
TUGBOAT

Volume 43, Number 1 / 2022

General Delivery 3 From the president / Boris Veytsman

4 Editorial comments / Barbara Beeton

Robin Fairbairns, 1947–2022;

R.I.P. Brent Longborough;

TUG 2022 — Online again;

HTML versions of TEX-related documents;

Movable metal type;

Calling all users of the UK TEX FAQ

6 Robin Fairbairns and UK TUG / Jonathan Fine

7 The last decade at GUTenberg / Jacques André, Patrick Bideault, Denis Bitouzé,

Michel Bovani, Thierry Bouche, Maxime Chupin, Daniel Flipo, Yvon Henel

LATEX 10 Markdown 2.15.0: What’s new? /

Vı́t Novotný, Dominik Rehák, Michal Hoftich, Tereza Vrabcová

Tutorials 16 The DuckBoat — Beginners’ Pond: CDs, but not Compact Disks / Carla Maggi

Graphics 23 Making open source textbooks, and diagrams with AlDraTex / Seth Bergmann

Methods 28 Automatically removing widows and orphans with lua-widow-control /

Max Chernoff

Software & Tools 40 l3build: The beginner’s guide / Joseph Wright

44 bib2gls: standalone entries and repeated lists (a little book of poisons) /

Nicola Talbot

Macros 59 Transparent file I/O using the original TEX program and the plain TEX format /

Udo Wermuth

Reviews 73 Book review: LATEX Beginner’s Guide, second edition, by Stefan Kottwitz /

Sarah Lang

Hints & Tricks 75 The treasure chest / Karl Berry

77 TEX Live 2022 news / Karl Berry

Abstracts 78 Die TEXnische Komödie: Contents of issues 4/2021–1/2022

79 Zpravodaj : Contents of issue 2021/1–4

TUG Business 2 TUGboat editorial information

2 TUG institutional members

80 TUG Annual General Meeting Procedures

81 TUG financial statements for 2021 / Karl Berry

Advertisements 82 TEX consulting and production services

83 TEXnology Inc.

News 84 Calendar

TEX Users Group

TUGboat (ISSN 0896-3207) is published by the
TEX Users Group. Web: tug.org/TUGboat.

Individual memberships
2022 dues for individual members are as follows:

Trial rate for new members: $30.
Regular members: $105.
Special rate: $75.

The special rate is available to students, seniors, and
citizens of countries with modest economies, as de-
tailed on our web site. Members may also choose to
receive TUGboat and other benefits electronically,
at a discount. All membership options are described
at tug.org/join.

Membership in the TEX Users Group is for the
calendar year, and includes all issues of TUGboat for
the year in which membership begins or is renewed,
as well as software distributions and other benefits.
Individual membership carries with it such rights
and responsibilities as voting in TUG elections. All
the details are on the TUG web site.

Journal subscriptions
TUGboat subscriptions (non-voting) are available to
libraries and other organizations or individuals for
whom memberships are either not appropriate or
desired. Subscriptions are delivered on a calendar
year basis. The subscription rate for 2022 is $115.

Institutional memberships
Institutional membership is primarily a means of
showing continuing interest in and support for TEX
and TUG. It also provides a discounted member-
ship rate, site-wide electronic access, and other ben-
efits. For further information, see tug.org/instmem
or contact the TUG office.

Trademarks
Many trademarked names appear in the pages of
TUGboat. If there is any question about whether
a name is or is not a trademark, prudence dictates
that it should be treated as if it is.

[printing date: April 2022]

Printed in U.S.A.

Board of Directors

Donald Knuth, Ur Wizard of TEX-arcana
†

Boris Veytsman, President∗

Arthur Rosendahl∗, Vice President
Karl Berry∗, Treasurer
Klaus Höppner∗, Secretary
Barbara Beeton
Johannes Braams
Paulo Cereda
Kaja Christiansen
Ulrike Fischer
Jim Hefferon
Frank Mittelbach
Ross Moore
Norbert Preining
Raymond Goucher (1937–2019),

Founding Executive Director
Hermann Zapf (1918–2015), Wizard of Fonts
∗member of executive committee
†honorary

See tug.org/board for a roster of all past and present
board members, and other official positions.

Addresses

TEX Users Group
P. O. Box 2311
Portland, OR 97208-2311
U.S.A.

Telephone
+1 503 223-9994

Fax
+1 815 301-3568

Web
tug.org

tug.org/TUGboat

Electronic mail

General correspondence,
membership, subscriptions:
office@tug.org

Submissions to TUGboat,
letters to the Editor:
TUGboat@tug.org

TEXnical support,
public mailing list:
support@tug.org

Contact the
Board of Directors:
board@tug.org

Copyright c© 2022 TEX Users Group.

Copyright to individual articles within this publication
remains with their authors, so the articles may not

be reproduced, distributed or translated without the
authors’ permission.

For the editorial and other material not ascribed to a

particular author, permission is granted to make and
distribute verbatim copies without royalty, in any medium,

provided the copyright notice and this permission notice
are preserved.

Permission is also granted to make, copy and distribute

translations of such editorial material into another
language, except that the TEX Users Group must approve

translations of this permission notice itself. Lacking such

approval, the original English permission notice must
be included.

[The author] hopes that nobody will ever scrutinize any
of his own writings as meticulously as he and others
have examined the Algol Report.

Donald E. Knuth
“The Remaining Trouble Spots in Algol 60”
Communications of the ACM

(Volume 10, Number 10, October 1967)

COMMUNICATIONS OF THE TEX USERS GROUP

EDITOR BARBARA BEETON

VOLUME 43, NUMBER 1, 2022

PORTLAND, OREGON, U.S.A.

TUGboat editorial information

This regular issue (Vol. 43, No. 1) is the first issue of the
2022 volume year. The deadline for the second issue in
Vol. 43 (the TUG’22 conference proceedings) is July 31,
2022, and for the third (regular) issue is October 15,
2022. Contributions are requested.

TUGboat is distributed as a benefit of member-
ship to all current TUG members. It is also available
to non-members in printed form through the TUG store
(tug.org/store), and online at the TUGboat web site
(tug.org/TUGboat). Online publication to non-members
is delayed for one issue, to give members the benefit of
early access.

Submissions to TUGboat are reviewed by volun-
teers and checked by the Editor before publication. How-
ever, the authors are assumed to be the experts. Ques-
tions regarding content or accuracy should therefore be
directed to the authors, with an information copy to the
Editor.

TUGboat editorial board

Barbara Beeton, Editor-in-Chief
Karl Berry, Production Manager

Robin Laakso, Office Manager

Boris Veytsman, Associate Editor, Book Reviews

TUGboat advertising

For advertising rates and information, including consul-
tant listings, contact the TUG office, or see:
tug.org/TUGboat/advertising.html

tug.org/consultants.html

2 TUGboat, Volume 43 (2022), No. 1

Submitting items for publication

Proposals and requests for TUGboat articles are grate-
fully received. Please submit contributions by electronic
mail to TUGboat@tug.org.

The TUGboat style files, for use with plain TEX
and LATEX, are available from CTAN and the TUGboat

web site, and are included in TEX distributions. We
also accept submissions using ConTEXt. For deadlines,
templates, author tips, and more, see tug.org/TUGboat.

Effective with the 2005 volume year, submission of
a new manuscript implies permission to publish the ar-
ticle, if accepted, on the TUGboat web site, as well as
in print. Thus, the physical address you provide in the
manuscript will also be available online. If you have any
reservations about posting online, please notify the edi-
tors at the time of submission and we will be happy to
make suitable arrangements.

Other TUG publications

TUG is interested in considering additional manuscripts
for publication, such as manuals, instructional materials,
documentation, or works on any other topic that might
be useful to the TEX community in general.

If you have such items or know of any that you
would like considered for publication, please contact the
Publications Committee at tug-pub@tug.org.

TUG

Institutional

Members

TUG institutional members

receive a discount on multiple

memberships, site-wide electronic

access, and other benefits:

tug.org/instmem.html

Thanks to all for their support!

American Mathematical Society,

Providence, Rhode Island, ams.org

Association for Computing

Machinery, New York, New York,

acm.org

Aware Software,

Newark, Delaware, awaresw.com

Center for Computing Sciences,

Bowie, Maryland

CSTUG, Praha, Czech Republic,

cstug.cz

CTAN, ctan.org

Duke University Press, Durham,

North Carolina, dukeupress.edu

Hindawi Foundation, London, UK,

hindawi.org

Institute for Defense Analyses,

Center for Communications

Research, Princeton, New Jersey

L3Harris, Melbourne, Florida,

l3harris.com

LATEX Project, latex-project.org

MacTEX, tug.org/mactex

Maluhy & Co., São Paulo, Brazil,

maluhy.com.br

Marquette University,

Milwaukee, Wisconsin,

marquette.edu

Masaryk University,

Faculty of Informatics,

Brno, Czech Republic, fi.muni.cz

Nagwa Limited, Windsor, UK,

nagwa.com

Overleaf, London, UK,

overleaf.com

StackExchange,

New York City, New York,

tex.stackexchange.com

TEXFolio, Trivandrum, India,

texfolio.org

Université Laval, Ste-Foy, Québec,

Canada, bibl.ulaval.ca

University of Ontario, Institute

of Technology, Oshawa, Ontario,

Canada, ontariotechu.ca

University of Oslo,

Institute of Informatics,

Blindern, Oslo, Norway, uio.no

VTEX UAB, Vilnius, Lithuania,

vtex.lt

TUGboat, Volume 43 (2022), No. 1 3

From the president

Boris Veytsman

My previous two columns were written about licenses
for free software. The topic is vast, and I would like
to discuss another aspect of it today.

First, a little bit of history. Gutenberg’s printing
press was a revolutionary invention, which radically
decreased the cost of the written word. One of the
first applications of the invention was the printing of
indulgences. One of the first printed indulgences was
presumably produced by Gutenberg himself (Fig-
ure 1). Indulgences were one of the reasons for
Martin Luther’s revolt against the Catholic church.
Luther himself understood the power of the printing
press very well. He was able to publish his tracts in
hundreds of thousands of copies. Luther hired the
best printers, including the famous illustrator Lucas
Cranach the Elder. However, Luther’s adversaries,
both Catholics and competing Protestants, also used
the press to spread their texts. Some historians
say that the Reformation and Counter-Reformation
would not be possible without Gutenberg’s invention.

This leads to an interesting question. Religious
wars took millions of lives in the 16th and 17th
centuries. Did the widespread use of incendiary pam-
phlets contribute to this carnage? And if yes, how
much blame can we put on the printing press?

Similar things occurred many times. It is com-
mon knowledge that most human inventions were
quickly used to kill human beings. The domestica-
tion of the horse gave rise to cavalry, the invention of
the wheel led to military chariots, people learned to
fly and started to bomb other people, and so forth.
What I would like to stress here is that information
technologies are not an exception to this rule. From
writing to printing press to telegraph to radio to tele-
vision to computers—every innovation was quickly
used for killing people, or for military propaganda,
which also led to killing people. Even our TEX work
may have military uses. I must confess that in my
TEX portfolio there are styles written and paid for
by the US Army.

Thus those of us who work in information tech-
nologies can be reasonably sure that our work will
someday be used to kill. A fresh example: after the
vendors of commercial operating systems left Russia,
it plans to switch its military to the “Russian OS”,
reportedly being a clone of Linux. Can Free Software
prevent this? A näıve approach would be to try to
add the clause “Thou shalt not kill with this software”
to the license. However, free software guidelines such
as DFSG explicitly forbid discrimination with respect

Figure 1: Fragment of 31-line indulgence, from

en.wikipedia.org/wiki/31-line_Indulgence

to the field of use. If you forbid the use of your soft-
ware for nefarious aims, you automatically make your
software non-free. Are these guidelines reasonable?
I think yes. At the end of the day the rule of law
is the moral authority. If somebody wants to use
your software for amoral purposes, they can easily
disregard this clause of your license. On the other
hand, such clause may prevent other people from
using your work for defense. There was no way to
prevent the tables of logarithms, sines and cosines
to be used in artillery: once a mathematical theo-
rem is published, it can be used by anybody for any
purpose.

I think I can agree with the position of Canon-
ical, the maintainer of Ubuntu (ubuntu.com/blog/
canonical-standing-with-ukraine). In response
to the Russian invasion of Ukraine, Canonical termi-
nated support, professional services and partnership
with Russian users. However, it did not restrict the
access for security patches for these users, noting that
“free software platforms like Ubuntu, VPN technolo-
gies, and Tor, are important for those who seek news
and dialogue outside state control”, and directing
any subscription income to Ukrainian humanitarian
causes.

There are, however, grounds for hope. Besides
being used for war propaganda, the printing press
started rapid progress of science and literature, that,
after all, made us live longer, healthier, and maybe
even happier lives. We also can hope that our work
at the end of the day will make the world slightly
better. We cannot prevent bad people from using
our work, but we can hope our work is used by good
people.

⋄ Boris Veytsman

president (at) tug dot org

doi.org/10.47397/tb/43-1/tb133pres

From the president

https://en.wikipedia.org/wiki/31-line_Indulgence
https://ubuntu.com/blog/canonical-standing-with-ukraine
https://ubuntu.com/blog/canonical-standing-with-ukraine
https://doi.org/10.47397/tb/43-1/tb133pres

4 TUGboat, Volume 43 (2022), No. 1

Editorial comments

Barbara Beeton

Robin Fairbairns, 1947–2022

Robin left us on 25 February 2022, after a long
period of ill health. An interview by Dave Walden in
February 20051 tells how he came to the TEX world,
even before he joined the Computer Laboratory of
the University of Cambridge, bringing (LA)TEX with
him.

At Cambridge, Robin was in charge of many
activities related to TEX. Early on, he was an avid
TEX user, and actively answered questions on texhax

and comp.text.tex. When the University of Aston
determined that they were no longer able to host the
UKTEX Archive, Robin rescued it and brought it to
Cambridge, where it became one of the original nodes
of CTAN. (In turn, this freed Sebastian Rahtz to put
together the first versions of TEXLive.2) Robin is
listed as (co-)author and/or maintainer of a rather
large number of packages on CTAN,3 among them
capt-of, covington (linguistic support), endnotes,
footmisc, moreverb, rotating, and setspace, to
mention some that I’ve seen still in use recently.

Always helpful, and a good explainer, Robin
(with others) selected the 100 most interesting ques-
tions asked on various Internet fora and created the
UK-TUG FAQ, which they published in Baskerville

(The Annals of the UK TEX Users’ Group) in Decem-
ber 1994 (vol. 4, no. 6).4 The online version moved
to Cambridge in 1999, joining CTAN, with Robin as
editor. With the maintenance of CTAN centralized
under DANTE, the Cambridge site became a mirror,
and after Robin’s retirement at the end of December
2014 the FAQ found a new home.5 However, much
of the content still owes its existence and clarity to
Robin.

Robin attended the first meeting of the British
user group, UK-TUG, and was persuaded to serve
on the committee; he also served as chairman, and
was the formal publisher of Baskerville. He was
active in TUG as well, serving on the board in 1996–
1997. He attended several TUG annual meetings,
and was editor of the proceedings for two of them:
1995 (St. Petersburg, Florida) and 2000 (Wadham
College, Oxford, UK). The TUGboat production
team was formed during the editing of the 1995
proceedings, with Robin as a founding member; he

1 tug.org/interviews/fairbairns.html
2 tug.org/TUGboat/tb18-2/tb55tlguide2.pdf
3 ctan.org/author/fairbairns
4 mirrors.ctan.org/usergrps/uktug/baskervi/bask4_6.

pdf
5 texfaq.org

remained a member through 2019. Also a TUG-

boat author,6 Robin introduced the “New (LATEX2ε)
TUGboat Macros”,7 a tutorial for the package he
helped to develop, based on his experience with the
1995 proceedings.

Last, but far from least, Robin was a member
of the LATEX3 Project. The memorial on their site
includes this recognition:8

Robin was a tireless member of the community
who helped many people for many years with
his kind, friendly, and patient approach. He
clearly looked to improve the TeX ecosystem
and worked hard to leave it in a better place
after his time was up. He certainly succeeded
in that.

I couldn’t agree more, and will miss him greatly.

R.I.P. Brent Longborough

Brent Longborough, an active participant since its
inception in TeX.Stackexchange and other (LA)TEX-
related pursuits, left us peacefully on 6 December
2021, surrounded by his family. Brent characterized
himself as an “old-ish IT geezer, young at heart”.

Born in Exeter, in Devon, England, he moved
with his family to a number of different UK towns
and cities, prefiguring his later peripatetic life. He
attended Oxford University, concentrating in chem-
istry, but decided early that this was not for him,
and switched to IT, which became his permanent
direction.

In 1980, he moved to Rio de Janeiro, working for
a British airline. There he mastered the Portuguese
language, met his wife, Celia Navarro, and acquired
a family.

6 tug.org/TUGboat/Contents/listauthor.html#

Fairbairns,Robin
7 tug.org/TUGboat/tb17-3/tb52guid.pdf
8 latex-project.org/news/2022/03/16/

robin-fairbairns/

doi.org/10.47397/tb/43-1/tb133beet

https://tug.org/interviews/fairbairns.html
https://tug.org/TUGboat/tb18-2/tb55tlguide2.pdf
https://ctan.org/author/fairbairns
https://mirrors.ctan.org/usergrps/uktug/baskervi/bask4_6.pdf
https://mirrors.ctan.org/usergrps/uktug/baskervi/bask4_6.pdf
https://texfaq.org
https://tug.org/TUGboat/Contents/listauthor.html#Fairbairns,Robin
https://tug.org/TUGboat/Contents/listauthor.html#Fairbairns,Robin
https://tug.org/TUGboat/tb17-3/tb52guid.pdf
https://latex-project.org/news/2022/03/16/robin-fairbairns/
https://latex-project.org/news/2022/03/16/robin-fairbairns/
https://doi.org/10.47397/tb/43-1/tb133beet

TUGboat, Volume 43 (2022), No. 1 5

For many years, Brent was employed by IBM,
still in Brazil. After leaving IBM, he worked for a
Turkish airline, moving with his family to Turkey,
becoming conversant in Turkish as well. When he
became involved with TEX, he participated in the
development of arara, including the translation of
arara into Turkish.

Brent continued moving around the world, liv-
ing at various times in Mexico, Colombia and India,
returning to the UK after retirement, where he set-
tled with his family in Wales. Languages were well
represented in Brent’s skill set, and included French
and Spanish (as well as innumerable programming
languages), and finally, Welsh. After his return to
the UK in 2002, Brent served (in 2013) as a member
of the UK-TUG committee.

Brent’s contributions to CTAN were related to
the use of git, and the package tagging, which
supported the creation of a source document from
which multiple distinct outputs could be generated.

A representative example of his contributions
to Stackexchange discussions is his response to the
question “Why is LaTeX so complicated?”, which
can be seen at https://tex.stackexchange.com/

a/222505.
A memorial to Brent was held via Zoom on 23

January 2022, led by his son, Gus Navarro, and at-
tended by many of his friends. Conducted alternately
in Portuguese and English, his message honored his
father’s care and attention through an eventful life.
Remembrances by friends reinforced the memory of
these qualities.

Thanks to Paulo Cereda for sharing notes from
the Zoom memorial and providing other helpful in-
formation.

TUG 2022 —Online again

Owing to the ongoing uncertainty concerning the
ability to travel and meet with no restrictions based
on COVID-19 status, it has been decided to, once
again, conduct the conference online. This will take
place from 22–24 July 2022. For details so far visit
the conference web page at tug.org/tug2022.

As always, participation is encouraged, both
through submission of papers and volunteering to
assist with the organization. Instructions for submit-
ting a presentation are on the web page. If you wish
to volunteer, send a message to tug2022@tug.org.

HTML versions of TEX-related documents

Two significant developments have occurred to sup-
port (visual) access to TEX-related material on the
web: an HTML version of the PGF/TikZ manual,
and HTML output from articles on the arXiv.

The manual was provided by Dominik Peters at
https://tikz.dev, as announced in January on the
tex.stackexchange forum.9 It’s searchable, and
sections are provided as links identified with ¶. (The
graphic of the opening page in the posting is very
attractive.)

The second development is the availability of
math articles on the arXiv via ar5iv.org as “respon-
sive HTML5 web pages” (the “5” is an indication of
the HTML version). Translation from the source is
accomplished using LATEXML.10 More details of the
project can be found on the arXiv blog.11 We would
be pleased to learn your reactions to the output of
this project.

The W3C MathML Working Group is working
on the problem of audio and tactile accessibility
for visually impaired readers. This is even more
complicated than conversion to HTML for sighted
readers. At an appropriate time, we hope to learn
about the problems they’ve encountered and how
those were overcome.

Movable metal type

Earlier this year, Boris Veytsman sent to me and
several others interested in the printing arts a link
to the scans of a beautiful copy of a Gutenberg bible,
resident in the Beinecke Rare Book and Manuscript
Library at Yale University.12 Leafing through the
pages, I observed that not only was some of the
text printed in two colors (black with select passages
in red), but ornate initials and delicate marginal
decorations were also present. While admiring this
handiwork, a followup message arrived from one of
the other recipients, admiring the printing workman-
ship that had produced these marvelous decorations.

Stop! Given the mechanical requirements of
printing with movable type, it wasn’t possible that
the decorations could be produced on the press. They
must be added by hand after the print run. Since
I would have expected the individual making these
comments to know the process, but clearly that was
not the case, it seemed appropriate to present a brief
introduction. Here I will be very brief, but with the
intention of creating something closer to a “how to”
manual at a later time.

Movable type, from Gutenberg’s time (mid-15th
century) through the middle of the 19th century,
consisted of individually cast metal letters that were

9 tex.stackexchange.com/a/630330
10 math.nist.gov/~BMiller/LaTeXML
11 blog.arxiv.org/2022/02/21/

arxiv-articles-as-responsive-web-pages/
12 orbis.library.yale.edu/vwebv/holdingsInfo?bibId=

3391099, collections.library.yale.edu/catalog/2020598

https://tex.stackexchange.com/a/222505
https://tex.stackexchange.com/a/222505
https://tug.org/tug2022
https://tikz.dev
https://ar5iv.org
https://tex.stackexchange.com/a/630330
https://math.nist.gov/withtilde%20BMiller/LaTeXML
https://blog.arxiv.org/2022/02/21/arxiv-articles-as-responsive-web-pages/
https://blog.arxiv.org/2022/02/21/arxiv-articles-as-responsive-web-pages/
https://orbis.library.yale.edu/vwebv/holdingsInfo?bibId=3391099
https://orbis.library.yale.edu/vwebv/holdingsInfo?bibId=3391099
https://collections.library.yale.edu/catalog/2020598

6 TUGboat, Volume 43 (2022), No. 1

composed into text by hand. In order to keep them
in their proper locations, it was necessary to place
them on a flat solid surface and constrain them by
locking them into a frame, or chase, so that they
wouldn’t fall apart into “pi”, forcing the compositor
to start all over, after picking up the little pieces and
sorting them into a recognizable order.

Watch this brief video, showing how an 83-year-
old Japanese printer carefully selects her type, ar-
ranges it, locks it up on the press, and prints a
business card.13 Then contemplate how much more
effort went into the printing of the Gutenberg bible.

Calling all users of the UK TEX FAQ

This is not new news, but may not be known gener-
ally, and it can come as a surprise when links pointing
to the FAQ come up broken.

The UK TEX FAQ was created under the aus-
pices of UK-TUG. Full publication first occurred in
Baskerville 4:6, December 1994, as The New TEX

FAQ: Your 100 Questions Answered.14 At that time,
the home for the FAQ had moved from the online
comp.text.tex newsgroup to Cambridge University,
where it came under the tender care of Robin Fair-
bairns. When Robin retired, the FAQ was cut loose,
but the established url maintained independently,
and linked to the new location. This has become too
expensive, and the academic ID has been terminated.
This leaves a large number of links throughout the
Internet without a recognizable target. An effort
is being made to update links in online forums or
on static pages where this is possible. Of course,
it is impossible in such places as mail archives, but
since the FAQ itself is still alive (if a bit inactive)
anyone knowing of a reference that can be fixed is
encouraged to fix it.

Here is the formula. The former syntax of the
url was this:
http://www.tex.ac.uk/cgi-bin/

texfaq2html?label-⟨topic⟩
This should now be
https://texfaq.org/FAQ-⟨topic⟩

Please use the new form when referring to the
FAQ, and if you encounter the old url, please correct
it if you can, or ask someone who can.

⋄ Barbara Beeton

https://tug.org/TUGboat

13 youtube.com/watch?v=UqDU6UO1328
14 http://uk.tug.org/wp-installed-content/uploads/

2008/12/46.pdf

Robin Fairbairns and UK TUG

Jonathan Fine

Dear Members
I’m saddened to hear that Robin Fairbairns has

died. I knew that for some time he had health prob-
lems. His family, friends and colleagues have my
condolences. I write with a mixture of sadness, re-
grets and gratitude.

About 30 years ago I learnt of his role in the
TeX community, and was delighted that he and I
lived close to each other in Cambridge. I learnt a lot
from him, particularly working together in person
on the TeX FAQ, which had recently become the
responsibility of the UK TeX Users Group.

In 1994 Chris Rowley as chair of UK TUG re-
ported [Baskerville 5.1, p35]

The notable innovation in 1994 has been the
regular appearance of Baskerville. Under
the editorship of Sebastian Rahtz, and with
Robin Fairbairns and Jonathan Fine as pub-
lisher and distributor, issues of our newsletter
now reach members approximately every two
months.

It contains an interesting variety of TeX-
related articles in addition to notices of meet-
ings and subscription forms. In my opinion,
Baskerville is the best in content and, by a
wide margin, in timeliness of all the journals
and newsletters produced by TeX user groups.

Thanks to Sebastian, Robin and Jonathan,
and also to all those who have written items
for Baskerville.

With the tragic early death of Sebastian in 2016, and
Robin this year, of the four persons named in that
news story only myself and Chris Rowley are still
alive.

⋄ Jonathan Fine

Milton Keynes

UK

jfine2358 (at) gmail.com

https://jfine2358.github.io/

doi.org/10.47397/tb/43-1/tb133fairbairns-fine

comp.text.tex
https://youtube.com/watch?v=UqDU6UO1328
http://uk.tug.org/wp-installed-content/uploads/2008/12/46.pdf
http://uk.tug.org/wp-installed-content/uploads/2008/12/46.pdf

TUGboat, Volume 43 (2022), No. 1 7

The last decade at GUTenberg

Abstract

The French TEX user group, GUTenberg, has elected
a new board in November 2020. Since then, it is
coming back to life and serves again the French-
speaking community.

But in the meantime, a letter written by the
former President of GUTenberg, Jérémy Just, still
a member of the board, was published in TUGboat

42:1, pp. 12–13. Unfortunately, it was highly inaccu-
rate and incomplete, and we are exercising our right
to reply to it. (Indeed, we would say more about the
character of that letter but it is best to avoid raising
our voices on these pages.)

1 Local groups: inception and
day-to-day work

A local users’ group’s day-to-day activity is made
out of little things: replying to emails; updating a
website; updating the members’ register; preparing
the next issues of the group’s publications; caring for
a server; doing some bookkeeping; preparing the next
gatherings or training sessions; providing software to
members; and so on.

These little things need to be sorted out, one
by one, so that, one year after the other, the group
goes on. It is a delicate mechanism that needs caring
people to attend it.

Back in the days before the web, any local TEX
users’ group, at its inception, was providing software
(and information about it) to its members. The
groups were lively: joining them was almost the only
way to have the chance to use TEX.

Then our international community of users made
the software programs and their documentation avail-
able on the internet, so that anyone could have access
to it, freely and instantly. This amazing achievement
was due to the step-by-step process described above:
some passionate users were dedicating some of their
time to it.

2 TEX 24/7 online availability and
its effect on LUGs

When this goal was reached, when everything that
was needed to use (LA)TEX became available 24/7,
local users’ groups had to prove themselves to still be
useful. Some members who had joined before in order
to be provided with software and documentation were
not to be seen any more.

A decreasing membership affected the fragile
mechanism described above. It became even more
fragile. And needed even more care than before.
More dedication—at the very moment where its

workforce was decreasing. At the very moment where
its usefulness was at stake.

It happened here and there. For example in
France, at GUTenberg, a decade ago.

Luckily, since then, in most cases, the users’
groups have proved useful: the dedication of their
members, their good will, the love for TEX that they
spread around showed that the usefulness of a group
goes far beyond providing software and documenta-
tion. When sharing them, we share much more than
them: at the end, it’s about looks and smiles, just
as any human activity.

And that is the fun of it.

3 An agony

Unfortunately, a decade ago, things went on differ-
ently at GUTenberg. When more care was needed,
care was diminishing. When lack of care was men-
tioned, dissent emerged — instead of better care.

It is a classic story, made out of classic issues
that could have been fixed by people binding other
people together. Minor issues that could have been
fixed by patience, care and good will.

But surprisingly, in times when communication
can be easy, misunderstanding prevailed. Passion-
ate people left, tired of seeing their ideas not being
replied to in the way that they would have expected
before.

The fragile mechanism described above wasn’t
running smoothly any more. The group began to
lack people to care for its day-to-day activities. At
GUTenberg’s board, more and more people were
missing, some of them tired from seeing their projects
being rebuffed by a president who was lacking time.

GUTenberg’s activity was harshly decreasing.
Its journal was seldom published—before ceasing
publication. Some of its subscribers complained by
email; some emails were not even replied to. During
those hard times, calls for help were heard; some were
granted hearing. Some not. GUTenberg’s manda-
tory annual gatherings were not organized any more.
And it is all about looks and smiles, just as any hu-
man activity: when the activity itself is missing, the
good will fades out quickly. The president was by
then alone. Because of his own inability to work with
others. It is a pity to read his words about “the atmo-
sphere among the board is far from the friendly one
that we had when the board was working smoothly”:
there was no work and no atmosphere at all. This
is how a group dies: when only one person remains,
you can’t call it a group any more.

No publications. No gatherings. No financial
reports sent to the members. No banking activity at

all in 2019. A few subscriptions remained, but the

doi.org/10.47397/tb/43-1/tb133andre-gut

The last decade at GUTenberg

https://doi.org/10.47397/tb/43-1/tb133andre-gut

8 TUGboat, Volume 43 (2022), No. 1

joint GUTenberg+TUG subscriptions weren’t even
reported to TUG. No emails on the board’s mailing
list from August to December 2018. These are facts.
Not “personal point of views”, such as the ones in
the article that we are replying to.

4 Memory matters

The group was dead. But its memory remained.
Former members were still around. Still using TEX.
Lonely, but remembering. And some started to talk
together. To talk about the group that they were
missing: GUTenberg. Its name was mentioned again.
And again. Nothing blazing. But embers. And some
breath blown on it. By some people still caring about
a group that used to be. Each of them concerned
about GUTenberg’s unacceptable demise.

We were not many. But we were . . . a group.

5 A call for change

On January 17, 2020, an email was sent to the asso-
ciation’s only member still in charge:

Subject: AG GUTenberg

Date: Fri, 17 Jan 2020 09:44:53 +0100

Hello Jérémy,
We send you this email as a collective;

you will find our names hereunder.
We first thank you for updating

GUTenberg’s website so that online
subscriptions are now available for 2020.

We are well aware that you have spent
and still spend a lot of energy for the
association and that you are overwhelmed
by your professional activity.

Our bylaws provide for an annual general
assembly with moral and financial reports.
Nevertheless, no general assembly was
held since 2013, no report was published
since then. In addition to that, the board
members are only elected for a four-years
term, i.e. since 2017, no one has a valid
term any more.

It is therefore urgent to organize a
general assembly to decide if we dissolve our
association or if we restart GUTenberg on a
sound basis.

To this end, it is necessary to have an
accurate financial report: a clear view
on our assets with a history of our bank
transactions, but also a list of our debts to
our members who subscribed to services
that were not provided, such as our Journal,
the TUGboat issues etc.

The best would be for you to call this
general meeting, in Paris, before the end of

March, where you would present the current
state of the association.

In the absence of a positive response from
you before the end of January, we would
have to call this general meeting ourselves.

Looking forward to reading from you,
sincerely,

This message was signed by 8 names, now de-
picted as a “small group of people”. Such a depiction
is a common way to make people suspicious. Well,
let’s introduce those people. By alphabetical order:

Jacques André founder, board member 1988–2007;
typography historian, Jacques has contributed
often to the association’s publications; his books
have been reviewed in TUGboat, where he has
also published articles.

Patrick Bideault co-opted board member, deputy
assistant secretary in charge of the memberships
paid by PayPal, now president and maintainer of
the coffeestains package, texnique.fr mod-
erator.

Denis Bitouzé board member 2010–2014, main-
tainer of several packages, co-creator and mod-
erator of texnique.fr, organizer of the annual
(and famous) Dunkirk LATEX training, co-author
of books about LATEX, author of an open access
LATEX course and tireless LATEX flag-bearer, now
secretary.

Thierry Bouche board member 1997–2017, former
editor of Cahiers GUTenberg.

Michel Bovani board member 1999–2003, main-
tainer of the fourier package.

Maxime Chupin board member 2009–2017, main-
tainer of the bclogo, luamesh and matapli

packages, now deputy secretary.

Daniel Flipo board member 1993–2005, maintainer
of many packages including babel-french.

Yvon Henel board member 2009–2017, maintainer
of many packages, now deputy treasurer.

We sincerely hope that any suspicion has now
vanished. We were only a group of honest people,
worried about an association that we had in common,
to which we were deeply attached.1 Please notice
that we never asked to dissolve GUTenberg. We
only mentioned that it could be possible, just like
Jérémy Just himself did before in several messages;
this mention was due to the association’s by-then
current state.

Then, the horrendous article that we are reply-
ing to mentions a shadow cabinet. Yes, we have used

1 Four among us have applied to the election and are now
in charge at GUTenberg.

The last decade at GUTenberg

texnique.fr
texnique.fr

TUGboat, Volume 43 (2022), No. 1 9

this expression once. As a joke. And we deeply regret
it: to be understood, a joke needs views to be shared
by the addressee. But anyone can understand that
we have imagined ourselves in charge of GUTenberg.
This is why we have published our election plat-
form, which is not even mentioned in Mr Just’s text:
he prefers mentioning imaginary projects blocked on
purpose and the abovementioned nonexistent friendly
atmosphere among the by-then nonexistent board.

We recognize that Jérémy Just has spent time
for the association. However, this time spent has
slowly but surely led to the demise of the association.
He has gradually disgusted many of us from working
with him over the past few years.

As a matter of fact, Jérémy Just does not have
the same conception of the association’s work as we
do: for him, it is mainly the sum of individual activ-
ities (his moral assessment of the General Assembly
of 2020 was only an assessment of his TEXian activi-
ties), whereas for us, it is a collective project, with
collective choices, and collective stimulation giving
body to the association and making it much more
than the sum of the activities of its members.

6 GUTenberg’s revival

To relaunch the association, for the General Assembly
that we forced to be held, some of us put together a
team, wrote a project and presented ourselves for the
election of the board.2 Their purpose was to rebuild,
as a team, and we were glad to be joined by others
at the new board, after the election. Nowadays
the association serves its community again. But,
to our great disappointment, one board member
spits in the soup, as we say in French. It is hard
for us to understand the acrimonious article we are
replying to: why isn’t its author happy to have new
colleagues in the board? Why isn’t he happy to
see the association’s revival? It’s one thing to be
overwhelmed by a job that you have applied for
without being suited for it (and no one blames anyone
for this, as it is very hard to know in advance what it
means to serve an association). It’s a another thing
to blame others when they dedicate themselves to
clean up the mess and rebuild the house. This is
why we have exercised our right of reply.

2 See our election platform (in French) at:
gutenberg-asso.fr/IMG/pdf/liste-gut-renouveau--

profession-de-foi-projets-equipe.pdf

We apologize to the readers that are not con-
cerned by the matter. But fake news has to be fought.
Always.

GUTenberg is back to life: 4 new issues of its
bulletin have been published (see TUGboat 42:3,
p. 313–314), its journal is relaunched (see TUGboat

42:3, p. 315), it is rewriting its bylaws, has a new
server and a new url, gutenberg-asso.fr, selected
by a poll among its members. Of course, it could do
more and better, but at least, it works, and it works
collectively.

The French-speaking community is lively, and
its TEX user group is happy to be serving it again.
Long live GUTenberg! Long live TUG and LUGs all
over the world! Support your community: join your
local TUG!

⋄ Jacques André

Founder, GUTenberg board member

1988–2007

⋄ Patrick Bideault

President 2020–2022 at GUTenberg

pb-latex (at)gmx dot fr

⋄ Denis Bitouzé

Secretary 2020–2022 at GUTenberg

⋄ Michel Bovani

GUTenberg board member 1999–2003

⋄ Thierry Bouche

Former editor-in-chief, Cahiers GUTenberg,

board member 1997–2017

⋄ Maxime Chupin

Deputy secretary 2020–2022 at GUTenberg

⋄ Daniel Flipo

GUTenberg board member 1993–2005

⋄ Yvon Henel

Deputy treasurer 2020–2022 at GUTenberg

The last decade at GUTenberg

https://gutenberg-asso.fr/IMG/pdf/liste-gut-renouveau--profession-de-foi-projets-equipe.pdf
https://gutenberg-asso.fr/IMG/pdf/liste-gut-renouveau--profession-de-foi-projets-equipe.pdf
gutenberg-asso.fr

10 TUGboat, Volume 43 (2022), No. 1

Markdown 2.15.0: What’s new?
Vít Novotný, Dominik Rehák, Michal Hoftich,
Tereza Vrabcová

Abstract
At TUG 2021, we celebrated the fifth birthday of
Markdown in TEX. In this article, we introduce new
features developed in the months since, and ideas for
the future development of the Markdown package.

The article is divided into three sections. In the
first two sections, we introduce the new features of
Markdown to the two main audiences of Markdown:

1. the writers, who type content in Markdown, and
2. the coders, who prepare templates and solutions.

In Section 3, we discuss ideas for the future to the
third audience of Markdown: the developers, who
alter and further improve the Markdown package.

1 Writer’s newsletter
Michael Thompson from the pandoc-discuss mail-
ing list characterized Markdown as a perfectly mini-
malist markup language that only faces the writer
with one question: what the next sentence should
be. [4] However, for some types of documents, the
few structural elements of Markdown can be too few.
The writers may enable the hybrid option and com-
bine TEX and Markdown markup, but this tends to
reduce clarity, stability, and ease of reuse. To reduce
the need for hybrid markup, we introduce new syntax
extensions for Markdown in sections 1.1–1.4.

Since version 2.10.0 of the Markdown pack-
age, writers have been able to redesign their Mark-
down documents without programming using LATEX
themes [3]. However, few LATEX themes have been
publicly available until recently. In Section 1.5, we
introduce LATEX themes, which self-publishers can
use for typesetting books and publishing collaterals.

1.1 Task lists
To track progress on your goals, it can be useful to
add checkboxes to list items. Since version 2.11.0,
Markdown has supported the taskLists option:1
\documentclass{article}
\usepackage[taskLists]{markdown}
\begin{document}
\begin{markdown}
- Tasks:

1. [x] Draft title.
2. [.] Draft outline.
3. [] Copy edit.

\end{markdown}
\end{document}

Output:
• Tasks:

� Draft title.
� Draft outline.
� Copy edit.

1 github.com/witiko/markdown/issues/95

1.2 Emphatic line breaks
In poems and plays, line breaks carry a meaning and
must be preserved. In Markdown, you can write a
line break by ending a line with two or more spaces:
Memory and desire, stirring␣␣
Dull roots with spring rain.
However, this can be tedious for longer texts. Fur-
thermore, the Markdown package only supports line
breaks in the \markdownInput command, because
TEX strips trailing newlines from the input:2

\documentclass{article}
\usepackage{markdown}
\begin{document}
\begin{markdown}
Memory and desire, stirring␣␣
Dull roots with spring rain.
\end{markdown}
\end{document}

Output:
Memory and
desire, stir-
ring Dull
roots with
spring rain.

Since version 2.12.0, the Markdown package
supports the hardLineBreaks option,3 which makes
every line break emphatic:
\documentclass{article}
\usepackage[hardLineBreaks]

{markdown}
\begin{document}
\begin{markdown}
Memory and desire, stirring
Dull roots with spring rain.
\end{markdown}
\end{document}

Output:
Memory and
desire, stir-
ring
Dull roots
with spring
rain.

This makes it easier to typeset long poems and plays.

1.3 Cross-references
In technical and academic writing, cross-references
between sections are common. Previously, writers
would need to combine TEX and Markdown markup:
\begin{markdown}
\documentclass{article}
\usepackage[hybrid]{markdown}
I conclude in Section \ref{sec:conclusion}.

