
TUGBOAT

Volume 45, Number 1 / 2024

General Delivery 3 From the president / Arthur Rosendahl
4 Editorial comments / Barbara Beeton

Changing of the guard: Robin Laakso retiring as TUG Executive Director;
Errata: TUGboat 44:2; Errata: TUGboat 44:3; The (effective) end of comp.text.tex;
DEK— Puzzles and ChatGPT; An admirable use of AI;
Face/Interface conference at Stanford; Accessibility for MathML

6 Bibliography of Niklaus Wirth (1934–2024) / Nelson Beebe
Typography 7 Face/Interface 2023 conference: Global type design and human-computer interaction /

Boris Veytsman
10 Typographers’ Inn / Peter Flynn

Fonts 12 Variable fonts in LuaTEX, with an introduction to two new fonts: Junicode VF /

Peter S. Baker
18 dynMath: A PostScript Type 3-based LATEX package to support extensible mathematical

symbols / Abdelouahad Bayar
25 Tracing bitmap fonts in LMTX / Hans Hagen, Mikael P. Sundqvist

Philology 32 Basic Latin brevigraphs listed in Polonia Typographica Saeculi Sedecimi—
Progress report / Janusz S. Bień

44 Towards an inventory of old print characters: Ungler’s Rubricella, a case study — Errata
/ Janusz S. Bień

Tutorials 45 The DuckBoat — Beginners’ Pond: Tcolorchat! / Carla Maggi
Accessibility 52 Enhancing LATEX to automatically produce tagged and accessible PDF /

Frank Mittelbach, Ulrike Fischer
LATEX 59 Preparing Horizon Europe proposals in LATEX with heria / Tristan Miller

65 Specifying and populating documents in YAML with lua-placeholders in LATEX /

Erik Nijenhuis
Software & Tools 77 Building a modern editing environment on Windows around GNU Emacs and AUCTEX

/ Arash Esbati
88 Wikipedia to LATEX, PDF, EPUB and ODT / Dirk Hünniger
89 Fast regression testing of TEX packages: Multiprocessing and batching /

Vı́t Starý Novotný, Marei Peischl
97 Illustrating finite automata with Grail+ and TikZ / Alastair May, Taylor J. Smith

102 Including PDF files / Hans Hagen
Macros 106 Is a given input a valid TEX 〈number〉? / Udo Wermuth

109 Is a given input a valid TEX 〈dimen〉? / Udo Wermuth
Graphics 113 Visualizing the Mandelbrot set with METAPOST / Max Günther

115 Semi-automated TikZ directed acyclic graphs in R / Travis Stenborg
117 Nodes and edges with METAPOST: The MetaGraph environment /

Federico Garćıa De Castro
125 Euclidean geometry with tkz-elements and tkz-euclide / Alain Matthes
134 Unusual bitmaps / Hans Hagen, Mikael P. Sundqvist

Electronic Documents 145 Signing PDF files / Hans Hagen
Hints & Tricks 149 Computer Modern shape curiosities / Hans Hagen

150 Radical delimiters / Hans Hagen, Mikael P. Sundqvist
151 The treasure chest / Karl Berry
154 Production notes / Karl Berry

Reviews 155 Book review: Shift Happens, by Marcin Wichary /

Barbara Beeton, Karl Berry, Boris Veytsman
Abstracts 156 Die TEXnische Komödie: Contents of issues 3/2023–1/2024

158 La Lettre GUTenberg : Contents of issue 51 (2023)
159 Zpravodaj : Contents of issue 2023/3–4

TUG Business 2 TUGboat editorial information
2 TUG institutional members

160 TUG financial statements for 2023 / Karl Berry
Cartoon 161 Comic: Space typography / Randall Munroe
News &

Announcements
161 TEX conferences and lectures
162 Calendar

Advertisements 163 TEX consulting and production services

TEX Users Group

TUGboat (ISSN 0896-3207) is published by the
TEX Users Group. Web: tug.org/TUGboat.

Individual memberships
2024 dues for individual members are as follows (all
rates will likely have a small increase next year):

Trial rate for new members: $35.
Regular members: $115.
Special rate: $85.

The special rate is available to students, seniors, and
citizens of countries with modest economies, as de-
tailed on our web site. Members may also choose to
receive TUGboat and other benefits electronically,
at a discount. All membership options are described
at tug.org/join.

Membership in the TEX Users Group is for the
calendar year, and includes all issues of TUGboat for
the year in which membership begins or is renewed,
as well as software distributions and other benefits.
Individual membership carries with it such rights
and responsibilities as voting in TUG elections. All
the details are on the TUG web site.

Journal subscriptions
TUGboat subscriptions (non-voting) are available to
libraries and other organizations or individuals for
whom memberships are either not appropriate or
desired. Subscriptions are delivered on a calendar
year basis. The subscription rate for 2024 is $125.

Institutional memberships
Institutional membership is primarily a means of
showing continuing interest in and support for TEX
and TUG. It also provides a discounted member-
ship rate, site-wide electronic access, and other ben-
efits. For further information, see tug.org/instmem
or contact the TUG office.

Trademarks
Many trademarked names appear in the pages of
TUGboat. If there is any question about whether
a name is or is not a trademark, prudence dictates
that it should be treated as if it is.

About the cover
The cover graphic was created by Federico Garćıa
De Castro; it illustrates the harmonies in the first
prelude of J.S. Bach’s Well-Tempered Clavier. Fed-
erico’s article on pages 117–124 describes how it was
made, using MetaPost and his MetaGraph macros.

[printing date: April 2024]

Printed in U.S.A.

Board of Directors

Donald Knuth, Ur Wizard of TEX-arcana
†

Arthur Rosendahl, President∗

Boris Veytsman∗, Vice President
Karl Berry∗, Treasurer
Klaus Höppner∗, Secretary
Barbara Beeton∗

Johannes Braams
Max Chernoff
Kaja Christiansen
Ulrike Fischer
Jim Hefferon
Tom Hejda
Jérémy Just
Frank Mittelbach
Ross Moore
Norbert Preining
Raymond Goucher (1937–2019),

Founding Executive Director
Hermann Zapf (1918–2015), Wizard of Fonts
∗member of executive committee
†honorary

See tug.org/board for a roster of all past and present
board members, and other official positions.

Addresses

TEX Users Group
P. O. Box 2311
Portland, OR 97208-2311
U.S.A.

Telephone
+1 503 223-9994

Fax
+1 815 301-3568

Web
tug.org

tug.org/TUGboat

Electronic mail

General correspondence,
membership, subscriptions:
office@tug.org

Submissions to TUGboat,
letters to the Editor:
TUGboat@tug.org

Volunteer TEXnical support,
public mailing list:
support@tug.org

Contact the
Board of Directors:
board@tug.org

Copyright c© 2024 TEX Users Group.

Copyright to individual articles within this publication

remains with their authors, so the articles may not
be reproduced, distributed or translated without the

authors’ permission.

For the editorial and other material not ascribed to a
particular author, permission is granted to make and

distribute verbatim copies without royalty, in any medium,

provided the copyright notice and this permission notice
are preserved.

Permission is also granted to make, copy and distribute
translations of such editorial material into another
language, except that the TEX Users Group must approve
translations of this permission notice itself. Lacking such
approval, the original English permission notice must

be included. An information notice to the TUGboat editors
regarding such redistribution is appreciated.

A typewriter (or a computer-driven printer of
similar quality) that justifies its lines in imitation
of typesetting is a presumptuous machine, mimicking
the outer form instead of the inner truth of typography.

Robert Bringhurst,
The Elements of Typographic Style

(1992)

COMMUNICATIONS OF THE TEX USERS GROUP

EDITOR BARBARA BEETON

VOLUME 45, NUMBER 1, 2024

PORTLAND, OREGON, U.S.A.

TUGboat editorial information

This regular issue (Vol. 45, No. 1) is the first issue of the
2024 volume year. The deadline for the second issue in
Vol. 45 (the TUG’24 conference proceedings) is July 28,
2024, and for the third (regular) issue, October 6, 2024.
The deadline for the first issue of next year is March 23,
2025. Contributions are requested.

TUGboat is distributed as a benefit of member-
ship to all current TUG members. It is also available
to non-members in printed form through the TUG store
(tug.org/store), and online at the TUGboat web site
(tug.org/TUGboat). Online publication to non-members
is delayed for one issue, to give members the benefit of
early access.

Submissions to TUGboat are reviewed by volun-
teers and checked by the Editor before publication. How-
ever, the authors are assumed to be the experts. Ques-
tions regarding content or accuracy should therefore be
directed to the authors, with an information copy to the
Editor.

TUGboat editorial board

Barbara Beeton, Editor-in-Chief
Karl Berry, Production Editor

Sophia Laakso, Office Manager

Boris Veytsman, Associate Editor, Book Reviews

TUGboat advertising

For advertising rates and information, including consul-
tant listings, contact the TUG office, or see:
tug.org/TUGboat/advertising.html

tug.org/consultants.html

2 TUGboat, Volume 45 (2024), No. 1

Submitting items for publication

Proposals and requests for TUGboat articles are grate-
fully received. Please submit contributions by electronic
mail to TUGboat@tug.org.

The TUGboat style files, for use with plain TEX
and LATEX, are available from CTAN and the TUGboat

web site, and are included in TEX distributions. We
also accept submissions using ConTEXt. For deadlines,
templates, author tips, and more, see tug.org/TUGboat.

Effective with the 2005 volume year, submission of
a new manuscript implies permission to publish the ar-
ticle, if accepted, on the TUGboat web site, as well as
in print. As of fall 2023, submission also implies permis-
sion to be indexed in the EBSCO (a large subscription
management company) databases. We made this agree-
ment with EBSCO to provide more visibility to TUGboat

articles. See tug.org/TUGboat/tubperm.html for more.
If you have any concerns about these permissions,

please notify the editors at the time of submission and
we will do our best to make suitable arrangements.

Other TUG publications

TUG is interested in considering additional manuscripts
for publication, such as manuals, instructional materials,
documentation, or works on any other topic that might
be useful to the TEX community in general.

If you have such items or know of any that you
would like considered for publication, please contact the
Publications Committee at tug-pub@tug.org.

TUG Institutional

Members

TUG institutional members

receive a discount on multiple

memberships, site-wide electronic

access, and other benefits:

tug.org/instmem

Thanks to all for their support!

American Mathematical Society,

Providence, Rhode Island. ams.org

Association for Computing

Machinery, New York, New York.

acm.org

Aware Software,

Newark, Delaware. awaresw.com

Center for Computing Sciences,

Bowie, Maryland.

CSTUG, Praha, Czech Republic.

cstug.cz

CTAN. ctan.org

Duke University Press, Durham,

North Carolina. dukeupress.edu

Hindawi Foundation,

London, UK. hindawi.org

Institute for Defense Analyses,

Center for Communications

Research, Princeton, New Jersey.

L3Harris, Melbourne, Florida.

l3harris.com

LATEX Project.

latex-project.org

MacTEX. tug.org/mactex

Maluhy & Co., São Paulo, Brazil.

maluhy.com.br

Marquette University,

Milwaukee, Wisconsin.

marquette.edu

Masaryk University,

Faculty of Informatics,

Brno, Czech Republic. fi.muni.cz

Modular Font Editor K. mfek.org

Nagwa Limited,

Windsor, UK. nagwa.com

NASA. nasa.gov

Ontario Tech University,

Oshawa, Ontario, Canada.

ontariotechu.ca

Overleaf, London, UK.

overleaf.com

StackExchange,

New York City, New York.

tex.stackexchange.com

Tailor Swift Bot,

College Station, Texas.

TEXFolio, Trivandrum, India.

texfolio.org

Université Laval, Ste-Foy, Québec,

Canada. bibl.ulaval.ca

University of Oslo,

Institute of Informatics,

Blindern, Oslo, Norway. uio.no

VTEX UAB,

Vilnius, Lithuania. vtex.lt

TUGboat, Volume 45 (2024), No. 1 3

From the president

Arthur Rosendahl

What’s in a TEX?

The trip test defines precisely to what a program
must conform for it to be called tex, in order to
achieve compatibility across operating systems. But
the name TEX has for a long been time been used in
a less strict way in common parlance, to mean the al-
gorithms of TEX, its “engine”, that have been reused
in many of its extensions; or, in a yet looser way,
the set of programs and tools surrounding TEX, its
“ecosystem”. That’s why we can speak of what “TEX”
does as opposed to, for example, Lua in LuaTEX—
where many parts of the engine can be rewritten—or
as opposed to HarfBuzz in X ETEX and LuaHBTEX.

This polysemy reflects not only the flexibility
and adaptability of the algorithms of the original
“TEX, the program”—the one that passes the trip
test—but also, to put it in somewhat immodest
terms, its success. It has extended far and wide
beyond its originally intended use, gaining in the
process not only users but also a sometimes mystical
reputation of being the Midas of computer programs,
that turns any document into gold. (I would argue
that the other part of the Midas legend also applies.)
At the same time, the proliferation of extensions of
TEX has led to an often confusing choice, starting
with the many names that look like “somethingTEX”
and that, in the words of a long-time contributor
to several of the programs thus named, make some
TUGboat articles look a bit like a high school maga-
zine. Just have a look at this column if you’re not
convinced!

This diversity is, however, much more of an asset
than a liability, as it gives newcomers a choice—as
daunting as that may seem—and enables more ad-
vanced users to experiment with different approaches.
It is of course a little schizophrenic, though, as was il-
lustrated once at the BachoTEX series of conferences,
where in one session entitled “TEX contra TEX” we
tried to enact the opposition between the different
extensions of TEX as a Western-style duel (as well
as a trial; we couldn’t quite make up our minds).

We didn’t issue a judgement, other than it was good
that all these different options existed and were some-
how united under the banner of “TEX and friends”.
Very recently, I had the opportunity to discuss the
use of TEX in a real court of law; more on that later.

The same ambiguity exists for our organisation,
the TEX Users Group, that gathers members from all
walks of life, who use TEX and its variants for many
different reasons. The prevailing feeling among many
long-time members of TUG is that we’re more of a
developers’ group, even though we have “users” in
our name. This is not necessarily a problem, though,
since it is natural that those who are more involved
in the organisation become specialists in some area.
It is however essential that we continue to attract
new users and that they feel welcome. I have never
personally had the impression that newcomers were
made to feel unwelcome, but this is something to
bear in mind.

I was once asked at a conference why there
was no LATEX Users Group and, after being initially
startled, outlined some of the above as an explanation
of why a user group dedicated specifically to LATEX
would be a bad idea (or perhaps I did actually say
my initial thought out loud, namely “what a stupid
question” . . . belated apologies).1 As the first TUG

president out of the ConTEXt community, I can of
course regret that TEX is so often equated with LATEX,
but it is a reality that most users of TEX systems use
it through LATEX (and also, even though they might
not be aware of it, pdfTEX).

Whatever road led us to TEX, though, we are all
united by a love for typography and beautifully type-
set documents, that may take very different shapes
and forms. The TEX Users Group has been a place
to express this love for over forty years, and it is
my hope that it will continue to be such a place for
a long time to come. Go forth now and create
masterpieces of the publishing art!

⋄ Arthur Rosendahl

Uppsala University

TUG president

president (at) tug (dot) org

1
Editor’s note: For another take on this perennial topic,

see the tug.org/levels web page: LATEX vs. MiKTEX.

doi.org/10.47397/tb/45-1/tb139pres

From the president

tug.org/levels
https://doi.org/10.47397/tb/45-1/tb139pres

4 TUGboat, Volume 45 (2024), No. 1

Editorial comments

Barbara Beeton

Changing of the guard: Robin Laakso
retiring as TUG Executive Director

For 24 years, Robin has been on her perch in Port-
land, Oregon, supporting all that TUG is involved
in as Executive Director. This has included, but
was not limited to, keeping the books, financial and
membership records, paying the bills, filing the tax
returns, organizing conferences either in cooperation
with local organizers or solo (the 2010 conference
in San Francisco was a notably successful example),
sending materials to and answering questions from
members, performing any tasks requested by the
board, and overall representing TUG and TEX cred-
itably to the outside world.

Robin attended a number of TUG conferences
during her tenure, getting to know members face-to-
face. Her last was the 2023 meeting in Bonn, where
a photo on page 316 of the proceedings1 shows her
presenting tokens of appreciation to the local orga-
nizers (Ulrike and Gert Fischer), as TUG President
Boris Veytsman looks on.

Robin has been a good and loyal friend to me
as well as a dependable source of information and
even a nag when required. All who have known her
in this position will miss her, and wish her well in
her future pursuits.

Robin’s successor is her daughter Sophia, who
behind the scenes has assisted Robin with renewals,
conference materials, and other tasks, so she is ideally
suited to take over the office. Sophia graduated
summa cum laude from Oregon State University and
has worked for the last several years at the Oregon
Historical Society. She will start with the title of
Office Manager. We are glad to have Sophia at TUG!

Errata: TUGboat 44:2

In my article “What every (LA)TEX newbie should
know”, the example redefining the command \i

(shown on page 165) did not have the intended result.
Here’s another try.

Single-letter commands are also bad candidates
for (re)definition by users, as many of them are prede-
fined as accents or forms of letters not usual in Eng-
lish text; \i might very well occur with (or without)
an accent in a references list. For (a bad) example,
consider the author Häım Brezis:
\renewcommand{\i}{\ensuremath{\sqrt{-1}}}

Brezis, Ha\"{\i}m =⇒ Brezis, Ha¨
√
−1m

1 tug.org/TUGboat/tb44-2/tb137abstracts.pdf

The example failed because the specified encod-
ing, T1, “normalizes” accented letters, nullifying any
attempt to redefine the old commands. This test file
will demonstrate what happened.

\documentclass{article}

% with T1 enabled, \"\i yields accented i,

% not bad sqrt:

%\usepackage[T1]{fontenc}

\begin{document}

\renewcommand{\i}{\ensuremath{\sqrt{-1}}}

Brezis, Ha\"{\i}m

\end{document}

Errata: TUGboat 44:3

More than one article in the last issue was corrupted
by gremlins, either technical or caused by editorial
slipup, or both. We regret the confusion. When
possible, corrections have been applied online. Sug-
gestions are given below for possible manual adjust-
ments to the paper version.

• Janusz Bień, “Towards an inventory of old
print characters”. Wrong “old” characters were
typeset in several places, one the result of a problem
with the default font renderer, and the others for
reasons associated with Unicode availability. The
detailed explanation is given in a separate erratum by
the author, which appears both later in this issue and
online in a separate file associated with the original
issue.2

• Production notes. The issue TOC lists “Pro-
duction notes” on page 449, but opening the paper
issue or the complete online issue to that page finds
the last page of “The treasure chest”, followed imme-
diately by a book review. The intended production
notes, which happen not to be specific to the issue,
remain online as a separate file3 and appear on paper
in the present issue.

• George Matthiopoulos, “A short history of
Greek type design”. This article (pages 336–353)
is illustrated by 61 plates. Unfortunately, owing to
a slipup in production, two plate numbers, 8 and 56,
are repeated, resulting in erroneous cross references
in the text. (The \label–\ref mechanism wasn’t
used, eliminating that check.) The two plates with
the first instance of the cited plate numbers were
packed into \vboxes to allow more reliable placement
on the page, forgetting that within such a box the
value of an automatically stepped counter will be
local.

2 tug.org/TUGboat/tb44-3/bien-rubricella-errata.

pdf
3 tug.org/TUGboat/tb44-3/tb138prod.pdf

doi.org/10.47397/tb/45-1/tb139beet

Barbara Beeton

https://tug.org/TUGboat/tb44-2/tb137abstracts.pdf
https://tug.org/TUGboat/tb44-3/bien-rubricella-errata.pdf
https://tug.org/TUGboat/tb44-3/bien-rubricella-errata.pdf
https://tug.org/TUGboat/tb44-3/tb138prod.pdf
https://doi.org/10.47397/tb/45-1/tb139beet

TUGboat, Volume 45 (2024), No. 1 5

The problem has been corrected in the online
files for the issue, but the erroneous plate numbers are
preserved in the printed issue. This can be amended
with a manual correction: Starting on page 344,
change “plate 8” to “plate 9”, and continue, assigning
consecutive values, ending with 61. The references
will then be correct, since they were hard-coded in
the source.

The (effective) end of comp.text.tex

The comp.text.tex newsgroup has been popularly
accessed through Google Groups for many years. But
Google has announced that, as of 22 February 2024,
they will no longer accept Usenet content in Google
Groups. Although Usenet still exists, it becomes
ever harder to find active servers (especially ones not
overrun with spam). You may want to use one of
the many other available methods to seek or provide
TEX help, such as those listed at tug.org/begin.

html#help.

DEK—Puzzles and ChatGPT

A December article in the New York Times, “Need
a home for 80,000 puzzles? Try an Italian castle”,4

recounts a visit by George and Roxanne Miller (own-
ers of the puzzle-filled castle) to Don Knuth’s home
in Stanford, California. Don and Mr. Miller had
met at a puzzle party years before, and hypothetical
puzzles described by Mr. Miller had attracted Don
by their mathematical underpinnings. (Algorithms
underlying some of these puzzles appear in TAOCP.)
This led to collaboration on several new puzzles, and
a years-long friendship.

Another article5 contains actual puzzles to be
solved, along with (don’t look!) the solutions.

Don has also experimented with ChatGPT, de-
scribing his experience on his website at Stanford.6

His questions were simple and straightforward, test-
ing both factual information and ability to emulate
various textual styles. As might be expected, where
the relevant information had not been included in
the training, the “answers” were either evasive or
incorrect, or both. But they were expressed in a most
literate and often impressive style— likely to be ac-
cepted by someone not knowledgeable in the subject
area. The potential consequences are terrifying.

Re ChatGPT: this has been my own opinion
until recently; however, I’ve learned that there are

valid uses for the tool as long as one sticks to areas

4 www.nytimes.com/2023/12/29/science/

puzzles-mechanical-miller.html
5 www.ageofpuzzles.com/Masters/DonaldEKnuth/

DonaldEKnuth.pdf
6 www-cs-faculty.stanford.edu/~knuth/chatGPT20.txt

that are likely to be covered in the tool’s training
corpus, and carries on a “conversation”, fine-tuning
the questions to obtain a valid and useful response.
I will try to conscript the user who taught me the
technique to submit a future article.

An admirable use of AI

The article “AI reads text from ancient Herculaneum
scroll for the first time” appeared in Nature

7 in
October 2023.

The eruption of Vesuvius that buried Pompeii in
ad 79 also affected nearby Herculaneum. A library
in a villa survived the eruption, but the parchment
scrolls held there were carbonized, rendering them
unable to be unrolled to read the contents without
destroying them. Images were obtained by applying
powerful X-ray techniques, which are able to distin-
guish the ink of the text from the carbonization. A
21-year-old computer science student from the Uni-
versity of Nebraska applied machine learning tech-
niques to detect the first word in an unopened scroll—
Greek “porphyras”, purple. This breakthrough prom-
ises to lead the way to recovering the lost texts of a
number of Greek philosophers.

Face/Interface conference at Stanford

On 2 December 2023, a group of font designers, most
of them working with languages represented by non-
Latin alphabets, gathered for a conference presenting
their work in the digital world. With opening and
closing keynotes by Chuck Bigelow, the principal in
Stanford’s short-lived digital typography program
(closely associated with the TEX Project), the con-
ference was the kick-off event celebrating Stanford’s
new SILICON (Stanford Initiative on Language In-
clusion and Conservation in Old and New Media)
project.8

A personal overview of the conference by a mem-
ber of Stanford’s Digital Humanities staff is available
online.9 But I am waiting for an announcement that
the actual talks are posted; that has been promised,
and is eagerly anticipated.

A longer report on the conference appears in
this issue, 7–10.

Accessibility for MathML

“MathML” is short for “Mathematical Markup Lan-
guage”, a member of the family of markup languages
intended to direct the formatting of material online
and in print.

7 www.nature.com/articles/d41586-023-03212-1
8 silicon.stanford.edu
9 digitalhumanities.stanford.edu/

face-interface-2023/

Editorial comments

https://tug.org/begin.html#help
https://tug.org/begin.html#help
https://www.nytimes.com/2023/12/29/science/puzzles-mechanical-miller.html
https://www.nytimes.com/2023/12/29/science/puzzles-mechanical-miller.html
http://www.ageofpuzzles.com/Masters/DonaldEKnuth/DonaldEKnuth.pdf
http://www.ageofpuzzles.com/Masters/DonaldEKnuth/DonaldEKnuth.pdf
https://www-cs-faculty.stanford.edu/withtilde%20knuth/chatGPT20.txt
https://www.nature.com/articles/d41586-023-03212-1
https://silicon.stanford.edu
https://digitalhumanities.stanford.edu/face-interface-2023/
https://digitalhumanities.stanford.edu/face-interface-2023/

6 TUGboat, Volume 45 (2024), No. 1

MathML has two distinct components: Presenta-
tion MathML (visual layout) and Content MathML,
which encodes mathematical semantics without re-
gard for layout and is targeted mainly at compu-
tational systems such as Mathematica and Sage.
MathML was released as a W3C recommendation
in 1998, and standardized by ISO/IEC in 2015. This
has been adopted as part of HTML5. Presentation
MathML is implemented in major desktop browsers.

The input vocabulary of MathML, unlike that of
(original) TEX, is not “native” to a mathematician, al-
though both define how symbols are to be arranged
on a surface. The MathML vocabulary, however,
is more compatible with that of existing markup
languages than is (LA)TEX, and is consequently the
preferred form of input for most screen readers; how-
ever, ambiguities in possible interpretation need to
be resolved, for example, does |X| denote a norm,
an absolute value, or something else? That is the
direction of the current effort.

The W3C MathML Working Group generally
meets weekly by Zoom, and makes the minutes of
their meetings available to others interested in the
project via an “open” mailing list: www-math@w3.org.
A subscription can be requested by sending the mes-
sage subscription request to

www-math-request@w3.org

It needs to be approved before activation, but accep-
tance should be without controversy. An archive of
the list is held at lists.w3.org/Archives/Public/
www-math/.

Current activity of the group is concentrated
on defining how a MathML-encoded concept can be
expressed unambiguously. As an example, what is
the best way to voice this expression so that a listener
will best understand what is intended:

(x, y)
marked up as

<mrow intent='open-interval($x,$y)'>

<mo>(</mo>

<mi arg='x'>x</mi>

<mo>,</mo>

<mi arg='y'>y</mi>

<mo>)</mo>

</mrow>

or the same with

intent='ordered-pair($x,$y)'

Thanks are due to David Carlisle for clarifying
the activities of the working group and providing the
example markup.

⋄ Barbara Beeton
https://tug.org/TUGboat

Bibliography of Niklaus Wirth (1934–2024)

Nelson H. F. Beebe

The renowned computer scientist Niklaus Wirth
passed away on January 1, 2024. After 26 days of
intense work, on January 30 I checked in as version
1.00 this bibliography of his works:

https://math.utah.edu/pub/bibnet/authors/w/

wirth-niklaus.bib, wirth-niklaus.html, ...

(Further changes will bump the version number to
1.01, 1.02, . . .)

The document preamble has a brief resume of
Wirth’s career, and (not so briefly) discusses the use
of Pascal in the rewriting of TEX and METAFONT

that led to the 1982 release, and also credits Barry
Smith for his work on a polished implementation
on the Apple Macintosh. The other languages with
which Wirth was involved are also discussed.

My extensive literature searches give me some
confidence that I have located almost everything that
Niklaus Wirth published in his 58 years of academic
activity, but book chapters and technical reports are
always hard to find, so a few more might yet surface.
I don’t have access to a curriculum vitae for him;
that may turn up in the future, and permit a cross
check of what I have already found in the literature.
Contributions welcome!

If we go back to 1980 and ask what program-
ming language Don Knuth could have chosen for
the rewrite from SAIL, it seems clear with 44 years
of hindsight that Pascal was really the only choice,
despite its many shortcomings. The bibliography
preamble discusses those misfeatures, and gives ref-
erences to entries later in the file. Brian Kernighan’s
famous article, “Why Pascal is not my favorite pro-
gramming language”, was worth rereading. I have
my own list of gripes about Pascal after using it
extensively in the 1980s on DECsystem-20 machines
running TOPS-20.

In short, we very likely would not have TEX,
METAFONT, and the worldwide TEX community
without Niklaus Wirth and Pascal, and that would
have made a huge difference in my own professional
life. This bibliography is my personal tribute to
Niklaus Wirth, with deep thanks for the influence
he has had on me. He and I never got to meet in
person, and the first view that I ever had of him was
earlier this month, watching recent video interviews
that are listed in the bibliography. Because of his
many years at Stanford and Xerox PARC, I’m sure
that he and Don Knuth knew each other well.

⋄ Nelson H. F. Beebe

University of Utah

doi.org/10.47397/tb/45-1/tb139beebe-wirth

Barbara Beeton

https://www-math-request@w3.org
https://lists.w3.org/Archives/Public/www-math/
https://lists.w3.org/Archives/Public/www-math/

TUGboat, Volume 45 (2024), No. 1 7

Face/Interface 2023 conference: Global type
design and human-computer interaction

Boris Veytsman

The Face/Interface conference at Stanford (Decem-
ber 1–2, 2023, face-interface.com) was not a TEX
conference, though it was announced on the TUG

home page and in the TUG Mastodon and X feeds.
Nevertheless, the connection to TEX was quite prom-
inent: two keynote talks by Chuck Bigelow book-
ended the conference; DEK attended all presenta-
tions; many participants acknowledged that without
TEX and LATEX their work would be much more diffi-
cult and tedious; among the keepsakes were offprints
of TUGboat papers by Jacques André [1] and Ka-
mal Mansour [3], presented as a gift from TUG and
Bigelow & Holmes, a teaser for B&H’s forthcoming
books to be published by TUG, and also a reprint
of calligraphy by Kris Holmes. Of course, the topics
of the conference, including scripts, typefaces and
encodings, also resonate with many members of the
TEX community.

This conference marks forty years since the
famous ATypI workshop on digital typesetting at
Stanford which heralded a new era in typography.
Fittingly, the principal organizer of this meeting,
Thomas Mullaney, is a Professor of History. Indeed
many talks at the conference were devoted to the
history of digital typesetting in the last half-century.
Thomas himself touched this topic in his opening
remarks. Sorin Pintilie discussed the decisions imple-
mented in digital type systems since the 1940s and
their evolution. Ferdinand Ulrich presented a rich
collection of artifacts from the ATypI workshop and
beyond. It is a pity that due to copyright reasons his
lecture could not be streamed on YouTube. I was told
the recording will be available once stripped of the
embargoed materials. I sincerely hope that among
the artifacts Ferdinand could show are the photos
of young DEK, Chuck Bigelow and Hermann Zapf.
For now, we can include two photos from the private
archive of Prof. Bigelow, cleared for publication in
TUGboat (Figures 1 and 2).

Of course, the keynote and the final talk by
Bigelow also dealt with the history of digital typeset-
ting, with some nostalgic notes about the roads not
taken and opportunities missed— for example, the
demise of the program of teaching digital typography
at Stanford, mostly due to the resistance of certain
members of the Stanford arts community.

An interesting contrast with these talks was the
presentation by Niteesh Yadav about the challenges
for digital typography in the futuristic environment
of virtual reality. The lettering there is displayed

Figure 1: Donald Knuth, Hermann Zapf, and
John Dreyfus (former president of ATypI, former
typographic adviser to Monotype, book designer,
acclaimed type scholar), in Don’s office on a hot
August day during the 1983 ATypI conference.
Photo by an unknown photographer with the
Stanford News Department. Reproduced by
permission.

Figure 2: A photo from the 1983 Stanford conference,
left to right: organizer Chuck Bigelow (with beard),
Raymond Stanley Nelson, Jr. (Smithsonian Museum
emeritus scholar of traditional printing technology),
Henk Drost (hand punchcutter of the Enschedé
type foundry in Haarlem, Holland). Photo credit:
Hugh Dubberly. Reproduced by permission.

on an unpredictable background, often badly lit,
which requires new solutions and new thoughts. This
talk reminded that typography has always evolved
answering the challenges of the medium, either ink
and paper, or cathode ray tubes, or LCD displays, or
low resolution printers—which led to novel technical
and aesthetic decisions.

