
12 TUGboat, Volume 45 (2024), No. 1

Variable fonts in LuaTEX, with an
introduction to the Junicode VF and
Elstob fonts

Peter S. Baker

Abstract

This paper introduces variable fonts, now supported
by LuaTEX, and explains the benefits this new font
technology offers to LuaLATEX users—chief among
these being the restoration of some of the typograph-
ical capabilities of metal type, nearly lost with the
advent of digital fonts. It then describes the capabil-
ities of two variable fonts developed by the author —
Junicode VF (where “V” stands for “variable”, not
“virtual”) and Elstob—and briefly introduces the
packages that provide access to them, especially the
options and commands for controlling their axes.

1 Background

In the days of metal type, long before fonts were
scalable, type had to be produced in a variety of
sizes. For example, forty-seven pages of the 1798
Caslon Specimen of Printing Types [3, pp. 13–105]
are devoted to the display of roman and italic type in
sizes ranging from “Six Lines Pica” (about 72pt) to
“Diamond” (about 4.5pt)—see fig. 1. Type within

Figure 1: Six Lines Pica and Diamond type, from
A Specimen of Printing Types, by Wm Caslon [3,
pp. [27], [101]].

many font families varied not only in size, but also
in shape, with smaller sizes cut proportionally wider,
heavier, and with a higher x-height than larger sizes —
see fig. 2, where two Caslon specimens, about 12pt
and 8pt, have been scaled to the same size. Well into

Figure 2: Two sizes of type, from A Specimen of
Printing Types, by Wm Caslon [3, pp. [77], [97]].

the twentieth century, foundries offered their major
typefaces in a wide variety of styles and sizes. For
example, the American Type Founders catalogue of
1923 devotes sixty-one pages to a dizzying number
of Caslon types — “Caslon Bold Condensed” (6pt to
120pt), “Heavy Caslon” (6pt to 84pt), and “Caslon

Openface” (8pt to 48pt), to mention only a few [2,
pp. 130–191]. In all cases, smaller and larger types
varied in shape as well as in size.

The advent of phototypesetting in the 1950s
brought with it the ability to scale type by means
of differently powered lenses—but type scaled in
this way could vary only in size, not in shape. Al-
though foundries continued to provide a wide variety
of styles within type families, typographers increas-
ingly thought scaling alone a good enough solution
to the problem posed by the need for differently sized
text in printed works. If the type of the footnotes
looked anemic compared to that of the body text,
that seemed an acceptable price to pay for the conve-
nience and economy of working with a single typeface.

Digital typesetting brought at least the possibil-
ity of a return to the practices of early typefounders,
and indeed some modern font families feature the
kind of variation by size found in the Caslon type
catalogue. For example, a number of Adobe “Pro”
font families have styles labeled “Caption”, “Subhead”,
and “Display” in addition to the default. Such styles
are called optical sizes because they are designed
to be optically correct within certain size ranges.
However, fonts with optical sizes are uncommon and
often costly. Most digital fonts belong to so-called
RIBBI families, consisting of just four styles—Reg-
ular, Italic, Bold, and Bold Italic. Users generally
think these styles quite sufficient, and only the most
sophisticated typographers bother with such stylistic
niceties as those offered by the Adobe “Pro” fonts —
especially when they have to be manually selected.1

TEX can boast some of the most sophisticated
typographical capabilities of any digital publishing
system. Donald Knuth’s Computer Modern family
of fonts (along with several derivatives) has always
featured optical sizes similar to those typical of metal
type (fig. 3), and TEX automatically selects the cor-

Figure 3: Computer Modern at \normalsize and
\footnotesize, scaled to the same size for comparison.

rect optical size for any run of text set in Computer
Modern: users rarely have to think about it.

The introduction of Jonathan Kew’s X ETEX in
2004, followed soon afterwards by Will Robertson’s
fontspec, was a momentous development for TEX.

1 For a brief history of optical sizes, see Ahrens and
Mugikura [1, pp. 17–25].

doi.org/10.47397/tb/45-1/tb139baker-junicodevf

Peter S. Baker

https://doi.org/10.47397/tb/45-1/tb139baker-junicodevf

TUGboat, Volume 45 (2024), No. 1 13

Figure 4: A sample of Fell’s Pica roman and italic type, from Hickes [5].

