, 2008. Languages for bibliography
styles. TUGboat: Proceedings of the 2008 Annual
Meeting. Vol. 29, no. 3, pp. 401–412. Available also
from: https://www.tug.org/TUGboat/

tb29-3/tb93hufflen.pdf.

Typesetting bibliographies compliant with the ISO 690 standard in LATEX

https://www.ctan.org/pkg/bibtex
https://www.ctan.org/pkg/biblatex
!http://pro.inflow.cz/sites/default/files/!pdfclanky/Kratochvil_Ansorge_Sablona_0.pdf
!http://pro.inflow.cz/sites/default/files/!pdfclanky/Kratochvil_Ansorge_Sablona_0.pdf
!http://pro.inflow.cz/sites/default/files/!pdfclanky/Kratochvil_Ansorge_Sablona_0.pdf
http://tex.stackexchange.com/questions/12175/biblatex-submitting-to-a-journal
http://tex.stackexchange.com/questions/12175/biblatex-submitting-to-a-journal
http://www.bibtex.org/Format
http://www.evskp.cz/SD/4c.pdf
http://blogs.plos.org/mfenner/2010/09/24/citation-style-language-an-interview-with-rintze-zelle-and-ian-mulvany/
http://blogs.plos.org/mfenner/2010/09/24/citation-style-language-an-interview-with-rintze-zelle-and-ian-mulvany/
http://blogs.plos.org/mfenner/2010/09/24/citation-style-language-an-interview-with-rintze-zelle-and-ian-mulvany/
http://dx.doi.org/10.5300/2013-2/107
https://www.tug.org/TUGboat/tb23-3-4/!tb75harders.pdf
https://www.tug.org/TUGboat/tb23-3-4/!tb75harders.pdf
!https://github.com/michal-h21/biblatex-iso690
!https://github.com/michal-h21/biblatex-iso690
https://www.tug.org/TUGboat/!tb29-3/tb93hufflen.pdf
https://www.tug.org/TUGboat/!tb29-3/tb93hufflen.pdf

244 TUGboat, Volume 38 (2017), No. 2

HUFFLEN, Jean-Michel, 2011. A comparative study of
methods for bibliographies. TUGboat: TUG 2011
Proceedings. Vol. 32, no. 3, pp. 289–301. Available also
from: https://www.tug.org/TUGboat/

tb32-3/tb102hufflen.pdf.

INTERNATIONAL ORGANIZATION FOR
STANDARDIZATION, 2015. ISO Membership
Manual [online]. Geneva [visited on 2016-05-20]. ISBN
978-92-67-10611-3. Available from: http://

www.iso.org/iso/iso_membership_manual.pdf.

ISO 690: Information and documentation – Bibliographic
references – Content, form and structure, 1987. Second
edition. Geneva: The International Organization for
Standardization.

ISO 690: Information and documentation – Guidelines for
bibliographic references and citations to information
resources, 2010. Third edition. Geneva: The
International Organization for Standardization.

ISO 690-2: Information and documentation – Bibliographic
references – Part 2: Electronic documents or parts
thereof, 1997. First edition. Geneva: The International
Organization for Standardization.

KIME, Philip; CHARETT, François, 2016. Biber:
A backend bibliography processor for biblatex [online].
Version 2.7 [visited on 2016-12-31]. Available from:
https://www.ctan.org/pkg/biber.

KRATOCHVÍL, Jiří; SEJK, Petr; ELIÁŠOVÁ, Věra;
STEHLÍK, Marek, 2011. Metodika tvorby
bibliografických citací [online]. 2. revidované vydání.
Návrh obálky MAZOCH, Břetislav. Brno: Masarykova
univerzita [visited on 2016-03-16]. ISSN 1802-128X.
Available from:
http://is.muni.cz/do/rect/el/estud/prif/ps11/

metodika/web/ebook_citace_2011.html.

LEHMAN, Philipp; WRIGHT, Joseph; BORUVKA,
Audrey; KIME, Philip, 2016. The biblatex package:
Programmable Bibliographies and Citations [online].
Version 3.7 [visited on 2016-12-31]. Available from:
https://www.ctan.org/pkg/biblatex.

LUPTÁK, Dávid. Typesetting of Bibliography According
to ISO 690 Norm [online] [visited on 2016-06-14].
Available from: https://is.muni.cz/th/422640/

?lang=en. BT. Masaryk University, Faculty of
Informatics, Brno, Czech Republic. Supervised by
Petr SOJKA.

MARKEY, Nicolas, 2009. Tame the BeaST: The B to X of
BIBTEX [online]. Version 1.4 [visited on 2016-05-14].
Available from:
https://www.ctan.org/pkg/tamethebeast.

MARTINEK, David, 2006. The czechiso package: Czech
style for BIBTEX [online] [visited on 2016-12-29].
Available from: http://www.fit.vutbr.cz/~martinek/

latex/czechiso.html.

MITTELBACH, Frank; GOOSSENS, Michel; BRAAMS,
Johannes; CARLISLE, David; ROWLEY, Chris,
2004. The LATEX Companion. Second Edition. Boston:
Addison-Wesley. Tools and Techniques for Computer
Typesetting. ISBN 0-201-36299-6. Fourth printing
(with corrections), Sept. 2005.

MORI, Lapo F., 2009. Managing bibliographies with LATEX.
TUGboat. Vol. 30, no. 1, pp. 36–48. Available also
from: https://www.tug.org/TUGboat/tb30-1/

tb94mori.pdf.

NOVOTNÝ, Vít; MAREK, Daniel; PAVLOVIČ, Jan;
SOJKA, Petr, 2015. The fithesis3 class for the
typesetting of theses written at the Masaryk University
in Brno [GIT] [visited on 2016-05-16]. Available from:
http://github.com/witiko/fithesis3.git.

OLŠÁK, Petr, 2016. OPmac-bib: Citations using *.bib files
with no external program. TUGboat. Vol. 37, no. 1, pp.
71–78. Available also from: https://

www.tug.org/TUGboat/tb37-1/tb115olsak-bib.pdf.

PATASHNIK, Oren, 1988. Designing BIBTEX Styles [online]
[visited on 2016-05-14]. Available from: http://

mirrors.ctan.org/biblio/bibtex/base/btxhak.pdf.

PATASHNIK, Oren, 1994. BibTEX 1.0. TUGboat:
Proceedings of the 1994 Annual Meeting. Vol. 15, no. 3,
pp. 269–273. Available also from: https://

www.tug.org/TUGboat/tb15-3/tb44patashnik.pdf.

PATASHNIK, Oren, 2003. BibTEX Yesterday, Today, and
Tomorrow. TUGboat: Proceedings of the 2003 Annual
Meeting. Vol. 24, no. 1, pp. 25–30. Available also from:
https://www.tug.org/TUGboat/tb24-1/

patashnik.pdf.

SHELL, Michael; HOADLEY, David, 2007. BIBTEX Tips
and FAQ [online]. Version 1.1 [visited on 2016-05-14].
Available from: http://mirrors.ctan.org/biblio/

bibtex/contrib/doc/btxFAQ.pdf.

STN ISO 690: Informácie a dokumentácia. Návod na
tvorbu bibliografických odkazov na informačné
pramene a ich citovanie, 2012. Bratislava: Úrad pre
normalizáciu, metrológiu a skúšobníctvo Slovenskej
republiky. Triediaci znak 01 0197.

TALBOT, Nicola L. C., 2012. LATEX for Complete Novices.
Norfolk, UK: Dickimaw Books. Dickimaw LATEX
Series. ISBN 978-1-909440-00-5. Available also from:
http://www.dickimaw-books.com/latex/novices.

TALBOT, Nicola L. C., 2013. Using LATEX to Write a PhD
Thesis. Norfolk, UK: Dickimaw Books. Dickimaw
LATEX Series. ISBN 978-1-909440-02-9. Available also
from: http://www.dickimaw-books.com/latex/thesis.

ZELLE, Rintze, 2016a. CitationStyles.org | The Citation
Style Language: open and free citation styles
[online] [visited on 2016-05-17]. Available from:
http://citationstyles.org/.

ZELLE, Rintze, 2016b. Styles. CitationStyles.org
[online] [visited on 2016-05-17]. Available from:
http://citationstyles.org/styles/.

⋄ Dávid Lupták
Faculty of Informatics
Masaryk University
Brno, Czech Republic
422640 (at) mail dot muni dot cz

https://github.com/DavidLuptak

Dávid Lupták

https://www.tug.org/TUGboat/!tb32-3/tb102hufflen.pdf
https://www.tug.org/TUGboat/!tb32-3/tb102hufflen.pdf
http://!www.iso.org/iso/iso_membership_manual.pdf
http://!www.iso.org/iso/iso_membership_manual.pdf
https://www.ctan.org/pkg/biber
!http://is.muni.cz/do/rect/el/estud/prif/ps11/metodika/web/ebook_citace_2011.html
!http://is.muni.cz/do/rect/el/estud/prif/ps11/metodika/web/ebook_citace_2011.html
!http://is.muni.cz/do/rect/el/estud/prif/ps11/metodika/web/ebook_citace_2011.html
https://www.ctan.org/pkg/biblatex
https://is.muni.cz/th/422640/!?lang=en
https://is.muni.cz/th/422640/!?lang=en
!https://www.ctan.org/pkg/tamethebeast
!https://www.ctan.org/pkg/tamethebeast
http://www.fit.vutbr.cz/~martinek/latex/czechiso.html
http://www.fit.vutbr.cz/~martinek/latex/czechiso.html
https://www.tug.org/TUGboat/tb30-1/!tb94mori.pdf
https://www.tug.org/TUGboat/tb30-1/!tb94mori.pdf
http://github.com/witiko/fithesis3.git
https://!www.tug.org/TUGboat/tb37-1/tb115olsak-bib.pdf
https://!www.tug.org/TUGboat/tb37-1/tb115olsak-bib.pdf
http://!mirrors.ctan.org/biblio/bibtex/base/btxhak.pdf
http://!mirrors.ctan.org/biblio/bibtex/base/btxhak.pdf
https://!www.tug.org/TUGboat/tb15-3/tb44patashnik.pdf
https://!www.tug.org/TUGboat/tb15-3/tb44patashnik.pdf
https://www.tug.org/TUGboat/tb24-1/!patashnik.pdf
https://www.tug.org/TUGboat/tb24-1/!patashnik.pdf
http://mirrors.ctan.org/biblio/!bibtex/contrib/doc/btxFAQ.pdf
http://mirrors.ctan.org/biblio/!bibtex/contrib/doc/btxFAQ.pdf
http://www.dickimaw-books.com/latex/novices
http://www.dickimaw-books.com/latex/thesis
http://citationstyles.org/
http://citationstyles.org/styles/

TUGboat, Volume 38 (2017), No. 2 245

MlBibTEX now handles Unicode∗

Jean-Michel HUFFLEN

Abstract

A new version of MlBibTEX can deal with the full
range of Unicode and can process .bib files written
using most byte-based encodings. We describe the
new organisation of this version and show how to
use the executable files built by the installation pro-
cedure. We also summarize the syntactic extensions
implemented within .bib files, some originating from
new fields introduced by the biblatex package.

Keywords MlBibTEX, kernel and derived
programs, interface with Scheme, recognised
formats and encodings, output routines,
biblatex package, ConTEXt.

Streszczenie

Nowa wersja MlBibTEX-a radzi już sobie z unikodem
w pełnym zakresie i potrafi przetwarzać pliki .bib
zapisane z użyciem większości kodowań jednobajto-
wych. Zostanie opisana nowa organizacja tej wersji
oraz sposób używania plików wykonywalnych, jakie
buduje procedura instalacyjna. Zostaną zwięźle omó-
wione rozszerzenia syntaktyczne zaimplementowane
w plikach .bib, z których niektóre mają źródło w
nowych polach pakietu biblatex.

Słowa kluczowe MlBibTEX, jądro i programy
pochodne, interfejs do Scheme, rozpoznawane
formaty i kodowania, procedury wyjściowe,
biblatex paket, ConTEXt.

Introduction

Let us recall that the MlBibTEX1 program aims to
be a ‘better’ BibTEX, that is, a ‘better’ bibliography
processor for documents written using LATEX.

Since its beginning, this project has particularly
focused on multilingual features. Then it has also
provided better functions from a point of view related
to programming. For example, the sort function used
within BibTEX’s bibliography styles [13] can only be
customised by redefining one sort key, built by con-
catenating strings.2 On the contrary, sort functions
handled by MlBibTEX can be more easily adapted or
redefined. Although MlBibTEX includes a rich col-
lection of ‘predefined’ order relations, such a modus
operandi means that users interested in ad hoc sort
procedures are able to write functions in Scheme [14],

∗ Previously entitled: MlBIBTEX Now Deals with Unicode.
Polish title: MlBIBTEX od teraz rozumie Unicode.

1 MultiLingual BibTEX.
2 BibTEX can only perform lexicographic sorts; its sort

procedure cannot deal with numbers.

the implementation language of MlBibTEX. That
may be viewed as restrictive, but much synergy exists
among LATEX users, so we think that the advantages
of this approach outweigh the drawbacks: program-
mers can help non-programmers. On another point,
MlBibTEX went beyond exclusively generating LATEX
‘References’ sections: it can also generate bibliogra-
phies according to other output formats, some ex-
amples being ConTEXt [1], XML3-like formats, or
simple texts.

In [7], we recalled the successive steps of the
development of MlBibTEX and announced a new
version (1.4), more new features being described in
[8]. This new version’s main point is the ability to
deal with the full range of the Unicode encoding and
character standard [15]. So MlBibTEX is now able
to process bibliography database (.bib) files encoded
with conventions other than ASCII4 and Latin 1, an
extension suitable for western European languages.
This new version will be publicly available in Summer
2017. Hereafter, after a short review of MlBibTEX’s
organisation (§1), we progressively describe this new
version’s state about the formats recognised (§2), the
bibliography styles which may be used (§3), and the
output routines for each output format (§4).

1 MlBibTEX’s organisation

We detailed MlBibTEX’s organisation in [9, Fig. 5].
Let us recall that this program gets information from
an .aux file about citation keys and .bib files, and
also looks into the preamble of a .tex master file for
the languages used throughout a LATEX document if
the babel package is loaded. Parsing .bib files results
in an (S)XML5 tree. A bibliography style is applied
to this tree, and output routines allow the result of
such a style to conform to an output format’s needs.
For example, different output routines are called in
order to build bibliographies for documents using
LATEX and ConTEXt, as explained in [9].

In [4] we explained that MlBibTEX is composed
of a kernel, upon which executable programs are
built.6 The programs listed here have been updated:

mlbibtex aims to replace BibTEX;

mlbiblatex builds bibliographies (.bbl source files)
suitable for the biblatex package [12]; it can be an

3 eXtensible Markup Language.
4 American Standard Character Information Interchange.
5 Scheme implementation of XML [11].
6 We can statically determine all the modules composing

such an executable program. Besides, each program has its
own arguments, some being irrelevant for other programs.
That is why we think that building separate programs is
better. But if end-users prefer to have only one program with
more options, we can do that with a wrapper program written
using a script language.

MlBibTEX now handles Unicode

246 TUGboat, Volume 38 (2017), No. 2

%encoding = latin1

@BOOK{henze1973,

AUTHOR = {first => Hans Werner,

last => Henze},

TITLE = {Zweites Violinkonzert für

Sologeiger, Tonband,

Baß-bariton und 33

Instrumentalisten},

PUBLISHER = {B. Scott Söhne},

ADDRESS = {Mainz},

YEAR = 1973,

LANGUAGE = german}

Figure 1: Example using the Latin 1 encoding.

alternative to the Biber bibliography processor
[10];

mlbibcontext generates bibliographies suitable for
ConTEXt;

mlbib2xml converts .bib files according to the XML

format internally used by MlBibTEX.

The hal program, used to populate the HAL7 open-
archive site [3] has not yet been updated.8

2 Formats recognised

The new %encoding directive at the beginning of a
.bib file, allows the encoding of the file to be specified.
Some extensions of ASCII — e.g., Latin 1, Latin 2 —
are now recognised. More precisely, most byte-based
encodings are handled, in particular UTF9-8. The
UTF-16 encoding, based on 16-bit units, will be
added to the allowed encodings later. We recommend
end-users specify information about encoding explic-
itly, even though MlBibTEX tries to guess a .bib file’s
encoding, because it may be difficult to guess cor-
rectly. Let us consider the file command, generally
used to determine such encodings on operating sys-
tems such as Linux and Mac OS X. Applying this com-
mand to the files of Figs. 1 and 2 reports that the used
encodings belong to ISO-8859, a series of 8-bit char-
acter encodings — including Latin 1 (ISO-8859-1) for
western European languages and Latin 2 (ISO-8859-2)
for eastern European Latin-alphabet languages — but
gives no more precise information.10

Let us be clear that a text may use citation keys
belonging to several .bib files with different encodings,

7
Hyper-Article en Ligne, that is, ‘hyper-article on-line’.

8 Since the format used for metadata by this site has
changed, a new version of this program requires major
rewriting; this will be done for a future release.

9 Unicode Transformation Format.
10 It is unlikely that one end-user uses .bib files with these

two encodings, so changing the default input encoding—as
shown below—may fix this problem. But relying on this
technique is error-prone.

%encoding = latin2

@BOOK{morys-twarowski2016,

AUTHOR = {first => Michael,

last => Morys-Twarowski},

TITLE = {Polskie Imperium. {Wszystkie

kraje podbite przez

rzeczpospolitą}},

PUBLISHER = {Ciekawostki Historyczne.pl},

ADDRESS = {Kraków},

DATE = {2016-02-17},

LANGUAGE = polish}

Figure 2: Example using the Latin 2 encoding.

%encoding = utf8

@BOOK{lem1964,

AUTHOR = {Stanisław Lem},

TITLE = {Bajki robotów},

PUBLISHER = {Wydawnictwa Literackiego},

YEAR = 1964,

LANGUAGE = polish}

Figure 3: Example using the UTF-8 encoding.

for example, the three files given in Figs. 1–3 (notice
the German letter ‘ß’ directly included in Fig. 1
and the Polish diacritical signs in Figs. 2 and 3).
All the syntactic extensions for .bib files are still
usable, including the new syntax for people’s names
by means of keywords (cf. Figs. 1 and 2). Most of the
fields added by the biblatex package are recognised,11

too; an example is the DATE field, used within Fig. 2
instead of the fields YEAR, MONTH and DAY.12

By default, MlBibTEX looks for .bib files for
bibliographical entries, the default encoding of such
files being Latin 1. It can also parse XML files for
bibliographical entries, according to the mlbiblio

format used by MlBibTEX.13 The bibliographical
entries cited throughout a document can be saved as
an XML file, too. Hereafter we give two simple exam-
ples of using the interface with Scheme. It consists of
Scheme definitions put in initialisation files located
in your home directory. On Unix-based systems,
the executable programs derived from MlBibTEX’s
kernel look for the following initialisation files:

mlbibtex ⇐= ~/.mlbibtex
mlbiblatex ⇐= ~/.mlbiblatex

mlbibcontext ⇐= ~/.mlbibcontext

11 By ‘recognised’, we mean that a type is associated with
such a field, and type-checking is performed as soon as corre-
sponding values are parsed.

12 This last field is recognised by MlBibTEX, but is not
used by ‘old’ BibTEX’s standard bibliography styles.

13 Conventions given in [2] by means of a DTD (Document
Type Definition) are now refined using XML Schema [17].

Jean-Michel HUFFLEN

TUGboat, Volume 38 (2017), No. 2 247

\documentclass{article}

\usepackage[T1]{fontenc}

%% \usepackage[utf8]{inputenc}

\begin{document}

Did you hear \cite{henze1973}? And did you read

\cite{lem1964,morys-twarowski2016}?

\bibliography{figure-1,figure-2,figure-3}

\bibliographystyle{plain}

\end{document}

Figure 4: LATEX document using Figs. 1–3’s entries.

In particular, you can:

• allow MlBibTEX to look for an 〈f 〉-mlbiblio.xml
file when an 〈f 〉.bib file is not found:

((bib-files-functions-pv ’set)

(list s-parse-bib-file

sxmlh-parse-mlbiblio-xml-file))

• change the default encoding of .bib files:

((encodings-pv

’set-default-4-bib-files)

’utf8)

You can use prefixes for different namespaces
as described in [5], and put inexact information ac-
cording to [6]’s syntax, but only with the two pro-
grams mlbibtex and mlbibtex2xml. The programs
mlbiblatex and mlbibcontext have not incorpo-
rated these features yet.

3 Bibliography styles

BibTEX’s standard bibliography styles written us-
ing [13]’s language can be used by the executable
program mlbibtex, even if some fields introduced
by the biblatex package are used instead of stan-
dard fields — e.g., the DATE field, instead of the stan-
dard fields YEAR and MONTH. Styles written using the
nbst14 language can be used, too. The two executable
programs mlbiblatex and mlbibcontext use direct
styles —using MlBibTEX’s terminology, such styles
are wholly written in Scheme [4]; these styles have
been updated.

4 Output routines

The encoding of an output file generated by our
programs is:

14 New Bibliography STyles. Let us recall that this
language is close to the first version of XSLT (eXtensible
Stylesheet Language Transformations) [16].

ASCII for a file suitable for LATEX, unless another
encoding is given within the master file’s pream-
ble by means of the inputenc or as an option of
the mlbiblatex program;

UTF-8 for a file suitable for ConTEXt (the option
allowing the choice of an encoding has been
removed) or an XML file built by the mlbib2xml
program, unless another encoding is given as an
option.

Now we give a simple example by considering
the LATEX document given in Fig. 4. Let us recall that
‘old’ BibTEX operates on .aux files and never reads
.tex files. On the contrary, MlBibTEX reads both an
.aux file and the preamble of the corresponding .tex
file. If Fig. 4 is processed as it is, the first reference
built by the executable program mlbibtex looks like:

\bibitem{henze1973}

Hans Werner Henze.

\newblock {\em Zweites Violinkonzert

f\"{u}r Sologeiger, Tonband,

Ba{\ss}-bariton... } ...

that is, all the accented letters are replaced by the
TEX commands used to produce them, since the en-
coding is supposed to be ASCII. If the line concerning
the inputenc package in Fig. 4 is uncommented, this
first reference becomes:

\bibitem{henze1973}

Hans Werner Henze.

\newblock {\em Zweites Violinkonzert für

Sologeiger, Tonband, Baß-bariton... } ...

that is, the .bbl file built by MlBibTEX is encoded
using UTF-8.

5 Conclusion

We need to revise the installation procedure, some
points now being unsatisfactory. The complete doc-
umentation also needs to be updated. But now
MlBibTEX is ready to deal with Unicode.

6 Acknowledgements

Many thanks to the Polish translators: Ryszard
Kubiak for the abstract and Jerzy B. Ludwichow-
ski for the keywords. Thanks to GUTenberg, the
French-speaking TEX users group, which offered me a
grant for participating in this TUG@BachoTEX 2017
conference. I am also grateful to this definitive ver-
sion’s proofreaders: Karl Berry and Barbara Beeton.

References

[1] ConTEXt Garden: Bibliographies in MkII.
April 2012. http://wiki.contextgarden.

net/Bibliography.

MlBibTEX now handles Unicode

248 TUGboat, Volume 38 (2017), No. 2

[2] Jean-Michel Hufflen: “Multilingual Features
for Bibliography Programs: From XML to
MlBibTEX”. In: EuroTEX 2002, pp. 46–59.
Bachotek, Poland. April 2002.

[3] Jean-Michel Hufflen: “From Bibliography
Files to Open Archives: The Sequel”.
In: Karl Berry, Jerzy B. Ludwichowski

and Tomasz Przechlewski, eds., Proc.
EuroBachoTEX 2011 Conference, pp. 61–66.
Bachotek, Poland. April 2011.

[4] Jean-Michel Hufflen: “MlBibTEX and Its
New Extensions”. In: Proc. 6th ConTEXt
Meeting & EuroTEX 2012, pp. 82–91.
Breskens, The Netherlands. October 2012.

[5] Jean-Michel Hufflen: “Managing Name
Conflicts and Aliasing with MlBibTEX”.
In: Tomasz Przechlewski, Karl Berry,
Bogusław Jackowski and Jerzy B.
Ludwichowski, eds., What Can Typography
Gain from Electronic Media? Proc.
BachoTEX 2014 conference, pp. 13–16.
Bachotek, Poland. April 2014.

[6] Jean-Michel Hufflen: “Dealing with Ancient
Works in Bibliographies”. ArsTEXnica,
Vol. 18, pp. 81–86. In Proc. GUIT meeting
2014. October 2014. http://www.guitex.

org/home/images/ArsTeXnica/AT018/

hufflen-verona.pdf.

[7] Jean-Michel Hufflen: “From MlBibTEX 1.3
to 1.4”. In: Tomasz Przechlewski,
Karl Berry, Bogusław Jackowski and
Jerzy B. Ludwichowski, eds., Various
Faces of Typography. Proc. BachoTEX 2015
conference, pp. 13–17. Bachotek, Poland.
April 2015.

[8] Jean-Michel Hufflen: “MlBibTEX 1.4: The
New Version”. ArsTEXnica, Vol. 20, pp. 35–39.
In Proc. GUIT meeting 2015. October 2015.