Another look at the way technology influences
typography was presented by Shani Avni & Liron
Lavi Turkenich, who discussed the changes to He-
brew letterforms brought by the printing press. In

doi.org/10.47397/tb/45-1/tb139veytsman-face

Face/Interface 2023 conference: Global type design and human-computer interaction

https://face-interface.com
https://doi.org/10.47397/tb/45-1/tb139veytsman-face

8 TUGboat, Volume 45 (2024), No. 1

19th century typesetting, the thin ascenders and de-
scenders tended to break down, and vowel marks
were too expensive to add. This led to the consider-
able changes in the writing system. Some people are
now considering undoing these changes, when and
as technology allows.

An up-to-the-minute technological challenge is
the rapid revolution in machine learning. Arshia
Sobhan Sarband discussed the difficulties in training
ML models to recognize the complex Arabic script.
This talk touched on the topic of contamination
of training data for such models: many images of
Arabic “in the wild” are Western paintings, where
nonsensical signs are used for “oriental exotics”.

Another topic of the conference was also related
to history: several talks described the creation of dig-
ital typefaces for ancient scripts. This is important
work: the publication of ancient texts, their indexing
and study require a uniform digital representation,
both in Unicode and in a faithful typographic ren-
dering. The participants presented a broad range of
historical writing systems now being digitized: early
Kufi script (Nadine Chahine); ancient coin letter-
ing (Morgane Pierson); oracle bone script in the old
China (Zhao Liu & Kushim Jiang); linear Elamite
(Sina Fakour) and proto-Elamite (Kaveh Ashourinia);
Dives Akuru used in Maldives (Fernando de Moraes
Caro); Mayan writing system (Alexandre Bassi &
Gabrielle Vail); Egyptian hieroglyphs (Andrey Glass;
during the presentation the author announced the
release of a new Egyptian font, that severely tests
the limits of Unicode and OpenType technology).
It is interesting that the Stanford program for dig-
ital typography also dealt with historical scripting
system and Egyptian typesetting. In Figure 3 we
reproduce a part of the PostScript font created by
Cleo Huggins in 1988 [2].

One of the most important topics of the con-
ference was the work for very much alive, but un-
derserved languages, those that never had a digital
representation before. During decolonization, peo-
ple often turned to their roots, increasing the in-
terest in their own scripts. It is not coincidental
that the talk by Peter Bilak about Typotheque, a
company involved in the design of fonts for many
underserved communities, was titled Giving Voice

Figure 3: Woman and her occupations, from the font
by Cleo Huggins [2]

to People. Decolonization involves the “roster of
newly empowered voices asking for their narratives
to be heard” [5]. One of the sponsors of the confer-
ence was SILICON, Stanford Initiative on Language
Inclusion and Conservation in Old and New Media
(silicon.stanford.edu). In his opening remarks
Thomas Mullaney, who is also the head of SILICON,
talked about its mission. He stressed that it is very
important for the specialists outside the user com-
munities not to slip into the role of White Savior,
but learn to listen to the voice of the communities
themselves, and recognize their right to choose their
way of representing their language.

Besides SILICON, several other organizations
working with underserved languages sponsored this
meeting or were represented there: the French Ate-
lier National de Recherche Typographique (ANRT,
anrt-nancy.fr), described by Thomas Huot-Mar-
chand, the Arabic Type Unit at the American Univer-
sity of Beirut (www.aub.edu.lb/msfea/research/
Pages/ATU.aspx), described by Yara Khoury, and
Typotheque from the Netherlands (www.typotheque.
com), presented by Peter Bilak.

The talks covered many newly digitized scripts,
including Balinese (Ariq Syauqi), African languages
(Neil Patel; his font specimen book was among the
keepsakes of the conference), and Native American
scripts digitized by Typotheque (Peter Bilak; their
font specimen was also among the keepsakes).

In many cases we need not just scripts, but also
input methods, as discussed in the talk by Khawar
Latif Khan about entering Urdu characters.

Even when a language uses the Latin script, the
voice of its own typographers should be heard in
developing the fonts. This was a topic of the talk by
Thomas Phinney, the recently elected ATypI Presi-
dent, with the strong title, What if African Designers

Created African Latin Fonts? The author described
the Google initiative of commissioning new Latin
fonts for African languages from African designers.
It is important to note that Google made the princi-
pled decision to pay the designers the same rates as
used in Europe and North America.

The relation of typography and decolonization
remind that the former is a human activity, and thus
is closely intertwined with politics and social life.
Hrant Papazian mused about this, and wisely noted
that the recent move by Kazakhstan from Cyrillic
to Latin may mean changing one colonial system
to another. Fernando de Moraes Caro in his talk
about Dives Akuru noted that after independence
the government of Maldives commissioned a book
about the script. The talk by Andrew Amstutz
about Urdu touched the complex political issues

Boris Veytsman

https://silicon.stanford.edu
https://anrt-nancy.fr
https://www.aub.edu.lb/msfea/research/Pages/ATU.aspx
https://www.aub.edu.lb/msfea/research/Pages/ATU.aspx
https://www.typotheque.com
https://www.typotheque.com

TUGboat, Volume 45 (2024), No. 1 9

behind the use of Nastaliq for the language. Kourosh
Beigpour presented a fascinating journey into the
world of Farsi lettering in Los Angeles signs and
other inscriptions, where Nastaliq script neighbored
Hebrew, Armenian and other letters of the Iranian
immigrants. The interplay of social and language
aspects was also an important topic of the concluding
talk by Chuck Bigelow, who touched on the related
topic of language preservation and the difficulty of
translation.

The interplay of typography and decolonization
is, of course, a huge topic, and a single conference
can only scratch the surface. While listening to
the talks, I thought about Cyrillic, and how the de-
colonization of Ukraine was reflected in Ukrainian
typography. On the verge of independence Ukraine
took the symbolic step of reintroducing the letter Ґ
(U+490 and U+491, uppercase and lowercase Cyrillic
Ghe with upturn), which had been excluded from
the alphabet by Soviet reform. Later attempts to
design a contemporary Ukrainian typeface based on
both traditions and modernity led to the creation of
the Arsenal typeface by Andrij Shevchenko (github.
com/alexeiva/Arsenal; a LATEX support package
is available at ctan.org/pkg/arsenal). The in-
terest in Ukrainian typographic traditions inspired
a number of historic typefaces by Bohdan Hdal
(bohdan.com.ua/tvory/t/shryfty), and Ukrainian
Cyrillic forms in the typeface Recht by Andriy Kon-
stantinov (minttype.com/recht).

Non-Latin scripts are often very complex. They
require the full set of possibilities offered by Unicode
and OpenType technology. Therefore it is fitting that
several talks at the conference discussed these issues.
Neil Patel talked about the challenges of OTF when
designing non-Latin scripts. Manish Goregaokar &
Ben Yang described the process of adding a new
script to Unicode. They used a smart pedagogical
device: let’s imagine the Latin script is not in Uni-
code; what hoops do its users need to jump through
to get it included? By the way, I was surprised by
the fact that Unicode technical committees accept
photos of tattoos as examples of script usage.

The talk by Johannes Bergerhausen joined the
historical and underserved scripts describing great
presentation of Unicode at decodeunicode.org and
a book with many font samples for different writing
systems. Johannes also presented another of his de-
signs: a poster available at worldswritingsystems.
org. The poster is a smart way to demonstrate the
diversity of the writing systems. It takes one charac-
ter from each script, using different colors for dead
and living systems, those represented in Unicode and

Figure 4: Dependency, from [4]

those not yet there. This poster too was among the
conference keepsakes.

The huge work required to move a script from
the category “not yet digitized” to fully digitized was
vividly described in the talk by Anshuman Pandey,
who has digitized a large number of scripting systems.

The conference made clear the amount of work
done by volunteers and underpaid students. While
Unicode and OpenType are now fundamental parts of
computing infrastructure, they depend on enthusiasts
who are willing to “spend a part of their honeymoon
researching Yi syllabary”, as one of the presenters
at the conference did. I have cited the classic XKCD

comic [4] several times in my papers and articles, but
cannot help doing it again (Figure 4).

I have mentioned keepsakes several times in this
article. The organizers and attendees gave away a
large number of beautifully typeset materials (Fig-
ure 5), which was all the more surprising for a con-
ference with no registration fee.

To summarize, it was a very interesting confer-
ence, showing the deep relationship of typography
to history, art, science, technology, and our human
way of life.

The organizers promised to post the recordings
of the talks, which will be of great interest to the
community.

Face/Interface 2023 conference: Global type design and human-computer interaction

https://github.com/alexeiva/Arsenal
https://github.com/alexeiva/Arsenal
https://ctan.org/pkg/arsenal
https://bohdan.com.ua/tvory/t/shryfty
https://minttype.com/recht
https://decodeunicode.org
https://worldswritingsystems.org
https://worldswritingsystems.org

10 TUGboat, Volume 45 (2024), No. 1

Figure 5: Conference keepsakes

Acknowledgment I am grateful to Barbara Bee-
ton and Chuck Bigelow who kindly shared with me
their notes and photos and to Karl Berry for editing
the text.

References

[1] J. André. Prehistory of digital fonts. TUGboat

44(1):21–57, 2023. doi.org/10.47397/tb/44-1/

tb136andre-prehistory

[2] K.C.R. Huggins. Egyptian hieroglyphs for modern
printing devices. Master’s thesis, Stanford
University, June, 1988.
apps.dtic.mil/sti/pdfs/ADA326695.pdf

[3] K. Mansour. The non-Latin scripts & typography.
TUGboat 41(3):275–280, 2020. doi.org/10.47397/
tb/41-3/tb129mansour-nonlatin

[4] R.P. Munroe. Dependency, Aug. 2020.
xkcd.com/2347/

[5] E.W. Said. Culture and Imperialism. Knopf,
New York, 1993.

⋄ Boris Veytsman
TEX Users Group
borisv (at) lk dot net

https://borisv.lk.net

10 TUGboat, Volume 45 (2024), No. 1

Typographers’ Inn
Peter Flynn

Dashing it off III (em rules reprise)
The inconsistencies I mentioned in TUGboat 37:3
about recommendations for dashes have had yet an-
other airing recently.

Conventionally, TEX and LATEX use four hori-
zontal lines in different circumstances:

1. the hyphen (-) is inserted automatically by the
hyphenation routine when a word needs break-
ing at a line-end. Normally, you would only
actually type a hyphen when you use a common
compound like ‘well-founded’;

2. the en dash or en rule (–) is primarily used in
numeric ranges like 13–22, but sometimes in
nonce compounds (see below);

3. the em dash or em rule (—) is used as punctua-
tion — like this — as a form of parenthesis;

4. the minus sign (−) is used only in mathematics.
Different cultures, as well as publishers’ house styles,
may prescribe other applications, especially for using
the en dash in the role of punctuation instead of the
em dash, and for putting space before and after the
dash—or not, like that. In my summary of the dis-
cussion from TYPO-L in TUGboat 44:3 (pp. 264–266)
I said ‘So now we know’ — except that we don’t.

Such differences appear mainly to arise between
the US, UK, and European continental spheres of
publishing influence, but probably elsewhere as well
(outside my experience, and I’d be interested to hear
of others).

The use of the en dash for connecting nonce,
rare, or unconventional compounds is interesting, and
appears intended to signal their status as once-off,
such as ‘a Solomon–like judgment’, where a hyphen
would have implied an established usage.

Breaches of the conventions can reveal strongly-
held opinions, as a recent exchange on the BlueSky
social network revealed. One example elicited ap-
proving comments from journalist and editor Christy
Karras and from long-time TEX contributor Don
Hosek, confirming the use of the en dash in some
cases:

• two words needing to be joined which are not
an established hyphenated compound (as in the
‘Solomon–like’ example above);

• a word needing to join a phrase which is space-
separated, like ‘New York–based artist’;

• a word needing to join a compound already
hyphenated, as in the ‘Birch–Swinnerton-Dyer
conjecture’ [2] or ‘Smith-Jones–Brown paradox’
[1].

doi.org/10.47397/tb/45-1/tb139inn

Peter Flynn

TUGboat, Volume 45 (2024), No. 1 11

Don also felt the general practice is an unspaced en
dash for punctuation, giving the example of ‘Ben-
jamin Dreyer–style punctuation’ but reiterated Cris
Maden’s point that I mentioned last time, that Tschi-
chold recommended the en dash with spacing, and
it is perhaps worth looking at what he said:

The widely used em dash is a blunt line one
em long. This is far too much length and in-
variably spoils any cultivated type area. The
situation could be remedied somewhat by di-
minishing the word spacing of the line before
and after an em dash, but this is easily over-
looked.

The only right thing to do is to use lines
of half the length, en dashes, and separate
them from adjoining words by using the word
spacing normal to the line. These en dashes
are also called distance lines because they
represent the word to in distance or route
indications: Basel–Frankfurt; no word spacing
is used here. [3, p.149]

Don also noted that the rise of DTP software in the
80s and 90s led to a lot of bad practices becom-
ing common. Christy pointed out that Associated
Press (AP) style says to use spaces around em dashes
(and doesn’t use en dashes at all) and that Chicago
style says the opposite: no spaces with an em dash.
Don notes the recent update (18th ed.) says to use
en-dashes for compounds of two different people’s
surnames (hyphenated surnames remain unaffected).

The recommendations or requirements of house
styles are partly aesthetic, partly practical, and part-
ly connected with their origins in the days of metal
type in books, periodicals, and newspapers; and
Christy noted that if you are publishing on paper,
you still have limits on the amount of space, so
formatting may be minimal (in the case of AP, at
least).

Ultimately, it usually comes down to following
the style of the publisher you are writing or typeset-
ting for. If you are doing it for yourself, or if there
are no guidelines or styles, you get a free choice, and
I strongly recommend testing different ways with the
typeface you are using. The amount of space either
side of the en and em dashes may be partly built
into the font, possibly making argument redundant
about whether or not you should use normal spa-
ces (Tschichold), thin spaces (Don, also TUGboat),
or none at all. If you do use spaces, remember to
make the space before the dash a non-breaking space

— no-one wants to see a line beginning with a dash.

Bookshelves

During the first COVID lockdown, when we were all
meeting by group video, I wrote a little document
class called bookshelf which turned a BibTEX bibli-
ography into an image of a bookshelf using the title
and author fields to fake up the spines with random
colors and typefaces.

I am very happy to say that Boris Veytsman has
come back to me with a load of suggestions, code,
and fixes, so by the time you read this there should
be a new version.

Afterthought

I have looked before at examples of the problems
raised by poorly-broken centered headings (TUGboat

issues 33:1, p. 8–10, and 37:3, p. 264–266). Another
one cropped up the other day while I was staying
at a hotel in England. They very naturally have
tea-making equipment in the room, but thoughtfully
included a specially-made pot for leaving the used
tea-bags in, carefully inscribed ‘TEABAGS’. They
were available for sale, and the notice is illustrated
here. I’ll have a locally crafted tea-bag, please. Oh,
and a pot.

References

[1] J.A. Barker. A Paradox of Knowing Whether.
Mind, 84(334):281–283, 1975.
www.jstor.org/stable/2253397

[2] B.J. Birch, P.H.F. Swinnerton-Dyer. Notes on
elliptic curves. II. Journal für die reine und

angewandte Mathematik, 1965(218):79–108, 1965.
doi.org/10.1515/crll.1965.218.79

[3] J. Tschichold. The Form of the Book: Essays on the

morality of good design: Dashes. Lund Humphries,
London, 1991.

� Peter Flynn
Textual Therapy Division,

Silmaril Consultants
Cork, Ireland
peter (at) silmaril dot ie

blogs.silmaril.ie/peter

Typographers’ Inn

https://www.jstor.org/stable/2253397
https://doi.org/10.1515/crll.1965.218.79

12 TUGboat, Volume 45 (2024), No. 1

Variable fonts in LuaTEX, with an

introduction to the Junicode VF and

Elstob fonts

Peter S. Baker

Abstract

This paper introduces variable fonts, now supported
by LuaTEX, and explains the benefits this new font
technology offers to LuaLATEX users—chief among
these being the restoration of some of the typograph-
ical capabilities of metal type, nearly lost with the
advent of digital fonts. It then describes the capabil-
ities of two variable fonts developed by the author —
Junicode VF (where “V” stands for “variable”, not
“virtual”) and Elstob—and briefly introduces the
packages that provide access to them, especially the
options and commands for controlling their axes.

1 Background

In the days of metal type, long before fonts were
scalable, type had to be produced in a variety of
sizes. For example, forty-seven pages of the 1798
Caslon Specimen of Printing Types [3, pp. 13–105]
are devoted to the display of roman and italic type in
sizes ranging from “Six Lines Pica” (about 72pt) to
“Diamond” (about 4.5pt)—see fig. 1. Type within

Figure 1: Six Lines Pica and Diamond type, from
A Specimen of Printing Types, by Wm Caslon [3,
pp. [27], [101]].

many font families varied not only in size, but also
in shape, with smaller sizes cut proportionally wider,
heavier, and with a higher x-height than larger sizes —
see fig. 2, where two Caslon specimens, about 12pt
and 8pt, have been scaled to the same size. Well into

Figure 2: Two sizes of type, from A Specimen of

Printing Types, by Wm Caslon [3, pp. [77], [97]].

the twentieth century, foundries offered their major
typefaces in a wide variety of styles and sizes. For
example, the American Type Founders catalogue of
1923 devotes sixty-one pages to a dizzying number
of Caslon types — “Caslon Bold Condensed” (6pt to
120pt), “Heavy Caslon” (6pt to 84pt), and “Caslon

Openface” (8pt to 48pt), to mention only a few [2,
pp. 130–191]. In all cases, smaller and larger types
varied in shape as well as in size.

The advent of phototypesetting in the 1950s
brought with it the ability to scale type by means
of differently powered lenses—but type scaled in
this way could vary only in size, not in shape. Al-
though foundries continued to provide a wide variety
of styles within type families, typographers increas-
ingly thought scaling alone a good enough solution
to the problem posed by the need for differently sized
text in printed works. If the type of the footnotes
looked anemic compared to that of the body text,
that seemed an acceptable price to pay for the conve-
nience and economy of working with a single typeface.

Digital typesetting brought at least the possibil-
ity of a return to the practices of early typefounders,
and indeed some modern font families feature the
kind of variation by size found in the Caslon type
catalogue. For example, a number of Adobe “Pro”
font families have styles labeled “Caption”, “Subhead”,
and “Display” in addition to the default. Such styles
are called optical sizes because they are designed
to be optically correct within certain size ranges.
However, fonts with optical sizes are uncommon and
often costly. Most digital fonts belong to so-called
RIBBI families, consisting of just four styles—Reg-
ular, Italic, Bold, and Bold Italic. Users generally
think these styles quite sufficient, and only the most
sophisticated typographers bother with such stylistic
niceties as those offered by the Adobe “Pro” fonts —
especially when they have to be manually selected.1

TEX can boast some of the most sophisticated
typographical capabilities of any digital publishing
system. Donald Knuth’s Computer Modern family
of fonts (along with several derivatives) has always
featured optical sizes similar to those typical of metal
type (fig. 3), and TEX automatically selects the cor-

Figure 3: Computer Modern at \normalsize and
\footnotesize, scaled to the same size for comparison.

rect optical size for any run of text set in Computer
Modern: users rarely have to think about it.

The introduction of Jonathan Kew’s X ETEX in
2004, followed soon afterwards by Will Robertson’s
fontspec, was a momentous development for TEX.

1 For a brief history of optical sizes, see Ahrens and
Mugikura [1, pp. 17–25].

doi.org/10.47397/tb/45-1/tb139baker-junicodevf

Peter S. Baker

https://doi.org/10.47397/tb/45-1/tb139baker-junicodevf

TUGboat, Volume 45 (2024), No. 1 13

Figure 4: A sample of Fell’s Pica roman and italic type, from Hickes [5].

Figure 5: Design space for the four-member Times
New Roman font family.

Quite suddenly, users gained the ability to access
all the fonts installed on their systems, and most of
these were in the popular OpenType format.2 For
the typographically ambitious, new vistas opened up.

But with its embrace of OpenType fonts, the
TEX community not only benefited from their conve-
nience, but also inherited their limitations. The vast
majority of font families installed in any system, and
indeed in the CTAN repository, offered only the tradi-
tional four styles, while most extended font families —
those with more than the four RIBBI styles—were
nevertheless stylistically impoverished in comparison
with Computer Modern or the immense Caslon fam-
ily of the 1798 Specimen.3 Twenty years later, font
technology has advanced, but we are still struggling
to make up the ground we lost in the transition to
digital typography.

In font families of the kind I have been dis-
cussing, both RIBBI and extended, the collection of
styles is organized around one or more axes—that
is, aspects of a font’s design that can change in a sys-
tematic way. A font’s axes can be pictured as being
like the axes in a graph—though in font terminol-
ogy the graph is called the design space. The most
common axis is Weight— that is, the proportion of
black to white in a font’s glyphs. Other standard
axes are Width, Slant, and Optical Size. Italic

2 See Kew [7] and Robertson [8]. OpenType is a font
format, first developed by Microsoft in the 1990s, that
enables such features as ligatures, the setting of complex
scripts like Arabic and Devangari, and much more.

3 X ETEX automatically uses the optical sizes of Adobe’s
“Pro” fonts, but these cannot be included in CTAN —and in
any case they offer fewer styles than the larger metal type
families.

Figure 6: Design space for the nineteen-member
Junicode roman subfamily.

is also an axis, though one with only two values,
since a font either is or is not italic. A RIBBI family
positions its four styles at the extremes of two axes,
Weight and Italic (see fig. 5), but an extended family
may fill in some of the empty spaces in and around
the RIBBI design space and add its own axes as well.

The lost ground I mentioned above has been
much on my mind as I’ve worked on the two fonts I
am going to discuss in this article. I first developed
Junicode in the mid-1990s as a tool for students
and scholars of medieval Europe, but it has grown
over the decades to support scholars in numerous
disciplines (mostly linguistic, literary, and historical).
The font is based on types commissioned by John
Fell (1625–1686), Bishop of Oxford and a key figure
in the early history of the Oxford University Press
(see fig. 4).

Fell bequeathed these types to the university,
and they were used in many books issued by the
Press in the seventeenth and eighteenth centuries.
Version 1 of Junicode was a RIBBI family, but in 2019
I began work on a more capable version, released
in August 2023. Junicode version 2 is an extended
family with three major axes (Italic, Weight, and
Width), which are combined in various ways to make
thirty-eight styles or instances—that is, locations
in a font’s design space selected and named by the
designer. Fig. 6 shows the design space for Junicode’s
roman face, with its nineteen instances.

Variable fonts in LuaTEX, with an introduction to the Junicode VF and Elstob fonts

14 TUGboat, Volume 45 (2024), No. 1

Junicode is well known to TEX users, having
been in the CTAN repository since 2009. With more
than 5,000 glyphs, it is an unwieldy thing, and as
many of these glyphs have non-standard encodings,
it can raise accessibility issues in digital texts of all
kinds. Version 2 offers solutions to the accessibility
problems of version 1, but the non-standard encod-
ings remain— each of them a potential trap for the
unwary user.4

With both accessibility and typographical issues
in mind, I began work on the Elstob font (github.
com/psb1558/Elstob-font) in 2018. The first al-
pha version was released the following year, and the
current version is 2.104. Based on another of Bishop
Fell’s typefaces, Elstob was meant to be lightweight
and entirely standards-compliant: while it would
not have Junicode’s vast character set, its curated
selection of glyphs would meet the needs of most
medievalists and linguists, and using it would all
but guarantee an accessible end product. Further,
Elstob would have both Weight and Optical Size
axes so that different sizes of type could coexist more
comfortably on a page.

Version 1 of Junicode was a static font family —
that is, one in which each instance is packaged in
its own file. Version 2 also comes in a static version
consisting of thirty-eight font files, while the static
version of Elstob consists of no fewer than forty-
eight files. But each of these fonts has a much more
capable and compact variable version as well.

2 Variable fonts

Even extended font families impose significant limi-
tations on users. Because every instance of a family
adds a file (in the case of Junicode, a rather large
one), many locations in the design space are unavail-
able to users. Often a large area of the design space
may have no instances in it at all. To most users the
poverty of the typical static font family will not seem
a hardship—after all, it’s what we’re used to. But
what if you could set your chosen typeface in any

weight and any width? If you think you might make
use of such an ability, you will like variable fonts.

The specification for variable fonts (the official
name is “OpenType Font Variations”) first appeared
in 2016,5 and these fonts have been steadily gaining
ground ever since. A variable font is one that replaces

4 For more about the accessibility problems raised
by Junicode’s extensive use of Unicode Private Use Area
encodings for specialist medieval glyphs, see the Junicode

Manual (github.com/psb1558/Junicode-font/blob/
master/docs/JunicodeManual.pdf), §4.1.

5 See the OpenType specification [4], especially the sec-
tion “OpenType Font Variations overview”. For an accessible
introduction to variable fonts, see Hudson [6].

Figure 7: Junicode VF roman at weights of 400
(“Regular”), 457 (custom), and 500 (“Medium”).

Figure 8: A sampler of styles available with the
Elstob font.

the several files of a font face (usually roman or italic)
with a single file containing a set of glyph outlines ac-
companied by deltas governing their transformation.
With appropriate software support, outlines can be
transformed continuously along the font’s axes by
supplying numerical values. So Junicode VF, the
variable version of Junicode, replaces the thirty-eight
files of the static font with just two — one for roman
and one for italic. Both the static and the variable
fonts are based on the same design space, but in the
variable font every possible location is occupied — not
only the blank areas of fig. 6, but also the interstices.
If you think the Regular weight of 400 a little too
light and the Medium weight of 500 too heavy, you
can choose a weight of 420, or 457, or 443.25. See
fig. 7, where the difference between 457 and the sur-
rounding weights is subtle, but would make a visible
difference in the darkness of a text block.

Like the static Junicode font, Junicode VF is
in the CTAN repository, along with documentation
and a package for loading the font and accessing its
various features. Elstob is not in CTAN, but can be
downloaded for free;6 the latest releases come with a
package for TEX users like the one that accompanies
Junicode VF.

In addition to Elstob’s Weight and Optical Size
axes, the italic face includes a Slant axis (see fig. 8).7

6 github.com/psb1558/Elstob-font. Like most open
source fonts, Elstob can be downloaded from numerous com-
mercial sites, but to obtain the latest version, users should
download only from the GitHub repository.

7 Junicode and Elstob also have specialized axes which are
available to TEX users. For Junicode, “Enlarge” lets users set

Peter S. Baker

https://github.com/psb1558/Elstob-font
https://github.com/psb1558/Elstob-font
https://github.com/psb1558/Junicode-font/blob/master/docs/JunicodeManual.pdf
https://github.com/psb1558/Junicode-font/blob/master/docs/JunicodeManual.pdf
https://github.com/psb1558/Elstob-font

TUGboat, Volume 45 (2024), No. 1 15

The current release of Elstob comes with a package
like the one for Junicode VF.

3 Support for variable fonts in TEX

Experimental support for variable fonts in luaotf-

load, the font loader for LuaTEX, first appeared in
December 2020.8 Since that time, support for these
fonts has developed rapidly, so that it can now be
called mature: if the program has any significant
shortcomings or bugs, I have been unable to discover
them, though I have been using it almost daily for
the better part of a year.

Users should make sure they are running version
3.26 (included in TEX Live 2023) or later of luaotf-

load, as variable font support is incomplete in earlier
versions.

As of version 2.9a (released 2024-02-13), fontspec

includes explicit support for variable fonts: for de-
tails, see section III.7 of its documentation. Variable
fonts can also be managed via fontspec’s RawFeature
command, present in older versions. fontspec users
should always select the HarfBuzz renderer when us-
ing variable fonts, as node mode may sometimes fail
to load these fonts or apply OpenType features in-
correctly (the packages discussed in the next section
invoke the HarfBuzz renderer).

X ETEX and other flavors of TEX do not support
variable fonts; only LuaTEX.

4 The junicodevf and elstob packages

The packages for Junicode VF and Elstob are de-
signed to resemble many of the font packages in
CTAN — for example, those for ebgaramond, source-
serifpro, and roboto (see Voß [9, p. 299] for a par-
tial list of packages and a link to a complete list).
They are loaded in the usual way, with \usepackage

{junicodevf} or \usepackage{elstob}, and they
accept a more or less standard set of options, includ-
ing the following:

extralight (Elstob only) The weight of the main
font (that is, the four-style collection selected by
fontspec’s \setmainfont command) is ≈200.

light The weight of the main font is ≈300.

medium The weight of the main font is ≈500.

semibold The weight of the Bold style of the main
font is ≈600.

extrabold (Elstob only) The weight of Bold style
of the main font is ≈800.

the enlarged lowercase letters that often begin sentences in
medieval manuscripts; for Elstob, “Grade” changes the weight
of text without changing its width (a more useful feature for
web designers than for TEX users), and “Spacing” approximates
the word- and sentence-spacing of early metal type.

8 See the NEWS file in the luaotfload repository
(github.com/latex3/luaotfload, accessed 2024-3-18).

condensed (Junicode VF only) The width of the
main font (≈75) is about 85% of Regular (100).

semicondensed (Junicode VF only) The main font
is wider than Condensed but narrower than Reg-
ular (≈87.5).

expanded (Junicode VF only) The width of the
main font is about 115% (≈125) of Regular.

semiexpanded (Junicode VF only) The main font
is wider than Regular, but narrower than ex-
panded (≈112.5).

Although these options resemble those for CTAN’s
static fonts, they produce very different effects, in
that they do not produce text in a fixed style, but
rather in a range of styles that vary with text size —
that is to say, optical sizes, which are supported na-
tively by Elstob and emulated in Junicode by making
fine adjustments to the Weight and Width axes (thus
the approximation signs in the option list above).

Figs. 9 and 10 illustrate the contrast between
Elstob set as body text (11pt) and as footnote text
(about 8pt). In fig. 9 the difference in glyph shapes
is scarcely visible, but of course that is the point: as
early typefounders understood, small type appears
to match larger type when the shape is properly
adjusted. Fig. 10, which enlarges body text and
footnote text to the same size, shows the difference
more clearly, the footnote text being heavier and
with a higher x-height and shorter descenders than
the body text.

For users dissatisfied with the junicodevf and
elstob defaults and the options listed above, two
sets of options allow even finer control over these
fonts’ optical sizing. Here is the first set, which
enables adjustments to design choices made via the
standard options:

weightadjustment Adjusts the weight of the type
by adding this number. For example, if you
choose medium for the main font (weight ≈500)
and bold (the default, with weight ≈700), and
also include the option weightadjustment=-25,
then the weights of Medium and Bold text will
be lightened by 25 (to ≈475 and ≈675).

widthadjustment (Junicode only) Adjusts the
width of the type by adding this number. For
example, if you choose semicondensed for your
document (width ≈87.5), and you also include
the option widthadjustment=5, then the width
will be ≈92.5, between semicondensed and
regular.

opticalsizeadjustment (Elstob only) Adjusts the
optical size. By default, the value of this axis is
8 for 8pt text, 12 for 12pt, etc. But if you pass
the option opticalsizeadjustment=-1.5, the

Variable fonts in LuaTEX, with an introduction to the Junicode VF and Elstob fonts

https://github.com/latex3/luaotfload

16 TUGboat, Volume 45 (2024), No. 1

Figure 9: Body text and footnote set in Elstob.

Figure 10: Body text and footnote text enlarged to
the same size.

optical size axis will be 6.5 for 8pt type, 10.5 for
12pt, etc. (always staying in the range 6–18).

The second set, to be used instead of the options
listed above, gives the user complete control over axis
values for every text size in a document. To illustrate,
this is the relevant part of the command that loads
the junicodevf package for the Junicode Manual :9

usepackage[

MainRegularSizeFeatures={

{size=8.6,wght=550,wdth=120},

{size=10.99,wght=475,wdth=115},

{size=21.59,wght=400,wdth=112.5},

{size=21.59,wght=351,wdth=100}

},

MainItalicSizeFeatures={

{size=8.6,wght=550,wdth=118},

{size=10.99,wght=475,wdth=114},

{size=21.59,wght=450,wdth=111},

{size=21.59,wght=372,wdth=98}

},

MainBoldSizeFeatures={

{size=8.6,wght=700,wdth=120},

{size=10.99,wght=700,wdth=115},

{size=21.59,wght=650,wdth=112.5},

{size=21.59,wght=600,wdth=100}

},

MainBoldItalicSizeFeatures={

{size=8.6,wght=700,wdth=118},

{size=10.99,wght=700,wdth=114},

{size=21.59,wght=650,wdth=111},

{size=21.59,wght=600,wdth=98}

},

]{junicodevf}

9 github.com/psb1558/Junicode-font/blob/master/

docs/JunicodeManual.sty.