Figure 5: Design space for the four-member Times
New Roman font family.

Quite suddenly, users gained the ability to access
all the fonts installed on their systems, and most of
these were in the popular OpenType format.2 For
the typographically ambitious, new vistas opened up.

But with its embrace of OpenType fonts, the
TEX community not only benefited from their conve-
nience, but also inherited their limitations. The vast
majority of font families installed in any system, and
indeed in the CTAN repository, offered only the tradi-
tional four styles, while most extended font families —
those with more than the four RIBBI styles—were
nevertheless stylistically impoverished in comparison
with Computer Modern or the immense Caslon fam-
ily of the 1798 Specimen.3 Twenty years later, font
technology has advanced, but we are still struggling
to make up the ground we lost in the transition to
digital typography.

In font families of the kind I have been dis-
cussing, both RIBBI and extended, the collection of
styles is organized around one or more axes—that
is, aspects of a font’s design that can change in a sys-
tematic way. A font’s axes can be pictured as being
like the axes in a graph—though in font terminol-
ogy the graph is called the design space. The most
common axis is Weight— that is, the proportion of
black to white in a font’s glyphs. Other standard
axes are Width, Slant, and Optical Size. Italic

2 See Kew [7] and Robertson [8]. OpenType is a font
format, first developed by Microsoft in the 1990s, that
enables such features as ligatures, the setting of complex
scripts like Arabic and Devangari, and much more.

3 X ETEX automatically uses the optical sizes of Adobe’s
“Pro” fonts, but these cannot be included in CTAN —and in
any case they offer fewer styles than the larger metal type
families.

Figure 6: Design space for the nineteen-member
Junicode roman subfamily.

is also an axis, though one with only two values,
since a font either is or is not italic. A RIBBI family
positions its four styles at the extremes of two axes,
Weight and Italic (see fig. 5), but an extended family
may fill in some of the empty spaces in and around
the RIBBI design space and add its own axes as well.

The lost ground I mentioned above has been
much on my mind as I’ve worked on the two fonts I
am going to discuss in this article. I first developed
Junicode in the mid-1990s as a tool for students
and scholars of medieval Europe, but it has grown
over the decades to support scholars in numerous
disciplines (mostly linguistic, literary, and historical).
The font is based on types commissioned by John
Fell (1625–1686), Bishop of Oxford and a key figure
in the early history of the Oxford University Press
(see fig. 4).

Fell bequeathed these types to the university,
and they were used in many books issued by the
Press in the seventeenth and eighteenth centuries.
Version 1 of Junicode was a RIBBI family, but in 2019
I began work on a more capable version, released
in August 2023. Junicode version 2 is an extended
family with three major axes (Italic, Weight, and
Width), which are combined in various ways to make
thirty-eight styles or instances—that is, locations
in a font’s design space selected and named by the
designer. Fig. 6 shows the design space for Junicode’s
roman face, with its nineteen instances.

Variable fonts in LuaTEX, with an introduction to the Junicode VF and Elstob fonts

14 TUGboat, Volume 45 (2024), No. 1

Junicode is well known to TEX users, having
been in the CTAN repository since 2009. With more
than 5,000 glyphs, it is an unwieldy thing, and as
many of these glyphs have non-standard encodings,
it can raise accessibility issues in digital texts of all
kinds. Version 2 offers solutions to the accessibility
problems of version 1, but the non-standard encod-
ings remain— each of them a potential trap for the
unwary user.4

With both accessibility and typographical issues
in mind, I began work on the Elstob font (github.
com/psb1558/Elstob-font) in 2018. The first al-
pha version was released the following year, and the
current version is 2.104. Based on another of Bishop
Fell’s typefaces, Elstob was meant to be lightweight
and entirely standards-compliant: while it would
not have Junicode’s vast character set, its curated
selection of glyphs would meet the needs of most
medievalists and linguists, and using it would all
but guarantee an accessible end product. Further,
Elstob would have both Weight and Optical Size
axes so that different sizes of type could coexist more
comfortably on a page.