[9] Jean-Michel Hufflen: “MlBibTEX &
ConTEXt: Face-to-Face”. In: Proc. 9th ConTEXt
Meeting, pp. 27–48. Nasbinals, France.
Abridged version. September 2016.

[10] Philip Kime and François Charette: biber.
A Backend Bibliography Processor for biblatex.
Version biber 2.7 (biblatex 3.7). 5 December
2016. https://ctan.org/pkg/biber.

[11] Oleg E. Kiselyov: XML and Scheme.
September 2005. http://okmij.org/ftp/

Scheme/xml.html.

[12] Philipp Lehman, with Philip Kime, Audrey
Boruvka and Joseph Wright: The biblatex

Package. Programmable Bibliographies and
Citations. Version 3.7. 16 November 2016.
https://ctan.org/pkg/biblatex.

[13] Oren Patashnik: Designing BIBTEX
Styles. February 1988. Part of the BibTEX
distribution.

[14] Alex Shinn, John Cowan, and
Arthur A. Gleckler, with Steven
Ganz, Aaron W. Hsu, Bradley Lucier,
Emmanuel Medernach, Alexey
Radul, Jeffrey T. Read, David Rush,
Benjamin L. Russel, Olin Shivers, Alaric
Snell-Pym and Gerald Jay Sussman:
Revised7 Report on the Algorithmic
Language Scheme. 6 July 2013. http:

//trac.sacrideo.us/wg/raw-attachment/

wiki/WikiStart/r7rs.pdf.

[15] The Unicode Consortium: Unicode 9.0.0.
June 2016. http://www.unicode.org/

versions/Unicode9.0.0/.

[16] W3C: XSL Transformations (XSLT).
Version 1.0. W3C Recommendation. Edited by
James Clark. November 1999. http://www.w3.
org/TR/1999/REC-xslt-19991116.

[17] W3C: XML Schema. December 2008.
http://www.w3.org/XML/Schema.

⋄ Jean-Michel HUFFLEN
FEMTO-ST (UMR CNRS 6174)

& University of Bourgogne
Franche-Comté

16, route de Gray
25030 Besançon Cedex
France
jmhuffle (at) femto-st dot fr

http://members.femto-st.fr/

jean-michel-hufflen

Jean-Michel HUFFLEN

TUGboat, Volume 38 (2017), No. 2 249

TEX user habits versus publisher
requirements

Lolita Tolenė

Abstract

Typesetters always balance on the thin line between
unlimited author creativity and strict publisher re-
quirements to produce full-text XML. In this paper
we present both sides.

TEX is designed in a way that offers wide capa-
bilities to achieve the desired goal in many different
ways. Therefore a huge collection of TEX packages
has been created over the years. Even more local
macros are used every day. We present which TEX
packages are commonly used for the scientific con-
tent and what proportion of them comes from the
standard sources, such as CTAN and TEX Live. We
give some insights into authors’ habits using TEX for
writing scientific content. Also keeping XML in mind,
we discuss how and why these habits are important
for typesetters while preparing papers for publishing.

1 Introduction

Scientific content preparation for publication is a
substantive task, where a typesetter must balance
the researcher’s vision of how the content is best
presented for the scientific community with the pub-
lisher’s requirements for the journal style and XML1

content. The XML format has become a standard in
storage and making the electronic documents avail-
able. Therefore almost all publishing houses we have
encountered provide a DTD2 for XML production,
which defines structure directed not only to appear-
ance, but very often to the meaning of the content.

In our workflow, PDF and XML are produced
from LATEX documents. TEX, the formatting engine
of LATEX 2ε, is highly portable and free. Therefore
the system runs on almost any hardware platform
available [2]. So TEX has become the standard text
processing system in many academic high-level sci-
entific and research institutions.

In processing the incoming LATEX3 manuscripts,
typesetters strongly depend on the stability of TEX
distributions and source file contents. TEX is de-
signed in a way that offers wide capabilities to achieve
the desired goal in many different ways. Therefore
a huge collection of TEX packages has been created
over the years. Even more local macros are used
every day. This is all very attractive for the authors,

1 eXtensible Markup Language.
2 Document Type Definition.
3 We rarely encounter manuscripts written in plain TEX,

so we use LATEX concepts throughout this article.

but with the XML format in mind, it often becomes
a burden.

In the following we discuss difficulties related to
manuscripts becoming printed copy, while meeting
publisher requirements (Section 2). In Section 3 we
provide a statistical overview of about 90 000 STM

(scientific, technical and medical) LATEX papers pre-
pared for publishing in the last 7 years. In Section 4
some final remarks will be given.

2 From manuscript to printed copy

A manuscript prepared for publication eventually
becomes printed copy, meeting journal style require-
ments. It also contains enriched structure, which
is converted into XML, valid for a publisher-specific
DTD. Requirements directed to the meaning of con-
tent are the most difficult to fulfil and we always
search for some ways to ease this process. In the
following we discuss most common obstacles for pro-
ducing a valid XML structure from LATEX documents.

LATEX is used to display the content in the de-
sired way, very often forgetting about the meaning
and consistency. Broken math formulas (see the up-
per part of Fig. 1) or a single phrase split across
several cells in a table (see LATEX code and its output
in the lower part of Fig. 1) are good examples.

LATEX can be used to change the appearance
of some content or to create some symbols in many
different ways, but often such code has no equivalent
in the XML (see examples in Fig. 2). Such struc-
tures have to be replaced with a Unicode symbol or
converted to pictures.

Publisher requirements for XML usually state to
use MathML4 for mathematical content. A graphic
made from a formula is not very pleasant to the
reader’s eye; it does not scale so smoothly as a
MathML object and most importantly it contains no
constituent information, and is not editable.

Some content enrichment is done having in mind
world wide databases, identifying authors by ORCID

(Open Researcher and Contributor ID) or another
code and connecting them to their papers, counting
paper citations and determining journal impact fac-
tors, connecting research sponsors to grant numbers.
Therefore frontmatter and backmatter are crucial
parts of the paper. Depending on the publisher,
requirements for, e.g., the bibliography references
and their citation links are very strict and structure-
difficult. One of the ways to fulfil these requirements
is to create a hooked version of some standard TEX
distribution package (such as natbib or hyperref),
which generates necessary additional XML-oriented

4 Mathematical Markup Language.

TEX user habits versus publisher requirements

250 TUGboat, Volume 38 (2017), No. 2

Figure 1: LATEX code examples of a broken math formula and table headings with

phrases split into separate cells.

Figure 2: Examples of symbols created using LATEX: on the left-hand side is the

source code, on the right-hand side, its output.

content without changing the user output. Such
actions are extremely dependent on stability of pack-
ages and TEX distributions.

On our side, as typesetters, there are few LATEX
to XML converters being used (like TEX4ht or the
one described in [1]). Also there are some thoughts to
explore LuaTEX-based converter possibilities. Each
of them, theoretical or practical, have flaws different
than others and one thing they all have in common —
in order to produce an XML valid for a publisher-
provided DTD, the source content has to be prepared,
either changing the TEX source directly or using
available TEX distribution tools.

Author creativity can often make the manuscript
processing a very hard task. Looking at LATEX doc-
ument content, from a typesetter’s point of view

there are a few important highlights: document class
and style packages declaring the formatting of the
paper and locally defined macros. Manuscripts con-
structed with a heavy and deep understanding of
TEX structures require special accuracy — in order
to create an XML which meets publisher require-
ments some of these structures are dismantled and
replaced throughout a corpus (in other words, ex-
panded), and others are converted into pictures while
producing an XML. On the other hand, manuscripts
using only light macros, such as defining repeatedly
appearing phrases, measurement units etc., and pack-
ages found in one of the main TEX distributions (such
as TEX Live or MiKTEX) or CTAN,5 require very
little intervention, mainly oriented toward contex-

5 Comprehensive TEX Archive Network.

Lolita Tolenė

TUGboat, Volume 38 (2017), No. 2 251

tual enrichment for XML production (e.g., author
information, funding related information connection
to appropriate databases).

If the author uses a publisher-provided template,
few changes are noticeable, whereas author-created
formatting usually results in a completely different
layout from the prepared printed copy, which makes
it difficult to notice some unintended mismatch to
original output content. Also the author, having put
so much work into creating the desired layout, often
feels disappointed by the outcome.

Manuscripts written using mostly unstructured
plain text usually do not change much from the lay-
out point of view, but the corpus must be given
a contextual meaning. Also, strange combinations
of primitive TEX command sequences, where usu-
ally some widely-known standard coding should have
been applied, typically need to be replaced with the
standard coding, but a human has to decide whether
this is the case. Such manuscripts require reading
the author’s mind to some extent, e.g., where the the-
orem or its proof ends — especially difficult if these
structures are nested, i.e., a proof contains theorems
and proofs of its own, whether the two letters com-
bined into a single glyph should be replaced with
an appropriate LATEX command sequence, or if this
is some field-related denotation and should be left
untouched (for XML a picture should be generated
from this symbol), etc.

3 Manuscript content analysis

Data description This article provides a statisti-
cal overview of about 90 000 STM (scientific, technical
and medical) LATEX papers which have been prepared
for 252 journals of well-known publishing houses such
as Elsevier, Springer, Mattson Publishing Services,
BioMed Central, IOS Press, International Press, and
others. The data covers the years 2010 to 2016.
Manuscripts have not been sorted in any way, there-
fore they include random nationalities, institutions,
science fields, etc.

The provided results were gathered by analyz-
ing manuscript source files (TEX), which show what
researchers use for writing STM content. In order
to see what is used overall, .fls and .log files have
been analyzed. Only a small number of manuscripts
are sent with compilation output files attached. In
the current set .log files were found for 6% of manu-
scripts. Therefore compilation output files must have
been produced by recompiling gathered manuscripts.
For this purpose three distributions of TEX Live, re-
leased in 2010, 2014 and 2016, were at our disposal.
The following engines have been used for successful
compilation of about 90% of manuscripts: pdfTEX

Table 1: Formats used by researchers for manuscript

compilation.

Format Manuscript count

pdflatex 2962
latex 2489
platex 54
xelatex 52
tex 11
amstex 4
pdftex 4
platex-sjis 4
lualatex 3
eplatex 1
mpost 1
uplatex 1

(latex, pdftex, pdflatex), LuaLATEX (lualatex),
X ETEX (xelatex). In order to generate the .fls

files, the option –recorder was used.
Of course, we encounter only a portion of pa-

pers produced worldwide. Therefore, in most cases
concrete numbers have no meaning here, and only
percentages will be provided. All of the statistical
data presented here can be accessed at github.com/

vtex-soft/statistics.tex-manuscripts, and in-
terested readers are encouraged to explore further.

One of the main interests in analyzing this data
is to get a picture of which TEX family tools are most
popular from a researcher’s point of view and how it
changes (if it does) over the years.

TEX tools used As noted above, only 6% of man-
uscripts were provided with their compilation .log

files. Additionally, 20% of cases had PDF files match-
ing the .tex filename. Table 1 shows compilation
formats used by researchers, extracted from .log

file content and PDF metadata. While the most
commonly used engine is pdfTEX, 10 252 (48%) man-
uscripts were compiled to DVI first instead of directly
producing a PDF file.

Most researchers use the latest TEX distribution
version. But as one can see from Fig. 3, there are
a number of authors who compile their manuscripts
with TEX distributions up to ten years old.

Further analysis has been split into two main
parts, separating the document classes and packages
used.

Document classes Throughout the papers, 366
unique document classes were found. Only 15% are
in TEX Live distributions since 2010, 2 are in the
current CTAN file list (namely svjour and smfart)
and other classes are distributed by publishing houses
or created by authors (see Table 2).

TEX user habits versus publisher requirements

github.com/vtex-soft/statistics.tex-manuscripts
github.com/vtex-soft/statistics.tex-manuscripts

252 TUGboat, Volume 38 (2017), No. 2

D
iff

e
re

n
c

e
 (

y
e

a
r)

0

5

10

15

0

5

10

15

Count

0 500 1,000 1,500 2,000 2,500 3,000 3,500

0 500 1,000 1,500 2,000 2,500 3,000 3,500

Figure 3: Age frequency of TEX distribution

originally used by manuscript authors.

Table 2: Counts of unique document classes and

packages in the analyzed manuscripts.

Classes Packages
count count

Total 366 1847
Since 2015 143 1023
In TEX Live 2010–2016 55 996
In TEX Live 2016 48 970
In CTAN 2 66

Most commonly, manuscripts were provided us-
ing the article, elsarticle, amsart, svjour3 and
revtex4 classes (see Fig. 4). All of these, except for
the svjour3 class, are included in TL2016. The
svjour3 class is provided by Springer. Over the
years it has replaced svjour and svjour2 classes,
but only the first version, svjour, is currently found
on CTAN.

While the article class is used independent
of publishing houses, for other classes in Table 3
one can see a relationship with the publishing house
by which a manuscript has been accepted. This re-
lationship between class and publisher is natural,
because the latter usually promotes certain classes
for particular journals or groups of journals, and pro-
vides templates for authors to use. Such publisher-
oriented manuscripts are more easily transferred into
publication-ready papers and require less interven-
tion, and therefore there are fewer typesetting errors
and layout changes. Sadly, this is the case for only a
relatively small number of papers. The total number
of different classes used, shown in Table 3, shows
that a substantial number of manuscripts are writ-
ten using rare classes, or classes normally used for
another publisher’s journal.

Figure 4: Most common document classes used in the

manuscripts. Word size reflects frequency.

LATEX 2ε was introduced over 20 years ago, but
we still encounter substantial use of the outdated
LATEX 2.09 version. Over 1000 of the analyzed papers
were formatted using \documentstyle command
(the most often loaded class is article).

Packages Only 5% of manuscripts do not contain
packages loaded in addition to the document class.
Nearly 2000 unique packages were used throughout
the manuscripts (see Table 2). More than half of
them were found in TEX Live, 66 more are in the
current CTAN file list (e.g., psfig, axodraw, picins,
etc.; 10 of them are obsolete) and other files are
distributed by publishers or created by authors.

The most common packages are shown in Fig. 5
and Table 4. The top of the list is stable through-
out the entire time span analyzed: the most com-
monly used are the American Mathematical Society
(AMS) packages, then there are graphicx, color,
hyperref, inputenc, mathrsfs and epsfig. Some
packages have become more popular in the last two
years, notably hyperref and tikz. It is interesting
to note that, while according to CTAN the graphicx

package is preferred over epsfig, use of the latter is
decreasing only slowly.

The data shows that a few packages have been
used only with certain document class: fix-cm with
svjour3 class in 98% of cases, spr-astr-addons

with aastex class in 100% of cases. Packages like the
AMS bundle are more likely to be used with any class.
Fig. 6 shows how in the last two years used pack-
ages are related to the most common article class:
mostly it is used in combination with styles related
to layout formatting, such as fullpage, fancyhdr,
indentfirst, etc.

Among the less frequently used packages are
a few new styles:6 mathpartir (21 uses, on CTAN

6 Here a style is called new if it is included in TEX Live

2016, but not in TL2014.

Lolita Tolenė

TUGboat, Volume 38 (2017), No. 2 253

Table 3: The distribution of document classes according to the publishing house to

which a manuscript has been submitted, as percentages.

Class Last known BMC DUP Elsevier International IOS Mattson Springer
source Press Press

aastexa TL2014 6
aicom2e IOS Press 17
amsart TL2016 22 74 19 2 1 11 8
article TL2016 42 19 29 15 16 37 29
bmc_articlea BMC 10
bmcarta BMC 15
elsarticlea TL2016 3 36 1
imsarta IMS 1 46
ios-book-article IOS Press 4
iosart2c IOS Press 28
iparta Intl. Press 78
jaise2e IOS Press 9
svjour3 Springer 4 34

Total (%) 96 93 84 96 75 94 77
a Document class uses article as parent, therefore the article class is used in 59% of all cases.

Figure 5: The 70 most common packages, extracted

from manuscripts since 2015. Word size reflects

frequency.

Figure 6: article class in relation to the packages

shown in Fig. 5. Word size reflects frequency.

since 2016-02-26), pgfornament (3 uses, on CTAN

since 2016-03-09), prftree (1 use, on CTAN since
2014-12-02), and pstring (1 use, on CTAN since
2017-01-05). The todonotes package appeared on
CTAN in 2008-09-06 and its usage in the gathered
manuscripts has steadily increased over the years.
The package subcaption is on CTAN since 2002,
but only in 2013 does this package appear among
those used, with an increasing frequency since then.

A comparison of the packages loaded directly
by the user (extracted from .tex files) and those
loaded indirectly (extracted from .fls files) shows
that many packages are bundles of files, and where
the user loads only, e.g., the graphicx package, by
default the graphics and keyval files are also loaded.
It is interesting to note that in 40% of cases the
natbib and url packages are not loaded directly.

AMS packages also dominate when comparing
manuscripts with publisher-ready papers. Packages
like url, fontenc, bm in the latter set of papers
are used with 96%–99% frequency instead of 6%–7%.
The xcolor package is used 4% more frequently than
color, but this package overall is used at half the
rate than in original manuscripts. Packages rarely
used by authors such as etoolbox (94%), ifthen

(18%), dcolumn (16%), array (16%), afterpackage

(12%), atveryend (7%) are often used in publisher-
ready paper preparation.

Package options 85% of the manuscripts’ used
packages were loaded without additional options.
1453 of the unique packages were never given an

TEX user habits versus publisher requirements

254 TUGboat, Volume 38 (2017), No. 2

Table 4: Most common packages, split into the time

ranges 2010–2014 and 2015–2016.

Package Usage Package Usage
(2010–2014) (%) (2015–2016) (%)

amsmath 52 amsmath 59
amssymb 51 amssymb 56
graphicx 51 graphicx 46
amsfonts 22 amsfonts 28
color 19 color 28
amsthm 14 hyperref 23
epsfig 13 amsthm 21
hyperref 13 inputenc 14
latexsym 11 mathrsfs 12
inputenc 9 epsfig 11
mathrsfs 8 latexsym 11
babel 8 babel 10
natbib 8 geometry 10
url 7 fontenc 9
fontenc 7 xy 9
subfigure 7 enumerate 8
bm 6 url 8
graphics 6 tikz 8
multirow 5 multirow 8
xy 5 lineno 8
geometry 5 natbib 8
enumerate 5 bm 7

option, while 109 of them always had at least one op-
tion specified. Among the most frequently used pack-
ages, hyperref and inputenc were given options in
50% and 99% of cases, respectively. The most com-
mon options for hyperref were: colorlinks (23%),
citecolor (23%), urlcolor (19%), linkcolor (15%),
breaklinks (6%), bookmarks (6%). The most com-
mon options for inputenc were latin1 (40%) and
latin9 (10%). The graphicx package was rarely
given an option, but the most common was dvips.

Fonts While there were some manuscripts com-
piled with LuaTEX, no OpenType fonts were used.
The fontspec package was used only two times and
.fls files show that fonts were loaded using TFM

files, Type 1, and virtual fonts. The most common
font families are shown in Table 5: mostly the default
Computer Modern family is used, unless amsfonts

package is loaded, from which the symbols, cmextra,
euler fonts are used.

4 Reflections

In this article we have briefly presented some statis-
tical data gathered from about 90 000 STM manu-
scripts. The data shows that researchers most often
use stable well-known packages and document classes,

Table 5: Most common font families. Data extracted

from .fls files.

Font family Usage (%)

cm 95
amsfonts 92
rsfs 13
symbol 11
zapfding 10
times 10
ec 8
xypic 7
txfonts 6
stmaryrd 3
courier 3
wasy 2
helvetic 1
bbm 1
cm-super 1
doublestroke 1
esint 1
lm 1
bbold 1

while new packages are promoted very slowly. At
the same time, authors tend to create and use their
own little TEX tools.

Creating non-standard structures or formatting
of the look of the manuscript, without consideration
of the final structure-based product, creates many
obstacles for processing author manuscripts into to-
be-published papers. Such actions imply that the
knowledge of the good LATEX practices is not spread
widely enough, or authors are simply not familiar
with publishing-related processes. On the other hand,
this creativity shows that TEX and its features have
been found useful and popular among the worldwide
scientific community.

References

[1] V. Kriaučiukas, L. Razinkovas, and
L. Žamoitinaitė. Parsing LATEX for LATEX.
In BachoTEX 2015 proceedings, pages 31–36.
GUST, 2015.

[2] T. Oetiker, H. Partl, I. Hyna, and E. Schlegl.
The Not So Short Introduction to LATEX 2ε,
2015. https://ctan.org/pkg/lshort.

⋄ Lolita Tolenė

VTEX

Mokslininkų 2a

Vilnius LT-08412, Lithuania

lolita.tolene (at) vtex dot lt

Lolita Tolenė

https://ctan.org/pkg/lshort

TUGboat, Volume 38 (2017), No. 2 255

Ten years of work in Wiadomości

Matematyczne — an adventure with

LATEX and Emacs hacking

Marcin Borkowski

Abstract

Since 2007 I have been working for the “Wiadomości
Matematyczne” journal (http://wydawnictwa.ptm.

org.pl/index.php/wiadomosci-matematyczne),
where I am responsible for — among other things —
LATEX-based typesetting. This is enough time to
form some habits, and also to make some predictions.
I would like to share them with my TEX friends.

1 Introduction

This year marks the tenth anniversary of my work
in Wiadomości Matematyczne, a (sort of) newslet-
ter of the Polish Mathematical Society. (“Sort of”
meaning it appears twice a year, so the “news” in
“newsletter” is sometimes more like “olds”.) Together
with a friend, we were appointed “secretaries”, which
(at varying points in time) meant everything from
handling email, to designing the look-and-feel of the
printed issues, to hacking together LATEX classes to
accomplish that design, to proofreading and type-
setting papers, making corrections suggested by the
authors (or argue why they cannot be made), to
actually driving to the post office to send out freshly
printed issues to people.

Needless to say, using LATEX (but also other
tools, most notably Emacs) is a large part of this
undertaking. In the present paper, I would like to
share some experiences and thoughts on the matter.

This paper — or tale, if you will — is organized
as follows. First, I explain some of the assump-
tions and policies we set up at the very beginning
(surprisingly, many of them did not change). Then
I proceed to what is perhaps the most interest-
ing for the typesetting-oriented readers: the LATEX
classes we developed to prepare our pdfs. For the
most part I abstain from quoting actual source code;
an interested reader may find it on my website at
http://mbork.pl/wiadmatfiles.zip, so that this
paper does not get too TEXnical. Next, I describe
some Emacs functions which we use in our editing
work; some of them are general enough to be of use
for the wider public. Finally, I try to summarize my
experience with a few general rules of thumb I found
out to be useful.

In the paper I sometimes say “I” and sometimes
“we”. The former means the author; the latter usually
means the author together with the other secretary,
Pawe l Mleczko.

2 Assumptions and policies

When we started working on Wiadomości Matema-

tyczne, we did not know much about what we are
exactly expected to do. We knew that proofreading
would be our primary duty. Soon it turned out that
it was quite frustrating when the proofreaders and
the typesetter did not remain in strict contact; in
fact, the person responsible for typesetting lived in
another city. We quickly figured out that if we did
the typesetting (which we were confident we were
capable of, and which we both liked to do), things
would go much more smoothly. We also suggested
to the editors that a visual overhaul would not be a
bad idea.

That meant that we needed to do a few things,
even before we dived into coding our LATEX classes.
One of them was deciding how we are going to keep
all the incoming files in order. To this end, we
adopted a very strict set of rules. It turned out that
this was a good idea (and that an even stricter one
would be even better!). First, I estimated the over-
all number of papers we may be dealing with over
the course of several years; my estimation was that
the number should not exceed a thousand within
foreseeable future. Therefore we settled on 4-digits
identifiers, just in case. (As of this writing, we are at
521.) Each paper was to get an identifier of the form
art-0000-name, with the right number in place of
the zeros (so we started with art-0001-...), and
name was to be the family name of the (alphabeti-
cally) first author, folded to pure ASCII and in low-
ercase. That way, the identifiers are more-or-less
human-readable, too — we humans are not as good
as computers in remembering much numerical stuff.

Further, this means that each paper lands in
a separate directory called art-0000-name, and this
directory should contain a LATEX file (unsurprisingly
called art-0000-name.tex) and possibly other files,
like art-0000-name-photo-1, etc. Also, each of
these directories is a repository for a version control
system (we settled on Mercurial). Finally, along-
side those directories, we create directories named
like wm-53-1, containing issue 1 of volume 53 of
Wiadomości Matematyczne, with an appropriately
named (and version-controlled) LATEX file inside.
With the help of a web-savvy friend we set up a server
for all these repositories, so that we could easily pull
each other’s changes and push our own. After some
time, I also wrote a few shell scripts: one for exe-
cuting some action (like pull or update) on all (ap-
propriately named) repositories in a local directory,
another one for cloning all repositories not present
on my computer, etc.

Ten years of editorial work

http://wydawnictwa.ptm.org.pl/index.php/wiadomosci-matematyczne
http://wydawnictwa.ptm.org.pl/index.php/wiadomosci-matematyczne
http://mbork.pl/wiadmatfiles.zip

256 TUGboat, Volume 38 (2017), No. 2

Having that (and a few other things, like de-
ciding on the encoding system — we started with
cp-1250 and at some point moved to UTF-8), we
started to think about what we would need our LATEX
classes to do. (It turned out much later that many of
our assumptions were wrong.) The initial list looked
more or less like this.