Conclusion \label{sec:conclusion}
==========
In this paper, we have discovered that most
grandmas would rather eat dinner with their
grandchildren than get eaten. Begone, wolf!
\end{markdown}
\end{document}

2 This limitation of TEX does not apply to ConTEXt MkIV;
see also github.com/witiko/markdown/issues/101.

3 github.com/witiko/markdown/issues/98

doi.org/10.47397/tb/43-1/tb133novotny-markdown

Vít Novotný, Dominik Rehák, Michal Hoftich, Tereza Vrabcová

https://github.com/witiko/markdown/issues/95
https://github.com/witiko/markdown/issues/101
https://github.com/witiko/markdown/issues/98
https://doi.org/10.47397/tb/43-1/tb133novotny-markdown

TUGboat, Volume 43 (2022), No. 1 11

Since version 2.14.0, Markdown has supported
attributes on section headings and therelativeLinks
option,4 which enables cross-references in Markdown:

\begin{markdown}
\documentclass{article}
\usepackage[headerAttributes, relativeLinks]

{markdown}
I conclude in Section <#sec:conclusion>.

Conclusion {#sec:conclusion}
==========
In this paper, we have discovered that most
grandmas would rather eat dinner with their
grandchildren than get eaten. Begone, wolf!
\end{markdown}
\end{document}

1.4 Document metadata
Even though writers can prepare their documents in
Markdown, they previously needed to specify meta-
data for their documents (such as the title or the
author’s name) in TEX:
\begin{markdown}
\documentclass{article}
\usepackage{markdown}
\title{On \emph{Wolves} \& \emph{Grandmas}}
\author{Little Red Cap}
\begin{document}
\maketitle
\begin{markdown}
When Little Red Cap entered the woods
a wolf came up to her.
\end{markdown}
\end{document}

Since version 2.11.0, the Markdown package has
supported the jekyllData option,5 which allows us
to write metadata in Markdown:
\begin{markdown}
\documentclass{article}
\usepackage[jekyllData]{markdown}
\begin{document}
\begin{markdown}

title: Of *Wolves* & _Grandmas_
author: Little Red Cap

When Little Red Cap entered the woods
a wolf came up to her.
\end{markdown}
\end{document}

4 github.com/witiko/markdown/issues/91
5 github.com/witiko/markdown/issues/22

1.5 LATEX themes for self-publishers
Writers who are unaccustomed to TEX may find their
precious time slipping away, spent scouring online
forums looking for a fix for that one thing that is
messing up the whole layout. In cooperation with
the Writersglen publishing house, we have created
a set of LATEX themes for typesetting books and
publishing collaterals in Markdown.6

Let’s show the ease of use of these templates
with an example. Using the business card template,
we might end up with a content file looking like this:
Nemo Green
Tow Boat Enthusiast

- 1-800 PDFLATEX
- tug@boats.com
- Twenty Thousand

Leagues␣␣
Under The Seas␣␣
MA, USA

Output:
NEMO GREEN
Tow Boat Enthusiast

� 1-800 PDFLATEX

� tug@boats.com

� Twenty Thousand Leagues

Under The Seas

MA, USA

As you can see, easy as pie! So why not give it a
try? (The nice nemo green color is grayscaled for
the printed TUGboat.)

2 Coder’s newsletter
In Digital Typography [2], Knuth stresses the im-
portance of stability in TEX and METAFONT, which
ensures identical output across time and across dif-
ferent computer systems. Over the last forty years,
this stability has allowed an ecosystem of third-party
software to grow around TEX. To make it easier
to develop complex software solutions, we show how
coders can integrate Markdown with third-party soft-
ware in sections 2.1–2.3.

In Section 1, we showed new syntax extensions
for Markdown. However, syntax extensions are costly
to implement, undermine the minimalism of Mark-
down, and can never account for all components
and concepts a writer may need. Therefore in Sec-
tion 2.4, we present the concepts of HTML attributes
and attribute contexts, which can be used to define
domain-specific dialects of Markdown in TEX without
the need for new syntax extensions.

2.1 Building better APIs with YAML
In Section 1.4, we showed how authors can include
metadata in their Markdown documents using the
YAML language. To react to the metadata, we can
use a high-level key–value interface in the expl3 pro-
gramming language:7

6 github.com/xvrabcov/md-templates
7 github.com/witiko/markdown/issues/22

Markdown 2.15.0: What’s new?

https://github.com/witiko/markdown/issues/91
https://github.com/witiko/markdown/issues/22
https://github.com/xvrabcov/md-templates
https://github.com/witiko/markdown/issues/22

12 TUGboat, Volume 43 (2022), No. 1

\documentclass{article}
\usepackage[jekyllData]{markdown}
\ExplSyntaxOn
\tl_new:N \g_abstract_tl
\seq_new:N \g_authors_seq
\keys_define:nn { markdown/jekyllData } {

abstract .tl_gset:N = \g_abstract_tl,
/authors/* .code:n = {

\seq_put_right:Nn
\g_authors_seq
{ #1 }

}, title .code:n = {
\global \title { #1 }

}, year .code:n = {
\global \date {

One~year~after~
\int_eval:n { #1 - 1 }

}
},

}
\markdownSetup {

renderers = {
jekyllDataEnd = {

\exp_args:NNx
\global \author {

\seq_use:Nn
\g_authors_seq
{ \and }

}
\maketitle
\section*{Abstract}
\g_abstract_tl

},
},

}
\ExplSyntaxOff
\begin{document}
\begin{markdown*}{expectJekyllData}
title: 'This is a title: with a colon'
authors: [Jane Doe, John Doe]
year: 2022
abstract: |
This is the
abstract

It contains
two paragraphs.
\end{markdown*}
\end{document}

Output:
This is a title: with a colon

Jane Doe John Doe

One year after 2021

Abstract

This is the abstract

It contains two paragraphs.

2.2 Passing HTML through to TEX4ht
Using the TEX4ht system, we can convert TEX doc-
uments to HTML for publishing on the web. Since

TEX4ht uses LATEX for the conversion, it supports
the Markdown package out-of-the-box. However, it
is still necessary to use correct command-line options
depending on which TEX engine we use. To use
LuaTEX, we can use the --lua option:

$ make4ht --lua document.tex

With other TEX engines, we must use the --shell-
escape option, which enables shell access:

$ make4ht --shell-escape document.tex

Since version 2.3.0, Markdown has supported
the html option, which allows us to use HTML tags
in Markdown documents. Since version 2.14.0, Mark-
down has also supported renderers for HTML tags.8
Unless redefined by the user, these renderers will
pass any HTML elements through to the output of
TEX4ht, whereas they will be ignored in PDF output:
\usepackage[html]{markdown}
\begin{document}
\begin{markdown}
Hello world!
\end{markdown}
\end{document}

PDF output:
Hello world!

TEX4ht output:
Hello world!

2.3 Integration with Pandoc
Pandoc is a tool for converting between dozens of
document formats. In our proof of concept,9 we
integrate Pandoc with the Markdown package so
that we can typeset and style any document format
understood by Pandoc directly from TEX.

To give an example, we have prepared a manual
page wolf.1 in the roff language:
.SH NAME
wolf \- tool for befriending grandmas
.SH SYNOPSIS
.B wolf
[\fB-b\fR|\fB--befriend\fR]
[\fB-s\fR|\fB--scare\fR]
<\fIgrandma\fR>

Here is how we would typeset our manual page:
\documentclass{article}
\usepackage{pandoc-to-markdown, emoji}
\markdownSetup{renderers = {
headingOne = {\section*{\emoji{wolf}#1}}}}

\begin{document}
\pandocInput[format=man]{wolf.1}
\end{document}

8 github.com/witiko/markdown/issues/90
9 github.com/drehak/pandoc-to-markdown

Vít Novotný, Dominik Rehák, Michal Hoftich, Tereza Vrabcová

https://github.com/witiko/markdown/issues/90
https://github.com/drehak/pandoc-to-markdown

TUGboat, Volume 43 (2022), No. 1 13

Output:
NAME

wolf - tool for befriending grandmas

SYNOPSIS
wolf [-b|--befriend] [-s|--scare] <grandma>

Our proof of concept consists of a Lua writer
that produces TEX commands corresponding to Pan-
doc’s abstract syntax tree and a TEX package that
maps these commands to the renderers of the Mark-
down package. A rewrite of our Lua writer in Haskell
will be offered as a basis of the upcoming plain TEX
writer for Pandoc.10

2.4 Actionable attributes and contexts
In Section 1.3, we showed how authors can add HTML
attributes to section headings. We can react to the
attibutes by redefining attribute renderers. Further-
more, the HTML attributes of a Markdown element
are surrounded by attribute contexts, which we can
use to limit the effects of an attribute:11

\documentclass{article}
\usepackage[headerAttributes]{markdown}
\markdownSetup{

renderers = {
headerAttributeContextBegin =

\begingroup,
headerAttributeContextEnd =

\endgroup,
attributeClassName = {%

\markdownIfSnippetExists{#1}{%
\markdownSetup{snippet=#1}%

}{}%
},

}
}
\markdownSetupSnippet{sans-serif}{

code = {%
\def\familydefault{\sfdefault}%
\fontfamily{\familydefault}%
\selectfont

},
}
\begin{document}
\begin{markdown}
A section
This section is typeset in a serif typeface.

Another section {.sans-serif}
This section is typeset in sans-serif ...

10 github.com/jgm/pandoc/issues/1541
11 github.com/witiko/markdown/issues/91

A subsection
... and so is
this subsection.

Another section
This section is,
again, typeset
in serif.
\end{markdown}
\end{document}

Output:
1 A section

This section is typeset in a serif typeface.

2 Another section

This section is typeset in sans-serif ...

2.1 A subsection

... and so is this subsection.

3 Another section

This section is, again, typeset in serif.

In Section 3.2, we discuss our plans for other
elements of Markdown that may be able to receive
HTML attributes in the future.

3 Developer’s newsletter
In the following sections, we describe ideas for im-
proving the Lua parser (3.1 and 3.2), LATEX interface
(3.3 and 3.4), ConTEXt interface (3.5), and Docker
images (3.6) of Markdown.

3.1 Smart backslashes and math support
Since Markdown does not detect math at parse time,
it can be difÏcult to write math:
\documentclass{article}
\usepackage{mathtools}
\usepackage[hybrid]{markdown}
\begin{document}
\begin{markdown}
$$ x_i + y_j =

\begin{dcases}
a & b \\
c & d

\end{dcases} $$
\end{markdown}
\end{document}

Output:
xi + yj =

\begin{dcases}
a & b \\
c & d \\

\end{dcases}

Specifically, it is necessary to escape underscores and
backslashes, and to be careful with indentation:
\documentclass{article}
\usepackage{mathtools}
\usepackage[hybrid]{markdown}
\begin{document}
\begin{markdown}
$$ x_i + y_j =
\\begin{dcases}

a & b \\\\
c & d

\\end{dcases} $$
\end{markdown}
\end{document}

Output:

xi + yj =

{

a b

c d

Also in our previous article [3, Figure 4], we
showed how we can construct a smart lexical prepro-
cessor that only requires the escaping of backslashes

Markdown 2.15.0: What’s new?

https://github.com/jgm/pandoc/issues/1541
https://github.com/witiko/markdown/issues/91

14 TUGboat, Volume 43 (2022), No. 1

when they precede another escapable character. Fur-
thermore, we can use well-defined heuristics such as
dollar signs to detect math at parse time and disable
underscores, code listings, and other elements in it:12

\documentclass{article}
\usepackage{mathtools}
\usepackage[smartBackslashes, mathDollars]

{markdown}
\begin{document}
\begin{markdown}
$$ x_i + y_j =

\begin{dcases}
a & b \\
c & d

\end{dcases} $$
\end{markdown}
\end{document}

Desired output:

xi + yj =

{

a b

c d

3.2 Attributes on links and images
In Section 1.3, we showed how authors can add HTML
attributes to headings in Markdown. In order to
define domain-specific dialects of Markdown in TEX,
it may be useful to support HTML attributes on
various other elements of Markdown, perhaps most
importantly on links and images:13

\documentclass{article}
\usepackage[linkAttributes]{markdown}
\usepackage{graphicx}
\markdownSetup{

renderers = {
linkAttributeContextEnd =

\endgroup,
linkAttributeContextBegin = {%

\begingroup
\markdownSetup{

renderers = {
attributeKeyValue = {%

\setkeys{Gin}{
{#1} = {#2},

}%
},

},
}%

},
},

}
\begin{document}
\begin{markdown}

![image](example-image){width=5cm}
\end{markdown}
\end{document}

Desired output:

Image

12 github.com/witiko/markdown/issues/61
13 github.com/witiko/markdown/issues/123

3.3 Importing LATEX setup snippets
In our previous article [3, Section 1], we have in-
troduced LATEX themes and snippets, which can be
used to build powerful abstractions in Markdown.
Suppose the jdoe/longpackagename/lists LATEX
theme defines the arabic, roman, and alpha setup
snippets. If we want to access these snippets by their
short names, we must first load the theme and then
assign names to the snippets:
\markdownSetup{
theme=jdoe/longpackagename/lists}

\markdownSetupSnippet{arabic}{
snippet=jdoe/longpackagename/lists/arabic}

\markdownSetupSnippet{roman}{
snippet=jdoe/longpackagename/lists/roman}

\markdownSetupSnippet{alphabetic}{
snippet=jdoe/longpackagename/lists/alpha}

In order to make the code easier to read and the
intent clearer, it may be useful to have a dedicated
syntax for importing setup snippets:14

\markdownSetup{
importSnippets = {

jdoe/longpackagename/lists = {
arabic,
roman,
alpha as alphabetic,

},
},

}

3.4 Advanced renderer definitions in LATEX
At the moment, the \markdownSetup LATEX com-
mand only allows the redefinition of one renderer or
renderer prototype at a time, which makes it difÏcult
to redefine several renderers or renderer prototypes
at once:
\markdownSetup{

rendererPrototypes = {
headingOne = {\chapter{ #1}},
headingTwo = {\section{ #1}},
headingThree = {\subsection{ #1}},
headingFour = {\subsubsection{ #1}},
headingFive = {\paragraph{ #1}},
headingSix = {\subparagraph{ #1}},

},
}
Furthermore, it is difÏcult to keep some parts of
previous definitions without using low-level code:
\usepackage{etoolbox}
\xpatchcmd

\markdownRendererHeadingOnePrototype
{#1}{ #1}{}{}

14 github.com/witiko/markdown/issues/107

Vít Novotný, Dominik Rehák, Michal Hoftich, Tereza Vrabcová

https://github.com/witiko/markdown/issues/61
https://github.com/witiko/markdown/issues/123
https://github.com/witiko/markdown/issues/107

TUGboat, Volume 43 (2022), No. 1 15

In order to make it easier to redefine renderers and
renderer prototypes partially and in bulk, it may be
useful to extend the syntax of \markdownSetup:15

\markdownSetup{
rendererPrototypes = {

heading* {#1} = { #1},
},

}

3.5 Idiomatic ConTEXt setup
Unlike LATEX, which has high-level syntax for setting
up Markdown, ConTEXt has only a few additions
over the plain TEX interface for Markdown. Since
version 2.15.0, there has been a concerted effort to
extend Markdown, so that it can enumerate and
examine its own options, renderers, and renderer
prototypes.16 This will make it easier to create and
maintain new high-level interfaces for formats other
than LATEX, such as ConTEXt.17

3.6 Additional binary platforms in Docker
Since version 2.10.0, Markdown has been available
as the witiko/markdown Docker image.18 In version
2.15.0, images for TEX Live 2019–2021 are available,
which makes it easy to use Markdown for continuous
integration with services such as GitHub Actions:
name: Typeset a document
on: {push: ~}
jobs:

typeset:
runs-on: ubuntu-latest
container:
image: witiko/markdown:TL2019-historic
steps:
- uses: actions/checkout@v2
- run: latexmk -lualatex document.tex

The witiko/markdown Docker image is based on the
texlive/texlive Docker image from the Island of
TEX [1], which is only available for the linux/amd64
platform. This is sufÏcient for most continuous inte-
gration services. However, to allow interactive use of
witiko/markdown, it may be useful to add support
for multi-platform builds to texlive/texlive.19

15 github.com/witiko/markdown/issues/121
16 github.com/witiko/markdown/issues/119
17 github.com/witiko/markdown/issues/17
18 hub.docker.com/r/witiko/markdown
19 gitlab.com/islandoftex/images/texlive/-/issues/15

References
[1] Island of TEX. The Island of TEX: Developing

abroad, your next destination. TUGboat
41(2):182–184, 2020. tug.org/TUGboat/
tb41-2/tb128island.pdf

[2] D. Knuth. Digital Typography. No. 78 in
CSLI Lecture Notes. Center for the Study of
Language and Information (CSLI), 1999. The
second printing (2012) contains numerous
corrections.

[3] V. Novotný. Markdown 2.10.0: LATEX themes
& snippets, two flavors of comments, and
LuaMetaTEX. TUGboat 42(2):186–193,
2021. tug.org/TUGboat/tb42-2/
tb131novotny-markdown.pdf

[4] M. Thompson. Re: Error in "cabal install
pandoc", 2010. groups.google.com/
g/pandoc-discuss/c/tKB4E7y6H2E/m/
OiieKAuWsl4J

� Vít Novotný
Studená 453/15
Brno, 638 00
Czech Republic
witiko (at) mail dot muni dot cz
github.com/witiko

� Dominik Rehák
Legionárska 71
Trenčín, 911 04
Slovak Republic
drehak (at) firemail dot cc
github.com/drehak

� Michal Hoftich
Magdalény Rettigové 4
Praha, 116 39
Czech Republic
michal dot h21 (at) gmail dot com
github.com/michal-h21

� Tereza Vrabcová
V Aleji 130/30
Děčín, 405 02
Czech Republic
vrabcova dot tereza (at) email dot cz
github.com/xvrabcov

Markdown 2.15.0: What’s new?

https://github.com/witiko/markdown/issues/121
https://github.com/witiko/markdown/issues/119
https://github.com/witiko/markdown/issues/17
https://hub.docker.com/r/witiko/markdown
https://gitlab.com/islandoftex/images/texlive/-/issues/15
https://tug.org/TUGboat/tb41-2/tb128island.pdf
https://tug.org/TUGboat/tb41-2/tb128island.pdf
https://tug.org/TUGboat/tb42-2/tb131novotny-markdown.pdf
https://tug.org/TUGboat/tb42-2/tb131novotny-markdown.pdf
https://groups.google.com/g/pandoc-discuss/c/tKB4E7y6H2E/m/OiieKAuWsl4J
https://groups.google.com/g/pandoc-discuss/c/tKB4E7y6H2E/m/OiieKAuWsl4J
https://groups.google.com/g/pandoc-discuss/c/tKB4E7y6H2E/m/OiieKAuWsl4J

16 TUGboat, Volume 43 (2022), No. 1

The DuckBoat—Beginners’ Pond:

CDs, but not Compact Disks

Herr Professor Paulinho van Duck

Abstract

In this installment, Prof. van Duck will show you
some tips & tricks about tikz-cd, a package for
high-quality typesetting of commutative diagrams.

1 TEX.SE has a new moderator!

Hi, (LA)TEX friends!
An exceptional event took place last November:

a TEX.SE moderator’s election, quack!
Moderators are elected for life because they are

somewhat compared to Supreme Court judges, who
are appointed lifelong (in some countries, at least).
Therefore, their elections are quite infrequent.

Of course, the role of moderator is not a life
sentence. There is also the possibility of resigning.

Our former moderator Martin Scharrer made
that choice last October. Martin had been in that
role since TEX.SE left beta in 2011. He is also the
author of many valuable packages, like standalone
and adjustbox. We are immensely grateful to him
for all his past and future contributions to the LATEX
community.

I would also like to thank the friends who nom-
inated themselves as candidates in the moderator
election. There were a couple of well-known names
but even relatively new users. I am particularly glad
to have seen people from non-Western cultures, and
I hope to have a woman, too, next time.

It was very hard to choose. Eventually, the
winner was Werner Grundlingh! (Simply known
as Werner on TEX.SE: tex.stackexchange.com/

users/5764/werner).
He needs no introduction for the TEX.SE users

since he is the third in the site ranking, after egreg
and David Carlisle. He has always stood out for his
patience, good temper, and his craving for helping
others. Let me congratulate him. He has the skills
to be a great mod, quack!

Unfortunately, there is also bad news. Our dear
friend Brent Longborough passed away in December
2021. He gave an outstanding contribution both on
TEX.SE and with his packages and collaborations (for
example, arara).

I like to remember his great sense of humor. He
defined himself “old-ish IT geezer, young at heart.”

We will miss him!

As for TopAnswers TEX, https://topanswers.
xyz/tex, the site grows and starts appearing in
browsers’ search results. I suggest you try it. In
particular, if your question on other sites remains
unanswered, you can be sure it will be looked after
on TopAnswers TEX. Moreover, if you have problems
with beamer, you will find the great expert samcarter
answering there.

I take the occasion to thank her for her help
setting the correct fonts in the example of Box 14.

If you are talking with a mathematician about
CDs, you almost certainly are not referring to an
old-fashioned(?!) way to listen to music.

The acronym CDs stands for Commutative Di-
agrams. My math colleagues say they are graphs
largely used in category theory. I do not know what
category theory is, but I did not ask, in order to
avoid a two-hour math lesson, quack!

However, judging by the number of questions
about them, they are undoubtedly prevalent.

Box 1 shows a little example. It is the represen-
tation of h ◦ f = k ◦ g.

Box 1 – A commutative diagram

...

\usepackage{tikz-cd}

...

\begin{document}

\[

\begin{tikzcd}

A\ar[r,"f"]\ar[d,"g",swap] & B\ar[d,"h"]\\

C\ar[r, "k", swap] & D

\end{tikzcd}

\]

\end{document}

A B

C D

f

g h

k

Do you find it beautiful? Of course, you do!
In the following, I will show you how to create

it with tikz-cd. There are also other packages for
drawing commutative diagrams, for instance xy, but
in my opinion tikz-cd is the simplest and the most
customizable.

2 Quack Guide No. 7

A package for typing beautiful CDs

In a previous article of mine [1], I told you about
TikZ matrices. Simply speaking, a TikZ CD is a TikZ
matrix with some arrows added.

doi.org/10.47397/tb/43-1/tb133duck-tikz-cd

Herr Professor Paulinho van Duck

https://tex.stackexchange.com/users/5764/werner
https://tex.stackexchange.com/users/5764/werner
https://topanswers.xyz/tex
https://topanswers.xyz/tex
https://doi.org/10.47397/tb/43-1/tb133duck-tikz-cd

TUGboat, Volume 43 (2022), No. 1 17

Let us start examining the code in Box 1.
First of all, you have to load the package. Al-

ternatively, if you have already loaded TikZ in your
preamble, you may take advantage of the cd library:

\usepackage{tikz}

\usetikzlibrary{cd}

Now you are ready to use the tikzcd environ-
ment. Please note that I have included it within
\[...\] to show it as a displayed equation.

The core of your CD is typed like an ordinary
array, with & to separate the cells (the vertices of the
diagram) and \\ to separate the rows. Pay attention
that the last row does not end with \\; otherwise,
you will get an undesired empty line.

The new additions are the commands \ar, an
abbreviation for \arrows. As it is obvious from their
name, they allow you to draw your arrows, quack!

The first parameter of \ar is the direction: r, l,
d, and u, which stand for right, left, down, up. You
can combine two or more directions. For example, dr
means your arrow will go diagonally from the current
cell, where the \ar is positioned, to the one down
and right from it. You can also repeat a direction.
For instance, rr will go from the current cell to the
second cell right to it.

What appears between quotes are the labels of
the arrows. The option swap makes the label be
placed on the right side of the arrow, relative to its
direction (left is the default).

I will describe how to build and customize your
diagram with the available options in the following.

Remember that, in general, options can be set
either for a single element; or for the current CD as
environment options:
\begin{tikzcd}[⟨options⟩]
or for all the CDs of your document by putting:
\tikzcdset{⟨options⟩}
in your preamble.

See Section 2 of the package documentation [3]
for further details.

2.1 About vertices

Since a TikZ CD is actually a TikZ matrix, it inherits
all matrix characteristics.

You can set the distance separating columns
with &[⟨width⟩] and for rows with \\[⟨width⟩].

If you would like to change these separators for
all the rows/columns of your diagram, you can set
them with the options column sep/row sep.

You may indicate either an explicit dimension
or the predefined ones: tiny, small, scriptsize,
normal, large, and huge.

Box 2 – Column and row separators

\begin{tikzcd}[column sep=4pt,

row sep=scriptsize]

&&[3pt]B\ar[drr]&[3pt]\\

A\ar[urr]\ar[dr]&&&&C\\[2pt]

&D\ar[rr]&&E\ar[ur]

\end{tikzcd}

B

A C

D E

Please note how, in Box 2, the empty cells are
used to position the vertices correctly. But be careful
that if a cell is a target point of an arrow, it must
have a text. Otherwise, you will get the error:

No shape named ... is known.

If you want to have an arrow pointing to an
empty vertex, use {} for one vertex at a time, or the
matrix option nodes in empty cells, for all the
vertices at once.

\begin{tikzcd}

&X\ar[dl]\ar[dr]\\

{}&&{}\\

&Y\ar[ul]\ar[ur]

\end{tikzcd}

X

Y

\begin{tikzcd}[

every matrix/.append

style={nodes in

empty cells}

]

A\ar[r]\ar[d]&B\ar[d]\\

\ar[r]&

\end{tikzcd}

A B

If you would like to customize one vertex (for
example, to draw it), you can use |[⟨options⟩]|
before the node text:

\begin{tikzcd}

A\ar[r]&|[draw]|B

\end{tikzcd}

A B

If you would like to modify all the vertices of
your diagram, you can use cells={⟨options⟩}, which
is equivalent to
every cell/.append style={⟨options⟩}

The DuckBoat—Beginners’ Pond: CDs, but not Compact Disks

18 TUGboat, Volume 43 (2022), No. 1

whereas
every cell/.style={⟨options⟩}
replaces the default style of the vertices instead of
adding options to it.

\begin{tikzcd}[

cells={nodes=draw}]

A\ar[r]&B

\end{tikzcd}

A B

One useful node option is alias=⟨cell name⟩. It
allows you to refer to the vertex with ⟨cell name⟩
when you are drawing your diagram.

Another way for referring to the vertices is
⟨matrix name⟩-⟨row number⟩-⟨column number⟩
where ⟨matrix name⟩ could be
\tikzcdmatrixname

or a name you set with
every matrix/.append style=

{name=⟨matrix name⟩}
Within a path you can also use \tikztostart

(starting point of the path) and \tikztotarget (tar-
get point of the path).

In Section 2.4 I will show how node naming is
indispensable for drawing complex diagrams.

2.2 Go wild with the arrows

The package tikz-cd allows a huge number of arrow
tips and shapes.

Box 3 shows some examples. For the complete
list, see Section 1.3 of the package documentation.

Box 3 – Some arrow types

\begin{tikzcd}[

labels={font=\ttfamily\scriptsize},

column sep=7em, row sep=9ex

]

A\ar[r, dashleftarrow,

"\text{dashleftarrow}"]

\ar[d, mapsto, "\text{mapsto}"

{rotate=90, anchor=south}]&

B\ar[r, Rightarrow, "\text{Rightarrow}"]&

C\ar[d, dash, "\text{dash}"

{rotate=-90, anchor=south}]\\

D\ar[r,hookrightarrow,

"\text{hookrightarrow}",swap]

\ar[ur, leftarrowtail,

"\text{leftarrowtail}" description]&

E\ar[r, leftrightarrow,

"\text{leftrightarrow}",swap]&

F\ar[ul, rightharpoonup,

"\text{rightharpoonup}" description]

\end{tikzcd}

A B C

D E F

dashleftarrow

m
a
p
s
t
o

Rightarrow

d
a
s
h

hookrightarrow

leftarrowtail

leftrightarrow

rightharpoonup

You can also set options for arrows, at either
the environment or document level, with
arrows=⟨options⟩
which appends options to the default, or
every arrow/.style=⟨options⟩
which replaces the default.

Let us examine some of them (label options will
be explained in the next Section).

If the arrows of tikz-cd are not enough for you,
you may use all the types provided by TikZ, setting
arrow style=tikz.

For example, if you would like to have stealth
arrows throughout your document, you can set

\usetikzlibrary{arrows.meta}

\tikzcdset{

arrow style=tikz,

arrows={>={Stealth}}

}

in your preamble, and all your arrows will appears
like this:

When your CD has many vertices, it may be
boring or difficult to indicate the correct number of
r, l, d, and u you need to reach the target point.

The arrow options to/from=⟨argument⟩ may
help you. The argument could be in the form ⟨row
number-column number⟩; a string of r, l, d, and u;
or ⟨cell name⟩.

You may even use to and from together and
draw your arrows at the end of the diagram.

The following code is an alternative way to pro-
duce the diagram in Box 2:

\begin{tikzcd}[

column sep=3pt,

row sep=scriptsize

]

&&[3pt]B\ar[drr]&[3pt]\\

A\ar[to=1-3]&&&&

|[alias=nodeC]|C\ar[from=nodeE]\\[2pt]

&D\ar[from=ul]&&

|[alias=nodeE]|E\ar[from=3-2]

\ar[from=1-3, to=nodeC]

Herr Professor Paulinho van Duck

TUGboat, Volume 43 (2022), No. 1 19

\end{tikzcd}

It may happen that you need to shift your arrows
to better position them. You can easily do this with
shift left/right=⟨dimension⟩
(the parameter is optional).

It is also possible to use to xshift=⟨dimension⟩,
yshift=⟨dimension⟩ or shift={⟨coordinate⟩}.

Box 4 shows some shiftings. The dotted lines rep-
resent the default positions. Some arrows are drawn
in gray and the CD is enlarged with \scalebox to
better visualize the positioning. For the ampersand
replacement option see Section 2.4, Box 14.

Box 4 – Shifting

\scalebox{1.5}{%

\begin{tikzcd}[ampersand replacement=\&]

\&Y\ar[dr, shift left, gray]

\ar[from=dr, shift left]

\ar[dr, dash, dotted, thick]

\ar[dl, xshift=1.5ex, gray]

\ar[from=dl, yshift=1.5ex]

\ar[dl, dash, dotted, thick]\\

X\ar[rr, shift={(2pt,-4pt)}]

\ar[rr, dash, dotted, thick]\&\&Z

\end{tikzcd}%

}

Y

X Z

You can also explicitly set a starting/ending
point with
start/end anchor=

{[⟨coordinate transformations⟩]⟨anchor⟩}

Box 5 – Start/end anchor

\begin{tikzcd}

a\ar[start anchor={[xshift=-2pt,

yshift=2pt]south east},

end anchor=210,bend right=30, rr]

& b\ar[start

anchor={[shift={(-2pt,-2pt)}]north

east},

end anchor=50,bend left=40,r]

& a+b

\end{tikzcd}

a b a+ b

As you see in Box 5, if you are tired of straight
arrows, you can use options inherited from TikZ to
bend them:

• bend right/left=⟨angle⟩, to curve the arrow

• out/in=⟨angle⟩, to set the angle at which the
arrow leaves/reaches the vertices

• loop, possibly with above/right/below/left
or setting the in/out angles

• looseness=⟨number⟩ to choose the “level of
bending”.

For more details, see Sections 74.3 and 74.4 of the
TikZ manual [4].

Box 6 shows some of these options. Please note
the environment option bezier bounding box. It is
useful to set the correct bounding box when there is
looseness in order to avoid unwanted empty space
around your diagram. To use it just add the bbox

TikZ library [2] in your preamble:
\usetikzlibrary{bbox}

Box 6 – Bent arrows

\begin{tikzcd}[bezier bounding box]

D\ar[r, bend right]

\ar[dr, bend left=100, looseness=2]

\ar[d, out=230, in=130]

& U\ar[dl, bend left]\\

C\ar[r, bend right=70]

\ar[loop, in=180,out=210,looseness=8]

& K\ar[loop right]

\end{tikzcd}

D U

C K

Another useful option is shorten=⟨dimension⟩.
It allows to shorten or, if ⟨dimension⟩ is negative,
elongate your arrow.

This option acts on both sides of the arrows, if
you would like to shorten/elongate only one side, use
the standard TikZ options shorten >=⟨dimension⟩
or shorten <=⟨dimension⟩.

The DuckBoat—Beginners’ Pond: CDs, but not Compact Disks

20 TUGboat, Volume 43 (2022), No. 1

Box 7 – Shorten/elongate arrows

\scalebox{1.5}{\begin{tikzcd}[ampersand

replacement=\&]

A\ar[r, dash, dotted, thick]

\ar[r, shift left=1.5mm, shorten=.2cm]

\&B\ar[l, shift left=1.5mm, shorten=-.1cm,

gray]

\&C\ar[r, dash, dotted, thick]

\ar[r, shift left=1.5mm, shorten >=.2cm]

\&D\ar[l, shift left=1.5mm, shorten

<=-.1cm, gray]

\end{tikzcd}}

A B C D

Finally, it is possible to use crossing over to
show an arrow in foreground. Compare:

Box 8 – Crossing over

\begin{tikzcd}

a\ar[dr]&b\ar[dl]&

c\ar[dr]&d\ar[dl,crossing over]\\

e&f&g&h

\end{tikzcd}

a b c d

e f g h

2.3 Adding labels

The general syntax for labels is
"{⟨label text⟩}"{⟨label options⟩}
where the curly braces are mandatory only if ⟨label
text⟩ or ⟨label options⟩ contain a comma.

You can set the label options at the environment
level specifying
labels=⟨options⟩
which appends the style to the default, or
every label/.style=⟨options⟩
which replaces the default style.

When including them in \tikzcdset in your
preamble, they will be valid at the document level,
as usual.

In Box 3, for example, I set the label font at
the environment level. Note that since the labels are
typed in math mode by default, to have them in text
mode you have to use \text{⟨label text⟩}.

The options
rotate=⟨degree⟩ and anchor=⟨anchor⟩
are necessary to put the label along the vertical ar-

rows. If you prefer to write them over the arrow,
just use description (label text with a white back-
ground). You can change the background color with
background color=⟨color⟩ or do not have it at all
using marking.

The TikZ options for positioning nodes along
a path could also be used (near start, near end,
and so on).

Since labels are nodes, you can even name them
and use them as starting or target point of an arrow.

Please note that you can also have more than
one label on the same arrow.

Box 9 – Labels

\begin{tikzcd}[column sep=3cm]

X\ar[r,"b"{name=B, below left},

""{name=middle, inner sep=0pt}]

\ar[r, bend left=70,"a"{name=A},

"/"{marking, near start},

"x"{description, near end, background

color=lightgray}]

\ar[r, bend right=70,"c"{name=C, below},

"\text{start}"{very near start, swap},

"\text{end}"{very near end, swap}]

& Y

\ar[from=A, to=middle, shorten <=2pt,

"a\text{ to }b"]

\ar[from=middle, to=C, shorten =2pt,

"b\text{ to }c"]

\end{tikzcd}

X Y
b

a

/ x

c

start end

a to b

b to c

See Section 2 of the package documentation [3]
for further details.

2.4 Other tips & tricks

Sometimes your vertices are not simply letters but
longer expressions. Maybe you do not like the stan-
dard positioning:

\begin{tikzcd}

a+b\ar[r]\ar[d]&

c\ar[d]\\

d\ar[r] & e-f

\end{tikzcd}

a+ b c

d e− f

There are ways to change the node alignment
and modify the arrow path.

Herr Professor Paulinho van Duck

TUGboat, Volume 43 (2022), No. 1 21

The former may be achieved, for example, taking
advantage of the TikZ possibility to set the matrix’s
column style.

For the latter, the appropriate coordinates can
be used in a from/to or the path can be designed
with to path.

Box 10 – Column style

\begin{tikzcd}[

/tikz/column 1/.append

style={nodes={anchor=base east}},

/tikz/column 2/.append

style={nodes={anchor=base west}}

]

|[alias=first]|a+b\ar[r]\ar[d,

from={first.south -| second}]&

c\ar[d, to path={--

(\tikztotarget.north -|

\tikztostart)}]\\

|[alias=second]|d\ar[r] & e-f

\end{tikzcd}

a+ b c

d e− f

Here, as usual in TikZ, -| means “horizontal
coordinate of the point before - and vertical coor-
dinate of the point after |”. For futher details see
Section 3.2 of the package documentation [3].

If the standard alignment is OK for you, but you
would like, for example, to have the same length of
the horizontal arrows without calculating it manually,
you can set the node width to a given dimension.

In the following, the width of the longest node
text is used, taking advantage of the option
text width=width(⟨string⟩).

Box 11 – Node width

\begin{tikzcd}[

/tikz/column 1/.append style={

nodes={text width=width("$a+b$"), text

centered}},

/tikz/column 2/.append style={

nodes={text width=width("$e-f$"), text

centered}}

]

a+b\ar[r]\ar[d]& c\ar[d]\\

d\ar[r] & e-f

\end{tikzcd}

a+ b c

d e− f

For complex diagrams, it is possible to add code
after your diagram is drawn, with
remember picture and overlay

or
execute at end picture

The difference between these two methods is
that what you draw with the former is not included
in the bounding box of the picture. To visualize
this, compare the alignment of the following two
examples.

In Box 12, the entire picture is centered, in-
cluding what gets drawn at end (the “PvD” and
curves).

Box 12 – Execute at end picture

\begin{tikzcd}[

every matrix/.append style={name=mycd,},

execute at end picture={

\node[left=of \tikzcdmatrixname]

(leftofm) {PvD};

\draw[->] plot [smooth, tension=7]

coordinates

{(\tikzcdmatrixname-1-1.160)

(leftofm.north east)

(\tikzcdmatrixname-1-1.200)};

\draw[->] plot [smooth, tension=7]

coordinates

{(mycd-2-1.160) (leftofm.south east)

(mycd-2-1.200)};

}

]

A \ar[r]\ar[d] & B \ar[d] \\

C \ar[r] & D

\end{tikzcd}

A B

C D

PvD

In Box 13, only the actual CD is centered, what
is added afterwards is not.

Box 13 – Remember picture and overlay

\begin{tikzcd}[

every matrix/.append style={name=mycd},

remember picture

The DuckBoat—Beginners’ Pond: CDs, but not Compact Disks

22 TUGboat, Volume 43 (2022), No. 1

]

A \ar[r]\ar[d] & B \ar[d] \\

C \ar[r] & D

\end{tikzcd}%

\begin{tikzpicture}[

overlay, remember picture

]

\node[left=of \tikzcdmatrixname]

(leftofm) {PvD};

\draw[->] plot [smooth, tension=7]

coordinates

{(\tikzcdmatrixname-1-1.160)

(leftofm.north east)

(\tikzcdmatrixname-1-1.200)};

\draw[->] plot [smooth, tension=7]

coordinates

{(mycd-2-1.160) (leftofm.south east)

(mycd-2-1.200)};

\end{tikzpicture}

A B

C D

PvD

Choose one or the other method depending on
your needs.

Last but not least, when you use a tikzcd in
a beamer frame or as argument to a command, you
get the error:

Single ampersand used with wrong catcode.

You could also have strange errors or undesired
alignments when your vertices or labels are math ma-
trices or text tables or, in general, any environment
that uses &.

These problems can be easily solved using
ampersand replacement=⟨macro name⟩
and then using ⟨macro name⟩ instead of &.

Box 14 – Ampersand replacement

\documentclass{beamer}

\usepackage{tikz-cd}

\tikzcdset{ampersand replacement=\&}

\begin{document}

\begin{frame}

\[

\begin{tikzcd}

X\ar[r]\ar[d,"\text{\begin{tabular}{cc}

a & b \\ c & d

\end{tabular}}"]

\& \begin{pmatrix}

\alpha & \beta \\ \gamma & \delta

\end{pmatrix}\ar[d]\\

Y\ar[r] \& Z

\end{tikzcd}

\]

\end{frame}

\end{document}

X

(

α β

γ δ

)

Y Z

a b

c d

3 Conclusions

If you have been affected by Stendhal syndrome after
looking at the commutative diagrams drawn with
tikz-cd, remember:

For a quack math,

ask a TikZ duck!

References

[1] C. Maggi. The DuckBoat—Beginners’ Pond:
You do not need to be Neo to cope with a
TikZ matrix. TUGboat 41(1):20–25, 2020. tug.
org/TUGboat/tb41-1/tb127duck-matrix.pdf

[2] marmotghost. Bounding boxes for Bézier curves .
mirrors.ctan.org/graphics/pgf/contrib/

tikz-bbox/pgfmanual4bbox.pdf.
Package page: ctan.org/pkg/tikz-bbox.

[3] A. Stoffel. {tikzcd}—Commutative diagrams

with TikZ. Version 1.0.

mirrors.ctan.org/graphics/pgf/contrib/

tikz-cd/tikz-cd-doc.pdf.
Package page: ctan.org/pkg/tikz-cd.

[4] T. Tantau. The TikZ and PGF packages.

Manual for Version 3.1.9a. mirrors.ctan.org/
graphics/pgf/base/doc/pgfmanual.pdf.
Package page: ctan.org/pkg/pgf.