For each of the four RIBBI styles, this command
defines a list of associative arrays, each prescribing
axis coordinates for a range of sizes. In these arrays,
a size key is mandatory: any array without one
is ignored. The arrays should be ordered by point
size. The first array prescribes axis coordinates for
all sizes up to size, the last array for all sizes greater
than size, and any intermediate arrays a range from
the previous to the current size. So the ranges
covered in each list above are -8.6pt, 8.6-10.99pt,
10.99-21.59pt, and 21.59pt-.

Keys other than size are the four-letter tags for
the font’s axes: wght (Weight) and wdth (Width).10

When a key is omitted, the default value for that axis
is used. When SizeFeatures are given in this way,
they override any other options that set or change
axis coordinates (e.g. weightadjustment).

These lists define only four size ranges because
the Junicode Manual needs only four; but you can de-
fine as many as you need. (The junicodevf package,
if invoked without options, defines eleven.)

Both the junicodevf and elstob packages de-
fine commands for invoking font styles that match
the instances of the corresponding static fonts, plus
a few more. These are listed in the fonts’ docu-
mentation, but as an example, when using Junicode
one can switch temporarily from the main font to
Condensed Light as follows:

{\jCondLight The quick brown fox.}

These alternate styles can be customized just as the
main styles can. For example, to darken and widen
the \jCondLight style a little, include this option
when loading the junicodevf package:

CondLightSizeFeatures={

{size=4,wght=325,wdth=80},

}

10 In OpenType programming, axes are identified by four-
letter tags rather than their longer names. By convention, tags
for axes defined in the OpenType standard are lowercase, while
custom axes are uppercase. The default value of Junicode’s
ENLA (Enlarge) custom axis is used.

Peter S. Baker

https://github.com/psb1558/Junicode-font/blob/master/docs/JunicodeManual.sty
https://github.com/psb1558/Junicode-font/blob/master/docs/JunicodeManual.sty

TUGboat, Volume 45 (2024), No. 1 17

The junicodevf and elstob packages load
fontspec (no need to load it again) and depend on
that package for all their functionality. The options
that manipulate axes generate fontspec commands,
while other options are passed through to fontspec.
For example, the MainFeatures option allows users
to turn on features for all styles of the main font:

\usepackage[

MainFeatures={

Language=English,

StylisticSet=9

}

]{junicodevf}

Here, fontspec options set the language of the main
font to English and turn on Stylistic Set 9, which
modernizes some number-shapes. The same can
be done for individual styles of the main font with
options like MainBoldItalicFeatures, and for al-
ternate styles with options like CondLightFeatures

(features for the Condensed Light style).
Both Junicode and Elstob offer large numbers of

OpenType features, and their packages also provide
commands for convenient access to a selection of
them. For example, Stylistic Set 12 enables translit-
eration of English text to early English runes for both
Junicode and Elstob. One can turn it on either with
a fontspec command or with a mnemonic command
from the junicodevf or elstob package (with the
result shown in fig. 11):

fontspec: \addfontfeature{StylisticSet=12}

elstob: \EarlyEnglishFuthorc

fisc flodu ahof→
fisc floduahof
Figure 11: The effect of Stylistic Set 12 (Early
English Futhorc) in Elstob.

All of these commands, listed in the Junicode and
Elstob documentation, have text variants that work
like \textit and \textbf:

\textEarlyEnglishFuthorc{fisc flodu ahof}

Both Junicode and Elstob, but especially Jun-
icode, also have a number of Character Variant
(cvNN) features, which afford access to one or more
variants for individual characters. These can be ac-
cessed either with fontspec commands or with more
compact alternates: (\jcv for Junicode, \ecv for
Elstob, \textcv for both). Mnemonics can be used
to select from the collection of Character Variant
features in either fontspec or junicodevf/elstob
commands:

fontspec: \addfontfeature{%

CharacterVariant=\ecvg:1}g

elstob: \ecv[1]{\ecvg}g

Here \ecvg is a mnemonic for 14, identifying Elstob’s
Character Variant feature for the letter g (cv14).
The 1 that appears in both commands is an index
that selects the second variant shape of that letter.

5 Conclusion

Junicode VF is, to my knowledge, the first vari-
able font to appear in the CTAN repository, and
junicodevf and elstob are first attempts at pack-
ages for loading variable fonts in LuaLATEX. I wel-
come critiques of these packages, and especially their
options for managing the axes of these fonts. As
more variable fonts appear in CTAN, it would be
useful to standardize the interfaces of any dedicated
packages that accompany them.

References

[1] T. Ahrens, S. Mugikura. Size-Specific Adjustments

to Type Designs. Just Another Foundry, Munich,
2014.

[2] American Type Founders Company. Specimen Book

& Catalogue. [Jersey City], 1923.
archive.org/details/specimenbookcata00amer

[3] W. Caslon. A Specimen of Printing Types,

by Wm Caslon, Letter-Founder to the King.
C. Whittingham, 1798.
archive.org/details/specimenofprinti00casl

[4] P. Constable, K. Turetzky, et al. OpenType
specification version 1.9, 2022.
learn.microsoft.com/en-us/typography/

opentype/spec/

[5] G. Hickes. Linguarum vett. septentrionalium

thesaurus grammatico-criticus et archæologicus.
[Oxford University Press], Oxford, 1703-1705.

[6] J. Hudson. Introducing OpenType variable fonts,
2016. medium.com/variable-fonts/https-medium-
com-tiro-introducing-opentype-variable-fonts-

12ba6cd2369

[7] J. Kew. X ETEX, the Multilingual Lion: TEX meets
Unicode and smart font technologies. TUGboat

26(2):115–124, 2005.
tug.org/TUGboat/tb26-2/kew.pdf

[8] W. Robertson. Advanced font features with X ETEX —
the fontspec package. TUGboat 26(3):215–223, 2005.
tug.org/TUGboat/tb26-3/tb84robertson.pdf

[9] H. Voß. Using OpenType and TrueType fonts with
X ELATEX and LuaLATEX. TUGboat 43(3):295–299,
2022.
tug.org/TUGboat/tb43-3/tb135voss-unifont.pdf

⋄ Peter S. Baker
b.tarde (at) gmail dot com

https://github.com/psb1558/

Variable fonts in LuaTEX, with an introduction to the Junicode VF and Elstob fonts

https://archive.org/details/specimenbookcata00amer
https://archive.org/details/specimenofprinti00casl
https://learn.microsoft.com/en-us/typography/opentype/spec/
https://learn.microsoft.com/en-us/typography/opentype/spec/
https://medium.com/variable-fonts/https-medium-com-tiro-introducing-opentype-variable-fonts-12ba6cd2369
https://medium.com/variable-fonts/https-medium-com-tiro-introducing-opentype-variable-fonts-12ba6cd2369
https://medium.com/variable-fonts/https-medium-com-tiro-introducing-opentype-variable-fonts-12ba6cd2369
https://tug.org/TUGboat/tb26-2/kew.pdf
https://tug.org/TUGboat/tb26-3/tb84robertson.pdf
https://tug.org/TUGboat/tb43-3/tb135voss-unifont.pdf

18 TUGboat, Volume 45 (2024), No. 1

dynMath: A PostScript Type 3-based LATEX

package to support extensible mathematical

symbols

Abdelouahad Bayar

Abstract

This paper gives an overview of the characteristics
and capabilities of a package called dynMath. The
main aim of this package is to provide LATEX with
the ability to support dynamic mathematical sym-
bols, thereby improving the quality of the scientific
document. Dynamic mathematical symbols are de-
veloped in such a way that, when stretched, they will
respect optical scaling, uniformity of shape, right-

sizing and the closest possible likeness to their ana-

logues in the old printing system (metal typeset-
ting). The tools supplying the stretching with the
above characteristics are supported in part by LATEX
(dynMath) and in part by a PostScript Type 3 font.

1 Introduction

In a scientific document, mathematical formulas are
written using static and/or variable-sized symbols.
In a document typeset at a given size, the shape
and the size of static symbols remain unchanged
throughout the document. A variable-sized symbol
or simply a dynamic symbol varies in terms of size
and sometimes shape from one context to another in
the same document. The formula in Figure 1, type-
set with (normal) LATEX, is referenced to clarify the
concept. The symbols A, a, B, b, C and c are static
symbols whereas the parentheses delimiters are dy-
namic. We notice that the parentheses change in
dimension in order to cover the formula to be delim-
ited. In addition, even the shape has changed.

Without a doubt, (LA)TEX is the most widely
used system by the scientific community in type-
setting scientific documents. (LA)TEX supports the
concept of dynamic symbols or operators in all its
different implementations, i.e. TEX [8], LATEX [10],
LuaTEX [12], . . .

Considering Figure 1, the parentheses delimit-
ing matrix C are not of the same form as those in
the case of matrices A and B. So, with (LA)TEX,
we lose in uniformity of the shape of the parenthe-
ses when the height of the formula exceeds a certain
level. This is not the case in Figure 2, where the
same formulas are reproduced with dynMath.

Some of the variable-sized mathematical sym-
bol shapes used in the old printing system (metal
typesetting) are supported in digital printing, but
only with close shapes, for technical reasons. This
causes a slight drop in quality (beauty). The case

A =

(
a1
a2

)

, B =

b1
b2
b3

, C =

c1
c2
...

cn−1

cn

Figure 1: Variable-sized parentheses with LATEX

A = �
a1
a2

�, B = �
b1
b2
b3
� , C = �

c1
c2
...

cn−1

cn

�

Figure 2: Variable-sized parentheses with dynMath

Figure 3: Variable-sized braces in metal typesetting

La puissance nième de a est le réel, noté an,
égal à :

a× . . .× a
︸ ︷︷ ︸

n fois

si n est strictement positif

1 si n est nul
1

a
−n

si n est strictement négatif

Figure 4: Variable-sized braces with LATEX

is illustrated by considering an extract from an old
mathematics book printed in 1974 [13], as shown in
Figure 3. The symbol concerned is the brace. To
illustrate the idea, the book’s script is reproduced
with LATEX as shown in Figure 4. The property of re-

semblance to analogous metal symbols will be called
“metal-likeness”.

Referring once again to Figure 3, we can see
that the two braces are not related by a linear re-
lation. The ratio between heights is not the same
as for thicknesses. The scaling model used in docu-
ment processing (old and current) is not linear. In
document processing, this is called “optical scaling”.
More details on the optical scaling concept are found
in [2, 5, 6]. In LATEX, the scaling used is not linear,
though it’s also not quite optical, since after a cer-
tain size, the thickness becomes constant.

Extensible delimiter symbols in (LA)TEX, when
the size of the formula to be delimited exceeds a
known level, are obtained by a composition based
on more than one character. One of the component
characters is repeated as many times as necessary

doi.org/10.47397/tb/45-1/tb139bayar-dynmath

Abdelouahad Bayar

https://doi.org/10.47397/tb/45-1/tb139bayar-dynmath

TUGboat, Volume 45 (2024), No. 1 19

until the size of the delimiter matches, not exactly,
but approximately the suggested size. (LA)TEX lacks
the property that we’ll call “right-sizing”.

Properties such as uniformity, optical scaling,
metal-likeness and right-sizing, which are missing in
normal TEX, are principally brought by dynMath.

The support of dynamic characters, particularly
mathematical symbols, has been a topic of research
in the field of electronic document processing for
over four decades. It has focused on the extensible
Arabic letter to supply the concept of the Kashida,
the basis of justification of Arabic scripts [1, 4, 7, 11]
especially as it has concerned dynamic mathemati-
cal symbols [2, 11].

CurExt is a LATEX extension developed to pro-
vide the possibility of typesetting mathematical for-
mulas using variable-sized symbols. It supports ex-
tensible parentheses and the Kashida, the mecha-
nism needed to extend Arabic mathematical sym-
bols. The CurExt package does not offer the abil-
ity to manipulate braces and other notations with
metal-likeness. Its development principle, taking
into account its ability to handle parentheses, en-
ables it, once completed, to meet our four proper-
ties of uniformity, optical scaling, metal-likeness and
right-sizing.

We should point out that the dynMath package
is the direct continuation of research published be-
fore [3]. The background mathematical model sup-
porting stretching and the TEX macros developed in
[3] has been revised and improved to supply as well
as possible uniformity, optical scaling, metal-likeness
and right-sizing.

The remainder of this paper is organized as fol-
lows. In Section 2, we give a brief description of the
general layout relative to the dynMath package. In
section 3, the metal-likeness of dynamic symbols in
dynMath is defined and discussed. The concepts of
“uniformity” and “right-sizing” are studied together
in Section 4. In Section 5, the ability to support
some old mathematical symbolic notations is pre-
sented. In Section 6, the general mode to build the
naming of macros to be used by the typesetter is
highlighted. Since the paper is a presentation of
a LATEX package, some samples in terms of source
codes and formatting results are given in Section 7.
The paper ends with conclusions and perspectives.

2 General layout of dynMath

The dynMath package has the ability to support dy-
namic mathematical symbols due to the existing pos-
sibilities of interaction between (LA)TEX and Post-
Script. This is done using the command \special

via the dvips driver to translate dvi files to Post-

Script [14]. More precisely, we use these methods to
include literal PostScript in TEX documents to work
with the PostScript Type 3 font. Thus, to format a
LATEX source file named doc.tex for example, and
get the corresponding PDF, the command line needs
to be (or the equivalent for LuaLATEX):

latex doc.tex; dvips doc.dvi; \

ps2pdf doc.ps

At this time, the dynMath package consists of
two files: dynMath.sty and dynMath.tps. These
two files must be added to the TEX distribution or
to the working directory. A brief description of these
two files is given below.

• dynMath.sty: contains the LATEX package spec-
ification in TEX and LATEX programming. It
contains all useful variables, macros and inter-
faces with the content of the dynMath.tps file.

• dynMath.tps: contains a PostScript Type 3 font
named dynMath as a literal header that is a ‘!’
\special. The content of the file looks like :
\special {!... 〈dynMath specification〉 ...}.
This is PostScript code inside TEX source, for
which we adopted the extension .tps to mean
TEX (t) and PostScript (ps).

3 Metal-likeness in dynMath

The main goal of the research work is the ability
to support dynamic characters in document process-
ing. But one of the principal motivations is to add to
current document processing tools the capability of
supplying stretchable mathematical symbols looking
like those printed in metal typesetting. The LATEX
package dynMath brings this opportunity. In fact,
braces supplied by dynMath for example (which are
among the most difficult symbols to support) look
like those from metal typesetting. We call this con-
cept “metal-likeness”.

An illustration is shown in Figure 5. We con-
sider a mathematical presentation taken from an old
book [9] (Figure 5a) and we typeset it using dynMath

(Figure 5b). There’s a difference in the script fonts
in the mathematical equation, but this doesn’t mat-
ter since it’s the braces we’re interested in.

4 Uniformity and right-sizing

dynMath supports dynamic mathematical symbols.
It also has the ability to handle these symbols in
their exact and tailored sizes or in any size conve-
nient to a context. Let us consider the parenthesis
as an example of a dynamic symbol to introduce
the concept. We need first to recall in an abstract
way how documents are printed through (LA)TEX sys-
tems. When printing a document formatted with

dynMath: A PostScript Type 3-based LATEX package to support extensible mathematical symbols

20 TUGboat, Volume 45 (2024), No. 1

(a) Metal left brace
symbols

�

ρ ρ1 ρ2

ds� A τ2 τ1

ds2� τ2 A1 τ

ds2� τ1 τ A2

ω ω1 ω2

(b) dynMath left brace symbols

Figure 5: Metal and dynMath symbols comparison

(
((

((

Figure 6: Standalone left parentheses

(LA)TEX, the bitmaps of the characters are used in-
stead of the METAFONT language encoding. It is
well-known that applying scaling operations to bit-
maps diminishes the quality of the images. Conse-
quently, the support of dynamic fonts based directly
on bitmaps is not a feasible way to print documents
in good quality.

This problem has already been solved by D.E.
Knuth. The approach is presented considering the
parenthesis. Knuth has designed standalone paren-
theses (not composed from other characters) of dif-
ferent sizes as shown in Figure 6. When the height
of a mathematical formula is less than the highest
of these five parentheses (see Figure 6), the closest
parenthesis in terms of size is used to delimit the
formula.

The previous idea can not be used to solve en-
tirely the problem since it is necessary to give a large
number of parentheses in different sizes to cover all
the needs. In addition, we can not predict in a mean-
ingful way a maximum size of mathematical formu-
las. When a parenthesis, of a height exceeding the
highest standalone parenthesis, is needed, (LA)TEX
uses a compound parenthesis based on three charac-

ters:

,

and

. The last is repeated as many times

as necessary between the first and the second to op-
timally cover the formula to be delimited. A sam-
ple of a compound parenthesis is shown in Figure 7.
Two important things to note. The first is that the
parenthesis used, whether standalone or compound,
will not always be exactly of the same height as the
formula to delimit. The second relates particularly
to the compound parenthesis: it differs from the first

Figure 7: A left compound parenthesis

()()()()()

(a) Approximated (LA)TEX delimitation

� �� �� �� �� �

(b) Exact dynMath delimitation

� �� �� �
� �

� �

(c) Non-approximated CurExt delimitation

Figure 8: Approximated versus exact delimitations

five ones in terms of shape. This leads therefore to
a loss of uniformity. Let us notice that the symbols
in Figure 6 are true parentheses.

Here, we have to point out that CurExt, like
dynMath, also handles the sizes of parentheses in a
precise and not approximate way. One difference
between dynMath and CurExt is that in the latter
the parentheses’ sizes are a little larger than the real
size of the formula in order to cover it integrally.
This possibility will be supported in the future by
dynMath as an option.

dynMath, developed on the basis of a mathemat-
ical model supporting the optical scaling concept,
allows for parentheses of sizes satisfying exactly the
needs of a formula, using PostScript Type 3 fonts.
Even in the case of large formulas, the delimiter pro-
duced by dynMath retains the form of a parenthesis
ensuring the keeping of the “uniformity” property.
Once again, it must be mentioned that CurExt sup-
ports these characteristics.

The concept is clarified considering the abstract
formulas delimited by parentheses using normal TEX,
dynMath and CurExt in Figures 8a, 8b and 8c. We
notice that the abstract mathematical formulas mod-
eled by black boxes in Figure 8a are of sizes equal
to existing parentheses in the cmex10 font. This is
why the delimiting parentheses are exactly of the
same size (height plus depth). But in the case of
gray formulas, only the nearest parenthesis in terms
of size is used. With dynMath, in all cases the paren-
theses are exactly of the same size as the formulas
to delimit. About CurExt, the exact size of the for-
mula is taken and increased a little to determine the

Abdelouahad Bayar

TUGboat, Volume 45 (2024), No. 1 21

(a) Approximated (LA)TEX delimitation, losing uniformity

� �� �� �

(b) Exact dynMath delimitation, keeping uniformity

� �� �� �

(c) Non-approximated CurExt delimitation,
keeping uniformity

Figure 9: Approximated delimitation losing unifor-
mity, versus exact delimitation keeping uniformity

() ()

(a) Constant
(approximated)
(LA)TEX
delimitation

� �� �

(b) Exact
dynMath

delimitation

� �� �

(c) Non-
approximated
CurExt

delimitation

Figure 10: Approximated versus exact
delimitation for global height less than 10pt

size of the parentheses. In this way, it is an exact
delimitation or simply a non-approximated one.

Figures 9a, 9b and 9c present the case where
the size of a formula exceeds that of the standalone
parentheses. Compound parentheses are used with
(LA)TEX. As before, (LA)TEX uses approximation in
the delimitation process, in contrast to dynMath and
CurExt. In addition, with (LA)TEX, the delimiters
lose the real shape of parentheses and so the uni-

formity of delimitation. With dynMath and CurExt,
the general shape is kept.

It’s important to mention the case where the
overall height (height + depth) of the formula to be
delimited is less than 10pt. As shown in Figure 10a,
(LA)TEX uses the smallest standalone parenthesis to
delimit mathematical formulas in this case. In a way,
this is also a case of approximation. On the other
hand, dynMath and CurExt use adapted parentheses
(see Figures 10b and 10c).

We can see that the dynMath package comes
to extend (LA)TEX’s capabilities. When processing
a document, typesetters can use dynMath and the
mathematical capabilities of LATEX at the same time

np =

p times

︷ ︸︸ ︷

n× n× . . .× n
(a) (LA)TEX over bracing

np =

p times�
n× n× . . .× n

(b) dynMath over bracing

np = n× n× . . .× n
︸ ︷︷ ︸

p times

(c) (LA)TEX under bracing

np = n× n× . . .× n	

p times

(d) dynMath under bracing

˙n1 + n2 + . . .+ np

(e) (LA)TEX equivalence
classes

˙�

n1 + n2 + . . .+ np

(f) dynMath equivalence
classes

Figure 11: (LA)TEX versus dynMath decorations

without any problem. In designing dynMath, we
insisted on retaining what is common to dynMath

and normal LATEX, staying faithfully as possible to
LATEX, and at the same time adding what can’t be
supported by LATEX. In Figure 8, we can observe
that the thickness, the spaces separating the delim-
iters and the formulas, in the cases where the size
of the formulas coincides with the size of a particu-
lar standalone parenthesis, are the same. Otherwise,
dynMath adds what couldn’t be achieved with LATEX
in terms of size/shape of parentheses (see Figures 8
and 9).

5 Support of some old mathematical

symbolic notations

With advancement in computer technology and soft-
ware tools, (scientific) document processing has seen
great improvements in terms of time, flexibility of
processing, quality and so on. But, for technical
reasons, many symbols and notations have been re-
placed by others or completely forsaken. These no-
tations or symbols are the foundation of quality in
book typesetting in traditional printing. Parenthe-
ses and braces are good examples. With dynMath,
LATEX can do more of these lost things. We will
not show again these two symbols in the delimita-
tion case, but in decoration or diacritics. We con-
sider the LATEX macros \overbrace (see Figure 11a),
\underbrace (see Figure 11c), \overline and \dot

(see Figure 11e) to show more of what dynMath can
add to LATEX’s abilities. The corresponding possibil-
ities supported by dynMath are given in Figures 11b,
11d and 11f. With dynMath, we can now work in
the old way to define equivalence classes, specifying
them with dotted parentheses and not just dotted
lines (see Figure 11f).

dynMath: A PostScript Type 3-based LATEX package to support extensible mathematical symbols

22 TUGboat, Volume 45 (2024), No. 1

6 Global syntax mode

In dynMath, the delimitation of formulas is done
with the macro \meLeft...\meRight. We followed
the command names \left...\right but started
with a capital letter and preceded by “me” meaning
metal (referencing the metal symbols). The macros
operates in the same way as \left...\right, not
neglecting the fact that the parameters (formulas)
must be enclosed between braces (indicating group)
when the formula contains more than one token.

We have followed this way in order to make us-
ing dynMath especially easy for users that are famil-
iar with typesetting mathematical formulas under
(LA)TEX. For example, to handle braces over formu-
las we programmed the macro \meOverBrace of the
name coming from the (LA)TEX macro \overbrace.
We will follow this method when implementing what
remains to complete the package.

7 Samples

In this section, we will present some samples of for-
mulas formatted with dynMath, also giving the cor-
responding LATEX. In particular, the code of some
examples used in the previous section will be consid-
ered in the current one.

dynMath requires the package mathstyle and
so the latter must be installed in the (LA)TEX distri-
bution used. We recall that the PostScript Type 3
font used as the base of dynMath is provided in
the file dynMath.tps. Thus, both dynMath.sty and
dynMath.tps also have to be added to the (LA)TEX
distribution or copied into the directory containing
the LATEX file to format.

The document to format using dynMath must
contain the usual line \usepackage{dynMath}.

We will give some samples of LATEX sources
based on dynMath followed by the corresponding gen-
erated output. To compare with normal LATEX, we
use the same source code with \left and \right

instead of \meLeft and \meRight respectively.

7.1 Sample one: parentheses

dynMath source:

\[\meLeft({

\begin{array}{cc}

\meLeft({

\begin{array}{cc}

a_{11}& a_{12}\\a_{21}& a_{22}\\a_{31}& a_{32}

\end{array}

}\meRight)

& ... bij components \\

... cij components & ... dij components

}\meRight)

\end{array}

}\meRight) \]

dynMath corresponding output:

�
�

a11 a12
a21 a22
a31 a32

� �
b11 b12
b21 b22
b31 b32

�

�
c11 c12
c21 c22
c31 c32

� �
d11 d12
d21 d22
d31 d32

�
�

LATEX source:

\[\left({

\begin{array}{cc}

...

\end{array}

}\right) \]

LATEX corresponding output:

a11 a12
a21 a22
a31 a32

b11 b12
b21 b22
b31 b32

c11 c12
c21 c22
c31 c32

d11 d12
d21 d22
d31 d32

7.2 Sample two: braces

dynMath source:

\[

\meLeft\{{

\begin{array}{l}

\meLeft\{{

\begin{array}{lcl}

f_{1}\meLeft({x_{1},x_{2},\cdots,x_{9}}

\meRight) & = & F_{1}\\

f_{2}\meLeft({x_{1},x_{2},\cdots,x_{9}}

\meRight) & = & F_{2}\\

f_{3}\meLeft({x_{1},x_{2},\cdots,x_{9}}

\meRight) & = & F_{3}

\end{array}

}\meRight.\\

\\

\meLeft\{{

\begin{array}{lcl}

... gi equations

\end{array}

}\meRight.\\

\\

\meLeft\{{

\begin{array}{lcl}

... hi equations

\end{array}

}\meRight.

\end{array}

}\meRight.

\]

Abdelouahad Bayar

TUGboat, Volume 45 (2024), No. 1 23

dynMath corresponding output:

�

�
f1�x1, x2, · · · , x9� = F1

f2�x1, x2, · · · , x9� = F2

f3�x1, x2, · · · , x9� = F3

�
g1�x1, x2, · · · , x9� = G1

g2�x1, x2, · · · , x9� = G2

g3�x1, x2, · · · , x9� = G3

�
h1�x1, x2, · · · , x9� = H1

h2�x1, x2, · · · , x9� = H2

h3�x1, x2, · · · , x9� = H3

LATEX source:

\[

\left\{{ \begin{array}{l}

...

\end{array}

}\right. \]

LATEX corresponding output:

f1 (x1, x2, · · · , x9) = F1

f2 (x1, x2, · · · , x9) = F2

f3 (x1, x2, · · · , x9) = F3

g1 (x1, x2, · · · , x9) = G1

g2 (x1, x2, · · · , x9) = G2

g3 (x1, x2, · · · , x9) = G3

h1 (x1, x2, · · · , x9) = H1

h2 (x1, x2, · · · , x9) = H2

h3 (x1, x2, · · · , x9) = H3

7.3 Sample three: Figure 3

The mathematics in Figure 3 was typeset in native
LATEX in Figure 4. It remains to typeset it with
dynMath, as follows. The dynMath source:

\begin{minipage}{7cm}

\textbf{La puissance n$^{\mbox{\scriptsize

i\‘{e}me}}$ de }a est le réel,

noté a^{n},\\ égal~à~:\\

$

\meLeft\{%

\begin{array}{ll}%

\meUnderBrace{a\times\ldots\times a}

_{n\textrm{ fois}} &

\kern -3pt\textrm{si }n

\textrm{ est strictement positif}\\

1 & \kern -3pt\textrm{si }n

\textrm{ est nul}\\

\frac{1}{a^{-n}} & \kern -3pt\textrm{si }n

\textrm{ est strictement négatif}

\end{array}

\meRight.

$

\end{minipage}

dynMath corresponding output:

La puissance nième de a est le réel, noté an,
égal à :

�
a× . . .× a	

n fois

si n est strictement positif

1 si n est nul
1

a−n
si n est strictement négatif

7.4 Sample four: over brace

dynMath source:

\[n^p=\meOverBrace{n\times n\times\ldots

\times n}^{p\, \mathrm{times}} \]

dynMath corresponding output:

np =

p times�

n× n× . . .× n

LATEX source:

\[n^p=\overbrace{...} \]

LATEX corresponding output:

np =

p times

︷ ︸︸ ︷

n× n× . . .× n

7.5 Sample five: under brace

dynMath source:

\[n^p=\meUnderBrace{n\times n\times\ldots

\times n}_{p\, \mathrm{times}} \]

dynMath corresponding output:

np = n× n× . . .× n	

p times

LATEX source:

\[n^p=\underbrace{...} \]

LATEX corresponding output:

np = n× n× . . .× n
︸ ︷︷ ︸

p times

7.6 Sample six: over dot

dynMath source:

\[\dot{\meOverParenthesis{n_{1}+n_{2}+

\ldots + n_{p}}} \]

dynMath corresponding output:

˙�

n1 + n2 + . . .+ np

LATEX source:

\[\dot{\overline{...}} \]

LATEX corresponding output:

˙n1 + n2 + . . .+ np

dynMath: A PostScript Type 3-based LATEX package to support extensible mathematical symbols

24 TUGboat, Volume 45 (2024), No. 1

So far, we’ve talked in terms of concepts and
examples about parentheses and braces as dynamic
symbols. The latter represent the category of sym-
bols with extensible parts based on curvilinear (non-
linear) curves. They remain among the most diffi-
cult to support in dynMath. This is not the case for
extensible symbols whose dynamic parts are purely
lines, which are easy to parameterize for extension.
Square brackets are a good example. The following
sample shows the delimitation of a multi-matrix by
square brackets.

7.7 Sample seven: square brackets

dynMath:

�
�
a11 a12
a21 a22

� �
b11 b12
b21 b22

�

�
c11 c12
c21 c22
c31 c32

� �
d11 d12
d21 d22
d31 d32

�
�

LATEX:

[
a11 a12
a21 a22

] [
b11 b12
b21 b22

]

c11 c12
c21 c22
c31 c32

d11 d12
d21 d22
d31 d32

The source for the above formulas is the same
as in Sample 1, except that the third lines of the
two high matrices are removed and the delimiters ‘(’
and ‘)’ are replaced by ‘[’ and ‘]’ respectively.

8 Conclusions

dynMath is a LATEX package that supports dynamic
mathematical symbols with respect to optical scal-

ing, metal-likeness, uniformity and right-sizing. It
will be finalized soon and deposited in the CTAN

(Comprehensive TEX Archive Network) repository
with a complete user manual. As the symbols are
programmed in PostScript, they are not affected by
the color effects controlled by LATEX. As a future
enhancement, dynMath will be extended to support
color interaction with PostScript.

References

[1] A. Anane. Arabic text justification using
LuaLATEX and the DigitalKhatt OpenType
variable font. TUGboat 42(3):247–257,
2021. https://tug.org/TUGboat/tb42-3/

tb132anane-variable.pdf

[2] J. André, I. Vatton. Dynamic optical scaling and
variable-sized characters. Electronic Publishing,
7(4):231–250, 1994. https://jacques-andre.fr/

japublis/opticalscaling.pdf

[3] A. Bayar. Towards an operational (LA)TEX
package supporting optical scaling of dynamic
mathematical symbols. TUGboat 37(2):171–179,
2016. TUG 2016 (Toronto) conference proceedings.
https://tug.org/TUGboat/tb37-2/tb116bayar.

pdf

[4] D.M. Berry. Stretching letter and slanted-baseline
formatting for Arabic, Hebrew, and Persian
with ditroff/ffortid and dynamic PostScript
fonts. Software: Practice and Experience,
29(15):1417–1457, 1999. https://cs.uwaterloo.

ca/~dberry/FTP_SITE/tech.reports/keshide.

paper.pdf

[5] Circuitous Root. Clubs and cults revisiting
the concept of ‘typeface’ and the optical
scale in typefounding, 2013. https://www.

circuitousroot.com/artifice/letters/

press/typemaking/making-matrices/terms/

logical-grouping/clubs-and-cults/index.html

[6] Circuitous Root. From the optical scale to optical
scaling, 2013. https://www.circuitousroot.

com/artifice/letters/press/typemaking/mats/

optical/index.html

[7] M. Elyaakoubi, A. Lazrek. Justify just or just
justify. Journal of Electronic Publishing, 13(1),
2010.