• Each paper should be typesettable separately,
but we need a way to typeset the whole issue,
too.

• We need to collect a very specific set of metadata
about the paper and the authors, much beyond
LATEX’s default trio of title, author’s name and
date.

• We really want grid typesetting, so we need e.g.
heavily customized sectioning, enumerate and
theorem-like commands.

• We want LATEX to do as much as possible for us,
but we want a way to influence things manually
if needed.

With those (and a few other) things in mind, I started
developing the classes. It took maybe a few weeks to
get some working prototypes/proofs of concept, and
soon we had working LATEX classes. Obviously, in
the course of actually using them, it turned out that
they were not exactly ideal. After about five years
we decided that our technological debt had risen to
an unacceptable level and I decided to rewrite the
classes (almost) from scratch. That turned out to
be a good decision — the “new” classes, while still
fairly complex, are much better to handle. The main
goal when writing the “new” classes was simplicity.
It turns out that if some obscure case comes up
once in, say 20 or 50 articles (or even 10), coding
a dozen or more lines of code to cater for that was
a mistake. It’s much better to deal with such rare
cases manually. Of course, if we aimed at total
automation of typesetting, the situation would be
different; but since we carefully proofread each and
every article ourselves anyway, it’s more effective
to have a simpler, more manageable codebase with
clear ways to manually override the default behavior
instead of some clever way for TEX to do it itself
without any way to influence its decisions.

3 LATEX classes

As I said, I will not go through the code of our classes
in extenso; they are shy of 1800 lines of LATEX code,
and it would be too boring anyway. Instead, I am
going to highlight a few issues I think are interesting,
in a kind of broad view perspective. Anyone wishing
to see the nitty-gritty details is invited to look at the
class code. It should be available on CTAN at some

point; meanwhile, I uploaded all code discussed here
on my personal web page.

3.1 Documenting classes

From the very beginning I knew that I’d like my
classes well-documented. The first version was writ-
ten using the gmdoc class by Grzegorz Murzynowski.
It later had some issues with pdfLATEX (as opposed
to X ELATEX), so I dropped it in favor of the classi-
cal ltxdoc. This turned out to be a not-so-good
decision; doc is rather unwieldy with the four spaces
before \end{macrocode}, etc. I would gladly return
to gmdoc at some point in time.

3.2 One or more?

At first, I decided to have one class for each type of
article (a regular paper, an obituary, a book review,
etc.) and one for the whole issue. This turned out
to be a bad decision. (I was so eager to try out the
docstrip’s selective inclusion of various source file
fragments in various resulting files that I apparently
didn’t think that through well enough . . .) The
benefits of this approach were infinitesimal (in fact,
I can think of one only: compiling individual articles
must have been faster by a fraction of a second),
and the resulting complexity was very difficult to
handle. In the “new” classes, I reduced the number of
classes dramatically, and instead decided to select the
article type with a class option, which works much
better — especially since all the code specific to any
type of article must be present in the whole-issue
class anyway.

3.3 Packages we use

We rely heavily on a number of packages. Here’s
what they are with a short explanation/rationale for
using each of them.

• xparse, which helps define commands with com-
plicated syntax,

• etoolbox, which makes \expandafter and com-
pany almost unnecessary,

• amsmath, which is fairly obvious for the mathe-
matical content. We use the intlimits option
with it to preserve Polish typesetting tradition,

• mathtools, which I find essential (in fact, I don’t
know why it’s not part of amsmath!),

• pgfkeys and pgfopts, which help define the
class options,

• amsrefs, which is nicer to use for bibliographies
than BibTEX or BibLATEX: it lets us keep the
bibliography in the same file as the rest of the
paper, and more importantly, changing the look
of the bibliography with it is very easy. We use

Marcin Borkowski

TUGboat, Volume 38 (2017), No. 2 257

the nobysame and initials options, which for
some strange reason are not the default,

• MinionPro, since this is the font we use,

• polski, since we typeset in Polish,

• geometry, which is a pretty obvious choice,

• ifpdf, so that the journal logo in eps format
can be used when producing a dvi file (does
anyone still use dvi, by the way?)

• graphicx, since we often include pictures, and
tikz, since we often create them ourselves,

• multicol, since book reviews are typeset in two
columns,

• fancyhdr, which (again, for some strange rea-
son) is not included in LATEX itself,

• enumitem, for obvious reasons (and more on
that later),

• booktabs, for obvious reasons,

• adforn, since we want some decorations,

• microtype — very useful, especially that the
pages are rather narrow,

• upref, for obvious reasons,

• nicefrac, which is occasionally useful,

• url — we need urls in bibliographies and some-
times elsewhere,

• pdfpages and hyperref, which are needed to
prepare pdfs with separate articles for the web-
site (they are made from the whole issue’s pdf).

As you can see, the list is quite impressive. This
really shows that bare-bones LATEX is not extremely
useful without a host of packages; I feel that many
of them should in fact be part of the LATEX core.

3.4 Docstrip guards

As I mentioned, in the first iteration of the classes
we used docstrip to generate separate classes for
various article types. Currently, however, we have
basically two classes: wm-art (for typesetting a single
article) and wm-issue (for typesetting the whole
issue). (There is one more, but we will cover that
later.) We use article and issue docstrip guards
to differentiate the code suitable for only one of those.
Most of the code is shared between the two.

3.5 Class options

I decided to use pgfopts for options support. Even
though we don’t actually use key/value type options,
it’s nice to use pgf even for simple options which
should just execute some piece of code when used.
It turns out that option handling with pgf is pretty
clever, and even though the learning curve is a bit
steep, it is definitely worth the effort.

Each article type has its own option, setting
a relevant Boolean switch. There are also other
class options, like proof (which enables cropmarks),
ebook (which sets the page geometry with minimal
margins), etc.

3.6 Macros for typesetting the whole issue

We define two hooks named \AtBeginArticle and
\AtEndArticle. In the case of a single article, they
just fall back to etoolbox’s \AfterEndPreamble and
\AtEndDocument; in the case of the whole issue, they
add their argument to macros \everybeginarticle

and \everyendarticle (using etoolbox’s \appto).
Also, we define two macros named \ArticleOnly

and \IssueOnly, each accepting one argument and
expanding to that argument or nothing in respective
situations.

Next, we define (only in wm-issue) commands
like \Year and \Volume so that we can typeset these
in each article’s header.

Now comes the fun part. We cannot assume that
two articles will not have the exact same \labels,
so we have to do something about this. We use \let

to save the original meaning of \label and \ref

and define our versions, using a prefix \subjobname.
That prefix identifies the article (it is set in the
wm-issue class to be the article filename sans ex-
tension). Also, we make sure that the references
use lining (i.e., non-oldstyle) numerals. Of course,
we also handle \pageref, \eqref and \cite, all in
a similar manner. (The citations are slightly more
difficult due to some amsrefs quirks.)

Since at the beginning of each article we want
to typeset a header containing (among others) the
page range for this article, we need the number of
its last page. This amounts (more or less) to

\AtEndArticle{\origlabel{\subjobname:end}}

Again, in reality this is slightly more complicated,
since the \origlabel must be put somewhere else
for reviews (they are typeset in two columns).

Next up are the macros facilitating loading ar-
ticles into the whole issue. This is a bit tricky,
since each article has its own \documentclass and
\begin{document} ... \end{document}. (Nowa-
days, we have things like docmute and combine,
which help with such issues. When I was writing the
classes for Wiadomości Matematyczne, they didn’t
exist, or at least I didn’t know about them.)

First we define the macros \wmdocumentclass,
\wmdocument, \wmenddocument and \wmusepackage,
which will be substituted for the respective built-
ins. The \wmdocumentclass must set up the article
type, reset all the counters like section, footnote,
etc., and make sure we start a new page. (The

Ten years of editorial work

258 TUGboat, Volume 38 (2017), No. 2

new page thing again is quite tricky, since one of
the quirks of Wiadomości Matematyczne is that an
article can start on the same page as the previous
one’s end. We achieve this by setting a Boolean
switch newpage to true, but only for those arti-
cles that actually need it.) Since we usually need
\DeclareMathOperator (which is normally defined
as a preamble-only command) in individual arti-
cles, we reset it to the previously remembered value.
(Preamble-only commands work by being set to a spe-
cial command telling the user that this can only be
used in the preamble. To mitigate that, one needs to
save the original command to something (with \let),
then — after the preamble — \let the command back
to what it was saved to.)

The commands \wmdocument, \wmenddocument

and \wmusepackage are pretty simple. The first two
just typeset everything saved with \AtBeginArticle

and \AtEndArticle respectively; \wmusepackage is
just a no-op (articles actually needing external pack-
ages are a very rare thing, and in such cases we
\usepackage them in the preamble of the whole is-
sue manually).

As mentioned, one serious complication arises
from the fact that there are some “article groups”
with individual articles not starting on a new page.
We handle that by means of a Group environment
and two Boolean switches, whose names are self-
explanatory: \ifingroup and \iffirstingroup.

The next big thing is the table of contents. This
is basically a big mess (just like in LATEX itself, al-
though I redid it from scratch insead of trying to
coerce the original to work my way). One reason is
that we have to cater for the article groups. Another
one is that we actually want two tables of contents:
a Polish one and an English one. Of course, the
title version in the ToC may be different than the
one in the article and/or its running head. Yet an-
other complication is connected with the so-called
“vacats”. These are empty pages before an article
(they arise naturally when each new article starts
on the right, i.e., odd-numbered page, and when
the previous article had an odd number of pages).
A long-standing tradition in our journal is to put
various things on those pages, ranging from pictures
of mathematicians’ monuments to conference posters
to funny quotations. They appear in the ToC, at its
end, under a “Miscellanea” section, with all the page
numbers put together. Finally, since we may have
a lot of UTF-8-only characters in the title, and we do
not want inputenc’s macro expansions to get into
the .toc file, we have to make sure that the \@title

macros and their like are expanded exactly once. All
that means a pile of \expandafters, \unexpandeds,

etc., which could probably be simplified a lot — but
it ain’t broken, so I’m rather hesitant to fix it. (I as-
sume LATEX3 might help a lot with these issues, but
I was not brave enough to use it.)

3.7 Gathering metadata

In standard LATEX, you have the \title, \author

and \date macros. This is far from enough in
Wiadomości Matematyczne. While we actually do
not need the date, we need a lot of additional stuff.
For “regular” articles, we need the English title (and
also we occasionally want to differentiate between
the “normal” title, the title in the running head and
the version in the ToC). Also, we have many other
types of articles, such as obituaries (where we need
the name of the late person, their date of birth and
death, a picture and a scan of their signature), ar-
ticles about prize laureates (which is more or less
similar — without the dates, of course, and the sig-
nature, but with the prize name instead) and book
reviews (with lots of data about the book itself, in-
cluding a scan of the cover). Since we need a lot
of similar \title-like macros, I decided to write
a macro to write them for me:

\newcommand{\DefineDataGrabber}[1]{%

\csdef{#1}##1{\csdef{@#1}{##1}}}

Now, issuing a command like \DefineDataGrabber

{title} is more or less equivalent to \def\title#1

{\def\@title{#1}}, which is kind of cool (and quite
Lispy, in fact).

Another interesting thing about gathering ar-
ticle metadata is the collection of author names.
Obviously, we need support for more than one au-
thor, but how their data are typeset may differ in
various places. We need at least four ways of doing
that. At the beginning of each article, we just list the
author names together with their cities (another tra-
dition of the journal). If any author has a nonempty
\authornote, we include a footnote mark here, too.
Also on the first page we want to actually put the
author footnotes. At the very end of each article we
typeset their names, institutions and emails. Finally,
we need the author names (in their “short” form) in
the ToC.

The way we handle this is as follows. We define
a command \makeauthorlist, which (when run)
creates an auxiliary macro \authorlist, containing
first an invocation of \firstauthor (with nine pa-
rameters corresponding to the author’s data), then
(if needed) subsequent invocations of an analogous
macro \nextauthor. Then, \makeauthorlist is
called \AtBeginArticle. When we want to typeset
something for each author, we define \firstauthor

Marcin Borkowski

TUGboat, Volume 38 (2017), No. 2 259

and \nextauthor to do what we need (e.g., type-
set the names and the cities, or typeset the author
footnotes, etc.) and run the \authorlist command.

3.8 Design and implementation

With the design, I figured that the hard part was
the design itself. When that is done, the LATEX side
of things is usually rather easy.

Well, I was wrong.
The first thing is the font choice. We typeset

with Minion Pro, but we make our class available
to authors, who don’t necessarily have that font
installed. Hence we check (using \IfFileExists for
the existence of the file MinionPro.sty, and only
use that font if this file is present.

We use oldstyle numerals in text, but references
are typeset with lining numerals and sometimes their
“tabular” version, so we need commands to turn them
on when needed. Also, we use Polish-style inequali-
ties (with slanted lines).

We redefine quite a few of LATEX’s skips, like
\baselineskip. (For some reason, LATEX redefines
the skips \AtBeginDocument, so we need to give
them twice: once within that command and once
without it, since we sometimes need to typeset some
material before \begin{document}.) We redefine
\smallskip, \medskip and \bigskip to be equal
to a quarter, a half and a whole \baselineskip.
We also define \smallskipneg, \medskipneg and
\bigskipneg — just in case — and much more seldom
used “stretch” and “shrink” variants (i.e., zero-length
skips with possibility of stretching or shrinking the
same amounts). Finally, we redefine skips around
displayed equations to be much smaller than the de-
faults. Again, this must be done \AtBeginDocument.

Actually, vertical skips were one of the hardest
parts of our classes. You may ask, what is difficult
with that? Well, we try to typeset on a grid. This
means that we take some care for many things to have
the height equal to some multiple of \baselineskip.
This includes section titles (moderately easy), theo-
rems (rather easy), figures (difficult); when we have
displayed equations or quotations, we drop the grid
requirement on that page. Since many articles in
Wiadomości Matematyczne do not contain a lot of
math, this works quite well. Unfortunately, vertical
skips, page layout and page breaking are one of the
darker TEX corners, and I have to admit that TEX
behavior in that regard is often a mystery to me.

The next thing in the design department is the
page layout. This is accomplished with the help of
the geometry package. A small complication arises
from the fact that — depending on the class options —
we want the options to be slightly different. It turned

out that a simple \ifbool within the options works
well. (For clarity, I avoid plain TEX’s \ifs, using
etoolbox’s \ifbool’s instead.)

Each article has a special “header” on its first
page. It contains the journal logo, journal name,
volume and issue numbers and page numbers for the
article. This is all simple: page numbers are there
thanks to \labels at the beginning and end, the
logo is in a pdf file (we use \IfFileExists so that
the authors using our class who do not have that file
can use the class anyway), and absolute positioning
on the page is done by the wonderful tikz package.

The title and authors are a bit more work,
but this work is not difficult, only tedious: we put
all that stuff in a box of fixed height (equal to
24\baselineskip) so that the grid won’t be dis-
turbed. One nice touch is that “author footnotes” are
distinguished from the usual footnotes by the number-
ing system: they are “numbered” with Greek letters.
Here we also make use of the \authorlist mentioned
earlier. One thing worth noting is that we need to
test if some data (like the author footnotes, for exam-
ple) is undefined or empty; etoolbox’s \ifdefvoid

is very useful for that.
For articles about prize laureates, new professors

and book reviews we want to wrap an image with text.
This is notoriously difficult in TEX, but we went the
easy way and decided that one paragraph will always
be long enough to fill the space around the (rather
small) picture. This way, we just set \hangafter and
\hangindent to suitable values, and put the picture
in a zero-height \vbox within \vadjust (taking care
of vertical dimensions for everything). If the first
paragraph is extremely short (which can happen
from time to time), we have a simple remedy:

\newcommand{\fakepar}

{\leavevmode\nobreak\hfil\break}

(Notice the lack of \indent; this is intentional. Since
the \fakepar needs to be inserted manually anyway,
I wanted it to be general enough to support unin-
dented paragraphs, like sections, etc.)

Finally, \AtEndArticle we typeset the author
information (it looks slightly different among the var-
ious article types, but that is trivial to accomplish).

Some additional care needs to be taken when
typesetting section and subsection titles. A section
title takes up space equal to three lines (or more
in case of long section titles, which we discourage
and which seem to never happen anyway). We want
1.5\baselineskip above and a half below. However,
if a section begins at the top of a page, we do not want
any vertical skips above it (and hence also below, be-
cause . . . grid!). This is hard or impossible to achieve

Ten years of editorial work

260 TUGboat, Volume 38 (2017), No. 2

automatically, so we have the macro \attoppage, set-
ting a suitable switch to true. Also, the \section

macro has to behave differently at the very begin-
ning of the article: the skip above is then smaller
(because we don’t need it anyway). It is similar
with subsections: normally, a subsection has one full
\baselineskip above, but not if it directly follows
a \section. All this is accomplished through special
values of \penaltys and checks for \lastpenalty.
(In the initial version of the classes, this mechanism
was used much more often, e.g., with theorems; in
the current iteration of the class, I decided that was
too tricky and decided to go for a simpler solution,
with a possibility of easy inserting manual skips, both
positive and negative.)

Running headers is the next thing. No surprises
here — we use fancyhdr, we set up the pagestyles
for the first page of the article and for the rest of
them, and we define macros \theleftrunninghead

and \therightrunninghead so that the user can
easily override them manually.

Theorem-like environments are a much more
complicated business. For various reasons I was not
satisfied with the LATEX defaults. In my own papers
I usually use amsthm, but for Wiadomości Matema-

tyczne I decided to go my own way and do all the
theorems from scratch. One reason is grid typeset-
ting. A more important one is that by default, the
theorem’s optional argument is typeset in a TEX box,
so its spaces are fixed. With rather short lines this
tends to look ugly if the rest of the line happens to
be very loose in TEX’s terms, i.e., its spaces are much
wider than usual.

Since I did theorems from scratch anyway, I de-
cided to do them my way. For starters, \newtheorem

always creates a numbered and a non-numbered
(starred) variant. Another thing is the handling
of the optional argument. Oftentimes it consists
only of a call to \cite or \citelist; in such a case,
LATEX puts the bracketed output of \cite in paren-
theses, which I don’t like. In our case, if the optional
argument begins with \cite, the parentheses are
dropped. Again, this can be manually overridden by
using the \relax command (which is a no-op, but
is different than \cite, etc.). Since it is conceivable
that someone might want to drop the parentheses for
a different reason, we provide a \noparen command
(a no-op again, but also recognized by the theorem
environment, along with \cite and \citelist). Fi-
nally, we define a slew of theorem-like environments
by default.

The next thing is enumerations, which are easy:
I employ the great enumitem package. One unortho-
dox thing we do in Wiadomości Matematyczne is

the following. We strongly discourage more than
one level of enumerations (and totally forbid more
than two), and instead we use various item styles to
distinguish between various semantics. For instance,
if the items form a conjunction, they are marked
with arabic numerals in parentheses; if they form an
alternative, they are marked with lowercase Roman
numerals with a dot afterwards, etc. I’m not sure
whether anyone notices, but I like it that way.

The next topic is bibliographies. The code re-
sponsible for them is quite large, but this is mainly
because we need to define a lot of bibliography types.
As I mentioned, we use amsrefs, which I like a lot.
One of the greatest things about this package is that
defining a new bibliography style is so easy. One
of less great things is that it messes internally with
the catcode of the apostrophe, which conflicts with
the usage of the \’ macro. We need to resort to
some \xdef hackery because of that when defining
the coauthor. (We have a special kind of a bib-
liography in Wiadomości Matematyczne: a list of
publications by one person. In such a case, the
author field is not typeset, although we introduce
a coauthor field, which is typeset at the very end in
the form of “(coauthor: . . .)” or “(coauthors: . . .)”.
The internal macro containing the coauthor field
is called \bib’coauthor, with the apostrophe as
a letter; on the other hand, we need the \’ control
symbol to typeset the Polish word for “coauthor”,
“wspó lautor”.) Finally, we define an environment
bibliography with two optional arguments: the
first one is the title of the bibliography (the default
dependent on the article type) and the second being
a prefix, so that we can have two bibliographies in
one article, the first one with entries numbered [1],
[2], etc., and the second one with entries numbered
e.g. [A1], [A2], etc. (this is sometimes needed). Any-
way, the main takeaway here is: amsrefs is very nice
to use and quite hard to hack on.

The last difficult thing is inserting figures and ta-
bles. We do not use floats, since we prefer to have full
manual control over the placement of “floating” ma-
terial. Therefore we redefine the figure and table

environments. While we are at it, we provide some
machinery to control the captions: the figure* en-
vironment makes them unnumbered, and the figure
prefix (like “Fig.”) empty by default, but redefin-
able through \renewcommand. We put the figure
(with caption) into a \vbox of depth zero, measure
its height, round it up to the nearest multiple of
\baselineskip and repackage it into another \vbox

of the computed size. This way we can retain grid
typesetting. If the figure environment (or similar)
starts in horizontal mode, we use \vadjust.

Marcin Borkowski

TUGboat, Volume 38 (2017), No. 2 261

The rest is, happily, much easier. We slightly
modify the default design of footnotes, we define
a custom quotation environment, a simple modifi-
cation of equation numbers (we want them in tab-
ular numerals, and we provide an \eqrefr macro
for equation ranges, like “(1–3)”), we define some
Polish-specific dashes, etc. One interesting thing is
that we have \emergencystretch set to 1 pt. This
is very useful for narrow columns. We also define
some very narrow horizontal skips (half of \, and
its negative counterpart). We also have a few last-
emergency macros for influencing the typesetting.
These are \manualshortenthispage (expanding by
default to \enlargethispage{-1\baselineskip}),
\manuallooser (basically, setting \looseness) and
the following two:

\newcommand{\manualfillpar}

{{\setlength{\parfillskip}{0pt}\par}}

\newcommand{\manualindentfillpar}

{{\setlength{\parfillskip}{\parindent}%

\par}}

which allow us to fight very short or very long last
lines of a paragraph.

3.9 Making pdf files for individual articles

After typesetting, printing and sending out the whole
issue, when the dust settles, we need to prepare a pdf
file of every article to put on the website and send to
the authors. This is not as easy as typesetting every
article separately, since we want the page numbers to
be exactly like in the printed issue; also, that would
not work in case of articles beginning in the middle
of a page. Hence we use pdfpages to include the
relevant pages from the pdf of the issue.

Our solution is as follows: when the issue is
typeset with a special option, generatefiles, we
invoke a special macro \generatefile for each arti-
cle (using \AtBeginArticle). This macro takes the
page numbers from the labels and writes out a file
named wm-11-2-333-444.tex, where 11 stands for
the volume number, 2 for the issue number and 333

and 444 for the begin and end pages of the article.
This file is very short and consists of setting the
pdf metadata and including the relevant pages from
wm-11-2.pdf. (Also, it uses a special, very simple
third class generated from the dtx file.)

There are two main difficulties here. One is
that the second issue each year has page numbers
resuming where the first one ends, so we need to
take care of page number arithmetic. Another is
that we don’t want to have e.g. ties in pdf title, so
we redefine a few standard commands to generate
their ASCII equivalents (most notably, both ˜ and
\\ expand to a space in this context). Last but not

least, we \usepackage{hyperref} so that the page
numbers in the pdf file matches the ones printed on
each page (instead of starting from 1).

4 Emacs editing functions

LATEX classes and general workflow is one thing. Ac-
tually editing files is another. We use Emacs to get
the full editing power available to humanity. Even
though it has its flaws, it is an extremely flexible tool.
Customizing Emacs to work better for Wiadomości

Matematyczne is an ongoing effort; currently, I am
writing functions to automatically generate article
templates, help with filling them with some meta-
data and upload them to our Mercurial repository,
all with minimal manual intervention.

In this section, I would like to briefly describe
the Emacs tools I’ve made so far, which turn out to
be quite general and possibly useful for others.

4.1 Automatic replacement of strings

The first thing is automatic replacement of strings.
There are some things that just need to be changed to
reasonable defaults. One of them is Polish diacritical
signs. We clearly do not want our source code to
be littered with things like \.z\’o\l{}w instead of
proper UTF-8 “żó lw”. Another is dollar signs (single
and double), which we want to be converted to \(,
\), \[and \]. Yet another is \-, which should be
just deleted everywhere, or ties, which need to be
inserted after one-letter words and in a few other
places and deleted from math mode.

For this, I developed an Emacs command called
mrr-auto-replace. It is configured by means of
a list of lists. Each of these lists consists of a regex,
optionally followed by a predicate (i.e., a function re-
turning a Boolean value) and by one or more strings.
This works as follows: Emacs walks through the en-
tire file (buffer, to be more precise) looking for the
given regexen, and if the predicate is satisfied in any
of the places found, the part matching the regex is
replaced by one of the strings given. The strings are
cycled, so we can e.g. have the regex \$\$ (match-
ing two dollar signs) replaced alternately by \[and
\]. The predicate option is useful for distinguish-
ing between math and text modes; AUCTEX (which
is an Emacs package for interacting with TEX and
friends) has a function called texmathp, returning
a true value if the cursor (“point”, in Emacs-speak)
is in math mode.