⋄ Herr Professor Paulinho van Duck

Quack University Campus

Sempione Park Pond

Milano, Italy

paulinho dot vanduck (at) gmail

dot com

Herr Professor Paulinho van Duck

https://tug.org/TUGboat/tb41-1/tb127duck-matrix.pdf
https://tug.org/TUGboat/tb41-1/tb127duck-matrix.pdf
https://mirrors.ctan.org/graphics/pgf/contrib/tikz-bbox/pgfmanual4bbox.pdf
https://mirrors.ctan.org/graphics/pgf/contrib/tikz-bbox/pgfmanual4bbox.pdf
https://ctan.org/pkg/tikz-bbox
https://mirrors.ctan.org/graphics/pgf/contrib/tikz-cd/tikz-cd-doc.pdf
https://mirrors.ctan.org/graphics/pgf/contrib/tikz-cd/tikz-cd-doc.pdf
https://ctan.org/pkg/tikz-cd
https://mirrors.ctan.org/graphics/pgf/base/doc/pgfmanual.pdf
https://mirrors.ctan.org/graphics/pgf/base/doc/pgfmanual.pdf
https://ctan.org/pkg/pgf

TUGboat, Volume 43 (2022), No. 1 23

Making open source textbooks, and

diagrams with AlDraTex

Seth D. Bergmann

Abstract

This article describes a new paradigm for the creation
of textbooks, using LATEX. Macros for the automatic
generation of figures and diagrams are described.

1 Introduction

Textbooks have traditionally been produced by pub-
lishing companies which provide many services, and
revenue, to authors. These services include:

• Editors responsible for the acquisition and pro-
duction process

• Copyeditors responsible for formatting, proof-
reading the text for errors and making stylistic
improvements

• Graphic artists responsible for the production
of technical figures and diagrams

• Sales representatives responsible for the market-
ing of the book

All these services, plus other corporate employees,
bricks and mortar, etc., contribute to the extremely
high cost of textbooks for readers.

This article proposes a new paradigm for the cre-
ation of textbooks, based on the open source model
of software development [2]. Open source software is
developed by many developers who may be at remote
locations, cooperating on the Internet. In addition
to distributing the software product, the develop-
ers also distribute the source documents, making it
easy for others to make corrections, enhancements,
or extensions to the original product. Since there is
no cost for the product, there is no revenue for the
developers. Some common examples of open source
software: Java, Apache, and LATEX.

Developers who contribute to a well-known suc-
cessful product are rewarded by the status associated
with the product, and can perhaps leverage this sta-
tus with job offers or promotions.

In applying the open source paradigm to text-
books, authors can collaborate on the generation of
high-quality books. As the books become widely
adopted, errata are found and corrected, and other
authors are able to add sections and chapters to im-
prove the book. The authors (usually teachers or
professors, but also students) receive no direct com-
pensation, but if the book is widely adopted, they
receive recognition for their contributions, which can
be a positive factor in applying for jobs, tenure, pro-
motion, etc.

The most significant impediment to open-source
textbooks is the production of high quality figures
and diagrams. This article makes the claim that
diagrams can be drawn with LATEX macros, rather
than traditional drawing tools. The distinction is
that I am proposing the use of a markup language
as opposed to WYSIWYG tools.

The development of the graphics macros can be a
difficult, and time-consuming process. However, once
the macros are perfected, they can be used to draw
many diagrams with a professional appearance. If a
minor stylistic change is needed, (e.g., arrowheads in
state diagrams need to be enlarged) all that is needed
is a change to the macro that draws state diagrams,
and all such diagrams are regenerated automatically.

When several authors are collaborating on a
textbook, it is not necessary that they all have the
expertise needed to develop new macros. This could
be the responsibility of one developer, with expertise
in the graphics commands, to produce new macros
as needed by the other authors.

This paper lists four currently available open
source textbooks (and a fifth in development) and
shows some examples of the diagrams that are gen-
erated automatically.

2 Some currently available open source

textbooks

I have developed four open source textbooks, which
are currently being distributed by the Campbell Li-
brary at Rowan University, with a total of over 40,000
downloads worldwide. They are available at
rdw.rowan.edu/oer:

Title Downloads

Compiler Design: 25,843
Theory, Tools, and
Examples [3]

Computer Organization 11,739
with MIPS [4]

Introduction to Computer 4,757
Science with Java [6]

Computer Science 1,398
Principles (Java, Python,
and C++ editions) [5]

Cryptology with 0
Bitcoin and Blockchain
[in development]

(Number of downloads as of March 2022.)

doi.org/10.47397/tb/43-1/tb133bergmann-diagrams

Making open source textbooks, and diagrams with AlDraTex

https://rdw.rowan.edu/oer
https://doi.org/10.47397/tb/43-1/tb133bergmann-diagrams

24 TUGboat, Volume 43 (2022), No. 1

The source files for these books, along with
recently updated versions, are available from the au-
thor’s web site: cs.rowan.edu/~bergmann/books.

I’d like to single out Allen Downey, at Olin Col-
lege of Engineering, who has also published several
open source textbooks [7]. He has been one of the
first, if not the first, to promote this new paradigm,
making educational resources affordable for students
and school districts everywhere.

Another developer of open source textbooks is
Jim Hefferon of Saint Michael’s College in Vermont,
who has authored books on the Theory of Computa-
tion [10] and Linear Algebra [9]. Hefferon has made
extensive use of LATEX graphics packages to draw
figures and diagrams.

3 Diagrams

In this section I expose some of the more complex
diagrams that can be drawn with special-purpose
macros. I use the graphics packages DraTex and
AlDraTex, developed at Ohio State University by Ei-
tan Gurari [8] in the 1990s; they are available in TEX
Live and on CTAN (ctan.org/pkg/dratex). These
packages include fairly primitive structures such as
circles, lines, rectangles, and text boxes. They also
include state diagrams, trees, grids, and other struc-
tures, with parameters controlling the size and ap-
pearance.1

As with LATEX, the DraTex and AlDraTex pack-
ages are extensible: new macro commands can be
defined using existing macro commands. I have used
this feature in developing macros for the examples
shown in this section.

3.1 Charts, trees, and other diagrams

with AlDraTex

The AlDraTex macros for chart and tree diagrams
support diagrams with various attributes and for-
mats, by specifying parameter values in the macro
call. AlDraTex also allows the user to define other
diagrams.

3.2 Chart diagrams

AlDraTex has macros which draw charts:

Pie charts may be round or oval, with shaded or
painted sections, and labeled with internal or
external labels.

XY charts permit graphs of two-dimensional data
on an XY grid, with labeling on the axes and
points, and with a continuous graph or discrete
points

1 Other graphics packages with similar capabilities include

tikz, available on github, and metapost, available from the

Tex User Group.

Bar charts allow variable size charts, with various
properties on the bars, including 3-dimensional
bars and tailored or painted bars, and labels on
the bars and axes.

3.3 Tree diagrams

Trees, in various formats, may be drawn with Al-
DraTex. The user simply specifies the label on each
node and the number of children. Nodes may be
in various shapes, including circle, oval, rectangle,
and text-only. The format of the tree may allow
for horizontal–vertical edges or straight edges, and
optional labels on the edges. Trees may be oriented
vertically or horizontally.

3.4 Other diagrams

As an extensible language, with AlDraTex it is pos-
sible to define nodes of any shape for the diagrams
described above, as well as macros for drawing state
diagrams, such as those needed for finite automata.

3.5 Logic diagrams

The Computer Organization textbook [4] makes ex-
tensive use of diagrams. The primitive drawing com-
mands of DraTex can be used to produce diagrams
of logic gates—AND, OR, XOR, NOT, etc.

These gates can then be connected with each
other to form higher level components such as en-
coders, decoders, multiplexers, adders, and arith-
metic/logic units. An example of a logic diagram is
shown in Figure 1.

One commonly used logic diagram is a canonical
sum-of-products diagram, corresponding to a logic
expression which is the logical OR of several logical
ANDs. I developed a macro to draw sum-of-products
diagrams with up to four variables. An example is
shown in Figure 3. The user of this macro need only
specify the names of the variables and the boolean
true/false values for each product in the sum-of-
products expression to be diagrammed.

3.6 Karnaugh maps

Another important diagram for the Computer Orga-

nization textbook is the Karnaugh Map (or K-Map).
It is used to reduce a logic expression to its sim-
plest sum-of-products form. The macro which draws
K-Maps needs input for the positions of 1’s (or don’t-
cares) in the map, as well as the grouping of the 1’s.
In theory a macro could deduce the groupings, but
this feature is not currently available. The macro
can draw K-Maps with three or four variables. An
example of a K-Map with four variables is shown in
Figure 5.

Seth D. Bergmann

https://cs.rowan.edu/~bergmann/books
https://ctan.org/pkg/dratex

TUGboat, Volume 43 (2022), No. 1 25

3.7 Object diagrams

The most interesting diagram macro that I have de-
veloped is for the object diagram construct commonly
used in textbooks on object-oriented programming.
I used this macro in the textbook Introduction to

Computer Science with Java [6].
In an object-oriented language, such as Java or

C++, the state of an object is determined by the in-
stance variables2 in the object’s class. Each instance
variable in an object may store either primitive data
or a reference3 to another object. This is a recursive
definition, and thus the object diagram, which is a
visual representation of an object, is a recursive dia-
gram. Consequently the macro which draws object
diagrams is also recursive. An example of an object
diagram is shown in Figure 7.

4 Examples of diagrams

Examples of diagrams which were described above
are shown on the following pages. In each case the
commands which generated the diagram are shown
in the next figure. The full macro definitions and
packages are available at cs.rowan.edu/~bergmann/
books.

5 Summary

In this article I have presented a new paradigm for
the production of free open-source textbooks. This
paradigm has been used to produce four computer
science textbooks, with a fifth book in development.
The main contribution of this work is the capability
of drawing figures and diagrams with LATEX macros.
These macros are based on the extensible graphics
packages DraTex and AlDraTex.

References

[1] S.D. Bergmann. Compiler Design: Theory,

Tools, and Examples. Wm. C. Brown Publishers,
Dubuque, 1994.

[2] S.D. Bergmann. Open source textbooks: A
paradigm derived from open source software.
Publishing Research Quarterly 30(1):1–10, March
2014.

[3] S.D. Bergmann. Compiler Design: Theory,

Tools, and Examples. Campbell Library
at Rowan University, Glassboro, NJ, 2022.
https://rdw.rowan.edu/oer/1

[4] S.D. Bergmann. Computer Organization with

MIPS. Campbell Library at Rowan University,
Glassboro, NJ, 2022.

2 Instance variables are also known as non-static fields in

Java, or member data in C++.
3 A Java reference is similar to a C++ pointer, though

there are restrictions on what can be done with a reference.

x

y

z

xy + yz

Figure 1: An implementation of the boolean function
xy + yz using logic gates

\DiagramSpec(\Inp & \Gate & \Wire)

\Diagram

%% Inputs: Var, xLoc, yLoc

(x,-50,30 & y,-50,0 & z,-50,-30)

%% Gates: ID, type, inputs, xLoc, yLoc

(And1,0,2,0,30,, &

And2,0,2,0,-30,, & Or,1,2,50,0,,)

%% Wires: srcID, targetID, input#

(x, And1,1 & y, And1,2 &

y, And2,1 & z,And2,2 &

And1,Or,1 & And2,Or,2)

\MoveToNode(Orout,1,0.5) \Move(50,0)

\FcNode(result)

\Edge(Orout,result)

\EdgeLabel(--$xy + yz$--)

Figure 2: LATEX code used to draw Figure 1

[5] S.D. Bergmann. Computer Science Principles.
Campbell Library at Rowan University, Glassboro,
NJ, 2022. Editions available for several
programming languages.

[6] S.D. Bergmann. Introduction to Computer

Science with Java Programming. Campbell
Library at Rowan University, Glassboro, NJ, 2022.
https://rdw.rowan.edu/oer/2

[7] A.B. Downey. Python for Software Design: How

to Think Like a Computer Scientist. Cambridge
University Press, New York, 2009.

[8] E.M. Gurari. TEX and LATEX: Drawing and Literate

Programming. McGraw-Hill, New York, 1994.

[9] J. Hefferon. Linear Algebra. Orthogonal Publishing,
Ann Arbor, MI, 2022.
hefferon.net/linearalgebra

[10] J. Hefferon. Theory of Computation. hefferon.net,
2022. hefferon.net/computation

⋄ Seth D. Bergmann
Rowan University
Glassboro, NJ, USA
bergmann (at) rowan dot edu

https://cs.rowan.edu/~bergmann/

Making open source textbooks, and diagrams with AlDraTex

https://cs.rowan.edu/~bergmann/books
https://cs.rowan.edu/~bergmann/books
https://rdw.rowan.edu/oer/1
https://rdw.rowan.edu/oer/2
hefferon.net/linearalgebra
hefferon.net/computation

26 TUGboat, Volume 43 (2022), No. 1

xy′zw′ + y′x+ wx′

x y z w

Figure 3: A sum of products logic diagram for the expression xy
′
zw

′ + y
′
x+ wx

′

\DiagramSpec(\SOP & \Ins & \Ands)

\Diagram

(4,3,xy’zw’+y’x+wx’) %% 4 variables, 3 terms

(x & y & z & w) %% Variable names

%% Terms: #vars,

%% var,

%% 0=negated

(4,x,1,y,0,z,1,w,0 & %% xy’zw’

2,y,0,x,1,0,0,0,0 & %% y’x

2,w,1,x,0,0,0,0,0 %% wx’

)

Figure 4: LATEX code used to draw Figure 3

0 1 0 0

0 0 1 1

yz
00

yz
01

yz
11

yz
10

wx=00

wx=01

0 0 1 1

1 0 0 1

wx=11

wx=10

Figure 5: A K-map for the boolean expression
w’x’y’z + w’xyz + w’xyz’ + wxyz + wxyz’ + wx’y’z’
+ wx’yz’. A 1x2 group and a 2x2 group are identified.
The minimized expression is xy + wx’z’ + w’x’y’z.

\KmapFourTop(0,1,0,0, 0,0,1,1, 32)

\KmapFourBot(0,0,1,1, 1,0,0,1, 32)

\Group(4,7,32,) %% xy

\Group(h,10,32,h) %% wx’z’

Figure 6: LATEX code used to draw Figure 5

Seth D. Bergmann

TUGboat, Volume 43 (2022), No. 1 27

myMap

HashMap < String,Student >

size 3

keys values

"256-44-0321"

"494-32-0909"

"222-32-9398"

Student

name "joe"

ssn "256-44-0321"

gpa 3.5

Student

name "jim"

ssn "494-32-0909"

gpa 2.5

Student

name "mary"

ssn "222-32-9398"

gpa 4.0

Figure 7: An object diagram showing the value of the
variable myMap storing a reference to a map, after three
entries have been added

\Indirect \Table <student1Prims>

{ 1, name, "joe" &

1, ssn, "256-44-0321" &

1, gpa, 3.5

}

\Indirect \Table <student1Objs>

{ 0, , , , , , , }

\Indirect \Table <student2Prims>

{ 1, name, "jim" &

1, ssn, "494-32-0909" &

1, gpa, 2.5

}

\Indirect \Table <student2Objs>

{ 0, , , , , , , }

\Indirect \Table <student3Prims>

{ 1, name, "mary" &

1, ssn, "222-32-9398" &

1, gpa, 4.0

}

\Indirect \Table <student3Objs>

{ 0, , , , , , , }

\Indirect \Table <keyPrims>

{ 1, ,"256-44-0321" &

1, ,"494-32-0909" &

1, ,"222-32-9398" }

\Indirect \Table <keyObjs>

{ 0,0, , , , , , }

\Indirect \Table <valuePrims>

{ 0, , }

\Indirect \Table <valueObjs>

{ 1, ,Student,student1Prims,

student1Objs, , , &

1, ,Student,student2Prims,

student2Objs, , , &

1, ,Student,student3Prims,

student3Objs, , ,

}

\Obj (5, myMap,

HashMap~$<String{,}Student>$,

3, keyPrims, keyObjs,

valuePrims, valueObjs)

Figure 8: LATEX code used to draw Figure 7.

Making open source textbooks, and diagrams with AlDraTex

28 TUGboat, Volume 43 (2022), No. 1

Automatically removing widows and orphans
with lua-widow-control

Max Chernoff

Abstract
The lua-widow-control package, for plain LuaTEX/
LuaLATEX/ConTEXt/OpTEX, removes widows and
orphans without any user intervention. Using the
power of LuaTEX, it does so without stretching any
glue or shortening any pages or columns. Instead, lua-
widow-control automatically lengthens a paragraph
on a page or column where a widow or orphan would
otherwise occur.

To use lua-widow-control, all that most users
need do is place \usepackage{lua-widow-control}
in their preamble. No further changes are required.

1 Motivation
TEX provides top-notch typesetting: even 40 years af-
ter its first release, no other program produces higher
quality mathematical typesetting, and its paragraph-
breaking algorithm is still state-of-the-art. However,
its page breaking is not quite as sophisticated as
its paragraph breaking and thus suffers from some
minor issues.

Unmodified TEX has only two familiar ways
of dealing with widows and orphans: it can either
shorten a page by one line, or it can stretch verti-
cal whitespace. TEX was designed for mathematical
and scientific typesetting, where a typical page has
multiple section headings, tables, figures, and equa-
tions. For this style of document, TEX’s default be-
haviour works quite well, since the slight stretching of
whitespace between the various document elements
is nearly imperceptible; however, for prose or other
documents composed almost entirely of paragraphs,
there is little vertical whitespace to stretch.

Since no ready-made and fully-automated solu-
tion to remove widows and orphans from all types
of documents was available, I decided to create lua-
widow-control.

2 What are widows and orphans?
2.1 Widows
A “widow” occurs when the majority of a paragraph
is on one page or column, but the last line is on the
following page or column. It not only looks quite
odd for a lone line to be at the start of the page,
but it makes a paragraph harder to read since the
separation of a paragraph and its last line disconnects
the two, causing the reader to lose context for the
widowed line.

Widow Orphan
A widow occurs

when the last line of a
paragraph is placed on
a page separate from An orphan is
where it begins. when the first line of a

paragraph occurs on
the page before all of
the other lines.

Figure 1: The difference between widows and orphans.
If we imagine that each box is a different page, then this
roughly simulates how widows and orphans appear.

2.2 Orphans
An “orphan” occurs when the first line of a para-
graph is at the end of the page or column preceding
the remainder of the paragraph. They are not as
distracting for the reader, but they are still not ideal.
Visually, widows and orphans are about equally dis-
ruptive; however, orphans tend not to decrease the
legibility of a text as much as widows, so many au-
thors choose to ignore them.

See figure 1 for a visual reference.

2.3 Broken hyphens
“Broken” hyphens occur whenever a page break oc-
curs in a hyphenated word. These are not related
to widows and orphans; however, breaking a word
across two pages is at least as disruptive for the
reader as widows and orphans. TEX identifies broken
hyphens in the same ways as widows and orphans, so
lua-widow-control treats broken hyphens in the same
way.

3 History and etymology
The concept of widows and orphans is nearly as old
as printing itself. In [13], a printers manual from
1683, we have:

Nor do good Compoſiters account it good
Workmanſhip to begin a Page with a Break-
line, unleſs it be a very ſhort Break, and can-
not be gotten in the foregoing Page ; but if it
be a long Break, he will let it be the Direction-
line of the fore-going Page, and Set his Direc-
tion at the end of it. (p. 226)

3.1 Widows
However, the terms “widow” and “orphan” are much
newer. The earliest published source that I could
find referencing “widows” in typography is Webster’s
New International Dictionary from 1934. However,
no one — not even the editors of the dictionary [3] —

doi.org/10.47397/tb/43-1/tb133chernoff-widows

Max Chernoff

https://doi.org/10.47397/tb/43-1/tb133chernoff-widows

TUGboat, Volume 43 (2022), No. 1 29

seems to know how it got there. Even then, the
definition is somewhat different than it is now:

widow, n. c. Print. A short line or single word
carried over from the foot of one column or
page to the head of a succeeding column or
page. [3]

Contrast this with the modern definition:
Typography. A short line of text (usually one
consisting of one word or part of a word)
which falls undesirably at the end of a para-
graph, esp. one set at the top of a page or
column. [16]

which includes a single lone line of any length.

3.2 Orphans
The term “orphan” is even more confusing. Its ini-
tial usage seems to have occurred some time after
“widow” [3], and it is given many contradictory def-
initions. Most sources define an orphan as a first
line at the bottom of the page and a widow as the
last line at the top [2, 3, 4, 6, 9, 12, 14, 16]; how-
ever, some sources define these two terms as exact
opposites of each other, with a widow as a first line
at the bottom of the page and an orphan as the
last line! [1, 3, 5, 14, 18] This usage is plain wrong;
nevertheless, it is sufÏciently common that you need
to be careful when you see the terms “widow” and
“orphan”.

3.3 Clubs
The TEXbook never refers to “orphans” as such;
rather, it refers to them as “clubs”. This term is
remarkably rare: I could only find a single source
published before The TEXbook — a compilation arti-
cle about the definition of “widow” — that mentions
a “club line”:

The Dictionary staff informs me that they
have no example of the use of the word widow
in the typographical sense. [. . .]

Mr. Watson of the technical staff says that
the Edinburgh printing houses referred to it
as a “clubline”. [3, p. 4]

To my knowledge, a ‘widow’, or ‘widow-line,’
is a short line, forming the end of a paragraph,
which is carried over from the foot of a page or
column to the top of the succeeding one. [. . .]

To my personal knowledge, in typographical
parlance in Edinburgh, Scotland, the ‘widow’
is called a ‘club-line.’ [3, p. 23]
Both quotes above are from separate authors,

and they each define a “club” like we define “widow”,
not an “orphan”. In addition, they both mention that

the term is only used in Scotland. Even the extensive
OED — which lists 17 full definitions and 103 subdef-
initions for the noun “club” — doesn’t recognize the
phrase. [15]

I spent a few hours searching through Google
Books and my university library catalogue, but I
could not find a single additional source. If anyone
has any more information on the definition of a “club
line” or why Knuth chose to use this archaic Scottish
term in TEX, please let me know!

4 Pagination in TEX
Let’s move on to looking at how TEX treats these
widows and orphans.

4.1 Algorithm
It is tricky to understand how lua-widow-control
works if you aren’t familiar with how TEX breaks
pages and columns. For a full description, you should
consult Chapter 15 of The TEXbook [9] (“How TEX
Makes Lines into Pages”); however, this goes into
much more detail than most users require, so here is
a very simplified summary of TEX’s page breaking
algorithm:

TEX fills the page with lines and other objects
until the next object will no longer fit. Once no more
objects will fit, TEX will align the bottom of the last
line with the bottom of the page by stretching any
available vertical spaces if (in LATEX) \flushbottom
is set; otherwise, it will break the page and leave the
bottom empty.

However, some objects have penalties attached.
Penalties encourage or discourage page breaks from
occurring at specific places. For example, LATEX
sets a negative penalty before section headings to
encourage a page break there; conversely, it sets a
positive penalty after section headings to discourage
breaking.

To reduce widows and orphans, TEX sets weakly-
positive penalties between the first and second lines
of a paragraph to prevent orphans, and between the
penultimate and final lines to prevent widows.

One important note: once TEX begins breaking
a page, it never goes back to modify any content
on the page. Page breaking is a localized algorithm,
without any backtracking.

4.2 Behaviour
Merely describing the algorithm doesn’t allow us to
intuitively understand how TEX deals with widows
and orphans.

Due to the penalties attached to widows and
orphans, TEX tries to avoid them. Widows and
orphans with small penalties attached — like LATEX’s

Automatically removing widows and orphans with lua-widow-control

30 TUGboat, Volume 43 (2022), No. 1

default values of 150 — are only lightly coupled to
the rest of the paragraph, while widows and orphans
with large penalties — values of 10 000 or more — are
treated as infinitely bad and are thus unbreakable.
Intermediate values behave just as you would expect,
discouraging page breaks proportional to their value.

When TEX goes to break a page, it tries to avoid
breaking at a location with a high penalty. How it
does so depends on a few settings:

4.2.1 \flushbottom and \normalbottom
With the settings \normalbottom (Plain TEX) or
\flushbottom (LATEX), TEX is willing to stretch any
glue on the page by an amount roughly commen-
surate to the magnitude of the penalty: for small
\clubpenalty and \widowpenalty values, TEX will
only slightly stretch the glue on the page before cre-
ating a widow or orphan; for very large penalties,
TEX will stretch the glue by a near-infinite amount.

This corresponds to the “Stretch” column in Fig-
ure 2. It is the default behaviour of Plain TEX, and
of the standard LATEX classes when the twocolumn
option is given.

4.2.2 \raggedbottom
When \raggedbottom is set, TEX won’t stretch any
glue. Instead, for sufÏciently-high \clubpenalty
and \widowpenalty values, TEX will shorten the
page or column by one line in order to prevent the
widow or orphan from being created.

This corresponds to the “Shorten” column in
Figure 2 and is the default behaviour of the LATEX
classes when the twocolumn option is not given.

5 \looseness
Before we can continue further, we need to discuss
one more TEX command: \looseness. The follow-
ing is excerpted from Chapter 14 of [9] (“How TEX
Breaks Paragraphs into Lines”):

If you set \looseness=1, TEX will try to make
the current paragraph one line longer than its
optimum length, provided that there is a way
to choose such breakpoints without exceeding
the tolerance you have specified for the bad-
nesses of individual lines. Similarly, if you set
\looseness=2, TEX will try to make the para-
graph two lines longer; and \looseness=-1
causes an attempt to make it shorter. [. . .]

For example, you can set \looseness=1
if you want to avoid a lonely “club line” or
“widow line” on some page that does not have
sufÏciently flexible glue, or if you want the
total number of lines in some two-column
document to come out to be an even number.

It’s usually best to choose a paragraph that
is already pretty “full”, i.e., one whose last
line doesn’t have much white space, since such
paragraphs can generally be loosened without
much harm. You might also want to insert a
tie between the last two words of that para-
graph, so that the loosened version will not
end with only one “widow word” on the or-
phans line; this tie will cover your tracks, so
that people will find it hard to detect the fact
that you have tampered with the spacing. On
the other hand, TEX can take almost any suf-
ficiently long paragraph and stretch it a bit,
without substantial harm.

The widow and orphan removal strategy sug-
gested in the second paragraph works quite well;
however, it requires manual editing each and every
time a page or paragraph is rewritten or repositioned.

6 Alternate removal strategies
There have been a few previous attempts to im-
prove upon TEX’s previously-discussed widow and
orphan-handling abilities; however, none of these
have been able to automatically remove widows and
orphans without stretching any glue or shortening
any pages.

The articles “Strategies against widows” by Paul
Isambert [6] and “Managing forlorn paragraph lines”
by Frank Mittelbach [11] both begin with comprehen-
sive discussions of the methods of preventing widows
and orphans. They agree that widows and orphans
are bad and ought to be avoided; however, they differ
in their solutions. Strategies proposes an output rou-
tine that reduces the length of facing pages by one
line when necessary to remove widows and orphans,
while Managing proposes that the author manually
rewrites or adjusts \looseness when needed.

The post “Paragraph callback . . .” by jeremie [7]
contains a file widow-assist.lua that automatically
detects which paragraphs can be safely shortened
or lengthened by one line. Mittelbach’s widows-and-
orphans package [12] alerts the author to the pages
that contain widows or orphans. Combined, these
packages make it simple for the author to quickly
remove widows and orphans by adjusting the val-
ues of \looseness; however, it still requires the
author to make manual source changes after each
revision.

Another article by Mittelbach [10] suggests an
fully-automated solution to remove widows and or-
phans. This would seem to offer a complete solution;
however, it requires multiple passes, an external tool,
and has not yet been publicly released.

Max Chernoff

TUGboat, Volume 43 (2022), No. 1 31

Ignore Shorten
lua-widow-control can remove most

widows and orphans from a document,
without stretching any glue or shortening
any pages.

It does so by automatically lengthen-
ing a paragraph on a page where a widow or
orphan would otherwise occur. While TEX
breaks paragraphs into their natural length,
lua-widow-control is breaking the paragraph
1 line longer than its natural length. TEX’s
paragraph is output to the page, but lua-
widow-control’s paragraph is just stored for
later. When a widow or orphan occurs, lua-
widow-control can take over. It selects the
previously-saved paragraph with the least
badness; then, it replaces TEX’s paragraph
with its saved paragraph. This increases
the text block height of the page by 1 line.

Now, the last line of the current page
can be pushed to the top of the next page.
This removes the widow or the orphan with-

lua-widow-control can remove most
widows and orphans from a document,
without stretching any glue or shortening
any pages.

It does so by automatically lengthen-
ing a paragraph on a page where a widow or
orphan would otherwise occur. While TEX
breaks paragraphs into their natural length,
lua-widow-control is breaking the paragraph
1 line longer than its natural length. TEX’s
paragraph is output to the page, but lua-
widow-control’s paragraph is just stored for
later. When a widow or orphan occurs, lua-
widow-control can take over. It selects the
previously-saved paragraph with the least
badness; then, it replaces TEX’s paragraph
with its saved paragraph. This increases
the text block height of the page by 1 line.

Now, the last line of the current page
can be pushed to the top of the next page.

out creating any additional work. This removes the widow or the orphan with-
out creating any additional work.

\parskip=0pt
\clubpenalty=0
\widowpenalty=0

\parskip=0pt
\clubpenalty=10000
\widowpenalty=10000

Stretch lua-widow-control
lua-widow-control can remove most

widows and orphans from a document,
without stretching any glue or shortening
any pages.

It does so by automatically lengthen-
ing a paragraph on a page where a widow or
orphan would otherwise occur. While TEX
breaks paragraphs into their natural length,
lua-widow-control is breaking the paragraph
1 line longer than its natural length. TEX’s
paragraph is output to the page, but lua-
widow-control’s paragraph is just stored for
later. When a widow or orphan occurs, lua-
widow-control can take over. It selects the
previously-saved paragraph with the least
badness; then, it replaces TEX’s paragraph
with its saved paragraph. This increases
the text block height of the page by 1 line.

Now, the last line of the current page
can be pushed to the top of the next page.

lua-widow-control can remove most
widows and orphans from a document,
without stretching any glue or shortening
any pages.

It does so by automatically lengthen-
ing a paragraph on a page where a widow
or orphan would otherwise occur. While
TEX breaks paragraphs into their natural
length, lua-widow-control is breaking the
paragraph 1 line longer than its natural
length. TEX’s paragraph is output to the
page, but lua-widow-control’s paragraph is
just stored for later. When a widow or
orphan occurs, lua-widow-control can take
over. It selects the previously-saved para-
graph with the least badness; then, it re-
places TEX’s paragraph with its saved para-
graph. This increases the text block height
of the page by 1 line.

Now, the last line of the current page
can be pushed to the top of the next page.

This removes the widow or the orphan with-
out creating any additional work.

This removes the widow or the orphan with-
out creating any additional work.

\parskip=0pt plus 1fill
\clubpenalty=10000
\widowpenalty=10000

\usepackage{lua-widow-control}

Figure 2: A visual comparison of various automated widow-handling techniques.

Automatically removing widows and orphans with lua-widow-control

32 TUGboat, Volume 43 (2022), No. 1

lua-widow-control is essentially a combination of
widow-assist.lua [7] and widows-and-orphans [12]
(although its implementation is independent of both):
when the \outputpenalty value indicates that a
widow or orphan has occurred, Lua is used to find
a stretchable paragraph. What lua-widow-control
mainly adds on top of these packages is automa-
tion: it eliminates the requirement for any manual
adjustments or changes to your document’s source.

7 Visual comparison
Although TEX’s page breaking algorithm is reason-
ably straightforward, it can lead to complex be-
haviour when widows and orphans are involved. The
usual choices, when rewriting is not possible, are to
ignore them, stretch some glue, or shorten the page.
Figure 2 has a visual comparison of these options,
which we’ll discuss in the following:

7.1 “Ignore”
As you can see, the last line of the page is on a
separate page from the rest of its paragraph, creating
a widow. This is usually highly distracting for the
reader, so it is best avoided for the reasons previously
discussed.

7.2 “Shorten”
This page did not leave any widows, but it did shorten
the previous page by one line. Sometimes this is
acceptable, but usually it looks bad because pages
will then have different text-block heights. This can
make the pages look quite uneven, especially when
typesetting with columns or in a book with facing
pages.

7.3 “Stretch”
This page also has no widows and it has a flush
bottom margin. However, the space between each
pair of paragraphs had to be stretched.

If this page had many equations, headings, and
other elements with natural space between them, the
stretched out space would be much less noticeable.
TEX was designed for mathematical typesetting, so
it makes sense that this is its default behaviour.
However, in a page with mostly text, these paragraph
gaps look unsightly.

Also, this method is incompatible with grid type-
setting, where all glue stretching must be quantised
to the height of a line.

7.4 “lua-widow-control”
lua-widow-control has none of these issues: it elimi-
nates the widows in a document while keeping a flush
bottom margin and constant paragraph spacing.

To do so, lua-widow-control lengthened the sec-
ond paragraph by one line. If you look closely, you
can see that this stretched the interword spaces. This
stretching is noticeable when typesetting in a narrow
text block, but is mostly imperceptible with larger
widths.

lua-widow-control automatically finds the “best”
paragraph to stretch, so the increase in interword
spaces should almost always be minimal.

8 Installation and standard usage
The lua-widow-control package was first released in
October 2021. It is available in the default installa-
tions of both MiKTEX and TEX Live, although you
will need recent versions of either.

You may also download lua-widow-control man-
ually from either CTAN,1 the ConTEXt Garden,2 or
GitHub,3 although it is best if you can install it
through your TEX distribution.

As its name may suggest, lua-widow-control re-
quires LuaTEX4 regardless of the format used. With
that in mind, using lua-widow-control is quite simple:
Plain TEX \input lua-widow-control
OpTEX \load[lua-widow-control]
LATEX \usepackage{lua-widow-control}
ConTEXt \usemodule[lua-widow-control]

And that’s usually enough. Most users won’t
need to do anything else since lua-widow-control comes
preconfigured and ready-to-go.

9 Options
Nevertheless, lua-widow-control does have a few op-
tions.

lua-widow-control tries very hard to have a “nat-
ural” user interface with each format, so how you set
an option heavily depends on how you are running
lua-widow-control. Also note that not every option is
available in every format.

Some general guidelines:
Plain TEX/OpTEX Some options are set by modify-

ing a register, while others must be set manually
using \directlua.

LATEX Options can be set either as package op-
tions or at any point in the document with
\lwcsetup.

ConTEXt Always use \setuplwc.
1 ctan.org/pkg/lua-widow-control
2 modules.contextgarden.net/cgi-bin/module.cgi/

action=view/id=127
3 github.com/gucci-on-fleek/lua-widow-control/

releases/latest/
4 Or LuaMetaTEX in the case of ConTEXt.

Max Chernoff

https://ctan.org/pkg/lua-widow-control
https://modules.contextgarden.net/cgi-bin/module.cgi/action=view/id=127
https://github.com/gucci-on-fleek/lua-widow-control/releases/latest/
https://ctan.org/pkg/lua-widow-control
https://modules.contextgarden.net/cgi-bin/module.cgi/action=view/id=127
https://modules.contextgarden.net/cgi-bin/module.cgi/action=view/id=127
https://github.com/gucci-on-fleek/lua-widow-control/releases/latest/
https://github.com/gucci-on-fleek/lua-widow-control/releases/latest/

TUGboat, Volume 43 (2022), No. 1 33

9.1 Disabling
You may want to disable lua-widow-control for certain
portions of your document. You can do so with the
following commands:
Plain TEX/OpTEX \lwcdisable
LATEX \lwcsetup{disable}
ConTEXt \setuplwc[state=stop]

This prevents lua-widow-control from stretching
any paragraphs that follow. If a page has earlier
paragraphs where lua-widow-control was still enabled
and a widow or orphan is detected, lua-widow-control
will still attempt to remove the widow or orphan.

9.2 Enabling
lua-widow-control is enabled as soon as the package
is loaded. If you have previously disabled it, you will
need to re-enable it to save new paragraphs.
Plain TEX/OpTEX \lwcenable
LATEX \lwcsetup{enable}
ConTEXt \setuplwc[state=start]

9.3 Automatically disabling
You may want to disable lua-widow-control for cer-
tain commands where stretching is undesirable such
as section headings. Of course, manually disabling
and then enabling lua-widow-control multiple times
throughout a document would quickly become te-
dious, so lua-widow-control provides some options to
do this automatically for you.

lua-widow-control automatically patches the de-
fault LATEX, ConTEXt, Plain TEX, OpTEX, memoir,
KOMA-Script, and titlesec section commands, so you
don’t need to patch these. Any others, though, you’ll
need to patch yourself.
Plain TEX/OpTEX \lwcdisablecmd{〈\macro〉}
LATEX \lwcsetup{disablecmds={

〈csnameone〉, 〈csnametwo〉}}
ConTEXt \prependtoks\lwc@patch@pre

\to\everybefore〈hook〉
\prependtoks\lwc@patch@post

\to\everyafter〈hook〉

9.4 \emergencystretch
lua-widow-control defaults to an \emergencystretch
value of 3 em for stretched paragraphs, but you can
configure this.

lua-widow-control will only use the \emergency-
stretch when it cannot lengthen a paragraph in any
other way, so it is fairly safe to set this to a large value.
TEX accumulates badness when \emergencystretch
is used [8], so it’s pretty rare that a paragraph that

requires any \emergencystretch will actually be
used on the page.
Plain TEX/OpTEX \lwcemergencystretch=

〈dimension〉
LATEX \lwcsetup{emergencystretch=

〈dimension〉}
ConTEXt \setuplwc[emergencystretch=

〈dimension〉]

9.5 Penalties
You can also manually adjust the penalties that TEX
assigns to widows and orphans. Usually, the defaults
are fine, but there are a few circumstances where
you may want to change them.
Plain TEX/OpTEX \widowpenalty=〈integer〉

\clubpenalty=〈integer〉
\brokenpenalty=〈integer〉

LATEX \lwcsetup{ widowpenalty=〈integer〉}
\lwcsetup{orphanpenalty=〈integer〉}
\lwcsetup{brokenpenalty=〈integer〉}

ConTEXt \setuplwc[widowpenalty=〈integer〉]
\setuplwc[orphanpenalty=〈integer〉]
\setuplwc[brokenpenalty=〈integer〉]

The value of these penalties determines how
much TEX should attempt to stretch glue before
passing the widow or orphan to lua-widow-control. If
you set the values to 1 (default), TEX will stretch
nothing and immediately trigger lua-widow-control; if
you set the values to 10 000, TEX will stretch infinitely
and lua-widow-control will never be triggered. If you
set the value to some intermediate number, TEX
will first attempt to stretch some glue to remove the
widow or orphan; only if it fails will lua-widow-control
come in and lengthen a paragraph. As a special case,
if you set the values to 0, both TEX and lua-widow-
control will completely ignore the widow or orphan.

9.6 \nobreak behaviour
When lua-widow-control encounters an orphan, it re-
moves it by moving the orphaned line to the next
page. The majority of the time, this is an appro-
priate solution. However, if the orphan is immedi-
ately preceded by a section heading (or \nobreak/
\penalty 10000), lua-widow-control would naïvely
separate a section heading from the paragraph that
follows. This is almost always undesirable, so lua-
widow-control provides some options to configure this.
Plain TEX/OpTEX \directlua{lwc.

nobreak_behaviour="〈value〉"}
LATEX \lwcsetup{nobreak=〈value〉}
ConTEXt \setuplwc[nobreak=〈value〉]

Automatically removing widows and orphans with lua-widow-control

34 TUGboat, Volume 43 (2022), No. 1

keep split warn
Heading

Heading The first line
Heading The first line text text text
The first line text text text last line.
text text text last line.

Figure 3: A visual comparison of the nobreak option
values.

The default value, keep, keeps the section head-
ing with the orphan by moving both to the next page.
The advantage to this option is that it removes the
orphan and retains any \nobreaks; the disadvantage
is that moving the section heading can create a large
blank space at the end of the page.

The value split splits up the section heading
and the orphan by moving the orphan to the next
page while leaving the heading behind. This is usu-
ally a bad idea, but exists for the sake of flexibility.

The value warn causes lua-widow-control to give
up on the page and do nothing, leaving an orphaned
line. lua-widow-control warns the user so that they
can manually remove the orphan.

See figure 3 for a visual reference.

9.7 Maximum cost
lua-widow-control ranks each paragraph on the page
by how much it would “cost” to lengthen that para-
graph. By default, lua-widow-control selects the para-
graph on the page with the lowest cost; however, you
can configure it to only select paragraphs below a
selected cost.

If there aren’t any paragraphs below the set
threshold, then lua-widow-control won’t remove the
widow or orphan and will instead issue a warning.
Plain TEX/OpTEX \lwcmaxcost=〈integer〉
LATEX \lwcsetup{max-cost=〈integer〉}
ConTEXt \setuplwc[maxcost=〈integer〉]

Based on my testing, max-cost values less than
1 000 cause completely imperceptible changes in in-
terword spacing; values less than 5 000 are only no-
ticeable if you are specifically trying to pick out the
expanded paragraph on the page; values less than
15 000 are typically acceptable; and larger values
may become distracting. lua-widow-control defaults
to an infinite max-cost, although the “strict” and
“balanced” modes sets the values to 5 000 and 10 000
respectively.

10 Presets
As you can see, lua-widow-control provides quite a
few options. Luckily, there are a few presets that you

can use to set multiple options at once. These presets
are a good starting point for most documents, and
you can always manually override individual options.