Version 1 of Junicode was a static font family —
that is, one in which each instance is packaged in
its own file. Version 2 also comes in a static version
consisting of thirty-eight font files, while the static
version of Elstob consists of no fewer than forty-
eight files. But each of these fonts has a much more
capable and compact variable version as well.

2 Variable fonts

Even extended font families impose significant limi-
tations on users. Because every instance of a family
adds a file (in the case of Junicode, a rather large
one), many locations in the design space are unavail-
able to users. Often a large area of the design space
may have no instances in it at all. To most users the
poverty of the typical static font family will not seem
a hardship—after all, it’s what we’re used to. But
what if you could set your chosen typeface in any
weight and any width? If you think you might make
use of such an ability, you will like variable fonts.

The specification for variable fonts (the official
name is “OpenType Font Variations”) first appeared
in 2016,5 and these fonts have been steadily gaining
ground ever since. A variable font is one that replaces

4 For more about the accessibility problems raised
by Junicode’s extensive use of Unicode Private Use Area
encodings for specialist medieval glyphs, see the Junicode
Manual (github.com/psb1558/Junicode-font/blob/
master/docs/JunicodeManual.pdf), §4.1.

5 See the OpenType specification [4], especially the sec-
tion “OpenType Font Variations overview”. For an accessible
introduction to variable fonts, see Hudson [6].

Figure 7: Junicode VF roman at weights of 400
(“Regular”), 457 (custom), and 500 (“Medium”).

Figure 8: A sampler of styles available with the
Elstob font.

the several files of a font face (usually roman or italic)
with a single file containing a set of glyph outlines ac-
companied by deltas governing their transformation.
With appropriate software support, outlines can be
transformed continuously along the font’s axes by
supplying numerical values. So Junicode VF, the
variable version of Junicode, replaces the thirty-eight
files of the static font with just two — one for roman
and one for italic. Both the static and the variable
fonts are based on the same design space, but in the
variable font every possible location is occupied — not
only the blank areas of fig. 6, but also the interstices.
If you think the Regular weight of 400 a little too
light and the Medium weight of 500 too heavy, you
can choose a weight of 420, or 457, or 443.25. See
fig. 7, where the difference between 457 and the sur-
rounding weights is subtle, but would make a visible
difference in the darkness of a text block.

Like the static Junicode font, Junicode VF is
in the CTAN repository, along with documentation
and a package for loading the font and accessing its
various features. Elstob is not in CTAN, but can be
downloaded for free;6 the latest releases come with a
package for TEX users like the one that accompanies
Junicode VF.

In addition to Elstob’s Weight and Optical Size
axes, the italic face includes a Slant axis (see fig. 8).7

6 github.com/psb1558/Elstob-font. Like most open
source fonts, Elstob can be downloaded from numerous com-
mercial sites, but to obtain the latest version, users should
download only from the GitHub repository.

7 Junicode and Elstob also have specialized axes which are
available to TEX users. For Junicode, “Enlarge” lets users set

Peter S. Baker

https://github.com/psb1558/Elstob-font
https://github.com/psb1558/Elstob-font
https://github.com/psb1558/Junicode-font/blob/master/docs/JunicodeManual.pdf
https://github.com/psb1558/Junicode-font/blob/master/docs/JunicodeManual.pdf
https://github.com/psb1558/Elstob-font

TUGboat, Volume 45 (2024), No. 1 15

The current release of Elstob comes with a package
like the one for Junicode VF.

3 Support for variable fonts in TEX

Experimental support for variable fonts in luaotf-
load, the font loader for LuaTEX, first appeared in
December 2020.8 Since that time, support for these
fonts has developed rapidly, so that it can now be
called mature: if the program has any significant
shortcomings or bugs, I have been unable to discover
them, though I have been using it almost daily for
the better part of a year.

Users should make sure they are running version
3.26 (included in TEX Live 2023) or later of luaotf-
load, as variable font support is incomplete in earlier
versions.

As of version 2.9a (released 2024-02-13), fontspec
includes explicit support for variable fonts: for de-
tails, see section III.7 of its documentation. Variable
fonts can also be managed via fontspec’s RawFeature
command, present in older versions. fontspec users
should always select the HarfBuzz renderer when us-
ing variable fonts, as node mode may sometimes fail
to load these fonts or apply OpenType features in-
correctly (the packages discussed in the next section
invoke the HarfBuzz renderer).