[8] D.E. Knuth. The TEXbook. Addison-Wesley,
Reading, Massachusetts, 1st ed., 1984.

[9] G. Lamé. Leçons sur les coordonnées curvilignes

et leurs diverses applications. Imprimerie
de Mallet Bachelier, Rue du Jardinet 12,
Paris, 1859. https://archive.org/details/

leonssurlescoor01lamgoog

[10] L. Lamport. LATEX—A Document Preparation

System. Addison Wesley, USA, 1994.

[11] A. Lazrek. CurExt, typesetting variable-sized
curved symbols. TUGboat 24(3):323–327, 2003.
EuroTEX 2003 (Brest) conference proceedings.
https://tug.org/TUGboat/tb24-3/lazrek.pdf

[12] LuaTEX development team. LuaTEX Reference

Manual. https://ctan.org/pkg/luatex

[13] M. Monge, M.C. Audouin-Egoroff, F. Lemaire-Body.
Arithmetiques, Analyse et Probabilités, Terminal

C et E. Librairie Classique Eugène Belin, France,
1974.

[14] T. Rokicki. Dvips: A DVI-to-PostScript

Translator. https://tug.org/dvips

⋄ Abdelouahad Bayar
Cadi Ayyad University — Higher

School of Technology of Safi
Sidi Aissa Road, PB 89
Safi, 46000
Morocco
a.bayar (at) uca dot ma

ORCID 0000-0002-3496-505X

Abdelouahad Bayar

https://tug.org/TUGboat/tb42-3/tb132anane-variable.pdf
https://tug.org/TUGboat/tb42-3/tb132anane-variable.pdf
https://jacques-andre.fr/japublis/opticalscaling.pdf
https://jacques-andre.fr/japublis/opticalscaling.pdf
https://tug.org/TUGboat/tb37-2/tb116bayar.pdf
https://tug.org/TUGboat/tb37-2/tb116bayar.pdf
https://cs.uwaterloo.ca/~dberry/FTP_SITE/tech.reports/keshide.paper.pdf
https://cs.uwaterloo.ca/~dberry/FTP_SITE/tech.reports/keshide.paper.pdf
https://cs.uwaterloo.ca/~dberry/FTP_SITE/tech.reports/keshide.paper.pdf
https://www.circuitousroot.com/artifice/letters/press/typemaking/making-matrices/terms/logical-grouping/clubs-and-cults/index.html
https://www.circuitousroot.com/artifice/letters/press/typemaking/making-matrices/terms/logical-grouping/clubs-and-cults/index.html
https://www.circuitousroot.com/artifice/letters/press/typemaking/making-matrices/terms/logical-grouping/clubs-and-cults/index.html
https://www.circuitousroot.com/artifice/letters/press/typemaking/making-matrices/terms/logical-grouping/clubs-and-cults/index.html
https://www.circuitousroot.com/artifice/letters/press/typemaking/mats/optical/index.html
https://www.circuitousroot.com/artifice/letters/press/typemaking/mats/optical/index.html
https://www.circuitousroot.com/artifice/letters/press/typemaking/mats/optical/index.html
https://archive.org/details/leonssurlescoor01lamgoog
https://archive.org/details/leonssurlescoor01lamgoog
https://tug.org/TUGboat/tb24-3/lazrek.pdf
https://ctan.org/pkg/luatex
https://tug.org/dvips

TUGboat, Volume 45 (2024), No. 1 25

Tracing bitmap fonts in LMTX

Hans Hagen, Mikael P. Sundqvist

This is a follow up on potrace-generated outlines
from bitmaps (see preceding article, “Unusual bit-
maps”). Most of today’s TEX users have probably
never generated a document with bitmap fonts but
back in the day we only had these, almost always
Computer Modern. Because we don’t use bitmap
fonts in ConTEXt there is no need to support so-
called PK (bitmap) fonts in the backend, but, be-
cause we did support them in MkIV, we still have
it in LMTX. After all, what is TEX without bitmap
fonts? We also owe it to Don Knuth.

It is a bit of challenge to load a traditional eight
bit font using only a TFM file because in ConTEXt
we map everything to Unicode. Regular Type 1 fonts
are still supported, although they are declared obso-
lete, and vendors have moved on to OpenType fonts.
When we define a font that has Type 1 resources, we
load it as if it were an OpenType font. These eight
bit fonts thus become wide (up to 64K glyphs) fonts
internally. Normally we consult the AFM and PFB

files and leave the TFM files, if present at all, for
what they are. You can think of runtime afmtotfm
conversion. An exception is the few traditional math
fonts that we support: Antykwa, Iwona and Kurier;
here the TFM files provide dimensions.

For the purpose of demonstrating what comes
next it is enough to know that in principle one can
still mess around with TFM values, either outline
or bitmap, and that encoding files play a role in
mapping them onto Unicode. We never set out to
do something like this, but, because we had the
loaders available anyway, some quick (few line) ex-
periments of passing PK bitmaps to the MetaPost
potrace helpers we got curious.

If you’ve run into an old TEX document on the
web you might have noticed bitmap fonts being used.
Often these are of a relatively low resolution. The
reason that one never noticed that in print is that,
when read on screen, we see glyphs large and can even
zoom in, while in print they are seen small. When
larger glyphs are used (say in a title) the scaled
glyphs are actually different bitmaps: they have the
same resolution as the smaller ones but more pixels
because they are larger. Take these characters at 600
dpi, scaled up from their original 10 point size:

How do these patterns translate into an outline?
For this we use the potrace library that we have
available in LuaMetaTEX and interfaced to Metafun
in ConTEXt (as discussed in the companion article),
although for fonts we follow a more direct route.

So why do these glyphs look somewhat different
(smoother) from a normal outline Computer Modern?
This is because the 600 may sound like a lot but
actually isn’t. Distributed over an inch we have 600
pixels on 25.4 mm so roughly one pixel per 0.05 mm,
which might be acceptable in a small print but not
when scaled. Here is how an ‘m’ in 600 dpi pixels is
coded (64 by 37 pixels):

In the days of sending bitmaps to printers, pos-
sibly wrapped in a PostScript file, one could often
recognize the characters from blobs like this. You
might also remember some of that line printer art. At
any rate, it shows that 600 dots per inch is much less
than it sounds. A decent 2400 dpi (dots per inch) is
more normal these days for printing on presses (with
ink) but although there are 1200 dpi laser printers,

doi.org/10.47397/tb/45-1/tb139hagen-tracefonts

Tracing bitmap fonts in LMTX

https://doi.org/10.47397/tb/45-1/tb139hagen-tracefonts

26 TUGboat, Volume 45 (2024), No. 1

600 became the norm. After all, toner particles are
not that small. For quite a while the authors used
high speed OCE low temperature toner printer (first
508 dpi, later 600 dpi) and these were visually supe-
rior to most of what the competition had—but OCE

never quite managed to do the same in color (only
in lab testing, not reaching the market). Nowadays
we use HP full width high speed inkjet printers that
give a rather good quality full color experience at
600 dpi. This is what a scaled-up 2400 dpi bitmap
look like:

This already looks more crisp although we can
go back to the smoother variant by setting a higher
threshold in potrace:

We can go higher. In the next rendering we use
7200 dpi bitmaps and now we see some details that
didn’t show up before. Keep in mind that subtle
details might not be noticed in 10 point running text.

The top of the ‘K’ now has a little dent (likely
not visible except with magnification). If you ever
viewed a document with Latin Modern outlines you
might recognize this. It is a side effect of outlines
having that information while a bitmap needs to get
the exact bits, which won’t happen if such a dent
stays beyond the pixel threshold. We now are ready
for some real text. We define two font features to
load bitmap and outlines, respectively:

\definefontfeature[whateverpk][default]

[reencode=ontarget-cmr.enc,bitmap=pk]

\definefontfeature[whateverpt][default]

[reencode=ontarget-cmr.enc,bitmap=outline]

and some colors:

\definecolor[pkcolor][r=1,t=.5,a=1]

\definecolor[ptcolor][b=1,t=.5,a=1]

We use the following three font definitions in
three overlaid examples (figure 1). The results are

close enough to justify a closer look at the possibili-
ties.

\definefont[PKdemoA]

[file:lmroman10-regular.otf*default sa 1.2]

\definefont[PKdemoB]

[file:ontarget-cmr10.tfm*whateverpk sa 1.2]

\definefont[PKdemoC]

[file:ontarget-cmr10.tfm*whateverpt sa 1.2]

We thrive in information--thick worlds because of our
marvelous and everyday capacity to select, edit, sin
gle out, structure, highlight, group, pair, merge, har
monize, synthesize, focus, organize, condense, reduce,
boil down, choose, categorize, catalog, classify, list, ab
stract, scan, look into, idealize, isolate, discriminate,
distinguish, screen, pigeonhole, pick over, sort, inte
grate, blend, inspect, filter, lump, skip, smooth, chunk,
average, approximate, cluster, aggregate, outline, sum
marize, itemize, review, dip into, flip through, browse,
glance into, leaf through, skim, refine, enumerate, glean,
synopsize, winnow the wheat from the chaff and sepa
rate the sheep from the goats.

�� ������ �� ��	
�����
������ �
���� �������
	
��

������
�� ��� �������� �������� �
 ������� ����� ���

���
��� ���������� ���������� ��
��� ����� ������ ���

�
����� ����������� 	
����
�������� �
������� �������

�
�� �
��� ��

��� �����
����� �����
�� ������	�� ����� ��

������� ����� �

� ���
� ��������� ��
����� �������������

������������ ������� ����
��
��� ����
���� �
��� ����

������ ������ �������� ������ ����� ����� ��

��� ������

�������� ����
������� �������� ����������
������� ���

������� �������� ������� ��� ���
� ��� ���
���� ��
����

������ ���
� ���	 ���
���� ����� ������ ���������� ������

���
������ ����
� ��� ����� 	�
� ��� ���� ��� ����

���� ��� ����� 	�
� ��� �
����

�� ������ �� ��	
�����
������ �
���� �������
	
��

������
�� ��� �������� �������� �
 ������� ����� ���

���
��� ���������� ���������� ��
��� ����� ������ ���

�
����� ����������� 	
����
�������� �
������� �������

�
�� �
��� ��

��� �����
����� �����
�� ������	�� ����� ��

������� ����� �

� ���
� ��������� ��
����� �������������

������������ ������� ����
��
��� ����
���� �
��� ����

������ ������ �������� ������ ����� ����� ��

��� ������

�������� ����
������� �������� ����������
������� ���

������� �������� ������� ��� ���
� ��� ���
���� ��
����

������ ���
� ���	 ���
���� ����� ������ ���������� ������

���
������ ����
� ��� ����� 	�
� ��� ���� ��� ����

���� ��� ����� 	�
� ��� �
����

Figure 1: Overlaid regular, bitmap and potraced text.

In figure 2 we see from top to bottom: Latin
Modern OpenType outlines, a bitmap Computer
Modern and a potraced Computer Modern. The
fourth line has the bitmap and potraced overlaid.
Figure 3 shows a small portion of the last one as seen
on screen. Blown up, some drift is seen but so far we
didn’t find a way to get rid of it. Some is due to the
way glyph streams get rendered and synchronized
(after spacing, for instance).

Smooth
Smooth

Smooth

SmoothSmooth

Figure 2: Bitmap and potraced compared; from top

to bottom: OpenType, PK, potraced and overlaid.

Hans Hagen, Mikael P. Sundqvist

TUGboat, Volume 45 (2024), No. 1 27

Figure 3: An enlarged clip of the overlay.

When not overlaid we get this for a normal Latin
Modern Regular:

We thrive in information--thick worlds because of our marvelous and
everyday capacity to select, edit, single out, structure, highlight,
group, pair, merge, harmonize, synthesize, focus, organize, condense,
reduce, boil down, choose, categorize, catalog, classify, list, abstract,
scan, look into, idealize, isolate, discriminate, distinguish, screen, pi
geonhole, pick over, sort, integrate, blend, inspect, filter, lump, skip,
smooth, chunk, average, approximate, cluster, aggregate, outline,
summarize, itemize, review, dip into, flip through, browse, glance
into, leaf through, skim, refine, enumerate, glean, synopsize, win
now the wheat from the chaff and separate the sheep from the goats.

And this for a Computer Modern Roman PK bitmap:

�� ������ �� ��	
�����
������ �
���� �������
	
�� ������
�� ���

�������� �������� �
 ������� ����� ������
��� ���������� ����������

��
��� ����� ������ ����
����� ����������� 	
����
�������� �
�������

������� �
�� �
��� ��

��� �����
����� �����
�� ������	�� ����� ���������

����� �

� ���
� ��������� ��
����� ������������� ������������ ������� ��

��
��
��� ����
���� �
��� ���������� ������ �������� ������ ����� �����

��

��� ������ �������� ����
������� �������� ����������
�������

���������� �������� ������� ��� ���
� ��� ���
���� ��
���� ������

���
� ���	 ���
���� ����� ������ ���������� ������ ���
������ ���

�
� ��� ����� 	�
� ��� ���� ��� �������� ��� ����� 	�
� ��� �
����

The same Computer Modern Roman outlined by
potrace gives this:

�� ������ �� ��	
�����
������ �
���� �������
	
�� ������
�� ���

�������� �������� �
 ������� ����� ������
��� ���������� ����������

��
��� ����� ������ ����
����� ����������� 	
����
�������� �
�������

������� �
�� �
��� ��

��� �����
����� �����
�� ������	�� ����� ���������

����� �

� ���
� ��������� ��
����� ������������� ������������ ������� ��

��
��
��� ����
���� �
��� ���������� ������ �������� ������ ����� �����

��

��� ������ �������� ����
������� �������� ����������
�������

���������� �������� ������� ��� ���
� ��� ���
���� ��
���� ������

���
� ���	 ���
���� ����� ������ ���������� ������ ���
������ ���

�
� ��� ����� 	�
� ��� ���� ��� �������� ��� ����� 	�
� ��� �
����

Because these are outlines we can scale them
nicely with \glyphscale 800 here:

�� ������ �� ��	
�����
������ �
���� �������
	
�� ������
�� ��� �������� ��

������ �
 ������� ����� ������
��� ���������� ���������� ��
��� ����� ������ ����

����� ����������� 	
����
�������� �
������� ������� �
�� �
��� ��

��� �����
�����

�����
�� ������	�� ����� ��������� ����� �

� ���
� ��������� ��
����� ������������� ���

��������� ������� ����
��
��� ����
���� �
��� ���������� ������ �������� ������ �����

����� ��

��� ������ �������� ����
������� �������� ����������
������� ����������

�������� ������� ��� ���
� ��� ���
���� ��
���� ������ ���
� ���	 ���
���� ����� ��

���� ���������� ������ ���
������ ����
� ��� ����� 	�
� ��� ���� ��� �������� ���

����� 	�
� ��� �
����

We can scale further, for instance with an extra
\glyphxscale 1200. This can of course also be done
with bitmaps but outlines are a safer bet.

�� ������ �� ��	
�����
������ �
���� �������
	
�� ������
�� ���

�������� �������� �
 ������� ����� ������
��� ���������� ���������� ��
���

����� ������ ����
����� ����������� 	
����
�������� �
������� �������

�
�� �
��� ��

��� �����
����� �����
�� ������	�� ����� ��������� ����� �

�

���
� ��������� ��
����� ������������� ������������ ������� ����
��
��� ����

���� �
��� ���������� ������ �������� ������ ����� ����� ��

��� ������

�������� ����
������� �������� ����������
������� ���������� ��������

������� ��� ���
� ��� ���
���� ��
���� ������ ���
� ���	 ���
���� �����

������ ���������� ������ ���
������ ����
� ��� ����� 	�
� ��� ����

��� �������� ��� ����� 	�
� ��� �
����

The conversion happens in the backend and can
have some impact on the runtime but we cache the
outlines, so a subsequent run is faster. Of course
outlines are more efficient than bitmaps in terms of
bytes and viewers also tend to render them better
than bitmaps, which, especially at a lower resolution,
can look pretty bad (in some viewers).

One might wonder if bitmaps are worse than
outlines. When we use a reasonable resolution there
is no need to generate more than one size, and in
ConTEXt we assume this anyway because we scale all
fonts to 10 big points and scale that shared instance
on demand. The 600 dpi ‘m’ that we showed has 64
pixels in the horizontal direction. So, 75 of these (a
line of text) need 4800 pixels, which is more than
enough for a 4–8 display. Unfortunately viewers still
render a bitmap font somewhat badly.

Let’s dive a little into why bitmaps might render
suboptimally in PDF viewers. Consider these three
lines typeset in our three fonts:

\PKdemoA Smooth \vskip.1ex

\PKdemoB Smooth \vskip.1ex

\PKdemoC Smooth \vskip.1ex

These ‘Smooth’ lines (this time in 12pt) end up
in the PDF file as follows :

BT

/F1 10 Tf

1.195514 0 0 1.195514 0 30.316793 Tm

[<000100020003>-28<000300040005>] TJ

/F2 10 Tf

1.195514 0 0 1.195514 0 15.415656 Tm

[<010203>-28<030405>] TJ

/F3 10 Tf

1.195514 0 0 1.195514 0 0.514763 Tm

[<010203>-28<030405>] TJ

ET

This code first switches to font /F1, a wide
outline font so we have four-byte indices (in angle
brackets). Next we trigger /F2, the bitmap variant
and finally the potraced /F3; these are both Type 3
fonts so they get two-byte indices. We don’t scale
except to the 10 big points design size. After such
a switch comes lines of text and there we do scale,
here by 1.195514 in both directions. We’re slightly
off 1.2 because the PDF font system (by tradition)
is set up in PostScript (big) points so we need to
scale up a little from 12pt to 12bp. Scaling an out-
line is translated (in the end) to some factor and

Tracing bitmap fonts in LMTX

28 TUGboat, Volume 45 (2024), No. 1

the renderer can keep the device into account when
it comes to rounding. With bitmaps it’s different,
because these are not mathematically-defined fonts,
but some image that gets scaled. This can introduce
the first inaccuracy. An inline bitmap in PDF is given
between ID and EI operators, as demonstrated in
the next two charproc entries for the Type 3 bitmap
font (reformatted and abridged to save space):

21 0 obj

<< /Length 40708 >>

stream

556 0 55 -22 498 703 d1

q

442 0 0 725 55 -22 cm

BI

/W 442 /H 725 /IM true /BPC 1 /D [1 0]

ID ...bytes...

EI

Q

endstream endobj

Notice the difference in the /Length:

22 0 obj

<< /Length 42784 >>

stream

833 0 33 0 809 440 d1

q

775 0 0 440 33 0 cm

BI

/W 775 /H 440 /IM true /BPC 1 /D [1 0]

ID ...bytes...

EI

Q

endstream endobj

In contrast, a character in the potraced outline
font looks like this:

31 0 obj

<< /Length 3678 >>

stream

556 0 55 -22 498 703 d1

q

1 0 0 1 55 -22 cm

172 723.96045697 m 144.84445441 720.6382363 ...

Q

endstream endobj

The length is much smaller and the outline
shape is just a sequence of moveto (m), lineto (l)
and curveto (c) operators mixed with numbers.

32 0 obj

<< /Length 4260 >>

stream

833 0 33 0 809 440 d1

q

1 0 0 1 33 0 cm

68.5 434.44174379 m 32.2 431.50947593 1.9375 ...

Q

endstream endobj

Experiments demonstrated that it’s better to
use rounded widths because otherwise (at least in
SumatraPDF) we get some accumulated drift. The
bitmap variants have a transform matrix like this:

442 0 0 725 55 -22 cm

775 0 0 440 33 0 cm

and the potraced outlines have:

1 0 0 1 55 -22 cm

1 0 0 1 33 0 cm

This means that a bitmap again gets scaled,
luckily by an integer, but still there is some inac-
curacy. In the end, we get the bits put on screen
and especially at small scales we end up with ar-
tifacts in positioning and scaling. Where the font
renderer is optimized for (indeed) rendering fonts,
the bitmap renderer isn’t. In figure 4 we see bitmaps
being rendered bolder when they become smaller,
because in the end, even at high resolutions, we’re
not talking pixels but bits (that can occupy multiple
pixels). Outline fonts talk pixels, bitmap fonts speak
in bits.

smallest small normal

Figure 4: Three zoom levels compared.

We haven’t yet discussed how we got the bit-
maps that we used. You might have noticed in the
examples that there are some differences with the
outline when it comes to dimensions. This is partly
due to the fact that where Latin Modern is an Open-
Type font with no limits to dimensions, Computer
Modern has to accommodate the limited number of
heights, depths and widths that the TFM format per-
mits. Think of arbitrary values of height compared
to categories of height.

When you generate a bitmap you rely on scripts
that do the work and these work together with so-
called printer modes as defined in the METAFONT file
modes.mf (https://ctan.org/pkg/modes). These
modes are for printers which means that there can
be compensation going on: rounding up or down
of points exceeding bounding box edges, the size of
printer pixels (toner, ink) and accuracy of positioning
them, etc. In our case, when we went for 8000 dpi we
ended up with a device that did more compensation
than needed. Better is to investigate time in figuring
out how to control the machinery to cook up (maybe)
7200 dpi bitmaps because down the inclusion route
there is some division by 72. If we decide to play

Hans Hagen, Mikael P. Sundqvist

https://ctan.org/pkg/modes

TUGboat, Volume 45 (2024), No. 1 29

a bit more, we might as well first figure out how to
control the bitmap generation and see if we can come
up with this 7200 resolution. Not only does it divide
nicely by 72 (for display) but also by 600 (for the
average printer). To what extent that matters is to
be seen.

A bitmap font (instance) is generated by META-
FONT and driven by a (printer) mode defined in
modes.mf. We added this one:

mode_def potrace =

mode_param (pixels_per_inch, 2 * 3600) ;

mode_param (blacker, 0) ;

mode_param (fillin, 0) ;

mode_param (o_correction, 1) ;

mode_common_setup_ ;

enddef;

The 2 * 3600 is a trick to get around META-
FONT maxing out at 4096 but internally being capa-
ble to deal with larger numbers. Of course we for-
got to run fmtutil-sys --byfmt mf which is needed
to get these modes in the format file, but eventu-
ally we managed to generate the 7200 dpi PK file
for cmr10. Generating is easiest done with pdfTEX
with \pdfmapfile {}, which wipes the mapping to
a Type 1 file.

We mentioned using MetaPost in our first at-
tempts to get an idea how well potrace can vectorize
the bitmaps. Here is how that is done:

\startluacode

local f = fonts.handlers.tfm.readers.loadpk

("cmr10.pk")

if f then

local g = f.glyphs[string.byte("R")]

if g then

local b

= fonts.handlers.tfm.readers.showpk(g)

potrace.setbitmap("demo",b)

end

end

\stopluacode

\startMPpage[offset=1ts]

draw lmt_potraced [

stringname = name,

value = "1",

];

\stopMPpage

In figure 5 we demonstrate three such renderings.
Watch how the number of points increases as the
shape gets better. In figure 6 we show the potraced
variant alongside the OpenType outline. Left is the
default potrace output, next comes the regular Open-
Type (here CFF) outline, and at the right we see
two potraced results, both with optimize = true

passed; the first has the default tolerance of 0.2 and

Figure 5: Using MetaPost for analysis.

Figure 6: Comparing potraced bitmaps with Type 1.

Figure 7: Comparing control points.

the second uses 0.5 and thereby has less points. For
sure the middle one has less points which is nice, but
the potrace ones are not that excessive so we can
live with it. We’ve run into cases (especially math)
where the regular outlines are also not perfect. Most
will go unnoticed anyway given the small size at
which glyphs are normally rendered. When you look
closely at the rightmost output you’ll notice that
the bend in the stems makes for more points which
is an indication that the METAFONT output might
actually be more subtle. In figure 7 we also show the
controls and you see subtle differences in the angles
there. Also note that when there are no lines that
indicates that there is likely a lineto instead of a
curveto.

If you like the look of these shapes, take a look
at Volume E of Don Knuth’s “Computers & Typeset-
ting” series. An incredible amount of work went into
the details of the fonts and you’ll run into brackets,
beaks, crisps, notches, slabs, juts, dishes and more
elements and parameters that are used. For instance
the serifs as seen in the ‘R’ are actually made pro-
grammatically (so that they can be discarded in the
sans shapes). If you check out the proof sheet of the
‘R’ you will only see the basic points that describe

Tracing bitmap fonts in LMTX

30 TUGboat, Volume 45 (2024), No. 1

the character, not the points we see above, after
conversion to (any kind of) outline.

So now that we can turn a PK into a proper
outline we’re done, right? Well, not entirely. Because
we have relatively simple shapes (moveto, lineto and
curveto) we can directly go to CFF and avoid the
MetaPost to Type 3 conversions. Because we already
can load (and adapt) CFF outlines it is not that
complicated to do the reverse. The backend already
can include them so we can also borrow code there.

When going from potrace output to CFF, we
need a high resolution, so we started out again with
7200 dpi. Although in the end we were quite satis-
fied with the results, we tested with 20000 dpi and
thought it looks even better than the Latin Modern
successor (although one can argue about it). Some
first experiments showed that it was doable but it
actually took a whole day to (test and) decide how
to get better results. For instance, MetaPost uses
floats while a renderer uses integers, so we run into
rounding issues if we delegate that (although we can
include floats in CFF, it is not a success). When
overlaying the MetaPost output and the CFF shapes
the latter was quite disappointing: weird protrusions
and bubbles. Of course one may doubt the imple-
mentation, but double and triple checking showed
that we use the same numbers.

The results improved a lot when the results
from potrace were multiplied by 10 (or 20) effectively
giving very huge glyphs (on a 10000 unit canvas) and
in the page stream scaling down by that factor. By
then using rounded values we got enough precision
to get the CFF results close to the (always) high
quality MetaPost rendering. In figure 8 we can see
how close they became.

The next question is, how do we control this:
PK, MetaPost Type 3 or native CFF? Even more
challenging is that we had wanted to use different
resolutions, and mix these three methods, if only be-
cause we want to be able to experiment and document
the mix. That means that it has to be available not
only in the font feature mechanism, which is rather
trivial, but also in the backend, which then involves a
font with the same name (say CMR10) to be rendered
differently, so we need different handlers, distinctive
caching of streams, etc. In the end we got there. It is
even possible to mix variants with different potrace
parameters in one document.

We start with CFF definitions. In figure 9 we
show three resolutions overlaid, with the 7200 dpi
variant below. In figure 10 we show the default and
optimized (fewer points) traces.

\definefontfeature[CMRCFF]

[reencode=ontarget-cmr.enc,bitmap=cff]

Figure 8: A MetaPost rendering on top of its CFF

counterpart.

Figure 9: Above: 7200, 2400, 600 dpi CFF variants

overlaid; bottom: cf. 7200 dpi CFF variant alone.

\definefontfeature[MyFontCffA]

[default,CMRCFF][resolution=7200]

\definefontfeature[MyFontCffB]

[default,CMRCFF][resolution=2400]

\definefontfeature[MyFontCffC]

[default,CMRCFF][resolution=600]

\definefontfeature[MyFontCffD]

[default,CMRCFF][resolution=7200,

potrace={optimize=true}]

The overlays look fuzzy, demonstrating the need
for high resolutions. Font definitions are done as
follows; we only show one definition:

Hans Hagen, Mikael P. Sundqvist

TUGboat, Volume 45 (2024), No. 1 31

Figure 10: Above: Normal and optimized 7200 dpi

variants overlaid; below: cf. 7200 dpi variant alone.

�� ������ �� ��	
�����
������ �
���� �������
	
�� ������
�� ��� �������� ��

������ �
 ������� ����� ������
��� ���������� ���������� ��
��� ����� ������ ����

����� ����������� 	
����
�������� �
������� ������� �
�� �
��� ��

��� �����
�����

�����
�� ������	�� ����� ��������� ����� �

� ���
� ��������� ��
����� ������������� ���

��������� ������� ����
��
��� ����
���� �
��� ���������� ������ �������� ������ �����

����� ��

��� ������ �������� ����
������� �������� ����������
������� �����

����� �������� ������� ��� ���
� ��� ���
���� ��
���� ������ ���
� ���	 ���
����

����� ������ ���������� ������ ���
������ ����
� ��� ����� 	�
� ��� ���� ���

�������� ��� ����� 	�
� ��� �
����

�� ������ �� ��	
�����
������ �
���� �������
	
�� ������
�� ��� �������� ��

������ �
 ������� ����� ������
��� ���������� ���������� ��
��� ����� ������ ����

����� ����������� 	
����
�������� �
������� ������� �
�� �
��� ��

��� �����
�����

�����
�� ������	�� ����� ��������� ����� �

� ���
� ��������� ��
����� ������������� ���

��������� ������� ����
��
��� ����
���� �
��� ���������� ������ �������� ������ �����

����� ��

��� ������ �������� ����
������� �������� ����������
������� �����

����� �������� ������� ��� ���
� ��� ���
���� ��
���� ������ ���
� ���	 ���
����

����� ������ ���������� ������ ���
������ ����
� ��� ����� 	�
� ��� ���� ���

�������� ��� ����� 	�
� ��� �
����

�� ������ �� ��	
�����
������ �
���� �������
	
�� ������
�� ��� �������� ��

������ �
 ������� ����� ������
��� ���������� ���������� ��
��� ����� ������ ����

����� ����������� 	
����
�������� �
������� ������� �
�� �
��� ��

��� �����
�����

�����
�� ������	�� ����� ��������� ����� �

� ���
� ��������� ��
����� ������������� ���

��������� ������� ����
��
��� ����
���� �
��� ���������� ������ �������� ������ �����

����� ��

��� ������ �������� ����
������� �������� ����������
������� �����

����� �������� ������� ��� ���
� ��� ���
���� ��
���� ������ ���
� ���	 ���
����

����� ������ ���������� ������ ���
������ ����
� ��� ����� 	�
� ��� ���� ���

�������� ��� ����� 	�
� ��� �
����

�� ������ �� ��	
�����
������ �
���� �������
	
�� ������
�� ��� �������� ��

������ �
 ������� ����� ������
��� ���������� ���������� ��
��� ����� ������ ����

����� ����������� 	
����
�������� �
������� ������� �
�� �
��� ��

��� �����
�����

�����
�� ������	�� ����� ��������� ����� �

� ���
� ��������� ��
����� ������������� ���

��������� ������� ����
��
��� ����
���� �
��� ���������� ������ �������� ������ �����

����� ��

��� ������ �������� ����
������� �������� ����������
������� �����

����� �������� ������� ��� ���
� ��� ���
���� ��
���� ������ ���
� ���	 ���
����

����� ������ ���������� ������ ���
������ ����
� ��� ����� 	�
� ��� ���� ���

�������� ��� ����� 	�
� ��� �
����

Figure 11: Above: 7200, 2400, 600 dpi PK variants

overlaid; below: cf. 7200 dpi PK variant alone.

\definefont[MyFont]

[file:ontarget-cmr10.tfm*MyFontCffA]

These definitions are used in figure 11. The
differences aren’t immediately apparent in small print
but zoom in (if you’re online) and you’ll understand
why we need more than 600 dpi to feel comfortable.

Finally we show the MetaPost-generated three-
some in figure 12 and these look quite reasonable.
One thing to keep in mind when wrapping shapes
into a Type 3 font is that one has to make sure that
color keeps working.