Currently, these presets are LATEX-only.
LATEX \lwcsetup{〈preset〉}

10.1 default
If you use lua-widow-control without any options, it
defaults to this preset. In default mode, lua-widow-
control takes all possible measures to remove widows
and orphans and will not attempt to stretch any
vertical glue. This usually removes > 95% of all
possible widows and orphans. The catch here is
that this mode is quite aggressive, so it often leaves
behind some fairly “spacey” paragraphs.

This mode is good if you want to remove (nearly)
all widows and orphans from your document, without
fine-tuning the results.

10.2 strict
lua-widow-control also offers a strict mode. This
greatly restricts lua-widow-control’s tolerance and
makes it so that it will only lengthen paragraphs
where the change will be imperceptible.

The caveat with strict mode is that — depending
on the document — lua-widow-control will be able to
remove less than a third of the widows and orphans.
For the widows and orphans that can’t be automat-
ically removed, a warning will be printed to your
terminal and log file so that a human can manually
fix the situation.

This mode is good if you want the best possi-
ble typesetting and are willing to do some manual
editing.

10.3 balanced
Balanced mode sits somewhere between default mode
and strict mode. This mode first lets TEX stretch
a little glue to remove the widow or orphan; only
if that fails will it then trigger lua-widow-control.
Even then, the maximum paragraph cost is capped.
Here, lua-widow-control can usually remove 90% of
a document’s potential widows and orphans, and it
does so while making a minimal visual impact.

This mode is recommended for most users who
care about their document’s typography. This mode
is not the default since it doesn’t remove all wid-
ows and orphans: it still requires a little manual
intervention.

11 Compatibility
The lua-widow-control implementation is almost en-
tirely in Lua, with only a minimal TEX footprint.
It doesn’t modify the output routine, inserts/floats,

Max Chernoff

TUGboat, Volume 43 (2022), No. 1 35

Table 1: lua-widow-control options set by each mode.

Option default balanced strict

max-cost ∞ 10000 5000
emergencystretch 3em 1em 0pt
nobreak keep keep warn
widowpenalty 1 500 1
orphanpenalty 1 500 1
brokenpenalty 1 500 1

\everypar, and it doesn’t insert any whatsits. This
means that it should be compatible with nearly any
TEX package, class, and format. Most changes that
lua-widow-control makes are not observable on the
TEX side.

However, on the Lua side, lua-widow-control
modifies much of a page’s internal structure. This
should not affect any TEX code; however, it may
surprise Lua code that modifies or depends on the
page’s low-level structure. This does not matter for
Plain TEX or LATEX, where even most Lua-based
packages don’t depend on the node list structure;
nevertheless, there are a few issues with ConTEXt.

Simple ConTEXt documents tend to be fine, but
many advanced ConTEXt features rely heavily on
Lua and can thus be disturbed by lua-widow-control.
This is not a huge issue — the lua-widow-control man-
ual is written in ConTEXt — but lua-widow-control is
inevitably more reliable with Plain TEX and LATEX
than with ConTEXt.

Finally, keep in mind that adding lua-widow-
control to a document will almost certainly change
its page break locations.

11.1 Formats
lua-widow-control runs on all known LuaTEX-based
formats: Plain LuaTEX, LuaLATEX, ConTEXt MkIV,
ConTEXt MkXL/LMTX, and OpTEX. Unless other-
wise documented, all features should work equally
well in all formats.

11.2 Columns
Since TEX and the formats implement column break-
ing and page breaking through the same internal
mechanisms, lua-widow-control removes widows and
orphans between columns just as it does with widows
and orphans between pages.

lua-widow-control is known to work with the
LATEX class option twocolumn and the two-column
output routine from Chapter 23 of [9].

11.3 Performance
lua-widow-control runs entirely in a single pass, with-
out depending on any .aux files or the like. Thus, it
shouldn’t meaningfully increase compile times. Al-
though lua-widow-control internally breaks each para-
graph twice, modern computers break paragraphs
near-instantaneously, so you are not likely to notice
any slowdown.

11.4 ε-TEX penalties
Knuth’s original TEX has three basic line penal-
ties: \interlinepenalty, which is inserted between
all lines; \clubpenalty, which is inserted after the
first line; and \widowpenalty, which is inserted be-
fore the last line. The ε-TEX extensions [20] gen-
eralize these commands with a syntax similar to
\parshape: with \widowpenalties you can set the
penalty between the last, second last, and nth last
lines of a paragraph; \interlinepenalties and
\clubpenalties behave similarly.

lua-widow-control makes no explicit attempts to
support these new -penalties commands. Specifi-
cally, if you give a line a penalty that matches either
\widowpenalty or \clubpenalty, lua-widow-control
will treat the lines exactly as it would a widow or
orphan. So while these commands won’t break lua-
widow-control, they are likely to lead to some unex-
pected behaviour.

12 Short last lines
When lengthening a paragraph with \looseness,
it is common advice to insert ties (~) between the
last few words of the paragraph to avoid overly-
short last lines [9]. lua-widow-control does this au-
tomatically, but instead of using ties or \hboxes, it
uses the \parfillskip parameter [9, 21]. When
lengthening a paragraph (and only when length-
ening a paragraph — remember, lua-widow-control
doesn’t interfere with TEX’s output unless it de-
tects a widow or orphan), lua-widow-control sets
\parfillskip to 0pt plus 0.8\hsize. This nor-
mally makes the last line of a paragraph be at least
20% of the overall paragraph’s width, thus preventing
ultra-short lines.

13 How it works
lua-widow-control uses a fairly simple algorithm to
eliminate widows and orphans, but there are a few
subtleties.

13.1 Setup
lua-widow-control sets the parameters \clubpenalty,
\widowpenalty, and \brokenpenalty to sentinel
values of 1. This will signal to lua-widow-control when

Automatically removing widows and orphans with lua-widow-control

36 TUGboat, Volume 43 (2022), No. 1

a widow or orphan occurs, yet it is small enough that
it won’t stretch any glue.

lua-widow-control also enables LuaTEX’s micro-
typographic extensions [19]. This isn’t strictly neces-
sary; however, it significantly increases the number
of paragraphs that can be acceptably “loosened”.

That is all that happens on the TEX end. The
rest of lua-widow-control is pure Lua.

13.2 Paragraph breaking
First, lua-widow-control hooks into the paragraph
breaking process, before any output routines or page
breaking.

Before a paragraph is broken by TEX, lua-widow-
control grabs the unbroken paragraph. Then lua-
widow-control breaks the paragraph one line longer
than its natural length and stores it for later. It does
this in the background, without interfering with how
TEX breaks paragraphs into their natural length.

After TEX has broken its paragraph into its nat-
ural length, lua-widow-control appears again. Before
the broken paragraph is added to the main vertical
list, lua-widow-control “tags” the first and last nodes
of the paragraph using a LuaTEX attribute. These
attributes associate the previously-saved lengthened
paragraph with the naturally-typeset paragraph on
the page.

13.3 Page breaking
lua-widow-control intercepts \box255 (the \vbox out-
put by TEX) immediately before the output routine
runs, after all the paragraphs have been typeset.

First, lua-widow-control looks at the \output-
penalty of the page or column. If the page was
broken at a widow or orphan, the \outputpenalty
will be equal to either the \widowpenalty or the
\clubpenalty. If the \outputpenalty does not in-
dicate a widow or orphan, lua-widow-control will stop
and return \box255 unmodified to the output rou-
tine, and TEX continues as normal.

Otherwise, we assume that we have a widow
or orphan on the page, meaning that we should
lengthen the page by 1 line. We iterate through
the list of saved paragraphs to find the lengthened
paragraph with the least cost. After we’ve selected a
good paragraph, we traverse through the page to find
the original version of this paragraph — the one that
unmodified TEX originally typeset. Having found
the original paragraph, we splice in the lengthened
paragraph in place of the original.

Since the page is now 1 line longer than it was
before, we pull the last line off the page to bring it
back to its original length, and place that line onto
the top of TEX’s “recent contributions” list. When

the next page begins, this line will be inserted before
all other paragraphs, right at the top. Now, we can
return the new, widow-free page (updated \box255)
to the output routine, which proceeds as normal.

14 Choosing the “best” paragraph
As we discussed previously, lua-widow-control length-
ens the paragraph with the lowest cost. However,
assigning a cost to each paragraph is not quite as
simple as it sounds. Before we look at how lua-widow-
control assigns costs, let’s look at how TEX scores
paragraphs when breaking them naturally.

14.1 How TEX scores paragraphs
All glue in TEX has a certain natural size: the size
that it would be in an ideal scenario. However, most
glue also has stretch and shrink components so that
the glue can change in size to adapt to its surround-
ings. For each line, TEX individually sums the total
stretch/shrink for the line and the stretch/shrink
that was actually used. We define the stretch/shrink
ratio r as the quotient of the stretch/shrink used and
the stretch/shrink available. Then the badness b of
a line is approximately defined as

b = 100r
3
.

This is the badness referenced in the commonly-seen
Underfull \hbox (badness 1234) warnings that
TEX produces.

TEX calculates the badness for each line individ-
ually; however, we also need to assess the paragraph
as a whole. To do so, TEX defines the demerits for a
whole paragraph d as approximately5 the sum of the
squared badnesses for each line. The natural para-
graph that TEX breaks is the one that minimizes d.

One important thing to realize is that demerits
grow incredibly fast: demerits are proportional to
the sixth power of glue stretch. This means that
you can expect to see extremely large demerit values,
even for a relatively “good” paragraph.

14.2 Possible cost functions
Now, let’s return to how lua-widow-control assigns
costs to each paragraph. This is surprisingly more
complicated than it sounds, so we’ll go through a
few possible cost functions first.

Here, we use c for the cost of a paragraph, d for
the total demerits, and l for the number of lines
(\prevgraf).

5 We ignore any additional demerits or penalties that TEX
may add.

Max Chernoff

TUGboat, Volume 43 (2022), No. 1 37

14.2.1 The original implementation
The original implementation of lua-widow-control
used the very simple cost function

c = d.

This cost function works reasonably well, but has
one major issue: it doesn’t take into account the
number of lines in the paragraph. The demerits for
a paragraph is the sum of the demerits for each line.
This means this cost function will prefer using shorter
paragraphs since they tend to have fewer demerits.
However, long paragraphs tend to have much more
available glue stretch, so this strategy can lead to
suboptimal solutions.

14.2.2 Scaling by the number of lines
Once I realized this issue, I tried correcting it by
dividing by the number of lines in the paragraph to
get the average demerits instead of the total demerits:

c =
d

l

This works better than the previous function, but
still has an issue. If we have a fairly bad ten-line
paragraph with total demerits 10d and an almost-
equally bad two-line paragraph with total demerits
2d + 1, then by this cost function, the ten-line para-
graph will have a lower cost and will be chosen. This
means that our page now has ten bad lines instead
of two bad lines, which is not ideal.

14.2.3 Current implementation
Our first cost function, c = dl0, doesn’t consider the
number of lines at all, while our second cost function,
c = dl−1, considers the number of lines too much.
Splitting the difference between the two functions,
we get the current implementation:

c =
d√
l

I didn’t arrive at this function through any sort
of scientific testing; rather, I picked the simplest func-
tion that I could think of that satisfies the following
two properties:

• Given a long paragraph and a short paragraph
with different average badnesses per line, prefer
the one with the least average badness.

• Given two paragraphs with equal average bad-
nesses per line, prefer the shorter one.

15 Quantitative analysis
Let’s look at some statistics for lua-widow-control.
For testing, I downloaded the top ten books on
Project Gutenberg,6 converted them to LATEX us-
ing pandoc, concatenated them into a single article

1 2 3 4 5 6 7 8 9 101112131415 ≥16

0

1

2

3

4

Paragraph length (lines)

C
ou

nt
(t

ho
us

an
ds

)

Figure 4: Histogram of natural paragraph lengths in
the sample text.

file, and compiled twice. This gives us a PDF with
1 381 pages, 15 692 paragraphs, 61 865 lines, and
399 widows and orphans (if they aren’t removed).

This is a fairly challenging test: almost every
third page has a widow or orphan, over half of the
paragraphs have two lines or fewer, and the text
block is set to the fairly wide article defaults. An
average document is much less challenging for lua-
widow-control, so we can consider this to be a worst-
case scenario.

15.1 Widows and orphans removed
When we run LATEX with its default settings on
the file, 179 (47%) of the widows and orphans are
removed. When we add lua-widow-control with de-
fault settings, we remove 392 (98%). Switching to
strict mode, we can only remove 52 (13%) of the
widows and orphans. In balanced mode, we remove
348 (87%). See figure 5 for a visual comparison.

15.2 Paragraph costs
The last section showed us that lua-widow-control
is quite effective at removing widows and orphans,
so now let’s look at the paragraphs that lua-widow-
control expands. As TEX processes a document, lua-
widow-control is recording the costs for the naturally-
broken and expanded versions of each paragraph in
the document. Costs don’t mean that much on their
own, but a lower cost is always better.

6 Frankenstein, Pride and Prejudice, Alice’s Adventures in
Wonderland, The Great Gatsby, The Adventures of Sherlock
Holmes, Simple Sabotage Field Manual, A Tale of Two Cities,
The Picture of Dorian Gray, Moby Dick, and A Doll’s House.

Automatically removing widows and orphans with lua-widow-control

38 TUGboat, Volume 43 (2022), No. 1

Max
im

um

poss
ibl

e

lwc de
fa

ul
t

ba
la

nc
ed

LATEX
st

ri
ct

100

200

300

400
W

id
ow

s
an

d
or

ph
an

s
re

m
ov

ed

Figure 5: The number of widows and orphans removed
by each method.

0 20 40 60 80 100

102

103

104

105

Percentile

C
os

t

Long
Natural

Figure 6: Paragraph costs by percentile rank for
naturally-broken and one-line lengthened paragraphs.

As you can see in figure 6, the lengthened para-
graphs tend to have much higher costs than the
naturally-broken paragraphs. This is not surprising,
since (as we’ve seen) a paragraph’s demerits scale
with the sixth power of glue stretch, so even a small
amount of glue stretch can cause a huge increase in
demerits.

The empty space on the left of the “long” line
is from the paragraphs that lua-widow-control was
unable to lengthen at any cost. LuaTEX assigns these
paragraphs zero demerits, so they disappear on a
logarithmic plot.

15.3 Lengthening vs. shortening paragraphs
Figure 7 shows the number of paragraphs that lua-
widow-control could potentially stretch or shrink. The
one-line paragraphs are broken out separately since

0 2 4 6 8 10 12 14

Paragraphs (thousands)

n = 1 n n + 1 n ± 1 n − 1

Figure 7: The number of paragraphs in the test sample
that (respectively) have exactly one line, cannot be
stretched or shrunk, can be only stretched by one line,
can be either stretched or shrunk, and can be only
shrunk.

this test sample has an anomalous number of them.
Otherwise, we can see that lua-widow-control is capa-
ble of stretching the majority of paragraphs.

We can also see that of non-single-line para-
graphs, only about 8% of paragraphs can only be
shrunk (the last segment of figure 7), and this is in
a document where 13% of paragraphs have at least
eight lines. Most documents rarely have such long
paragraphs, and it is these long paragraphs that are
the easiest to shrink.

Because of this, lua-widow-control doesn’t even
attempt to shrink paragraphs; it only stretches them.

16 Known issues
lua-widow-control is quite stable these days, a few
issues remain:

• When a three-line paragraph is at the end of
a page forming a widow, lua-widow-control will
remove the widow; however, it will leave an or-
phan. This issue is inherent to any process that
removes widows through paragraph expansion
and is thus unavoidable. Orphans are consid-
ered to be better than widows [2], so this is still
an improvement.

• Sometimes a widow or orphan cannot be elimi-
nated because no paragraph has enough stretch.
Sometimes this can be remediated by increasing
lua-widow-control’s \emergencystretch; how-
ever, some pages just don’t have any suitable
paragraph.

Long paragraphs with short words tend to
be stretchier than short paragraphs with long
words since these long paragraphs have more
interword glue. Narrow columns also stretch
more easily than wide columns since you need
to expand a paragraph by less to make a new
line.

• When running under LuaMetaTEX (ConTEXt),
the log may contain many lines like “luatex
warning > tex: left parfill skip is gone”.

Max Chernoff

TUGboat, Volume 43 (2022), No. 1 39

These messages are completely harmless (al-
though admittedly quite annoying).

• TEX may warn about overfull \vboxes on pages
where lua-widow-control removed a widow or or-
phan. This happens due to the way that lua-
widow-control corrects for the \prevdepth when
replacing paragraphs. It does not actually pro-
duce an overfull vbox, but there is a warning
nevertheless. You can set \vfuzz=2.5pt to hide
the warning.

• lua-widow-control only attempts to expand para-
graphs on a page with a widow or orphan. A
global system like in [10] would solve this; how-
ever, this is both NP-complete [17] and impossi-
ble to solve in a single pass. Very rarely would
such a system remove widow or orphans that
lua-widow-control cannot.

17 Conclusion
All this probably makes lua-widow-control look quite
complicated, and this is true to some extent. How-
ever, this complexity is hidden from the end user:
as stated at the outset, most users merely need to
place \usepackage{lua-widow-control} in their
LATEX document preamble, and lua-widow-control
will remove all the troublesome widows and orphans,
without needing any manual intervention.

Should you have any issues, questions, or sugges-
tions for lua-widow-control, please visit the project’s
GitHub page: github.com/gucci-on-fleek/lua-
widow-control. Any feedback is greatly appreci-
ated!

References
[1] G. Ambrose, P. Harris. The Layout Book.

Advanced Level Series. Bloomsbury Academic,
2007.

[2] R. Bringhurst. The Elements of Typographic
Style. Hartley & Marks, 3rd ed., 2004.

[3] K. Brown. The typographical widow. Bulletin
of the New York Public Library 52(1):3–25, Jan.
1948. hdl.handle.net/2027/uc1.b3310084

[4] K. Brown. The typographical widow: Encore.
Bulletin of the New York Public Library
52(9):458–466, Sept. 1948.
hdl.handle.net/2027/uc1.b3310084

[5] R. Hunt. Advanced Typography: From
Knowledge to Mastery. Bloomsbury Publishing,
2020.

[6] P. Isambert. Strategies against widows.
TUGboat 31(1):12–17, 2010.
tug.org/TUGboat/tb31-1/tb97isambert.
pdf

[7] jeremie. Paragraph callback to help with
widows/orphans hand tuning, August 2017.
tex.stackexchange.com/q/372062

[8] D.E. Knuth. The new versions of TEX
and METAFONT. TUGboat 10(3):325–328,
Nov. 1989.
tug.org/TUGboat/tb10-3/tb25knut.pdf

[9] D.E. Knuth. The TEXbook. Addison–Wesley,
2021.

[10] F. Mittelbach. A general framework for
globally optimized pagination. Computational
Intelligence 35(2):242–284, Mar. 2018.
doi.org/10.1111/coin.12165

[11] F. Mittelbach. Managing forlorn paragraph
lines (a.k.a. widows and orphans) in LATEX.
TUGboat 39(3):246–251, 2018. tug.org/
TUGboat/tb39-3/tb123mitt-widows.pdf

[12] F. Mittelbach. The widows-and-orphans
package, March 2021.
ctan.org/pkg/widows-and-orphans

[13] J. Moxon. Mechanick exercises,
vol. 2, 1683. archive.org/details/
mechanickexercis00moxo_0

[14] Oxford English Dictionary. line at end of
paragraph.
www.oed.com/view/th/class/195380

[15] Oxford English Dictionary. club, n., Sept. 2021.
www.oed.com/view/Entry/34788

[16] Oxford English Dictionary. widow, n., Dec.
2021. www.oed.com/view/Entry/228912

[17] M.F. Plass. Optimal pagination techniques for
automatic typesetting systems. Ph.D. thesis,
Stanford University, 1981.
tug.org/docs/plass/plass-thesis.pdf

[18] I. Saltz. Typography Essentials Revised and
Updated. Rockport Publishers, 2019.

[19] Hàn Thế Thành. Micro-typographic extensions
to the TEX typesetting system. TUGboat
21(4):317–317, Dec. 2000.
tug.org/TUGboat/tb21-4/tb69thanh.pdf

[20] The NT S Team. The ε-TEX manual, Feb. 1998.
ctan.org/pkg/etex

[21] U. Wermuth. Experiments with
\parfillskip. TUGboat 39(3):276–303,
2018. tug.org/TUGboat/tb39-3/
tb123wermuth-parfillskip.pdf

� Max Chernoff
Calgary, Alberta
Canada
mseven at telus dot net

Automatically removing widows and orphans with lua-widow-control

https://github.com/gucci-on-fleek/lua-widow-control
https://github.com/gucci-on-fleek/lua-widow-control
https://hdl.handle.net/2027/uc1.b3310084
https://hdl.handle.net/2027/uc1.b3310084
https://tug.org/TUGboat/tb31-1/tb97isambert.pdf
https://tug.org/TUGboat/tb31-1/tb97isambert.pdf
https://tex.stackexchange.com/q/372062
https://tug.org/TUGboat/tb10-3/tb25knut.pdf
https://doi.org/10.1111/coin.12165
https://tug.org/TUGboat/tb39-3/tb123mitt-widows.pdf
https://tug.org/TUGboat/tb39-3/tb123mitt-widows.pdf
https://ctan.org/pkg/widows-and-orphans
https://archive.org/details/mechanickexercis00moxo_0
https://archive.org/details/mechanickexercis00moxo_0
https://www.oed.com/view/th/class/195380
https://www.oed.com/view/Entry/34788
https://www.oed.com/view/Entry/228912
https://tug.org/docs/plass/plass-thesis.pdf
https://tug.org/TUGboat/tb21-4/tb69thanh.pdf
https://ctan.org/pkg/etex
https://tug.org/TUGboat/tb39-3/tb123wermuth-parfillskip.pdf
https://tug.org/TUGboat/tb39-3/tb123wermuth-parfillskip.pdf

40 TUGboat, Volume 43 (2022), No. 1

l3build: The beginner’s guide

Joseph Wright

1 Introduction

For package authors, creating a release is a regular
process, ideal for automation. There are several steps
to creating a release to CTAN, for example ensuring
documentation is updated, structuring an archive
correctly and actually uploading the material.

Some time ago, the LATEX Team extended their
existing basic scripts to create an independent tool,
l3build, which can cover all of those tasks. Most sig-
nificantly, it included features to run comprehensive
tests: this aspect was previously covered for TUG-

boat (2014, 35:3, pp. 287–293). Here, I will give a
more general overview of the tool, looking at how it
can help package authors create releases in a quick
and reliable manner.

2 l3build at the command line

With a modern TEX system, l3build is available as a
command at the command line/terminal. It under-
stands ⟨targets⟩, ⟨options⟩ and ⟨arguments⟩.

l3build ⟨target⟩ [⟨options⟩] [⟨arguments⟩]

The ⟨target⟩ is the task we want l3build to carry out.
The most common ones are:

check Runs one or more automated tests

save Saves the result of one or more tests

doc Typesets documentation

ctan Creates a zip file ready to send to CTAN

upload Sends a zip file to CTAN

install Installs the package in the local texmf tree
(there is also uninstall to reverse this)

The particular ⟨options⟩ which apply depend on
the ⟨target⟩. For example, when running the check
target, l3build will normally finish all of the tests
then report the results. However, particularly when
used with an automated system, one might want the
tests to halt as soon as there is an error. That is
available using the --halt-on-error option, which
is also available as the one-letter version -H.

Some targets require one or more ⟨arguments⟩.
For example, to save test results, you have to give the
name of the test(s). Some targets take an optional
⟨argument⟩: doc is a good example, as you can limit
this to a specific PDF (where your project has several
PDFs, this can be useful). Finally, some targets do
not need arguments at all: install is an example.

3 Configuration: the build.lua file

The configuration of l3build for a project is controlled
by a file called build.lua, which should be present

in the main directory. This is a Lua file, and so
can contain sophisticated programming. However,
for a large number of use cases, the requirements
are simply to set either string variables or tables
of strings. That means that for many projects, the
build.lua file will comprise just a few short lines,
and requires no insight into Lua programming.

Only one line is absolutely required: one to tell
l3build the name of the package. This is specified as
the module string:

module = "mypkg"

By the way, Lua will allow us to mark strings using
either single or double quotes. I favour double ones,
and only use single quotes if the string itself contains
a double quote, but it’s purely personal preference.

The standard settings in l3build are based around
using one or more .dtx files extracted using an .ins

file. They also assume that the documentation is in
the .dtx files. One common structure with larger
packages is to separate out the documentation from
the code, so to have a .tex file to typeset. This can
be covered using

typesetfiles = {"*.tex"}

or if we want to specify only specific files, for example:

typesetfiles =

{

"mypkg-doc.tex",

"mypkg-example-a.tex"

}

Here, we are using a Lua table: these can hold a
variety of data, but all we need to know here is that
we can use a comma-separated list of names inside
braces.

If the project we are working on doesn’t use the
.dtx format, we need to tell l3build the name(s) of
our source files, and that it can skip unpacking:

sourcefiles = {"*.def", "*.sty"}

unpackfiles = {}

Or we might unpack some files that are not on the
standard list, in which case we need to tell l3build to
install them:

installfiles = {"*.def", "*.sty"}

The standard settings for l3build assume that
all of the source files are in the same directory as
the build.lua file. Some authors prefer a more
complex structure. For example, for LATEX itself
there are lots of documentation files, so they are
inside a subdirectory:

docfiledir = "./doc"

You can do the same with your source files, for ex-
ample if you want your main directory to hold just
build.lua (and probably a README.md):

doi.org/10.47397/tb/43-1/tb133wright-l3build

Joseph Wright

TUGboat, Volume 43 (2022), No. 1 41

sourcefiledir = "./source"

The system can cope with more complex layouts,
for example with subdirectories. One new feature
that can help with these more tricky cases is tdsdirs,
which lets l3build simply copy an entire directory ‘as
is’. We tell the system the name of the directory,
and where it matches up with in the TEX installation
tree. For example, if we wanted to use the above
source directory in its entirety, and install it into
the tex tree, we would use

tdsdirs = {source = "tex"}

In this case, all of the files are used.
We will see later that there are settings that

apply to tests, to creating CTAN releases, and for
more advanced functions.

4 Setting up simple tests

The core mechanism for creating tests in l3build

uses the fact that documents can write to the .log
and extract information to verify that our code has
worked. That can broadly be done in two ways: de-
liberately writing information to the .log, or using
\showoutput or similar to place the result of some
typesetting operation into the file.

What is also needed is a way to mark those parts
of the .log that are of interest, and to normalise
system-dependent information, such as paths, to
make the results as portable as possible. Some of
this is carried out by l3build itself, with the macro
parts of the process implemented in the source file
regression-test.tex. All the commands provided
by the latter have all-uppercase names, to minimise
the chance of clashes with normal commands.

For the case where it is possible to save a result
in a macro, counter or similar, the easiest approach
to testing is to write these using \TYPEOUT.

\input{regression-test}

\documentclass{article}

\usepackage{mypkg} % The package to test

\START

\TEST{A first test}{%

\mypkfunctionA{input-tokens}%

\outputmacro

\TYPEOUT{\outputmacro}

}

\TEST{A second test}{%

\mypkfunctionB

{input-tokens}%

{more-input-tokens}%

\outputmacro

\TYPEOUT{\outputmacro}

}

\END

Nothing before \START will be recorded, which makes
it a good way to skip the preamble. We can skip
small parts of the input using the pair \OMIT and
\TIMO. The run here is stopped using \END as we
are not interested in the typesetting of pages: this
basically kills the TEX run and saves a bit of time.

The alternative approach is to look at TEX’s
output tracing, either using a box or \showoutput.

\input{regression-test}

\documentclass{article}

\usepackage{mypkg} % The package to test

\showoutput

\begin{document}

\START

% Assume the commands produce typeset output

\mypkfunctionA{input-tokens}

\mypkfunctionB

{input-tokens}

{more-input-tokens}

\newpage

\OMIT

\end{document}

Here, we can use \OMIT to skip over the informa-
tion at the end of a TEX run: here we have used
\end{document} as this allows the LATEX .aux file,
etc., to be created. If you are relying on information
passed using this mechanism, you might need to set

checkruns = 2

or some higher value.
The input files for tests, .lvt files, should be

saved inside a directory testfiles within the project
directory. The test results are then saved using

l3build save ⟨names⟩

where the ⟨names⟩ are the file names of the test
inputs, but with the extension omitted.

With the standard settings, tests are run using
pdfTEX, X ETEX and LuaTEX, and using the LATEX
format. Using formats other than LATEX is outside
of the scope of this short guide, but running with
multiple engines is a common requirement. To save
an engine-specific test result, we use the --engine

(or -e) option

l3build save -e⟨engine1 ⟩,⟨engine2 ⟩ ⟨names⟩

This will be needed most commonly when testing
typeset output: there are fundamental differences
between the three common engines. When running

l3build check

the system will use engine-specific results if they
exist, and otherwise will assume that they all follow
the ‘standard’ engine: this is normally pdfTEX.

l3build: The beginner’s guide

42 TUGboat, Volume 43 (2022), No. 1

If you would rather just use one engine for tests,
you can set

checkengines = {"pdftex"}

in your build.lua file. For Unicode-only work, in
contrast, you might want

checkengines = {"xetex", "luatex"}

where the first entry given will then be the ‘standard’
engine.

5 Customising typesetting

There is only one command used for typesetting
documentation: it can be set using the typesetexe
setting. This is typically set to pdflatex: notice
that this is a typesetting command not an engine.

As for tests, the number of typesetting runs can
be set, using the typesetruns setting. More complex
adjustment of the typesetting run is possible: l3build
provides a set of basic operation functions (such as
‘run Biber’), and these can be combined to make
defined workflows. This aspect requires some Lua
programming and is therefore beyond the scope of
this short guide.

6 Building CTAN releases

The standard settings will collect up all sources and
typeset files, plus any README.md, and create a zip
file to send to CTAN. You can also pack a TDS-ready
zip: this feature is activated using the setting

packtdszip = true

Uploading to CTAN requires some settings to
‘fill out the form’ for administration. As an example,
l3build itself has the configuration shown in Figure 1.
The [[...]] syntax creates a multi-line string in
Lua.

The information in uploadconfig is used by
the upload target, which needs two key pieces of
information: an email address and a release string.
This will be requested by l3build if not given at the
command line

l3build upload --email ⟨email⟩ ⟨tag⟩

You can check that your upload is valid, without
actually sending it, by using the --dry-run option
on the command line. (This option also works for
the install target.)

7 Advanced features

Using a mixture of Lua programming and additional
variables, a wide range of effects can be achieved.
These include

• Supporting plain TEX and ConTEXt testing

• Automatically updating version strings and copy-
right in sources using the tag target

• Using multiple setups to run tests for different
aspects of functionality

• Placing installed files in different parts of the
TEX tree

• Testing the PDFs produced by typesetting

Of these, the ability to automatically tag files is prob-
ably of the broadest interest. However, as sources
files are extremely varied, this does require some Lua
programming; that takes us beyond the scope of this
short article. For details of this and the other more
advanced features, please consult the l3build manual.

8 Example build.lua files

8.1 A basic project: one .dtx and one .ins

The most basic setup, following the model used by
the LATEX Team, is to have your code and document-
ation in a single .dtx file, which has a matching .ins
file and (probably) a README.md, all in the same dir-
ectory. For this, the build.lua file can be a single
line:

module = "mypkg"

That’s it: l3build will handle everything else based
on its standard settings.

8.2 A ‘self-extracting’ .dtx file

Some people like to combine their .ins file into their
.dtx; that is easy to support.1

module = "mypkg"

unpackfiles {"*.dtx"}

8.3 Documentation separate from sources

With larger projects, you may want your documenta-
tion in one or more .tex files separate from the code.
Assuming you also want to typeset your code, you’d
go with

module = "mypkg"

typesetfiles {"*.dtx", "*.tex"}

8.4 Not using DocStrip, and non-standard

file types

Not everyone wants to use DocStrip, and while it
won’t hurt to leave unpacking enabled, we might well
want to skip it. At the same time, we might have
some non-standard file types: here some .def files
and one .lua file.

module = "mypkg"

installfiles =

{"*.def", "mypkg.lua", "*.sty"}

unpackfiles = {}

1 I don’t recommend this structure. You are unlikely to

need to send your source by email to someone, and the only

real benefit of a single-source approach is for that type of

‘classical’ distribution.

Joseph Wright

TUGboat, Volume 43 (2022), No. 1 43

uploadconfig = {

author = "The LaTeX Team",

license = "lppl1.3c",

summary = "A testing and building system for (La)TeX",

topic = {"macro-supp", "package-devel"},

ctanPath = "/macros/latex/contrib/l3build",

repository = "https://github.com/latex3/l3build/",

bugtracker = "https://github.com/latex3/l3build/issues",

update = true,

description = [[

The build system supports testing and building

(La)TeX code, on Linux, macOS, and Windows

systems. The package offers:

* A unit testing system for (La)TeX code;

* A system for typesetting package documentation; and

* An automated process for creating CTAN releases.

]]

}

Figure 1: uploadconfig for l3build itself

8.5 Source files in different directories

Some developers like to have their sources in different
directories inside their project. This likely goes with
having separate files for typesetting.

module = "mypkg"

docfiledir = "doc"

sourcefiledir = "source"

typesetfiles = {"*.tex"}

9 Summary of key settings

There are a large number of more specialised settings
available in l3build. Table 1 summarises some of the
most commonly-used ones. There is a full list in the
package documentation.

⋄ Joseph Wright

Northampton, United Kingdom

joseph dot wright (at)

morningstar2.co.uk

Variable Description

module Name of the package

installfiles List of files to place in the texmf
tree

sourcefiles List of sources/pre-extracted files
typesetfiles List of sources to typeset
unpackfiles List of .ins files to DocStrip

docfiledir Location of typeset sources
sourcefiledir Location of code sources
tdsdirs Table of locations to install directly

checkengines List of engines for test runs
checkruns Number of (LA)TEX runs for testing

typesetexe Program to typeset documentation
typesetruns Number of (LA)TEX runs for

typesetting

packtdsdir Switch to build TDS-style zip file
uploadconfig Table of information for uploading

Table 1: Summary of key settings

l3build: The beginner’s guide

44 TUGboat, Volume 43 (2022), No. 1

bib2gls: Standalone entries
and repeated lists (a little book of poisons)

Nicola L. C. Talbot

Abstract

Most articles that describe how to use the glossaries

package consider a single sorted list or possibly mul-
tiple lists where each list has a different set of entries
(terms, symbols, abbreviations, etc.). However, some
documents may instead have each term described in
the main matter, with references to the term linking
back to that point in the document rather than to
a summary list. Alternatively (or additionally) a
document may have multiple lists consisting of the
same set of entries ordered in different ways.

The examples here were compiled with glossaries

v4.49 [9], mfirstuc v2.07 [10], glossaries-extra v1.47 [8]
and bib2gls v2.8 [6]. Some features and commands
are not available in earlier versions. Also some earlier
versions have bugs causing unexpected results.

1 The Book of Poisons

The Book of Poisons by Stevens and Bannon [3] is
an excellent guide for crime fiction writers. It also
provides a good example of a mixture of standalone
entries (where each entry, in this case a toxic sub-
stance, is described in the main matter rather than in
a summary list) and repeated lists in the back matter
with just the name and no description (ordered by
method of administration, by form, by symptoms, by
toxicity and by time taken to react). It also has the
more traditional lists (a bibliography and a simple
glossary of medical terms) which aren’t under dis-
cussion here. Finally, there’s an index, which could
be implemented using the standard \index and as-
sociated commands, but since it’s possible to create
the index as a by-product of using bibgls for the
standalone entries, this will also be covered here.

The book consists of numbered chapters for
each particular type of poison (household chemi-
cals, plants, animals and so on). Each chapter is
divided into unnumbered (sub) sections describing
each poison, using a consistent structure listing:

Scientific Name (optional) for example ‘Cantharis
vericatoria’ is the scientific name of cantharidin;

Other Name (optional) for example ‘Spanish fly’
is a colloquial term for cantharidin;

Other Similar (optional) a list of similar substances
that don’t have their own entries; for example,
‘choline’ is listed as similar to aspirin;

Toxicity a number from 1 (low) to 6 (highly toxic);1

1 The toxicity level relates to the amount required for a

lethal dose. It’s not a measure of symptoms. A level 6 toxin

Form/Deadly Parts plants have a deadly parts
item (identifying which part of the plant is toxic),
while other entries list the form (for example,
liquid or gas) that the toxin takes;

Effects and Symptoms such as headache or nau-
sea;

Reaction Time how long for symptoms to occur;

Antidotes and Treatments whether or not an an-
tidote is available or if there is known treatment;

Notes (optional) some additional information, some-
times including a case history.

I don’t want to bog down the examples with
unrelated style code, so I’m just going to use the
standard description environment. The entry data
itself will also be significantly pared down to the
following, which will correspond to glossary entry
fields (custom ones will need to be defined):

name the toxin name (as it will appear in the section
title);

description information about the toxin;

toxicity (custom field) a number;

method (custom field) the method of administration,
a list of one or more elements from the set:
breathed, injected, membrane absorption, skin
absorption, smoked, swallowed.

symptom (custom field) the symptoms, which should
be a list of one or more elements from any of
the symptom classification subsets, including:

vital signs: bradycardia, hyperthermia, hyper-
tension, hypotension, hypothermia, tachy-
cardia;

head, eyes, nose, throat: bad/unusual taste,
etc.

(There are too many to list individually here.)

I’ve omitted form (aerosol etc.) as the ‘Ordered by
Form’ list can be achieved in the same way as the
‘Ordered by Method’ list. Similarly for the reaction
time, which could be implemented with a numeric
identifier like the toxicity.

2 Manual method

I’m going to start with an example document that
doesn’t use the glossaries package. Since we live in a
digital age where some people prefer to read books
on their devices, I’ve used the hyperref package [2].
The chapters are numbered in the main matter, but
sections aren’t numbered anywhere. The sections
and subsections are too numerous to list in the table

can cause death from a pinprick amount with few symptoms,

whereas a level 2 toxin requires a much higher dose to kill but

can have debilitating long-term symptoms from a non-lethal

dose.

doi.org/10.47397/tb/43-1/tb133talbot-bib2gls-reorder

Nicola L. C. Talbot

https://doi.org/10.47397/tb/43-1/tb133talbot-bib2gls-reorder

TUGboat, Volume 43 (2022), No. 1 45

of contents, but they would be useful in the PDF

bookmarks. This can be achieved by setting the
tocdepth counter to 0 (to only show chapters in the
table of contents), setting the secnumdepth counter
to 0 (to only show numbers for chapters) and using
hyperref’s bookmarksdepth option to set the depth
for the PDF bookmarks.

The hyperref package automatically creates an
anchor at the start of each page where the anchor
name is obtained from the formatted page number.
The \frontmatter command resets the page counter
to 0 and changes the page number format to lower-
case Roman numerals. Thus, the first page of the
table of contents is ‘i’ and so the anchor for that page
is page.i. The \mainmatter command similarly re-
sets the page and changes the format to arabic (the
default page number format) so the anchor for the
first page of the first chapter will be page.1.

Unfortunately, the title page (and its reverse)
also use the default number format so, even though
the numbering may be hidden by the empty page
style, the page anchor is still created (page.1 for
the title page and page.2 for its reverse). Since the
page numbers are hidden, the simplest solution is
to select a different number format that isn’t used
for any of the other pages. In this case, I’ve used
the alph format. This means the first two pages
have the anchors page.a and page.b. They’re not
required anywhere in the document but this prevents
a conflict and ensures that any references to pages 1
or 2 in the index or glossaries (once they are added)
link to the correct page.

The ‘Ordered by’ lists mostly have very narrow
columns so I’ve used the multicol package [1]. As
we’ll see, the ‘Ordered by Toxicity’ listing rounds 4.5
down to 4, which is what Stevens and Bannon do
(although their toxicity list is in the opposite order).

Some of the scientific names are New Latin
names, so I’ve provided a semantic command to
typeset them:

\newcommand*{\latinname}[1]{\emph{#1}}

This example document contains only one toxin
(ammonia), but it’s already lengthy as it has a large
number of symptoms.

\documentclass{book}

\usepackage{multicol}

\usepackage[bookmarksdepth=2]{hyperref}

\title{A Little Book of Poisons}

\author{Ann Author}

\setcounter{secnumdepth}{0}

\setcounter{tocdepth}{0}

\newcommand*{\latinname}[1]{\emph{#1}}

\begin{document}

\pagenumbering{alph}\pagestyle{empty}

\maketitle

\frontmatter\pagestyle{headings}

\tableofcontents

\mainmatter

\chapter{Household Poisons}

\section{Chemicals}

\subsection{Ammonia}

\begin{description}

\item[Other] Ammonium hydroxide.

\item[Toxicity] 4.5

\item[Method] Breathed.

\item[Symptoms] Tachycardia, blindness, lip/mouth

irritation, burns, flushing, coughing, pulmonary

edema, abdominal or stomach pain, restlessness,

collapse, and pain.

\item[Description] Some information about ammonia.