X ETEX and other flavors of TEX do not support
variable fonts; only LuaTEX.

4 The junicodevf and elstob packages

The packages for Junicode VF and Elstob are de-
signed to resemble many of the font packages in
CTAN — for example, those for ebgaramond, source-
serifpro, and roboto (see Voß [9, p. 299] for a par-
tial list of packages and a link to a complete list).
They are loaded in the usual way, with \usepackage
{junicodevf} or \usepackage{elstob}, and they
accept a more or less standard set of options, includ-
ing the following:
extralight (Elstob only) The weight of the main

font (that is, the four-style collection selected by
fontspec’s \setmainfont command) is ≈200.

light The weight of the main font is ≈300.
medium The weight of the main font is ≈500.
semibold The weight of the Bold style of the main

font is ≈600.
extrabold (Elstob only) The weight of Bold style

of the main font is ≈800.
the enlarged lowercase letters that often begin sentences in
medieval manuscripts; for Elstob, “Grade” changes the weight
of text without changing its width (a more useful feature for
web designers than for TEX users), and “Spacing” approximates
the word- and sentence-spacing of early metal type.

8 See the NEWS file in the luaotfload repository
(github.com/latex3/luaotfload, accessed 2024-3-18).

condensed (Junicode VF only) The width of the
main font (≈75) is about 85% of Regular (100).

semicondensed (Junicode VF only) The main font
is wider than Condensed but narrower than Reg-
ular (≈87.5).

expanded (Junicode VF only) The width of the
main font is about 115% (≈125) of Regular.

semiexpanded (Junicode VF only) The main font
is wider than Regular, but narrower than ex-
panded (≈112.5).

Although these options resemble those for CTAN’s
static fonts, they produce very different effects, in
that they do not produce text in a fixed style, but
rather in a range of styles that vary with text size —
that is to say, optical sizes, which are supported na-
tively by Elstob and emulated in Junicode by making
fine adjustments to the Weight and Width axes (thus
the approximation signs in the option list above).

Figs. 9 and 10 illustrate the contrast between
Elstob set as body text (11pt) and as footnote text
(about 8pt). In fig. 9 the difference in glyph shapes
is scarcely visible, but of course that is the point: as
early typefounders understood, small type appears
to match larger type when the shape is properly
adjusted. Fig. 10, which enlarges body text and
footnote text to the same size, shows the difference
more clearly, the footnote text being heavier and
with a higher x-height and shorter descenders than
the body text.

For users dissatisfied with the junicodevf and
elstob defaults and the options listed above, two
sets of options allow even finer control over these
fonts’ optical sizing. Here is the first set, which
enables adjustments to design choices made via the
standard options:
weightadjustment Adjusts the weight of the type

by adding this number. For example, if you
choose medium for the main font (weight ≈500)
and bold (the default, with weight ≈700), and
also include the option weightadjustment=-25,
then the weights of Medium and Bold text will
be lightened by 25 (to ≈475 and ≈675).

widthadjustment (Junicode only) Adjusts the
width of the type by adding this number. For
example, if you choose semicondensed for your
document (width ≈87.5), and you also include
the option widthadjustment=5, then the width
will be ≈92.5, between semicondensed and
regular.

opticalsizeadjustment (Elstob only) Adjusts the
optical size. By default, the value of this axis is
8 for 8pt text, 12 for 12pt, etc. But if you pass
the option opticalsizeadjustment=-1.5, the

Variable fonts in LuaTEX, with an introduction to the Junicode VF and Elstob fonts

https://github.com/latex3/luaotfload

16 TUGboat, Volume 45 (2024), No. 1

Figure 9: Body text and footnote set in Elstob.