So, how useful is all this? Maybe it’s time for a
revival of METAFONT. Or maybe we can get some
old designs out of the archives where they got tagged
obsolete and use them again. Or maybe it’s just for
the fun of it. We started out with PK bitmaps that we
need to support anyway. Next we were curious how
well a traced outline would look, and for that using a
MetaPost Type 3 font makes sense. Then we took the
challenge to turn potrace output into a CFF Open-
Type font. We could now make a whole tool chain
but it makes little sense: we can do it in ConTEXt,
so we’re fine, and we don’t expect widespread usage

�� ������ �� ��	
�����
������ �
���� �������
	
�� ������
�� ��� �������� ��

������ �
 ������� ����� ������
��� ���������� ���������� ��
��� ����� ������ ����

����� ����������� 	
����
�������� �
������� ������� �
�� �
��� ��

��� �����
�����

�����
�� ������	�� ����� ��������� ����� �

� ���
� ��������� ��
����� ������������� ���

��������� ������� ����
��
��� ����
���� �
��� ���������� ������ �������� ������ �����

����� ��

��� ������ �������� ����
������� �������� ����������
������� �����

����� �������� ������� ��� ���
� ��� ���
���� ��
���� ������ ���
� ���	 ���
����

����� ������ ���������� ������ ���
������ ����
� ��� ����� 	�
� ��� ���� ���

�������� ��� ����� 	�
� ��� �
����

�� ������ �� ��	
�����
������ �
���� �������
	
�� ������
�� ��� �������� ��

������ �
 ������� ����� ������
��� ���������� ���������� ��
��� ����� ������ ����

����� ����������� 	
����
�������� �
������� ������� �
�� �
��� ��

��� �����
�����

�����
�� ������	�� ����� ��������� ����� �

� ���
� ��������� ��
����� ������������� ���

��������� ������� ����
��
��� ����
���� �
��� ���������� ������ �������� ������ �����

����� ��

��� ������ �������� ����
������� �������� ����������
������� �����

����� �������� ������� ��� ���
� ��� ���
���� ��
���� ������ ���
� ���	 ���
����

����� ������ ���������� ������ ���
������ ����
� ��� ����� 	�
� ��� ���� ���

�������� ��� ����� 	�
� ��� �
����

�� ������ �� ��	
�����
������ �
���� �������
	
�� ������
�� ��� �������� ��

������ �
 ������� ����� ������
��� ���������� ���������� ��
��� ����� ������ ����

����� ����������� 	
����
�������� �
������� ������� �
�� �
��� ��

��� �����
�����

�����
�� ������	�� ����� ��������� ����� �

� ���
� ��������� ��
����� ������������� ���

��������� ������� ����
��
��� ����
���� �
��� ���������� ������ �������� ������ �����

����� ��

��� ������ �������� ����
������� �������� ����������
������� �����

����� �������� ������� ��� ���
� ��� ���
���� ��
���� ������ ���
� ���	 ���
����

����� ������ ���������� ������ ���
������ ����
� ��� ����� 	�
� ��� ���� ���

�������� ��� ����� 	�
� ��� �
����

�� ������ �� ��	
�����
������ �
���� �������
	
�� ������
�� ��� �������� ��

������ �
 ������� ����� ������
��� ���������� ���������� ��
��� ����� ������ ����

����� ����������� 	
����
�������� �
������� ������� �
�� �
��� ��

��� �����
�����

�����
�� ������	�� ����� ��������� ����� �

� ���
� ��������� ��
����� ������������� ���

��������� ������� ����
��
��� ����
���� �
��� ���������� ������ �������� ������ �����

����� ��

��� ������ �������� ����
������� �������� ����������
������� �����

����� �������� ������� ��� ���
� ��� ���
���� ��
���� ������ ���
� ���	 ���
����

����� ������ ���������� ������ ���
������ ����
� ��� ����� 	�
� ��� ���� ���

�������� ��� ����� 	�
� ��� �
����

Figure 12: Above: 7200, 2400, 600 dpi MetaPost

variants overlaid; below: cf. 7200 dpi MP variant alone.

aa a a
Type3: PK Type3:

MetaPost
OpenType: CFF Type1: PFB

Type 3: PK Type 3: MP OpenType: CFF Type 1: PFB

Figure 13: A test with one of the allrunes fonts.

Left is using the PK at a 7200 dpi resolution. Next is

the potraced 7200 PK original outline. Third from left

is the generated CFF. Right is the shipped PFB.

aaa a
Type3: PK Type3:

MetaPost
OpenType:

CFF
Type1: PFB

Figure 14: Enlarged clips of the variants in figure 13.

outside the TEX ecosystem. Next on the agenda is
to locate some interesting METAFONTs and see if
they can be put to use. In case you wonder how
these eight bit fonts fit into the Unicode ecosystem,
don’t worry, we can use the virtual font mechanism
to hook shapes into existing fonts (which is what we
do anyway) or create combined fonts. We can even
make variable fonts using METAFONT, but for that
we need to become experienced designers first. As a
teaser we show a character from the runes font by
Carl-Gustav Werner in figures 13 and 14. Mikael,
knowing the author, promised to come up with a
proper encoding for that one, so stay tuned.

⋄ Hans Hagen

Pragma ADE

⋄ Mikael P. Sundqvist

Department of Mathematics

Lund University

mickep (at) gmail dot com

Tracing bitmap fonts in LMTX

32 TUGboat, Volume 45 (2024), No. 1

Basic Latin brevigraphs listed in Polonia
Typographica Saeculi Sedecimi — progress
report

Janusz S. Bień

1 Introduction
The fonts of several 16th century printers active in
Poland, namely Aleksander Augezdecki, Jan Haller,
Kasper Hochfeder, Florian Ungler (the first and sec-
ond printing house) and Maciej Wirzbięta, have been
described in the series of 12 fascicules entitled Polo-
nia Typographica Saeculi Sedecimi published in years
1959–1981.1 Almost all of them are digitized but
available only for “digital lending” in ACADEMICA2

because, I surmise, it’s not clear who owns the copy-
right as this was a collaborative effort of several
persons (only one contributor is still alive) and insti-
tutions.

In the fascicules every font is illustrated by an
excerpt of a text and sometimes additionally by a
table of the character set; an example of such a table
is presented in Fig. 1. Most of the tables have been
prepared by Maria Błońska with some help from
Anna Wolińska and Henryk Bułhak (the editor of
several fascicules); some tables were prepared by
Anna Śliwa, Alodia Kawecka Gryczowa (also the
editor of several fascicules) and Paulina Buchwald-
Pelcowa (the editor of the whole series). The number
of font tables is over seventy and the total number
of glyphs in the tables is over six thousand.

Unfortunately I missed the opportunity to get
first-hand information on how the tables were pre-
pared when talking by phone with Paulina Buchwald-
Pelcowa in 2022 (she died two years later). I got some
rudimentary information from Henryk Bułhak, also
in phone calls, but he was able to provide me only
with rather general information: the glyphs were cut
out with a razor blade from photocopies and pasted
together. This information seems relevant because it
shows what kind of mistakes can be expected in the
tables: if a character occurs in a table then it can be
displaced or misassigned (see sec. 7), but definitely
exists in a text; on the other hand, some omissions
are possible. For example, the glyph in Fig. 2 is not
listed in the table in Fig. 1, but can be found in the
texts printed reportedly with this font; according to
Peter Baker, the meaning is cis.3

1 The first two fascicules were published in 1936 and 1937,
but we are interested in their second revised editions because
these were supplemented by the character set tables.

2 Interlibrary loan system of books and scientific
publications: https://academica.edu.pl/

3 github.com/psb1558/Junicode-font/discussions/255

Figure 1: Ungler’s second printing house font no 16
(a fragment of Plate 359)

Figure 2: The letter or the ligature cis? Cf. Fig. 40.

Figure 3: A fragment of Plate 168. The fourth glyph is
interpreted as h, not a b, because of its position in the
font table. See sec. 8

Figure 4: A fragment of Plate 357. The last glyph is
interpreted as e with ogonek because of its position in
the font table.

Figure 5: A fragment of Plate 411. The third glyph is
interpreted as h because of its position in the font table.

No comments to the tables are provided, but
the order of glyphs is sometimes relevant for their
interpretation (see Figures 3, 4, 5).

The quality of the glyph images is sometimes
quite low; I understand no better samples were avail-
able.

Early prints used many abbreviations which
were the descendants of the abbreviations used in
manuscripts; we discuss here a subset of them, called
brevigraphs. Quite often they consisted of a regular
non-modified letter supplemented by a diacritical
mark, usually a macron or a similar glyph, placed
above. It is natural to call them composed brevi-
graphs. On the other hand there are abbreviations
in a shape of a modified letter or a letter-like sym-
bol; we call them basic brevigraphs even if they are
accompanied by a diacritical mark.

The work described here consisted primarily of
creating computer indexes to allow comparison of
similar characters from the same or different fonts

doi.org/10.47397/tb/45-1/tb139bien-brevigraphspt

Janusz S. Bień

https://academica.edu.pl/
https://github.com/psb1558/Junicode-font/discussions/255
https://doi.org/10.47397/tb/45-1/tb139bien-brevigraphspt

TUGboat, Volume 45 (2024), No. 1 33

Figure 6: Comparing characters with djview4poliqarp

(Fig. 6). The indexes and other resources are avail-
able in a public repository;4 the repository site pro-
vides Issues and Discussions tabs for reporting mis-
takes and giving comments.

The paper is considered a progress report for
two reasons. First, the character indexes should be
supplemented by indexes showing their meaning and
their use in texts, in a similar way as described in [5].
Secondly, I omitted some interesting glyphs because
I was not sure how to interpret them. An example
is presented in Fig. 7: is the last but one glyph a
modification of the letter h, or is this just the letter
h with a diacritic mark which happens to touch the
letter?

Figure 7: A fragment of Plate 21. Is the last but one
glyph a basic brevigraph?

An important question for every basic brevi-
graph is whether it has been assigned a codepoint
in the Unicode standard.5 Checking the character
charts is unfortunately not sufÏcient for two reasons.
First, the character name is not intended to provide
the full information about the character, it should be
treated as a more or less arbitrary label. Secondly,
in principle (the practise is sometimes questionable)
the standard defines characters, not glyphs, and the
glyph in a chart is only one of the possible repre-
sentations of the character (an example is given in
sec. 9). In consequence it is useful to also look up
the character proposals and related documents in the
Unicode Technical Committee Document Registry6

(a similar resource is the ISO/IEC JTC1/SC2/WG2
register7). It is also useful to look for alternative
glyphs in specialized fonts (see sec. 12).

4 github.com/jsbien/early_fonts_inventory
5 home.unicode.org/
6 unicode.org/L2/
7 unicode.org/wg2/

Figure 8: MUFI latin capital letter b rustic form
assignment proposal as of 2024-01-01

Another interesting question is whether the bre-
vigraph has been assigned a codepoint in the Uni-
code Private Use Area by the Medieval Unicode Font
Initiative.8 The MUFI assignments at first, up to
version 4.0, were published as recommendations in
the form of PDF documents [11]. They list over 1500
pure Unicode and Private Use Area characters in the
Latin alphabet of potential use for the encoding of
old text sources.

Nowadays, the recommendations have the form
of a database which can be browsed online (Fig. 8).
For some time a subset of the data content is also
available for download, under the Creative Commons
Attribution-ShareAlike 4.0 license, in the form of a
CSV or JSON file.

We will use here also the resources of Projet
d’Inventaire des Caractères Anciens9 created and
maintained by Jacques André.

Last but not least, it is important whether a
brevigraph can be rendered adequately by a font.
Our primary focus is on Peter Baker’s Junicode Two
font, as it is available under a free license10 and
contains some characters not available elsewhere [7].
We also use George Douros’ Symbola font11 for some
characters not available in Junicode.

It is worth mentioning that some of the bre-
vigraphs discussed here were used in Gutenberg’s
bibles. The character set of these books has been the
subject of several publications; they are referenced in
[2] and [6]. I also found very useful the unpublished
text [4] kindly provided to me by the author. (It is
attached by the Printing Museum in Lyon to digital
copies of a folio of the Gutenberg bible purchased by
the visitors.)

8 mufi.info/
9 jacques-andre.fr/PICA/

10 github.com/psb1558/Junicode-font
11 dn-works.com/ufas/

Basic Latin brevigraphs listed in Polonia Typographica Saeculi Sedecimi — progress report

https://github.com/jsbien/early_fonts_inventory
https://home.unicode.org/
https://unicode.org/L2/
https://unicode.org/wg2/
https://mufi.info/
https://jacques-andre.fr/PICA/
https://github.com/psb1558/Junicode-font
https://dn-works.com/ufas/

34 TUGboat, Volume 45 (2024), No. 1

2 The workflow
It is an old idea of mine to use the fact that for
compression purposes the identical or similar shapes
are collected into shape dictionaries. It seems that
this approach, named mixed raster content, is used
now in JPEG2000, but the first format to use it
successfully was DjVu.

I designed two tools which are based on this
approach. The first one was a quick and dirty mod-
ification of a standard DjVu viewer (Fig. 9). It
was originally implemented by Michał Rudolf twelve
years ago, with important contributions made later
by Alexander Trufanov.12 It is quite good for getting
a quick overview of the shapes in a document, but
it is not convenient enough for analysing them in
detail.13

Figure 9: djview-shapes and Gutenberg’s bible

The second tool was a sophisticated client-server
system. The idea was that a database will store
shapes from different documents provided by differ-
ent persons or institutions and accessed remotely
by interested users. The shapes were exported to
a MySQL database. Unfortunately the client14 was
a complete failure, since due to some wrong coding
decisions it was prohibitively slow. There was neither
opportunity nor sufÏcient motivation to reimplement
it in a better way.

So when working on the present paper my main
tool was Alexander Trufanov’s djvudict program15

which dumps a DjVu shape dictionary in an almost
human-readable form, despite the fact that the pro-
gram does not seem to be fully reliable (e.g., for some
not yet known reasons some shapes are skipped).

The first step was accessing the scans of Polonia
Typographica and preparing (with Gimp) the images

12 github.com/jsbien/djview4shapes
13 When the present paper was almost finished, some

changes were made to the program which make it much more
useful.

14 github.com/jsbien/ndt/wiki/z_shapes
15 github.com/trufanov-nok/djvudict

of the relevant tables. Then the images were con-
verted to DjVu (with Friedric Foebel’s Python 3 fork
of didjvu16) and supplemented by appropriate meta-
data. Next they were processed by djvudict. The pri-
mary DjVu file names have a form like Augezdecki-
01a_PT08_403.djvu, where Augezdecki is the name
of the printer, 01a is the font number sometimes sup-
plemented by a letter, PT08 is the identification of
the Polonia Typographica fascicule and 403 is the
plate number (they are numbered continuously in the
whole series; many contain woodcuts of no interest to
us). The djvudict output is placed in the directories
with shorter names, as in Augezdecki-01a.

A quick and dirty Python program (written,
or rather put together from pieces of code found
on the Internet, by myself) converts the djvudict
output to an index for the djview4poliqarp program
(described already in [5] and [8]); the shape identifiers
are preserved. The index contains also the results of
OCR processing done with Tesseract, but at present,
due to the lack of appropriate training, they are of
essentially no use. The file names are in the form
Augezdecki-01a.csv.

The indexes unfortunately require some hand
editing with djview4poliqarp. The first stage is to cre-
ate an index named like Augezdecki-01a_tmp.csv,
where the interesting elements are marked with ‘+’
in the so-called comment field. Entries are marked
with ‘#’ when there is a need to adjust the bounding
box; it is not yet clear why this is sometimes needed.
Entries marked with ‘ ̂’ also require adjusting the
bounding box, but for a different reason: the shapes
recognized by the DjVu compression algorithm are
just connected components, so diacritics are usually
separate objects.

The files *_tmp.csv are processed with grep
to put the marked entries into the indexes named
*_work.csv, where the bounding boxes are adjusted
if needed. The files form the basis for the inter-
mediate brevigraph indexes named *_workbr.csv
where the entries are supplemented by the brevi-
graph names.

The brevigraph names serve a purely techni-
cal goal: they allow grouping similar brevigraphs
together in the djview4poliqarp program. However,
the choice of the names is not obvious. The ofÏcial
Unicode names and the Unicode-like MUFI names
are cumbersome because of their length, e.g., latin
capital letter v with diagonal stroke. As
an alternative, I was considering using names de-
rived from the XML entity names provided by MUFI,
also for selected pure Unicode characters. Some are

16 github.com/FriedrichFroebel/didjvu

Janusz S. Bień

https://github.com/jsbien/djview4shapes
https://github.com/jsbien/ndt/wiki/z_shapes
https://github.com/trufanov-nok/djvudict
https://github.com/FriedrichFroebel/didjvu

TUGboat, Volume 45 (2024), No. 1 35

Figure 10: Keyboard shortcuts in djview4poliqarp

short and mnemotechnical, e.g. &pbardes; (U+A751
latin small letter P with stroke, here bar, through
descender). Some are short and not mnemotechni-
cal, e.g., &q3app; (U+E8B4 latin small letter q
ligated with final et; 3 may suggest the shape
of the final et, but I have no association to suggest
for app), some are mnemotechnical but rather long,
e.g. &lhighstrok; (U+A749 latin small letter L with
high stroke).

Nevertheless, after some hesitation, I decided
to use those names (with ‘&’ and ‘;’ stripped) for
my purposes. The crucial factor in making this
decision was the fact that djview4poliqarp has a kind
of macro facility (Fig. 10). The configuration file17

has an [edit] section which can contain appropriate
settings.

For characters which are present neither in Uni-
code nor in MUFI I use ad hoc names. Characters
which are difÏcult to identify I handle in an analogi-
cal way. Such names often don’t identify the glyphs
uniquely, but merely point to similar glyphs.

For technical reasons the names are placed first
in the comment field and then moved to the en-
try field with a program. The final indexes have
the names in the form of *_br.csv. An aggre-
gated index is also created which is named simply
brevigraphs.csv.

The figures in the present paper were prepared
in a way similar to that used for [8]: a program
converts the index of the selected glyphs into the
expex18 code and creates a set of graphic snippets
from the DjVu documents.

The glyphs in the figures are numbered for
reference purposes and accompanied by the self-
explanatory abbreviations of printing house names
and font numbers.

17 ~/.config/djview-poliqarp/djview-poliqarp.conf
18 ctan.org/pkg/expex

A-08

1

H-11

2

U1-10

3

U2-02

4

U2-02

5

U2-05

6

U2-05

7

U2-09

8

U2-15

9

U2-15

10

U2-15

11

U2-18

12

U2-18

13

U2-18

14

U2-20

15

U2-20

16

U2-20

17

U2-21

18

W-10+8

19

W-12

20

W-13

21

W-14

22

W-15

23

W-15

24

Figure 11: Ampersand

H-01

1

H-02

2

H-03

3

H-04

4

H-05

5

H-06

6

H-07

7

H-08

8

H-09

9

H-10

10

H-12

11

H-13

12

Hf-03

13

Hf-04

14

Hf-05

15

Hf-06

16

Hf-07

17

Hf-08

18

Hf-08

19

Hf-09

20

Hf-09

21

Hf-10

22

Hf-11

23

U1-01

24

U1-03

25

U1-04

26

U1-05

27

U1-06

28

U1-07

29

U2-01

30

U2-03

31

U2-03

32

U2-04

33

U2-06

34

U2-10

35

U2-14

36

U2-16

37

U1-02

38

Figure 12: Tironian note et

3 Non-alphabetic brevigraphs
Figure 11 shows ampersand, the brevigraph which
in one of its forms has survived to the present time;
it is a very old abbreviation of the word et. It has
two forms, both of them are available in the Juni-
code family of fonts: ‘&’ (Junicode-Regular) and ‘&’
(Junicode-Italic). In computer code the first form
has been available at least since ASCII (American
Standard Code for Information Interchange), which
was created in 1963. The Unicode charts also show
only the first form.

The brevigraph presented in Fig. 12 is without
any doubt the Tironian note et (Tironian notes are
named after Tiro, the secretary of Cicero, who is cred-
ited with inventing them), used always as a separate
word. The brevigraph is present in Unicode since
version 3.0 (published in 1999) as U+204A TIRONIAN
SIGN ET with the canonical glyph ‘⁊’. The Junicode

Basic Latin brevigraphs listed in Polonia Typographica Saeculi Sedecimi — progress report

https://ctan.org/pkg/expex

36 TUGboat, Volume 45 (2024), No. 1

U2-06

1

H-01

2

H-02

3

H-03

4

H-04

5

H-05

6

H-06

7

H-07

8

H-08

9

H-09

10

H-10

11

H-12

12

H-13

13

Hf-03

14

Hf-04

15

Hf-05

16

Hf-06

17

Hf-07

18

Hf-08

19

Hf-08

20

Hf-09

21

Hf-09

22

Hf-10

23

Hf-11

24

U1-01

25

U1-02

26

U1-03

27

U1-04

28

U1-05

29

U1-06

30

U1-07

31

U2-01

32

U2-04

33

U2-10

34

U2-16

35

U2-18

36

U2-20

37

U2-14

38

Figure 13: The letter rum rotunda

font has also another variant of the glyph, namely ‘’
(accessed with OpenType character variant feature
or just with the code U+F001D), which is quite close
to the shape of most glyphs in Fig. 12. Item 31 in
the figure is yet another variant, called in the font
manual Tironian et sign later form with bar ; it is
available in Junicode with OpenType feature ss10
and the tags ‘ÀÀ’‘�À’: ‘ő⇊’.

The brevigraph presented in Fig. 13 is present
in Unicode since version 5.1.0 (published in 2000)
as U+A75D latin small letter rum rotunda
with the canonical glyph ‘ꝝ’, which is quite close to
the glyphs in the figure. It can mean -rum or -rom.
Although the name may suggest that this is a variant
of the letter rum, their shapes have little in common
(see sec. 12).

As noted in [1, p. 130], Unicode has additionally
two similar symbols: U+0264 jupiter, U+1F729
alchemical symbol for tin ore. In the Symbola
font these three characters look like, respectively:
ꝝ, ♃ and 🜩. They look different, but this is the
decision of the contemporary font designer. The
glyphs listed in Fig. 13 could probably represent any
of those three characters; this has to be checked in
the original texts.

All the glyphs in Fig. 14 are in my opinion vari-
ants of the character U+A76D latin small letter
is, present in Unicode since version 5.1.0 (published
in 2000) with the canonical glyph ‘ꝭ’. Of course their
usage should be verified in the original texts.

The glyphs in Fig. 15 looking like the digit 9
are instances of the well-known brevigraph present
in Unicode as U+A770 modifier letter us with
representative glyph ‘ꝰ’; it was introduced in version

H-01

1

U2-06

2

H-01

3

H-03

4

H-04

5

H-05

6

H-06

7

H-08

8

H-09

9

H-10

10

H-12

11

H-13

12

Hf-03

13

Hf-05

14

Hf-07

15

Hf-08

16

Hf-08

17

Hf-09

18

Hf-09

19

Hf-10

20

U1-02

21

U1-03

22

U1-06

23

U1-07

24

U2-01

25

U2-03

26

U2-09

27

U2-10

28

U2-14

29

U2-18

30

U2-18

31

U2-20

32

Figure 14: The letter is

H-02

1

H-03

2

H-04

3

A-01

4

A-02

5

A-08

6

A-14

7

A-16

8

H-01

9

H-05

10

H-06

11

H-07

12

H-08

13

H-09

14

H-10

15

H-11

16

H-12

17

H-13

18

Hf-03

19

Hf-04

20

Hf-05

21

Hf-06

22

Hf-07

23

Hf-08

24

Hf-08

25

Hf-09

26

Hf-09

27

Hf-10

28

Hf-11

29

U1-01

30

U1-02

31

U1-03

32

U1-04

33

U1-05

34

U1-06

35

U1-07

36

U1-08

37

U1-10

38

U2-01

39

U2-03

40

U2-04

41

U2-06

42

U2-09

43

U2-10

44

U2-14

45

U2-15

46

U2-16

47

U2-18

48

U2-20

49

W-10+8

50

W-13

51

W-14

52

A-01

53

U2-02

54

Figure 15: The letter us

5.1.0 (published in 2008), and modifier means it is
not on the baseline. It is used always at the end of
words. The meaning of the glyphs similar to a circle,
like item 43, is to be checked in the texts, as it can
be just a raised small letter o (in Unicode, U+1D52
modifier letter small o).

The base glyphs in Fig. 16, despite a slightly
different shape, can be identified with the character
called by MUFI latin abbreviation sign small
con [11, s. 29] and in Unicode unified with U+2184

Janusz S. Bień

TUGboat, Volume 45 (2024), No. 1 37

H-02

1

H-03

2

H-04

3

H-05

4

H-06

5

H-07

6

H-08

7

H-09

8

H-10

9

H-12

10

H-13

11

Hf-03

12

Hf-05

13

Hf-06

14

Hf-07

15

Hf-08

16

Hf-08

17

Hf-09

18

Hf-09

19

Hf-10

20

Hf-11

21

U1-01

22

U1-02

23

U1-03

24

U1-05

25

U1-06

26

U1-07

27

U2-03

28

U2-06

29

U2-10

30

U2-10

31

U2-10

32

U2-10

33

U2-14

34

U2-15

35

U2-16

36

H-02

37

U1-05

38

H-08

39

Hf-03

40

Hf-05

41

Hf-07

42

Hf-10

43

U2-14

44

U2-16

45

H-05

46

U1-07

47

U2-03

48

H-06

49

H-07

50

Hf-08

51

Hf-08

52

Hf-09

53

Hf-09

54

Figure 16: The letter small con

latin small letter reversed c with representa-
tive glyph ‘ↄ’. As the name suggests, it meaning is
just con (perhaps with some exceptions).

As for the letter with diacritics, the situation
is much more complicated. I have not yet found
their occurrences in the texts, so I don’t know their
meaning. Another problem is the form of the diacrit-
ics. Besides a diaresis, we have the diacritic which
seems to be the same as the one described in [10] as
jagged horizontal line which is encoded in Unicode
as U+1DD3 combining latin small letter flat-
tened open a above but rendered differently: in
Junicode it is ‘◌ᷓ’ and in Symbola it is ◌.ᷓ Moreover
there is an open question what kind of diacritics, if
any, are used in Ungler’s font 10 (items 32 and 33).

4 Modifications of the letter b
Old texts used many variations of the letter b, many
of which are assigned code points by MUFI. Many
variants of the letter b are also listed in Polonia
Typographica. Fig. 17 presents those instances which
are directly relevant to our purposes here.

We will focus on item 3 (Haller’s font no 4) and
those from Hochfeder’s fonts, items 8–17, as their
shapes seem to be carefully designed while other

A-03

1

H-02

2

H-04

3

H-04

4

H-05

5

H-06

6

H-07

7

Hf-03

8

Hf-05

9

Hf-06

10

Hf-07

11

Hf-08

12

Hf-08

13

Hf-09

14

Hf-09

15

Hf-09

16

Hf-09

17

Hf-09

18

Hf-09

19

Hf-09

20

Hf-09

21

Hf-10

22

Hf-11

23

U1-01

24

U1-02

25

U1-03

26

U2-10

27

U2-14

28

U2-16

29

Figure 17: The variants of the letter b

Figure 18: Modified letter b in Gutenberg’s bible:
sublime and substantia (Bodleian Library copy, page 21
and 64 of volume II)

items seem to be just more or less crude variations
of those.

A character with an almost identical shape ap-
peared already in Gutenberg’s 42-line bible. Despite
this, it seems it still has no name and even no gener-
ally accepted description. In [2, p. 12] Jacques André
proposes the name latin small letter b with flourish
(he considers also an alternative latin small letter b
ligated with arm of latin small r, but cf. sec. 8).

According to Gerald Bettridge [4], it means bis
and, after the long s, ub (see Fig. 18, also [2, p. 12]
and [3, p. 12]). It can be ligated with long s; see
sec. 13.

It seems this was not always a brevigraph, some-
times it is just equivalent to a normal b [6, p. 8]. Or
perhaps it was just a printer’s mistake?

5 Modifications of the letter d
The similarity of items 6 and (e.g.) 19 to item 3
from Fig. 17 and items 5 and (e.g.) 8 from Fig. 22,
all from respectively the same fonts, seems to be a
design decision.

I think this is the brevigraph called d with two
ascenders by Erin Blake in [10]; she states that the
brevigraph stands for

de and (depending on the language) also for
der, dis, dum and other d-syllables
Peter Baker suggested19 treating the character

as MUFI U+F159 latin abbreviation sign small
19 github.com/psb1558/Junicode-font/discussions/133

Basic Latin brevigraphs listed in Polonia Typographica Saeculi Sedecimi — progress report

https://github.com/psb1558/Junicode-font/discussions/133

38 TUGboat, Volume 45 (2024), No. 1

A-02a

1

A-14

2

H-01

3

H-02

4

H-04

5

H-05

6

H-06

7

H-07

8

H-08

9

H-09

10

H-10

11

H-12

12

H-13

13

Hf-03

14

Hf-04

15

Hf-04

16

Hf-05

17

Hf-06

18

Hf-07

19

Hf-08

20

Hf-08

21

Hf-09

22

Hf-09

23

Hf-11

24

U1-01

25

U1-02

26

U1-03

27

U1-03

28

U1-03

29

U1-04

30

U1-05

31

U1-06

32

U1-07

33

U2-01

34

U2-03

35

U2-04

36

U2-06

37

U2-09

38

U2-10

39

U2-14

40

U2-16

41

U2-18

42

Figure 19: The variants of the letter d

A-07

1

A-08

2

H-04

3

H-11

4

U1-03

5

U1-06

6

U1-06

7

U1-06

8

U1-10

9

U2-02

10

U2-04

11

U2-04

12

U2-09

13

U2-10

14

U2-14

15

U2-15

16

U2-16

17

U2-18

18

U2-19

19

U2-20

20

U2-22

21

W-10+8

22

H-02

23

Figure 20: The variants of the letter e

de (‘’), called also latin small letter d ro-
tunda with bar.20 He also points to another simi-
lar MUFI character, namely U+EBB2 latin small
letter d rotunda with acute ‘’.

The meaning of the brevigraph with a dot above
is yet to be checked in the texts.

6 Modifications of the letter e
Fig. 20 presents the well-known e caudata, meaning
ae.

It is an open controversy whether e caudata
and the contemporary U+0119 latin small letter
e with ogonek should be considered the same
character. Peter Baker wrote21

20 mufi.info/q.php?p=mufi/chars/unichar/61785
21 junicode.sourceforge.net/ecaudata.html

U2-16

1

U2-03

2

Figure 21: The variants of the letter g

H-01

1

H-03

2

H-04

3

H-07

4

H-05

5

H-08

6

H-10

7

Hf-03

8

Hf-05

9

Hf-06

10

Hf-07

11

Hf-07

12

Hf-08

13

Hf-08

14

Hf-10

15

Hf-10

16

Hf-11

17

U1-01

18

U1-07

19

U1-10

20

U2-03

21

Figure 22: The variants of the letter h

Perhaps it is time to admit that the Latinate
cauda and the ogonek used by Polish and
other languages are different beasts.

and provided an OpenType feature (ss15) to distin-
guish them in the Junicode font. I have no opinion
on this matter.

The meaning of the letter with a bar above (item
19) is yet to be checked in the texts.

7 Modification of the letter g
I have little to say about the glyphs in Fig. 21, since
I have not found any occurrence of them in a text.
On one hand they resemble the letters rum (sec. 12),
and tum (sec. 14). On the other hand it resemble
also the glyph from Fig. 2. Moreover, Blake [10]
says that weird vertical line at end of word means
an s preceded by a vowel (typically es in English
and is in Latin); in other words in Latin it can be
perhaps considered as the ligature of g and the letter
‘is’ which has been discussed already in sec. 3.

8 Modifications of the letter h
For some fonts there is an evident similarity of items
among Figures 17, 19, and 22. It seems to be a
design decision.

A character with an almost identical shape ap-
peared in Gutenberg’s 42-line bible. In the MUFI
recommendation, it is identified as U+E8C3 latin
small letter h ligated with arm of latin
small letter r (‘’). Jacques André [2, p. 17]
notes that the name is strange and I agree with him.

The glyphs in Fig. 22 seem to be the same as
those described as h with a tick on top by Blake, who
states

Stands for h-syllables like han, het, and hic

Janusz S. Bień

https://mufi.info/q.php?p=mufi/chars/unichar/61785
https://junicode.sourceforge.net/ecaudata.html

TUGboat, Volume 45 (2024), No. 1 39

H-04

1

H-05

2

H-06

3

H-07

4

H-08

5

H-09

6

H-10

7

H-11

8

H-12

9

H-13

10

Hf-03

11

Hf-04

12

Hf-05

13

Hf-06

14

Hf-07

15

Hf-08

16

Hf-08

17

Hf-09

18

Hf-09

19

Hf-10

20

Hf-11

21

U1-01

22

U1-02

23

U1-03

24

U1-06

25

U1-07

26

U1-10

27

U2-02

28

U2-03

29

U2-04

30

U2-06

31

U2-09

32

U2-10

33

U2-14

34

U2-15

35

U2-16

36

U2-18

37

U2-19

38

W-02

39

H-02

40

A-01

41

A-02

42

A-03

43

A-14

44

A-14

45

H-03

46

Figure 23: The variants of the letter l

Another interpretation was presented by Lisa
Howarth on the Facebook The Paleography Society
group:22

When attached to an ‘h’, it usually means ‘er’
or ‘ab’ depending on the word

She considers the glyph to be composed from the
letter h and an diacritical sign, similar to Peter Baker,
who identifies23 the diacritics as U+0335 combining
short stroke overlay (‘◌̵’).