\end{description}

\backmatter

\chapter{Ordered by Administration}

\begin{multicols}{3}

\section{Breathed}

\begin{itemize}

\item[] Ammonia

\end{itemize}

\end{multicols}

\chapter{Ordered by Symptoms}

\begin{multicols}{3}

\section{Vital Signs}

\subsection{Tachycardia}

\begin{itemize}

\item[] Ammonia

\end{itemize}

% Lots of other sections omitted for brevity

\end{multicols}

\chapter{Ordered by Toxicity}

\begin{multicols}{3}

\section{Toxicity Rating 6}

\section{Toxicity Rating 5}

\section{Toxicity Rating 4}

\begin{itemize}

\item[] Ammonia

\end{itemize}

\section{Toxicity Rating 3}

\section{Toxicity Rating 2}

\end{multicols}

\end{document}

3 Standalone entries

For this next example, I’m going to consider a cut-
down version of the main matter in order to illustrate
standalone entries. The simplest approach can be
achieved with the base glossaries package, although
this has limitations. For now, each entry just has a
name, toxicity and description. The toxicity could
be stored in one of the custom keys, such as user1,
but I’ve decided to define a new key called toxicity:

\glsaddstoragekey{toxicity}{}{\toxicity}

bib2gls: Standalone entries and repeated lists (a little book of poisons)

46 TUGboat, Volume 43 (2022), No. 1

This both defines the toxicity key and provides a
command called \toxicity to access the value.

Since the descriptions are likely to be quite
lengthy and may contain paragraph breaks, they
are best defined with \longnewglossaryentry:

\longnewglossaryentry{ammonia}

{name=ammonia,toxicity=4.5}

{Some information about ammonia.}

\longnewglossaryentry{nutmeg}

{name=nutmeg,toxicity=3}

{Some information about nutmeg.}

\longnewglossaryentry{lsd}

{name=LSD,toxicity=2}

{Some information about LSD that includes

a reference to nutmeg.}

\longnewglossaryentry{botulinum}

{name={botulinum},toxicity=6}

{Some information about botulism.}

These are all defined in the file toxins.tex, which
needs to be input in the preamble (with either \input
or \loadglsentries).

Since all the sections follow a set format, I’ll
define a command (\toxin) that simply takes a label
and displays the complete section. To accommodate
the mixture of sections and subsections, we have an
associated command (\toxinsection) that can be
redefined at the start of a chapter where necessary:

\newcommand{\toxinsection}{\section}

\newcommand*{\toxin}[1]{%

\toxinsection{\glsentrytitlecase{#1}{name}}

\begin{description}

\item[Toxicity] \toxicity{#1}

\item[Description] \glsentrydesc{#1}

\end{description}

}

This converts the name field to title case in the
section heading using \glsentrytitlecase, which
internally uses \capitalisewords provided by the
mfirstuc package.

When writing in English, words such as ‘and’
should only be capitalized when they occur at the
start of the title. Since such exceptions are language
dependent, they aren’t implemented by default. The
mfirstuc-english package provides the common En-
glish exceptions:

\usepackage{mfirstuc-english}

This doesn’t affect the document so far, but it will
later when the ‘order by symptoms’ list is added.

The main matter is now much shorter:

\chapter{Household Poisons}

\renewcommand{\toxinsection}{\subsection}

\section{Chemicals}

\toxin{ammonia}

\section{Food Poisoning}

\toxin{botulinum}

\chapter{Plants}

\renewcommand{\toxinsection}{\section}

\toxin{nutmeg}

\chapter{Street Drugs}

\toxin{lsd}

When just considering the main matter, this doesn’t
seem like a significant improvement to the first exam-
ple. It is easier to move the sections around, but the
title case-changing can’t be implemented in the PDF

bookmarks. So \glsentrytitlecase will expand to
the original lowercase value in the bookmark.

It would be useful if the nutmeg reference in
the LSD description had a hyperlink to the nutmeg
section (created with hyperref). Such hyperlinks are
normally achieved with the glossaries package using
commands like \gls. However, the target anchor is
typically in the glossary (implemented by the glossary
style), but there isn’t a glossary in this document.

The glossaries-extra package provides a solution
where you can use \glsxtrglossentry:

\toxinsection{\glsxtrglossentry{#1}}

This command expands to just \glsentryname for
the PDF bookmark, so there’s no difference in this
respect. However, within the document text, this
command creates the hypertarget and displays the
name in the same way as the glossary styles. So I
can adjust the case using the glossname attribute:

\glssetcategoryattribute{general}{glossname}

{title}

This only applies to the section title on the page, not
in the bookmarks.

The LSD entry can now be modified to include
a hyperlink to the nutmeg section:

\longnewglossaryentry{lsd}

{name=LSD,toxicity=2}

{Some information about LSD that includes

a reference to \gls{nutmeg}.}

There are over two hundred toxins listed in the
book. At the moment, all my definitions are stored
in my toxins.tex file, but I could store them in a
bib file instead. This would make it easier to share
the data across multiple documents. For example,
the bib file may include brief summaries that can
be used as a description in other shorter documents
as well as the long description for this catalogue of
toxins. For example:

@entry{nutmeg,name={nutmeg},

summary={Short description of nutmeg.},

longdescription={Long description of nutmeg.}}

The document then can choose the appropriate field
for the description using field aliases. I’m not going
to do this here in order to keep the examples as
simple as possible.

Nicola L. C. Talbot

TUGboat, Volume 43 (2022), No. 1 47

My toxins.tex file can easily be converted to
toxins.bib using convertgls2bib:

convertgls2bib toxins.tex toxins.bib

Then I need to replace the code that inputs toxins.
tex with:

\GlsXtrLoadResources[src=toxins]

and add the record package option.
The \latinname command can be provided in

the preamble of the bib file to ensure that it’s defined:

@preamble{

"\providecommand*{\latinname}[1]{\emph{#1}}"}

Again, this is something that’s useful if the bib file
is shared with other documents, but isn’t essential
for this example as the command is already defined
in the document preamble.

Normally, bib2gls will select entries from the
bib file if they have records in the aux file (which
are created with commands like \gls or \glsadd)
or if they depend on selected entries; for example,
nutmeg needs to be selected if LSD is selected, since
the LSD entry depends on the nutmeg entry.

In this case, though, bib2gls doesn’t select any
entries because nothing creates a record. (The \gls

command in the LSD description will only create
a record if the LSD entry is selected and has its
description expanded in the document, but there are
no LSD records, so LSD won’t be selected.)

I could instruct bib2gls to select all entries, but
some entries may need to be omitted. For example,
the publisher may decide that the print cost for the
physical edition is too large, so some entries may
need to be dropped.

One approach is to use \glsadd in the definition
of \toxin:

\newcommand*{\toxin}[1]{%

\glsadd{#1}% index this entry

\toxinsection{\glsxtrglossentry{#1}}

\begin{description}

\item[Toxicity] \toxicity{#1}

\item[Description] \glsentrydesc{#1}

\end{description}

}

This ensures that each entry listed in the book will
be selected by bib2gls.

The problem of the case-conversion for PDF

bookmarks can now be solved as there are some
resource options that instruct bib2gls to change the
case of field values:

name-case-change=title

However, this will cause \gls{nutmeg} to start
with a capital unless the text field is set to the
original value. This can be done with:

replicate-fields={name=text}

This will copy the value of the name field into the
text field. (If the target field is already set, the de-
fault behaviour is to leave it unchanged.) Replication
is always performed before case-changing, regardless
of the resource option ordering. If the source field
(name in this case) is not set, the default is to do
nothing. But in this case, I want to obtain the value
from the fallback if name is missing:

replicate-missing-field-action=fallback

This means I can now dispense with the glossname

attribute.

4 Comma-separated list fields

So far I haven’t included the method and symptoms
in my entry definitions. I can define two more custom
keys in the same way as for toxicity:

\glsaddstoragekey{method}{}{\method}

\glsaddstoragekey{symptom}{}{\symptom}

I could simply set the values to free-form text:

@entry{ammonia,name={ammonia},

toxicity={4.5},

description={Some information about ammonia.},

method={Breathed.},

symptom={Tachycardia, blindness, lip/mouth

irritation, burns, flushing, coughing,

pulmonary edema, abdominal or stomach pain,

restlessness, collapse, and pain.}

}

However, I decided to adopt a different approach.
First, I created a file called methods.bib containing:

@index{breathed}

@index{injected}

@index{membraneabsorption,

name={membrane absorption}}

@index{skinabsorption,

name={skin absorption}}

@index{smoked}

@index{swallowed}

The method fields are all going to be comma-separated
lists of the method entry labels.

The symptoms are defined in a similar way (in a
file called symptoms.bib) but they have an unknown
topic field, which will be ignored by bib2gls unless
it is aliased or defined in the document (see later).
For example:

@index{hyperthermia,

name={fever\MFUwordbreak{\slash}hyperthermia},

text={fever},

topic={vital signs}

}

@index{hypothermia,

name={low body temperature\MFUwordbreak

{\slash}hypothermia},

text={hypothermia},

bib2gls: Standalone entries and repeated lists (a little book of poisons)

48 TUGboat, Volume 43 (2022), No. 1

topic={vital signs}

}

@indexplural{burn,topic={skin}}

@index{collapse,topic={whole body}}

Note that while most of these are defined using
@index there are some defined with @indexplural.
These entries will default to having the categories
set to ‘index’ and ‘indexplural’. This will cause com-
plications later, so all entries will be assigned to the
‘general’ category with the resource option:

category=general

The names will be converted to title case so the
slash needs to be marked up as a word break using
\MFUwordbreak, otherwise the word following the
slash won’t have its case changed. You may prefer
to define a string:

@string{SLASH="\MFUwordbreak{\slash}"}

and use string concatenation:

name={fever} # SLASH # {hyperthermia},

The ammonia entry can be defined as:

@entry{ammonia,name={ammonia},

toxicity = {4.5},

description={Some information about ammonia.},

method = {breathed},

symptom = {tachycardia,blindness,

mouthirritation,burn,flushing,

coughing,pulmonaryedema,abdominal,

restlessness,collapse,pain}

}

The line breaks in the comma-separated lists above
can be problematic since these lists will internally be
passed to \@for in the document, but it is possible to
get bib2gls to strip the whitespace, if you’d rather
not omit them.

There are two options, labelify and labelify-list,
that can be used to strip any content that can’t
occur in a label. The former is intended for fields
containing a single label and the latter is for fields
containing a comma-separated list of labels. Both
are governed by labelify-replace, so the following can
be used to strip any whitespace:

labelify-list={method,symptom},

labelify-replace={{\string\s+}{}}

This means that you can introduce extra space in
the bib file to make it more readable. Further, since
this option also automatically removes empty items,
it’s also possible to replace ␣and␣ with a comma:

labelify-list={method,symptom},

labelify-replace={

{\string\s+and\string\s+}{,},

{\string\s+}{}}

This means that the list ‘A and B’ becomes ‘A,B’.
The list ‘A, B, and C’ becomes ‘A,B„C’; the empty
element is then stripped, leaving ‘A,B,C’.

So the symptom field can be set as:

symptom = {tachycardia, blindness,

mouth irritation, burn, flushing,

coughing, pulmonary edema, abdominal,

restlessness, collapse, and pain}

This is not only easier to read but also makes it
suitable for use without the symptoms.bib file.

The \glsseelist command (provided by the
base glossaries package) formats a comma-separated
list of entry labels. This was designed for the use
of cross-referencing with the see field [5], but may
be used with any list of entry labels. If you want
to ensure that the argument is fully expanded, use
glossaries-extra’s \glsxtrseelist instead (which in-
ternally uses \glsseelist).

The \toxin command can be modified to in-
clude formatted lists of symptoms, but \glsseelist
doesn’t index so the method and symptom entries
won’t be selected. In order to ensure that they are
selected, bib2gls needs to be told that the method

and symptom fields contain lists of dependent entries:

dependency-fields={method,symptom}

The method and symptom entries don’t have any
targets (at the moment) so the hyperlinks need to
be suppressed. Also the name field has had a case-
conversion applied. Both problems can be fixed by
redefining \glsseeitem to just use \glsentrytext:

\renewcommand*{\glsseeitem}[1]

{\glsentrytext{#1}}

If you want the first item capitalised you can redefine
\glsseefirstitem:

\renewcommand*{\glsseefirstitem}[1]

{\Glsentrytext{#1}}

The separator between the last two items in the list
is given by \glsseelastsep, which defaults to ␣\&␣.
If you want to change this to use ‘and’ instead:

\renewcommand*{\glsseelastsep}{ and }

If your preference is for an Oxford comma you will
also need:

\renewcommand*{\glsseelastoxfordsep}{, and }

This may seem a bit redundant since the end result
is much the same as the original field value, but the
hyperlink will be added in a later example once the
corresponding lists have been created.

If you want the method and symptom elements
to be alphabetically ordered, then you can instruct
bib2gls to do this with the sort-label-list option:

sort-label-list={

{method,symptom}:en:glsentryname}

Nicola L. C. Talbot

TUGboat, Volume 43 (2022), No. 1 49

This indicates that the method and symptom fields
are comma-separated lists and that bib2gls should
reorder these lists according to the en sort method
(English) where the sort value is obtained by encap-
sulating the list element with \glsentryname (which
bib2gls recognises). This ensures that the list is
ordered by the displayed name rather than the label.

5 The index

Since bib2gls sorts by default, a convenient side-
effect is that the index can easily be added at the
end of the document using the bookindex glossary
style (which doesn’t show descriptions). As with
the other provided glossary styles, this will create a
hypertarget, which will cause a conflict, but this can
be switched off with the target=false option:

\printunsrtglossary[target=false,title=Index]

The bookindex style isn’t loaded by default, so you’ll
also need to specify it explicitly:

\usepackage[record=nameref,

stylemods=bookindex,

style=bookindex]{glossaries-extra}

I’ve set the style as a package option as the other
glossaries discussed later will also use this style. If
you want letter groups, remember to use the --group
(or -g) switch when you invoke bib2gls.

If any entries have the see, seealso or alias

fields set, \glsseeitem will need to be restored to
its original value for the index. The simplest way to
do this is to localise the redefinition. So instead of re-
defining it in the preamble, it can be redefined within
a scoped context within the definition of \toxin.
Since environments automatically add scoping, the
redefinition can be placed inside the description

environment.
Some of the entry descriptions may span mul-

tiple pages, in which case you may prefer to have a
page range in the index. This can be achieved with
explicit location ranges. The position of \glsadd
also needs an adjustment. This command switches
to horizontal mode (as complications can occur in
certain situations otherwise), which means that the
page number could be off if the section heading is
moved to the start of the next page. If \glsadd is
placed after the heading then it will cause an un-
wanted space before the start of the description

environment. The best solution is to place it in the
section title and use the optional argument for the
bookmark.

\newcommand*{\toxin}[1]{%

\toxinsection[\glsentryname{#1}]{%

\glsxtrglossentry{#1}\glsadd[format=(]{#1}}

\begin{description}

\let\glsseeitem\glsentrytext

\let\glsseefirstitem\Glsentrytext

\item[Toxicity] \toxicity{#1}

\item[Method] \glsxtrseelist{\method{#1}}.

\item[Symptoms] \glsxtrseelist{\symptom{#1}}.

\item[Description]

\glsentrydesc{#1}\glsadd[format=)]{#1}

\end{description}

}

There is a problem with the method and symp-
tom entries. They haven’t been indexed anywhere
in the document so they don’t have a page list. This
could be solved by redefining \glsseeitem to use
\glstext instead of \glsentrytext, but this in-
creases the complexity of the document build and
could lead to lengthy page lists in the index, es-
pecially for common methods (such as swallowing,
which applies to most toxins) or symptoms (there’s
a fairly sizable list for convulsions). Since the final
version of this example will have lists of methods
and symptoms, there’s no need for them to appear
in the index.

There are two basic approaches to removing
entries from a list: put them in a different glossary
or filter them when displaying the list. The first
approach can be a bit tricky if all entries are being
processed by a single resource command. One way
would be to rename toxins.bib to main.bib and
use the resource option:

type={same as base}

This will set the type field to the file basename,
without the bib extension. So the entries defined in
main.bib will be assigned to the default main glos-
sary, the entries defined in methods.bib will be as-
signed to the glossary identified by the label methods
(which will need to be defined), and similarly entries
defined in symptoms.bib will be assigned to a user-
provided symptoms glossary.

The second approach keeps all the entries in one
glossary but uses the hook that’s provided to help
skip entries. This is discussed in more detail in a
previous article [5], but essentially, in order to avoid
problems involved in using iterative code within a
tabular-like environment (which some glossary styles
use), the entries are first iterated over outside of the
glossary and the glossary contents are appended to
an internal control sequence. There’s a hook that’s
used in this stage which can skip the current iteration
to prevent an entry from being appended.

I’ve defined a custom command to filter entries
with empty locations because it may be useful for
other lists (either in this document or placed in a
package for the use of other documents):

\newcommand{\filteremptylocation}[1]{%

\glsxtrifhasfield*{location}{#1}

bib2gls: Standalone entries and repeated lists (a little book of poisons)

50 TUGboat, Volume 43 (2022), No. 1

{}% has location field

{\printunsrtglossaryskipentry}%

}

The process hook will be \let to this command.
Although each entry in the index has a location

list, it might be useful to have the entry name as
a hyperlink to its section in the main part of the
document. The bookindex style provides a command
that’s used to format the entry name, which takes
the entry label as its argument. Again I’m defining
a custom command which the style command can
locally be \let to. This simply encapsulates the
name with a hyperlink:

\newcommand*{\linkedbookname}[1]{%

\glshyperlink[\glossentryname{#1}]{#1}}

The starred form of \printunsrtglossary has
a mandatory argument where the code to initialise
the hooks can be placed. This is scoped so it won’t
alter any subsequent lists.

\printunsrtglossary*[target=false,title=Index]

{\let\printunsrtglossaryentryprocesshook

\filteremptylocation

\let\glsxtrbookindexname\linkedbookname}

Unfortunately the index now has terms in title
case, which doesn’t look quite right. I used name-case-

change to remove the non-expandable case-changing
from the PDF bookmarks, but this has now had an
unwanted side-effect. To overcome this problem, I
can create a field to store the bookmark title:

\glsaddstoragekey{bookmark}{}{\pdfname}

Now, instead of copying the name to the text field,
I copy it to this new bookmark field:

replicate-fields={name=bookmark}

and instead of name-case-change I now need to use:

field-case-change={bookmark=title}

Any formatting commands can be stripped by in-
structing bib2gls to interpret the bookmark field:

interpret-fields={bookmark}

Alternatively, the \pdfstringdefDisableCommands

command from hyperref can be used to discard prob-
lematic tokens.

The \toxin command needs to be modified to
use this field:

\toxinsection[\pdfname{#1}]

{\glsxtrglossentry{#1}\glsadd[format=(]{#1}}

The glossname attribute is needed again, but it has
to be switched off before the index. This can be
done either by scoping the attribute assignment or
by undefining the attribute:

\glsunsetcategoryattribute{general}{glossname}

6 Synonyms and related terms

The scientific names, alternative names and related
substances could be added in a similar way to the
symptoms and methods, but it would be useful to
have these terms in the index.

There are three cross-referencing fields avail-
able [5]: see, seealso and alias. The first two
take a comma-separated list of labels. The alias

field can only have a single label as the value.
I’m going to use the alias field for the scientific

name, the see field for alternative names (‘Other’)
and the seealso field for similar substances (‘Re-
lated’). For example:

@index{cbot,

name={\latinname{Clostridium botulinum}},

alias={botulinum}}

@index{botulism,see={botulinum}}

@index{botox,see={botulinum}}

@index{lsd-long,

name={lysergic acid diethylamide},

alias={lsd}}

@index{lysergide,see={lsd}}

@index{ammoniumhydroxide,

name={ammonium hydroxide},

alias={ammonia}}

The scientific name for nutmeg is Myristica fragans:

@index{mfragans,

name={\latinname{Myristica fragans}},

alias={nutmeg}}

But some other nutmeg species are also listed:

@index{margentea,

name={\latinname{Myristica argentea}},

alias={nutmeg}}

@index{mmalabarcia,

name={\latinname{Myristica malabarcia}},

alias={nutmeg}}

This complicates things a little as they need their
common name as well:

@index{Papuan-nutmeg,

name={Papuan nutmeg},

see={margentea}}

@index{Bombay-nutmeg,

name={Bombay nutmeg},

see={mmalabarcia}}

These new entries aren’t referenced anywhere in the
document, nor are the selected entries dependent
on them, so I need to change the selection criteria
to include entries that cross-reference the selected
entries:

selection={recorded and deps and see}

The \toxin command needs to be adjusted so
that it shows the other names. Entries only have
fields that store dependent entries (see, etc.), not

Nicola L. C. Talbot

TUGboat, Volume 43 (2022), No. 1 51

the reverse. Whilst it is possible to iterate over all
entries to find the synonyms, it’s not very efficient.

The resource options save-from-alias, save-from-

see and save-from-seealso provide a solution. These
define, respectively, the fields from-alias, from-see
and from-seealso that contain the required infor-
mation. The \toxin command now needs to check
if any of these fields have been defined. For example:

\glsxtrifhasfield*{from-see}{#1}{\item[Other]

\glsxtrseelist\glscurrentfieldvalue}{}

The from-alias field could be dealt with in the same
way, but the common names of the other nutmeg
species won’t show.

A simple solution is to define a command that
checks the from-see field that can be used to encap-
sulate the items in the list:

\newcommand{\seeitemandother}[1]{%

\glsentrytext{#1}%

\glsxtrifhasfield{from-see}{#1}%

{ (\glsentrytext{\glscurrentfieldvalue})}%

{}%

}

and also an analogous command \Seeitemandother

that uses \Glsentrytext instead, used for the first
item in the list. There’s a custom command to switch
to these commands and display the list:

% \toxinitemlist{label}{field}{title}

\newcommand{\toxinitemlist}[3]{%

\glsxtrifhasfield*{#2}{#1}%

{\formattoxinitemlist{#3}

{\glscurrentfieldvalue}%

}%

{}% field not defined

}

I’ve made an inner command to make it easier to
adjust the actual formatting:

% \formattoxinitemlist{title}{label list}

\newcommand*{\formattoxinitemlist}[2]{%

\item[#1] {\let\glsseeitem\seeitemandother

\let\glsseefirstitem\Seeitemandother

\glsxtrseelist{#2}}.

}

The description environment within the \toxin

definition can now be written in a more compact
form:

\begin{description}

\toxinitemlist{#1}{from-alias}{Scientific Name}

\toxinitemlist{#1}{from-see}{Other}

\toxinitemlist{#1}{from-seealso}{Related}

% other items as before

\end{description}

The \booklinkname command is now going to
cause a problem in the index as these new cross-
reference terms don’t have a target. There are a

number of ways around this. For example, a condi-
tional can be added to use a hyperlink only if the
toxicity field is set:

\newcommand*{\linkedbookname}[1]{%

\glsxtrifhasfield{toxicity}{#1}%

{\glshyperlink[\glossentryname{#1}]{#1}}%

{\glossentryname{#1}}%

}

It would, however, be more convenient if the other
names could have a hyperlink to their main entry.
This could be done by consulting the alias, see and
seealso fields in turn, which leads to a complicated
set of nested conditionals and also doesn’t work for
Bombay nutmeg and Papuan nutmeg.

The save-crossref-tail resource option is useful
here as it will save the tail label from a cross-reference
trail in the crossref-tail field. This requires only
one extra conditional:

\newcommand*{\linkedbookname}[1]{%

\glsxtrifhasfield{toxicity}{#1}%

{\glshyperlink[\glossentryname{#1}]{#1}}%

{%

\glsxtrifhasfield{crossref-tail}{#1}%

{\glshyperlink[\glossentryname{#1}]

{\glscurrentfieldvalue}}%

{\glossentryname{#1}}%

}%

}

7 Order by toxicity

The glossaries package allows multiple glossaries. A
default one is provided with the label main. When
a new glossary is defined, an internal command is
constructed from the name glolist@⟨type⟩ where
⟨type⟩ is the glossary label. Whenever a new entry is
defined, its label is appended to the glossary’s inter-
nal list command’s replacement text with a comma
separator. It’s this list that \printunsrtglossary
iterates over.

The glossaries-extra package provides a command
that copies an entry label to another glossary list.
This means that the entry is only defined once and its
type field is set to its original glossary (this can be
considered the entry’s primary glossary) but the en-
try will also appear in the other glossary’s list. (This
approach can’t be used with makeindex or xindy.)

For example:

\newglossaryentry{sample}

{name=sample,description={}}

\newglossary*{another}{Another}

\glsxtrcopytoglossary{sample}{another}

\begin{document}

\printunsrtglossaries

\end{document}

bib2gls: Standalone entries and repeated lists (a little book of poisons)

52 TUGboat, Volume 43 (2022), No. 1

This will display two glossaries, both containing
the sample entry. This method allows a duplicate
list, which may have a different order, without the
overhead of duplicate entry definitions, and it’s this
method that’s employed with bib2gls’s secondary

resource option.
The syntax for this option is:

secondary=⟨sort⟩:⟨field⟩:⟨type⟩

where ⟨sort⟩ indicates the sort method and ⟨type⟩ is
the glossary label.

The :⟨field⟩ part is optional and indicates the
field to use for sorting. The previous article [7]
discussed sorting and, in particular, the system of
fallbacks used to determine the value used for com-
parison if the sort field isn’t set.

A by-product of the sorting function (regardless
of the field used for sorting) is that it assigns the
actual sorting value (possibly obtained from fallbacks,
with word breaks marked, suffixes appended etc.)
to the sort field. This means that if you want a
secondary glossary, you will need to choose a different
field for the sort value unless you want to reuse the
same sort values from the primary sort (which would
usually be redundant). The secondary sort method
will store its actual sort value in the internal field
secondarysort to avoid conflict, in the event that
you need to access both values in your document.

I’ve used the --group switch to add letter groups
to my index. You may recall from previous articles
that this will store the group label (obtained as a
by-product of sorting) in the group field. To avoid
conflict the secondary sort function will store the
group label in the secondarygroup internal field,
and bib2gls will append the required redefinition
to the secondary glossary’s preamble so that it will
automatically switch to the secondarygroup field.

So to have a secondary glossary ordered accord-
ing to the toxicity field (from highest to lowest):

secondary=integer-reverse:toxicity:bytoxicity

Here I’ve indicated that the secondary glossary has
the label bytoxicity. If you inspect the glstex file,
you should find the line:

\provideignoredglossary*{bytoxicity}

This means that the glossary will be provided if
you don’t define it; however, it will be an ‘ignored’
glossary so it will use the default title and won’t be
picked up by \printunsrtglossaries.

If you want to explicitly define this glossary in
the document you can add the following (before the
resource command):

\newglossary*{bytoxicity}{Order by Toxicity}

I’ve used a numeric sort and you may recall from
the previous article [7] that this will result in the

group label glsnumbers (which has the associated
language-sensitive title ‘Numbers’). This label is ac-
tually set indirectly as can be seen from an inspection
of the glstex file:

\bibglssetnumbergrouptitle{{6}{6}{bytoxicity}}

\bibglssetnumbergrouptitle{{4}{4}{bytoxicity}}

\bibglssetnumbergrouptitle{{2}{2}{bytoxicity}}

\bibglssetnumbergrouptitle{{3}{3}{bytoxicity}}

\bibglssetnumbergrouptitle{{0}{0}{bytoxicity}}

This command is provided at the start of the file:

\providecommand{\bibglssetnumbergrouptitle}[1]{%

\glsxtrsetgrouptitle

{\bibglsnumbergroup#1}

{\bibglsnumbergrouptitle#1}}

The group label is obtained from the control se-
quence \bibglsnumbergroup (which must fully ex-
pand). This command is also provided:

\providecommand{\bibglsnumbergroup}[3]{glsnumbers}

It’s this definition that causes all entries that have
been sorted numerically to be placed in the ‘Num-
bers’ group. For this example, I’d like the groups to
correspond to the toxicity levels, so I need to define
this command before the glstex file is input:

\newcommand{\bibglsnumbergroup}[3]{#1}

The corresponding title is obtained from a command
that is also provided in the glstex file:

\providecommand{\bibglsnumbergrouptitle}[3]{%

\protect\glsnumbersgroupname}

Again I can provide my own definition in the docu-
ment to override this. For example:

\newcommand{\bibglsnumbergrouptitle}[3]{Toxicity

Rating #1}

The bookindex headers are formatted according to:

\glsxtrbookindexformatheader{⟨title⟩}

This defaults to a centred format. I’ve decided to
provide a different format, but I don’t want to apply
it to the index as well, so the redefinition will need
to be scoped.

The custom header formatting is quite simplistic
for this example:

\newcommand{\orderbyheader}[1]{%

\par{\raggedright\bfseries\large #1\par}}

This can be adjusted as required.
As with the index, the list includes entries that

don’t have the toxicity field set. These will end
up with a sort value of 0 and can be filtered using
a method similar to that employed for the index.
However, it’s simpler to get bib2gls to filter them:

secondary-not-match={toxicity={}}

The glossary can be displayed in the usual way:

\printunsrtglossary[type=bytoxicity,

target=false]

Nicola L. C. Talbot

TUGboat, Volume 43 (2022), No. 1 53

This will include the page list for each entry,
which you may prefer to omit. The nonumberlist

option can be added to suppress it. On the other
hand, it can be useful to have a way to link back to
the main definition. As with the index, a hyperlink
can be added to the name using the same method
as earlier. This is useful for the reader of the PDF

version, but for the paperback version it might be
helpful to just list the primary page number (rather
than the complete list). For this, I’ve defined a
custom location format command:

\newcommand{\mainfmt}[1]{\glsnumberformat{#1}}

This uses the default formatting, but I can use it
to identify the principal page in my custom \toxin

command:

\section[\pdfname{#1}]{\glsxtrglossentry{#1}%

\glsadd[format=mainfmt]{#1}%

\glsadd[format=(]{#1}}

This primary location format \mainfmt is identified
with:

primary-location-formats=mainfmt

I can instruct bib2gls to move the primary locations
out of the normal location list and into a field called
primarylocations:

save-primary-locations=remove

To ensure that \printunsrtglossary uses this field
for the location list:

\renewcommand{\GlsXtrLocationField}

{primarylocations}

To prevent the primary locations from being merged
with the explicit range formation:

bib2gls -g --retain-formats mainfmt toxinbook

where the document is in the file toxinbook.tex.

8 Order by method

The method list is superficially similar. It’s not
possible to use multiple secondary options in one
resource command, but it’s possible to have a second
resource set that copies entries to another glossary.
First define the new glossary:

\newglossary*{bymethod}{By Method}

Now for the second resource command:

\GlsXtrLoadResources[

src=methods,type=bymethod,

selection={selected before},

action=copy

]

This selects all the entries in methods.bib that were
previously selected, sorts them and copies their labels
to the bymethod glossary. Internally (that is, within
bib2gls’s Java code) a new object representing each

entry is created with the information obtained by
reparsing the bib file. So any modifications made
by the previous resource set won’t be present in this
resource set (unless the modifications are repeated).
This means that the sort field will be missing again:
the value won’t be retained from the previous re-
source set. However, from LATEX’s point of view,
each entry is defined once.

This now provides a target for the methods, so
the method list in \toxin can have a hyperlink for
each entry:

\renewcommand*{\glsseeitem}[1]{%

\glshyperlink[\glsentrytext{#1}]{#1}}

\renewcommand*{\glsseefirstitem}[1]{%

\glshyperlink[\Glsentrytext{#1}]{#1}}

So far this just lists the methods. The sub-list
of relevant toxin entries needs to follow each method
name. This looks like a hierarchical glossary but it
has child entries with multiple parents. The structure
is essentially a set of nested glossaries with an outer
glossary (the bymethod glossary) where each element
is followed by an inner glossary.

The glossary process hook can be used to create
throwaway glossaries:

\let\printunsrtglossaryentryprocesshook

\provideignoredglossary

This creates a glossary with the same label as the
entry, but the hook will have to be reverted before
the inner glossaries are processed.

There’s another hook that’s used after process-
ing and just before the glossary is displayed. This
can be used to populate the throwaway glossaries
and reset the process hook. First a command that
does the action:

\newcommand{\populatemethods}{%

\renewcommand

\printunsrtglossaryentryprocesshook[1]{}%

\forglsentries[main]{\thislabel}%

{\glsxtrforcsvfield*{\thislabel}{method}

{\populatedo}}%

}

with a list handler:

\newcommand{\populatedo}[1]{%

\glsxtrcopytoglossary{\thislabel}{#1}%

}

Then the hook needs to be assigned to this command
within a scoped context:

\let\printunsrtglossarypredoglossary

\populatemethods

The glossary entry handler needs to not only dis-
play the current entry (as it does by default with
\glsxtrunsrtdo) but also follow it with an inner
glossary. First the custom nested handler that takes
the current entry label as the argument:

bib2gls: Standalone entries and repeated lists (a little book of poisons)

54 TUGboat, Volume 43 (2022), No. 1

\newcommand{\nestedhandler}[1]{%

\glsxtrunsrtdo{#1}%

\ifglossaryexists*{#1}%

{%

\printunsrtinnerglossary

[type={#1},groups=false,target=false]

{%

\let\glsxtrbookindexname\linkedbookname

\renewcommand{\GlsXtrLocationField}

{primarylocations}%

}{}%

}%

{}%

}

This tests if there’s a glossary with a label matching
the entry’s label and, if it exists, that glossary will be
displayed (but without the title). As with the ordered
by toxicity glossary, only the primary location is
displayed and the name is hyperlinked to easily jump
back to the main definition.

All glossaries are using the bookindex style, and
since the method and toxin entries are all top-level
entries (they don’t have a parent), they will all end up
with their names formatted in the same way (as a top-
level entry). The method entries need to have their
names formatted in the same way as the group titles
to be consistent with the order by toxicity glossary.

\newcommand{\prenamesep}{}

\newcommand{\orderbyname}[1]{%

\prenamesep

\glsxtrbookindexbookmark{\pdfname{#1}}

{\glsxtrbookindexbookmarkprefix#1}%

\orderbyheader{\glossentryname{#1}}%

\def\prenamesep{\par}%

\par\smallskip

}

(Again, the style is simplistic to reduce the complex-
ity of the example.) It’s then possible to switch to
this in a scoped context:

\let\glsxtrbookindexname\orderbyname

9 Order by symptoms

The symptoms list is more complicated as it’s di-
vided into different categories: ‘vital signs’, ‘head,
eyes, ears, nose, throat’, ‘skin’, ‘heart’ and so on.
These correspond to the custom topic field that has
so far been ignored by bib2gls. Note that these
topics aren’t listed in alphabetical order. Within
each topic is a sub-list of symptoms, which is or-
dered alphabetically. I’m first going to start off with
the topics alphabetically ordered and then make an
adjustment to achieve the desired result.

The topics and their sub-lists are essentially
hierarchical, so the topic field can be aliased to

parent. The labelify option can strip the spaces
using the same labelify-replace setting used earlier.

field-aliases={topic=parent},

labelify={parent}

The parent entries (representing the topics) need to
be defined, so I’ve created a new file called topics.

bib that contains:

@index{vitalsigns,name={vital signs}}

@index{head,

name={head, eyes, ears, nose, throat}}

@index{skin}

@index{heart}

@index{airway,

name={airway and lungs}}

@index{gastrointestinal,

name={gastrointestinal system}}

@index{fluids,

name={fluids and electrolytes}}

@index{neurological,

name={neurological system}}

@index{psychiatric}

@index{wholebody,

name={whole body and miscellaneous symptoms}}

This file needs to be added to the src list:

src={toxins,methods,symptoms,topics}

Since child entries depend on their parent, the parent
entries will automatically be selected when the child
entry is selected. The topics and symptoms can be
copied to a new glossary in the same way as the
methods:

\newglossary*{bysymptoms}{By Symptoms}

\GlsXtrLoadResources[

src={symptoms,topics},

type=bysymptoms,

selection={selected before},

action=copy,

field-aliases={topic=parent},

labelify={parent},

labelify-replace={{\string\s+}{}}

]

The process hook is similar to the hook used for the
method list but the throwaway glossaries are only
created for child entries:

\newcommand{\symptomsprocesshook}[1]{%

\ifglshasparent{#1}%

{\provideignoredglossary{#1}}%

{}%

}

The code to populate the symptom glossaries is sim-
ilar to that used for the methods:

\newcommand{\populatesymptoms}{%

\renewcommand

\printunsrtglossaryentryprocesshook[1]{}%

\forglsentries[main]{\thislabel}%

{%

Nicola L. C. Talbot

TUGboat, Volume 43 (2022), No. 1 55

\glsxtrforcsvfield*{\thislabel}{symptom}

{\populatedo}%

}%

}

The entry handler is the same one as used before
(\nestedhandler).

The formatting of the sub-items (the symptom
entries) needs adjusting. The bookindex style formats
the sub-item names according to:

\glsxtrbookindexsubname{⟨label⟩}

The default definition uses \glsxtrbookindexname
so this will need to be changed. First I need a custom
sub-header to match the headers used in the toxicity
and method lists:

\newcommand{\orderbysubheader}[1]{%

\par{\raggedright\bfseries #1\par}}

Again this is simplistic, to be modified as required.
The custom command for child entry names is:

\newcommand{\orderbychild}[1]{%

\pdfbookmark[2]{\pdfname{#1}}

{\glsxtrbookindexbookmarkprefix#1}%

\orderbysubheader{\glossentryname{#1}}%

\par\smallskip

}

I added the mfirstuc-english package earlier, but up
until now it hasn’t been needed. This package can
be implemented by bib2gls but isn’t by default. In
order to ensure that the title-case word exceptions
provided by that package are used by bib2gls, it’s
necessary to use the --packages (or -p) switch:

bib2gls -g --retain-formats mainfmt \

--packages mfirstuc-english toxinbook

Finally, I want to have the topics listed in the
order that they are defined in the topics.bib file.
This is quite awkward as it’s not possible to apply a
different sort method to each hierarchical level. How-
ever, it is possible to encapsulate the sort value (after
it has been obtained from fallbacks and any other
processing, such as word breaks and suffixes). The
encapsulation command must take two arguments:
the first is the sort value that has been determined
so far, and the second is the entry’s label.

It’s possible to save the entry definition index
using save-definition-index. With this setting, the
definition index can be accessed with the command
\bibglsdefinitionindex. The aim here is to define
a command that finds out if an entry has a parent.
If it has, then the ordinary sort value is used. If
it hasn’t, then the definition index is used instead.
Since the sort method is alphabetical, the definition
index will need to be zero-padded to ensure that it’s
correctly ordered. Here I’ve padded up to six digits,
which should be ample:

format-integer-fields={definitionindex=\%06d}

My custom command is provided in the preamble of
topics.bib:

@preamble{"\providecommand{\topicsort}[2]{%

\ifglshasparent{#2}{#1}

{\bibglsdefinitionindex{#2}}}"}

This command now needs to be specified as the sort
encapsulator:

encapsulate-sort=topicsort

There’s no need for this preamble to be written to the
glstex file since it’s not required in the document:

write-preamble=false

10 Duplicate entry

Stevens and Bannon’s book lists ‘botulism’ in the
‘Household Poisons’ chapter and ‘botulism toxin’ in
the ‘Biological, Chemical and Radiological Weapons’
chapter. The two entries have different descriptions,
so they need to be defined as two separate entries, but
it would be strange to have two ‘botulinum’ entries
listed in the index.

One solution is to change the botulinum entry
to a dual entry:

@dualentry{botulinum,name={botulinum},

toxicity = {6},

description={Some information about foodborne

botulism.},

dualdescription={Some information about the

botulinum toxin used as a bioweapon.},

method={injected and swallowed},

symptom={blurred vision, nausea and paralysis}

}

This defines two linked entries. The primary entry
has the label botulinum and the dual entry has the
label dual.botulinum. The default is to swap the
name and descriptions around in the dual and copy
all the other fields. In this case I want to keep the
names the same but switch descriptions, which can
be done with the resource option:

dual-entry-map={{dualdescription},{description}}

Since I don’t need a separate list of dual entries, it’s
more efficient to combine the dual into the primary
list:

dual-sort={combine}

I also want to move all the dual locations over to the
primary entry’s location list:

combine-dual-locations={primary}

This means that the original ‘botulinum’ entry will
appear in the index with its own locations merged
with the dual locations. Since the dual entry’s loca-
tion list ends up empty, the filter will exclude it so it
won’t appear in the index. The filter is also needed
in the other lists. The toxicity list:

bib2gls: Standalone entries and repeated lists (a little book of poisons)

56 TUGboat, Volume 43 (2022), No. 1

\printunsrtglossary*[type=bytoxicity,

target=false]

{%

\let\glsxtrbookindexformatheader\orderbyheader

\let\glsxtrbookindexname\linkedbookname

\let\printunsrtglossaryentryprocesshook

\filteremptylocation

\renewcommand{\GlsXtrLocationField}

{primarylocations}%

}

For the symptoms and method lists, the filter needs
to be in the inner glossary:

\newcommand{\nestedhandler}[1]{%

\glsxtrunsrtdo{#1}%

\ifglossaryexists*{#1}%

{%

\printunsrtinnerglossary[type={#1},

groups=false,target=false]

{%

\let\glsxtrbookindexname\linkedbookname

\let\printunsrtglossaryentryprocesshook

\filteremptylocation

\renewcommand{\GlsXtrLocationField}

{primarylocations}%

}{}%

}%

{}%

}

Notice that the cross-reference fields only refer-
ence the primary entry, not the dual. This means
that the scientific name and other names will be
missing for the dual entry. However, it’s possible
to adjust the definition of \toxinitemlist so that
it fetches the information from the primary entry.
In order to do this it’s first necessary to instruct
bib2gls to save the label of the opposite entry for
dual entries. This can be done with the dual-field

resource option, which will save the label of the op-
posite entry in the dual field. This means that the
dual.botulinum entry will have the dual field set
to botulinum and the botulinum entry will have the
dual field set to dual.botulinum.