It seems simple (and so it is — the source code
for mrr-auto-replace is less than 20 lines), but it is
extremely useful. It is usually one of the first things
we run on any LATEX file received.

Ten years of editorial work

262 TUGboat, Volume 38 (2017), No. 2

4.2 Semi-automatic replacement of strings

Sometimes, however, we cannot trust a machine to
do the right thing. For such cases, we have the
mrr-replace-mode Emacs minor mode (i.e., some-
thing we can turn on or off in a given buffer). It is
configured by means of another list (with a similar
structure as previously, though a bit more elaborate
here). This time, however, whenever we find an oc-
currence of any of the regexen from our list, we stop,
highlight it and give the user a chance to select one
of the possible replacements. The use-case should be
obvious — one of the possibilities is changing things
like -+ to one of -, -- or ---. Indeed, we have more
than forty such replacement possibilities, and while
going through the file using this utility is tedious, it
is much less so than if we did that manually. Also,
this was much more complicated to code; it takes up
more than a hundred lines of code (and as of writing
this, it also contains a few minor bugs).

Being a minor mode has the additional advan-
tage that this is non-modal in a sense: after turning
mrr-replace-mode on, only a few keys behave in
a special way: TAB cycles through the possible re-
placements (including the original version), RET (En-

ter on modern keyboards) looks for the next place to
replace, and C-g (Control-g) quits the mode. This
way, if we decide that we have to make some edits
other than the ones defined in our list of potential
replacements, there is nothing to stop us without
exiting the replacement mode.

4.3 Various small hacks

Apart from the two bigger things mentioned above,
we have a few smaller tools. For instance, I noticed
that if I insert a tie, I almost always delete any space
at that point first. Hence I bound the tilde key
to a custom Emacs command I wrote which does
exactly this. Another thing I often do when editing
files (as opposed to writing them from scratch) is
inserting commas and dashes (the latter often in
pairs!). Therefore, I modified the comma-inserting
command so that if I type it when after a space,
Emacs inserts it before that space anyway. It’s very
simple, but a very nice time-saver.

For dashes, I have something special. Since usu-
ally, when I insert a dash, I need to remove any
punctuation in that place (usually a comma), I de-
fined another command to do just that. But more
often than not, I want to enclose a fragment of text in
dashes. Therefore, when I first select some text and
then invoke my command, two dashes are inserted
around the selection (“region” in Emacs language).
Yet another simple command (11 lines of code) mak-
ing editing much nicer.

4.4 Plans for the future

This is of course not everything Emacs can do for
us. I noticed that there are numerous repetitive
activities I perform when working on articles for
Wiadomości Matematyczne. One of them is sending
emails to the rest of the editors with e.g. pdfs for
proofreading. Since I use Emacs as my email client
(obviously!), I plan to write a command to prepare
such an email (with a template text and the pdf
attached) automatically. Another one I plan to do
one day is a command which would walk across all
the articles we are working on and display a summary
with each article’s status (like “after converting to
our class, but before proofreading” or “after sending
to the author for proofreading/confirmation”). The
possibilities are vast, Emacs Lisp is a nice language
to work with — it is only a question of time to mold
Emacs into a system customized to this particular
journal’s workflow.

5 Summary

As can be seen from this tale, working on a journal
is a complicated (but rewarding!) business. From
the TEXnical standpoint, there seem to be a few
general recurring themes here. The most important
(at least for TEXnicians) is that there is no point
in trying to force TEX to do everything automati-
cally; it is much better to cover, say, 90% of cases
automatically and have facilities for manual override
for the remaining 10%. Also, when writing classes
for a journal, good knowledge of TEX is very useful.
Expansion control and vertical mode are especially
important. Moreover, it is usually a good idea to use
packages instead of reinventing the wheel whenever
possible. And when we have full control over what-
ever comes into the journal (i.e., we heavily edit all
incoming files), redefining even basic LATEX macros
and environments (like, say, the document or figure

environments or the \usepackage macro) should not
scare anyone away. On the other hand, to minimize
the editing effort, it is probably a good idea not to
mess around with LATEX guts. The results will be
less appealing aesthetically, though, since authors
often make horrible design decisions.

Two paths I didn’t follow — and which seem
worth trying — are using LATEX3 and restricting what
authors can do. The former is obvious — I would
expect LATEX3 to reduce the need for things like
etoolbox or plain old \expandafters and friends.
The latter might be useful, since some authors use
LATEX in an extremely, shall we say, creative way (like
numbering all footnotes manually or defining dozens
of macros making the source file slightly shorter and
totally unreadable, or using the very same LATEX 2.09

Marcin Borkowski

TUGboat, Volume 38 (2017), No. 2 263

style preamble with lots of unnecessary stuff and
cargo-cult coding artifacts for all their documents,
etc.). Since our authors are mathematicians, they
are unfortunately accustomed to using LATEX; if that
were not the case, we might prefer Markdown or
something similar to restrict the authors’ freedom to
break things.

From the point of view of an editor who works
with text files written by someone else, the obvious
takeaway is that you need to use a serious text edi-
tor. Which one of the two you choose may be less
important: while Vim is difficult to beat in terms of
using as few keystrokes as possible to achieve a given
transformation of text (a sport known as vimgolf),
Emacs shines in the flexibility/programmability de-
partment, and also offers a more comprehensive en-
vironment, such as email clients, shell buffers, and
a time-tracking/organizational application (the fa-
mous Org-mode).

In any case, being a secretary of a journal and
using LATEX and Emacs is an ongoing adventure that
I hope to last for at least another decade.

⋄ Marcin Borkowski

Faculty of Mathematics

and Computer Science

Adam Mickiewicz University

ul. Umultowska 87

61-614 Poznań, Poland

mbork (at) amu dot edu dot pl

http://mbork.pl

Production notes

Karl Berry

This seems an opportune place to say a few words about
TUGboat production. In general, our process is nothing
like as regularized as that described by Marcin.

One immediate difference is that TUGboat, by its
nature, has to handle articles using any TEX engine. We
use pdf(LA)TEX by default, which can handle the majority
of articles, but it’s typical and reasonable for an article
about LuaTEX to require LuaTEX, etc.

So, we can’t create an entire TUGboat issue in one
run. Instead, each article is processed separately into its
own PDF. We then concatenate the individual PDFs to
make the full-issue PDF to be uploaded to our printer.

To do the concatenation, we’ve used a variety of
tools, most commonly Ghostscript and pdfjam (ctan.
org/pkg/pdfjam) of late. ConTEXt and pdftk have also
been useful. Different tools are needed as years go by and
software and systems change (for no convincing reason).

The same tools can select PDF pages when splicing
two articles together, that is, when one article ends and
another begins on the same page. We try to avoid this,
partly because of the extra production trouble, but pri-

marily because it is better for readers to find new articles
starting on new pages. But content must dictate form,
so we make it work out when it’s needed. (Incidentally,
another PDF check is for all fonts being embedded, using
pdffonts from Xpdf, foolabs.com/xpdf.)

The trickiest part of producing the whole issue as a
concatenation is the page numbering. We have a control
file which lists all the articles in the order in which they
will appear, as well as the beginning page number for
the issue. Then each article writes its beginning and
ending (\AtEndDocument) page numbers into external
files, where the next article can read them. The two
tables of contents use the same external files, so as to
ensure consistency of the page numbers.

Unfortunately, nothing comparable keeps titles and
authors consistent among the tables of contents and arti-
cles. Partly this is due to inertia, partly because it would
be hard to implement in full generality, and partly be-
cause sometimes there are intentional differences among
the three places— forced line breaks, abbreviations, etc.

Back to issue production: the compilation of each ar-
ticle, and the overall process, is done with GNU Make, via
a single included Makefile fragment which defines nearly
all needed actions. The per-article Makefiles merely give
the name of the file, the engine to use (if not pdflatex),
etc.; the goal being, naturally, to eliminate redundancy
wherever possible.

We use GNU Aspell (gnu.org/s/aspell) with some
sed preprocessing to do spell checking: aspell list \

--mode=tex --add-extra-dicts=‘pwd‘/.dict.pws\

| sort -fu. The idea being that a given article can have
a .dict.pws file with the spelling exceptions needed that
don’t make sense to add to the global exception list
(unusual proper names, one-off neologisms, etc.).

Besides spell checking, we’ve implemented several
custom checks across an entire issue, again done in
the central Makefile: doubled words (math.utah.edu/

~beebe/software/file-tools.html#dw), lowercase let-
ters inside \acro, tripled letters (“eee”), etc. More glob-
ally, we check that the tables of contents aren’t missing
an article processed in the central control file. Of course,
besides the automated checks, humans review each and
every word, line, and page that goes out.

Character encodings are an unending hassle. We
receive many articles in UTF-8 these days, often with
confusion or incorrect usage of accents, dashes, etc., or
garbled in transmission. Other articles still use Latin-1
or similar. For articles which have only a few “special”
characters, we strongly recommend taking advantage of
TEX’s inherent capability, and sticking to 7-bit ASCII.

One final point is that all production work is done
on Unix (CentOS 7 these days), using TEX Live. Thanks
to the well-known portability of TEX documents, there
is rarely a problem with an author obtaining different re-
sults than the production run, with one glaring exception:
when fonts are found by X ETEX or LuaTEX via system
lookup, instead of by filename. This makes the document
immediately and completely unportable—so I implore
everyone, please don’t do this in TUGboat articles!

Ten years of editorial work

264 TUGboat, Volume 38 (2017), No. 2

Streszczenia

Slajdy i inne powiązane materiały dla wielu prezen-
tacji znajdują się pod adresem
http://tug.org/tug2017.

− − ∗ − −

Justować czy nie justować?
Leila Akhmadeeva, Boris Veytsman

W naszej prezentacji podczas konferencji TUG’16 po-
równaliśmy prędkość czytania oraz zrozumiałość tekstów
justowanych, z zastosowaniem przenoszenia wyrazów,
oraz niejustowanych, bez przenoszenia. Do porównań
używane były dwa czynniki: czy teksty były justowane
i czy stosowano przenoszenie wyrazów.

Na szczęście polecenia
\usepackage[none]{hyphenat}

oraz \sloppy pozwalają (kiepsko) justować bez przeno-
szenia wyrazów. W prezentacji przedstawimy nową kon-
figurację eksperymentów oraz ich wstępne wyniki.

Odpluskwianie plików LATEXowych – nie daj się
draniom
Barbara Beeton

Każda użytkowniczka LATEXa przynajmniej raz w karierze
napotkała dojmujący problem, gdy kompilacja zakończy-
ła się z jakiegoś nieznanego powodu. Sposoby radzenia
sobie z prostszymi problemami są dość dobrze znane, ale
bywają sytuacje, gdy stare, sprawdzone metody zawodzą.

W tej prezentacji zostaną przedstawione strategie
oraz taktyki radzenia sobie z wieloma rodzajami proble-
mów, jakie ujawniły się w trakcie mojego wieloletniego
udziału w zespole technicznego wsparcia AMS-u, odpo-
wiadania na pytania zadawane przez autorów oraz przez
pracowników redakcji. Przedstawione zostaną usterki
typowe i nietypowe – dla każdego coś.

Czego może nauczyć TEXnika dziesięć lat pracy
w redakcji
Marcin Borkowski

Od 2007 roku pracuję jako sekretarz redakcji „Wiadomo-
ści Matematycznych”, gdzie zajmuję się m.in. składem
czasopisma przy użyciu LATEXa. To wystarczająco dużo
czasu, aby nabrać przywyczajeń oraz móc poczynić pew-
ne przewidywania. W referacie chciałbym podzielić się
nimi z przyjaciółmi TEXowymi.

Irytacje TEXowe – co stoi na drodze do
zupełnego otoczenia produkcyjnego
Paulo Ney de Souza

Istnieje kilka niewielkich (i denerwujących) kwestii, któ-
re stoją TEXowi na drodze, aby mógł się on stać kom-
pletnym środowiskiem produkcyjnym. Przyjrzymy się
najważniejszym z nich i temu, jak niektóre z nich można
pilnie potraktować, i zbadamy, co stoi na przeszkodzie
do rozwiązania pozostałych kwestii.

Produkcje TEXowe – ePub nowym celem
Paulo Ney de Souza

Najpierw formatem wynikowym TEXa było DVI, potem
nastąpiło przejście na PS i PDF, a teraz zbliża się wielka

zmiana: ePub. W trakcie prezentacji przeanalizujemy
dotychczasową drogę i to, czego możemy się nauczyć
z tego, jak działa Open Source’owy ekosystem TEXa.

Warsztat introligatorski: portfolio
Willi Egger

Powoli warsztaty kaligraficzne i introligatorskie stają się
BachoTEXową tradycją. Na tegorocznych warszatatach
będziemy robili partfolio, solidną teczkę do przenoszenia
ważnych lub cennych dokumentów. Części przednia i tyl-
na będą wyklejone papierem. Uczestników namawiam
do przyniesienia własnego papieru, jeśli taki masz i chcą,
aby był częścią ich dzieła. Taki papier nie powinien być
ani zbyt cienki ani zbyt gruby. Będą Wam potrzebne
2 arkusze o wymiarach ok. 35 na 21 cm.

ConTEXt: kurs/warsztaty (dla początkujących
ConTEXtualistów)
Willi Egger

Szczególnie dlatego, że tegoroczny BachoTEX jest wy-
darzeniem połączonym z TUG, zapraszamy wszystkich
użytkowników TEXa na wprowadzenie do ConTEXta. Jak
każdy system składu oferujący możliwość wykonania wir-
tualnie każdego przedsięwzięcia, ConTEXt jest olbrzymim
systemem. Podczas warsztatu możemy tylko nieco uchy-
lić zasłonę. Warsztat będzie sesją praktyczną, podczas
której rozpoczniemy zabawiać się podstawowymi elemen-
tami składającymi się na dokument. W ostatniej jego
części będzie można popracować nad małym przedsię-
wzięciem – jednostronicowym dokumentem zawierającym
wszystkie elementy rachunku. Jestem zadowolony z moż-
liwości poprowadzenia warsztatu i cieszę się na spotkanie
z zainteresowanymi.

Nie na temat (całkowicie): Wiele twarzy
(i gatunków) piwa
Michał Gasewicz

Zapraszam do świata smakowitego piwa! Czy jesteś
gotowy poznać różnorodność i bogactwo najstarszego
napoju alkoholowego na świecie? Przestań kojarzyć pi-
wo z powszechnym, tanim, nieabsorbującym napojem
niewymagającym refleksji. Powąchaj, posmakuj i baw
się dobrze! Odważ się spróbować piw, których smak
i aromat znacznie odbiegają od koncernowych jasnych
lagerów. Będzie trochę piwowarstwa nowofalowego, re-
prezentującego obecne trendy, ale oczywiście tradycyjne
polskie style również będą obecne.

Niestety, liczba uczestników musi być ograniczona
do nie więcej niż dziesięciu. Loteria, przy większej liczbie
chętnych . . .

Dzieci TEXa
Hans Hagen

Dla kogoś przywiązanego do składu matematyki natural-
nym punktem wyjścia do tematu konferencji (przesłanki,
przyzwyczajenia, przewidywania) wydaje się to, czym się
zajmuje i czego używa użytkownik: matematyka. Ale
można też poszukać odpowiedzi w aktualnych osiągnię-
ciach nauk biologicznych oraz w historii. W trakcie
prezentacji postaram się przedstawić te tematy z mniej

Streszczenia

TUGboat, Volume 38 (2017), No. 2 265

technicznej perspektywy. Mimo iż zapewne nie uda mi
się udzielić poprawnych odpowiedzi na te pytania, to
przynajmniej mam nadzieję zapoczątkować dyskusję.

Zmienne fonty
Hans Hagen

Pod koniec roku 2016 do standardu OpenType 1.8 została
włączona idea fontów zmiennych. Jako że spodziewam
się nacisków ze strony zapalonych użytkowników Con-
TEXta, aby zapewnić obsługę tej sztuczki, zdecydowałem
się rozszerzyć mechanizm ładowania fontów o takie fonty.
Oczywiście jest to eksperymentalne i takim pozostanie
przez jakiś czas, bo po prostu na razie można testować
zaledwie kilka (w pewnym sensie zaślepkowych) fontów.
Miło jednak znów zobaczyć, że TEX wciąż radzi sobie
z nowościami.

Kolorowe fonty, aktualizacja i spojrzenie
w przyszłość
Hans Hagen, Taco Hoekwater

Współprezenterzy: Lorien Otten, Lara Brandligt and
Teun Otten.

Dzieci komunikują się za pomocą języka zwartego
oraz obrazków, takich jak emotikony (emoji). Obrazki te
często nie mają wielu detali, co jest zgodne z niedawny-
mi badaniami w Holandii, które wykazały, że dziecięce
obrazki nie są bogate w detale. Polscy guru odpowie-
dzialni za wolne fonty lm oraz gyre nie pokwapili się do
dostarczenia dzieciom ich ulubionych piktogramów, tak
więc cel ten trzeba osiągnąć inaczej.

Społeczność ConTEXta dysponuje tak zwanymi fon-
tami Cowfonts, obecnie dostępnymi w wersji kolorowej.
Po dziesięciu latach font „koeiletters” doczekał się unowo-
cześnienia. Nowa wersja używa technologii OpenType do
połączenia istniejących czterech fontów PostScript Type1
w jeden font typu truetype.

Kontynuacją tego będzie zbiór emoji Duane’a Bib-
by’ego. Taco przekształci (zgrubne) rysunki we właściwe
kolorowe fonty obwiedniowe, Hans zapewni, aby to za-
działało w TEXu, a (pierwszy) zestaw znaków zostanie
wybrany przez naszych przyszłych użytkowników: dzieci.

W trakcie prezentacji Taco najpierw wprowadzi tech-
nologię (do czego jako przykładu użyje najnowszej wersji
Cowfonts), potem Hans powie krótko o obsłudze fon-
tów kolorowych w LuaTEXu, a na koniec Lorien, Teun
oraz Lara poproszą publiczność o ocenę, które z małych
obrazków mają sens.

Historia znaków chromatycznych (akcydencji)
w muzyce
Jean-Michel Hufflen

[Patrz strona 147.]

MlBIBTEX od teraz rozumie Unicode
Jean-Michel Hufflen

[Patrz strona 245.]

DocVar: gospodarowanie zmiennymi dokumentu
Zunbeltz Izaola, Paulo Ney de Souza

Pakiet docvar pomaga w zarządzaniu zmiennymi doku-
mentu. Są to informacje o dokumencie (dotyczy w zasa-

dzie książek), które są wspólne dla zborów dokumentów
(na przykład serii książek), chociaż różnią się w każdym
konkretnym przypadku. Może to na przykład być: tytuł
książki, nazwisko autora, podtytuł, . . . Omawiany pa-
kiet pomaga definiować nowe zmienne oraz ich używać.
Wśród planowanych funkcji jest na przykład dziedziczenie
wartości, gdy docvar nie zdefiniowano, i przekształcanie
wartości zmiennej, gdy docvar użyto. Przedstawione
zostaną podstawowe idee pakietu oraz powstająca imple-
mentacja.

Parametryczny font z symbolami
matematycznymi
Bogusław Jackowski, Piotr Strzelczyk, Piotr Pianowski

Zgodnie ze specyfikacją „Unicode Technical Report, #25.
Unicode Support for Mathematics” (autorstwa B. Beeton,
A. Freytaga i M. Sargenta III; http://unicode.org/

reports/tr25/) font matematyczny „unikodowy” jest
w istocie kompozytem wielu fontów: powinien zawierać
pismo szeryfowe i bezszeryfowe (proste, pochylone i po-
grubione), frakturę, pismo kaligraficzne, pismo tablicowe
(blackboard bold), przy czym niektóre z pism powin-
ny zawierać alfabet grecki; oczywiście „jądrem” fontu
matematycznego jest zestaw znaków matematycznych:
symboli, operatorów, nawiasów, symboli geometrycznych
i in.

Taki „kompozytowy” font ma tę zaletę, że – dzięki
temu, że spełnia wymogi standardu – może być używa-
ny w przez rozmaite programy działające pod różnymi
systemami operacyjnymi. Wadą takiego rozwiązania jest
to, że jego fontów składowych nie da się w łatwy sposób
podmienić.

Użytkownicy TEXa są w lepszej sytuacji – mogą
za pomocą skryptu TEXowego skonstruować font z wy-
branego zestawu, w szczególności mogą podmienić font
podstawowy. Niestety, w niektórych przypadkach takie
podejście zawodzi, gdyż okazuje się, że znaki z pozoru
czysto geometryczne, takie jak strzałki czy nawiasy, mogą
nie pasować optycznie do wybranego alfabetu podstawo-
wego.

W trakcie naszej prezentacji chcielibyśmy przedsta-
wić ideę generowania fontu sterowanego parametrycznie,
zawierającego tylko niezbędne symbole matematyczne.
Spodziewamy się, że dzięki parametryczności powinno
być możliwe dopasowanie detali wizualnych symboli do
wybranego zestawu fontów i że to dopasowanie – aczkol-
wiek niekoniecznie trywialne – nie powinno być nazbyt
pracochłonne. Mamy nadzieję, że zestawianie w pełni
funkcjonalnego fontu matematycznego z fontów składo-
wych za pomocą skryptu TEXowego okaże się zadaniem
istotnie prostszym niż konstruowanie fontu matematycz-
nego ogólnego zastosowania za pomocą edytora fontów.

Konfigurator dla TEX Live
Siep Kroonenberg

Ponieważ TEX Live można uruchamiać ze współdzielo-
nego nośnika sieciowego, w trybie wyłącznie do odczytu,
potrzeba włożyć trochę pracy, aby zaspokoic oczekiwania
użytkowników systemu Windows: TEXa należy włączyć
do Start Menu, pliki TEXowe powinny się uruchamiać

Streszczenia

266 TUGboat, Volume 38 (2017), No. 2

w edytorze LATEXa na skutek dwukrotnego kliknięcia,
i jeszcze użytkownicy nie powinni się matwić o ustawie-
nie ścieżki wyszukiwania searchpath.

W wypadku instalacji osobistych zarówno TEX Live,
jak i MiKTEX dbają o sprawy podstawowe. Jeśli chodzi
o instalację z sieci, powinno się dawać uzyskać konfigura-
cję w Windows oddzielnie, dla użytkownika bądź stacji
roboczej, bez powtarzania żmudnej procedury instalacyj-
nej.

Zajmuję się instalowaniem TEX Live w Rijksuniver-
siteit Groningen, co obejmuje również kilka programów
zewnętrznych. Na przestrzeni lat używałam różnych roz-
wiązań tego problemu.

Obecne rozwiązanie opiera się na programie uru-
chomieniowym, który zapewnia dostęp do programów
zewnętrznych oraz do różnych komponentów samego TEX
Live. Na starcie czyta on swoje menu i przyciski z pew-
nego pliku ini.

W trakcie pierwszego uruchomienia program wy-
konuje niezbędną konfigurację Windows, również zde-
finiowaną w pliku ini. Program oferuje różne sposoby
usunięcia (zapomnienia) tej konfiguracji.

Zamierzam opowiedzieć o możliwych funkcjach sys-
temu uruchomieniowego, o takim programie używanym
na uniwersytecie w Groningen i o niektórych problemach,
na jakie dotychczas się natknęłam.

TEX w szkołach średnich – pomysł do podjęcia
przez GUST
Anna Beata Kwiatkowska, Jerzy Ludwichowski

Przedstawimy pomysł Anny: GUST maiłby dostarczyć
na swojej witrynie zestaw materiałów TEXowych takich,
które mogłyby być używane przez uczniów szkół średnich.

Początkowo materiały miały by być wykorzystywa-
ne przez uczniów Gimnazjum i Liceum Akademickiego,
eksperymentalnego zespołu szkół średnich będących pod
opieką Uniwersytetu Mikołaja Kopernika w Toruniu, jed-
nego z najlepszych zespołów szkół średnich w Polsce.
Anna naucza tam informatyki, jednocześnie będąc pra-
cownikiem Wydziału Matematyki i Informatyki UMK.

Mamy nadzieję na wzbudzenie dyskusji o tym, jak
podejść do takiej grupy docelowej.

Aktualne przedsięwzięcia fontowe e-foundry
GUST
Jerzy Ludwichowski

Przedstawię krótko listę przedsięwzięć fontowych GUST-
owego zespołu e-foundry

Składanie bibliografii w LATEXu zgodnie ze
standardem ISO 690
Dávid Lupták

Przygotowanie odwołań bibliograficznych i cytowań zgod-
nie z miezynarodowym standardem ISO 690 jest wyma-
gane przez wiele instytucji i nie jest ograniczone tylko
do czeskich i słowackich instytucji akademickich. Nieste-
ty, składanie zgodne z tym standardem nie jest wspie-
rane przez system składu dokumentów LATEX. Pakiet
biblatex-iso690 został przejrzany i ulepszony tak, aby

był całkowicie zgodny z wymaganiami standardu między-
narodowego, i znacznie upraszcza składania bibliografii
wszystkich typów źródeł informacji. Prezentacja skupia
się na nowej wersji pakietu biblatex-iso960, który wpro-
wadza możliwe przykłady użycia i w ten sposób również
dostarcza skrócony ogląd standardu ISO 690.