9 The modification of the letter l
Reportedly the glyphs in Fig. 23 have the same mean-
ing as U+A749 latin small letter l with high
stroke (‘ꝉ’) and therefore a separate code point has
not been assigned.24 However the Junicode font con-
tains at code point U+F000F the glyph l with high
stroke ending with flourish (‘’), accessible also as l
with the OpenType feature ss10 and the tags ‘ÒÀ’‘ÅÀ’.

A character with an almost identical shape ap-
peared in Gutenberg’s 42-line bible; cf. Fig. 24.

10 Modifications of the letter p
Fig. 25 contains the variants of a well-known brevi-
graph, available in Unicode since version 5.1.0 (pub-
lished in 2008) as U+A751 latin letter p with

22 facebook.com/groups/7687162686/permalink/
10158299890607687

23 github.com/psb1558/Junicode-font/discussions/134
24 github.com/psb1558/Junicode-font/issues/4

Figure 24: Modified letter l in Gutenberg’s bible:
according to [4] iherusalem (Bodleian Library copy,
page 574 of volume II)

A-07

1

H-01

2

H-02

3

H-03

4

H-04

5

H-05

6

H-06

7

H-07

8

H-08

9

H-09

10

H-10

11

H-11

12

H-12

13

H-13

14

Hf-03

15

Hf-04

16

Hf-05

17

Hf-06

18

Hf-07

19

Hf-08

20

Hf-08

21

Hf-09

22

Hf-09

23

Hf-11

24

U1-01

25

U1-02

26

U1-03

27

U1-04

28

U1-05

29

U1-06

30

U1-07

31

U1-10

32

U2-01

33

U2-02

34

U2-06

35

U2-09

36

U2-10

37

U2-14

38

U2-15

39

U2-16

40

U2-18

41

U2-20

42

U2-21

43

U2-22

44

W-10+8

45

W-14

46

Hf-08

47

Hf-08

48

Figure 25: The letter p with stroke

stroke through descender with representative
glyph ‘ꝑ’. The brevigraph is ambiguous; the most
popular meanings are per, par and por. It can be
used as an individual word or as a prefix.

The base characters in Fig. 26 are also the vari-
ants of a well-known brevigraph, available in Unicode
since version 5.1.0 (published in 2008) as U+A753
latin letter p with flourish with representative
glyph ‘ꝓ’. The brevigraph is ambiguous; the most
popular meanings are pro and por. It too can be
used as an individual word or as a prefix.

The last characters are included in the MUFI
recommendation as U+EED7 latin small ligature
pp with flourish with the glyph ‘’; the meaning
is prop-.

The meaning of the characters with diacritics is
yet to be checked in the texts.

11 Modifications of the letter q
The glyphs in Fig. 27 represent a well-known brevi-
graph, included in Unicode since version 5.1.0 (pub-
lished in 2008) as U+A757 latin small letter q

Basic Latin brevigraphs listed in Polonia Typographica Saeculi Sedecimi — progress report

https://facebook.com/groups/7687162686/permalink/10158299890607687
https://facebook.com/groups/7687162686/permalink/10158299890607687
https://github.com/psb1558/Junicode-font/discussions/134
https://github.com/psb1558/Junicode-font/issues/4

40 TUGboat, Volume 45 (2024), No. 1

A-01

1

A-03

2

A-08

3

H-01

4

H-02

5

H-03

6

H-04

7

H-05

8

H-06

9

H-07

10

H-08

11

H-09

12

H-10

13

H-11

14

H-12

15

H-13

16

Hf-03

17

Hf-04

18

Hf-05

19

Hf-06

20

Hf-07

21

Hf-08

22

Hf-08

23

Hf-09

24

Hf-09

25

Hf-10

26

Hf-11

27

U1-01

28

U1-02

29

U1-03

30

U1-04

31

U1-05

32

U1-06

33

U1-07

34

U1-10

35

U2-01

36

U2-02

37

U2-03

38

U2-05

39

U2-06

40

U2-09

41

U2-09

42

U2-10

43

U2-14

44

U2-15

45

U2-16

46

U2-18

47

U2-20

48

U2-21

49

W-14

50

W-15

51

U2-03

52

H-09

53

H-04

54

H-05

55

H-08

56

H-08

57

H-10

58

Hf-03

59

Hf-07

60

Hf-08

61

Hf-08

62

Hf-09

63

Hf-09

64

U1-02

65

U1-03

66

U1-05

67

U1-06

68

U2-14

69

U1-02

70

U1-03

71

Figure 26: The letter p with flourish

A-07

1

H-08

2

H-11

3

U1-07

4

U1-10

5

U2-01

6

U2-02

7

U2-02

8

U2-02

9

U2-05

10

U2-09

11

U2-14

12

U2-15

13

U2-18

14

U2-20

15

W-10+8

16

U2-20

17

U2-20

18

U2-21

19

U2-22

20

W-14

21

H-11

22

H-11

23

U1-10

24

U2-15

25

U2-02

26

U1-07

27

Figure 27: The letter q with stroke through descender

A-07

1

A-08

2

H-02

3

H-03

4

H-04

5

H-05

6

H-06

7

H-07

8

H-08

9

H-09

10

H-10

11

H-11

12

H-13

13

Hf-03

14

Hf-04

15

Hf-05

16

Hf-06

17

Hf-07

18

Hf-08

19

Hf-08

20

Hf-09

21

Hf-09

22

Hf-09

23

Hf-09

24

Hf-10

25

Hf-10

26

Hf-11

27

U1-01

28

U1-02

29

U1-03

30

U1-05

31

U1-06

32

U1-07

33

U1-10

34

U2-02

35

U2-03

36

U2-03

37

U2-05

38

U2-06

39

U2-09

40

U2-10

41

U2-10

42

U2-10

43

U2-10

44

U2-10

45

U2-10

46

U2-14

47

U2-14

48

U2-14

49

U2-15

50

U2-16

51

U2-20

52

U2-21

53

W-10+8

54

A-07

55

A-08

56

H-05

57

Hf-06

58

Hf-11

59

U1-05

60

U2-09

61

U2-14

62

U2-03

63

U2-16

64

U1-04

65

U2-03

66

W-15

67

H-01

68

H-02

69

H-03

70

H-10

71

Hf-10

72

Figure 28: The letter q with diagonal stroke

with stroke through descender with represen-
tative glyph ‘ꝗ’. It can be used as an individual word
or as part of it and is quite ambiguous; the reported
meanings are quam, que, quan- and qui-.

Fig. 27 demonstrates also various kinds of dia-
critical marks which can be used with this brevigraph.
The meaning of modified brevigraphs is not clear and
requires further research.

The characters in Fig. 28 are in my opinion
variants of the brevigraph introduced to Unicode
in version 5.1.0 (published 2008) as U+A759 latin
small letter q with diagonal stroke with rep-
resentative glyph ‘ꝙ’, although such a classification
of some shapes is questionable. The Unicode name
is not very adequate; in [3, p. 70] the name latin
small letter q with swash is proposed. The

Janusz S. Bień

TUGboat, Volume 45 (2024), No. 1 41

brevigraph has three meanings: quod, qui and que; it
can be used as an individual word or as a part of it.

The meaning of modified brevigraphs with di-
acritical marks is not clear. Here we will mention
only that in [3, p. 71] a glyph similar to those from
Fig. 28 is classified as latin small letter q with
swash and latin small letter flattened open
a above (an alternative name latin small letter
q with flourish . . . is also considered), and an
example is given where the brevigraph means quan-.

The glyphs in Fig. 29 represent the brevigraph
assigned the Private Use Area code U+E8BF and the
name latin small letter q ligated with final
et by MUFI in version 4 of the recommendation [11,
p. 81]. In the Junicode font, it is rendered as ‘’.

Finding the meaning of the brevigraph with a
diacritical mark requires additional research, but we
will note that according to [10] some of the glyphs
from Fig. 29 mean quam or quan.

12 Modifications of the letter r
The first glyph in Fig. 30 is an interesting and rather
little-known character. Although this is far from obvi-
ous, it is U+A775 latin small letter rum despite
the fact that the Unicode representative glyph is ‘ꝵ’,
as in Junicode we have ‘ꝵ’ — the glyph is practically
identical to that on the figure. The character was
added to Unicode in version 5.1 (published in 2008),
along with some similar characters (see sec. 14). I
assume the second glyph in the figure is just a variant
of the first one.

The glyphs in Fig. 31 are ambiguous. They can
represent U+A776 latin letter small capital
rum (ꝶ), but they can also be interpreted as U+211E
prescription take (‘℞’) and, last but not least,
U+211F response (‘℞’) which in prayer books can
be paired with the versicle character (see sec. 15).

13 Modifications of the letter long s
The glyphs in Fig. 32 are noted in the MUFI recom-
mendations as M+E8B7 latin small letter long
s with flourish (‘’).

The glyphs in Fig. 33 are present neither in
Unicode nor in the MUFI recommendation, but they
are obviously the long s (U+017F) ligated with the
final et (U+A76B). As far as I know, this ligature
is available only in the Junicode font25 with the
Historic Ligature (hlig) feature: ‘ſꝫ’. The meaning is
sed, as exemplified in [9, example (68)].

Fig. 34 shows a problematic glyph which I’m
not sure how to interpret.

One of the component characters of the ligatures
presented in Fig. 35 has been already mentioned in

25 github.com/psb1558/Junicode-font/discussions/140

A-07

1

A-08

2

A-08

3

H-02

4

H-03

5

H-04

6

H-05

7

H-06

8

H-07

9

H-08

10

H-08

11

H-09

12

H-10

13

H-11

14

H-12

15

H-13

16

Hf-03

17

Hf-04

18

Hf-05

19

Hf-08

20

Hf-08

21

Hf-09

22

Hf-09

23

Hf-10

24

Hf-11

25

U1-01

26

U1-02

27

U1-03

28

U1-04

29

U1-05

30

U1-06

31

U1-07

32

U1-08

33

U1-10

34

U2-01

35

U2-02

36

U2-02

37

U2-02

38

U2-03

39

U2-05

40

U2-06

41

U2-14

42

U2-15

43

U2-16

44

U2-16

45

U2-18

46

U2-20

47

U2-20

48

W-10+8

49

W-12

50

W-14

51

W-14

52

Hf-07

53

Hf-07

54

Hf-03

55

U2-20

56

U2-21

57

W-10+8

58

W-14

59

W-15

60

H-06

61

H-10

62

U2-09

63

H-09

64

U2-02

65

H-07

66

H-07

67

Hf-03

68

Hf-07

69

Hf-10

70

U2-03

71

U2-16

72

A-07

73

A-08

74

H-04

75

H-05

76

H-08

77

H-11

78

H-12

79

H-13

80

Hf-04

81

Hf-05

82

Hf-08

83

Hf-08

84

Hf-09

85

Hf-09

86

U1-01

87

U1-02

88

U1-03

89

U1-04

90

U1-06

91

U1-07

92

U1-10

93

U2-01

94

U2-02

95

U2-05

96

U2-06

97

U2-14

98

U2-16

99

U2-18

100

W-10+8

101

U2-22

102

Figure 29: The letter q with final et

Basic Latin brevigraphs listed in Polonia Typographica Saeculi Sedecimi — progress report

https://github.com/psb1558/Junicode-font/discussions/140

42 TUGboat, Volume 45 (2024), No. 1

U2-16

1

U2-03

2

Figure 30: The alternative glyphs of the letter rum

U2-02

1

U2-05

2

U1-10

3

H-11

4

U2-15

5

U2-20

6

U2-21

7

Figure 31: The alternative glyphs of the letter response

A-01b

1

H-03

2

H-04

3

H-05

4

H-06

5

H-07

6

H-08

7

H-09

8

H-10

9

Hf-03

10

Hf-04

11

Hf-05

12

Hf-06

13

Hf-07

14

Hf-08

15

Hf-08

16

Hf-09

17

Hf-09

18

Hf-10

19

Hf-11

20

U1-02

21

U2-02

22

U1-03

23

U1-06

24

U1-10

25

U2-03

26

U2-04

27

U2-06

28

U2-10

29

U2-14

30

U2-16

31

Figure 32: Long s with flourish

A-01b

1

A-02

2

A-02

3

A-03

4

A-06

5

H-04

6

H-06

7

H-07

8

H-08

9

Hf-04

10

U1-01

11

U1-02

12

U2-09

13

U2-16

14

U2-18

15

U2-18

16

U2-19

17

U2-19

18

Figure 33: Long s with final et

A-03

1

Figure 34: Long s with final et?

H-02

1

H-04

2

H-05

3

H-09

4

H-10

5

Hf-03

6

Hf-05

7

Hf-06

8

Hf-07

9

Hf-08

10

Hf-08

11

Hf-09

12

Hf-09

13

Hf-10

14

Hf-11

15

U1-01

16

U1-02

17

U1-02

18

U1-03

19

U1-03

20

U1-05

21

U1-07

22

U2-14

23

Figure 35: The ligature of long s with the letter b and
its modifications

U2-09

1

Figure 36: The ligature of long s with the letter l with
flourish?

U2-03

1

U2-14

2

U2-16

3

Figure 37: The letter tum

sec. 4. We see also the letter b with a dot above;
the meaning of the letter, ligated or not, is yet to be
investigated.

It is worth noting that in item 18 instead of a
normal long s we have a long funny s proposed to
be included in the MUFI recommendation.26

In Fig. 36 we have a ligature which can be per-
haps treated as a variant of MUFI U+E8AF latin
small ligature long s l with diagonal stroke
(‘’).

14 Modifications of the letter t
Fig. 37 shows the rather rare brevigraph U+A777
latin small letter tum with representative glyph
‘ꝷ’. It was introduced in version 5.1 (published in
2008), together with some related letters such as
U+A775 latin small letter rum (see sec. 12).

15 Modification of the letter v
The primary interpretation of the glyphs in Fig. 38
seems to be U+A75F latin small letter v with

26 mufi.info/q.php?p=mufi/chars/unichar/1048876

Janusz S. Bień

https://mufi.info/q.php?p=mufi/chars/unichar/1048876

TUGboat, Volume 45 (2024), No. 1 43

H-11

1

H-12

2

H-13

3

Hf-04

4

Hf-05

5

Hf-06

6

Hf-07

7

Hf-11

8

U1-07

9

U2-03

10

U2-06

11

U2-09

12

U2-10

13

U2-14

14

U2-14

15

U2-16

16

U2-20

17

H-06

18

H-07

19

Hf-03

20

H-01

21

H-03

22

Figure 38: The letter v with diagonal stroke

diagonal stroke (‘ꝟ’) added to Unicode in version
5.1.0 (published in 2008); in item 14 it is the other
arm which is crossed. It means ver or vir.

The glyphs can stand also for U+2123 versicle
(‘℣’), used to mark in the prayer books the begin-
ning of a versicle, i.e., a short sentence said or sung
by the minister in a church service, to which the
congregation gives a response.27

16 Final remarks
As has already been mentioned, the next step should
be to find the occurrences of the discussed brevi-
graphs in the texts and in this way find or verify
their meaning. For this, we don’t need the full tran-
scriptions of the texts. What is sufÏcient for our
purposes is glyph or character spotting. These tasks
are discussed in some publications, but there seems
to be no tool available directly for use. With some
limitations, a variant of a workflow described earlier
can be used for this purpose. The djvudict output
can be converted to a PDF document (created with
TEX) with enlarged glyphs which make it relatively
easy to search for interesting items and to note their
identifiers (Fig. 39). Additionally, a djview4poliqarp
index can be created, which uses the shape iden-
tifier as the searchable entry fields (Fig. 40). The
identifiers are not unique, nevertheless it is possible
with some effort to find the context of a shape in the
document, as illustrated in Figures 39 and 40 (note
the shape 01344).

At present my programs supporting this ap-
proach are too primitive to be used conveniently, but
I will try to improve them. Any help from Python
and/or QT programmers (QT was used to imple-
ment djview4poliqarp and djview4shapes) would be
welcomed and appreciated.

27 Definition provided by Google in a non-linkable form.

00295 01586 00765 01545 00030 00729 01785

01315 01807 01841 00614 00153 02080 00788

01147 00757 00531 01394 00604 00933 01141 01981

01356 01450 00980 00036 01308 00058

01589 00539 00949 00400 01553 00678 01866 01837

00471 01806 01994 00889 01132 00079

00897 00910 01951 01046 00974 01121 01199

00823 01716 00124 01523 00985 01294 00361 02052

01228 00293 01245 00028 01271 01823

00730 00805 00399 00204 00412 00568 00830 00622

00120 02061 00797 01682 01426 01552

01821 00953 00804 01636 00972 01847 01314 01212

01816 00640 00140 00746 01158 01940

00388 02081 00397 01385 00886 00675 01047

01071 01022 00950 01146 01344 01737 00610

00826 00050 00389 00672 00425 01665 01363 01330

01106 00316 01110 00771 01991 01273 00383

01508 00143 00511 00573 01354 01116 00853

00706 00693 00248 00128 00334 01698 00847

01773 00068 00328 00748 01370 00586 01157

01112 01239 00230 00951 00789 01006 00802 01953

01118 01648 00956 00356 01726 01739

00146 01895 02073 00312 01204 00518 00212

00285 01831 00057 00866 00359 00330 01231 01341

10
Figure 39: The djvudict output in the form of a PDF
document

Figure 40: The djvudict output in the form of a
djview4poliqarp index

Acknowledgments. Thanks to Barbara Beeton and
Karl Berry for their careful reading of the manuscript
and improving the presentation and English wording.

References
[1] J. André, R. Jimenes. Transcription et codage

des imprimés de la Renaissance. Revue des
Sciences et Technologies de l’Information —

Basic Latin brevigraphs listed in Polonia Typographica Saeculi Sedecimi — progress report

44 TUGboat, Volume 45 (2024), No. 1

Série Document Numérique, 16(3):113–139, 2013.
doi.org/10.3166/DN.16.3.113-139

[2] J. André. Inventaire des typèmes de la B42. Note
de travail NT-1, Projet d’Inventaire des Caractères
Anciens, 2015.
jacques-andre.fr/PICA/B42-typemes.pdf

[3] J. André. Inventaire des typèmes latins et
français existant dans Unicode/MUFI ou à
y faire entrer. Note de travail NT-2, Projet
d’Inventaire des Caractères Anciens, 2022.
jacques-andre.fr/PICA/SIGMA-PICA.pdf

[4] G. Bettridge. How to read the Gutenberg Bible.
Text prepared for the Lyon Printing Museum.

[5] J.S. Bień. 16th century Latin brevigraphs
in Unicode — a computer resource. In
Grapholinguistics in the 21st Century 2022.
Proceedings. Grapholinguistics and Its Applications,
Y. Haralambous, ed., pp. 31–46. Fluxus Editions,
Brest, 2023 (to appear).
doi.org/10.36824/2022-graf-bien

[6] J.S. Bień. Repertuar znaków pisma nr 1 pierwszej
drukarni Unglera (1510–1516) na podstawie
Polonia Typographica. Acta Poligraphica, pp. 1–20,
2021. www.cobrpp.com.pl/actapoligraphica/
uploads/pdf/AP2021_Bien.pdf

[7] J.S. Bień. Representing Parkosz’s alphabet in
the Junicode font. TUGboat 43(3):247–251, 2022.
doi.org/10.47397/tb/43-3/tb135bien-parkosz

[8] J.S. Bień. Towards an inventory of old print
characters: Ungler’s Rubricella , a case study.
TUGboat 44(3):364–375, 2023. doi.org/10.47397/
tb/44-3/tb138bien-rubricella

[9] J.S. Bień. Towards an inventory of old print
characters: Ungler’s Rubricella, a case study –
errata. TUGboat 45(1):44, 2024. doi.org/10.
47397/tb/45-1/tb139bien-rubricella-errata

[10] E. Blake. A briefing on brevigraphs, those
strange shapes in early printed texts, 2021.
folger.edu/blogs/collation/brevigraphs/

[11] O.E. Haugen. MUFI character recommendation
version 4.0. Medieval Unicode Font Initiative, 2015.
hdl.handle.net/1956/10699

� Janusz S. Bień
Warsaw, Poland
jsbien (at) uw.edu.pl
sites.google.com/view/jsbien
ORCID 0000-0001-5006-8183

44 TUGboat, Volume 45 (2024), No. 1

Towards an inventory of old print characters:
Ungler’s Rubricella, a case study — Errata

Janusz S. Bień

Abstract
Errata for the article in TUGboat issue 44:3, pp. 364–
375 (tug.org/TUGboat/tb44-3/tb138bien-rubricella.
pdf): 1) ‘‘Ŋ’ and ‘ꟼ’ were typeset where ‘’ and ‘’ were
intended; 2) ‘’ was confused with ‘ſꝫ’; 3) an h should
have been b.

4.5 Brevigraphs
From the first paragraph of this section in the original
article:

. . . in Junicode also “‘Ŋ” . . .

. . . in the Junicode font also ‘‘ꟼ’‘ . . .
The wrong characters were typeset; these should

have been ‘’ and ‘’. This was because of a problem
with the default font renderer in Lua(LA)TEX. Switching
to the HarfBuzz renderer solves it. Thanks to Marcel
Krueger and Luigi Scarso.

A second error was towards the end of the section.
The figure (below, corrected from the original) lists two
brevigraphs based on the long s. The first one in ex-
ample (65) is ‘’ (M+E8B7 latin small letter long
s with flourish [mufi 4.0]). The second, in example
(68), is similar and in the paper was confused with it.
Actually it is the long s (U+017F) ligated with the fi-
nal et (U+A76B); it is present neither in Unicode nor
in the MUFI recommendation. As far as I know, this
ligature is available only in the Junicode font1 with the
Historic Ligature (hlig) feature: ‘ſꝫ’. It can be seen in ex-
ample (68) where it is used as a separate word (its inter-
pretations were suggested in the Facebook Paleography
Society group by Gionata Brusa and Carolus Hrachow-
iczensis;2 unfortunately neither I nor none of the group
noted that I had confused ‘’ with ‘ſꝫ’).

The first brevigraph, example (63) with the ligature
with the letter b (the original article incorrectly wrote h
here) and a diacritic mark, was discussed above.

(63)
ſ͡ƀſcripto
subscripto

(64)
ꝑmanente
permanente

(65)
ꝙ
quod

(66)
vſ
usque

(67)
̈
quam

(68)
ſꝫ
scilitet? sed?

(69)
ↄcluſa
conclusa

(70)
lcōibꝰ
lectionibus

⋄ Janusz S. Bień
Warsaw, Poland
jsbien (at) uw.edu.pl
sites.google.com/view/jsbien
ORCID 0000-0001-5006-8183

1 github.com/psb1558/Junicode-font/discussions/140
2 facebook.com/groups/7687162686/posts/

10159250228377687

doi.org/10.47397/tb/45-1/tb139bien-rubricella-errata

Janusz S. Bień

https://doi.org/10.3166/DN.16.3.113-139
https://jacques-andre.fr/PICA/B42-typemes.pdf
https://jacques-andre.fr/PICA/SIGMA-PICA.pdf
https://doi.org/10.36824/2022-graf-bien
http://www.cobrpp.com.pl/actapoligraphica/uploads/pdf/AP2021_Bien.pdf
http://www.cobrpp.com.pl/actapoligraphica/uploads/pdf/AP2021_Bien.pdf
https://doi.org/10.47397/tb/43-3/tb135bien-parkosz
https://doi.org/10.47397/tb/44-3/tb138bien-rubricella
https://doi.org/10.47397/tb/44-3/tb138bien-rubricella
https://doi.org/10.47397/tb/45-1/tb139bien-rubricella-errata
https://doi.org/10.47397/tb/45-1/tb139bien-rubricella-errata
https://folger.edu/blogs/collation/brevigraphs/
https://hdl.handle.net/1956/10699

TUGboat, Volume 45 (2024), No. 1 45

The DuckBoat — Beginners’ Pond:

Tcolorchat!

Herr Professor Paulinho van Duck

Abstract

In this installment, Prof. van Duck will show you how
to typeset chat-like conversations using tcolorbox,
a package for creating customized text boxes.

1 Wunderschöne Tage in Bonn!

Hi, (LA)TEX friends!
Last July, for the first time, my assistant Carla

and I attended a TUG meeting in person. We spent
some exciting days in Bonn, Germany, listening to
captivating talks, in an astonishing location, a former
monastery.

We met a lot of friends from countries all around
the world, Europe, of course, but also the USA, Brazil,
and India! We joyfully gave a face to many nick-
names.

Our local guest, Gert Fischer, took us on a fas-
cinating city tour. We found out interesting things
about Bonn, such as that the firm famous for in-
venting gummi bears and licorice wheels is based
there! We thank him, Ulrike Fischer, and the other
members of the conference committee for the perfect
organization.

We dined at a skyscraper restaurant with a
gorgeous view of the Rhine Valley. We took a river
trip to Königswinter, enjoyed the view from the hill,
and visited the ruins of Drachenfels Castle. We also
stopped at Schloss Drachenburg, technically not a
castle, but a nineteenth-century mansion.

We had a lot of fun and, last but not least, David
Carlisle did not eat me,1 quack!

Talking with some TEXnicians at the meeting, I found
out that the tabularray package has a flaw I should
have mentioned in my previous article [4].

Unfortunately, tabularray significantly slows
down the compilation of your document. If you have
more than a dozen tables (the exact number depends
on their complexity), it is better to use the traditional
environments, possibly reserving tabularray for the
few out-of-the-ordinary tables.

It is a pity that such a gorgeous package has
this defect, I hope it will be somehow fixed in the
future.

1 For the ones who do not usually attend TEX.SE chat: see

Box 1 and footnote 3.

In this installment, I would like to show you some
features of tcolorbox, a convenient package to type-
set colored and framed text boxes. The idea comes
from the post Chat bubbles with picture and name

attached2 on TEX.SE.
The dialogues in the examples (except for Box 1)

are taken from famous movies. Try to guess them
without searching on the internet, quack!

Eventually, I would like to thank the user frougon

from TopAnswers TeX (topanswers.xyz/tex) for
their precious help with the examples in Boxes 5 and
6; as well as samcarter, Gert Fischer, and Enrico
Gregorio for their proofreading and suggestions.

2 Quack Guide n. 9:

Chat-like messages with tcolorbox

The package tcolorbox is very versatile, allowing
creation of text boxes with a lot of features. It also
has a detailed manual [6], rich in useful examples. I
strongly advise you to look at its Section 2 Quick

Reference, where some of the main options are visu-
alized.

For the sake of brevity, I will not illustrate all the
possible customizations you can apply to your boxes.
I will only try to create something that resembles a
chat dialogue, proceeding step by step, adding a few
options at a time to get the desired result.

The main environment of the package is
\begin{tcolorbox}[⟨options⟩]
⟨environment content⟩
\end{tcolorbox}

In the optional argument, you can list all the
specific ⟨options⟩ for that box.

The ⟨environment content⟩ can be divided into
a mandatory upper part and an optional lower part.
In this installment, I will use tcolorboxes with the
upper part only.

There is also a command
\tcbox[⟨options⟩]{⟨box content⟩}
that creates a colored box fitted to the width of ⟨box
content⟩. The main differences from the tcolorbox

environment are that it cannot have a lower part and
cannot be broken across pages.

In some of the following examples, you will only
find the tcolorbox environments and the possible
settings needed for them.

Remember to first load the package in your
preamble:
\usepackage{tcolorbox}

2 tex.stackexchange.com/questions/624775/

chat-bubbles-with-picture-and-name-attached

doi.org/10.47397/tb/45-1/tb139duck-tcolorchat

The DuckBoat— Beginners’ Pond: Tcolorchat!

https://topanswers.xyz/tex
https://tex.stackexchange.com/questions/624775/chat-bubbles-with-picture-and-name-attached
https://tex.stackexchange.com/questions/624775/chat-bubbles-with-picture-and-name-attached
https://doi.org/10.47397/tb/45-1/tb139duck-tcolorchat

46 TUGboat, Volume 45 (2024), No. 1

2.1 The standard

Standard tcolorboxes appear as black and white
boxes with rounded corners.

You can also add a heading line with the option
title={⟨text⟩}; see Box 1.3

Box 1 – Standard tcolorboxes

\begin{tcolorbox}[title={Paulo}]

Quack!

\end{tcolorbox}

\begin{tcolorbox}[title=David]

Dinner!

\end{tcolorbox}

Paulo

Quack!

David

Dinner!

The brackets around the title are not mandatory,
but it is a good practice to add them, because in
some cases, for example, if there is an equal sign or
a comma in the title text, they are needed.

2.2 Aspect customization and border

dimension

Let us start with the title setting, I would like
to use it to show who is chatting. The option
fonttitle=⟨text⟩ puts the content of ⟨text⟩ before
the title. I used it to set a bold, script-size font. I
also added a little vertical space before/after the title
text with toptitle/bottomtitle=⟨length⟩.

Since I would like to make the box more lively,
I added some colors, with coltitle=⟨color⟩ for the
title text, colbacktitle=⟨color⟩ for the background
of the title, and colback=⟨color⟩ for the background
of the main text. See Box 2, and please use your
imagination if you are reading this article in black
and white.

Since the sent messages should appear horizon-
tally aligned to the right (and the received ones to
the left), I took advantage of the options:
halign title=⟨alignment⟩, for the title (aligned to
the left by default), and halign=⟨alignment⟩, for the
content (initially justified).

I also do not like the border lines, so I set their
dimension to zero, using titlerule=⟨length⟩, for the
line between the title and the text; boxrule=⟨length⟩,

3 This Box represents the usual conversation between

Paulo Cereda and David Carlisle in the TEX.SE chat.

for the border lines; and boxsep=⟨length⟩, for the
padding between the text content and the frame of
the box.

As you can see in Box 2, this is not enough.
Even setting their width to zero points, the rules are
still visible, even if barely.

Box 2 – Zero dimension rules still visible

% In your preamble:

\tcbset{fonttitle=\bfseries\scriptsize,

titlerule=0pt, boxrule=0pt, boxsep=0pt,

toptitle=6pt, bottomtitle=2pt}

% In your document:

\begin{tcolorbox}[title={Leia},

halign=flush left,

coltitle=red, colbacktitle=yellow!30,

colback=yellow!30]

I love you

\end{tcolorbox}

\begin{tcolorbox}[title={Han},

halign title=flush right,

halign=flush right,

coltitle=blue, colbacktitle=green!30,

colback=green!30]

I know

\end{tcolorbox}

Leia

I love you

Han

I know

Of course, there is a trick to avoid it, quack!
The option opacityframe=⟨fraction⟩ sets the frame
opacity of the box to the given fraction. I made it
transparent with opacityframe=0; see Box 3.

Using \tcbset{⟨options⟩}, you can set options for
all top-level tcolorboxes in your document. If you
would also like to set them for nested boxes, there is
\tcbsetforeverylayer{⟨options⟩}.

If you do not want to have a general setting,
you can create a style and use it only when needed,
like commonoptions in Box 3. The same Box shows
that you can also create customized tcolorbox envi-
ronments, like sentmsg and receivedmsg, with the
command
\newtcolorbox[⟨init options⟩]{⟨name⟩}

[⟨number⟩][⟨default⟩]{⟨options⟩}
where ⟨name⟩ is the name of the new environment,

Herr Professor Paulinho van Duck

TUGboat, Volume 45 (2024), No. 1 47

featuring some ⟨options⟩, a certain ⟨number⟩ of pa-
rameters (the first one could be optional with a
⟨default⟩ value), and some ⟨init options⟩ in case the
box should be numbered. See Section 3.2 Produc-

ing tcolorbox Environments and Commands of the
package documentation [6] for details.