\newcommand{\toxinitemlist}[3]{%

\glsxtrifhasfield*{#2}{#1}%

{%

\formattoxinitemlist{#3}

{\glscurrentfieldvalue}%

}%

{%

\glsxtrifhasfield*{dual}{#1}%

{% is a dual entry

\glsxtrifhasfield*{#2}

{\glscurrentfieldvalue}%

{%

\formattoxinitemlist{#3}

{\glscurrentfieldvalue}%

}%

{}%

}%

{}% not a dual entry

}%

}

The complete document and bib files can be
downloaded [4]. I’ve used the uelem package and
hyperref’s hidelinks option, so the hyperlinks show
up underlined, to make them visible in the printed
figures here. The key command for that:

\renewcommand{\glsxtrhyperlink}[2]{%

\hyperlink{#1}{\uline{#2}}}

The standalone entries are shown in figure 1
(household poisons — ammonia and the primary bo-
tulinum entry), figure 2 (plants — nutmeg), figure 3
(street drugs— LSD) and figure 4 (biochemical war-
fare —dual botulinum entry).

Figure 5 shows the toxicity list, figure 6 shows
the methods list, figure 7 shows the first page of the
symptoms list, and figure 8 shows the index. Finally,
figure 9 shows the PDF bookmarks (in Okular).

References

[1] F. Mittelbach. The multicol package, 2021.
ctan.org/pkg/multicol.

[2] S. Rahtz, H. Oberdiek, The LATEX3 Project. The
hyperref package, 2021. ctan.org/pkg/hyperref.

[3] S. Stevens, A. Bannon. Book of Poisons: A guide

for writers. Howdunit. Writer’s Digest Books,
1st ed., 2007.

[4] N. Talbot. Sample bib files.
dickimaw-books.com/latex/tugboat-bib2gls.

[5] N. Talbot. bib2gls: selection, cross-references
and locations. TUGboat 41(3), 2020. tug.org/

TUGboat/tb41-3/tb129talbot-bib2gls-more.

pdf.
[6] N. Talbot. bib2gls: Command line application

to convert .bib files to glossaries-extra.sty

resource files, 2021. ctan.org/pkg/bib2gls.
[7] N. Talbot. bib2gls: sorting. TUGboat 42(2), 2021.

tug.org/TUGboat/tb42-2/tb129talbot-sorting.

pdf.
[8] N. Talbot. The glossaries-extra package, 2021.

ctan.org/pkg/glossaries-extra.
[9] N. Talbot. The glossaries package, 2021.

ctan.org/pkg/glossaries.
[10] N. Talbot. The mfirstuc package, 2021.

ctan.org/pkg/mfirstuc.

⋄ Nicola L. C. Talbot
School of Computing Sciences
University of East Anglia
Norwich Research Park
Norwich NR4 7TJ
United Kingdom
https://www.dickimaw-books.com

Nicola L. C. Talbot

https://ctan.org/pkg/multicol
https://ctan.org/pkg/hyperref
https://dickimaw-books.com/latex/tugboat-bib2gls
https://tug.org/TUGboat/tb41-3/tb129talbot-bib2gls-more.pdf
https://tug.org/TUGboat/tb41-3/tb129talbot-bib2gls-more.pdf
https://tug.org/TUGboat/tb41-3/tb129talbot-bib2gls-more.pdf
https://ctan.org/pkg/bib2gls
https://tug.org/TUGboat/tb42-2/tb129talbot-sorting.pdf
https://tug.org/TUGboat/tb42-2/tb129talbot-sorting.pdf
https://ctan.org/pkg/glossaries-extra
https://ctan.org/pkg/glossaries
https://ctan.org/pkg/mfirstuc

TUGboat, Volume 43 (2022), No. 1 57

Chapter 1

Household Poisons

Chemicals

Ammonia

Scientific Name Ammonium hydroxide.

Toxicity 4.5

Method Breathed.

Symptoms Abdominal or stomach pain, blindness, burns, collapse, coughing,

flushing, mouth irritation, pain, pulmonary edema, restlessness, and

tachycardia.

Description Some information about ammonia.

Food Poisoning

Botulinum

Scientific Name Clostridium botulinum.

Other Botox and botulism.

Toxicity 6

Method Injected and swallowed.

Symptoms Blurred or double vision, nausea, and paralysis.

Description Some information about foodborne botulism.

Figure 1: Standalone entries: Household Poisons

Chapter 2

Plants

Nutmeg

Scientific Name Myristica argentea (Papuan nutmeg), Myristica fragans ,
and Myristica malabarcia (Bombay nutmeg).

Toxicity 3

Method Injected and swallowed.

Symptoms Anxiety, blurred or double vision, convulsions, dehydration, dry mouth,
euphoria, fever, flushing, hallucinations, irregular heartbeat, nausea,
pain, psychosis, and tachycardia.

Description Some information about nutmeg.

Figure 2: Standalone entries: Plants

Chapter 3

Street Drugs

LSD

Scientific Name Lysergic acid diethylamide.

Other Lysergide.

Toxicity 2

Method Injected and swallowed.

Symptoms Coma, confusion, convulsions, excitement, hallucinations, psychosis,

and spasms.

Description Some information about LSD that includes a reference to nutmeg.

Figure 3: Standalone entries: Street Drugs

Chapter 4

Biochemical Warfare

Botulinum

Scientific Name Clostridium botulinum.

Other Botox and botulism.

Toxicity 6

Method Injected and swallowed.

Symptoms Blurred or double vision, nausea, and paralysis.

Description Some information about the botulinum toxin used as a bioweapon.

Figure 4: Standalone entries: Biochemical

Order by Toxicity

Toxicity Rating 6

Botulinum, 1, 7

Toxicity Rating 4

Ammonia, 1

Toxicity Rating 3

Nutmeg, 3

Toxicity Rating 2

LSD, 5

Figure 5: Order by toxicity

By Method

Breathed

Ammonia, 1

Injected

Botulinum, 1, 7

LSD, 5

Nutmeg, 3

Swallowed

Botulinum, 1, 7

LSD, 5

Nutmeg, 3

Figure 6: Order by method

bib2gls: Standalone entries and repeated lists (a little book of poisons)

58 TUGboat, Volume 43 (2022), No. 1

By Symptoms

Vital Signs

Fever/Hyperthermia

Nutmeg, 3

Tachycardia/Rapid Heartbeat
or Pulse

Ammonia, 1

Nutmeg, 3

Head, Eyes, Ears, Nose,
Throat

Blindness

Ammonia, 1

Blurred or Double Vision

Botulinum, 1, 7

Nutmeg, 3

Dry Mouth

Nutmeg, 3

Lip/Mouth Irritation

Ammonia, 1

Skin

Burns

Ammonia, 1

Flushing/Turning Red

Ammonia, 1

Nutmeg, 3

Heart

Irregular Heartbeat

Nutmeg, 3

Airway and Lungs

Coughing

Ammonia, 1

Pulmonary Edema

Ammonia, 1

Gastrointestinal System

Abdominal or Stomach Pain

Ammonia, 1

Figure 7: Order by symptom

Index

A

ammonia, 1

ammonium hydroxide, see ammonia

B

Bombay nutmeg, see

Myristica malabarcia

botox, see botulinum

botulinum, 1, 7

botulism, see botulinum

C

Clostridium botulinum, see

botulinum

L

LSD, 5

lysergic acid diethylamide, see LSD

lysergide, see LSD

M

Myristica argentea, see nutmeg

Myristica fragans , see nutmeg

Myristica malabarcia, see nutmeg

N

nutmeg, 3, 5

P

Papuan nutmeg, see

Myristica argentea

Figure 8: Index

Figure 9: PDF bookmarks

Nicola L. C. Talbot

Transparent file I/O using the original TEX

program and the plain TEX format

Udo Wermuth

Abstract

Research papers demonstrate that it is possible to
use a TEX file to distribute malware to a victim’s
system. Although it seems that no report has been
published about a virus of this kind in a real at-
tack, the potential danger to abuse a TEX source file
to transport unfriendly code exists. This article ex-
plains an idea to make TEX’s file I/O more transpar-
ent and develops requirements to turn the idea into
TEX macros. Their application in a TEX file received
from an untrusted source identifies all file names
used for I/O operations. But the macros demand
concentrated work with numerous text inputs and
a non-beginner’s knowledge of TEX. Furthermore,
users should be patient, curious, and courageous.

1 Introduction

The usual input to TEX is a plain text file containing
a few control sequences to instruct the program how
to format the document. Through its macro capa-
bilities TEX allows an author to increase the num-
ber of recognized control sequences, tailoring them
to the needs of the text. But TEX does not forbid
writing a macro like “\def\useless{\useless}”
which generates an endless loop when \useless ap-
pears in the text. (Such endless loops are inherent
for a macro expansion language [9, p. 659].) Simi-
larly, some control sequences implemented directly
in the TEX program—these are named primitives—
must be used with care. For example, the simple
“\openout0=\jobname\bye” truncates the file name
to which \jobname expands, plus extension .tex,
with zero bytes. As this is usually the file that TEX
processes as the main file in the current run its orig-
inal contents are gone.

Thus it’s easy to waste CPU cycles by executing
\useless. On a modern multiuser system the single-
threaded TEX program occupies at most one CPU

and a reasonably configured TEX system doesn’t re-
quire much main memory. So other users are hardly
affected in their own work unless many TEX pro-
grams run \useless in parallel. To produce a file
that should be loaded by \input in a co-worker’s
TEX source file with the above \openout statement
is a bad joke and might become a disaster if there
is no backup of a laboriously created main file. (To
protect yourself in such a case from this bad joke set
your main file temporarily to read-only, for example,
under Unix-like systems with chmod u-w.)

TUGboat, Volume 43 (2022), No. 1 59

These examples raise the question: how brave
or careful must one be to typeset a TEX file re-
ceived from a friendly joker, a well-known silly per-
son, an inexperienced beginner, a person known only
by name, or an unknown individual who makes files
available for downloading on the Internet. Is it pos-
sible that the TEX run of this plain text file results
in a damaged or, worse, virus-infected system?

Unfortunately the answer is: Be careful! A TEX
run using a specific prepared plain text file might
delete important files, read private data, or infect
your local system with a computer virus.

Published attacks. The thesis [13] uses LATEX and
GNU Emacs to show in a feasibility study that a
plain text file can contain code that spreads itself to
other plain text files. In [1, 2] an ε-TEX source in-
cludes instructions to create during the compilation
a JScript file in a certain directory. The execution of
this file infects computers running MS Windows—
the TEX source contains an absolute path that’s only
valid for this operating system (OS).

The attacks are possible as TEX contains com-
mands to read from and write to any file. Some im-
plementations of TEX restrict which directories are
permitted for TEX’s I/O primitives. Of course, every
OS should protect itself and mechanisms are usually
in effect for ordinary users. But what can be done if
the user runs TEX with system administrator rights?
Or when the system administrators of a multiuser
system that provides a TEX service configured the
system in a way that private information is accessi-
ble to users without a need to know [12]?

I found no report of any real attack in which
someone was the victim of a TEX source file trans-
porting a virus. This risk seems to be very small. But
we can assume that some users have coded an end-
less loop and a few users have deleted an important
file with an inappropriate file name for an \openout.

Is TEX an insecure program? No, definitely not.
Both published attacks need supporting tools: the
programmable GNU Emacs or a JScript file placed
in an auto-start directory. Similar to an email, TEX
source can be abused to transport malicious code.
We avoid clicking on a link in an email sent by an
unknown person and we must be cautious if we ex-
ecute a TEX file received from an untrusted source.
Sure, TEX could be more verbose with file names.
But it doesn’t help to learn which file was deleted
and it’s very cumbersome if TEX asks every time for
the user’s permission to process a file, as we will see.

It’s somewhat pointless to ask today why TEX
wasn’t programmed with a more restricted access
to files. I only provide three observations. First,

doi.org/10.47397/tb/43-1/tb133wermuth-trio

Transparent file I/O using the original TEX program and the plain TEX format

at the time TEX was designed, this program tried
to achieve new inconceivable advancements in type-
setting. The limits of the available computers were
touched; for example, memory had to be conserved.
Second, Don Knuth’s intention, when he began the
design, was to create a tool for his secretary and him-
self [9, p. 606; 10, p. 63]. There was no reason for mis-
trust, i.e., bad jokes were not expected. Third, the
original TEX was reimplemented as TEX82 and at
that time portability was a major concern [8, p. 254].
As file names are highly OS-dependent TEX’s code
cannot cover all possibilities and must be carefully
customized through a change file [8, pp. 123–124].

Implementors often transfer TEX’s archaic de-
fault file system into a nearly unrestricted model
for the target OS. But excluding absolute paths or
paths containing the short-cut for the parent direc-
tory (i.e., “../”) inhibit the attacks of [1, 2]. The
recommendation of [7, §511], to use portable file
names built only from letters and digits may be too
restrictive, yet reminds us to think about simplicity.

Other risks. Modern TEX implementations, not
the original one that is used in this article, activate a
communications mechanism to the OS; this feature
uses the stream number 18 in \write statements.
That such a communication makes the life easier for
viruses and their developers or crackers (to name
them in accordance with [15]) has been known for a
long time (see [11, p. 454, no. 3]. Thus, the \write18
feature is often disabled by default and must be ex-
plicitly switched on by the user.

A cracker might hide the use of a \write18.
Therefore, always distrust tricky code without ap-
propriate comments. For example, a single search for
\write18 fails with this obfuscated code; see [14].

\lccode‘e=‘r\lccode‘q=‘w\lccode‘r=‘t\lccode‘u=‘i

\lccode‘w=‘e\let\ea=\expandafter\lowercase{\ea

\global\ea\let\ea\trouble\csname qeurw\endcsn%

ame}\newcount\maker\maker=9 \multiply\maker by2

\immediate\trouble\maker{echo === GOTCHA ===}

All computer users know that all operating sys-
tems require regular updating to reduce the risk of a
cracker getting into a system through security holes.
Additional risks exist that stem from the installation
of a distribution (see, for example, [16]) or that are
given through the tools of the OS which are required
to process a TEX source file and TEX’s output; see
section 10. From all I know, these risks are much
higher than the danger coming from a plain text file
containing TEX commands.

Unfriendly code can lurk everywhere. Even if
you compile carefully inspected source code yourself,
malicious code can be present [18].

60 TUGboat, Volume 43 (2022), No. 1

Protection by inspection. The abovementioned
articles about possible attacks need several lines of
TEX code so a look at the source file might reveal
the presence of instructions for a virus. But a cracker
might try to hide the coded malware. Thus the TEX
files one gets from an unknown or untrusted source
must either be executed in a restricted environment
or be the subject of a thorough visual inspection.

A journal or proceedings editor receives numer-
ous source files and it’s unlikely that all authors are
known by the editor. On the other hand, the au-
thors want to have their articles published and not
be accused of spreading bad code. Nevertheless, an
author might be a victim and unknowingly send out
a TEX file transporting code for a virus.

Although it’s a significant effort, editors should
perform a visual inspection as part of the editorial
work. I assume that they review text and code in
most cases. Besides security, other reasons make this
necessary as not all authors are willing to follow the
instructions of the journal; some prefer to cheat. For
example, look at the report [4] about problems with
the length of submitted papers.

Protection by macros. This article describes a
set of macros for the original TEX engine with the
plain TEX format to make the file I/O operations
more transparent. By this I mean that a user con-
trols which files are processed when TEX executes
\input, \openin, or \openout. The macros don’t
detect instructions for a virus or state that a file
shouldn’t be processed; they only report which file
names occur and give the user a chance to change
them. But they accomplish more: The instrumented
source file cannot stealthily bypass their reporting.

One goal of the macros is to produce an identi-
cal DVI file compared to a run without the macros if
the original source is error-free. Section 3 discusses
why this goal cannot be reached for all plain TEX
source files; a few eccentric constructions might fail.

Of course, the macros need a few resources. Be-
sides memory space for the macros and other con-
trol sequences, the macro package declares five token
registers. Thus, one cannot use the macros in the
unlikely case that a source file requires more than
238 non-scratch token registers. Sure, the dread-
ful “TEX capacity exceeded” error message occurs
earlier if the macros are used. But this is merely
a theoretical problem as modern TEX installations
set TEX’s compile-time constants so high that it’s
doubtful that an error-free source reaches TEX’s lim-
its even if the macros of this article are active.

Usefulness of the macros. Above I wrote that
the risk to become a victim of a virus that enters a

Udo Wermuth

system via a plain TEX file is very small. Neverthe-
less it might be an interesting intellectual pastime
to see how to protect a system with macros against
malicious code. Moreover, such macros may reassure
people and increase confidence in TEX’s security.

A cracker might be aware that these macros ex-
ist and avoid conspicuous actions if they are present.
Or, say, the code contains a test so that it gets ex-
ecuted only on Sundays and thus a check that runs
on a Thursday doesn’t detect it. Clearly the macros
cannot help to protect a system if they are not active
during all executions of a source file.

Although I think a cracker cannot circumvent
the macros if the user follows all usage instructions
carefully, everyone uses the macros at one’s own risk.

2 Primitives requiring file names

With the procedure scan file name [7, §526] TEX
scans in a system-independent way file names. Al-
though file names are highly system dependent, this
aspect is handled in other sections of the program.
Here I use the convention that a file name consists
of an optional path, the main part of the file name,
and an optional extension. The path is a sequence
of directories with a slash after each directory name;
a period separates main part and extension. Spaces
are forbidden in file names. A single period in the
path, i.e., “./”, stands for the current directory, and
“../” represents the parent directory.

The above-mentioned procedure is used in the
implementation of four primitives: \input in §537,
\font in §1257, \openin in §1275, and \openout in
§1351.

The primitive \font is somewhat special in this
list. TEX expects a file name but replaces any exten-
sion with tfm (§563) as it reads for \font only files
containing TEX font metric (TFM) data. It checks
that the contents of the file with the constructed
name obey the specifications of TFM files (§562).

Although this sounds simple it might be very
hard to determine which font TEX loads. Above it
was shown that the flexibility of TEX can be abused
to hide what the code will do. File names are no
exception, as the following input proves.

\def\gobble#1{r}\lccode‘z=‘f \lowercase{\edef

\word{zont}}\let\something\futurelet

\expandafter\expandafter\expandafter\let

\expandafter\expandafter\expandafter\futurelet

\expandafter\csname\word\endcsname\def

\lookatnext#1{\romannumeral100\romannumeral1000

\gobble\the\the\count18.\the#1}\futurelet\next

\lookatnext\linepenalty\let\futurelet\something

\lccode‘z=‘z \show\next

What does \show\next in the last line display?

TUGboat, Volume 43 (2022), No. 1 61

I don’t see any way to abuse the primitive \font
to read a file that isn’t a TFM file.

Three main primitives. The primitives \input,
\openin, and \openout use the complete file name
that they receive. They append the extension .tex

if TEX doesn’t find one [6, pp. 25, 217, 226]. With
\input and \output, TEX prompts for a new file
name if the file cannot be found or opened for writ-
ing, respectively [7, §530, §537, §1374]. The primi-
tive \openin never asks the user to enter a new file
name [8, p. 325, no. 582 of TEX’s error log]. When
TEX asks for another file name, the good news is
that it displays first “! I can’t find file” or “! I can’t
write on file” followed by the file name that it had
scanned. Thus, even if the file name was entered in
an obfuscated manner now the user sees the name.

3 Expected problems

Primitives and macros behave differently in a TEX
run. If the three file I/O primitives are replaced by
macros, under what circumstances does this influ-
ence the typesetting? Sure, a source file might test
these command names and produce a different DVI

file if one of them is a macro. In this case I only care
about the result obtained with file I/O macros.

One important difference lies in the ability of
macros to expand. The primitives \openout and
\openin are allowed in an \edef (or \xdef, \write,
etc.) so the macros should be accepted too. Thus the
macros must either contain only expandable tokens
and be quite simple or stop the expansion early.

The primitive \input is a special case as its
acceptance in an \edef depends on the contents of
the file that is input. TEX usually throws an error,
as it treats the end of a file that’s input similar to
an outer macro [6, p. 206]. But TEX accepts a file
that ends with the primitive \noexpand. Thus, the
macro \input must be completely expanded and do
its work. But if this macro, say, sets a Boolean flag
from false to true, TEX runs into an error if \input
is executed in an \edef. This is completely indepen-
dent of the contents of the file that gets input.

This is expected, as \input’s expansion is null
but TEX starts to read from the file [6, p. 214]. Thus,
use of \expandafter will also give different results.
For example, \expandafter\show\input hello dis-
plays “the letter H” if the file hello.tex contains
the text “Hello TeX!”. But a macro for \input ex-
pands just one level and TEX displays its first token,
i.e., \show inactivates this token. (Our macro will
start with \begingroup; so any control sequence
between \expandafter and \input that reads at
least one argument and doesn’t open an unclosed

Transparent file I/O using the original TEX program and the plain TEX format

group gives an error.) Similar problems exist with
the macros for \openin and \openout.

This “contents dependency” for the acceptance
of the primitive \input makes it possible to place it
between \csname and \endcsname. TEX allows this
if the file that’s input expands to character tokens
only; \openin and \openout are always rejected.
For example, the statement \csname\input hello

\endcsname is a valid construction. Usually a macro
fails in this scenario if it isn’t very simple.

A similar situation occurs with the application
of a prefix, \number, etc., to the primitive \input.
The first token of the file that’s input must accept
this command or TEX displays an error; \openin
and \openout don’t accept such commands.

A reader might agree with me in finding some of
these constructions weird and classify them as bad
programming practice. Nevertheless the macros will
address the four problems: the “\csname problem”,
the “\edef problem”, the “\expandafter problem”,
and the “apply problem”. Some can be solved inter-
actively, others require a change of the source. The
important point is: Be alert if a source file uses one
of these unusual constructions and check the code
carefully to convince yourself that it is required.

Note: The discussion concentrates on plain TEX
but, for example, TUGboat uses its own macro pack-
age in which the command \input becomes a macro.
Now, TEX always throws errors for the \edef and
\csname problems but not for \global as the macro
absorbs it; \long, \number, etc., give errors. Macros
with at least three arguments in the \expandafter

problem hinder \input.

Privacy. Let’s state it frankly: It’s not possible to
hide the fact that file I/O primitives are replaced
by macros. This doesn’t mean that all macros must
be made public but it means that I decided not to
change, for example, \meaning, so a cracker can look
at the macro \input. Thus, a cracker knows which
control word was given the original meaning of the
primitive as it is called in the macro.

The important question is, what can a cracker
do with this information? It’s suspicious to input a
file without using the macro. A user sees on the ter-
minal that TEX inputs a file except if \batchmode
is active. My advice: Stop the execution if this hap-
pens without the approval through the procedure
of the macro described in section 4. Thus the first
statements of the macro package are

\let\batchmode=\scrollmode

\let\nonstopmode=\scrollmode

to make sure that no file can be input without a
message on the terminal.

62 TUGboat, Volume 43 (2022), No. 1

I deactivate \nonstopmode too in order to as-
sure that TEX stops if it cannot find a file as I de-
cided to let \input scan all file names with a trick
that makes TEX prompt for a new file name. Then
the user has the chance to check which file gets pro-
cessed and to change the file name if necessary or to
end the run. In a second step the file name is given
to the primitive whose name occurs in the source to
process the file, if the run wasn’t canceled.

Another source file might redefine the primi-
tives used in our macros and then they might not
do what is intended. This problem gets solved in the
usual manner: The used primitives are copied to new
control words with a unique start sequence. I use the
string “TRIO” for these copies and “TrIO” for all pri-
vate macros. For example, instead of the primitive
\begingroup I use \TRIObegingroup. The source
might use the prefix TRIO too, for example,

\def\TRIObegingroup{% open three groups

\begingroup \begingroup \begingroup}

(how likely is this?) and our own macro must get a
new name, for example, \TRIxObegingroup.

Security. The primitives \openin and \openout

are not as verbose as \input. They operate on a
file without stating the file name on the terminal
(or in the log file). The control words that save the
meaning of these primitives must not be made pub-
lic. Otherwise an evil-doer circumvents the macros
and applies the original primitives under their new
name.

Fortunately, none of our public macros require
the control words with the original meaning of these
two primitives as \input is executed first. As men-
tioned above the file name is read with a trick to
make TEX ask for a new file name. The user must
enter a special file name that in a next step contains
control words that have received via \let the mean-
ing of either \openin or \openout. Therefore these
control words can be given what I call a password-

protected name.
A password-protected name contains a string of

at least six letters in upper- and lowercase and with
one letter from the first third of the alphabet and
another from the last third. If the six letters form
neither an English word nor a word in the language
of the user it is very unlikely that this control word
can be guessed or computed by a cracker. (Six letters
define the minimum; use more if you like. Shorter
passwords might be discovered with TEX through a
brute force attack.) For example, I use in this text
the name \TRIOaAmNzZopenin in a \let assignment
to save the meaning of the primitive \openin. Note,
“aAmNzZ” is a placeholder that must be changed

Udo Wermuth

by the user if the macros are used. First, it’s the
default that a cracker knows; second, it’s much too
simple to make a good password.

The macros contain several passwords and some
are applied more than once. For example, every used
TEX primitive has not only a copy with the prefix
“TRIO” but also one with the prefix “TRIOhHJqsS”
built with the password “hHJqsS”—again this is a
placeholder which must be changed before the macro
package is used. During the run a check procedure
gets occasionally called to assure that both control
words have the same meaning. At the start we define

\let\TRIOhHJqsSifx\TRIOifx

\let\TRIOhHJqsSelse\TRIOelse

\let\TRIOhHJqsSfi\TRIOfi

... % many more \let assignments

\def\TrIOhHJqsSstop#1{\TRIOhHJqsSerrmessage{TrIO

ALERT !!! Don’t trust the source (#1)}}

\def\TrIOdDjQwWcheck{% check that macros are OK

\TRIOhHJqsSifx\TRIOhHJqsSifx\TRIOifx

\TRIOhHJqsSelse\TrIOhHJqsSstop{TRIOifx}%

\TRIOhHJqsSfi % \TRIOifx is OK

\TRIOifx\TRIOhHJqsSelse\TRIOelse

\TRIOhHJqsSelse\TrIOhHJqsSstop{TRIOelse}%

\TRIOhHJqsSfi % \TRIOelse is OK

\TRIOifx\TRIOhHJqsSfi\TRIOfi

\TRIOelse\TrIOhHJqsSstop{TRIOfi}%

\TRIOhHJqsSfi % \TRIOfi is OK

... }% many more \ifx tests

An undetectable problem. As mentioned above
the macros for \openin and \openout input a spe-
cial file. Changes in the category codes (or catcodes)
of used characters might change what the file shall
accomplish. Thus, I decided to reset all letters and
some symbols to their default catcodes before the
macros of the special file are executed. This—as
well as other decisions like the use of \count255—
requires executing the code of the macros most of the
time inside a group. Sure, \input should not load
the file inside a group. But \openin and \openout

act globally and can be placed inside a group.
In order to keep such changes local to the group

they must not be prefixed by \global. The prob-
lem occurs if the source sets \globaldefs=1 because
then every assignment, prefixed by \global or not,
becomes global. Code like this is ok:

\begingroup\globaldefs=1 \input hello \endgroup

Our macro \input sets \globaldefs=0, executes
its code, and sets \globaldefs=1. The first assign-
ment to \globaldefs inside the macro, inside the
group, is always global. Thus a problem occurs if
\globaldefs was set to −1 before the above group
as then \globaldefs is restored as 0 rather than −1
after \endgroup. Similarly the code \globaldefs=1

TUGboat, Volume 43 (2022), No. 1 63

\begingroup \input hello \endgroup restores 0
not 1 for \globaldefs after \endgroup.

A positive \globaldefs is rare, and when it
does occur it is usually in the good case above. But
the problem that arises from the two bad cases can
be neither solved nor detected. The macros can only
report that \globaldefs is positive. The user must
then carefully check the source to understand why
this seldom-used integer parameter was set.

4 The macro \input

Do we need to make \input more transparent, as
it writes the received file name to the terminal if
\batchmode is inactive? It’s easy to miss one file in
a flood of output on the terminal. I prefer to check
which files are input and I want to have the control
to redirect the request. It is crucial for success to
check which files are input. For example, a user must
never allow that a source inputs any of the files of
the macro package and continues the run.

The trick. How does the macro force TEX to ask
for a new file name? A nonexistent path is placed in
front of the given file name. For example, I define
\def\TrIOnosubdir{nosubdir/} where nosubdir/
must not exist as a directory in the current direc-
tory. Next, the macro changes \input hello into
\TRIOinput\TrIOnosubdir hello.

This works fine as long as the file name doesn’t
start with “../” as this might undo in some TEX im-
plementations the “nosubdir/” and the remaining
path points to a file in the current directory that car-
ries the same name as the file that should be found
in the parent directory. In such a case an existing
file is input without asking the user. The user sees
on the terminal that TEX inputs a file without ap-
proval; stop the run and nothing dangerous can hap-
pen. Next the replacement text of \TrIOnosubdir
should be changed to, for example, two nonexistent
directories “nosubdir/nosubdir/” before a new run
is started. It is unusual for the main source to input
a file from the parent directory. Be alert if this hap-
pens; stop the execution if that still happens after
two nonexistent directories are used. The code tries
to cope with the definition of \TrIOnosubdir.

The macro. This is the main macro:

\def\input{% add nonexistent subdir; raise error

\TRIObegingroup % next line works in \edef too

\TRIOafterassignment\TRIOnoexpand\TrIOempty

\TRIOdef\TrIOskipXXXVIinsTrIOfixedef\TrIOempty

{}\TrIOempty \TrIOhandleglobaldefs

\TRIOglobal\TRIOlet

\TrIOskipXXXVIinsTrIOfixedef=\TRIOundefined

\TrIOcountiocmd \TrIOmessage{<<<}%

Transparent file I/O using the original TEX program and the plain TEX format

\TrIOsetcatcodes \TRIOinput TrIOinput.tex

\TrIOinputmessage \TrIOendgroup

\TRIOinput \TrIOnosubdir}% and file name: error

The first line (\TRIObegingroup) makes TEX
stop if the “apply problem” occurs or if the macro is
expanded inside a \csname/\endcsname structure.
Line 2 switches off the application of a token held
by the primitive \afterassignment; see section 5.
The tricky code works in an \edef too; see below.
The definition of an undefined control word catches
the expansion of \input in an \edef. The macro
\TrIOhandleglobaldefs handles the \globaldefs

problem described in the previous section. All these
technical parts are discussed in a moment.

The important parts: \TrIOcountiocmd, cat-
code changes in \TrIOsetcatcodes, the TrIOinput
file, \TrIOinputmessage, and the last line’s trick.

The first macro counts the number of times one
of the three file I/O primitives is called.

\def\TrIOcnt{0 }\countdef\TrIOcount=255

\def\TrIOcountiocmd{% increment \TrIOcnt

\TrIOcount=\TrIOcnt \TRIOadvance\TrIOcount by 1

\TRIOxdef\TrIOcnt{\TRIOnumber\TrIOcount

\TrIOspace}}

Together with information written to the terminal
and the log file a simplified procedure for repeated
execution of the source can be realized; see section 9.

\def\TrIOmessage{\TRIOimmediate\TRIOwrite16 }

\def\TrIOinputmessage{% what happens; what to do

\TrIOmessage{TrIO >>> (\TrIOcnt) Line

\TRIOthe\TRIOinputlineno: input}%

\TrIOmessage{>>> enter shown file name without

‘\TrIOnosubdir’.}\TrIOmessage{<<<}}

The catcode changes were mentioned in sec-
tion 3. The macro prepares to load TrIOinput.tex.

\def\TrIOsetcatcodes{% establish a few \catcodes

\TRIOedef\TrIOnext{\TRIOthe\TRIOcatcode‘\%}%

\TRIOcatcode‘\%=12 \TRIOlet\%=\TRIOcatcode

\%‘\\=0 \%‘\==12 \%‘\‘=12 \%‘\1=12 \%‘\2=12 }

These catcodes are fixed and build the base for the
catcode changes in the file TrIOinput.tex:

\%‘\0=12 \%‘\3=12 ... \%‘\9=12 \%‘\a=11 \%‘\b=11

... \%‘\z=11 \%‘\A=11 \%‘\B=11 ... \%‘\Z=11

\%‘\%=\TrIOnext \TrIOdDjQwWcheck

Handling \globaldefs. The macro that checks
the setting of \globaldefs clears it if it is positive
as explained earlier. This macro de- and reactivates
\afterassignment in case it holds a token: The
macro \TrIOsuspendafterassignment blocks the
application of this token after an assignment and the
macro \TrIOinitafterassignment restores the de-
fault behavior. Finally, the macro defines the macro
\TrIOendgroup that resets the integer parameter

64 TUGboat, Volume 43 (2022), No. 1

\globaldefs if necessary after it closes the group
opened in the first line of \input.

\def\TrIOhandleglobaldefs{% inform about

% \globaldefs>0 and switch to \globaldefs=0

\TRIOifnum\TRIOglobaldefs>0 \TrIOmessage

{TrIO Info: globaldefs is >0 (I/O)}%

\TRIOafterassignment\TrIOsuspendafterassignment

\TRIOglobaldefs=0 % only this is global

\TRIOdef\TrIOendgroup{\TRIOendgroup

\TRIOafterassignment\TrIOinitafterassignment

\TRIOglobaldefs=1 }%

\TRIOelse \TrIOsuspendafterassignment

\TRIOglobaldefs=0 \TRIOdef\TrIOendgroup{%

\TRIOendgroup\TrIOinitafterassignment}%

\TRIOfi}

A variant. To address some of the problems dis-
cussed in the previous section a second macro for
\input is coded. It carries a password-protected
name, \TrIOcCkPxXinput, to avoid its unnoticed
use. It differs from the macro shown in two respects:

1. The message states “INPUT” instead of “input”
to identify itself to the user.

2. In front of \TRIOinput in the last line the macro
\TrIOcCkPxXtransfer appears.

The variant is called if the source file contains
\TrIOcCkPxXmove. The user must enter this macro
into the source to fix some of the discussed problems.

\def\TrIOcCkPxXmove#1\input{% transfer tokens

\def\TrIOcCkPxXtransfer{#1}\TrIOcCkPxXinput}

Use this macro only if you are convinced that a
\csname, \expandafter, or “prefix” is required and
the source cannot extract the password in the name.

An example. Most macros of this article are bun-
dled in the file TrIOmacros.tex. This file is input in
the first line of the source file that should be checked.

\input TrIOmacros

\batchmode \input hello \errorstopmode

\csname \input hello \endcsname

\TrIOcCkPxXmove\global\input hello

\expandafter\show\input hello

\edef\csone{\input hello }\show\csone\bye

When this file is executed TEX displays the mes-
sages of the macro followed by an error:

<<<

(TrIOinput.tex)

TrIO >>> (1) Line 2: input

>>> enter shown file name without ‘nosubdir/’.

<<<

! I can’t find file ‘nosubdir/hello.tex’.

l.2 \batchmode \input hello

\errorstopmode

Please type another input file name:

This is the normal case: First, a user should check
that TrIOinput.tex was input, then the macro re-

Udo Wermuth

ports that the first I/O command was found in line 2
and that this command is \input, and finally the
macro displays what to do next.

We enter “hello” as the new file name. TEX
shows in the next line that it inputs hello.tex. But
then an error message pops up.

(hello.tex)

! Missing \endcsname inserted.

<to be read again>

\TRIObegingroup

\input ->\TRIObegingroup

\TRIOafterassignment...

l.3 \csname \input

hello \endcsname

?

This error message signals the \csname/\endcsname
problem. The answer to the question mark is to type
“42”, then to insert the correct code, i.e., I\csname,
at the next prompt. Finally, enter the file name.

? 42

\input ...\TrIOendgroup

\TRIOinput \TrIOnosubdir

l.3 \csname \input

hello \endcsname

? I\csname

! I can’t find file ‘nosubdir/hello.tex’.

l.3 \csname \input hello

\endcsname

Please type another input file name: hello

(hello.tex)

In this example the \csname problem was fixed
successfully. But, for example, the code \csname AA

\input hello \endcsname would create a different
typesetting result compared to the original source.
Check carefully if the macro \TrIOcCkPxXmove can
be inserted, if the contents of the file can be typed
in, or if the source file should be rejected.

The next line represents such an insertion by
the user. Now the “normal” case occurs except that
the word “INPUT” signals the use of the macro.
(Note the “2” as the “42” skipped the counting.)

<<<

(TrIOinput.tex)

TrIO >>> (2) Line 4: INPUT

>>> enter shown file name without ‘nosubdir/’.

<<<

! I can’t find file ‘nosubdir/hello.tex’.

l.4 \TrIOcCkPxXmove\global\input hello

Please type another input file name: hello

(hello.tex

without the macro TEX reports “! You can’t use a
prefix with ‘\begingroup’.” and the fix is to enter
“42” and “I\global”. The apply problem can al-
ways be solved in this way.

TUGboat, Volume 43 (2022), No. 1 65

Next, an error message appears as the contents
of hello.tex doesn’t start with an assignment; it’s
an error in the original source: “! You can’t use a
prefix with ‘the letter H’.”.

After pressing RETURN TEX displays

> \TRIObegingroup=\begingroup.

\input ->\TRIObegingroup

\TRIOafterassignment...

l.5 \expandafter\show\input

hello

which is not an error message but the result of the
primitive \show. Nevertheless the macro \input lost
its first token. Without intervention TEX will display
an error message as soon as it reads the correspond-
ing \endgroup. This time the interactive fix is to
type “41” followed by “I\expandafter\show”.

With a macro that reads arguments instead of
the non-typesetting command \show such a fix is not
possible. Edit the source and use \TrIOcCkPxXmove
except in cases like \expandafter{\input hello },
in which the \expandafter should be deleted.

The macros in TrIOmacros.tex are designed
in a way that all errors in the original source pro-
duce errors in the instrumented file, although the
error messages and/or recovery might be different.
An erroneous source might lead to an instrumented
source in which it is impossible to recover from an
error during the execution.

The last line in the above source gives an exam-
ple of such an error. In the original source TEX dis-
plays “Runaway definition?” but the instrumented
source shows first “! Undefined control sequence.”

! Undefined control sequence.

\input ... \TrIOskipXXXVIinsTrIOfixedef

\TrIO...

l.6 \edef\csone{\input

hello }\show\csone\bye

The name of the undefined control sequence informs
the user what to do: Skip 36 tokens and insert then
\TrIOfixedef. Doing so and after entering ”hello”
TEX displays the original error message.

? 36

\input ...\TrIOendgroup

\TRIOinput \TrIOnosubdir

l.6 \edef\csone{\input

hello }\show\csone\bye

? I\TrIOfixedef

! I can’t find file ‘nosubdir/hello.tex’.

l.6 \edef\csone{\input hello

}\show\csone\bye

Please type another input file name: hello

(hello.tex)

Runaway definition?

->\TRIObegingroup \TRIOafterassignment \ETC.

! File ended while scanning definition of \csone

Transparent file I/O using the original TEX program and the plain TEX format

<inserted text>

}

l.6 \edef\csone{\input hello

}\show\csone\bye

Next TEX complains about too many closing curly
braces as in the original source.

The \show\csone displays:

\TRIObegingroup \TRIOafterassignment \TrIOempty

\TRIOdef \TrIOempty {}\TRIOendgroup Hello TeX!

because of the trick in line 2 and this definition

\def\TrIOfixedef{% fix \edef problem for \input

\TRIOnoexpand\TrIOempty{}\TRIOendgroup}

so that \csone contains more material than in the
source file; a prefix or \number, etc., now gives a new
error if the original accepts this in front of \csone.

Summary: A user can fix the apply problem
interactively, but not always the \csname and the
\expandafter problems; one can try to fix them in
the source. The \edef problem must be fixed inter-
actively but the defined macro has additional tokens.

5 Macro for \afterassignment

Next, let’s look at the support macros that we need
to handle the primitive \afterassignment. This
primitive stores a single token that isn’t expanded
[6, p. 215]; thus it can hold an undefined macro and
execute it after it was defined. To reproduce this
behavior the macro must store the token in a to-
ken register and not via a \let assignment. On the
other hand, a curly brace cannot be placed in a to-
ken register; this requires \let. To distinguish these
cases the macro sets a flag. (\afterassignment can-
not appear in a \csname/\endcsname construction
or with a prefix like \global.)