Automatyczne budowanie binariów dla TEX Live
Mojca Miklavec

Binaria TEX Live są budowane raz na rok dla około 20.
różnych platform przez kilku ochotników i w ciągu ro-
ku nigdy nie są aktualizowane. To dobry kompromis
pomiędzy wymaganymi przez użytkowników w miarę
aktualnymi binariami, stabilnością i obciążeniem wolon-
tariuszy budujących binaria i przygotowujących paczki
dystrybucyjne.

Z drugiej strony, społeczność ConTeXa jest mocno
zależna od dostępności najnowszych binariów luaTeXa.
Niekiedy, po zaimplementowaniu nowych własności, wy-
magane są najnowsze binaria X ETEXa.

Zbudowaliśmy ostatnio infrastrukturę, które potrafi
po każdej aktualizacji automatycznie zbudować binaria
TEXowe dla pewnej liczby platform, wysłać powiado-
mienia pocztą elektroniczną przy niepowodzeniach tego
procesu, udostępnić raporty deweloperom i binaria użyt-
kownikom.

Przedstawimy rozwiązanie umożliwiające nam swo-
bodę znacznie częstszego przeprowadzania kompilacji, co
z kolei umożliwia wczesną detekcję problemów i znacznie
szybsze dostarczanie binariów użytkownikom.

Reguła jedyna, by złamać wszystkie
Mojca Miklavec, Arthur Reutenauer

Od prawie dziesięciu lat jesteśmy odpowiedzialni za repo-
zytorium wzorców przenoszenia wyrazów w TEXu, mamy
do czynienia ze wszystkimi sprawami technicznymi oraz
prawnymi związanymi z obsługą wzorców w pakietach
makr oraz z włączaniem ich do dystrybucji. Jak dotąd
jednak niewiele uwagi poświęcaliśmy ogólnym zasadom
dzielenia wyrazów w różnych obsługiwanych językach i to
zagadnienie właśnie zamierzamy przedstawić i zwieńczyć
rzecz udzieleniem definitywnej odpowiedzi na wielkie
pytanie: jedna reguła, by złamać je wszystkie.

Po drugiej stronie lustra – i co Alicja tam
znalazła. . .
Frank Mittelbach

Dalsza podróż w poszukiwaniu automatycznego znajdo-
wania optymalnego stronicowania dokumentów prowadzi
nas do bajkowej krainy funkcji obiektowych, ograniczeń
wywołań, wzorców układów graficznych i innych mistycz-
nych stworów i Królowej, która krzyczy „Szybciej! Szyb-
ciej! Szybciej!” bo „na pozostanie w jednym miejscu
zużyjesz cały dostępny Ci czas. Jeśli chcesz się jeszcze
dostać gdzieś indziej, to musisz biec przynajmniej dwa
razy szybciej niż dotychczas!”

Streszczenia

TUGboat, Volume 38 (2017), No. 2 267

GM-Scenariusze po dwóch latach. Zupełny
odjazd. Ale – czy zupełny w sensie Turinga?
Czyli: Jak z ducha l3expan-owego począłem
i zrodziłem potwora.
Grzegorz Murzynowski

Artykuł przedstawia aktualny stan mechanizmu GM-
Scenariuszy, mini-esolangu jednoznakowych instrukcji,
który pokrywa i rozszerza funkcjonalności pakietu l3expan,
należącego do zestawu expl3.

W sensie (teorii) automatów skończonych, mecha-
nizm GM-Scenariuszy wydaje się być deterministycznym
automatem ze stosem (DPDA), zaś język przezeń akcep-
towany – językiem bezkontekstowym. Podaję argumenty,
nie całkiem formalne, na poparcie tej tezy.

Zamieszczam diagram automatu, który, jak ufam,
faktycznie zaimplementowałem, oraz gramatykę formalną
języka GM-Scenariuszy w jego obecnym kształcie.

W uwagach końcowych odnoszę się do uwag, jakie
otrzymałem po prezentacji GM-Scenariuszy na TUG@
BachoTEX 2017. W większości – w stylu „Przyjmuję do
wiadomości i wykonania”.

Używanie Markdown wewnątrz dokumentów
TEXowych
Vít Novotný

Markdown to lekki język oznaczania tekstów, który uła-
twia pisanie dokumentów o prostej strukturze w składni
jasnej i bezpośredniej. Chociaż istnieją narzędzia do ren-
derowania dokumentów w Markdownie za pośrednictwem
TEXa, to jednak zazwyczaj są one budowane z użyciem
TEXa jako podstawy, nie zaś w samym TEXu.

Praca zwięźle przedstawia grupę istniejących narzę-
dzi, a następnie wprowadza pakiet makr dla formatów
TEXa opartych na plainie, który działa na innej zasa-
dzie. Możliwość umieszczania w dowolnym dokumencie
TEXowym kawałków zapisanych w Markdownie, jak też
wykesponowanie makr TEXowych do zarządzania rendero-
waniem elementów Markdownowych, to wygodna metoda
włączania Markdownu do istniejących TEXowych ścieżek
przetwarzania.

fmtutil and updmap – przeszłe i przyszłe
zmiany (lub: sprzątanie bałaganu)
Norbert Preining

Dwa podstawowe programy pomocnicze w dowolnej insta-
lacji TEXa to: fmtutil, odpowiedzialny za odbudowywanie
formatów, i updmap, odpowiedzialny za tworzenie map
fontów dla różnych programów.

Przez wiele lat w użyciu pozostawały zacne skrypty
shellowe Thomasa Essera, dodające nowe funkcje i po
hakersku obchodzące ograniczenia. W ciągu ostatnich
dwóch lat zostały one przepisane na Perla. Zmieniło to
znacząco operacyjne zachowanie obu programów, mia-
nowicie teraz czytane są wszystkie pliki konfiguracyjne,
a nie tylko jeden.

Wraz z przygotowywaną wersję TEX Live 2017 za-
mierzamy postąpić krok dalej i pozbyć się największego
źródła zamieszania: mieszaniny skryptów -sys i nie-sys.
Wielu osób przypadkowo – albo zwiedzionych wynika-
mi wyszukiwania w Google’u – wywołuje updmap albo

fmtutil bez części -sys, tworząc osobiste kopie plików
konfiguracyjnych, co szybko prowadzi do chaosu.

TEX Live 2017 przełączy się na inny układ: progra-
mu podstawowego (fmtutil, updmap) nie można zawołać
bezpośrednio, bo trzeba najpierw zdecydować, czy ma
to nastąpić w trybie użytkownika, czy w trybie systemo-
wym – przekazując tę informację albo w linii poleceń,
albo w dedykowanym skrypcie.

W trakcie prezentacji przypomnę zakres funkcjonal-
ny obecnych wersji programów fmtutil i updmap, włącz-
nie z wyjaśnieniem organizacji różnych plików konfigu-
racyjnych. W dalszej kolejności zapowiem planowane
zmiany do TL2017 i na później. Na koniec przedstawię
listę najlepszych praktyk, jakimi powinni się kierować
użytkownicy, aby najbezpieczniej osiągnąć cel.

Uwolnione dźwięki
Maciej Rychły

[Patrz strona 118.]

Obrazowanie semantyki za pomocą subtelnej
typografii i interpunkcji
Kumaran Sathasivam, S.K. Venkatesan, Yakov Chandy

Semantyka języka posiada głęboko zagnieżdżoną struktu-
rę, którą typografia ujawnia przez używanie do składania
hierarchii akapitów czcionek o różnej wielkości i stylu.
Na poziomie akapitu, z powodu szczupłości środków ty-
pograficznych do ujawnienia semantyki używa się obficie
interpunkcji. Akapity są dzielone na mniejsze jednost-
ki semantyczne, takie jak zdania, z użyciem kropek na
końcach i wielkich liter na początkach. Zdania ulegają
dalszemu podziałowi na jeszcze mniejsze cząstki, z uży-
ciem średników, dwukropków, przecinków i myślników.
Odstępy z kolei służą do dzielenia języka na najmniej-
sze atomy semantyczne, mianowicie słowa bądź frazy.
W niniejszej pracy przyglądamy się nowym urządzeniom,
zarówno typograficznym, jak i interpunkcyjnym, które
usuwają niejednoznaczności i odkrywają głęboko zagnież-
dżoną strukturę semantyczną.

MFLua 0.8
Luigi Scarso

Wersja MFLua 0.8 dodaje nowe odwołania i nowy pod-
stawowy skrypt do uruchamiania kodu Lua z wnętrza
MetaFonta. Wyczyszczone i uproszczone zostało jądro
kodu. Praca przedstawia przykład wytworzenia prostego
fontu OTF za pomocą zarówno MetaFonta, jak i Font-
Forge’a w taki sam sposób jak mf2pt1.

Restauracja LATEXowa
Przemysław Scherwentke

To recenzja książki „LATEX, książka kucharska.” Pokazu-
jemy, dlaczego jest to dobra książka kucharska. Zatrzy-
mujemy się przy niektórych recepturach. Sugerujemy
pewne zmiany wystroju.

Streszczenia

268 TUGboat, Volume 38 (2017), No. 2

TEX w szkołach? Oczywiście: przypadek użycia
w Uniwersytecie Masaryka, Brno, Czechy
Petr Sojka, Vít Novotný

TEX jest używany w uczelniach, takich jak Uniwersy-
tet Masaryka, do wielu celów: do pisania rozpraw dok-
torskich, esejów i publikacji przez studentów, uczenia
publikowania elektronicznego, programowania piśmienne-
go, pisania prac naukowych, sprawdzianów, slajdów, jak
też do generowania dokumentów i stron internetowych
z uczelnianych baz danych przez system informacyjny
uczelni i jej kadrę.

TEX i związane z nim technologie są od ponad dwóch
dekad systematycznie wspierane i udostępniane przez Wy-
dział Informatyki. W tej pracy podsumowujemy wsparcie
i projekty, które zrealizowaliśmy do tej pory, oceniamy
wyniki, i omawiamy możliwe przyszłe wdrożenia tech-
nologii związanych z TEXem. Opierając się na danych
z użycia fithesis3 na Uniwersytecie Masaryka podajemy
argumenty, dlaczego odpowiedź na powracające pytanie
z tytułu jest pozytywna, przynajmniej w takich uczel-
niach jak nasza.

Hackaton: Dokumentacja pakietów LATEXa
Damien Thiriet

Celem tego warsztatu jest ulepszenie dokumentacji pa-
kietów LATEXa. Uczestnicy będą mogli poprawić lub
rozszerzyć CTANową dokumentację swojego ulubione-
go pakietu (lub takiego, który uważają za szczególnie
użyteczny).

Będziemy również zachęcali uczestników do przy-
gotowania nowych wpisów w ramach projektu pakieto-
mat.wordpress.com (w języku polskim). Mamy też na-
dzieję, że znajdą się chętni do wspólnego testowania,
poprawiana i rozszerzania już opublikowanych wpisów.

Nawyki użytkowników TEXa a wymagania
wydawców
Lolita Tolenė

Składacze zawsze balansują na cienkiej linii między nie-
ograniczoną kreatywnością autorów a ścisłymi wyma-
ganiami wydawców, aby tworzyć pełnotekstowy XML.
W trakcie tej prezentacji chcielibyśmy przedstawić obie
strony. Konstrukcja TEXa sprawia, że do oczekiwanego
celu można dotrzeć na wiele sposobów. To dlatego istnie-
je ogromny zbiór pakietów stworzonych na przestrzeni
lat. A na co dzień są też używane makra lokalne. Przed-
stawimy, które pakiety TEXowe są powszechnie używane
w pracach naukowych i jaka część z nich pochodzi ze
standardowego źródła, jak CTAN lub TEX Live. Przyj-
rzymy się zwyczajom autorów używających TEXa do
zapisu treści naukowych. Mając zaś na uwadze XML,
przedyskutujemy, jak i dlaczego te zwyczaje są ważne
dla składaczy w trakcie przygotowywania rękopisów do
publikacji.

Xdvipsk: dvips gotowy na fonty OpenType
i więcej typów graficznych
Sigitas Tolušis, Arūnas Povilaitis, Valentinas Kriaučiukas

Przedstawiamy dwa rozszerzenia programu dvips. Jedno
z nich pozwala zręcznie włączać obrazy bitmapowe i zo-

stało zaimplementowane z użyciem biblioteki FreeImage.
Drugie rozszerzenie rozwiązuje całkiem stare zadanie:
dodaje do dvipsa obsługę fontów OpenType. Jeśli chodzi
o zarządzanie fontami OpenType, to rozszerzony przez
nas program dvips – xdvipsk – podąża drogą luatexową:
pracuje na plikach DVI skompilowanych przez LuaTEXa
i spodziewa się znaleźć niezbędne unikodowe pliki mapo-
wań będące skutkami ubocznymi kompilacji. Istnienie
plików mapowań jest zapewniane przez specjalny pakiet
LATEXa.

Przykład humanistycznej książki naukowej
Andrzej Tomaszewski

Daaaawno temu w Bachotku na czarno-białych przezro-
czach miotanych z rzutnika slajdów prezentowałem książ-
kę, która opuściła drukarnię równo przed dwudziestu
laty. Na życzenie bachotkowej gawiedzi o projektowa-
niu naukowego wydania poematu Owidiusza „Halieutica”
mądrym dla memoriału, idiotom dla nauki, politykom
dla praktyki, melancholikom dla rozrywki opowiem de
novo przy kolorowych pedeefach.

[Editor’s note: Zachęcamy do zwrócenia szczególnej
uwagi na slajdy; zawierają one wiele pięknych ilustracji
z fontami i układami stron z prezentowanej książki.
http://www.gust.org.pl/bachotex/2017-pl/

presentations/atomaszewski-1-2017.pdf]

Zmienne i kolorowe czcionki OpenType:
wyzwania i szanse
Adam Twardoch

W marcu 2015 roku opublikowano wersję 1.7 specyfi-
kacji formatu fontów OpenType. Nowa edycja formatu
wprowadziła wiele znaczących nowości: dodano specyfika-
cję tablicy „MATH” stosowanej w składzie matematycz-
nym, a także trzy formaty zapisu glifów wielokolorowych:
„COLR/CPAL”, w którym tradycyjne monochromatycz-
ne glify wektorowe nakładane są na siebie z użyciem
palety zdefiniowanych w czcionce barw, „CBDT/CBLC”,
w którym glify wielokolorowe opisywane są obrazami
rastrowymi PNG, a także „SVG”, w którym do opi-
su wielokolorowych glifów stosowany jest pełen arsenał
wektorowo-bitmapowego języka Scalable Vector Graphics,
umożliwiającego stosowanie np. gradientów kolorystycz-
nych, konturów i półprzezroczystości.

W przeciągu roku 2016 grupa robocza, składająca
się z pięciu dużych firm (Apple, Adobe, Google, Microsoft
i Monotype) oraz kilku zaproszonych ekspertów (John
Hudson, Erik van Blokland, Adam Twardoch) pracowała
nad kolejnym nowym aspektem cyfrowego formatu fon-
tów, o nazwie OpenType Font Variations. Wyniki tych
prac zostały przedstawione we wrześniu 2016 na konfe-
rencji ATypI w Warszawie: nowa wersja 1.8 specyfikacji
OpenType umożliwia opisywanie zmienności kształtu
i układu glifów przy użyciu dwu mechanizmów: tablicy
„gvar”, technicznie zgodnej ze stworzonym w 1993 roku
przez Apple, lecz nigdy nie rozpowszechnionym, rozsze-
rzeniem formatu fontów TrueType GX Variations, oraz
tablicy „CFF2”, zastępującej wcześniejszą „CFF” opisują-
cą kształt glifów postscriptowo. Dodano również tablicę

Streszczenia

TUGboat, Volume 38 (2017), No. 2 269

„sbix”, która – podobnie jak „CBDT” – umożliwia opis
glifów wielokolorowych za pomocą obrazów rastrowych
PNG.

W ciągu ostatnich dwóch lat OpenType znacznie
się zmienił. Adam Twardoch przedstawi w swoim refe-
racie najważniejsze zmiany w cyfrowym formacie fontów
OpenType i w jego bliźniaczej normie międzynarodowej
ISO/IEC 14496-22, a także odniesie się do wyzwań i szans
związanych z adaptacją opentypowych nowości w świecie
TEXa.

STIX, Fira, Noto i przyjaciele: piękne nowe
kroje pism na licencjach otwartych
Adam Twardoch

Ostatnie kilka lat obfitowało w premiery rodzin krojów
pism, które powstały w profesjonalnych domach typo-
graficznych jak Monotype, Tiro Typeworks czy Huerta
Tipográfica, na zlecenie m.in. firm Google, Mozilla i Ado-
be. Fonty z tymi krojami wydane zostały na licencji
otwartej SIL Open Font License, która w dziedzinie „wol-
nych fontów” stała się licencją de facto standardową.
W przeszłości fonty opensource tworzyli zwykle lingwi-
ści, hobbiści czy członkowie rozmaitych organizacji tech-
nicznych, natomiast w ostatnich kilku latach na rynek
opensource trafiła wiele fontów wybitnych pod względem
zarówno projektowym jak i technicznym, stworzonych
przez zawodowych projektantów krojów pism.

Adam Twardoch dokona subiektywnego wyboru ro-
dzin krojów pism, które nie tylko znakomicie wyglądają
w składzie, ale jednocześnie zawierają ambitne repertu-
ary znaków i można je bezpłatnie stosować w dowolnym
zakresie. Autor w szczególności uwzględni zastosowania
w typografii akademickiej i naukowej.

ZBOWID! Zespołowa Błyskawiczna Otwarta
Wydawniczość Internetowej Dokumentacji
Adam Twardoch

Firma FontLab Ltd. od 2011 roku pracuje nad progra-
mem FontLab VI, przebudowanym od podstaw narzę-
dziem do cyfrowego tworzenia krojów pism. Jednym
z zadań Adama Twardocha jako dyrektora produktów tej
firmy jest zarządzanie procesem tworzenia i publikowania
kolosalnych rozmiarów dokumentacji technicznej, która
będzie towarzyszyć gotowemu produktowi.

Przez dwa ostatnie lata Adam badał różne procesy,
które umożliwiłyby zespołowi FontLab wspólne pisanie
treści dokumentacji, śledzenie postępów prac, a także two-
rzenie ostatecznej publikacji HTML i PDF w łatwy w roz-
szerzaniu i zarządzaniu, przejrzysty i zautomatyzowany
sposób. Ten proces powinien unikać narzędzi i formatów
zamkniętych, powinien dawać pierwszeństwo formatom

i technikom otwartym, dobrze opisanym i wspieranym
przez dużą, stabilną liczbę użytkowników. Proces po-
winien umożliwiać „integrację ciągłą” na komputerach
lokalnych i serwerach. Osoba zarządzająca procesem po-
winna mieć możliwość ręcznej ingerencji w dowolny krok
procesu.

Po wielu próbach Adam zbudował proces produk-
cyjny dokumentacji oparty na formacie źródłowym Mark-
down, na serwisie Github jako powłoce redakcyjnej i za-
rządczej, na pakiecie MkDocs, używającym implemenca-
cji Python Markdown do konwersji wikipodobnego zbioru
plików Markdown na wielostronicowy serwis HTML, oraz
na komercyjnym programie Prince XML tworzącym PDF.
W tym czasie Adam napisał i udostępnił na otwartej li-
cencji kilka narzędzi wspierających ten proces.

Referat będzie studium przypadku. Adam Twar-
doch przedstawi najważniejsze wymogi procesu oraz wady
i zalety wieloformatowej, wielojęzycznej, wielonarzędzio-
wej konfiguracji, którą stworzył. Autor opowie też, dla-
czego nie skorzystał dotąd z TEXa, zastanowi się, gdzie
mógł był TEXa użyć i zapyta czy może w jakiś sposób
sięgnąć po TEXa w przyszłości.

Przygotowanie pakietu ltxsparklines: Wycieczka
CTANowca do świata CRAN.
Boris Veytsman

Wśród naukowców popularne stają się dynamiczne doku-
menty tworzone przez R i TEXa. Ta praca przedstawia
wiążącą się z tym ścieżkę przetwarzania i sposoby wy-
krzesania czegoś więcej z tych dokumentów.

Sparklines to niewielkie rysunki (wysokie na oko-
ło jedną linię tekstu), spopularyzowane przez Edwarda
Tufte. Omówię mój pakiet ltxsparklines do R i lekcje wy-
niesione w trakcie jego pisania i dostarczania do CRAN.

Zamierzam też zwięźle porównać CTAN, CPAR oraz
CRAN z punktu widzenia kontrybutora.

10 lat rozwoju fontów matematycznych
OpenType
Ulrik Vieth

Rozwój fontów zawsze stanowił jeden z głównych te-
matów konferencji Bachotkowych. Zwieńczeniem było
zbudowanie fontów Latin Modern i TEX Gyre w formacie
OpenType, których mogą używać silniki unikodowe, jak
LuaTEX i X ETEX.

Przez ostatnie 10 lat, od czasu pojawienia się stan-
dardu OpenType, prace ogniskowały się na fontach ma-
tematycznych, uzupełniających istniejące fonty tekstowe.
W trakcie prezentacji omówię dotychczasowe osiągnięcia
i co jeszcze zostaje do zrobienia.

Streszczenia

270 TUGboat, Volume 38 (2017), No. 2

TUG@BachoTEX 2017 abstracts

Editor’s note: Slides and other related information
for many of the talks are posted at http://tug.org/

tug2017.
− − ∗ − −

TEX annoyances — what is in the way to a
full production environment
Paulo Ney de Souza

Several minor (and annoying) issues stand in the way
of TEX to be a complete production environment.
We will go over the most important ones, discuss
how some of them should be addressed soon, and
explore some directions on the way to solve the rest.

TEX Production — ePub, the new target
Paulo Ney de Souza

DVI was once the output of TEX, we have since moved
to PS, PDF, and now on the verge of a big change —
ePub. The talk will explore how we got here and
what we can learn from the way the open source TEX
echo system works.

ConTEXt: tutorial/workshop (for ConTEXt
beginners)
Willi Egger

Especially since this year’s BachoTEX was a joint
event with TUG, we wanted to invite all TEX users
to an introduction to ConTEXt. As with any typeset-
ting system offering possibilities to handle virtually
any project, ConTEXt is a huge system. During the
workshop we can only lift the veil a little bit. The
workshop will be a hands-on session in which we will
start playing with basic elements to create a docu-
ment. Towards the end of the workshop, there will
be a chance to work on a small project — a single-
sided document containing all the elements to build
an invoice. I am glad to lead this workshop, and look
forward to meeting everyone who is interested.

Colorful fonts, an update and peek into the
future
Hans Hagen, Taco Hoekwater

Co-presenters: Lorien Otten, Lara Brandligt and
Teun Otten.

Kids communicate in compact language and
pictures like emoticons (emoji). These pictures are
often also not that detailed, which suits recent studies
in The Netherlands showing that drawings that kids
make themselves become less detailed. The Polish
font gurus responsible for the free lm and gyre fonts
never got to providing kids their beloved pictograms
so that goal has to be achieved differently.

The ConTEXt community has the so-called cow-
fonts, now available as a color font. After ten years,
the “koeiletters” font is ready for an update. The
new version uses OpenType technology to combine
the existing four PostScript Type1 fonts into a single
TrueType font.

A follow up on this will be an emoji set designed
by Duane Bibby. Taco will convert the drawings
(roughs) to proper color outline fonts, Hans will make
sure they work well in TEX, while the (first) subset
will be chosen by our future users: kids.

During this presentation Taco will first intro-
duce the technology (for which he will use the latest
cow fonts as an example), then Hans will quickly
tell a bit about how the color font technology is sup-
ported in LuaTEX, and then Lorien, Teun and Lara
will challenge the audience to tell them which little
pictures make sense.

DocVar: Manage document variables
Zunbeltz Izaola, Paulo Ney de Souza

The package docvar helps to manage DOCument
VARiables. Those are pieces of information about
a document (mostly books) that are common to a
collection of documents (a book series), but different
in each particular case. They may be, for example,
the title of the book, the name of the author, the
subtitle, . . . This package helps to define new vari-
ables and use them. Planned features include the
inheritance of the value when a docvar is not defined
and transformation of the variable value when the
docvar is used. We present the main ideas of the
package and its ongoing implementation.

TEX at secondary schools — an idea to be
taken up by GUST

Anna Beata Kwiatkowska, Jerzy Ludwichowski

We will present an idea floated by Anna: GUST

should provide on its web site a collection of TEX
helper materials that could be used at secondary
schools.

Initially the site would be targeted at the pupils
studying at the Liceum i Gimnazium Akademickie,
under the care of Nicholas Copernicus University of
Toruń, one of the best secondary schools in Poland.
Anna teaches there in computing and is also a staff
member at the NCU’s Faculty of Mathematics and
Computer Science.

We hope to spur a discussion on how to tackle
such a specific group.

TUG@BachoTEX 2017 abstracts

TUGboat, Volume 38 (2017), No. 2 271

Automating binary building for TEX Live
Mojca Miklavec

TEX Live binaries are built once per year for about
20 different platforms by a number of volunteers and
never get updated during the year. This is a good
compromise between users’ demand for reasonably
new binaries, stability and the burden on volunteer
builders and packagers.