Box 3 – No frame at all

% In your preamble:

\tcbset{

commonoptions/.style={

fonttitle=\bfseries\scriptsize,

titlerule=0pt, boxrule=0pt, boxsep=0pt,

toptitle=6pt, bottomtitle=2pt,

opacityframe=0,

}

}

\newtcolorbox{receivedmsg}[2][]{

commonoptions,

halign title=flush left,

halign=flush left,

coltitle=red, colbacktitle=yellow!30,

colback=yellow!30,

title={#2},

#1}

\newtcolorbox{sentmsg}[2][]{

commonoptions,

halign title=flush right,

halign=flush right,

coltitle=blue, colbacktitle=green!30,

colback=green!30,

title={#2},

#1}

% In your document:

\begin{receivedmsg}{Marion}

You’re not the man I knew ten years ago.

\end{receivedmsg}

\begin{sentmsg}{Indiana}

It’s not the years, honey, it’s the

mileage.

\end{sentmsg}

Marion

You’re not the man I knew ten years ago.

Indiana

It’s not the years, honey, it’s the mileage.

For more complex environments, you could use
\NewTColorBox, which is analogous to the macro
\NewDocumentEnvironment:

\NewTColorBox[⟨init options⟩]{⟨name⟩}
{⟨specification⟩}{⟨options⟩}

The meaning of the parameters is the same as
in \newtcolorbox but, in addition, you can set the
argument ⟨specification⟩.

In Boxes 5 and 6, you will find some examples
of environments with a starred s, an optional o, and
a mandatory argument m. See usrguide, the user-
mode documentation for LATEX [2], for a description
of all possible argument types.

An alternative method to get rid of the borders is
loading the library skins:
\tcbuselibrary{skins}

and using skin=enhanced or just enhanced, which
translates the drawing commands into TikZ path
commands.

It also allows using the option frame hidden, a
shortcut for
frame style={draw=none, fill=none}

You can find an example in Box 4.

Other than skins, tcolorbox has several libraries.
For example, to cite only some, listings or minted,
which load the homonymous packages for printing
source code; theorems, which loads amsmath and
provides macros for typesetting boxed theorems and
similar environments; breakable, which allows you
to automatically break your boxes from one page
to another; and fitting, which provides support
for adapting the font size for your text to the box
dimensions.

It is often the case that you need more than one
of them. The package makes available three shortcuts
to load some or all of them at once: many, which
loads the libraries for the box settings; most, which
loads all libraries except minted and documentation;
and all that loads all libraries.

For details, see Section 1.3 Libraries of the pack-
age manual [6].

2.3 Dimension and position

The chat messages are usually positioned on the right
or the left, depending on if they are sent or received.

You may create this effect by taking advantage
of the options left/right skip=⟨length⟩; see Box 4.
They insert some horizontal space of the given length
before/after the tcolorbox.

However, this is not enough to mimic the usual
look of a chat. If the messages are brief, they do not
enlarge to the border of your phone/computer screen.
The frame should adapt to the width of the text. You
can achieve this using two options together.

The DuckBoat— Beginners’ Pond: Tcolorchat!

48 TUGboat, Volume 45 (2024), No. 1

Box 4 – Library skins and option skip

% In your preamble:

\usepackage{tcolorbox}

\tcbuselibrary{skins}

\tcbset{

commonoptions/.style={

enhanced,

frame hidden,

fonttitle=\bfseries\scriptsize,

titlerule=0pt, boxrule=0pt, boxsep=0pt,

toptitle=6pt,

bottomtitle=2pt

},

}

\newtcolorbox{receivedmsg}[2][]{

commonoptions,

right skip=.7cm,

halign title=flush left,

halign=flush left,

coltitle=red,

colbacktitle=yellow!30,

colback=yellow!30,

title={#2},

#1}

\newtcolorbox{sentmsg}[2][]{

commonoptions,

left skip=.7cm,

halign title=flush right,

halign=flush right,

coltitle=blue,

colbacktitle=green!30,

colback=green!30,

title={#2},

#1}

% In your document:

\begin{receivedmsg}{Ilsa}

But what about us?

\end{receivedmsg}

\begin{sentmsg}{Rick}

We’ll always have Paris.

\end{sentmsg}

Ilsa

But what about us?

Rick

We’ll always have Paris.

The first is hbox, a shortcut for capture=hbox;
it sizes the box according to its content. It is the
default for \tcbox. It does not allow boxes with a
lower part or with text split into more rows.

The latter limitation is the reason why the sec-
ond option is necessary: varwidth upper=⟨length⟩.
This way, the text of the upper part of the box is
put into a varwidth environment with a maximal
width of ⟨length⟩. You need to load the varwidth

package [1] to use it.
This option also does not permit having a break-

able tcolorbox or a lower part in the text. The
package manual warns that it is only sensible for a
\tcbox, but it also works in a tcolorbox environ-
ment with hbox.

For further details, see Sections 4.17 Capture

Mode and 4.11 Box Content Additions of the package
manual [6].

Pay attention that varwidth upper sets the box
width to the text width. Thus, if your title is longer
than your text, you have to use some tricks.

In Box 5, to set Edna’s message text to the width
of the box title I used a custom option, mywidth, that
has the title as a parameter. I took advantage of
the possibility of adding some arbitrary code into an
option list, using code=⟨code⟩.

The following passage could be a little demand-
ing for a newbie (and also a bit boring), but if you
learn these commands, you will have nice tools for
typesetting your documents, quack!

I defined a new length register, using
\newlength{\lengthname}

In a register you can store a value and use it for
calculations. Since I used it to store the title width,
I named it \mytitlelen.

I also defined \mymaxlen as the length for the
maximum width my frame can have, and with
\setlength{\lengthname}{⟨length⟩}
I set this to the ⟨length⟩ of .9\linewidth.

The command
\settowidth{\lengthname}{⟨some text⟩}
allows setting your length to the width of ⟨some

text⟩. I used it, in the code of the customized option
mywidth, to set \mytitlelen to the width of the
title text, appropriately formatted.

Then, with
\addtolength{\lengthname}{⟨length⟩}
I added the left and right space between title text
and frame. To get these values, I used the lengths
where tcolorbox stores them: \kvtcb@lefttitle

and \kvtcb@righttitle. They are not mentioned
in the manual, but you can find them if you look at
the package code tcolorbox.sty. Alert: look but
do not touch. Otherwise, you can do damage, quack!

Moreover, since they are internals, you should
limit their use to what is strictly necessary (if the

Herr Professor Paulinho van Duck

TUGboat, Volume 45 (2024), No. 1 49

package author changed their names, for example,
your code would no longer compile).

Box 5 – hbox and varwidth

% In your preamble:

\usepackage[many]{tcolorbox}

\usepackage{varwidth}

\newlength{\mytitlelen}

\newlength{\mymaxlen}

\setlength{\mymaxlen}{.9\linewidth}

\makeatletter

\tcbset{

commonoptions/.style={

enhanced,

fonttitle=\bfseries\scriptsize,

titlerule=0pt, boxrule=0pt, boxsep=0pt,

toptitle=6pt, bottomtitle=2pt,

opacityframe=0,

},

mywidth/.code={%

\settowidth{\mytitlelen}{%

\bfseries\scriptsize #1}%

\addtolength{\mytitlelen}{%

\kvtcb@lefttitle}%

\addtolength{\mytitlelen}{%

\kvtcb@righttitle}%

\ifdimcomp{\mytitlelen}{>}{\mymaxlen}{%

\tcbset{width=\mymaxlen}}{%

\tcbset{width=\mytitlelen}}%

},

}

\makeatother

\NewTColorBox{receivedmsg}{s o m}{

commonoptions,

halign=flush left,

coltitle=red, colbacktitle=yellow!30,

colback=yellow!30,

title={#3},

IfBooleanTF={#1}{%

mywidth={#3},

}{%

hbox, varwidth upper=\mymaxlen,

},

IfValueT={#2}{#2}

}

\NewTColorBox{sentmsg}{s o m}{

commonoptions,

halign title=flush right,

halign=flush right,

flush right,

coltitle=blue, colbacktitle=green!30,

colback=green!30,

title={#3},

IfBooleanTF={#1}{%

mywidth={#3},

}{%

hbox, varwidth upper=\mymaxlen,

},

IfValueT={#2}{#2},

}

% In your document:

\begin{receivedmsg}{Tostin:}

You know, I spent a lot of years

disliking women. But I don’t dislike

you.

\end{receivedmsg}

\begin{sentmsg}*[show bounding box]{Edna:}

Oh?

\end{sentmsg}

\begin{receivedmsg}{Tostin:}

You’re not a woman. You’re more than a

woman. You’re a \emph{mechanic}.

\end{receivedmsg}

Tostin:

You know, I spent a lot of years disliking

women. But I don’t dislike you.

Edna:

Oh?

Tostin:

You’re not a woman. You’re more than a

woman. You’re a mechanic.

Eventually, I used
\ifdimcomp{⟨dimension expression⟩}{⟨relation⟩}

{⟨dimension expression⟩}{⟨true⟩}{⟨false⟩}
from the etoolbox package [3] (tcolorbox loads it)
to compare the width of the title to the maximum
width, and, if it is greater, to limit the box width
to \mymaxlen. I did it using the tcolorbox option
width=⟨length⟩, which sets the total width of the box
to ⟨length⟩.

Please note that \kvtcb@lefttitle and
\kvtcb@righttitle contain the symbol @. Thus,
the code that uses those names must be included
between \makeatletter and \makeatother. This
way, LATEX will recognize @ as a letter when look-
ing for the names of commands. Remember to put

The DuckBoat— Beginners’ Pond: Tcolorchat!

50 TUGboat, Volume 45 (2024), No. 1

\makeatother as soon as you no longer need this
behavior. Otherwise, you can cause errors, quack!

Since I have to use mywidth only when the title
is wider than the text, I took advantage of the possi-
bility of testing the starred parameter with
\IfBooleanTF{⟨argument⟩}{⟨true⟩}{⟨false⟩}
and use mywidth when the starred ⟨argument⟩ is
present (⟨true⟩), or hbox and varwidth upper oth-
erwise (⟨false⟩).

At this point, I’ve set the dimension, but I also
have to indicate the position. The received messages
are already located to the left, the default. The
sent messages should be on the right, I achieved this
with the option flush right. Please note that this
aligns the box, whereas halign=flush left aligns
the content of the box.

The starred parameter seen above is the first
#1 of the customized tcolorbox environments in
Boxes 5 and 6. The title text is the third #3, that I
set as mandatory. The second #2 is optional and I
reserved it for any other setting you like to add.

With the command:
\IfValueT{⟨argument⟩}{⟨true⟩}
you can test if the optional parameter has a value
and, if it does, do what is indicated in ⟨true⟩.

I added an optional parameter to the environ-
ment sentmsg of Box 5: show bounding box.

It displays the bounding box border around your
tcolorbox. In the example, you can see that the
bounding box has the width of the line, whereas the
text box is narrower. In a testing phase, showing the
bounding box could be useful. Of course, it should
not appear in the final document.

2.4 The finishing touch

The last thing to do is to add a “pointer”, to make
the box appear as a callout, and the writer’s avatar.

You can easily do both things using
overlay=⟨graphical code⟩.
This allows adding some ⟨graphical code⟩ to the box
drawing process. See Section 4.12 Overlays of the
package manual [6] for details.

I added two TikZ commands, a \pic with a
TikZlings for the avatar and a filled \path for the
pointer.

For the sake of brevity, I will not explain these
macros here; for information, you can refer to the
documentation of TikZ and TikZlings packages [5, 7].

What I would highlight is the possibility of us-
ing the frame coordinates. The frame is treated as
a TikZ node. Therefore, you can use frame.north,
frame.north west, and so on, to draw your graphi-
cal code.

Let me mention here the option enlarge left by=

⟨length⟩, which enlarges the bounding box distance
to the left side of the box by ⟨length⟩. Other options
for enlarging the right, top, and bottom sides of the
box exist as well. See Section 4.15 Bounding Box of
the manual [6].

In the customized style myenlarge of Box 6,
the ⟨length⟩ is computed as the difference between
\linewidth and the sum of the widths of the box
\kvtcb@width and the avatar \iconwidth.

In this case, using flush right is not enough,
because the avatar is not considered part of the box
and, with flush right, it would be pushed out of
the line border.

Box 6 – Final result

\documentclass[twocolumn]{article}

\usepackage[many]{tcolorbox}

\usetikzlibrary{tikzlings}

\usepackage{varwidth}

\newlength{\mytitlelen}

\newlength{\mymaxlen}

\setlength{\mymaxlen}{.9\linewidth}

\newlength{\iconwidth}

\setlength{\iconwidth}{9mm}

\makeatletter

\tcbset{

commonoptions/.style={

enhanced,

fonttitle=\bfseries\scriptsize,

titlerule=0pt, boxrule=0pt, boxsep=0pt,

toptitle=6pt, bottomtitle=2pt,

opacityframe=0,

},

myenlarge/.style={

enlarge #1 by=\linewidth -

(\kvtcb@width + \iconwidth),

},

mywidth/.code={%

\settowidth{\mytitlelen}{%

\bfseries\scriptsize #1}%

\addtolength{\mytitlelen}{%

\kvtcb@lefttitle}%

\addtolength{\mytitlelen}{%

\kvtcb@righttitle}%

\ifdimcomp{\mytitlelen}{>}{\mymaxlen}{%

\tcbset{width=\mymaxlen}}{%

\tcbset{width=\mytitlelen}}%

},

}

\makeatother

Herr Professor Paulinho van Duck

TUGboat, Volume 45 (2024), No. 1 51

\NewTColorBox{receivedmsg}{s o m}{

commonoptions,

left skip=\iconwidth,

overlay={

\pic[scale=.3] at

([shift={(-6mm,-6mm)}]frame.north west)

{bear};

\path[fill=yellow!30] (frame.north) --

([xshift=-3mm]frame.north west) --

([yshift=-3mm]frame.north west) --

cycle;

},

coltitle=red, colbacktitle=yellow!30,

colback=yellow!30,

title={#3},

IfBooleanTF={#1}{%

mywidth={#3},

}{%

hbox, varwidth upper=.8\linewidth,

},

halign title=flush left,

halign=flush left,

IfValueT={#2}{#2}

}

\NewTColorBox{sentmsg}{s o m}{

commonoptions,

right skip=\iconwidth,

overlay={

\pic[scale=.3] at

([shift={(6mm,-6mm)}]frame.north east)

{elephant};

\path[fill=green!30] (frame.north) --

([xshift=3mm]frame.north east) --

([yshift=-3mm]frame.north east) --

cycle;

},

coltitle=blue, colbacktitle=green!30,

colback=green!30,

title={#3},

IfBooleanTF={#1}{%

mywidth={#3},

}{%

hbox, varwidth upper=.8\linewidth,

},

myenlarge=left,

halign title=flush right,

halign=flush right,

IfValueT={#2}{#2},

}

\begin{document}

\begin{receivedmsg}{Jerry}

I’m a man!

\end{receivedmsg}

\begin{sentmsg}{Osgood}

Well, nobody’s perfect!

\end{sentmsg}

\end{document}

Jerry

I’m a man!

Osgood

Well, nobody’s perfect!

3 Conclusions

I hope you had fun with tcolorboxes and remember,
if you have a bug in your code:

Chat with your duck!

References

[1] D. Arseneau. The varwidth package, version
0.92. ctan.org/pkg/varwidth

[2] LATEX Project Team. LATEX for authors—
current version. ctan.org/pkg/usrguide

[3] P. Lehman, J. Wright. The etoolbox

Package: An ε-TEX Toolbox for Class and
Package Authors, version v2.5k (2020-10-05).
ctan.org/pkg/etoolbox

[4] C. Maggi. The DuckBoat—Beginners’ Pond:
No more table nightmares with tabularray!
TUGboat, 44(1):64–70, 2023. tug.org/

TUGboat/tb44-1/tb136duck-tabularray.pdf

[5] samcarter. The TikZlings package—drawing
animals and beings in TikZ, version 1.0
(2022-06-17). ctan.org/pkg/tikzlings

[6] T.F. Sturm. The tcolorbox package, version
6.2.0 (2024-01-10). ctan.org/pkg/tcolorbox

[7] T. Tantau, et al. The TikZ and PGF Packages.
ctan.org/pkg/pgf

⋄ Herr Professor Paulinho van Duck

Quack University Campus

Sempione Park Pond

Milano, Italy

paulinho dot vanduck (at) gmail

dot com

The DuckBoat— Beginners’ Pond: Tcolorchat!

https://ctan.org/pkg/varwidth
https://ctan.org/pkg/usrguide
https://ctan.org/pkg/etoolbox
https://tug.org/TUGboat/tb44-1/tb136duck-tabularray.pdf
https://tug.org/TUGboat/tb44-1/tb136duck-tabularray.pdf
https://ctan.org/pkg/tikzlings
https://ctan.org/pkg/tcolorbox
https://ctan.org/pkg/pgf

52 TUGboat, Volume 45 (2024), No. 1

Enhancing LATEX to automatically produce

tagged and accessible PDF∗

Frank Mittelbach, Ulrike Fischer

This paper was initially presented at the 5th Interna-
tional Workshop on “ Digitization and E-Inclusion in
Mathematics and Science 2024” (DEIMS 2024) 15–17
February 2024, at Nihon University, Tokyo, Japan.
This version contains some minor updates.

The complete program and material on all pre-
sentations can be found at the workshop website [1].
A video of the talk and the demonstration is available
at https://youtu.be/7FnZv5FhmRg&?t=9869.

Abstract

At the TUG 2020 online conference the LATEX Project
Team announced the start of a multi-year project
to enhance LATEX so that it will fully and naturally
support the creation of structured document formats,
in particular the “ tagged PDF” format as required
by accessibility standards such as PDF/UA.

In this talk we present the current achievements
of this project1 and the issues we encountered along
the way. We also outline open areas of research
and the future steps that we shall take to automati-
cally produce well-tagged PDF that supports acces-
sible standards (in particular, the recently finalized
PDF/UA-2) as well as general reuse and further con-
versions. This will be achieved by embedding in the
PDF a comprehensive description of the document
structure.

Contents

1 General overview 52
1.1 The goals of the multi-year

“ LATEX Tagged PDF” project 52
1.2 Current status and achievements 53
1.3 Ongoing and future project tasks 54

2 Specific aspects of the project work 54
2.1 The existing tag set support in PDF . . . 54
2.2 The LATEX namespace 55
2.3 Formulas in STEM documents 55

∗ This article is a fully tagged and accessible PDF produced
by the project software it describes.

1 This project is carried out by a small number of devel-
opers. Besides the authors, the following individuals from
the LATEX Project Team are actively involved: Chris Rowley,
David Carlisle, Joseph Wright, Marcel Krüger, and Phelype
Oleinik.

We also wish to acknowledge the contributions from various
members of the TEX community and beyond; these have
been made through comments and suggestions, and more
recently through the testing of the new functionality made
available in the form of prototype implementations. Without
such feedback it would be difÏcult to finish this project with
satisfactory results.

2.4 Extensions to LATEX’s table handling . . . 56
2.5 Support for different scripts and

languages 57

3 Some TEXnical details 57
3.1 How to enable tagging 57
3.2 Inclusion of external MathML 58

1 General overview

For over 30 years now, the LATEX system has been
used, widely and successfully, for document produc-
tion in the STEM world and also in other places
where high-quality output is required; but until re-
cently its focus was solely on page-oriented output
for print (on paper) or as paged output using the
PDF format. Therefore, the structural information
about the document that was present in the LATEX
source did not get incorporated into the PDF output.
Rather, this information was discarded as soon as
possible during the processing; this was necessary so
as to conserve the limited computer resources (mem-
ory and storage) that were typically available at that
time (when the core of the LATEX processing model
was first designed).

As long as the intention is only to print a docu-
ment on a physical medium, then this is all that is
required. However, for quite a while now other uses
of documents have been increasing in importance so
that nowadays many documents are never printed,
or printed only as a secondary consideration.

Coming into the 21st century, for many reasons
great interest has arisen in the production of PDF

documents that are “ accessible”, in the sense that
they contain information to assist screen reading
software, etc., and, more formally, that they adhere
to the PDF/UA (Universal Accessibility) standard [3,
6], which is explained further in [2].

At present, all methods for producing such “ ac-
cessible PDFs”, including the use of LATEX, require
extensive manual labor2 during either the prepara-
tion of the source or the post-processing of the PDF

(maybe even at both stages); and these labors of-
ten have to be repeated after making even minimal
changes to the (LATEX or other) source.

1.1 The goals of the multi-year

“ LATEX Tagged PDF” project

The main goal of the project is to enhance LATEX so
that it can automatically produce tagged PDF with-
out the need to add additional data or commands to
the LATEX source, or to do any of the post-processing
work necessary in other workflows.

2 If not using the already existing code extensions to LATEX
provided by the project.

doi.org/10.47397/tb/45-1/tb139mitt-deims24

Frank Mittelbach, Ulrike Fischer

https://youtu.be/7FnZv5FhmRg&?t=9869
https://doi.org/10.47397/tb/45-1/tb139mitt-deims24

TUGboat, Volume 45 (2024), No. 1 53

If it remains necessary to alter substantially, or
to extend, each individual document in order to pro-
vide tagged PDF that conforms to some accessibility
standard, then we shall see very few document au-
thors willing to go through the pain of making such
additions (unless they are forced to). It is therefore
of utmost importance that the generation of tagged
PDF be done essentially behind the scenes, with the
only cost to the authors being a somewhat longer
compilation time.

Another important aim is to make already ex-
isting documents accessible by simply recompiling
them without the need to alter the source in any
substantial way.3

The project will support the PDF 2.0 standard [4]
(with the very widely supported PDF 1.7 as a fall-
back solution), because the PDF 2.0 standard offers
a more comprehensive tag set, and it supports as-
sociated files and many other important features;
its use is also a requirement of the new PDF/UA-2

standard [6].
Unfortunately, even though PDF 2.0 has already

existed for six years, it has yet to be adopted for
industry solutions; e.g., most viewers and other ap-
plications are still incapable of making correct use of
the new PDF 2.0 features. This is largely a chicken-
and-egg problem: because nobody produced 2.0 files,
no application was specifically extended to enable
processing such files; and due to the fact that no
viewer could handle such files, the developers of PDF

writers saw no need to invest in the technology to
produce PDF 2.0 files.

As a result, LATEX is one of the first authoring
applications that can produce PDF 2.0 files automat-
ically and in large quantities. In particular, LATEX
is capable of producing documents compliant with
PDF/UA-2, the new standard for Universal Acces-
sibility [6] that was finalized in 2023 and will be
ofÏcially released in early 2024.4 No doubt other
suppliers will follow our lead when there is sufÏcient
demand for the production and processing of PDF 2.0
and PDF/UA-2 conformant files.

The document entitled “ LATEX Tagged PDF Fea-
sibility Evaluation” [10], available from the LATEX
Project website [8], explains in detail both the project

3 Of course, required data that is not part of the docu-
ment source (such as alternative text for figures or additional
metadata) will need to be manually added, so as to ensure
that the document is compliant with PDF/UA. But even if
this work is not undertaken, the fact that the document gets
automatically tagged will mean that it can be easily navigated
and consumed in ways that were impossible before.

4 At the moment we can only claim that the project soft-
ware is capable of producing documents that comply with the
latest draft of the imminent PDF/UA-2 standard.

goals and the tasks that need to be undertaken, con-
cluding with the project plan that is currently being
executed.

For the time being the project will focus pri-
marily on PDF output (generated either directly by
the TEX engine or through a DVI-based workflow).
However, as a bonus outcome of the design approach,
the implemented solution will make it easy to add
other such output formats to the workflow by simply
replacing the output (backend) module. Instead of
PDF output, HTML5 or some other format can thus
be written. As of now, such alternative backends are
not part of the project coverage, but once LATEX is
able, using well-defined interfaces, to pass structure
information to a backend, we expect that support
for other structured output formats will follow. Such
work may be undertaken by us or by other teams,
possibly in parallel to later phases of the project.

1.2 Current status and achievements

As mentioned earlier, LATEX was originally designed,
as was essential 40 years ago, to be very economical
with computer resources; the implementation there-
fore worked very hard to discard information as soon
as it was no longer needed for the compilation of a
document. For print output, which was all that was
produced back then, these discards included most of
the structural information since this was no longer
useful once the visual representation had been deter-
mined. An important part of the early work on this
project was therefore to alter LATEX’s inner work-
ings by adding code that preserves this structural
information from the source and adds it to the PDF.

Another part of this early “ background” work
was to standardize (and often to provide, for the first
time) code interfaces into which extension packages
can safely hook. The use of these interfaces, rather
than directly overwriting internal LATEX functions (as
was commonly done in the past), avoids the problem
that such packages would often break when used in
certain combinations, or break when LATEX internals
changed. Moreover, it means that these packages can
automatically benefit from the existence of extended
workflows (such as those which produce tagged PDF).

Most of these interfaces are now in place in the
LATEX kernel. What remains (as a huge task) is
to upgrade many of the core extension packages so
that they make use of the new functionalities; this
will enable the retirement of some of the existing
code that directly overwrites LATEX internals, or that
makes assumptions (about those internals) that will
become invalid in the future.

Enhancing LATEX to automatically produce tagged and accessible PDF

54 TUGboat, Volume 45 (2024), No. 1

The next large phase of the project was to pro-
vide automatic tagging for a subset of LATEX doc-
uments. This task is largely finished and therefore
most documents that are restricted to using only
the commands and environments described in Leslie
Lamport’s “ LATEX Manual” [7] can be automatically
tagged by adding a single configuration line at the
top of the document. We say “ largely finished” be-
cause a few such elements, or element combinations,
are not yet covered at the time of writing.

On the other hand, a number of extension pack-
ages that go beyond Lamport are already supported,
most importantly much of amsmath (providing ex-
tended math capabilities) and hyperref (enhancing
LATEX with interactive hyperlinking features). Also
already supported are some of the major bibliography
packages, such as natbib and biblatex.

The project is thus by now capable of produc-
ing PDF 2.0 documents that conform to the new
PDF/UA-2 standard. In fact, after correcting a small
number of issues (not directly related to tagging)
in the class file for this conference we have been
able to deliver this article as a fully tagged PDF 2.0
document.

1.3 Ongoing and future project tasks

At present, tagging support for the core document el-
ements in a LATEX document is still at the prototype
level, which means that it works for the standard
LATEX classes and for the document elements pro-
vided by the LATEX kernel, but it may or may not
work with extension packages or classes that alter
the implementation of these document elements, or
that provide completely new elements.

To make further progress, some of the interfaces
for tagging will first need to be finalized. Then all
major extension packages, as well as all important
third-party document classes, will need analyzing and
possibly updating.5 The tasks here are to identify
all of the legacy low-level code for which the kernel
now provides tagging-aware replacements, and then,
in cooperation with their maintainers, to make the
necessary updates to all these packages and classes.

In addition, any packages and classes that pro-
vide new document elements will need to specify
how these elements are supposed to be tagged. Some
interfaces already exist to help with this process, but
it is likely that most of these will require further
refinement when tested in the field.

5 The number of widely used packages, e.g., those described
in The LATEX Companion, third edition [9], amounts to roughly
500, so this evaluation and code adjustment forms a substantial
part of the remaining project work, and most likely will require
additional volunteer support.

The remaining phases of the project, as outlined
in the “ Feasibility Evaluation Study” [10], cover fur-
ther support for other PDF standards, and an im-
proved interface to comprehensive metadata. There
are also a number of research problems that need
to be solved in order for authors to easily generate
high-quality tagged PDF documents from their LATEX
sources. These are outlined below.

2 Specific aspects of the project work

We now take a look at a few specific aspects of the
project work that are related to challenging problems
and pose interesting research questions. These topics
are: the development of a more granular tag set; the
handling of formulas; the need for an extended table
specification syntax; and the handling of language
and script related requirements.

2.1 The existing tag set support in PDF

When PDF (already in version 1.3) first introduced
a structure tree into the format, to support the in-
clusion of the document’s logical structure, it used
only a fairly minimal set of structure tags that were
largely modeled after the basic HTML tag set.

For example, for mathematical formulas there
was only the <Formula> tag itself, with no possibil-
ity to add further structure within the formula. For
accessibility, all that was available was an “ alt” at-
tribute in which one could add a textual description
of the formula’s content. In a similar manner, other
areas of document structures were (over)simplified
in the tag set: e.g., for all types of floating elements
there is only the tag <Aside> that they must share
with margin notes (and even that tag is available
only in PDF 2.0). For code elements, whether they
are small snippets or long, commented listings, there
is only a single <Code> tag, and there is no option
to accurately describe the handling of spaces and
new lines within code listings. There is a tag (again
only in PDF 2.0) to denote footnotes; but if the
document contains several types of structured (and
possibly nested) notes, then there is no way to ade-
quately describe this without losing possibly crucial
information.

As is also the case with HTML, the relationships
between these tags define a fairly simple document
model that is not sufÏciently rich, so that it can-
not express (or not correctly express) many real-life
documents; this is often due to the fact that certain
elements appear in such documents with nesting re-
lationships that are not permitted by the inclusion
rules defined in ISO 32005 [5].

All this means that, when preparing a PDF to
be PDF/UA-2 or PDF/UA-1 compliant, compromises

Frank Mittelbach, Ulrike Fischer

TUGboat, Volume 45 (2024), No. 1 55

have to be made and some of the structural informa-
tion may thus get lost.

As part of the project we are therefore develop-
ing an extended tag set (currently called the “ LATEX
namespace”) that describes the logical structure of
(complex) documents in more granular detail; this
will help PDF processors (such as viewers) that un-
derstand this namespace to make better use of a
document’s structure. Ideas from this development
may also prove useful in conjunction with future
HTML5 developments.

2.2 The LATEX namespace

LATEX is an open system that allows for structural
extensions (and even changes to structures) in every
direction. It is therefore not possible to define a fixed
(definitive) document model that is both valid and
comprehensive for each and every conceivable LATEX
document.

However, it is possible to define a document
model which captures the majority of LATEX docu-
ments that are out there in the real world. If this
is combined with methods to extend (and possibly
alter) the document model whenever necessary for
special structural extensions or changes, we are con-
fident that a comprehensive solution can eventually
be provided.

As part of the project we are therefore develop-
ing a “ standard namespace” that fully describes the
LATEX document model (in the sense outlined above).
This tag set will thus be noticeably more detailed
and comprehensive than those offered by PDF 2.0
and HTML5. We are working with the PDF Associa-
tion [11] and various application producers to ensure
that this namespace will, when complete, become
a recognized resource (preferably acknowledged in
future revisions of the PDF standard); it may also be
more generally useful as an XML schema. This will,
for example, allow PDF and other applications to
directly use the extended tag set it provides; and this
will enable such applications to make better use of
the information contained in the document, whether
for accessibility support or for other purposes.

For applications that do not (yet) understand
this new namespace, we provide role-mapping back
into PDF 2.0 (or PDF 1.7) as necessary; but of course,
in that case the more granular information provided
by the tags in the new namespace will get at least
partially lost.

Additionally, we will be providing interfaces that
allow package or class developers who extend the
standard LATEX structures to specify how their new
commands or environments map into the LATEX name-

space (and from there, if necessary, are role-mapped
back to the PDF tag set).

2.3 Formulas in STEM documents

LATEX is well-known and appreciated for its ability to
describe and format mathematical or other formulas
with a high degree of flexibility and unsurpassed
quality. This is one of the reasons why we see a huge
proportion of the documents in STEM disciplines
such as mathematics, physics, and computer science
being produced using LATEX.

As described by Neil Soiffer in his keynote for
the DEIMS 2021 conference [12], there are basically
three methods for making such formulas accessible in
a tagged PDF. One option is to use static text that
can be attached as “ alternative” natural language
text to the formula structure, which is then read by
an “ assistive technology” (AT) application. While
rather easy to implement, this method has various
drawbacks: it does not allow for braille generation
or for exploration of the equation; and the text often
must be hand-crafted to avoid problems with read-
ing software whose heuristic usually ignores certain
symbols such as punctuation or braces.

A second option is to add marked-content oper-
ators to the PDF stream and then build a MathML

structure tree that references this marked content.
This method leads to a large structure tree with many
objects, since this tree will be very fine-grained.