\newif\ifTrIOsavedtoken % true: token is stored

\newif\ifTrIOblockafterassignment % true: don’t

% insert a token after an assignment

\newif\ifTrIOusetokenlist % true: use token reg

\newtoks\TrIOtoken % the token register

A second difficulty is that \afterassignment

can be used in an \edef or \xdef but the macro
would fail if it is fully expanded. Therefore a second
token register is declared to stop the expansion.

\let\TRIOafterassignment=\afterassignment

\newtoks\TrIOtrafterassignment % stops expansion

% the replacement of the primitive

\def\afterassignment{% \edef expands one level

\the\TrIOtrafterassignment}

\TrIOtrafterassignment={\TrIOafterassignment}

For the rest of the article—and already in the
code just above— I omit the initial “TRIO” if a
primitive is meant and no macro replaces it. For
example, above I wrote \the instead of \TRIOthe,

66 TUGboat, Volume 43 (2022), No. 1

but I will still write \TRIOinput since the \input

primitive has been replaced by a macro.
The main macro blocks the usual work of the

primitive \afterassignment and then fetches via
\futurelet the token that should be stored. Two
of the other three user macros were shown earlier.
One sets the flag to block \afterassignment, the
second removes this block. The third uses the origi-
nal primitive to call our own insertion macro.

\def\TrIOafterassignment{% first save a token

\begingroup\endgroup % stop \global

\TrIOglobaldefs \TrIOsavedtokentrue

\futurelet\TrIOsavedtoken\TrIOchecktoken}

% user commands for those who know the macros

\def\TrIOsuspendafterassignment{% switch off

\TrIOblockafterassignmenttrue}

\def\TrIOresumeafterassignment{% switch on

\TrIOblockafterassignmentfalse % remove block

\TrIOinitafterassignment}

\def\TrIOinitafterassignment{% init exec macro

\TRIOafterassignment\TrIOAFTERASSIGNMENT}

Again \globaldefs must be checked. This is
similar to the procedure used for \input but here
no group must be closed so \TrIOresetglobaldefs

is defined. It’s called when a token must be stored.

\def\TrIOglobaldefs{% inform about \globaldefs>0

% and switch to \globaldefs=0 for the macros

\ifnum\globaldefs>0 \TrIOmessage{TrIO Info:

globaldefs is >0 (store)}%

\TRIOafterassignment\TrIOsuspendafterassignment

\globaldefs=0 \def\TrIOresetglobaldefs{%

\TrIOblockafterassignmentfalse

\TRIOafterassignment\TrIOinitafterassignment

\globaldefs=1 }%

\else\ifnum\globaldefs<0 % no group, do a reset

\TRIOafterassignment\TrIOsuspendafterassignment

\globaldefs=0 \def\TrIOresetglobaldefs{%

\TrIOblockafterassignmentfalse

\TRIOafterassignment\TrIOinitafterassignment

\globaldefs=-1 }%

\else \TrIOsuspendafterassignment % switch off

\def\TrIOresetglobaldefs{% and switch on again

\TrIOresumeafterassignment}%

\fi\fi}

The next macro determines the type of the to-
ken and stores it either in a token register or via a
\let assignment.

\def\TrIOchecktoken{% check token, store a macro

\ifcat\noexpand\TrIOsavedtoken\relax

\let\TrIOnext=\TrIOstoresavedtoken % a macro

\else % otherwise remove token from the input

\let\TrIOnext=\TrIOremovesavedtoken

\fi \TrIOnext}

\def\TrIOstoresavedtoken#1{% #1: cs in token reg

\let\TrIOnext=\undefined \TrIOusetokenlisttrue

\TrIOtoken={#1}\TrIOresetglobaldefs}

Udo Wermuth

\def\TrIOremovesavedtoken{% remove a token

\let\TrIOnext=\undefined \TrIOusetokenlistfalse

\TRIOafterassignment\TrIOresetglobaldefs

\let\TrIOsavedtoken=}

The application macros just test the flags.

\def\TrIOAFTERASSIGNMENT{% use the stored token

\ifTrIOblockafterassignment% true nothing to do

\else % otherwise output token if one is saved

\ifTrIOsavedtoken \ifnum\globaldefs>0

\TrIOmessage{TrIO Info: globaldefs is 1

(apply)}\globaldefs=0 % clear it

\TrIOsavedtokenfalse \globaldefs=1 % & reset

\else \TrIOsavedtokenfalse \fi

\expandafter\expandafter % get rid of

\expandafter\TrIOoutputtoken % the 2 \fi

\expandafter\fi % with 3+1 \expandafter

\fi}

\def\TrIOoutputtoken{% output token (check type)

\ifTrIOusetokenlist % true: use token reg

\expandafter\the\expandafter\TrIOtoken

\else % otherwise use the saved token

\expandafter\TrIOsavedtoken

\fi}% no need to change \ifTrIOusetokenlist

6 Macro for \openin

Let’s repeat what we already know about \openin.
It’s nicer than \input as it can’t occur in a \csname/
\endcsname construction. Moreover, it can’t be pre-
fixed by \global as the equals sign here does not
mean an assignment is performed; it’s an association
between a stream number and a file name. This asso-
ciation acts globally so that we can execute \openin
inside a group. To solve the \expandafter problem
in the source just delete this token. But \openin

might be part of an \edef. Thus, the technique of
the previous section is applied for \openin too.

But \openin is also much more unpleasant than
\input. It operates without stating the file name
on the terminal or in the log file. Thus, the con-
trol word that saves the meaning of the primitive
must not be made public. Otherwise an evil-doer
could circumvent the macro and apply the original
primitive under its new name. Therefore the copy
of the primitive is assigned a password-protected
name: \TRIOaAmNzZopenin.

The macro \openin first reads the stream num-
ber, next a test is made to see if the optional equals
sign follows, and third \TRIOinput is called with the
trick so that TEX asks for a new file name. But this
time the user enters two file names. First, a generic
file name— for \openin it’s by default openin—
and then the file name that should be processed by
the primitive \openin. The file openin.tex contains
several password-protected macros that do the im-
portant work. Please remember: A user must never

TUGboat, Volume 43 (2022), No. 1 67

allow TrIOmacros.tex or any other file of this pack-
age, such as openin.tex, to be processed by the
original source.

All aspects of the following macros are either
well-known or have been discussed.

\newtoks\TrIOtropenin % token register for \edef

\def\openin{\the\TrIOtropenin}% expand one level

\TrIOtropenin={\TrIOopenin}% call the main macro

\def\TrIOopenin{\begingroup

\TrIOhandleglobaldefs \TrIOcountiocmd

\TRIOafterassignment\TrIOOpenIn \TrIOcount=}

\def\TrIOOpenIn{% remove an optional =

\TRIOafterassignment\TrIOOPENIN

\let\TrIOnxt=}

\def\TrIOOPENIN{% add nonexistent directory

\TrIOmessage{<<<}% first: the instructions

\TrIOmessage{TrIO >>> (\TrIOcnt) Line

\the\inputlineno: openin \the\TrIOcount}%

\TrIOmessage{>>> If you accept that the file

(without \TrIOnosubdir) is read}%

\TrIOmessage{>>> enter ‘openin’ and

follow the instructions.}\TrIOmessage{<<<}%

\ifx=\TrIOnxt \def\TrIOnxt{}%

\fi % otherwise \TrIOnxt <> ‘=’; so keep it

\TrIOsetcatcodes % required for openin.tex

\TRIOinput\TrIOnosubdir\TrIOnxt}

In openin.tex, private information is used: a
kind of signature that it is the user’s openin.tex

and not one by a cracker. A user should change the
text to make it unique for each installation. But
of course, use only characters whose category codes
are known, i.e., set in the list. As \TrIOnext be-
comes undefined in the macro \TrIOaAmNzZopenin

the message stays private.

\%‘\0=12 \%‘\3=12 ... \%‘\9=12 \%‘\a=11 ...

\%‘\z=11 \%‘\A=11 ... \%‘\Z=11 \%‘\>=12

\%‘\{=1 \%‘\}=2 \%‘\%=\TrIOnext \TrIOdDjQwWcheck

\TRIOgGKptTpausing=1 \def\TrIOnext{My message

Enter 1> return 2> file name}\TRIOgGKptTpausing0

\TrIOaAmNzZopenin

The mentioned macro prompts for the file name
and calls the password-protected primitive using the
stream number stored in the register \TrIOcount.

\def\TrIOaAmNzZopenin{% get file name from user

\read16 to \FilenameOPENIN

\TRIOaAmNzZopenin\number\TrIOcount=

\FilenameOPENIN

\let\FilenameOPENIN=\undefined

\let\TrIOnext=\undefined

\let\TrIOnxt=\undefined

\TrIOendgroup}% see \TrIOhandleglobaldefs

7 Macros for \openout and \immediate

The macros to replace the primitive \openout are
very similar to the ones used for \openin; and the

Transparent file I/O using the original TEX program and the plain TEX format

file openout.tex is similar to openin.tex. The only
aspect not yet discussed is the “prefix” \immediate.

TEX allows an \immediate everywhere without
raising an error for the next token. This is in con-
trast to, for example, the prefix \long that, after
expansion of the next token, requires a definition
primitive (\def, etc.) or another prefix (\global,
etc.). Although \immediate never complains, it in-
fluences the next token after expansion only if it is
one of \openout, \write, or \closeout.

The way \immediate operates means that the
macro that replaces the primitive cannot simply set
a flag that signals that it was seen. For example,
the sequence “\immediate\begingroup\openout”
would then faultily apply \immediate to \openout.
Can we just test if the macro \openout follows the
macro \immediate? I decided to put an identifi-
cation primitive at the start of \openout so that
\TrIOopenout doesn’t start with \begingroup but
with the sequence “\TRIOimmediate\begingroup”.

The macros for \immediate. As indicated above,
the first part of the macros uses the known structure.
Only the last line of \TrIOImmediate contains a new
technique (or trick).

\newif\ifTrIOimoo % true: \immediate\openout

\newtoks\TrIOtrimmediate % token reg. for \edef

\def\immediate{\the\TrIOtrimmediate}% one level

\TrIOtrimmediate={\TrIOImmediate}% expansion

\def\TrIOImmediate{% expand the following token

\begingroup \TrIOhandleglobaldefs

\TRIOafterassignment\TrIOIMMEDIATE

\TrIOcount=‘x}% the trick; explanation follows

TEX treats the alphabetic constant ‘x like a
number and digests a space after such a number [7,
§442]. To check if a space follows, tokens are ex-
panded (§443) but TEX doesn’t add anything to the
alphabetic constant. Thus TEX assigns the value 120
to \TrIOcount after it determines the first token of
the expansion of the token that follows \immediate.
Only if this first token is \TRIOimmediate does the
source contain \openout as an interim next token
for \immediate during the expansion.

\def\TrIOIMMEDIATE#1{% #1: a token; it’s tested

\ifx#1\TRIOimmediate % true: macro \openout

\global\TrIOimootrue % follows; set flag

\else \global\TrIOimoofalse \fi \TrIOendgroup

\TRIOimmediate#1}% apply the primitive

A cracker might set the flag (either directly or
via \TRIOimmediate as the names aren’t protected)
to confuse the user. The next \openout will use the
flag even if no \immediate precedes it. Stop the ex-
ecution if TrIOmacros reports “immediate openout”
but the source file seems to have no \immediate in
front of \openout. Then check the source carefully.

68 TUGboat, Volume 43 (2022), No. 1

The macros for \openout. As written above, the
macros for \openout are so similar that they aren’t
shown here in detail. Besides the wording “openout”
instead of “openin” and “created” instead of “read”
in the messages there are two differences:

1. \TrIOopenout starts with \TRIOimmediate;
2. the first message in \TrIOOPENOUT contains now

“\ifTrIOimoo immediate \fi” in front of the
string “openout”.

A new password-protected macro is called in
openout.tex; it makes use of the new flag. Other-
wise openout.tex is identical to openin.tex.

\def\TrIObBlOyYopenout{% get file name from user

\read16 to \FilenameOPENOUT

\ifTrIOimoo \global\TrIOimoofalse

\let\TrIOnext=\TRIOimmediate % use \immediate

\else \let\TrIOnext=\relax \fi

\TrIOnext\TRIObBlOyYopenout

\number\TrIOcount=\FilenameOPENOUT

\let\FilenameOPENOUT=\undefined

\let\TrIOnext=\undefined

\let\TrIOnxt=\undefined \TrIOendgroup}

8 The virus example

The following instructions are a modified version of
the code containing the virus shown in [1] and [2].
This badly formatted, comment-free but obfuscated
code should alert everyone who sees it. (I changed
the original source so that it can be executed under
plain TEX. Moreover, the original file names and in
one case the contents of a file were changed.)

1. \input TrIOmacros % new 1st line; see below

2. \newif\ifcontinue \continuetrue

3. \def\uncat{\def\do##1{\c‘##1=12 }\dospecials

4. \do\^^M\do*}\def\nice{\endlinechar=‘\^^M

5. \uncat}\def\readline#1to#2{\begingroup\nice

6. \global\read#1to#2\endgroup}%

7. {\newwrite\w\let\c\catcode\c‘*13\def

8. *{\afterassignment\d\count255"}\def\d{%

9. \expandafter\c\the\count255=12}{*0D\def%

10. \a#1^^M{\immediate\write\w{#1}}\c‘^^M5%

11. \newread\r\openin\r=\jobname

12. \immediate\openout\w=../justafile.tex

13. \loop\ifeof\r\continuefalse\fi\ifcontinue

14. \readline\r to\l\expandafter\a\l\repeat

15. \immediate\closeout

16. \w\closein\r}{*7E*24*25*26*7B*7D\immediate

17. \openout\w gotcha.tex \c‘[1\c‘]2\c‘\@0

18. \newlinechar‘\^^J\endlinechar-1*5C@immediate

19. @write@w[What have I done?]@immediate

20. @closeout@w]}%

21. \bye

As in the example of section 4 the file got a new
first line “\input TrIOmacros”. Next we run TEX
on this file, which I call danger.tex. TEX quickly

Udo Wermuth

stops to display a message. (Some lines are broken
for TUGboat’s column width, and the identifying
password in the name for \pausing was deleted.)

<<<

TrIO >>> (1) Line 11: openin 0

>>> If you accept that the file (without

nosubdir/) is read

>>> enter ‘openin’ and follow the instructions.

<<<

! I can’t find file ‘nosubdir/danger.tex’.

<to be read again>

\begingroup

\TrIOImmediate ->\begingroup

\TrIOhandlegl...

l.12 \immediate

\openout\w=../justafile.tex

Please type another input file name:

Don’t get confused by the shown source lines.
TEX detects that it has the complete file name only
after seeing the \immediate in line 12. The “TrIO
>>>” line shows the number of the I/O command, the
line number in which it was found, and the command
itself. The first file I/O is in line 11 and the com-
mand is \openin with stream number 0. After the
instructions TEX displays the file name that it read
plus the nonexistent subdirectory that our macros
added. Here the source looks for the file danger.tex,
i.e., itself. Although I find it weird for a file to read
itself, this process is harmless compared to a file that
wants to destroy itself. So I continue; that is, I enter
“openin”, press return, check my private message,
press return, and enter the file name.

Please type another input file name: openin

(openin.tex

Enter 1> return 2> file name}\TRIO...pausing0=>

\FilenameOPENIN=danger

Next, TEX stops again. As expected it is the sec-
ond file I/O command and this time it’s \immediate
\openout with stream number 0. The source wants
to write a file in the parent directory. This is very
strange and shouldn’t be allowed. I prefer to create a
subdirectory trioo/ and to redirect all output files
to this directory. Of course, the user must remem-
ber which files are placed in this subdirectory if the
source wants to read one of them again.

<<<

TrIO >>> (2) Line 12: immediate openout 0

>>> If you accept that the file (without

nosubdir/) is created

>>> enter ‘openout’ and follow the instructions.

<<<

! I can’t find file ‘nosubdir/../justafile.tex’.

l.12 \immediate\openout\w=../justafile.tex

Please type another input file name: openout

TUGboat, Volume 43 (2022), No. 1 69

(openout.tex

Enter 1> return 2> file name}\TRIO...pausing0=>

\FilenameOPENOUT=trioo/justafile

Maybe you directly saw in the source that a path
contains two periods. To avoid the case that TEX
inputs an existing file justafile.tex in the cur-
rent directory, add in front of \input TrIOmacros

\let\twonosubdirs=y to have \def\TrIOnosubdir
{nosubdir/nosubdir/} as explained earlier.

The third stop is similar to the second except
one should check that \immediate occurs at the end
of line 16. Again I use the output directory trioo.

<<<

TrIO >>> (3) Line 17: immediate openout 0

>>> If you accept that the file (without

nosubdir/) is created

>>> enter ‘openout’ and follow the instructions.

<<<

! I can’t find file ‘nosubdir/gotcha.tex’.

l.17 \openout\w=gotcha.tex

\c‘[1\c‘]2\c‘\@0

Please type another input file name: openout

(openout.tex

Enter 1> return 2> file name}\TRIO...pausing0=>

\FilenameOPENOUT=trioo/gotcha

At the end of the run the user should check the
files in the subdirectory trioo. This reveals that
justafile.tex is a copy of danger.tex.

9 Repeated executions

Although the macros work well, a user needs to con-
centrate during the stop-and-go operation and thus
it’s easy to make mistakes. A run is ruined if the
user enters, for example, the file name instead of
openout at a stop for \openout. No harm to the
system is done as TEX reads the file; the creation of
a file is only possible through the file openout.tex.

As soon as one manages to finish a successful
run the package provides macros to avoid the input
of file names in subsequent runs if the I/O commands
and the file names aren’t changed from run to run.
These macros use the I/O commands with the file
names entered in the successful run in exactly the
order they occured previously. A run is deemed suc-
cessful if and only if TEX doesn’t report an error that
was interactively fixed. To activate the macros for
repeated executions a user has to do the following.

1. Copy the .log file of the successful run. For
example, copy danger.log to danger.trio.

2. Run a sed command on the copied log file.
Use TrIOlineno.sed (or TrIOextract.sed) to
create another TEX file called TrIOnames.tex.
For example, enter: sed -f TrIOlineno.sed

danger.trio > TrIOnames.tex.

Transparent file I/O using the original TEX program and the plain TEX format

3. Change the first line of the instrumented source
file; replace TrIOmacros by TrIOauto.

The log file contains in the lines that start
with “TrIO >>> . . . ”, “! I can’t find file . . . ”, and
“\FilenameOPEN...” all the data needed to create
a case statement in TEX, in which for each sequence
number the line number, the I/O command, and the
file name can be combined to do the file I/O auto-
matically; the uppercase form of “input” is thereby
changed to “\TrIOcCkPxXtransfer \TRIOinput”.

The difference between the two sed files is that
in one the new line number and the line number of
the successful run are compared. This exact replica-
tion of the successful run might be too strict if the
user has to edit the text but doesn’t change the se-
quence of I/O commands. A user can create a new
TrIOnames.tex by using TrIOextract.sed instead
of TrIOlineno.sed in step 2 of the above list.

The case statement is placed in a password-
protected macro stored in TrIOnames.tex. Here is
the structure of this file from the run of section 8.

\def\TrIOeEMnvVfilenames{% use files of prev run

\ifcase\TrIOcnt \iffalse % a technicality

\else\TrIOstop{case (\TrIOcnt) in auto}\fi

\or\ifnum\TrIOcount=11 % case 1

\def\TrIOiocmd{\TRIOaAmNzZopenin 0}%

\TrIOenvopen \def\TrIOfile{danger}%

\TrIOmessage{TrIO >>> (1) Line 11:

openin 0 \TrIOfile}%

\else \TrIOstop{case (\TrIOcnt) in auto}\fi

\or\ifnum\TrIOcount=12 % case 2

...

\else

\TrIOstop{unknown case (\TrIOcnt) in auto}%

\fi \TrIOfFLouUexecute}

The macro \TrIOenvopen provides some definitions
for an “environment” to end the current group for
\openin and \openout. For \input the group must
end before it gets active.

\def\TrIOenvopen{\let\TrIOleft=\relax

\let\TrIOright=\TrIOendgroup}

\def\TrIOenvinput{\let\TrIOleft=\TrIOendgroup

\let\TrIOright=\relax}

The new macros. The file TrIOauto.tex con-
tains simplified macros for \input, \openin, and
\openout. It uses the file TrIOopen.tex to load
and write the files in TrIOnames.tex. The new file
TrIOopen.tex is like openin.tex or openout.tex

except that it doesn’t contain a personal message
and that it calls \TrIOeEMnvVfilenames, not the
password-protected copies of \openin or \openout.

The macro for \input no longer writes terminal
messages with \TrIOmessage; this also applies to all
other file I/O macros in TrIOauto.tex.

70 TUGboat, Volume 43 (2022), No. 1

\def\input{\begingroup \TrIOhandleglobaldefs

\TrIOcountiocmd \TrIOsetcatcodes

\TrIOcount=\inputlineno % see \TrIOfilenames

\let\TrIOnxt==% needed in \TrIOexecute

\TRIOinput TrIOopen.tex }

The variant with a password-protected name,
\TrIOcCkPxXinput, isn’t needed anymore because
the macro \TrIOcCkPxXmove, which might still oc-
cur in the source, now calls \input.

For \openin, two of the four macros are un-
changed. In \TrIOopenin the line number is saved
(as in \input) so that it becomes available in the
macro \TrIOeEMnvVfilenames. The other changes
in this set of macros are similar to the changes seen
in the new macro \input.

\def\openin{\the\TrIOtropenin}

\TrIOtropenin={\TrIOopenin}

\def\TrIOopenin{\begingroup

\TrIOhandleglobaldefs \TrIOcountiocmd

\xdef\TrIOnext{\TrIOcount=\the\inputlineno}%

\TRIOafterassignment\TrIOOpenIn \TrIOcount=}

\def\TrIOOpenIn{\TRIOafterassignment\TrIOOPENIN

\global\let\TrIOnxt=}

\def\TrIOOPENIN{\TrIOnext \TrIOsetcatcodes

\TRIOinput TrIOopen.tex }

The macros for \openout and \immediate re-
ceive drastic changes: \openout becomes identical to
\openin and \immediate isn’t replaced by a macro.

The execution macro. The last line in the macro
of TrIOnames.tex, i.e., in \TrIOeEMnvVfilenames,
calls a password-protected macro that executes the
stored file I/O command.

\def\TrIOfFLouUexecute{% prepare I/O execution

\ifx=\TrIOnxt \gdef\TrIOnext{TrIO_}%

\else \gdef\TrIOnext{TrIO_\TrIOnxt}\fi

\TRIOafterassignment\TrIOfFLouUdoiocmd % exec

\font\unused=\TrIOnext}% remove file name

The last line might be a surprise. Why do we need
a \font command here? Now that the file name
from the input isn’t used for an I/O command the
source contains an unread file name. I decided to
read and display the file name so that a user can
check that the file name agrees with the one used in
TrIOnames.tex. It’s possible that a cracker codes
something like “\input\myfile” and changes file
names in \myfile from run to run. Although our
macros use a name that was approved they can still
help the user to identify such sources.

Thus the file name should be displayed. But
with \input and the trick the user must enter an-
other file name, for example, null. To reduce this
to a simple return I apply the primitive \font and
a prefix for the file name to avoid loading a TFM file
if the file name is, for example, called cmr10.tex.

Udo Wermuth

TEX raises an error message that shows the file name
without extension; see section 2. After a quick check
that the main parts of the known file name and the
shown one without TrIO_ agree, the user continues
the run by pressing return. Next the I/O command
is executed; as mentioned earlier, \input outside the
group, \openin and \openout inside the group.

\def\TrIOfFLouUdoiocmd{% execute the I/O command

\let\TrIOnext=\undefined

\TrIOresumeafterassignment

\ifx\TrIOright\relax \expandafter\TrIOleft

\expandafter\TrIOiocmd \expandafter\TrIOfile

\else \TrIOiocmd\TrIOfile\TrIOright \fi}

For example, TEX’s first message for the source
danger.tex of section 8 with TrIOauto.tex is:

(TrIOopen.tex

TrIO >>> (1) Line 11: openin 0 danger

)

! Font \TRIOunused=TrIO_danger not loadable:

Metric (TFM) file not found.

<to be read again>

\immediate

l.12 \immediate

\openout\w=../justafile.tex

Although it is quite unusual the source might
contain something like “\input file.tex at” and
then TEX interprets the “at” as a keyword if the
input file.tex is treated as the name of a font. In
such a case the user should change the source and
place the “at” in curly braces; treat the keyword
“scaled” in the same way. With TrIOauto.tex the
repeated execution isn’t a big problem.

10 Treatment of \special

The previous sections introduce macros that allow
a user to control which external files TEX reads and
writes. But by default TEX writes data to two other
files: the log file and the DVI file.

The log file is a plain text file like the TEX
source. It is neither interpreted nor compiled.

The DVI file is a binary file that must be in-
terpreted by a device driver. Most of its content is
determined by the encoding of the text which TEX
has to typeset. But TEX also contains the primitive
\special that is able to write any data to the DVI

file. The device drivers must know what to do with
this data.

Some device drivers support a \special string
being executed as a shell command; this scenario
has the same risks as the \write18. Or the device
driver may interpret data as PostScript instructions.
PostScript code can delete files, spread a virus, or
hide private data inside the PostScript file— later
the author can extract this information if the user

TUGboat, Volume 43 (2022), No. 1 71

returns its output; see [5, chap. 4]. The macros of
this article cannot control the actions of shell scripts
or PostScript code.

It is strongly recommended to activate the se-
curity options of the device driver if a DVI file from
an untrusted source is processed even if the source
was compiled by oneself. For example, use -safer

in xdvi [3] and -R2 for the DVI-to-PostScript trans-
lator dvips [17].

Macros for \special. By default the macros as-
sume that the user configures the device drivers to
protect the system. That is, TrIOmacros.tex and
TrIOauto.tex keep the primitive \special active.

But the macros offer a way to look at the data
contained in a \special without touching the primi-
tive. TEX puts a marker for the \special and the as-
sociated token list into a so-called whatsit [6, p. 226]
that appears in the box that TEX ships out. TEX
writes all token lists into the log file (sometimes in
an abbreviated form, see [7, §292]) with:

\tracingoutput=1

\showboxdepth=10000 \showboxbreadth=10000

The log file might now become very large! The user
must search or extract the data to check what the
unknown token lists contain. For example,

grep -e’^\.\.*\\special’ 〈logfile〉

extracts the beginning of the token lists of all spe-
cials in the log file 〈logfile〉.

Of course, the source might set the above inte-
ger parameters to other values and we disable this
by assigning \tracinglostchars via \let to the
three parameters. But a source file that, for exam-
ple, relies on the fact that one of the values of the
three integer parameters has its default value—0, 3,
or 5, respectively—might now produce unintended
output. Again an unusual case; reject the source.

Besides the possibilities of keeping the primitive
untouched in TEX or tracing \special’s actions, the
package offers to deactivate \special and to trace
all complete token lists in the log file.

\def\TrIOwlog{\TRIOimmediate\write-1 }

\def\special{\TrIOwlog{<<< TrIO >>>

Line \the\inputlineno: special}\TrIOwlog}

A user starts the described tracing via either
\let\disablespecial=n or y before reading one of
TrIOmacros.tex or TrIOauto.tex, with or without
executing the primitive \special.

11 Final remarks

The shown code snippets introduce all password-
protected names, in total eight. The package con-
sists of ten main files and to change these passwords

Transparent file I/O using the original TEX program and the plain TEX format

in all of them is therefore a laborious job. To auto-
mate this task I added two more files: a sed file to
change the passwords and a shell script to apply the
sed file to the ten files. Remember: It’s crucial that
each installation has its own passwords.

Before files of your run are returned to the au-
thor (1) delete the new first line and all inserted
macros \TrIOcCKpxXmove in the source; (2) check
the log file for tracing output containing password-
protected macro names; (3) look at the DVI output
to avoid the unlikely case that it contains informa-
tion about the new macros.

I described scenarios in which the macros fail
but remember these are all exotic cases— the au-
thor is playing tricks on you. That’s why I wrote to
inspect or reject the source file. I assume a cracker
avoids these exotic cases; no one wants to attract
attention to one’s harmful code.

If you want to use the macros and you provide
a macro package to authors think about code like

\let\TeX@input=\input \let\globaldefs=\undefined

\def\input{\begingroup\def\undefinedinput{}%

\endgroup\TeX@input}

so that then error-free sources avoid most problems.

Can the program TEX adopt these ideas? No.
We can’t deactivate \batchmode or stop the run to
reenter a file name for \input without violating the
TRIP test [9, p. 572]. But it’s okay to exclude certain
paths and to reenter names of certain files. Only
when a file with such an excluded path occurs is the
user asked to enter a new name or reenter the then-
accepted file name that appeared in the TEX file.

References

[1] Stephen Checkoway, Hovav Shacham, and Eric
Rescorla, “Are Text-Only Data Formats Safe? Or,
Use This LATEX Class File To Pwn Your Computer”,
Proceedings of LEET ’10, USENIX (2010), 8 pp.
usenix.org/legacy/events/leet10/tech/

full_papers/Checkoway.pdf

[2] Stephen Checkoway, Hovav Shacham, and Eric
Rescorla, “Don’t take LATEX files from strangers”,
;LOGIN: 35:1 (2010), 17–22.
usenix.org/system/files/login/articles/73506-

checkoway.pdf

[3] Eric Cooper, Bob Scheifler, Mark Eichin, Paul
Vojta, et al., Xdvi man page, Xdvik version 22.87.04,
February 29, 2020, 34 pp.
tug.org/texlive/Contents/live/texmf-dist/doc/

man/man1/xdvi.man1.pdf

[4] Wouter Duivesteijn, Sibylle Hess, Xin Du, “How
to cheat the page limit”, WIREs Data Mining and

Knowledge Discovery 2020;10:e1361, 9 pp.
doi.org/10.1002/widm.1361

72 TUGboat, Volume 43 (2022), No. 1

[5] Markus Dürmuth, Novel Classes of Side Chan-

nels and Covert Channels, Ph.D. thesis, Saarland
University, Saarbrücken (2009), 146 pp.
publikationen.sulb.uni-saarland.de/

bitstream/20.500.11880/26018/1/

Dissertation_1920_Duer_Mark_2009.pdf

[6] Donald E. Knuth, The TEXbook, Volume A of
Computers & Typesetting, Boston, Massachusetts:
Addison-Wesley, 1984.

[7] Donald E. Knuth, TEX : The Program, Volume B of
Computers & Typesetting, Boston, Massachusetts:
Addison-Wesley, 1986.

[8] Donald E. Knuth, Literate Programming, Stanford,
California: Center for the Study of Language and
Information, CSLI Lecture Notes No. 27, 1992.

[9] Donald E. Knuth, Digital Typography, Stanford,
California: Center for the Study of Language and
Information, CSLI Lecture Notes No. 78, 1999.

[10] Donald E. Knuth, Companion to the Papers of

Donald Knuth, Stanford, California: Center for the
Study of Language and Information, CSLI Lecture
Notes No. 202, 2011.

[11] Joachim Lammarsch, “VM/CMS site report”, TUG-

boat 11:3 (1990), 454–455.
tug.org/TUGboat/tb11-3/tb29site.pdf

[12] Guilhem Lacombe, Kseniia Masalygina, Anass
Tahiri, Carole Adam, Cédric Lauradoux, “Can You
Accept LATEX Files from Strangers? Ten Years
Later”, arXiv:2102.00856v1 [cs.CR], 2021, 10 pp.
arxiv.org/abs/2102.00856

[13] Keith Allen McMillan, A platform independent com-

puter virus, M. Sc. thesis, University of Wisconsin,
Milwaukee (1994), ix+28 pp.
ftp://coast.cs.purdue.edu/pub/doc/viruses/

KeithMcMillan-PlatformIndependantVirus.ps

[14] Scott Pakin, reply to “Malicious commands in
LATEX”, comp.text.tex, August 7, 2008.
groups.google.com/g/comp.text.tex/c/

epWW3eV9udw

[15] Eric S. Raymond with Guy L. Steele Jr., eds.,
The New Hacker’s Dictionary, 3rd ed., Cambridge,
Massachusetts: MIT Press, 1996.
catb.org/esr/jargon/

[16] Red Hat Customer Portal: RHSA-2012:0137 –

Security Advisory, 15 February 2012.
access.redhat.com/errata/RHSA-2012:0137

[17] Tomas Rokicki, Dvips: A DVI-to-PostScript Trans-

lator, version 2021.1, February 2021, 62 pp.
ctan.org/pkg/dvips

[18] Ken Thompson, “Reflections on Trusting Trust”,
CACM 27:8 (1984), 761–763.
dl.acm.org/doi/pdf/10.1145/358198.358210

⋄ Udo Wermuth
Dietzenbach, Germany
u dot wermuth (at) icloud dot com

Udo Wermuth

TUGboat, Volume 43 (2022), No. 1 73

Book review: LATEX Beginner’s Guide,

second edition, by Stefan Kottwitz

Sarah Lang

Stefan Kottwitz, LATEX Beginner’s Guide, second
edition. Packt, Birmingham, UK, 2021, 354 pp.,
softcover, US$39.99, ISBN 9781801078658.

1 Introduction

Not unlike Boris Veytsman in his review of the 2011
version of LATEX Beginner’s Guide, I was initially
skeptical.1 Fortunately, like him, I was positively
impressed by how Kottwitz’s book was organized.
Veytsman emphasized the hands-on approach Packt
Publishers encourage (‘learning by doing’) and how
it shuns ‘boring theory’, thus accommodating the
impatient reader.

It has been a hallmark of LATEX resources to
front-load theory. This made sense in earlier days
when the usual goal was to teach a select number of
technology-minded students who wished to become
‘superusers’ eventually and already knew this from
the beginning. However, as LATEX is making its way
into more mainstream popularity, probably fueled
by an increasing number of low entrance barrier
resources and, notably, the online editor Overleaf,
we can always use more resources which speak to
users who never intended to become ‘superusers’.

1 tug.org/TUGboat/tb32-2/tb101reviews-kottwitz.pdf

Or at least, who don’t want to invest the considerable
amount of time needed for a ‘superuser education’
in a technology to which they are not yet sure they
want to commit.

Kottwitz’s book is a resource for such prospec-
tive LATEX users. It is an ideal crash course for
self-study. This book gives them all the basics they
need to get started and then make an informed de-
cision whether they want to continue their LATEX
journey. For a beginner, this book answers the cru-
cial question of how to get started using LATEX and
thus serves as a much-needed guide to the jungle of
resources out there.

The book is organized in such a way that you are
all set to get started already after the first chapter.
The author’s experience in writing introductory re-
sources is obvious from how well-structured the book
is for a beginner’s needs. It empowers new users to
solve their own problems.2 Never does the book just
throw a list at readers of all the possibilities LATEX
theoretically offers.

This lack of completeness might be considered
a fault by some but it takes courage to leave out un-
necessary detail. Offering truly accessible entry-level
resources is no mean feat. Leaving out detail which
is, for the time being, unnecessary for the beginner
corresponds to the principle of didactic reduction.3

It functions somewhat like a sun visor, helping learn-
ers to focus on what’s most important now, while
blocking out potentially distracting information until
the learner is ready to deal with it.

The chapter structure of LATEX Beginner’s Guide

is driven by what users might need rather than LATEX
functionalities. I have described this as a ‘buffet-like’
approach in a blog post: Take what you need and
leave what you don’t.4 At a time where attention
spans, especially for reading physical books, have
dropped drastically and few people have the time or
desire to sit down and deeply think about a new skill
they are learning, a buffet-like approach to teach-
ing is a blessing for the already overloaded minds of
prospective new users. It is also somewhat at odds
with the mindset of excellence often associated with
(LA)TEX and its hero, Donald Knuth.

Still, I am convinced that the community should
not look down upon gatekeeping-free beginners’ re-
sources. They are the heralds of a very welcome

2 On empowerment: tug.org/TUGboat/

tb41-2/tb128schmoelzer-empowerment.pdf
3 tug.org/TUGboat/tb41-2/tb128lang-didactic.pdf
4 latex-ninja.com/2021/10/27/how-to-get-started-

using-latex-for-academic-writing-a-book-review-of-s-

kottwitz-latex-beginners-guide-2nd-ed-packt-2021/

doi.org/10.47397/tb/43-1/tb133reviews-kottwitz2

Book review: LATEX Beginner’s Guide, second edition, by Stefan Kottwitz

https://tug.org/TUGboat/tb32-2/tb101reviews-kottwitz.pdf
https://tug.org/TUGboat/tb41-2/tb128schmoelzer-empowerment.pdf
https://tug.org/TUGboat/tb41-2/tb128schmoelzer-empowerment.pdf
https://tug.org/TUGboat/tb41-2/tb128lang-didactic.pdf
https://latex-ninja.com/2021/10/27/how-to-get-started-using-latex-for-academic-writing-a-book-review-of-s-kottwitz-latex-beginners-guide-2nd-ed-packt-2021/
https://latex-ninja.com/2021/10/27/how-to-get-started-using-latex-for-academic-writing-a-book-review-of-s-kottwitz-latex-beginners-guide-2nd-ed-packt-2021/
https://latex-ninja.com/2021/10/27/how-to-get-started-using-latex-for-academic-writing-a-book-review-of-s-kottwitz-latex-beginners-guide-2nd-ed-packt-2021/
https://doi.org/10.47397/tb/43-1/tb133reviews-kottwitz2

74 TUGboat, Volume 43 (2022), No. 1

development: the wider adoption of LATEX. Any re-
source that can help garner enthusiasm for LATEX in
a new generation of users is beneficial for all. And
if the LATEX community wants to stay around for
future generations, there is no way other than adapt-
ing to the needs of newbies today. Kottwitz’s book
contributes to that.

Here is the table of contents for the book:

1 Getting Started with LATEX

2 Formatting Text and Creating Macros

3 Designing Pages

4 Creating Lists

5 Including Images

6 Creating Tables

7 Using Cross-References

8 Listing Contents and References

9 Writing Math Formulas

10 Using Fonts

11 Developing Large Documents

12 Enhancing Your Documents Further

13 Troubleshooting

14 Using Online Resources

You are truly ready to go after Chapter 2, which
is just 64 pages. Chapter 2 is available as a free
preview.5

This book is neither documentation nor refer-
ence. It is not ‘complete’ in any way. But, as I have
argued before, it doesn’t have to be. Furthermore,
one should judge a book not only by general stan-
dards and expectations but also by the goals it sets
for itself. This book aims to be a beginner’s guide
and fulfils this aim exceptionally well.

The fact that it avoids unnecessary detail also
has another benefit: The more detailed a book, the
faster it goes out of date. By only including the
essentials, Kottwitz’s book can hopefully remain a
trusted beginner’s resource for some time to come. In
contrast to many other resources, it does not spend
a great number of pages on installation. This also is
probably a testimony of how the book is ‘modern’.
Nowadays, it makes more sense to leave this amount
of detailed information which easily goes out of date
to the Internet. Here, users can usually find the
information they need without too much hassle.

5 www.packtpub.com/product/latex-beginner-s-guide-

second-edition/9781801078658

The reference-like style common to many other
LATEX resources is reminiscent of a time when it was
not easy to web-search things and all the necessary
information needed to be included in a book. This
approach to teaching, common to computer books
in general, will likely soon be a relic of the past.
Kottwitz’s book is a good example for what LATEX
teaching can look like going forward.

Advanced users probably won’t gain much from
this book but they are not the target audience. The
ideal user is a LATEX newbie with an interest in using
LATEX for academic writing. Starting out, it would
have been very helpful to me to have a guide like this
where I, for instance, could have looked up with ease
how to change fonts if my professors were particu-
larly picky about that. The book does not require
that one immediately reads all of it. It’s perfectly
sufficient to read the first chapter and then come
back to the individual chapters when the need for
the material presented there arises. I find that this
is a practical and useful approach for beginners. If
they put down the book to get in some practice after
the first chapter, they have the added benefit of un-
derstanding LATEX from their own experience before
they dive into the following chapters. This might
enhance their understanding of the more advanced
topics presented there.

Kottwitz’s choice of topics which seemed remark-
ably ‘modern’ to the 2011 reviewer of the first edition
are, of course, not all that modern any more today.
I personally would even go so far as to say that the
choice of ‘modern’ topics combined with the hands-
on teaching approach is exactly what is needed to
communicate LATEX as a valuable skill to audiences
who might not have previously considered themselves
‘techie enough’ for using this technology. Since this
is a matter very close to my heart, I think this book
is a crucial resource.

Acknowledgement: I received a free reviewer’s
copy of this book in order for me to write a review
about it on my blog.

⋄ Sarah Lang
Centre for Information Modelling
University of Graz
Elisabethstraße 59/III
8010 Graz, Austria
sarah dot lang (at) uni-graz dot at

https://latex-ninja.com/

ORCID 0000-0002-4618-9481

Sarah Lang

https://www.packtpub.com/product/latex-beginner-s-guide-second-edition/9781801078658
https://www.packtpub.com/product/latex-beginner-s-guide-second-edition/9781801078658

TUGboat, Volume 43 (2022), No. 1 75

TheTreasure Chest

These are the new packages posted to CTAN (ctan.
org) from October 2021–April 2022. Descriptions are
based on the announcements and edited for extreme
brevity.