The ConTEXt community on the other hand
strongly depends on the availability of the latest
LuaTEX binaries at any given time. There are also
occasional requests for the latest binaries of X ETEX
when new features get implemented.

We have recently set up a build infrastructure
that can automatically build TEX binaries after every
commit for a number of platforms, send emails when
builds break, show reports and make the binaries
available to users.

We will present our solution which gives us the
freedom to run the builds much more frequently, to
detect build problems earlier and to distribute newer
binaries to users much faster.

One rule to break them all
Mojca Miklavec, Arthur Reutenauer

For almost ten years we’ve been in charge of the
repository of hyphenation patterns for TEX, dealing
with all technical and legal matters connected with
their support by macro packages and their inclu-
sion in distributions. Little consideration, however,
has been so far given to the general principles of
hyphenation for the different languages that are sup-
ported, and that’s what we now would like to present,
by finally giving the definitive answer to the great
question: one rule to break them all.

Through The Looking Glass — and what
Alice found there . . .
Frank Mittelbach

Continuing the quest for automatically finding opti-
mal pagination of documents the journey takes us
now to the fairy land of objective functions, call-
out constraints, layout templates and other mystical
creatures and a Queen that cries “Faster! Faster!”
because “. . . it takes all the running YOU can do, to
keep in the same place. If you want to get somewhere
else, you must run at least twice as fast as that!”

We will explore how fast we must run to enter
that world.

LATEX Restaurant
Przemysław Scherwentke

This is a review of the book „LATEX, książka kuchar-
ska.” (“LATEX, a Cookbook.”) We show why this is
a good cookbook. We look at some recipes. We
suggest some changes in the decor.

Hackaton: Documenting LATEX packages
Damien Thiriet

The aim of this workshop is to revise, correct or
extend the CTAN documentation of your favoured
LATEX package.

Participants could also prepare an entry for a
LATEX package for the pakietomat.wordpress.com

project (in Polish). We would also appreciate col-
lective testing, improving and extending of already
existing entries.
An example of a humanist scholarly book
Andrzej Tomaszewski

A long, long time ago, during a BachoTEX, throwing
black-and-white slides from a slide projector at the
public I presented a book which left the printing
house exactly 20 years ago. In reply to BachoTEX
goers’ demand I’ll again describe the design process
for the scholarly edition of Ovid’s poem “Halieutica”,
this time using color PDFs.

[Editor’s note: We’d like to draw special attention
to the slides from this talk, which include many
beautiful images of fonts and layouts from the book.
http://www.gust.org.pl/bachotex/2017-pl/

presentations/atomaszewski-1-2017.pdf]

Variable and color OpenType fonts:
chances and challenges
Adam Twardoch

In March 2015, the OpenType font format specifi-
cation version 1.7 was released. This was a major
extension of the spec, which added support for the
“MATH” table for mathematical typesetting, as well
as support for three storage formats for multi-color
glyphs: “COLR/CPAL” which combines pre-existing
monochrome outline glyphs into multi-color glyphs,
“CBDT/CBLC”, which uses PNG bitmaps to store
multi-color glyph images, and “SVG”, which stores
multi-color glyphs as a mixture of complex vector
graphics (with gradients, strokes and transparencies)
as well as bitmaps.

Throughout 2016, a working group consisting
of five large companies (Apple, Adobe, Google, Mi-
crosoft and Monotype) and a few invited experts
(John Hudson, Erik van Blokland, Adam Twardoch)
worked on another major extension to the standard-
ized font format: OpenType Font Variations. In

TUG@BachoTEX 2017 abstracts

272 TUGboat, Volume 38 (2017), No. 2

September 2016, the results were presented at the
ATypI Warsaw conference: OpenType version 1.8
added support for variable glyphs and metrics via the
“gvar” table, backwards-compatible to the TrueType
GX Variations extension which was introduced in
1993 by Apple but never gained any traction, and the
“CFF2” table, which provides a similar mechanism for
PostScript-flavored fonts and replaces the previous
“CFF” table. The “sbix” table was also added, which
uses PNG bitmaps for multi-color glyphs, much like
the “CBDT” table.

Thus, in the last two years, OpenType has
changed massively. In this talk, Adam Twardoch
will present the new additions to the OpenType font
format and its sibling ISO/IEC 14496-22 international
standard, and will comment on both the chances and
the challenges in introducing those changes into the
TEX world.

STIX, Fira, Noto and friends: beautiful new
open source fonts
Adam Twardoch

In the last few years, Google, Mozilla and Adobe have
worked with a number of professional font foundries
large and small, including Monotype, Tiro Type-
works, Huerta Tipográfica and others, to bring a
flurry of high-quality, professional font families avail-
able under the SIL Open Font License, the de-facto
standard license for open source fonts. While in the
past, most open source font projects were created by
technical organisations, non-designers, liguists and
hobbyists, the 2010s saw the birth of quality type de-
signs never previously seen in the open source realm.

In this talk, Adam will present a selection of his
personal highlights of font families that not only look
good, but are free for use on any project, and include
ambitious character sets or typographic extensions,
making them suitable for academic and scientific
typesetting.

CORDIDA! Collaborative Opensource Rapid
Digital Internet Documentation Authoring
Adam Twardoch

Since 2011, FontLab Ltd. has been working on a
complete rewrite of the company’s main commercial
software product, FontLab VI — a font editor for
professional type designers. As FontLab’s Director

of Products, Adam Twardoch has been managing the
authoring and publishing of the massive technical
documentation that will accompany the released app.

Adam has spent the last two years research-
ing various workflows that would allow the FontLab
team to write content in a collaborative way, over-
see the progress of the content creation, and have
an automated, transparent, extensible and manage-
able process of creating the final documentation in
HTML and PDF formats. The workflow should avoid
proprietary formats and tools, and should favor well-
documented formats and techniques that have a large
and stable user base. The workflow should allow con-
tinuous integration on local machines and remote
servers, and should allow the person responsible for
the production to “intervene” at any point of the
production process.

In the end, Adam has settled on a workflow that
involves Markdown as the source format, Github
as the authoring and collaborative front-end, the
MkDocs package that uses the Python Markdown
implementation to produce a multi-page HTML web-
site from a set of wiki-like Markdown documents, as
well as the commercial Prince XML engine to pro-
duce PDF. Adam has written and open-sourced a
number of tools that help in the process.

In this case study talk, Adam will present his
key requirements for the process and the strengths
and weaknesses of a multi-format, multi-language,
multi-tool setup that he has adopted. In particular,
the author will show why he didn’t use TEX so far,
theorize on where he could have used portions of TEX,
and ask whether he still can use TEX in some way.

10 years of OpenType math font
development
Ulrik Vieth

Font development has always been a major topic
at BachoTEX conferences, culminating in the devel-
opment of Latin Modern and TEX Gyre fonts in
OpenType format for use with Unicode engines such
as LuaTEX and X ETEX.

In the past 10 years, ever since it was introduced,
the focus has been on developing OpenType math
fonts complementing existing text fonts. In this talk,
we will review what has been achieved and what
remains to be done.

TUG@BachoTEX 2017 abstracts

TUGboat, Volume 38 (2017), No. 2 273

Die TEXnische Komödie 2/2017

Die TEXnische Komödie is the journal of DANTE e.V.,
the German-language TEX user group (dante.de).
(Non-technical items are omitted.)

Stephan Lukasczyk, Tagungsbericht
Frühjahrstagung 2017 [The Annual Dante
Spring Meeting in Zeuthen]; pp. 27–33

Report on DANTE’s annual meeting in Zeuthen/
Berlin.

Thomas Hilarius Meyer, LATEX für
Geisteswissenschaftler — Ein Projekt zur
zielgruppenspezifischen Dokumentation von
TEX & Co. [LATEX for humanists — a project
for target-specific documentation of TEX & Co.];
pp. 34–38

Since November 2016 a small group consisting of
Lukas C. Bossert, Axel Kielhorn, Thomas H. Meyer,
Craig Parker-Feldmann, Philipp Pilhofer, Christine
Römer, Martin Sievers and Uwe Ziegenhagen has
been working on an introductory text on LATEX that
is specifically targeted to humanists. In this article
an overview of the project is given.

Eberhard W. Lisse, Arztstempel mit LYX/LATEX
erstellt [Creating medical stamps with LYX/
LATEX]; pp. 39–47

As an obstetrician and gynecologist in private
practice in Windhoek, Namibia, I am not required
(unlike in Germany) to affix a stamp onto a prescrip-
tion, but in particular for sick leave certificates, em-
ployers often demand this and therefore my patients
ask for it. I conduct all my written correspondence
with LYX and have decided to develop a stamp in
LATEX and then tie it into LYX, with the main ob-
stacle being a lack of motivation on my part. As in
Germany, such software stamps are permitted and
the results can be adapted with little effort. This
solution could be used in practices working with LYX
or LATEX, possibly even in other professions required
to use similar stamps.

Thomas Hilarius Meyer, Bibelstellen mit
LATEX verarbeiten und durch Register erschließen
[Processing Bible passages]; pp. 48–60

LATEX is deeply loved by STEM scientists, but
humanists can profit from its features as well. One
example is the convenient processing of Bible pas-
sages including the creation of an index.

Gerd Neugebauer, CTAN ist bei 2.0
angekommen — Neue Möglichkeiten beizutragen
und mehr [CTAN 2.0 — New Features and ways to
contribute]; pp. 60–72

[Published in TUGboat 38:1.]

Herbert Voß, Lucida-Schriften als OpenType
von der TUG [OpenType Lucida fonts from TUG];
pp. 73–91

The Lucida font family is part of many operating
systems, but supported here are only Lucida Bright,
Lucida Sans and Lucida Sans Typewriter. In coop-
eration with Bigelow & Holmes, TUG has created
a font bundle that provides a complete OpenType
font family for the typesetting of text and math at a
special price.

[Received from Herbert Voß.]

Die TEXnische Komödie 2/2017

274 TUGboat, Volume 38 (2017), No. 2

Review and summaries: The History of

Typographic Writing — The 20th century

Volume 2 (ch. 1–5), from 1950 to 2000

Charles Bigelow

Histoire de l’Écriture Typographique — le XXième

siècle; tome II/II, de 1950 à 2000. Jacques
André, editorial direction. Atelier Perrousseaux,
Gap, France, 2016, ISBN 978-2-36765-006-7,
http://tinyurl.com/ja-xxieme-ii. 364 pp.,
391 figures (illustrations, photos, diagrams, etc.),
illustrated end papers. Also available as an ebook.
The book is in French. Volume 1 (reviewed in
TUGboat 38:1) covers the years 1900 to 1950.

Occasional commentary below by the reviewer is
placed in square brackets; the main text summarizes
the original writing.

 F g G
 h H i I
 K l

m M n
 o œ O Œ

 P q Q
 s
 t T End paper (fragment): Apple Chancery typeface and

typography both by Kris Holmes.

Jacques André: Introduction

This is the last volume in the series created by Yves
Perrousseaux, on the “History of Typographic Writ-
ing” from its beginning to the end of the 20th century.

In the 20th century, the powers of social and
informational functions of writing, previously distin-
guished in part by their modes of production — for
example, public inscriptions and signage, book and
news publishing, and personal handwriting — were
expanded by technological advances. Commercial,
governmental, political, and educational institutions
used typographic media to ever-greater extent and
effect, although individual expression remained, for
a time, limited to handwriting and typewriting. By
the end of the century, however, new technologies of
typography vastly enhanced the power, extent, and
graphical range of personal written expression.

This second volume of the history of 20th cen-
tury typography is intended for general readers in-
terested in the history, art, and technology of the
century, as well for specialists and students in the
field. It has been written by ten different authors
and thus reflects as many different perspectives and
styles. In addition to text and copious illustrations,
it includes an extensive bibliography.

1. Alice Savoie: Typography transformed:
the era of photocomposition (La typographie

en pleine mutation: l’ère de la photocompositions)

“Photocomposition before 1945: false starts and early
experiments.”

In the early decades of the 20th century, sev-
eral inventions applied photography to type setting.
Despite clever mechanisms and novel names, the
Bawtree, Photoline, Rotofoto, Thothomic, and Uher-
type proto-phototypesetters proved less efficient, less
economical, and lower in quality than established
hot-metal composing machines and hence failed to
become commercially successful. This first phase of
photocomposition was followed by the so-called “first
generation” photocomposers — the Intertype Foto-
setter and the Monophoto, which adapted hot-metal
machines by replacing the casting unit with a photo
unit. These machines produced commercially ade-
quate output, but were not widely used.

“Second generation” photo-electronic systems,
especially the pioneering Lumitype invented in France
in the 1940s by Moyroud and Higonnet but devel-
oped in the U.S. as the Photon (sold in France as the
Lumitype), revolutionized text composition in the
1960s and 1970s. Third generation phototypesetters
were based on cathode ray tube (CRT) imaging and
computer control, and fourth-generation machines
were based on laser imaging.

Charles Bigelow

TUGboat, Volume 38 (2017), No. 2 275

The phototypesetting revolution was not merely
technical but also social. Fast typing abilities on
QWERTY keyboards (AZERTY in France) coupled
with quick learning of computer mark-up codes and
commands replaced the mechanical skills learned
from long apprenticeship in hot-metal type technol-
ogy. “Photocomposition enabled the type-compositor
to trade the blue collar laborer’s shirt and noisy,
heavy machines, for the white collar office shirt and
precision knives and photochemical processes.”

[CB: Thus began a trend toward higher educa-
tion and social mobility for typographers, women
and men, reflected academically, first in the award-
ing of Bachelor’s, then Master’s, and most recently,
Ph.D. degrees in typography, supplanting the exclu-
sively masculine apprenticeships of older generations
of typographers.]

2. Alice Savoie: The creation of new
typefaces for photocomposition (Concevoir de

nouveaux caractères pour la photocomposition)

The designs of Adrian Frutiger and Ladislas Mandel.
Phototypesetting machines transformed not only

the process of composing texts but also the process
of making type. Type fonts ceased to be miniature
metal sculptures and instead became abstract photo-
graphic images, requiring new techniques and often,
new designers.

In 1953, Charles Peignot, director of the De-
berny & Peignot foundry in Paris, hired a young
Swiss designer, Adrian Frutiger, and assembled a
team that included Ladislas Mandel and Lucette
Girard, to produce high-quality photo fonts for the
Lumitype photo-typesetter. The team first adapted
popular metal faces like Garamond, Baskerville, and
Times Roman to the strictures and distortions of
high-speed optical imaging, but then Frutiger per-
suaded Peignot to support development of a totally
new family of sans-serif types based on Frutiger’s
student studies at the Zurich School of Arts and
Crafts [where he was taught by Walter Käch and
Alfred Willima].

The result in 1957 was the astonishing Univers
family. In the metal type era, extensive font families
like those of P.-S. Fournier and M.F. Benton had
been cut incrementally in various sizes and styles
over years or decades, but Univers burst forth from
Deberny & Peignot all at once in 21 variations of
weight, width, roman and italic, and all photograph-
ically scalable to many sizes. Typography would
never be the same again.

[Univers was enthusiastically embraced by mod-
ernist graphic designers and over ensuing decades,
its basic concepts were adopted by later generations

of type designers. There is hardly a new family of
sans-serif types today that does not owe a debt to
Univers, whether overt or unacknowledged.]

As phototype achieved commercial success in
the 1960s and 1970s, more firms commissioned and
developed original typefaces for photocomposition.
At Monotype, John Dreyfus commissioned new photo
text faces by Frutiger, Jose Mendoza, and Chris
Brand. At Linotype, Mike Parker commissioned
new script faces by Matthew Carter and Hermann
Zapf, as well as new types for Arabic, Hindi, Hebrew,
Greek, and other non-Latin alphabets.

Foreseeing typeface piracy in the photo era,
Charles Peignot, with Stanley Morison, Jan van
Krimpen, Hermann Zapf, and others, formed the In-
ternational Typographic Association (l’Association
Typographique Internationale, ATypI) to promote
intellectual and artistic property protection for type-
face designs. Several American photocomposing ma-
chine manufacturers prospered by developing cheaper
and faster machines but plagiarizing typefaces, rely-
ing on lack of American copyright for type designs
[still the case] as well as weak or absent protections
in other countries.

Beginning in the 1970s, the International Type-
face Corporation commissioned new types and mod-
ernized versions of traditional types for photocom-
position. New ITC types by designers Ed Benguiat,
Hermann Zapf, and others were licensed by many
photo and digital composing machine manufacturers
and found wide popularity, especially in advertising
and display typography.

Christian Laucou: First interlude:
Classification of typefaces and cataloging
of fonts (Première pause: classification des

caractères et catalogage des fontes)

As typeface variations multiplied, type classification
became a perennially fascinating intellectual exercise.
Classification systems were proposed by, among oth-
ers: Thibaudeau in 1921; Audin in 1929; Duvillé in
1931; Tschichold in 1951; Vox in 1952; Turner, Berry
& Johnson in 1953; and the German DIN standard
in 1962. Most of these shared, to varying degrees, a
small set of core classes denoting text typefaces of
historical eras, supplemented by stylistic variations
mainly produced in the 19th century. Differences
between classification systems were partly due to
lumping or splitting of a few classes, like the gothic
scripts, the numerous sans-serifs, and multitudinous
“fantasy” display faces.

The Vox classification was adopted by ATypI

in 1962 and remains widely used and useful, but
new classifications continued to be proposed, in part

Review: The History of Typographic Writing — The 20th century; vol. 2 (ch. 1–5)

276 TUGboat, Volume 38 (2017), No. 2

because increasing multiplicity of type forms ren-
dered older classifications incomplete, and partly
because perceived flaws in the logic or concepts of
previous systems spurred new efforts. Bringhurst,
in 1992 and later, utilized art historical nomencla-
ture as well as biological taxonomy to articulate
aesthetic-conceptual relationships of type forms. In
commercial type sales, marketing and advertising,
categories based on usage, context, and emotion have
appeared in type catalogs, specimens, and web sites.
Classification of non-Latin typefaces, such as Chinese
or Arabic, posed additional difficulties because of cul-
tural and historical distinctions not always shared
with Latin typography.

[In the classification systems cited above, the
number of different classes ranges between 5 and 22,
with average and median both around 10. Because
of the vast proliferation of type forms in the digital
era and type usage by billions of computer and smart
phone users, type classification has become a nexus
of modern Internet culture, inviting further analyses
of font features and classes, whether logical, semantic,
or pragmatic.]

3: Jacques André: Office typography:
typewriters, printers, and “strike-on” fonts
(Vers la typographie de bureau: machine à écrire,

imprimantes et caractères à impact)

Following their invention in the 19th century, type-
writers proliferated in the 20th century. Keyboard
layouts varied by manufacturer until standardization
of a few layouts according to country or language,
like QWERTY in the U.S. and AZERTY in France.
For ease of use and mechanical simplicity, typewriter
typography was graphically simplified. Most type-
writers had monospaced fonts and a single type size.
Only a few sizes were available.1

When a key was struck, a character image on a
moving type bar impacted an ink-impregnated ribbon
and squashed the character image onto paper.

Because of wear on type from the very high
number of repeated impacts and coarsening of let-
ter images from ribbon squash, typewriter typefaces
were usually monoline and based on sturdy designs,
particularly slab-serif faces. Typewriters became so

1 [CB: Also called "fixed-pitch" or "fixed-width"

fonts, as used in this footnote. All characters have

identical widths, for example, the letter ‘i’ in its

space has the same set width as the letter ‘m’ in its

space. In the U.S., the most popular standard size

was traditional English "pica", with a height of six

lines per inch when single spaced vertically, and 10

characters per inch horizontally. The smaller "elite"

size set at 12 characters per inch but usually at the

vertical "pica" line spacing.]

popular that traditional type foundries created print-
ing typefaces to imitate the typewritten look. The
popular Courier, designed for IBM electric typewrit-
ers at IBM in 1956 by Howard Kettler, was based on
geometric slab-serif printing types. Sans-serif, italic,
and all-capital typewriter faces were also produced.

A deficiency of the typewriter was that it pro-
duced “one-off” documents that were not easily repro-
ducible. A few carbon paper copies of lesser quality
than the original could be made while typing, but
mimeography, offset lithography, and photocopying
were used to reproduce typewritten documents in
greater quantities.

The ubiquity of the typewriter, its conceptual
simplicity, its standardized keyboard, and its vast
number of users led to adoption of typewriter-like
input for other systems including Telex, Teletype,
Varityper, and Justowriter, as well as computer in-
put using paper tape perforated by keyboard typ-
ing. Computer output also predictably produced
typewriter-like printing. When CRT monitors and
keyboards began to be used for computer input, the
dot-matrix characters displayed on screens resembled,
more or less, monospaced and monoline typewriter
fonts. Thus, the typewriter became one of the earli-
est, longest enduring, and most important paradigms
in human-computer interaction.

Adoption of typewriter-like computer input also
spurred standardizations of the numerical computer
codes corresponding to letters and characters, result-
ing in ASCII (American Standard Code for Infor-
mation Interchange), European ISO Latin, and IBM

EBCDIC character encodings. Stringent technical
limitations and typographic simplicity did not, how-
ever, totally suppress artistic ingenuity. Typewriter
and “ASCII art”, made with monospaced typewriter
or computerized typewriter-like characters, included
a plethora of often playful and ingenious images and
patterns.

Christian Laucou: Second interlude: Games
with letters (Deuxième pause: Jouons avec

les lettres)

In the Latin, Hebrew, and Arabic writing traditions
[Chinese and Japanese could be included], scribes
often played with the arrangement and shaping of
letters to make pictorial, ornamental, or scholarly
arrangements of text. This tendency continued into
European typography with the Hypnerotomachia
Poliphili printed by Aldus (1499), an edition of Cal-
limachus by Henri II Estienne (1577), and the poly-
glot Bible by Christophe Plantin (1572). Rendi-
tions of pictorial typography include the mouse’s tail

Charles Bigelow

TUGboat, Volume 38 (2017), No. 2 277

in Alice in Wonderland, poetry by Stéphane Mal-
larmé, Calligrammes by Guillaume Apollinaire, and
avant-garde compositions in several “isms”, includ-
ing Dadaism, Futurism (both Italian and Russian
variations), and De Stijl.

These experiments in the early part of the 20th
century were later followed by typo-pictorial com-
positions of poetry and prose under the banners of
Lettrisme, “poésie sonore”, “poésie experimental”.

[Similar manifestations appeared in works from
OULIPO (Ouvroir de littérature potentielle), in inter-
national “concrete poetry”, in the playful “Typoésie”
by Jérôme Peignot, in many typographic works by
Robert Massin, and in compositions by Bruno Pfäffli
and other students of Emil Ruder.]

Following the avant-gardists, playful renderings
and distortions of letters for semantic as well as pho-
netic signification often appeared in commercial ad-
vertising. As mentioned in chapter 3, when computer
typography was limited to single sizes of monospaced
fonts in limited character sets, “ASCII art” (as above)
was spontaneously generated in a kind of ad hoc com-
puter pointillism and was often widely distributed
because of the ease of text transmission.

4. Thierry Gouttenègre: Transfer lettering
(La lettre transfer)

Beginning in the 1960s and continuing for three more
decades, transfer or “rub-off” lettering provided a
handy and affordable means of typographic com-
position for graphic designers, architects, fashion
designers, engineers, and others needing easy access
to limited amounts of typography.

Transfer letters were based on the method of
decalcomania (“decal” for short, an image-transfer
method invented in France and exploited in 19th
century England for decorating pottery). The 20th
century innovative rub-off letters of Letraset, Alfac,
Mecanorma, and other firms were screen printed
with an adhesive onto a substrate from which the
letters could be hand-transferred onto paper or other
surface by careful rubbing. Although rub-off let-
ters began with selected traditional typefaces, the
“fonts” quickly expanded into realms of bold faces,
fantasy forms, shape distortions, radical expressions,
and graphical explorations barely imaginable and
commercially impractical in the previous, traditional
metal type era.

The wild florescence of rub-off display faces be-
gan to fade at the end of the 1980s as digital typog-
raphy increasingly provided more accessible, econom-
ical, and powerful means of typographic composition.
It is unclear how many of the rub-off designs transi-
tioned into the digital era.

5. Jacques André: History of digital font
technology (Histoire technique des fontes

numériques)

In the 1950s, typography moved from metal type and
photo-type to the abstractions of digital computing.
Newly vectorized forms of letters, numbers, and dia-
grams began to be traced with computer-controlled
electron beams on phosphorescent CRT screens.

Similar information was also used to draw im-
ages with electro-mechanical plotters on paper or
other substrates. A noteworthy compilation of vector-
defined fonts for early computer screens and plotters
was published as “Calligraphy for Computers” by
Allen Hershey. The Hershey fonts, which were polyg-
onal because of the technology, had many forms and
variations — linear, cursive, and gothic styles as well
as mathematical, chemical, and other symbols.

In the late 1960s, typesetting machine manufac-
turers began to use rasterized letters — aggregations
of pixel elements or run-length codes — to display
text on CRT screens from which photographic film or
paper could be exposed. The results were equivalent
to analog phototypesetting but the digital typeset-
ters ran much faster. Also in the 1960s and 1970s,

Review: The History of Typographic Writing — The 20th century; vol. 2 (ch. 1–5)

278 TUGboat, Volume 38 (2017), No. 2

CRT monitors, which displayed simple dot-matrix
characters, began to be widely used for computer
data input and programming. When this screen tech-
nology was adopted for broad public usage in the
French Minitel system in conjunction with the tele-
phone service, tens of millions of customers began to
read dot-matrix characters on screens.