Figure 10: Body text and footnote text enlarged to
the same size.

optical size axis will be 6.5 for 8pt type, 10.5 for
12pt, etc. (always staying in the range 6–18).
The second set, to be used instead of the options

listed above, gives the user complete control over axis
values for every text size in a document. To illustrate,
this is the relevant part of the command that loads
the junicodevf package for the Junicode Manual :9

usepackage[
MainRegularSizeFeatures={

{size=8.6,wght=550,wdth=120},
{size=10.99,wght=475,wdth=115},
{size=21.59,wght=400,wdth=112.5},
{size=21.59,wght=351,wdth=100}

},
MainItalicSizeFeatures={

{size=8.6,wght=550,wdth=118},
{size=10.99,wght=475,wdth=114},
{size=21.59,wght=450,wdth=111},
{size=21.59,wght=372,wdth=98}

},
MainBoldSizeFeatures={

{size=8.6,wght=700,wdth=120},
{size=10.99,wght=700,wdth=115},
{size=21.59,wght=650,wdth=112.5},
{size=21.59,wght=600,wdth=100}

},
MainBoldItalicSizeFeatures={

{size=8.6,wght=700,wdth=118},
{size=10.99,wght=700,wdth=114},
{size=21.59,wght=650,wdth=111},
{size=21.59,wght=600,wdth=98}

},
]{junicodevf}

9 github.com/psb1558/Junicode-font/blob/master/
docs/JunicodeManual.sty.

For each of the four RIBBI styles, this command
defines a list of associative arrays, each prescribing
axis coordinates for a range of sizes. In these arrays,
a size key is mandatory: any array without one
is ignored. The arrays should be ordered by point
size. The first array prescribes axis coordinates for
all sizes up to size, the last array for all sizes greater
than size, and any intermediate arrays a range from
the previous to the current size. So the ranges
covered in each list above are -8.6pt, 8.6-10.99pt,
10.99-21.59pt, and 21.59pt-.

Keys other than size are the four-letter tags for
the font’s axes: wght (Weight) and wdth (Width).10
When a key is omitted, the default value for that axis
is used. When SizeFeatures are given in this way,
they override any other options that set or change
axis coordinates (e.g. weightadjustment).

These lists define only four size ranges because
the Junicode Manual needs only four; but you can de-
fine as many as you need. (The junicodevf package,
if invoked without options, defines eleven.)

Both the junicodevf and elstob packages de-
fine commands for invoking font styles that match
the instances of the corresponding static fonts, plus
a few more. These are listed in the fonts’ docu-
mentation, but as an example, when using Junicode
one can switch temporarily from the main font to
Condensed Light as follows:

{\jCondLight The quick brown fox.}

These alternate styles can be customized just as the
main styles can. For example, to darken and widen
the \jCondLight style a little, include this option
when loading the junicodevf package:

CondLightSizeFeatures={
{size=4,wght=325,wdth=80},

}

10 In OpenType programming, axes are identified by four-
letter tags rather than their longer names. By convention, tags
for axes defined in the OpenType standard are lowercase, while
custom axes are uppercase. The default value of Junicode’s
ENLA (Enlarge) custom axis is used.

Peter S. Baker

https://github.com/psb1558/Junicode-font/blob/master/docs/JunicodeManual.sty
https://github.com/psb1558/Junicode-font/blob/master/docs/JunicodeManual.sty

TUGboat, Volume 45 (2024), No. 1 17

The junicodevf and elstob packages load
fontspec (no need to load it again) and depend on
that package for all their functionality. The options
that manipulate axes generate fontspec commands,
while other options are passed through to fontspec.
For example, the MainFeatures option allows users
to turn on features for all styles of the main font:

\usepackage[
MainFeatures={

Language=English,
StylisticSet=9

}
]{junicodevf}

Here, fontspec options set the language of the main
font to English and turn on Stylistic Set 9, which
modernizes some number-shapes. The same can
be done for individual styles of the main font with
options like MainBoldItalicFeatures, and for al-
ternate styles with options like CondLightFeatures
(features for the Condensed Light style).

Both Junicode and Elstob offer large numbers of
OpenType features, and their packages also provide
commands for convenient access to a selection of
them. For example, Stylistic Set 12 enables translit-
eration of English text to early English runes for both
Junicode and Elstob. One can turn it on either with
a fontspec command or with a mnemonic command
from the junicodevf or elstob package (with the
result shown in fig. 11):

fontspec: \addfontfeature{StylisticSet=12}
elstob: \EarlyEnglishFuthorc

fisc flodu ahof→

fisc floduahof
Figure 11: The effect of Stylistic Set 12 (Early
English Futhorc) in Elstob.