Entries are listed alphabetically within CTAN

directories. More information about any package can
be found at ctan.org/pkg/pkgname.

A few entries which the editors subjectively be-
lieve to be especially notable are starred (*); of
course, this is not intended to slight the other con-
tributions.

We hope this column helps people access the vast
amount of material available through CTAN and the
distributions. See also ctan.org/topic. Comments
are welcome, as always.

⋄ Karl Berry
https://tug.org/TUGboat/Chest

biblio

* citation-style-language in
biblio/bibtex/contrib

Bibliography formatting with the XML-based
Citation Style Language.

ieejtran in biblio/bibtex/contrib

Unofficial BibTEX style for publications of the
Institute of Electrical Engineers of Japan.

jieeetran in biblio/bibtex/contrib

Citing Japanese articles in IEEE format.

pbibtex-manual in biblio/pbibtex

Documentation for Japanese (u)pBibTEX.

fonts

andika in fonts

Fonts for beginning readers from SIL.

concmath-otf in fonts

OpenType math font for the Concrete design.

hamnosys in fonts

Font for sign languages.

talos in fonts/greek

Greek cult font from the 1980s.

vntex-nonfree in fonts

URW Classico and URW Garamond extended
for Vietnamese.

xcharter-math in fonts

OpenType math companion for the XCharter
text fonts.

fonts/utilities

hep-font in fonts/utilities

Latin Modern with extensions from Computer
Modern and similar designs.

hep-math-font in fonts/utilities

Extended Greek and sans-serif math.

graphics

bodeplot in graphics/pgf/contrib

Making Bode, Nyquist, Nichols plots with
gnuplot or pgfplots.

byrne in graphics/metapost/contrib/macros

Typeset geometric proofs in the style of Oliver
Byrne’s 1847 edition of Euclid’s Elements,
in MetaPost.

hexboard in graphics/pgf/contrib

Draw hex boards and games.

kinematikz in graphics/pgf/contrib

Design kinematic chains and mechanisms.

liftarm in graphics/pgf/contrib

Parameterized lift arms.

messagepassing in graphics/pgf/contrib

Communication protocol diagrams.

pgf-interference in graphics/pgf/contrib

Interference patterns.

pst-hsb in graphics/pstricks/contrib

Curves with continuous colors, in PSTricks.

robotarm in graphics/pgf/contrib

Parameterized 2D robot arms.

indexing

hsindex in indexing

Alternative to xindy and makeindex, in Haskell.

info

kaytannollista-latexia in info

Practical manual for LATEX, in Finnish.

knuth-hint in info

(C)WEB sources from TEX Live in HINT format.
See ctan.org/pkg/hitex about the engine.

latex-for-undergraduates in info

Tutorial aimed at undergraduates, with an
introduction to LATEX Workshop in Visual
Studio Code.

mathalphabets in info

Introduction to mathematical alphabets.

macros/latex/contrib

altsubsup in macros/latex/contrib

Writing sub/superscripts with square brackets
and custom formatting.

doi.org/10.47397/tb/43-1/tb133chest

macros/latex/contrib/altsubsup

https://ctan.org
https://ctan.org
https://ctan.org/pkg/
https://ctan.org/topic
https://ctan.org/pkg/ieejtran
https://ctan.org/pkg/jieeetran
https://ctan.org/pkg/pbibtex-manual
https://ctan.org/pkg/andika
https://ctan.org/pkg/concmath-otf
https://ctan.org/pkg/hamnosys
https://ctan.org/pkg/talos
https://ctan.org/pkg/vntex-nonfree
https://ctan.org/pkg/xcharter-math
https://ctan.org/pkg/hep-font
https://ctan.org/pkg/hep-math-font
https://ctan.org/pkg/bodeplot
https://ctan.org/pkg/byrne
https://ctan.org/pkg/hexboard
https://ctan.org/pkg/kinematikz
https://ctan.org/pkg/liftarm
https://ctan.org/pkg/messagepassing
https://ctan.org/pkg/pgf-interference
https://ctan.org/pkg/pst-hsb
https://ctan.org/pkg/robotarm
https://ctan.org/pkg/hsindex
https://ctan.org/pkg/kaytannollista-latexia
https://ctan.org/pkg/knuth-hint
https://ctan.org/pkg/hitex
https://ctan.org/pkg/latex-for-undergraduates
https://ctan.org/pkg/mathalphabets
https://ctan.org/pkg/altsubsup
https://doi.org/10.47397/tb/43-1/tb133chest

76 TUGboat, Volume 43 (2022), No. 1

annotate-equations in macros/latex/contrib

Annotate math equations using TikZ.

atendofenv in macros/latex/contrib

Add custom symbol at end of an environment.

bfh-ci in macros/latex/contrib

Bern University of Applied Sciences design.

bmstu in macros/latex/contrib

Bauman Moscow State Technical Univ. support.

ccred in macros/latex/contrib

Inserting definite articles for \cref references.

clistmap in macros/latex/contrib

Map and iterate over LATEX3 clists.

codebox in macros/latex/contrib

Highlighted source code in a fancy box.

commonunicode in macros/latex/contrib

List of Unicode symbols with typeset output.

coop-writing in macros/latex/contrib

Support for cooperative writing.

create-theorem in macros/latex/contrib

Multilingual theorem-like environments.

dbshow in macros/latex/contrib

Store and display data with custom filters,
orders, and styles.

formal-grammar in macros/latex/contrib

Typeset formal grammars (BNF).

functional in macros/latex/contrib

LATEX2εinterface for LATEX3 programming.

grading-scheme in macros/latex/contrib

Typeset grading schemes in tabular format.

handoutwithnotes in macros/latex/contrib

Notes next to scaled slides via pgfpages.

hep-acronym in macros/latex/contrib

Acronym extension for glossaries.

hep-bibliography in macros/latex/contrib

Extend BibLATEX with all the fields from
inspirehep.net and more.

hep-float in macros/latex/contrib

Convenience package for float placement.

hep-math in macros/latex/contrib

Extended math macros.

hep-text in macros/latex/contrib

Extensions for lists and text.

hep-title in macros/latex/contrib

Title page extensions: preprint, affiliation, etc.

hvpygmentex in macros/latex/contrib

Automatically run pygmentex from TEX for
syntax highlighting.

jmsdelim in macros/latex/contrib

Bottom-up compositional delimiter sizing.

kanbun in macros/latex/contrib

Typeset kanbun–kundoku with support for
kanbun annotations.

llncs in macros/latex/contrib

Document class and bibliography style for
Lecture Notes in Computer Science (LNCS).

njustthesis in macros/latex/contrib

Thesis template for Nanjing University of
Science and Technology.

njuvisual in macros/latex/contrib

Display logos related to Nanjing Univ.

numerica-plus in macros/latex/contrib

Iterate functions, find fixed points, zeros,
extremas, and more.

numerica-tables in macros/latex/contrib

Multi-column tables of mathematical functions.

pascaltriangle in macros/latex/contrib

Draw beautiful Pascal (Yang Hui) triangles.

proflycee in macros/latex/contrib

Support for French high school mathematics
teachers.

rbt-mathnotes in macros/latex/contrib

Rebecca Turner’s personal macros and styles
for math notes.

seu-ml-assign in macros/latex/contrib

Template for Southeast University Machine
Learning assignments.

sillypage in macros/latex/contrib

John Cleese’s silly walk as page numbering
style.

simplenodes in macros/latex/contrib

Simple nodes and linking in TikZ.

snaptodo in macros/latex/contrib

Put notes on closer side, and not overlapping.

termsim in macros/latex/contrib

Simulate Windows 10, Ubuntu, and Mac
terminals with various color themes.

unbtex in macros/latex/contrib

Theses at University of Brasilia.

wrapfig2 in macros/latex/contrib

Wrap text around figures, extension of wrapfig.

yb-book in macros/latex/contrib

Template for Y.B.-branded books.

zref-clever in macros/latex/contrib

Clever LATEX cross-references based on zref.

zref-vario in macros/latex/contrib

Combine varioref and zref-clever.

m/l/c/beamer-contrib/themes

beamertheme-arguelles in m/l/c/b-c/themes

Emphasizing simplicity and readability.

macros/latex/contrib/biblatex-contrib

biblatex-readbbl in m/l/c/biblatex-contrib

Process a .bbl file created by Biber.

macros/latex/contrib/kanbun

https://ctan.org/pkg/annotate-equations
https://ctan.org/pkg/atendofenv
https://ctan.org/pkg/bfh-ci
https://ctan.org/pkg/bmstu
https://ctan.org/pkg/ccred
https://ctan.org/pkg/clistmap
https://ctan.org/pkg/codebox
https://ctan.org/pkg/commonunicode
https://ctan.org/pkg/coop-writing
https://ctan.org/pkg/create-theorem
https://ctan.org/pkg/dbshow
https://ctan.org/pkg/formal-grammar
https://ctan.org/pkg/functional
https://ctan.org/pkg/grading-scheme
https://ctan.org/pkg/handoutwithnotes
https://ctan.org/pkg/hep-acronym
https://ctan.org/pkg/hep-bibliography
https://inspirehep.net
https://ctan.org/pkg/hep-float
https://ctan.org/pkg/hep-math
https://ctan.org/pkg/hep-text
https://ctan.org/pkg/hep-title
https://ctan.org/pkg/hvpygmentex
https://ctan.org/pkg/jmsdelim
https://ctan.org/pkg/kanbun
https://ctan.org/pkg/llncs
https://ctan.org/pkg/njustthesis
https://ctan.org/pkg/njuvisual
https://ctan.org/pkg/numerica-plus
https://ctan.org/pkg/numerica-tables
https://ctan.org/pkg/pascaltriangle
https://ctan.org/pkg/proflycee
https://ctan.org/pkg/rbt-mathnotes
https://ctan.org/pkg/seu-ml-assign
https://ctan.org/pkg/sillypage
https://ctan.org/pkg/simplenodes
https://ctan.org/pkg/snaptodo
https://ctan.org/pkg/termsim
https://ctan.org/pkg/unbtex
https://ctan.org/pkg/wrapfig2
https://ctan.org/pkg/yb-book
https://ctan.org/pkg/zref-clever
https://ctan.org/pkg/zref-vario
https://ctan.org/pkg/beamertheme-arguelles
https://ctan.org/pkg/biblatex-readbbl

TUGboat, Volume 43 (2022), No. 1 77

macros/latex-dev/base

* latex-lab-dev in macros/latex-dev/base

LATEX features in development. Currently
includes the new command \DocumentMetadata.

macros/luatex/generic

luaaddplot in macros/luatex/generic

Process data files as they are read by \addplot.

macros/luatex/latex

autopuncitems in macros/luatex/latex

Automatically punctuate lists.

datestamp in macros/luatex/latex

Static datestamps via .aux files.

letgut in macros/luatex/latex

Class for La Lettre Gutenberg.

linebreaker in macros/luatex/latex

Preventing overfull boxes by automatically
increasing \tolerance and \emergencystretch.

luacensor in macros/luatex/latex

Securely redact information using Lua.

yamlvars in macros/luatex/latex

YAML parser (Lua package tinyyaml) and
support functions to make LATEX definitions
using YAML.

support

luafindfont in support

Lua script to search for fonts in the LuaTEX
font database.

texlogfilter in support

Reduce engine output or log files to warnings
and errors.

texlogsieve in support

Process log files, including merging wrapped
lines.

systems

* hitex in systems/doc

New TEX engine by Martin Ruckert especially
for mobile devices.

TEX Live 2022 news

Karl Berry

TEX Live 2022 was released online on April 3, 2020.
The TEX Collection DVD is in process.

As new versions of packages are uploaded to
CTAN, they are imported into TL, and available over
the Internet via the tlmgr program. See the TL web
site and documentation for more.

The major update in 2022 is HiTEX, the new
TEX engine by Martin Ruckert. It generates its own
HINT output format, intended for use on mobile
devices. Martin has written a manual and several
articles about the project; see ctan.org/pkg/hitex
for links.

As always, in this year’s release there are also
pervasive updates to hundreds of packages and pro-
grams. For a list of major changes, please see tug.

org/texlive/bugs.html. For this note, I wanted
to summarize some of the known problems in current
TL; the same web page has more details.

Windows binaries in TL’22 are still 32-bit. We
expect to switch to 64-bit binaries for Windows in
2023, and we cannot provide both simultaneously—
so be forewarned.

LuaTEX, unlike all other engines, does not look in a
given -output-directory for input files. We expect
this to be fixed for next year.

Some Lua-related formats are unsharable. The
LuaLATEX, ConTEXt, and OpTEX .fmt files cannot
be shared across different architectures (32-bit/64-bit
and/or BigEndian/LittleEndian). This is not new
this year, but was only discovered and reported rel-
atively recently. No decision has been made about
changing this for LuaLATEX; ConTEXt and OpTEX
are not expected to ever change this, by decision of
their authors.

On macOS Monterey 12 (the latest release at this
writing), install-tl comes up as a black window,
due to Apple’s intentional breakage of the wish pro-
gram (Tcl/Tk). The solution, other than installing a
working Tcl/Tk, is to run install-tl -gui text,
which is now (post-release) the default.

On Windows, install-tl may output the cryptic
message fail bad gmtime (repeatedly). It’s annoy-
ing but harmless; just ignore it. A fix is in the works.

⋄ Karl Berry

karl (at) freefriends dot org

https://tug.org/texlive

doi.org/10.47397/tb/43-1/tb133berry-tl22news

https://ctan.org/pkg/luaaddplot
https://ctan.org/pkg/autopuncitems
https://ctan.org/pkg/datestamp
https://ctan.org/pkg/letgut
https://ctan.org/pkg/linebreaker
https://ctan.org/pkg/luacensor
https://ctan.org/pkg/yamlvars
tinyyaml
https://ctan.org/pkg/luafindfont
https://ctan.org/pkg/texlogfilter
https://ctan.org/pkg/texlogsieve

78 TUGboat, Volume 43 (2022), No. 1

Die TEXnische Komödie 4/2021–1/2022

Die TEXnische Komödie is the journal of DANTE e.V.,
the German-language TEX user group (dante.de).
Non-technical items are omitted.

Die TEXnische Komödie 4/2021

Volker RW Schaa, Protokoll der 63.
Mitgliederversammlung von DANTE am 18.
September in Saarbrücken [Protocol of the 63.
General Meeting of DANTE e.V. on September 18
2021 in Saarbrücken (remote)]; pp. 6–11

Marcel Kapfer, Bericht zur Herbsttagung
von DANTE e.V. 2021 in Neuland [Report of the
General Meeting Autumn 2021]; pp. 11–14

This report summarizes the course of the 2021
autumn meeting of DANTE e.V. Due to the COVID-
19 pandemic the meeting was completely virtual.

Herbert Voß, Ganz- und doppelseitige
Gleitumgebungen [Full page and double page float
environments]; pp. 15–46

Introduction of the hvfloat package that al-
lows full page and double page float environments.
Published in English, in slightly different form, in
TUGboat 42:3.

Uwe Ziegenhagen, Dymo-Aufkleber mit LATEX
gestalten [Creating Dymo labels with LATEX];
pp. 46–48

Short tutorial on how to create Dymo labels
with the help of LATEX.

Walter Entenmann, Einbetten von Statistik
R-Code in LATEX [Embedding R code in LATEX];
pp. 48–64

Introduction of Sweave and knitR to embed R
code in LATEX.

Henning Hraban Ramm, Der erweiterte Orbit
[The extended orbit: News from the ConTEXt
Meeting]; pp. 65–69

Protocol of the 15. ConTEXt meeting in Belgium.

Henning Hraban Ramm, Ein neuer Motor für
ConTEXt [A new engine for ConTEXt]; pp. 69–72

Moving ConTEXt MkIV to LMTX.

Frank Mittelbach, LATEX News, issue 33, Juni
2021 [LATEX News, issue 33, June 2021]; pp. 72–85

German translation of this LATEX news install-
ment, published in TUGboat 42:2 (and on the LATEX
web site: latex-project.org/news).

Jürgen Fenn, Neue Pakete auf CTAN [New
packages on CTAN]; pp. 86–91

An overview of new packages on CTAN.

Christine Römer, Newsletter zur Typografie
[Newsletters on typography]; pp. 92–93

Introduction of two newsletters on typography.

Die TEXnische Komödie 1/2022

Martin Sievers and Mathias Magdowski,
Einladung zur Frühjahrstagung 2022 und 64.
Mitgliederversammlung von DANTE e.V. in
Magdeburg [Invitation to the Spring Meeting
and 64. General Meeting of DANTE e.V. in
Magdeburg]; pp. 6–9

The DANTE General Meeting will take place
in hybrid form (online and in person if coronavirus
rules allow) from June 22nd to June 25th, 2022.

TEX meeting Erlangen, Nachruf: Walter
Schmidt (1960–2021) [Obituary: Walter Schmidt
(1960–2021)]; pp. 10–11

Walter Schmidt, known for his work on fonts,
passed in 2021.

Rolf Niepraschk, Tabellen mit dem
LATEX-Paket tabularray [Tables using the
LATEX package tabularray]; pp. 12–17

This article shows the usage of the tabularray

package.

Adelheid Bonnetsmüller, Having Fun with
LATEX: Eine tolle Masche [Having Fun with LATEX:
An amazing Mesh]; pp. 18–29

This article describes, how to typeset knitting
meshes with LATEX.

Ralf Mispelhorn, Erstellung eines Kalenders
[Creating a calendar]; pp. 29–32

How to create a visually pleasing calendar with
LATEX.

Tobias Hilbricht, Lokale Seitenzähler innerhalb
eines Dokuments [Local page counters within a
document]; pp. 32–38

In this article we explain how to use local page
counters within a document, allowing for independent
page counting.

Rainer-Maria Fritsch, VSCodium –
Eine Entwicklungsumgebung [VSCodium —
A development environment]; pp. 38–49

VSCodium is a new development engine based
on VSCode that is suitable for LATEX documents and
much more.

Herbert Voß, Schriften für X ELATEX und
LuaLATEX [Fonts for X ELATEX and LuaLATEX];
pp. 49–57

An overview on using fonts with X ELATEX and
LuaLATEX.

TUGboat, Volume 43 (2022), No. 1 79

Zpravodaj 2021/1–4

Zpravodaj is the journal of CSTUG, the TEX user
group oriented mainly but not entirely to the Czech
and Slovak languages. The full issue can be down-
loaded at cstug.cz/bulletin.

Petr Sojka, Úvodńık [Introductory word];
pp. 1–2

Go forth and participate in CSTUG to make the
bright future of TEX & Friends a reality! You can!

V́ıt Novotný, Overleaf: Kolaborativńı webový
editor LATEXu [Overleaf: Collaborative online
LATEX editor]; pp. 3–8

The president of TUG named the collaborative
online editor Overleaf “one of the several most im-
portant changes in the TEX world for the last years”.
In this article, I introduce Overleaf and describe its
key functions and planned features.

Petr Olšák, TEX in a nutshell; pp. 9–55
Nowadays, many users discover TEX through

high-level formats that hide the complexity of type-
setting behind a facade of a friendly markup language.
However, all except the simplest of typesetting tasks
require that users can understand what happens un-
der the hood and know how they can influence the
algorithms of TEX when needed.

In this article, the author introduces the foun-
dations of most high-level TEX formats, which will
help the readers with their day-to-day work with
TEX as well as their more difficult typesetting tasks.

The readers are first introduced to the program TEX
and its extensions. Then, they learn about the dif-
ferent processors of TEX and their modes. Finally,
the readers learn about the registers and primitive
commands of TEX as well as the macros of the plain
TEX format. The word of the day is brevity as the
exposition spans less than forty pages: Excellent
reading material for an otherwise uneventful train
ride!

The author has previously written three books
about TEX, has developed the OpTEX format, main-
tains a dozen package on the CTAN archive, and has
taught a university course about TEX for over twenty
years.

Donald Knuth, The TEX tuneup of 2021;
pp. 56–62

Published in TUGboat 42:1.

Barbara Beeton, Debugging LATEX files;
pp. 63–75

Published in TUGboat 38:2.

V́ıt Novotný, Markdown 2.10.0: LATEX themes &
snippets; pp. 76–82

Published in TUGboat 42:2.

Dominik Rehák, Priama sadzba dokumentov
rôznych formátov v TEXu pomocou nástroja
Pandoc [Direct typesetting of various document
formats in TEX using the Pandoc utility];
pp. 83–92

The Markdown TEX package allows authors to
typeset documents in the Markdown language and
maintain control over how the documents will look.
However, the package doesn’t provide support for
document formats other than Markdown. In con-
trast, the Pandoc tool enables the conversion between
dozens of document formats including TEX and Mark-
down, but provides only rudimentary control over
styling.

This article elaborates on the possibility of type-
setting various text formats directly in TEX by adding
support for Pandoc’s intermediate document repre-
sentation into the Markdown package. I focus mainly
on the intermediate representations of Markdown
and Pandoc as well as the differences between them,
which my upcoming implementation will have to
overcome. At the end of my article, I present the
planned user interface for TEX.

Peter Wilson, It might work XI; pp. 93–104
This paper shows several ways how to create

a miniature book printed on just a single sheet of
paper. Some LATEX solutions are given.

[Received from Vı́t Novotný.]

doi.org/10.47397/tb/43-1/tb133zprav

Zpravodaj 2021/1–4

Henning Hraban Ramm, ConTEXt kurz notiert
[ConTEXt News]; pp. 57–60

A short overview of what is happening in the
ConTEXt world.

Thomas A. Schmitz, Präsentationen in XML

[Presentations with XML]; pp. 60–73
How to create a presentation using XML.

Frank Mittelbach, LATEX News — Issue 34,
November 2021; pp. 75–88

German translation of this LATEX news install-
ment, published in TUGboat 42:3 (and on the LATEX
web site: latex-project.org/news).

Jürgen Fenn, Neue Pakete auf CTAN [New
packages on CTAN]; pp. 88–92

List of new packages on CTAN.

[Received from Uwe Ziegenhagen.]

80 TUGboat, Volume 43 (2022), No. 1

TUG Annual General Meeting Procedures

1 Purpose

The Annual General Meeting (AGM) of TUG shall
be conducted according to these procedures.

2 Time and place

The AGM shall ordinarily take place during the an-
nual conference, or as specified in the TUG Bylaws,
articles III.2 and III.3.

In the event that the AGM does not take place
during the annual conference, the Board will either
specify an alternate time and place, or give notice,
with explanation, that there will be no meeting.

Notice of the meeting shall be circulated to mem-
bers no less than thirty (30) calendar days prior to
the meeting.

The AGM shall preferably take place in person.
If necessary, the meeting will be conducted entirely
online. A hybrid meeting may be conducted with
both in-person and online components, if feasible.

3 Preparation for the meeting

Questions for consideration at the AGM may be sub-
mitted beforehand by sending them to the Secretary
via the Board. All questions shall be acknowledged.
The Secretary shall prepare responses to questions,
in cooperation with the Board, to be reported (and
discussed, if desired) at the meeting. Questions re-
ceived less than seven (7) calendar days before the
AGM may not allow sufficient time for necessary re-
search, so answers may not be available at the AGM.
In such cases, answers will be prepared after the
AGM and communicated according to the followup
procedure below.

Availability of President, Secretary, and Trea-
surer should be determined beforehand. Alternates
will be designated by the President, or Vice-President
in the President’s absence, in consultation with the
full Board.

At the meeting, all Board members attending
must check in with the Secretary or designated alter-
nate, in case a situation arises that requires Board
attention or action.

4 Conduct of the meeting

Any interested party may attend the meeting.
The TUG President or designated alternate shall

conduct the meeting.
The Secretary or designated alternate shall record

the proceedings, with a backup audio recording made
for verification if at all possible.

The length of the meeting shall be scheduled
for one hour, or other period estimated to be appro-
priate, based on known business to be reported and
questions received ahead of time.

5 Business to be transacted

The following reports shall be presented.

• A report on the status of TUG, business trans-
acted during the year, and topics under current
consideration shall be presented by the presiding
officer.

• A financial report as of the most recently com-
pleted month shall be presented by the Trea-
surer, or in the absence of the Treasurer, by a
designated alternate.

• Questions submitted to the Secretary in advance
of the AGM shall be presented by the Secretary
or designated alternate along with the response
from the Board; discussion may follow.

If time permits, questions may be raised by attendees.
When raising a question, the attendee must begin
by stating their name and whether they are or are
not a member. If a question can be answered, an
appropriate officer (including the presiding officer) or
Board member shall do so; if it cannot be answered,
it shall be recorded for research and a later answer
to be delivered according to the followup procedure
outlined below.

A binding vote at the AGM may be held only
by prior decision of the Board, published before the
meeting, since the establishment of a quorum and
proper credentials of AGM participants (especially
at remote meetings) requires substantial effort.

6 Followup

The Board shall review promptly the recorded pro-
ceedings and confirm that they accurately represent
what took place.

A report of the AGM shall appear in the next
available issue of TUGboat.

Questions raised and not answered shall be dis-
cussed by the Board, researched if necessary, and
answers to general questions reported

• supplementary to the AGM report if the answer
is available in time;

• by the President or another Board member in a
regular report to members either by (e)mail or
in an official TUGboat column.

Answers to personal questions shall be communicated
privately as appropriate.

(Adopted: 26 December 2021)

doi.org/10.47397/tb/43-1/tb133agmproc

TUGboat, Volume 43 (2022), No. 1 81

TUG financial statements for 2021

Karl Berry, TUG treasurer

The financial statements for 2021 have been reviewed
by the TUG board but have not been audited. The
totals may vary slightly due to rounding. As a US

tax-exempt organization, TUG’s annual information
returns are publicly available on our web site:
https://tug.org/tax-exempt.

Revenue (income) highlights

Membership dues revenue was up in 2021 compared
to 2020; we ended the year with 1,210 paid members,
21 more than in 2020. The 2021 online conference
had a net gain of about $2,600, due to generous
donations and few expenses. General contributions
were nearly doubled to about $21,300—thank you!
Donations were the primary factor in 2021 income
being up about 11%.

Other highlights; the bottom line

TUGboat production cost was up a little, due to page
count and increased expenses. Members postage and
delivery was down about 1/3, due to fewer special
mailings. Other categories remained about the same.

Our bottom line for 2021 was positive (slightly),
$565, for the first time since 2015.

Balance sheet highlights

TUG’s end-of-year asset total was steady (down less
than 1%) in 2021 compared to 2020.

Committed Funds are reserved for designated
projects: LATEX, CTAN, MacTEX, the TEX develop-
ment fund, and others (https://tug.org/donate).
TUG charges no overhead to administer these funds.

The Prepaid Member Income category is mem-
ber dues that were paid in earlier years for the current
year (and beyond). The 2021 portion of this liabil-
ity was converted into regular Membership Dues in
January of 2021. The payroll liabilities are for 2021
state and federal taxes due January 15, 2022.

Upcoming

For 2022, we enabled general payments through Pay-
Pal; this is both less expensive for us and faster to
process. Our previous method of paying directly
through our web site is still available.

We have not changed any rates or fees for 2022,
despite increased costs. Worldwide support from
members and donations are what allow us to continue,
so thank you! As always, we welcome ideas to attract
new members.

⋄ Karl Berry, TUG treasurer

https://tug.org/tax-exempt

TUG 12/31/2021 (vs. 2020) Revenue, Expense

Dec 31, 21 Dec 31, 20

ORDINARY INCOME/EXPENSE

Income

Membership Dues 79,320 76,030

Product Sales 4,423 3,761

Contributions Income 21,311 11,830

Annual Conference 2,636 3,721

Interest Income 184 1,430

Advertising Income 565 305

Total Income 108,440 97,078

Cost of Goods Sold

TUGboat Prod/Mailing (22,053) (20,312)

TUGboat Crossref (275)

Software Prod/Mailing (2,391) (2,256)

Members Postage/Delivery (1,827) (2,759)

Lucida Sales to B&H (1,675) (1,525)

Member Renewal (372) (356)

Total COGS (28,593) (27,208)

Gross Profit 79,847 69,870

Expense

Contributions made by TUG (2,000) (2,000)

Office Overhead (12,924) (12,830)

Payroll Expense (64,274) (64,135)

Interest Expense (84)

Total Expense (79,282) (78,695)

Net Ordinary Income 565 (9,095)

OTHER INCOME/EXPENSE

Prior year adjustment 1,475

NET INCOME 565 (7,620)

TUG 12/31/2021 (vs. 2020) Balance Sheet

Dec 31, 21 Dec 31, 20

ASSETS

Current Assets

Total Checking/Savings 173,602 174,197

Accounts Receivable 275 395

Total Current Assets 173,997 174,472

LIABILITIES & EQUITY

Current Liabilities

Committed Funds 55,655 57,652

Administrative Services 1,445 1,447

Prepaid Member Income 10,075 9,185

Payroll Liabilities 1,280 1,211

Total Current Liabilities 68,455 69,495

Equity

Unrestricted 104,977 112,596

Net Income 565 (7,620)

Total Equity 105,542 104,977

TOTAL LIABILITIES & EQUITY 173,997 174,472

doi.org/10.47397/tb/43-1/tb133treas

The information here comes from the consultants
themselves. We do not include information we know
to be false, but we cannot check out any of the
information; we are transmitting it to you as it was
given to us and do not promise it is correct. Also, this
is not an official endorsement of the people listed here.
We provide this list to enable you to contact service
providers and decide for yourself whether to hire one.

TUG also provides an online list of consultants at
tug.org/consultants.html. If you’d like to be listed,
please see there.

Dangerous Curve

Email: typesetting (at) dangerouscurve.org

Typesetting for over 40 years, we have experience in
production typography, graphic design, font design,
and computer science, to name a few things. One of us
co-authored, designed, and illustrated a TEX book
(TEX for the Impatient).

We can:
convert your documents to LATEX from just about
anything,
type your documents from handwritten pages,
proofread, copyedit, and structure documents
in English;
apply publishers’ specs;
write custom packages and documentation;
resize and edit your images for a better aesthetic
effect;
make your mathematics beautiful,
produce commercial-quality tables with optimal
column widths for headers and wrapped paragraphs;
modify bibliography styles,
make images using TEX-related graphic programs;
design programmable fonts using METAFONT;
and more! (Just ask.)
Our clients include high-end branding and

advertising agencies, academics at top universities,
leading publishers. A member of TUG, we also have
supported the GNU Project for decades (and even have
worked for them).

All quote work is complimentary.

Hendrickson, Amy

57 Longwood Avenue Apt. 8
Brookline, MA 02446
+1 617-738-8029
Email: amyh (at) texnology.com

Web: www.texnology.com

Full time LATEX consultant for more than 30 years—
Our macro packages are used by thousands of authors.
See our site for many samples: texnology.com.

82 TUGboat, Volume 43 (2022), No. 1

TEXConsultants

Macro packages for books, journals, slides, posters,
e-publishing and more.
Design as well as LATEX implementation for
e-publishing or print books and journals, or
specialized projects.
Data visualization, database publishing.
LATEX training via Zoom: Many years experience in
on-site training, now offering scheduled Zoom
classes! See www.texnology.com/train.htm.
I’ll be glad to hear from you!

Dominici, Massimiliano

Email: info (at) typotexnica.it

Web: www.typotexnica.it

Our skills: layout of books, journals, articles; creation
of LATEX classes and packages; graphic design;
conversion between different formats of documents.

We offer our services (related to publishing in
Mathematics, Physics and Humanities) for documents
in Italian, English, or French. Let us know the work
plan and details; we will find a customized solution.
Please check our website and/or send us email for
further details.

Latchman, David

2005 Eye St. Suite #6
Bakersfield, CA 93301
+1 518-951-8786
Email: david.latchman

(at) texnical-designs.com

Web: www.texnical-designs.com

LATEX consultant specializing in the typesetting
of books, manuscripts, articles, Word document
conversions as well as creating the customized LATEX
packages and classes to meet your needs. Contact us
to discuss your project or visit the website for further
details.

LATEX Typesetting

Email: enquiries (at) latextypesetting.com

Web: latextypesetting.com

LATEX Typesetting has been in business since
2013 and is run by Vel, the developer behind
LaTeXTemplates.com. The primary focus of the service
is on creating high quality LATEX templates and
typesetting for business purposes, but individual
clients are welcome too.

I pride myself on a strong attention to detail,
friendly communication, high code quality with
extensive commenting and an understanding of your
business needs. I can also help you with automated
document production using LATEX. I’m a scientist,
designer and software developer, so no matter your
field, I’ve got you covered.

I invite you to review the extensive
collection of past work at the Showcase
latextypesetting.com/showcase. Submit an enquiry
for a free quote!

Monsurate, Rajiv

Web: www.rajivmonsurate.com

latexwithstyle.com

I offer: design of books and journals for print and
online layouts with LATEX and CSS; production of
books and journals for any layout with publish-ready
PDF, HTML and XML from LATEX (bypassing any
publishers’ processes); custom development of LATEX
packages with documentation; copyediting and
proofreading for English; training in LATEX for authors,
publishers and typesetters.

I have over two decades of experience in academic
publishing, helping authors, publishers and typesetters
use LATEX. I’ve built typesetting and conversion
systems with LATEX and provided TEX support for a
major publisher.

Sofka, Michael

Email: michael.sofka (at) gmail.com

Professional TEX and LATEX consulting and
programming services. I offer 30 years of experience in
programming, macro writing, and typesetting books,
articles, newsletters, and theses in TEX and LATEX:
Automated document conversion; Programming in
Perl, Python, C, R and other languages; Writing and
customizing macro packages in TEX or LATEX, knitr.

If you have a specialized TEX or LATEX need, or if
you are looking for the solution to your typographic
problems, contact me. I will be happy to discuss
your project.

Veytsman, Boris

132 Warbler Ln.
Brisbane, CA 94005
+1 703-915-2406
Email: borisv (at) lk.net

Web: www.borisv.lk.net

TEX and LATEX consulting, training, typesetting and
seminars. Integration with databases, automated
document preparation, custom LATEX packages,
conversions (Word, OpenOffice etc.) and much more.

I have about two decades of experience in TEX and
three decades of experience in teaching & training. I
have authored more than forty packages on CTAN as
well as Perl packages on CPAN and R packages on
CRAN, published papers in TEX-related journals, and
conducted several workshops on TEX and related
subjects. Among my customers have been Google,
US Treasury, FAO UN, Israel Journal of Mathematics,
Annals of Mathematics, Res Philosophica,
Philosophers’ Imprint, No Starch Press, US Army
Corps of Engineers, ACM, and many others.

We recently expanded our staff and operations to
provide copy-editing, cleaning and troubleshooting of

TUGboat, Volume 43 (2022), No. 1 83

TEX manuscripts as well as typesetting of books,
papers & journals, including multilingual copy with
non-Latin scripts, and more.

Warde, Jake

90 Resaca Ave.
Box 452
Forest Knolls, CA 94933
+1 650-468-1393
Email: jwarde (at) wardepub.com

Web: myprojectnotebook.com

I have been in academic publishing for 30+ years. I
was a Linguistics major at Stanford in the mid-1970s,
then started a publishing career. I knew about TEX
from editors at Addison-Wesley who were using it to
publish beautifully set math and computer science
books.

Long story short, I started using LATEX for
exploratory projects (see website above). I have
completed typesetting projects for several journal
articles. I have also explored the use of multiple
languages in documents extensively. I have a strong
developmental editing background in STEM subjects.
If you need assistance getting your manuscript set in
TEX I can help. And if I cannot help I’ll let you know
right away.

Hello from TEXnology!
Macro writing, Design, Data Visualization,
E-Publishing, Innovations, and more

We’ve been writing macro files and teaching
LATEX for more than 30 years.

Now offering LATEX classes via
See www.texnology.com/train.htm for class
dates, description of course and sample of
hyperlinked course notes.

See you on-line!

– Amy Hendrickson
amyh@texnology.com

And, come visit our site for many and diverse
examples of our LATEX projects, with perhaps
some ideas for projects you’d like to develop:

WWW.TEXNOLOGY.COM

2022

Jun 4 Lecture: Confessions of a Type Designer,
Donald Tarallo, Museum of Printing,
Haverhill, Massachusetts.
museumofprinting.org/calendar

Jun 8 – 10 Grapholinguistics in the 21st century—
From graphemes to knowledge,
Paliseau, France.
grafematik2022.sciencesconf.org

Jun 8 –
Jul 13

TypeParis22,
intensive type design program,
Paris, France. typeparis.com

Jun 15 TUG 2022, deadline for presentation
proposals

Jun 20 – 22 International Society for the History and
Theory of Intellectual Property (ISHTIP),

13th Annual Workshop,
“Machines of Law and Intellectual
Property as Legal Machinery”,
University of Gothenburg, Sweden.
www.ishtip.org/?p=1210

Jun 20 – 22 Twentieth International Conference
on New Directions in the Humanities,
“Data, Media, Knowledge:
Re-Considering Interdisciplinarity
and the Digital Humanities”,
University of the Aegean, Rhodes, Greece.
thehumanities.com/2022-conference

Jun 23 – 25 DANTE 2022 Sommertagung

and 64th meeting (hybrid),
Otto-von-Guericke Universität,
Magdeburg, Germany.
dante.de/veranstaltungen/dante2022

84 TUGboat, Volume 43 (2022), No. 1

Calendar

Jul 10 TUG 2022, deadline for preprints
for program

Jul 11 – 15 SHARP 2022, “Power of the written word”,
Society for the History of Authorship,
Reading & Publishing.
University of Amsterdam,
The Netherlands
sharpweb.org/main/conferences

TUG 2022 online

Presentations covering the TEX world

Jul 22 – 24 The 43rd annual meeting of the
TEX Users Group.
tug.org/tug2022

Jul 25 – 29 Digital Humanities 2022, Alliance of
Digital Humanities Organizations,
“Responding to Asian Diversity”,
Tokyo, Japan, and Online.
dh2022.adho.org

Jul 31 TUGboat 43:2 (proceedings issue),
submission deadline.

Aug 8 – 11 SIGGRAPH 2022, Vancouver, Canada.
s2022.siggraph.org

Sep 12 – 18 16th International ConTEXt Meeting,
Dreifelden, Germany.
meeting.contextgarden.net/2022

Oct 15 TUGboat 42:3, submission deadline.

Owing to the COVID-19 pandemic, schedules may change. Check the websites for details.

Status as of 15 April 2022

For additional information on TUG-sponsored events listed here, contact the TUG office
(+1 503 223-9994, fax: +1 815 301-3568, email: office@tug.org). For events sponsored by
other organizations, please use the contact address provided.

User group meeting announcements are posted at tug.org/meetings.html. Interested
users can subscribe and/or post to the related mailing list, and are encouraged to do so.

Other calendars of typographic interest are linked from tug.org/calendar.html.

TUGBOAT Volume 43 (2022), No. 1

Introductory

7 Jacques André, Patrick Bideault, Denis Bitouzé, Michel Bovani, Thierry Bouche,

Maxime Chupin, Daniel Flipo, Yvon Henel / The last decade at GUTenberg
• response to article by Just; background and activities of GUTenberg

4 Barbara Beeton / Editorial comments
• typography and TUGboat news

6 Jonathan Fine / Robin Fairbairns and UK TUG

• personal remembrance of Robin

3 Boris Veytsman / From the president
• on the use of inventions for war and peace

Intermediate

23 Seth Bergmann / Making open source textbooks, and diagrams with AlDraTex
• collaborative textbooks and graphics with [Al]DraTex.sty

75 Karl Berry / The treasure chest
• new CTAN packages, October 2021–April 2022

10 Vı́t Novotný, Dominik Rehák, Michal Hoftich, Tereza Vrabcová / Markdown 2.15.0: What’s new?
• new features both for Markdown writers and coders of templates and solutions

Intermediate Plus

16 Carla Maggi / The DuckBoat — Beginners’ Pond: CDs, but not Compact Disks
• making commutative diagrams with the tikz-cd package

40 Joseph Wright / l3build: The beginner’s guide
• testing, preparing, installing, and uploading releases of packages

Advanced

28 Max Chernoff / Automatically removing widows and orphans with lua-widow-control
• automated removal of widow and orphan lines, without stretching, in all Lua formats

44 Nicola Talbot / bib2gls: standalone entries and repeated lists (a little book of poisons)
• glossary definitions in documents; reordering glossary entries in multiple ways

59 Udo Wermuth / Transparent file I/O using the original TEX program and the plain TEX format
• require user confirmation on \input and other operations

Reports and notices

2 Institutional members

73 Sarah Lang / Book reviews: LATEX Beginner’s Guide, second edition, by Stefan Kottwitz
• review of this introduction for today’s new LATEX users

77 Karl Berry / TEX Live 2022 news
• brief summary of known issues in the TL’22 release

78 From other TEX journals: Die TEXnische Komödie 4/2021–1/2022; Zpravodaj 2021/1–4

80 TUG Bylaws committee / TUG Annual General Meeting Procedures

81 Karl Berry / TUG financial statements for 2021

82 TEX consulting and production services

83 TEXnology Inc.

84 Calendar