The limitations of low resolution digital letter
imaging prompted some designers, such as Wim
Crouwel, to devise rectilinear and polygonal letter-
forms adapted to the restrictions of then-current
computer technology, but these novel experiments
were soon supplanted by more traditional-looking
letter forms as digital resolutions increased.

In the 1960s, in the fields of computer-aided
design and manufacturing, there was pioneering re-
search and development of mathematical descriptions
and renderings of curves for computer graphics. In
France, Pierre Bézier at Renault and Paul de Castel-
jau at Citroën adopted cubic splines for the descrip-
tion and rendering of curved lines and surfaces.

The decade of the 1970s was rich in exploration
of digital letter forms. Peter Karow at the URW

firm in Hamburg developed the Ikarus digital type
system, which encoded contours of letters with cubic
splines that could be output to computer plotters to
cut photo-masks for photo-optical typesetters, and
could be software scan-converted to rasters, run-
lengths, and bitmaps for different kinds of digital
typesetting equipment. Also in the 1970s, Philippe
Coueignoux at MIT and Patrick Baudelaire at Xerox
PARC independently used mathematical curves and
splines to define letter contours for typography. At
Stanford University, Donald Knuth developed his
Metafont system for font creation and digitization,
using cubic splines. Also in the 1970s and early
1980s, a few digital typesetting machines, especially
for newspapers, used outline formats — some based
on straight-line vectors and others on circular arcs —
optimized for fast output.

Karow’s Ikarus system gained commercial suc-
cess among digital typesetting manufacturers and
font developers. Moreover, URW itself digitized hun-
dreds of very high resolution fonts in the Ikarus spline
format, and those, along with fonts from manufactur-
ers using Ikarus, became the basis for a substantial
subset of the PostScript and TrueType fonts pro-
duced in the 1980s and 1990s by Adobe, Apple, and
Microsoft for personal computers and laser printers.

The Xerox corporation played a major role in
the development of digital typography in the 1970s.
At the Xerox Palo Alto Research Center (PARC),
bitmap fonts were developed for the screens of per-
sonal computers — the “Altos” — to display approx-

imations of some traditional typefaces, and spline-
defined letterforms were developed by Patrick Baude-
laire. The xerographic laser printer was invented
at Xerox by Gary Starkweather in 1969 and was
commercially developed for high-speed xerographic
printing systems by 1977.

In the mid-1980s, Xerox’s innovations were imi-
tated and popularized in products like the Apple Mac-
intosh computer and LaserWriter printer. Xerox had
also developed software for computer interchange and
output of type and pages on laser printers. Adobe
Systems, founded by alumni of Xerox PARC, de-
veloped the PostScript page description language,
which used outline fonts of cubic Bézier curves as
part of a general imaging model, to solve the problem
of device-independent page interchange and render-
ing. The first commercial PostScript printer was the
Apple LaserWriter launched in 1985.

The spline-defined font outlines of Ikarus, Post-
Script, and similar systems had several advantages,
including: economy in computer file size and memory
utilization, scalability to arbitrary sizes, ease of rota-
tion and modification. The raster scan-conversion of
abstract mathematical outlines to arrays of discrete
pixels on monitor screens or page bitmaps of laser
printers raised difficult technical and aesthetic issues
at low resolutions. Technical issues involved tracing
pixels along the edges of characters and filling the
edge-defined shapes, with the goals of increasing com-
putational speed and efficiency. [These were mainly
solved by improved rendering algorithms as well as
by the increases in computing speed and memory
described by Moore’s Law.]

The aesthetic problems, however, proved more
difficult because they involved aspects of human vi-
sion, mechanisms of reading, and expectations of the
appearance of text, all less amenable to algorithmic
analysis and hardware advances. At the laser printer
resolutions of the 1980s, all below 600 dots per inch,
simple scan conversion produced letterforms in which
irregularities of stem weights, horizontal alignments,
letter spacings, and traditional detailing produced
texts that failed to conform to reader expectations.
The outputs were accordingly judged inferior, and
there was a scramble to ameliorate perceived type
quality. Karow was the first to address this problem;
in the late 1970s and early 1980s, the Ikarus system
used software distortion of master outlines to con-
form to digital grids before scan-conversion. This
was done off-line to produce bitmap fonts.

To its PostScript Type 1 fonts, Adobe added
data to mark stems, curved bowls, vertical align-
ments, and other features, and those data were used
to locally distort the outlines of characters prior to

Charles Bigelow

TUGboat, Volume 38 (2017), No. 2 279

rasterization in order to impose greater regularity
when the characters were rasterized for the digital
grids of printers. Adobe termed these declarative
data “hints” but kept their implementations as trade
secrets. Adobe’s advance over Ikarus was that Post-
Script hints were applied on-the-fly during rasteri-
zation in the printer, instead of off-line to produce
fonts in bitmap and raster formats.

The success of PostScript and its fonts engen-
dered competitors, of which the most successful was
TrueType, invented at Apple and later licensed to Mi-
crosoft. TrueType used quadratic B-splines instead
of cubic Bézier splines, and procedural instructions
for fitting outline shapes to raster grids.

[The concept of procedural hinting had previ-
ously been developed in the late 1980s by the Folio
corporation for its F3 font technology and disclosed
to Apple early in the design of TrueType. Sun Mi-
crosystems acquired the Folio F3 technology but did
not strive to promote it as a standard in competition
to PostScript or, later, TrueType.]

In 1989, Microsoft licensed TrueType technol-
ogy for its Windows operating system, igniting a
years-long commercial battle popularly known as the
“Font Wars”, in which the combatants made rival
claims of technical and artistic superiority for their
font technologies. A partial cease-fire in the Font
Wars came in the 1990s when former combatants
Microsoft and Adobe agreed on an expanded format
named OpenType, in which character outlines could
be implemented in either PostScript or TrueType
form, and which included data to support alternative
and context-sensitive forms and glyphs required in
certain non-Latin writing systems like Arabic and
the Indic scripts. OpenType, however, was promoted
by the Adobe-Microsoft pair against a similar, earlier
font technology, TrueType GX that had been previ-
ously released by Apple, so the font wars were not
entirely over with the announcement of OpenType.

Between 1985 to 2000, some of the aesthetic
problems of digital type were ameliorated in two
ways. First, for computer screens, the algorithmic
adjustment of pixel intensities along character edges,
called “gray-scaling” or “anti-aliasing” reduced the
perceptibility of jagged pixels along curves and di-
agonals. [This depended on the pixel resolutions of
screens. At resolutions below (approximately) 120
pixels per inch, gray scaled edges looked smoother
but blurrier and were not as acceptable as manufac-
turers hoped. Screen resolutions above 220 and 300
pixels per inch after the year 2000 effectively resolved
the problem of jaggedness and irregularity of text on
screen, obviating the need for hints.]

Second, for printers, doubling of resolutions from
300 to 600 dots per inch reduced the more egregious
irregularities in text rendering, while techniques for
decreasing intensity of laser beams along character
edges to reduce apparent jaggedness of curves and
diagonals, similar to anti-aliasing in which spot size
was analogous to screen gray-scaling) made hinting
less necessary or unnecessary. [Limitations on elec-
trostatic printing limit the effective resolutions that
can be achieved for mass-market devices.]

As computerized typography and document lay-
out advanced, leaders in the computer document
industry faced the problem of exchanging electronic
documents across networks, computers, and devices,
which required standardization of computer charac-
ter encodings beyond the American ASCII and Euro-
pean ISO Latin standards. Begun by Xerox in the
1980s and supported by Apple, Microsoft, and other
firms later in that decade or in the 1990s, a 16-bit
character encoding standard called “Unicode” was
developed with the goal of eventually encompassing
all the world’s written languages. A similar encod-
ing project was begun in Europe as the ISO-10646
standard. These parallel projects were merged in the
early 1990s as the Unicode standard. Among many
other benefits, Unicode brought computer character
standardization to many of the non-Latin and non-
European orthographies and writing systems that
had encountered obstacles to efficient computeriza-
tion, thus spurring development of computer-aided
document production and distribution.

[CB: Because of the length needed for the above
review of the information-packed Chapter 5 on digital
fonts, the remaining chapters of the book will be
covered in the third and final part of this review. For
reference, the remaining titles and authors are:

• “The first commercial digital fonts”,
by Frank Adebiaye;

• “Interlude: On the revival of typefaces”,
by Franck Jalleau;

• “Everyday working fonts from 1985 to 2000”,
by Olivier Jean;

• “Hybridization, (de-)construction, and
quotation in typography from 1985 to 2000”,
by Hervé Aracil;

• “Interlude: On the preservation of typographic
heritage”, by Alan Marshall; and

• “Postface — the metamorphosis of typography”,
by Thomas Huot-Marchand.

Ending with an extensive bibliography and index.]

⋄ Charles Bigelow
http://lucidafonts.com

Review: The History of Typographic Writing — The 20th century; vol. 2 (ch. 1–5)

280 TUGboat, Volume 38 (2017), No. 2

Book reviews: What Is Reading For?
and Some Reflections on Reading and Writing,
Culture and Nature, & Sorting Things Out
by Robert Bringhurst

Boris Veytsman

Robert Bringhurst, What Is Reading For? RIT Cary
Graphic Arts Press; Rochester, 2011, Softcover, 40pp.
US$29.95. ISBN 978-1-933360-53-9.
Robert Bringhurst, Some Reflections on Reading and
Writing, Culture and Nature, & Sorting Things Out.
RIT Cary Graphic Arts Press; Rochester, 2016, Hand
sewn softcover, 12pp. US$20.00.

Typography is an unusual art. While, like other
arts, it appeals to our senses and emotions, it is
also intimately related to our reason and thoughts,
since typography is intended to be a medium for
the latter. Thus it is not coincidental that Robert
Bringhurst is not just a master typographer, but also
a poet and a deep thinker. His essays are always
worth careful study. This review is about two books
by this author.

The book What is Reading For? is based on the
talk Bringhurst gave in 2010 at the symposium The
Future of Reading at the Rochester Institute of Tech-
nology. It is a small brochure densely packed with
thoughts, ideas and observations. I have re-read it
several times, and every time found something new
and important to ponder.

This is not just a book about books. Rather,
Robert Bringhurst took the occasion to talk about
reading in the wide context of human history. I
cannot help but quote one of the first paragraphs,
rather controversial (or should we say, prescient?):

I’ve heard some very interesting things at
this symposium, and even some things I

would describe as hopeful. I regard myself
broadly as an optimist, and to prove it I will
tell you that, despite all signs to the contrary,
it is very likely that there is such a thing
as a future. I even think that reading, very
broadly and deeply defined, may be part of
that future. Whether Homo unsapiens will
be involved in any way is another question.
Human activity over the last few centuries
has been, on the whole, so short-sighted and
self-centered that it has become very difficult
to defend the proposition that our species
deserves a future. But of course, what you
do not deserve isn’t always what you do not
get. There are plenty of individual excep-
tions, and I don’t doubt there are many in
this room. But what we do in the aggregate,
as a species, is sit at the top of the food chain,
gorging ourselves. What future can anyone
see in that?

I need to stop here, suppressing the urge to quote
the whole book from the beginning to end.

Bringhurst talks about the past of the book the
reading, and then goes on to the future and digital
books. He compares Western and Eastern writing
systems and the deep influence they had on the tra-
ditions of reading, typography and calligraphy. He
talks about oral cultures and how careful listening
is a form of reading.

For me of special interest were his thoughts
about the double role of the book — as a piece of
art and as an embodiment of the author’s thoughts
that are by themselves more important than the
book itself:

The physical book, as Richard Lanham said
the other day, can have a talismanic value,
and that’s important. But whenever you deal
with talismans, you have to keep track of
the difference between the talisman and the
spirit it represents. Moby Dick is a book, and
some of us love it so much that we want to
honor it by setting it in magnificent type and
printing it really well, on really good paper,
perhaps with a few magnificent wood en-
gravings of ships, harpoons, and whales for
graphic relief, and then sewing and casing
it really well, and displaying it like an icon.
That’s fine thing to do. But if the costume
gets too grand, it may defeat its purpose.
Books, whether written or oral, are and have
to be utilitarian objects. They have to be
used, like shoes and socks. That is to say,
you have to read them — and to make them

Boris Veytsman

TUGboat, Volume 38 (2017), No. 2 281

worthwhile, you have to read them yourself.
Machines can’t do it for you, and no one
else can do it for you. Someone else could
certainly read it aloud while you listen, but
you still have to read it too, using your ears
instead of your eyes.

Bringhurst continues the comparison between books
and utilitarian objects by quoting a poem by Pablo
Neruda about a pair of knit socks made for him
by a loving and loved woman. The poet resists the
temptation to put the socks “in a gilded cage”. He
pays the tribute to the socks by treating them as
socks:

I stuck out my feet
and put them on:
the lovely
socks
and then my shoes.

Bringhurst talks about the cheap editions of
his childhood: “a paper brick whose pages would
stay together just about long enough to get the
book home from the store, and whose pages, fall-
ing out of the brittle glue, would stiffen and then
crumble into flakes of brown snow within a few
decades.” Still, he concludes, “it worked.” Young
Bringhurst bought Kant’s Critique of Pure Reason in
a $1.45 edition of 1961, separated it into sections
several millimeters thick and read these sections on
a bus or subway. This act, a sacrilege for a book
fetishist, makes a lot of sense from Bringhurst’s
point of view: Kant’s thought is much more im-
portant than the material embodiment of it in a
cheap paperback. This point of view can be traced
in Bringhurst’s own typography: the book art is
always secondary to the book contents. While this
approach is well known to readers of The Elements
of Typographic Style, it is evident in this brochure
as well: one of the requirements Bringhurst makes
for digital books is, as a matter of course, “[a]s few
bells and whistles as possible”.

What Is Reading For? has many astute observa-
tions, such as a note about the celebration of im-
maturity in the scribal culture in European monas-
teries: I immediately recalled the halls of certain
high-tech companies in the modern US. Bringhurst
easily travels between poetry, music and art (a very
interesting section compares a 17th century paint-
ing by Gerard ter Borch to a 19th century painting
by Jean-Baptiste Corot). It is a pleasure to read.

The book is also a pleasure to hold, confirming
Bringhurst’s thought that it is a fine thing to honor
the book by “setting it in magnificent type and
printing it really well, on really good paper”. The

book is typeset by letterpress with beautiful fonts:
Trinité for text, Rialto for titling, New Hellenic for
Greek and Parmenides for archaic Greek type, and
Kaiti, Mincho and Kazuraki for Han type.

A second book I’d like to mention here is Some
Reflections on Reading and Writing, Culture and Nature,
& Sorting Things Out, a small pamphlet of Bring-
hurst’s quotations, handset and printed by Amelia
Fontanel for the occasion of Bringhurst being pre-
sented with the 2016 Frederic W. Goudy Award.
The book may be especially significant for the TEX
community because it is set in Hermann Zapf’s
fonts. There are just 100 copies of this book (mine
is No. 73), so if you want it for your collection, you
should hurry. Below is a spread:

These books are a great tribute to the master
of typography, poet and thinker Robert Bringhurst.

⋄ Boris Veytsman
http://borisv.lk.net

Book reviews: Two books by Robert Bringhurst

282 TUGboat, Volume 38 (2017), No. 2

Book review: Paper: Paging Through

History, by Mark Kurlansky

David Walden

Mark Kurlansky, Paper: Paging Through History.
W.W. Norton & Company, 2017, xx+389 pp.1

Paperback, US$16.95. ISBN 978-0-393-35370-9.

Mark Kurlansky is well known as the author of sev-
eral books on seemingly narrow topics, such as salt2

and the codfish,3 but which actually range far and
wide. Paper: Paging through History is another of
these. For instance, this book addresses the histories
of writing, printing, and paper, with the thesis that
more people were becoming literate, thus requiring
a practical writing material (paper), and getting all
those words onto the paper requiring printing.

The book also discusses the histories of these top-
ics in the Far East, Middle East, Europe, and Amer-
ica, starting in 3500 bce. The author also brings in
his beliefs about the ways of innovation: new tech-
nology doesn’t enable societal changes so much as so-
cietal changes require new technology, and new tech-
nology doesn’t drive out old technology but rather
the old continues to exist beside the new. There is no
doubt considerable truth to Kurlansky’s assertions,
but I see them as a little too black and white.

Since Kurlansky has written about 17 nonfiction
books on lots of different topics, he can hardly be an
expert on all of them and thus I doubt readers can
assume the book is precisely accurate at all times.
Also, he was a journalist for 15 years, and his books
lie somewhere between journalistic and academic
studies.4 However, even if Kurlansky glosses over

some things or occasionally makes a mistake, I see
the book’s value as being an easy to read, integrated
introduction to the histories of (a) paper and the
methods of making it and its myriad uses, (b) writing,
materials upon which to write, and substances for
writing leading up to ink, and (c) printing. It makes
a lot of sense to treat these three areas together.

The book’s presentation is generally chronolog-
ical. However, with such a broad scope and so much
to share from his research — “Littered with facts”, is
a blurb on the book’s half title page by Lily Roth-
man in Time) — the organization of the content into
chapters seems a little forced. Also, the chapter titles
(e.g., “5: Europe between two felts”, “15: Invitation
from a wasp”) don’t help the reader understand the
structure of the book; they make some sense after
one has read a chapter — mostly not before. Never-
theless, it is lots of fun to read all those tidbits and to
see the logical connections the author tries to make.

Here are some example bits of information.

• Paper making came late to Europe (1140–1400).
Paper from 250 bce has been found in China;
paper making was spreading westward through
Central Asia and all the way to Egypt in the
millennia prior to reaching Europe; the Aztecs
were writing on something very much like paper
when the Spanish reached what is now Mexico.
In China paper was used for wrapping before it
was used for writing.

• By the 13th century, high quality paper was
being made in the region of Fabriano, Italy. Fab-
riano had long been a center for pounding wool
into felt, and it was easy to convert a felt mill’s
wool-pounding hammers into rag-beating ham-
mers for paper making.

• In 1719 René Antoine Ferchault de Réaumur’s
study of American Wasps, which make their
homes from a wood-based paper-like substance,
kicked off the eventual move to primarily making
paper from certain woods rather than from old
rags (which were getting scarce and expensive).
[The source of chapter 15’s title is revealed.]

• In the Revolutionary War between the original
U.S. colonies and Britain, paper was in short
supply in the colonies, but was necessary for
paper plugs to separate the gunpowder in its
firing chamber from bullets that shot out of
the colonists’ muskets. One historian to whom
Kurlansky refers has reported that “most of the
3,000-copy press run of Saur’s 1776 German
Bible was used to fire American muskets.”

• In the early 20th century, book-length “word-
less books” were in fashion with the story told
completely with woodcuts.

David Walden

TUGboat, Volume 38 (2017), No. 2 283

The Stanford Bunny in origami, from Origamizer: A

Practical Algorithm for Folding Any Polyhedron, by
Erik D. Demaine and Tomohiro Tachi, erikdemaine.

org/papers/Origamizer_SoCG2017 (CC-BY).
See also www.cc.gatech.edu/˜turk/bunny/bunny.html

and youtube.com/watch?v=GAnW-KU2yn4.

• In the 21st century, more than two millennia
after paper was first made in China, China is
again the largest producer of paper in the world.
It wanted to be the biggest and became the
biggest despite having to import much of the
material from which paper is made. More than
half of the world’s pulp for paper is imported by
China, and half of the world’s paper for recycling
is imported by China.

• The thin seaweed sheets used to wrap sushi are
made the same way paper is made and even fit
the “randomly-woven-fibers” definition of paper.

I had read a lot about the history of printing and
a book on the history of writing before reading this
book about paper; this book was a good reminder
of that prior knowledge while also telling me the
fascinating story of paper. I definitely recommend
the book to anyone who has not previously studied
the history of paper and its relationship to writing
and printing, including young people.

An aside. In these days of increasing home
schooling I think this book could be used to show

the child and parent the ways of innovation and how
societal need and technology are interleaved, as well
as of course conveying the specific histories of writ-
ing, paper, and printing. The book also touches on
environmental and sustainability issues. Also, given
the topics, hands-on craft projects would be a natu-
ral adjunct to studying the book. Certainly studying
this book would have been a lot more interesting
than the standard curriculum that I went through
in my K-to-12 days in California public schools.

The thought about home schooling came to
mind because late in the book the author men-
tions contemporary users of paper including a move
from origami as craft to origami as sculpture (as
shown at left). In this context the author also
mentions Eric Demaine, whose Ph.D. thesis was a
ground-breaking contribution to the field of com-
putational origami. Demaine was home schooled:
news.mit.edu/2003/demaine-0226.

The type note at the end of the book says the book
was set in Dante, designed by Giovanni Mardersteig
in 1954.

nderneath that explanation, the note

also says the historical-initials-like images (a
copy of one starts this paragraph) at the be-

ginning of the first paragraph of each of the book’s
almost twenty chapters are based on an alphabet
designed by Albrecht Dūrer in 1525 and cut into
linoleum by the book’s author. Missing from this
colophon is anything about the paper with which
the pages and cover of the book are made: weight,
surface finish, source mill or company, and so forth.
Having read this book by Kurlansky, I now believe
colophons should routinely talk about a book’s paper
as well as its type.

Still, as befits a book on the history of paper,
the paperback cover is stylish. The title and author’s
name are nicely debossed into attractively rough
cover paper. I decided to buy the book the instant I
glanced at it on the bookstore’s new arrivals rack —
and, having read it, I am very glad I did.

Notes

1The book’s page count includes three useful auxiliary
resources — an 8-page timeline, a 6-page bibliography,
and a 36-page index.
2Salt: A World History.
3Cod: A Biography of the Fish that Changed the World.
4Paper is the book by Kurlansky which I have found most
interesting among the other books I have read by him. (The

Basque History of the World was the next most interesting.)

⋄ David Walden
walden-family.com/texland

Book review: Paper: Paging Through History, by Mark Kurlansky

erikdemaine.org/papers/Origamizer_SoCG2017
erikdemaine.org/papers/Origamizer_SoCG2017
news.mit.edu/2003/demaine-0226

284 TUGboat, Volume 38 (2017), No. 2

TheTreasure Chest

This is a selection of the new packages posted to
CTAN (ctan.org) from March–July 2017, with de-
scriptions based on the announcements and edited
for extreme brevity.

Entries are listed alphabetically within CTAN

directories. More information about any package
can be found at ctan.org/pkg/pkgname. A few
entries which the editors subjectively believe to be
of especially wide interest or otherwise notable are
starred; of course, this is not intended to slight the
other contributions.

We hope this column and its companions will
help to make CTAN a more accessible resource to the
TEX community. See also ctan.org/topic. Com-
ments are welcome, as always.