All of these commands, listed in the Junicode and
Elstob documentation, have text variants that work
like \textit and \textbf:

\textEarlyEnglishFuthorc{fisc flodu ahof}

Both Junicode and Elstob, but especially Jun-
icode, also have a number of Character Variant
(cvNN) features, which afford access to one or more
variants for individual characters. These can be ac-
cessed either with fontspec commands or with more
compact alternates: (\jcv for Junicode, \ecv for
Elstob, \textcv for both). Mnemonics can be used
to select from the collection of Character Variant
features in either fontspec or junicodevf/elstob
commands:

fontspec: \addfontfeature{%
CharacterVariant=\ecvg:1}g

elstob: \ecv[1]{\ecvg}g

Here \ecvg is a mnemonic for 14, identifying Elstob’s
Character Variant feature for the letter g (cv14).
The 1 that appears in both commands is an index
that selects the second variant shape of that letter.

5 Conclusion

Junicode VF is, to my knowledge, the first vari-
able font to appear in the CTAN repository, and
junicodevf and elstob are first attempts at pack-
ages for loading variable fonts in LuaLATEX. I wel-
come critiques of these packages, and especially their
options for managing the axes of these fonts. As
more variable fonts appear in CTAN, it would be
useful to standardize the interfaces of any dedicated
packages that accompany them.

References
[1] T. Ahrens, S. Mugikura. Size-Specific Adjustments

to Type Designs. Just Another Foundry, Munich,
2014.

[2] American Type Founders Company. Specimen Book
& Catalogue. [Jersey City], 1923.
archive.org/details/specimenbookcata00amer

[3] W. Caslon. A Specimen of Printing Types,
by Wm Caslon, Letter-Founder to the King.
C. Whittingham, 1798.
archive.org/details/specimenofprinti00casl

[4] P. Constable, K. Turetzky, et al. OpenType
specification version 1.9, 2022.
learn.microsoft.com/en-us/typography/
opentype/spec/

[5] G. Hickes. Linguarum vett. septentrionalium
thesaurus grammatico-criticus et archæologicus.
[Oxford University Press], Oxford, 1703-1705.

[6] J. Hudson. Introducing OpenType variable fonts,
2016. medium.com/variable-fonts/https-medium-
com-tiro-introducing-opentype-variable-fonts-
12ba6cd2369

[7] J. Kew. X ETEX, the Multilingual Lion: TEX meets
Unicode and smart font technologies. TUGboat
26(2):115–124, 2005.
tug.org/TUGboat/tb26-2/kew.pdf

[8] W. Robertson. Advanced font features with X ETEX —
the fontspec package. TUGboat 26(3):215–223, 2005.
tug.org/TUGboat/tb26-3/tb84robertson.pdf

[9] H. Voß. Using OpenType and TrueType fonts with
X ELATEX and LuaLATEX. TUGboat 43(3):295–299,
2022.
tug.org/TUGboat/tb43-3/tb135voss-unifont.pdf

⋄ Peter S. Baker
b.tarde (at) gmail dot com
https://github.com/psb1558/

Variable fonts in LuaTEX, with an introduction to the Junicode VF and Elstob fonts

https://archive.org/details/specimenbookcata00amer
https://archive.org/details/specimenofprinti00casl
https://learn.microsoft.com/en-us/typography/opentype/spec/
https://learn.microsoft.com/en-us/typography/opentype/spec/
https://medium.com/variable-fonts/https-medium-com-tiro-introducing-opentype-variable-fonts-12ba6cd2369
https://medium.com/variable-fonts/https-medium-com-tiro-introducing-opentype-variable-fonts-12ba6cd2369
https://medium.com/variable-fonts/https-medium-com-tiro-introducing-opentype-variable-fonts-12ba6cd2369
https://tug.org/TUGboat/tb26-2/kew.pdf
https://tug.org/TUGboat/tb26-3/tb84robertson.pdf
https://tug.org/TUGboat/tb43-3/tb135voss-unifont.pdf

	Background
	Variable fonts
	Support for variable fonts in TeX
	The junicodevf and elstob packages
	Conclusion