⋄ Karl Berry
tugboat (at) tug dot org

biblio

ltb2bib in biblio

Convert amsrefs .ltb to BibTEX .bib.

dviware

dviinfox in dviware

Dump information about DVI and XDV files.

fonts

algolrevived in fonts

Revival of Frutiger’s font designed in 1963 for
code blocks in the Algol manual.

alkalami in fonts

Font from SIL for Arabic-based writing systems in
Nigeria and Niger.

jfmutil in fonts/utilities

Process JFM and VF files used in (u)pTEX.
shobhika in fonts

OpenType Devanagari font designed for scholars.

graphics

ladder in graphics/pgf/contrib

Simple ladder diagrams in TikZ.
mptrees in graphics/metapost/contrib/macros

Probability trees in MetaPost.
pst-geometrictools in graphics/pstricks/contrib

Protractor, ruler, compass, etc. symbols in PSTricks.
pst-poker in graphics/pstricks/contrib

Customizable poker cards in PSTricks.
pst-rputover in graphics/pstricks/contrib

Place text over PSTricks objects without obscuring
background colors.

pst-spinner in graphics/pstricks

Drawing fidget spinner toys in PSTricks.
pst-vehicle in graphics/pstricks/contrib

Rolling vehicles on mathematically-defined curves.
spectralsequences in graphics/pgf/contrib

Spectral sequence diagrams in TikZ.
tikzcodeblocks in graphics/pgf/contrib

Code blocks like scratch, NEPO, and PXT in
TikZ.

info

* biblatex-cheatsheet in info

Cheat sheet for BibLATEX/Biber.
studies-lm in info/german

Interactive LATEX course material, in German.

language/japanese

bxjaprnind in language/japanese/BX

Support Japanese typesetting conventions for
open parentheses.

pxufont in language/japanese

Emulate non-Unicode Japanese fonts using Unicode
fonts.

macros/generic

hlist in macros/generic

Horizontal and columned lists.
ifptex in macros/generic

Check if engine is pTEX or a derivative.

macros/latex/contrib

actuarialsymbol in macros/latex/contrib

Actuarial symbols for life contingencies and financial
mathematics.

biochemistry-colors in macros/latex/contrib

Define the standard colors used in biochemistry.
bredzenie in macros/latex/contrib

Polish variant for “lorem ipsum” sample text.
bxcalc in macros/latex/contrib

Extends calc for user-defined units and usability
in more contexts.

bxorigcapt in macros/latex/contrib

Retain document class’s names \chaptername,
\today, etc., overriding babel.

childdoc in macros/latex/contrib

Compile \include files directly.
cje in macros/latex/contrib

Support for the Canadian Journal of Economics.
correctmathalign in macros/latex/contrib

Better horizontal spacing for some math expressions
in alignments.

currency in macros/latex/contrib

Format currencies consistently, using siunitx.
draftfigure in macros/latex/contrib

Replace figures with a (customizable) white box.

graphics/pstricks/pst-spinner

ctan.org
ctan.org/topic
http://ctan.org/pkg/ltb2bib
amsrefs
.ltb
.bib
http://ctan.org/pkg/dviinfox
http://ctan.org/pkg/algolrevived
http://ctan.org/pkg/alkalami
http://ctan.org/pkg/jfmutil
http://ctan.org/pkg/shobhika
http://ctan.org/pkg/ladder
http://ctan.org/pkg/mptrees
http://ctan.org/pkg/pst-geometrictools
http://ctan.org/pkg/pst-poker
http://ctan.org/pkg/pst-rputover
http://ctan.org/pkg/pst-spinner
http://ctan.org/pkg/pst-vehicle
http://ctan.org/pkg/spectralsequences
http://ctan.org/pkg/tikzcodeblocks
http://ctan.org/pkg/\hbox to\z@ {\hss *\protect \relax \kern .16667em }biblatex-cheatsheet
http://ctan.org/pkg/studies-lm
http://ctan.org/pkg/bxjaprnind
http://ctan.org/pkg/pxufont
http://ctan.org/pkg/hlist
http://ctan.org/pkg/ifptex
http://ctan.org/pkg/actuarialsymbol
http://ctan.org/pkg/biochemistry-colors
http://ctan.org/pkg/bredzenie
http://ctan.org/pkg/bxcalc
calc
http://ctan.org/pkg/bxorigcapt
babel
http://ctan.org/pkg/childdoc
http://ctan.org/pkg/cje
http://ctan.org/pkg/correctmathalign
http://ctan.org/pkg/currency
siunitx
http://ctan.org/pkg/draftfigure

TUGboat, Volume 38 (2017), No. 2 285

easyformat in macros/latex/contrib

Markup italic, bold, bold italic with underscores
in source.

gotoh in macros/latex/contrib

Implementation of the Gotoh sequence alignment
algorithm (see article in this issue).

invoice2 in macros/latex/contrib

Intelligent invoices with LATEX3.
knowledge in macros/latex/contrib

Display, link, index concepts throughout a document.
latex-mr in macros/latex/contrib

Guide to LATEX and Polyglossia for Marathi and
other Indian languages.

lni in macros/latex/contrib

Official class for Lecture Notes in Informatics.
lucida-otf in macros/latex/contrib

Support for the OpenType Lucida Bright fonts,
including math (tug.org/lucida).

marginfit in macros/latex/contrib

Fix margin notes on the wrong side or off the
bottom of the page.

mathpunctspace in macros/latex/contrib

Control space after comma and semicolon in
math.

mcexam in macros/latex/contrib

Create randomized multiple choice exams.
minidocument in macros/latex/contrib

Subdocuments inside a LATEX document.
modular in macros/latex/contrib

Relative sectioning commands.
numnameru in macros/latex/contrib

Spelled-out numbers in Russian.
pdfreview in macros/latex/contrib

Annotate PDF files with marginal notes.
poetry in macros/latex/contrib

Facilities for typesetting poetry and poetical
structure.

rutitlepage in macros/latex/contrib

Title pages for Radboud University.
scratch in macros/latex/contrib

Draw programs like Scratch (scratch.mit.edu).
scratchx in macros/latex/contrib

Include Scratch programs in documents.
sesstime in macros/latex/contrib

Add timing marks to lecture notes, and other
time management tools.

thaienum in macros/latex/contrib

Thai numerals or characters as enumerate labels.
typoaid in macros/latex/contrib

Measure alphabet lengths, em and ex values.
uhhassignment in macros/latex/contrib

Typeset homework assignments.
xsim in macros/latex/contrib

Improved exercise sheets, succeeding exsheets.
zebra-goodies in macros/latex/contrib

Handy macros for paper writing.

macros/latex/contrib/babel-contrib

azerbaijani in m/l/c/babel-contrib

Babel style for Azerbaijani.

macros/latex/contrib/beamer-contrib/themes

beamerthemetamu in m/l/c/beamer-contrib/themes

Beamer theme for Texas A&M University.

macros/latex/contrib/biblatex-contrib

biblatex-enc in m/l/c/biblatex-contrib

Style for École nationale des chartes (Paris).
biblatex-oxref in m/l/c/biblatex-contrib

Styles inspired by the Oxford Guide to Style.
biblatex-shortfields in m/l/c/biblatex-contrib

Use fields shortseries and shortjournal if defined;
compatible with biblatex-claves.

macros/luatex

combofont in macros/luatex/latex

Experimental package to add NFSS declarations
to combined fonts.

luamesh in macros/luatex/latex

Compute and draw 2D Delaunay triangulations.
luapackageloader in macros/luatex/generic

Load packages from the standard Lua package.

path and package.cpath.

Cartoon by John Atkinson (http://wronghands1.com).

macros/luatex/generic/luapackageloader

http://ctan.org/pkg/easyformat
http://ctan.org/pkg/gotoh
http://ctan.org/pkg/invoice2
http://ctan.org/pkg/knowledge
http://ctan.org/pkg/latex-mr
http://ctan.org/pkg/lni
http://ctan.org/pkg/lucida-otf
tug.org/lucida
http://ctan.org/pkg/marginfit
http://ctan.org/pkg/mathpunctspace
http://ctan.org/pkg/mcexam
http://ctan.org/pkg/minidocument
http://ctan.org/pkg/modular
http://ctan.org/pkg/numnameru
http://ctan.org/pkg/pdfreview
http://ctan.org/pkg/poetry
http://ctan.org/pkg/rutitlepage
http://ctan.org/pkg/scratch
scratch.mit.edu
http://ctan.org/pkg/scratchx
http://ctan.org/pkg/sesstime
http://ctan.org/pkg/thaienum
enumerate
http://ctan.org/pkg/typoaid
http://ctan.org/pkg/uhhassignment
http://ctan.org/pkg/xsim
exsheets
http://ctan.org/pkg/zebra-goodies
http://ctan.org/pkg/azerbaijani
http://ctan.org/pkg/beamerthemetamu
http://ctan.org/pkg/biblatex-enc
http://ctan.org/pkg/biblatex-oxref
http://ctan.org/pkg/biblatex-shortfields
shortseries
shortjournal
biblatex-claves
http://ctan.org/pkg/combofont
http://ctan.org/pkg/luamesh
http://ctan.org/pkg/luapackageloader
package.path
package.path
package.cpath
http://wronghands1.com/
http://wronghands1.com

2017

Jul 30 –
Aug 3

SIGGRAPH 2017, “At the ♥ of
Computer Graphics & Interactive
Techniques”, Los Angeles, California.
s2017.siggraph.org

Jul 31 –
Aug 4

Balisage: The Markup Conference,
Rockville, Maryland. www.balisage.net

Aug 8 – 11 Digital Humanities 2017, Alliance of
Digital Humanities Organizations,
“Access/Accès”, McGill University,
Montréal, Canada. dh2017.adho.org

Aug 23 – 27 TypeCon 2017, “Counter!”,
Boston, Massachusetts. typecon.com

Sep 1 TUGboat 38:3 (regular issue),
submission deadline.

Sep 4 – 7 17th ACM Symposium on Document
Engineering, Valetta, Malta.
www.doceng2017.org

Sep 11 – 17 11th International ConTEXt Meeting,
“ConTEXt Gardening”,
Maibacher Schweiz, Germany.
meeting.contextgarden.net/2017

Sep 12 – 16 Association Typographique Internationale
(ATypI) annual conference, “Atypique”,
Montréal, Canada. www.atypi.org

Sep 17 – 22 XML Summer School, St Edmund Hall,
Oxford University, Oxford, UK.
xmlsummerschool.com

Sep 23 DANTE 2017 Herbsttagung and

57th meeting,
VHS, Mönchengladbach, Germany.
www.dante.de/events.html

Sep 28 –
Oct 1

Ladies of Letterpress +
Print Week, St. Louis, Missouri.
www.letterpressconference.co

Oct 6 American Printing History Association’s

42nd annual conference,
“Good, Fast, Cheap Printed Words
and Images in America before 1900”,
Worcester, Massachusetts
printinghistory.org

286 TUGboat, Volume 38 (2017), No. 2

Calendar

Oct 21 GuIT Meeting 2017,
XIII Annual Conference, Mestre, Italy.
www.guitex.org/home/en/meeting

Oct 23 Award Ceremony: The Updike Prize
for Student Type Design,
Speaker: Nina Stössinger,
Providence Public Library,
Providence, Rhode Island.
www.provlib.org/updikeprize

2018

Mar 2 TUGboat 39:1 (regular issue),
submission deadline.

Apr 4 – 6 DANTE 2018 Frühjahrstagung and

58th meeting, Passau, Germany.
www.dante.de/events.html

Apr 29 –
May 3

BachoTEX2018, 26th BachoTEX
Conference, Bachotek, Poland.
www.gust.org.pl/bachotex

May 1 TUG2018 deadline for abstracts
for presentation proposals.
tug.org/tug2018

Jun 25 – 29 SHARP 2018, “From First to Last: Texts,
Creators, Readers, Agents”. Society
for the History of Authorship, Reading
& Publishing. Sydney, Australia.
www.sharpweb.org/main

Jun 25 – 27 Practical TEX 2018, Rensselaer
Polytechnic Institute, Rome, New York.
tug.org/practicaltex2018

July 1 TUG2018 deadline for preprints for
printed program. tug.org/tug2018

TUG2018 (satellite conference to the
International Congress of Mathematicians)
Rio de Janeiro, Brazil.

Jul 20 – 22 The 39th annual meeting of the
TEX Users Group.
tug.org/tug2018

Status as of 30 July 2017

For additional information on TUG-sponsored events listed here, contact the TUG office
(+1 503 223-9994, fax: +1 815 301-3568. e-mail: office@tug.org). For events sponsored
by other organizations, please use the contact address provided.

User group meeting announcements are posted at lists.tug.org/tex-meetings. In-
terested users can subscribe and/or post to the list, and are encouraged to do so.

Other calendars of typographic interest are linked from tug.org/calendar.html.

The information here comes from the consultants themselves.

We do not include information we know to be false, but we

cannot check out any of the information; we are transmitting

it to you as it was given to us and do not promise it is correct.

Also, this is not an official endorsement of the people listed

here. We provide this list to enable you to contact service

providers and decide for yourself whether to hire one.

TUG also provides an online list of consultants at tug.org/

consultants.html. If you’d like to be listed, please see there.

Aicart Martinez, Mercè

Tarragona 102 4o 2a

08015 Barcelona, Spain
+34 932267827
Email: m.aicart (at) ono.com

Web: http://www.edilatex.com
We provide, at reasonable low cost, LATEX or TEX page
layout and typesetting services to authors or publishers
world-wide. We have been in business since the begin-
ning of 1990. For more information visit our web site.

Dangerous Curve

+1 213-617-8483
Email: typesetting (at) dangerouscurve.org

We are your macro specialists for TEX or LATEX fine ty-
pography specs beyond those of the average LATEXmacro
package. We take special care to typeset mathemat-
ics well.

Not that picky? We also handle most of your typical
TEX and LATEX typesetting needs.

We have been typesetting in the commercial and aca-
demic worlds since 1979.

Our team includes Masters-level computer scientists,
journeyman typographers, graphic designers, letterform/
font designers, artists, and a co-author of a TEX book.

de Bari, Onofrio and Dominici, Massimiliano

Email: info (at) typotexnica.it

Web: http://www.typotexnica.it
Our skills: layout of books, journals, articles; creation of
LATEX classes and packages; graphic design; conversion
between different formats of documents.

We offer our services (related to publishing in Mathe-
matics, Physics and Humanities) for documents in Ital-
ian, English, or French. Let us know the work plan and
details; we will find a customized solution. Please check
our website and/or send us email for further details.

Latchman, David

2005 Eye St. Suite #4 Bakersfield, CA 93301
+1 518-951-8786
Email: david.latchman (at) texnical-designs.com

Web: http://www.texnical-designs.com
LATEX consultant specializing in the typesetting of books,
manuscripts, articles, Word document conversions as well
as creating the customized packages to meet your needs.

TUGboat, Volume 38 (2017), No. 2 287

TEXConsultants

Call or email to discuss your project or visit my website
for further details.

Peter, Steve

+1 732 306-6309
Email: speter (at) mac.com

Specializing in foreign language, multilingual, linguistic,
and technical typesetting using most flavors of TEX, I
have typeset books for Pragmatic Programmers, Oxford
University Press, Routledge, and Kluwer, among others,
and have helped numerous authors turn rough manu-
scripts, some with dozens of languages, into beautiful
camera-ready copy. In addition, I’ve helped publishers
write, maintain, and streamline TEX-based publishing
systems. I have an MA in Linguistics from Harvard Uni-
versity and live in the New York metro area.

Sofka, Michael

8 Providence St.
Albany, NY 12203
+1 518 331-3457
Email: michael.sofka (at) gmail.com

Personalized, professional TEX and LATEX consulting and
programming services.

I offer 30 years of experience in programming, macro
writing, and typesetting books, articles, newsletters, and
theses in TEX and LATEX: Automated document con-
version; Programming in Perl, C, C++ and other lan-
guages; Writing and customizing macro packages in TEX
or LATEX, knitr.

If you have a specialized TEX or LATEX need, or if you
are looking for the solution to your typographic prob-
lems, contact me. I will be happy to discuss your project.

TEXtnik

Spain
Email: textnik.typesetting@gmail.com

Do you need personalised LATEX class or package cre-
ation? Maybe help to finalise your current typesetting
project? Any problems compiling your current files or
converting from other formats to LATEX? We offer +15
years of experience as advanced LATEX user and pro-
grammer. My experience with other programming lan-
guages (scripting, Python and others) allows building
systems for automatic typesetting, integration with data-
bases, . . . We can manage scientific projects (Physics,
Mathematics, . . .) in languages such as Spanish, En-
glish, German and Basque.

Veytsman, Boris

46871 Antioch Pl.
Sterling, VA 20164
+1 703 915-2406
Email: borisv (at) lk.net

Web: http://www.borisv.lk.net
TEX and LATEX consulting, training and seminars. In-
tegration with databases, automated document prepa-
ration, custom LATEX packages, conversions and much
more. I have about two decades of experience in TEX
and three decades of experience in teaching & training.
I have authored several packages on CTAN, Perl pack-
ages on CPAN, R packages on CRAN, published papers in
TEX related journals, and conducted several workshops
on TEX and related subjects.

288 TUGboat, Volume 38 (2017), No. 2

Webley, Jonathan

2/4 31 St Andrews St
Glasgow, G1 5PB, UK
07914344479
Email: jonathan.webley (at) gmail.com

I’m a proofreader, copy-editor, and LATEX typesetter. I
specialize in math, physics, and IT. However, I’m com-
fortable with most other science, engineering and tech-
nical material and I’m willing to undertake most LATEX
work. I’m good with equations and tricky tables, and
converting a Word document to LATEX. I’ve done hun-
dreds of papers for journals over the years. Samples of
work can be supplied on request.

TUG

Institutional

Members

TUG institutional members

receive a discount on multiple

memberships, site-wide electronic

access, and other benefits:

tug.org/instmem.html

Thanks to all for their support!

American Mathematical Society,

Providence, Rhode Island

Association for Computing

Machinery, New York, New York

Center for Computing Sciences,

Bowie, Maryland

CSTUG, Praha, Czech Republic

Institute for Defense Analyses,

Center for Communications

Research, Princeton, New Jersey

Maluhy & Co., São Paulo, Brazil

Marquette University,

Milwaukee, Wisconsin

Masaryk University,

Faculty of Informatics,

Brno, Czech Republic

MOSEK ApS,

Copenhagen, Denmark

New York University,

Academic Computing Facility,

New York, New York

Overleaf, London, UK

ShareLaTeX, United Kingdom

Springer-Verlag Heidelberg,

Heidelberg, Germany

StackExchange,

New York City, New York

Stockholm University,

Department of Mathematics,

Stockholm, Sweden

TEXFolio, Trivandrum, India

TNQ, Chennai, India

University College, Cork,

Computer Centre,

Cork, Ireland

Université Laval,

Ste-Foy, Québec, Canada

University of Ontario,

Institute of Technology,

Oshawa, Ontario, Canada

University of Oslo,

Institute of Informatics,

Blindern, Oslo, Norway

Reports and notices

110 TUG 2017 conference information

114 Jean-Michel Hufflen / TUG@BachoTEX 2017

264 Streszczenia
• all abstracts, in Polish

270 TUG@BachoTEX 2017 abstracts (de Souza, Egger, Hagen, Hoekwater, Izaola, Kwiatkowska, Ludwichowski,
Miklavec, Mittelbach, Reutenauer, Scherwentke, Thiriet, Tomaszewski, Twardoch, Vieth)

273 From other TEX journals: Die TEXnische Komödie 2/2017

280 Boris Veytsman / What Is Reading For? and Some Reflections on Reading and Writing, Culture and Nature,

& Sorting Things Out by Robert Bringhurst
• review of these two thought-provoking works by Bringhurst

282 David Walden / Paper: Paging Through History, by Mark Kurlansky
• review of this book on the intertwined history of writing, printing, and paper

285 John Atkinson / Word on the street

286 Calendar

287 TEX consulting and production services

288 Institutional members

TUGBOAT Volume 38 (2017), No. 2 • Biuletyn GUST Zeszyt 25

Introductory

157 Willi Egger / Bookbinding workshop: Making a portfolio
• instructions for constructing an art folio, with diagrams

145 Michał Gasewicz / Off topic (completely): Many faces (and types) of beer

126 Hans Hagen / Children of TEX
• premises, predilections, predictions for TEX, with reference to many books

116 Janusz Nowacki / Calligraphy by Barbara Galińska
• a few words about and samples of the work by this superlative artist

118 Maciej Rychły / Released sounds
• paintings, music, stories

165 K. Sathasivam, S.K. Venkatesan, Y. Chandy / Revealing semantics using subtle typography and punctuation
• punctuation history, redundancies, ambiguities, and resolutions

141 Luigi Scarso / MFLua 0.8—Prologue
• philosophical reflections on society and the TEX software family

125 Boris Veytsman / The state of TEX
• address at the conference of the incoming TUG President

Intermediate

185 Takuto Asakura / Implementing bioinformatics algorithms in TEX—the Gotoh package, a case study
• a sequence alignment algorithm in primitive TEX, optionally with texshade

263 Karl Berry / Production notes
• the rather helter-skelter TUGboat production process

284 Karl Berry / The treasure chest
• new CTAN packages, March–July 2017

274 Charles Bigelow / Review and summaries: The History of Typographic Writing—The 20th century, Volume 2 (ch. 1–5)
• second of three installments; chapter-by-chapter summaries for vol. 2 (1950–2000), ch. 1–5

255 Marcin Borkowski / Ten years of work in Wiadomości Matematyczne—an adventure with LATEX and Emacs hacking
• LATEX and Emacs policies, workflow, and macros for the journal Wiadomości Matematyczne

193 Siep Kroonenberg / TLaunch, the TEX Live Launcher for Windows
• TEX Live configuration (editors, viewers, . . .) in a multi-user Windows installation

212 LATEX Project Team / LATEX news, issue 27, April 2017
• ISO 8601 date format; TU encoding improvements; Hyphenation; Default language; Line spacing in parboxes

202 Jerzy Ludwichowski / GUST e-foundry current font projects
• brief overview of current GUST OpenType projects, mostly math-related

214 Vı́t Novotný / Using Markdown inside TEX documents
• generic support for Markdown input inside TEX, via Lunamark and Lua

175 Petr Sojka, Vı́t Novotný / TEX in Schools? Just Say Yes: The use of TEX at the Faculty of Informatics, Masaryk Univ.
• historical and current use at a large university in the Czech Republic

249 Lolita Tolenė / TEX user habits versus publisher requirements
• study of programs and packages used in practice, and XML translation issues

171 Boris Veytsman and Leila Akhmadeeva / To justify or not to justify? Why bad typography may be harmful
• experimental results of slower reading of \sloppy text than \raggedright

173 Boris Veytsman / Making ltxsparklines: The journey of a CTAN contributor into the world of CRAN

• an R package to support Tufte sparklines (word-sized graphics) in LATEX

Intermediate Plus

159 Barbara Beeton / Debugging LATEX files— Illegitimi non carborundum
• editing, tracing, diagnosing, testing, puzzling

203 Hans Hagen / Variable fonts
• supporting variable fonts in LuaTEX and ConTEXt

245 Jean-Michel Hufflen / MlBibTEX now handles Unicode
• per-bib file specification of encodings, and supporting Unicode

208 Bogusław Jackowski, Piotr Strzelczyk, Piotr Pianowski / Parametric math symbol fonts
• assembling OpenType math fonts from a text font and existing math symbols, with LuaTEX

238 Dávid Lupták / Typesetting bibliographies compliant with the ISO 690 standard in LATEX
• the biblatex-iso690 package and comparison with existing approaches

213 Frank Mittelbach / LATEX table columns with fixed widths
• a convenient interface for fixed-width columns in LATEX tables

188 Norbert Preining / updmap and fmtutil—past and future changes (or: cleaning up the mess)
• new usage, with new per-tree configuration and persisting across reinstallations

Advanced

147 Jean-Michel Hufflen / History of accidentals in music
• usage and typesetting of sharps, flats, etc., from ancient to modern music

218 Grzegorz Murzynowski / GMS, the “General Meta-Scenarios”: A proper extension to the l3expan package of the expl3

bundle and language, two years later
• a method for avoiding any redundant and verbose code

197 S. Tolušis, A. Povilaitis, V. Kriaučiukas / Xdvipsk: Dvips ready for OpenType fonts and more image formats
• extending Dvips to support more bitmap formats and OpenType fonts, in a LuaTEX workflow

	Introduction
	Philosophy and history
	TeX and LuaTeX
	MFLua
	Today's challenges
	Introduction
	Evolution of punctuation
	Punctuation rules and style manuals
	Semantic inadequacies in current methods of punctuation and typography
	Extending the LaTeX solution for deep structures
	Conclusion
	Introduction
	Experimental methods
	Results
	Discussion
	Motivation
	Sequence alignment
	The Gotoh package
	Algorithm
	Usage and features
	Collaborating with TeXshade

	Future directions
	Acknowledgements
	Introduction
	Math symbols subsets
	A sans-serif math OpenType font
	A heavy math OpenType font
	A monospace font with math symbols
	Enhancing the TeX Gyre text fonts
	Enhancements to existing fonts
	Summary
	The markdown.tex package
	Architectural overview
	Usage examples

	Conclusions
	Why again?
	The name

	A brief history of logistic growth of resources or: What do we take for granted
	The inspiratio: l3expan
	The Pandora's box of new letters
	``Let's make it shorter and don't repeat…'', or: how the GMSs began
	GMS as a nano-Copernican revolution (against l3expan (?))

	GMS: the automaton
	The automaton: diagram

	GMS: the formal language, and program
	The <\011riple-dot triple-dot macro> and <specification>
	The destination, <tau>
	The pre-ps. and pickers, <(pi* varpi*)*>
	The meta-operators, <sampi>
	The general permutations, or the <FSM> without grouping
	Parsing the braces, or: <BDSM>
	The <subs'n'refs>
	The replacements, `=:'
	“The arguments from beyond”, `caret ins. point'
	Snapshots and references, <ref.mark>

	Rough budgeting, a.k.a. cost estimation
	Friendly critiques at TUG@BachoTeX 2017
	Final remarks
	“Thank Heavens, it's not the Premium Class”
	The end, or eschaton

	Introduction
	International standard ISO 690
	Terminology
	Consistency principle

	Typesetting of bibliographies in LaTeX
	Standard LaTeX
	BibTeX
	BibLaTeX
	Bibliography database (.bib file)
	Summary

	ISO 690 implementations
	czechiso
	biblatex-iso690
	The CSL language
	OPmac-bib

	The biblatex-iso690 package
	Methods of citation
	Package options - customization
	Integration into the fithesis3 class
	Availability

	Summary
	Introduction
	From manuscript to printed copy
	Manuscript content analysis
	Reflections
	Introduction
	Assumptions and policies
	LaTeX classes
	Documenting classes
	One or more?
	Packages we use
	Docstrip guards
	Class options
	Macros for typesetting the whole issue
	Gathering metadata
	Design and implementation
	Making pdf files for individual articles

	Emacs editing functions
	Automatic replacement of strings
	Semi-automatic replacement of strings
	Various small hacks
	Plans for the future

	Summary
	biblio
	dviware
	fonts
	graphics
	info
	language/japanese
	macros/generic
	macros/latex/contrib
	macros/latex/contrib/babel-contrib
	macros/latex/contrib/beamer-contrib/themes
	macros/latex/contrib/biblatex-contrib
	macros/luatex