There are a number of problems with this sec-
ond approach. It is difÏcult for LATEX (without the
help of a real programming language) to generate
correct and useful MathML while building the TEX
math list. Furthermore, when the still widely used
pdfTEX engine is producing the PDF, there is a high
chance that the combined processes (of simultane-
ously adding the necessary tagging-related material
to the content stream while formatting the formula)
will alter the spacing of the formula and thus render
the visual representation invalid. There may be tech-
nical solutions to circumvent these issues and this is
an area of active research. However, it is likely that
this option can only be implemented successfully if
the LuaTEX engine is used, because then a suitable
programming language (i.e., Lua) is available and,
furthermore (because of extended functionality in
LuaTEX), it becomes possible to delay adding the
necessary extra material to the content stream un-
til after LATEX has completed the formatting of the
formula with the correct spacing.

The last option is to make use of so-called “ as-
sociated files” (AF) that were introduced in PDF 2.0:
these are files directly embedded into the PDF that

Enhancing LATEX to automatically produce tagged and accessible PDF

56 TUGboat, Volume 45 (2024), No. 1

can be attached to a structure element.6 Each such
“ embedded AF” can contain, for example, a MathML

representation for a formula, or its LATEX source or
some additional commentary text; more than one
of these can be attached to each structure. The AF

approach is simpler and easier to implement, and
it also allows the use of MathML representations
that do not closely follow the visual output; but it
has the drawback that the MathML in the AF file
is associated only to the formula as a whole and
it is therefore not possible to synchronize parts of
the MathML representation with the corresponding
parts of the formula in the typeset document, as
is necessary to support navigation of formulas and
highlighting them. This method may require that
the AT software overlays the printed output with
its own rendering of the MathML (which may differ
substantially from the original rendering).

The two last options, MathML in the struc-
ture tree or in associated files, both suffer from a
lack of support in current PDF viewers and AT soft-
ware: Neil Soiffer’s optimistic statement in 2021 that
“ Adobe’s API will likely incorporate this ability in the

future” has not yet come true.
Because of this, LATEX currently follows a three-

fold strategy in the prototype for math tagging: it
incorporates the LATEX source as alternate text for
the formula, under the assumption that the LATEX
syntax is understandable to most readers of mathe-
matics; and it also embeds the LATEX source as an
associated file. Additionally, an external file can
be constructed in which, for all (or a selection of)
the formulas, a MathML representation is provided
that can be embedded in the PDF as associated files.
Such an external file can be created, for example,
with the help of tex4ht or with the LuaTEX engine.
At this point in time there is no fully automatic
workflow implemented for this, but with only a few
adjustments it was already possible to add MathML

associated files to all the formulas in the amsmath
user documentation.

The form of the final solution for formulas, and
whether or not it is necessary to offer customizable
alternatives — to cater for different reader deficien-
cies or different user preferences — are questions that
need active research to understand how to best serve
consumers given the currently limited functionality
of AT tools with respect to “ associated files”, etc.

There is another aspect of common LATEX us-
age that affects all three of these method, and is
also found in many other areas beyond formulas and

6 Note that “ associated files” do not exist as separate
physical entities at the operating system level; thus they are
not in fact “ files” in the normal sense of the word.

STEM: the inclination of authors to invent new sym-
bols, notation systems, and command names. This
is nowadays exacerbated by the widespread failures
to take accessibility into account. Such ad hoc exten-
sions make it difÏcult to fully automate any tagging
process. Overcoming this will need both technical
support for such extensions and also, perhaps more
importantly, encouragement of authors to keep ac-
cessibility in mind when writing documents.

The approach that will most likely be adopted to
deal with this issue is as follows: by default, assume
that new commands are simply abbreviations and
that, by recursively replacing each of these with its
definition, we eventually get to something that can
be automatically tagged by using standard methods.
For cases where this does not work, there will be
interfaces with which the author of the document
(or the package developer, if the command is de-
fined there) can specify how the command should
be interpreted when providing tagged output (e.g.,
MathML).

2.4 Extensions to LATEX’s table handling

In most cases, the LATEX source will contain all the
necessary information about the logical structure of
a document, so that it is possible to automatically
transform the source into richly tagged PDF output.
There is one noticeable exception: LATEX’s handling
of tabular data. This arises since standard LATEX,
and most extension packages, do not describe table
data through structural information; rather, they
do this in a purely visual fashion, describing only
the content that should go into each cell. Thus no
information is supplied concerning important rela-
tionships between cells, such as which are the header
or sub-header cells, or to which cells some header
cell applies.

Thus, while it is fairly trivial to tag tables as
simply consisting of table rows and table data cells,
determining the header cells can be done only by
the use of heuristics (e.g., cell formatting changes
done through \multicolumn are likely to represent
header cells, or certain rules in a table may indicate
header rows). However, any such heuristic will have
a noticeable number of counterexamples.

It is therefore an important task to develop good
heuristics that correctly cover a large proportion of
the tables in legacy documents; and in addition to
develop a syntax extension for LATEX that allows
authors to specify such logical structure explicitly
in case the heuristics fail or they wish to specify
explicitly the logical structure of the table. This
syntax extension has to be done in a lightweight way,
i.e., without putting an unnecessary burden onto

Frank Mittelbach, Ulrike Fischer

TUGboat, Volume 45 (2024), No. 1 57

the authors. Furthermore, it should be upwardly
compatible with the existing syntax so that it is
easily possible to enhance documents with only small
alterations to the original source.

It is also important to develop methods that
enable authors to easily check LATEX’s interpretation
of the logical structure of a table without the need
to examine the final PDF, so that they can overwrite
the heuristics when necessary. This is an area of
active research.

2.5 Support for different scripts and

languages

Historically, the TEX engine and LATEX were devel-
oped for ASCII-based, English documents and then
(with TEX 3.0) extended to support other languages
and scripts — at first, because of the restrictions to
8-bit codepages, mostly for languages using Latin
scripts, but later also to non-Latin scripts, such as
Greek or Cyrillic, as well as more diverse scripts.
Initially, the solutions for all such scripts required
complex font setups (as done, e.g., by the CJK pack-
age), special processors to handle transliterations,
and engine extensions to handle, for example, right-
to-left scripts or special input encodings.

The advent of Unicode and the Unicode-aware
engines (X ETEX, LuaTEX and upTEX) led to the
existence of simpler, and much more powerful, setups;
therefore, most scripts are now well supported in
LATEX — perhaps with the exception of scripts that
change the writing direction, since this isn’t part of
the original LATEX design and thus often requires
overwriting many standard commands.

The project currently concentrates on docu-
ments that use Latin scripts or scripts with similar
characteristics. The correct tagging conventions to
use with other types of script are not yet known by
us: e.g., how to deal with direction changes or ruby
characters. When using scripts (such as Latin) that
typically use “ whitespace” to delimit “ words”, tagged
PDF has a requirement that even within the typeset
content stream these words must remain delimited
by an explicit “ whitespace character” [4, §14.8.2.6.2].
This conflicts with the normal practice of TEX type-
setting engines since they do not naturally add such
delimiter characters; however, both pdfTEX and Lua-
TEX have been modified to provide workarounds for
this.7 We also do not yet know to what extent the
many external packages supporting diverse scripts
and languages will need to be adapted for the sup-
port of tagging. To research these topics, help from

7 Engines, such as X ETEX, that do not offer this work-
around can therefore not be used to produce PDF/UA docu-
ments involving scripts that separate words with spaces.

users and developers with in-depth knowledge of such
scripts will be needed.

3 Some TEXnical details

In this final section we take a brief look at two techni-
cal aspects of the project work. Both will be covered
in more depth during the demonstration session at
the conference.

The first subsection explains how to set up a
document (such as this one) so that it will automat-
ically produce tagged PDF. This should, we hope,
enable you to immediately experiment with the addi-
tion of such tags to your own works. If you want to
provide feedback on any issues that you encounter,
or to provide suggestions for improvements, we sug-
gest adding them to the project repository https:
//github.com/latex3/tagging-project, using ei-
ther the issues or the discussions page, as appro-
priate.

This is followed by some background informa-
tion on the experiments we are currently conducting
to automatically include in the PDF MathML rep-
resentations of all the formulas in a document. We
expect this work to become available for public test-
ing during 2024/Q2.

3.1 How to enable tagging

Until recently there was no dedicated location in
LATEX documents to declare settings that affect the
document as a whole. Settings had to be placed
somewhere in the preamble or as class options, or
sometimes even as package options. For some such
settings this was problematic, e.g., setting the PDF

version is only possible if the PDF output file has not
yet been opened, which can be caused by loading
one or another package. For the “ LATEX Tagged PDF

project” [10, p. 17] further metadata about the whole
document (and its processing) needs to be specified,
and again all this data should be placed in a single
well-defined place.

For this reason we introduced (in June 2022)
the command \DocumentMetadata so as to unify all
such settings in one place. This command takes
one argument that should contain a key/value list
specifying all the document metadata for the current
document.8 This should be placed at the very begin-
ning of the document, i.e., before \documentclass;
it will produce an error if found later.

The \DocumentMetadata command also loads
the LATEX PDF management bundle, which provides
various PDF-related commands that are needed to

8 At this point in time only a few keys are accepted, e.g.,
to set the PDF version, the language, a PDF standard and to
load a color profile.

Enhancing LATEX to automatically produce tagged and accessible PDF

https://github.com/latex3/tagging-project
https://github.com/latex3/tagging-project

58 TUGboat, Volume 45 (2024), No. 1

 <div>
 <h2>\mml 65</h2>

 <p>\begin{math}\sqrt [\beta]{k}\end{math}</p>

 <p>656E4D3BB4F29D20A1B2CBCB35C35E7E</p>

 <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline">

 <mroot>

 <mi>k</mi>

 <mi>β</mi>

 </mroot>

 </math>

 </div>

Figure 1: Sample entry with MathML data for associated file (AF)

create a tagged PDF. It also accepts the testphase
key, which is of a temporary nature since it is needed
only while new functionality is being introduced for
testing. This key is used to load specific tagging
support: this article, for example, uses the following:

 \DocumentMetadata{

 testphase={phase-III,table},

 pdfversion=2.0,

 pdfstandard=a-4,

 }

which loads the tagging support from phase-III
(basic document elements) and table (newly devel-
oped prototype code for tagging of tabular-like en-
vironments not yet integrated in any test phase). In
addition, the PDF version is set to 2.0 and it specifies
that the PDF should be compliant with the PDF/A-4

standard. This is all that was necessary to produce
the tagged version of this article.9

Eventually, the testphase code will move (once
all components are considered stable) into the LATEX
kernel itself and the testphase key will vanish. Tag-
ging will continue to require a \DocumentMetadata
declaration, but will then use a simple tagged=true
key (name to be decided).

3.2 Inclusion of external MathML

As outlined in section 2.3 on page 56 we are currently
experimenting with a scheme in which externally
provided MathML is embedded in the PDF as AFs.
The MathML for the formulas is provided in an
external file containing one or more \mml commands
with the format shown in figure 1 (i.e., surrounded by
HTML tags so that it can be proofread in a browser).

The first argument to \mml is a label (e.g., a num-
ber) to that uniquely identifies this MathML snippet;
the second argument contains the LATEX source for
the MathML. The third argument is the MD5 hash

9 This paper does not contain any tabular material, thus
table is actually unnecessary for tagging this article. The
setting was added to show how the interface can be used when
new functionality is made available.

of the LATEX source. Its use ensures that the PDF

file will contain only one AF for any formula, even if
a formula is repeated several times: for example, if
the LATEX source document repeatedly uses β,
then each repetition of exactly this formula will ref-
erence the same embedded AF, which means that
the PDF file does not become unnecessarily large.

The final argument contains the corresponding
MathML. In our current experiments the MathML

is generated from the LATEX source by processing it
with tex4ht, with some further processing to add the
MD5 hash values and with some manual corrections
to improve the resulting MathML. One advantage
of using an external file at this stage is to allow the
MathML to be validated before being embedded as
an AF in the PDF. The MathML could potentially be
generated by other TEX to MathML conversion pro-
grams such as latexml or luamml, which would allow
experimentation with different pipelines to construct
associated files containing MathML.

This file is then input at the beginning of the
document and each MathML (with a unique hash
value) is embedded in the PDF as the content stream
of an AF. The LATEX code to produce tagged PDF

then checks, for each math formula in the document,
whether an associated file containing MathML for
this formula has already been added to the PDF,
and, if so, a reference to this MathML associated
file is added to the <Formula> structure element
being constructed. Therefore, if the same math ex-
pression occurs more than once (as a complete for-
mula) then each occurrence will reference this same
MathML AF.

Currently, the generation of the file of MathML

fragments requires some manual editing and explicit
execution of conversion programs. The next step
will be to create scripts that will: run directly in a
LuaTEX compilation; fully automate the generation
of the MathML fragments from the LATEX source;
and validate this output.

Frank Mittelbach, Ulrike Fischer

TUGboat, Volume 45 (2024), No. 1 59

References
[1] DEIMS 2024. Website of the 5th International

Workshop on Digitization and E-Inclusion
in Mathematics and Science 2024, Nihon
University, Tokyo, Japan, February 2024.
workshop.sciaccess.net/deims2024/.

[2] Olaf Drümmer and Bettina Chang. PDF/UA
in a Nutshell — Accessible documents with
PDF. PDF Association, August 2013.
pdfa.org/resource/pdfua-in-a-nutshell/.

[3] ISO 14289-1:2014; Document management
applications — Electronic document file format
enhancement for accessibility — 1: Use of
ISO 32000-1 (PDF/UA-1), 2nd edition, 2014.
www.iso.org/standard/64599.html.

[4] ISO. ISO 32000-2:2020(en); Document
management — Portable document format —
Part 2: PDF 2.0, 2nd edition, 2020. iso.org/en/
contents/data/standard/07/58/75839.html.

[5] ISO/TS 32005:2023; Document management —
Portable Document Format — PDF 1.7 and 2.0
structure namespace inclusion in ISO 32000-2,
1st edition, 2023. iso.org/en/contents/data/
standard/04/58/45878.html.

[6] ISO/FDIS 14289-2; Document management
applications — Electronic document file format
enhancement for accessibility — Part 2: Use of
ISO 32000-2 (PDF/UA-2), 1st edition, 2024.
www.iso.org/standard/82278.html.

[7] Leslie Lamport. LATEX: A Document Preparation
System: User’s Guide and Reference Manual.
Addison Wesley, 2nd edition, 1994.

[8] LATEX Project Team. Website of the LATEX Project.
latex-project.org/.

[9] Frank Mittelbach and Ulrike Fischer. The LATEX
Companion. Addison-Wesley, Boston, MA, USA,
third edition, 2023.

[10] Frank Mittelbach, Ulrike Fischer, and Chris
Rowley. LATEX Tagged PDF Feasibility Evaluation.
LATEX Project, September 2020. latex-project.
org/publications/indexbyyear/2020/.

[11] PDF Association (PDFA). Website of the PDF
association. pdfa.org/.

[12] Neil Soiffer. Accessible PDF: 2 ̸> 1. In The
4th International Workshop on Digitization and
E-Inclusion in Mathematics and Science 2021.
The DEIMS2021 Organizing Committee, 2021.
workshop.sciaccess.net/deims2021/DEIMS2021_
Proceedings.zip.

⋄ Frank Mittelbach
Mainz, Germany
https://www.latex-project.org

⋄ Ulrike Fischer
Bonn, Germany
https://www.latex-project.org

Enhancing LATEX to automatically produce tagged and accessible PDF

Preparing Horizon Europe proposals in

LATEX with heria

Tristan Miller

Abstract

This article introduces heria, a LATEX class to format
funding proposals for the European Commission’s
Horizon Europe program. It provides a basic sum-
mary of the class’s use; compares it to existing pack-
ages for funding proposals; discusses its motivations,
design decisions, and limitations; and reports on
its real-world use and plans for future development.
Besides providing prospective Horizon Europe appli-
cants with an overview of the class, this article may
give prospective developers and users of classes for
other proposal types some idea of the work involved
and the potential pitfalls.

1 Introduction

Horizon Europe is a seven-year, €95.5 billion ini-
tiative of the European Commission (EC) that is
intended to fund research and innovation projects
in the European Union and its wider network of
global partners. The EC earmarks portions of the
total budget according to various topics and action
types, issues calls for proposals of projects support-
ing those topics and action types, and then disburses
the funds to applicants according to a competitive
evaluation process. The types of projects solicited
often require a large consortium of partners—po-
tentially dozens—and the calls prescribe a specific,
intricate structure for the proposals, which can run
to hundreds of pages. While the EC does not require
applicants to use any particular content authoring
tool, the only templates it distributes are in Rich
Text Format (RTF)—hardly the most convenient for-
mat for multiple authors to collaborate on producing
a lengthy, heavily (cross-)referenced technical text.

This article introduces heria, a LATEX class to
format proposals for the Research and Innovation
Actions (RIA) and Innovation Actions (IA) of Hori-
zon Europe. Using heria and a networked source
control system or collaborative online LATEX editor, it
becomes easier for a dozen or more authors to jointly
produce an elegant, internally consistent proposal
conforming to the EC’s requirements. Unlike the
default RTF template, the heria class manages the
numbering of and references to project elements (par-
ticipants, work packages, etc.) as they are added and
removed, and programmatically regenerates and re-
sums the requisite data tables (for staff effort, project
costs, etc.). This helps ensure that data changed in

doi.org/10.47397/tb/45-1/tb139miller-horizon

60 TUGboat, Volume 45 (2024), No. 1

one part of the proposal remains consistent with ex-
plicit and implicit references to it elsewhere in the
proposal. The class also preserves the instructions
from the original template, but allows users to tog-
gle their visibility, either individually or en masse,
so that instructions can be hidden once they are
fulfilled, or once the proposal is ready to submit.

Besides providing a very basic summary of how
heria is meant to be used, this article compares it
to existing packages for funding proposals; discusses
its motivation, design decisions, and limitations; and
reports on its real-world use and plans for future
development. This material should help prospective
Horizon Europe applicants decide whether it makes
sense to use heria for their proposal; perhaps equally
importantly, it may inspire others to develop and
publish their own packages for other types of funding
proposals (whether for Horizon Europe or some other
funding scheme) and it may give them some idea of
the work involved and the potential pitfalls.

2 Previous proposal packages

Perhaps surprisingly, given the TEX ecosystem’s pop-
ularity among academics and technologists, CTAN

boasts only a handful of packages for typesetting re-
search funding proposals. The nih package [2], last
updated in 2005, provides a LATEX class to format
grant applications to the US National Institutes of
Health (NIH). The more recent grant package [7],
last modified in 2019, also handles LATEX proposals
for NIH, as well as five further American agencies, in-
cluding the National Science Foundation and the De-
fense Advanced Research Projects Agency. Neither
package provides much in the way of formal documen-
tation, though nih at least comes with substantial
example documents. The mynsfc package [10], last
changed in 2020, provides a X ELATEX class for pro-
posals to the National Natural Science Foundation
of China (NSFC). As with the previous two packages,
there is little or no technical documentation concern-
ing how to use the class; however, the package does
reproduce the NSFC’s instructions concerning the
content and formatting of the proposal.

The proposal [8] and h2020proposal [6] pack-
ages are seemingly the only ones until now that
specifically target the preparation of European
grant proposals. The most recent CTAN release
of proposal dates to 2016, but development has
continued on the project’s GitHub repository at
github.com/KWARC/LaTeX-proposal. The package
includes LATEX classes for proposals to the Ger-
man Research Foundation and the EC’s Frame-
work Programme 7 (FP7), along with documenta-
tion and examples. The h2020proposal package,

dating to 2015, contains classes for RIA proposals
in the EC’s Horizon 2020 program, the predeces-
sor of Horizon Europe. The templates are set up
for use with LATEX but contain guidance on adapt-
ing them for use with X ELATEX. As with proposal,
h2020proposal includes documentation and exam-
ples, and like mynsfc, the templates helpfully repro-
duce the funding agency’s content- and formatting-
related guidelines.

Although these last two packages are fairly elab-
orate, and (according to their authors) have even
been used to prepare real proposals for submission
to the EC, they share two significant shortcomings.
First, neither package supports the proposal format
used by Horizon Europe, the current EC framework
program that runs from 2021 until 2027. (FP7 ran
from 2007 to 2013, and Horizon 2020 from 2014 to
2020.) Second, both packages are admittedly in-
complete: the documentation for proposal indicates
that the package is “relatively early in its develop-
ment”, and the documentation for h2020proposal
warns would-be users that it is “still in a beta-testing
stage” and should not be distributed.

3 Motivation and design decisions

The principal motivation for producing a new pro-
posal class, rather than extending an existing one,
was to support applications to the current Horizon
Europe RIA and IA actions. Although proposal

and h2020proposal have many good ideas in terms
of their implementation, the historic proposal types
they support differ so much in terms of form and
content from current ones that it would be very
challenging to extend or even adapt these packages.
The heria class was therefore written entirely from
scratch, though it does draw some inspiration from
the interface of h2020proposal.

The Unix philosophy was another influence on
heria, or more specifically its maxim, “Make each
program do one thing well. To do a new job, build
afresh rather than complicate old programs by adding
new ‘features’.” [9] The two aforementioned packages
include some extra bells and whistles that are not
strictly necessary for preparing a proposal. Besides
supporting both European and German proposals,
proposal includes functionality for preparing grant
agreements and final project reports, which are sig-
nificantly different in structure and formatting. And
both packages provide a mechanism for generating
Gantt charts for use in the proposal; while the offi-
cial Horizon Europe application instructions require
applicants to indicate the “timing of the different
work packages and their components”, it does not
require this to be in the form of a Gantt chart. In any

Tristan Miller

https://github.com/KWARC/LaTeX-proposal

TUGboat, Volume 45 (2024), No. 1 61

case, in the present author’s experience, how best
to style and structure a Gantt chart varies greatly
from project to project, and so having heria pro-
vide its own implementation would pose a number
of challenges. Either the implementation could be
a simple one targeting the lowest common denomi-
nator, which many users would find limiting, or it
could allow for great versatility in the design of the
chart, in which case it could end up as little more
than a wrapper for the pgfgantt package [12]. Since
pgfgantt already exists and is fairly simple to use,
heria assumes that proposal authors will simply use
that if they want a Gantt chart.

It was also important that heria be easy to use.
Like proposal and h2020proposal, the macros it
provides are fairly simple and often store information
for use later in the proposal, and like h2020proposal,
it helpfully exposes the official application instruc-
tions to the user. With seven pages of prose, the
documentation for heria is comparable in breadth
and depth to that of h2020proposal; direct com-
parison with proposal is not practical owing to the
latter’s goal of supporting more funding schemes and
non-proposal document types.

A final design decision that was of great impor-
tance to the developer was that the package should
allow users to produce a proposal using only free
software [4]. The heria package is therefore re-
leased under the terms of the LATEX Project Public
License. The packages it depends on, as well as
LATEX and TEX themselves, are also available under
various licenses permitting free use, modification,
and (re)distribution. While proposal co-authors may
choose to collaboratively edit their heria-based pro-
posal using a proprietary online service such as Over-
leaf, they could alternatively use an entirely free
authoring pipeline with a source control system such
as Git.

4 User interface

The intention of this section is not to recapitulate
the complete package documentation, but rather to
give a very general overview of heria’s interface and
features. This serves as an introduction to prospec-
tive users and as context for some of the observations
and discussions found later in this article.

The heria package consists of a class file
(heria.cls), a set of LATEX files containing the ap-
plication instructions, a skeleton proposal (heria-
example.tex), and the package documentation
(heria.pdf). Since the official Horizon Europe pro-
posal template requires proposals to follow a fairly
strict and detailed structure, the best way of starting
a new proposal is to make a copy of the skeleton

proposal and then adapt it by replacing its dummy
data and supplying any missing information.

As in the official template, lengthy application
instructions are interspersed throughout the skele-
ton proposal. Most of these instructions are emitted
via an \heinstructions macro at the appropriate
place in the proposal document; the argument to this
macro specifies one of the aforementioned files con-
taining the instruction text. Other instructions take
the form of recommended page limits printed next to
section headings; these limits are specified via an op-
tional argument to the \section, \subsection, and
\subsubsection macros. Instructions are printed
only when the showinstructions option is passed to
\documentclass; instructions can alternatively be
omitted on a case-by-case basis by removing or com-
menting out the corresponding \heinstructions

macro (or option to the section heading macro, as
the case may be).

The class, which is derived from the standard
LATEX article class, takes care of setting the fonts,
margins, etc. as mandated by the official template,
and redefines some common commands (\maketitle,
\section, etc.) to produce titles and headings in
the prescribed format. This includes the so-called
“tags” (cryptic identifiers such as “#§CON-MET-
CM§#”) that the official template places around
certain section headings and warns applicants not to
move, remove, or change in any way.

For many parts of the proposal, applicants can
simply provide free-form text, along with whatever
lists, tables, figures, etc. they think necessary. For
other parts, the official template requires applicants
to provide information in a fixed format, usually cor-
responding to one or more tables. Often these tables,
and/or the rows or columns within them, must be
printed in a particular order that is determined by
information entered elsewhere in the proposal. For
example, the table summarizing the staff effort has
one row for each participant in the project, and these
rows must be arranged in the same order as in the ear-
lier table listing the participants; it also has one col-
umn for each work package in the project, and these
columns must be arranged in the same order as the
earlier table listing the work packages. Besides this,
the staff effort table needs to include a final row that
sums the numbers in each column, and a final col-
umn that sums the numbers in each row. To obviate
the need for users to tediously re-arrange and re-sum
such tables every time a participant or work pack-
age is added, removed, or re-ordered, heria provides
(a) macros such as \participant and \workpackage

for defining participants, work packages, and other
project data in such a way that heria remembers

Preparing Horizon Europe proposals in LATEX with heria

62 TUGboat, Volume 45 (2024), No. 1

their original order and that users can explicitly ref-
erence them in subsequent macros and environments,
and (b) macros such as \makeparticipantstable

and \makeworkpackagestable that automatically
generate the data tables in the correct order, and
with automatically computed sums, on the basis of
the order and content of the previous definitions.

Perhaps the most typographically complex part
of the official template is the “summary canvas”, a
tableau of framed text boxes that is spread across
the whole of one or two pages with landscape ori-
entation. The heria class provides summarycanvas
and summarybox environments for typesetting these
boxes, as well as a SidewaysFigure environment
that takes care of rotating the page in a way that
preserves readability in PDF viewers.

5 Limitations and workarounds

The official RTF template has a number of oddities
and limitations, and in adapting it to LATEX it was
necessary to decide, on a case-by-case basis, whether
to preserve or work around them. The following
points discuss some of these decisions:

Vague instructions. Some of the official instruc-
tions for filling in the tables admit of more than one
possible interpretation. Perhaps the only such am-
biguity with bearing on heria’s behaviour concerns
how purchase costs in a given category are to be
listed in the associated table; it is not clear whether
applicants should itemize these costs across separate
rows or combine them into a single row. The heria
class takes the latter interpretation, though future
releases might include support for itemized costs.

Tables that aren’t tables. Many of the proposal
elements that the official template refers to as “tables”
are not, typographically speaking, tables, nor even
what some dismissively refer to as “tableaux” [3]. For
example, the template’s Table 3.1b, headed “Work
package description”, is actually a 2× 2 tableau for
entering the work package number and title, followed
by two separate, framed, full-width paragraph boxes
for entering the work package’s objectives and de-
scription of work. These three elements are to be
repeated, all under the same “Table 3.1b” caption,
for every work package. In a typical proposal, Ta-
ble 3.1b will have content running across several
pages, and almost none of it will be tabular. All
such “tables” in the official template are therefore
adapted into heria as LATEX subsections, with cus-
tom macros for the user to provide the “table” data
and another custom macro to finally output it in the
prescribed format, using an appropriate combination
of tabular-style environments and framed boxes.

No provision for floats. The RTF format has
little or no support for floating objects; the official
template is therefore written with the expectation
that all the required information will be presented
in a linear fashion and in the prescribed order. This
can pose problems when there is not enough room
remaining on a page to typeset a table; the table
would normally have to start at the top of the next
page, leaving wasted space on the previous page.
The heria class solves most such problems with
measures that allow tables to gracefully break across
pages. The one exception is the template’s landscape-
oriented “summary canvas” that forms the sole con-
tent of Section 2.3. The page rotation precludes any
possibility of beginning or ending the tableau on the
same page as the preceding or following material,
respectively. Here the skeleton proposal distributed
with heria makes an arguably justifiable departure
from the official template by putting the summary
canvas in a floating figure, and then adding a one-
line reference to it under the Section 2.3 heading.
While this may not be strictly in line with the official
template, it at least averts the danger of having the
canvas introduced by a page that, except for the
section heading, is nearly or entirely blank.

Other wasted space. Besides the lack of floats,
there are other cases in which the official template
doesn’t make or even allow for efficient use of space.
For example, the 2× 2 work package tableau men-
tioned above seems altogether gratuitous, since the
information it contains could easily have been com-
bined into a single line. In other cases, bona-fide
tables are given needlessly verbose column headings
that introduce extra line breaks or steal horizontal
space from the other columns. The heria version
of the template preserves the original’s gratuitous
structural elements (since the presence of these may
be subject to formal checks by the funding agency)
but takes some liberty in slightly abbreviating, or at
least hyphenating, some words in table headings.

Besides these imposed limitations, the package has a
few shortcomings that are down mostly to the rushed
initial development. For one, the class does very lit-
tle specialized error checking on its input. Usually
passing an invalid argument to one of its macros,
or neglecting to provide data necessary to generate
a table, will result in some sort of compilation er-
ror, though the diagnostic message emitted may be
somewhat obscure. Another issue is that the class
generally expects users to supply numeric data (for
person-months, costs, etc.) as integers. Though deci-
mal arguments to certain macros may be correctly
interpreted, and some provision has been made for

Tristan Miller

TUGboat, Volume 45 (2024), No. 1 63

the class to use floating-point arithmetic when calcu-
lating sums, the code that emits numbers in gener-
ated tables cannot be relied upon to produce elegant
output. Solving both these issues is on the agenda
for future development.

6 Reflections and case study

The process of developing heria proved to be re-
warding and frustrating in equal measures. On the
one hand, it presented the developer with the motive
and opportunity to apply and extend his LATEX pro-
gramming skills, and bestowed upon him an intimate
familiarity with the application requirements for an
active proposal submission (described below). On
the other hand, having to reproduce and stay within
the aesthetic and structural limitations of the official
RTF template felt unduly constraining, particularly
when those limitations seemed to be the product
of questionable or even deleterious design decisions.
This agony would perhaps have been felt less acutely
had the proposal co-authors decided to forgo the use
of LATEX in favour of a less capable tool.

Even still, LATEX itself was also at times a source
of consternation when developing heria. The sort of
high-level programming required to easily automate
the management of proposal data and the genera-
tion of data tables is not well supported by LATEX:
many of the basic data structures necessary for these
tasks, and the basic algorithms for accessing, sort-
ing, and iterating over them, are either not present
in the language, or require obscurely named and
relatively under-documented LATEX3 macros, or are
implemented only in third-party packages that must
first be discovered and then learned. Of course, these
criticisms of LATEX are hardly new (see, for example,
[1, 5, 11]). In hindsight, it may have been a better
idea to write the class in LuaTEX, even at the cost
of having to learn it (and Lua itself) from scratch.

On the whole, the initial development of heria
probably took about as much time as it would have
taken the coordinator of a large word-processed pro-
posal to manually resolve all the edit conflicts, for-
matting problems, bibliographical inconsistencies,
and outdated cross-references introduced over the
entire writing process. Anyone considering develop-
ing a LATEX class for proposals for another funding
program should therefore consider whether it makes
sense to invest the effort; if the template is unlikely
to be used more than once, then it may be better to
hold one’s nose and use the official version.

heria saw its first real-world use case in 2023,
for a highly interdisciplinary Horizon Europe RIA

proposal co-authored by 19 people across 14 organi-
zations in ten countries. The organizations included

universities, an independent research institute, sev-
eral small businesses, and branches of a multinational
company. Many of the co-authors held degrees in
computer science, but others came from the social
sciences or humanities. Accordingly, they varied
greatly in their prior knowledge of LATEX, from none
at all up to several decades’ experience.

The proposal document was hosted on Overleaf,
which allowed co-authors to edit it online or to check
it out via Git for offline editing. According to the
document’s edit history, there were 21 403 distinct
edits made, of which 20 631 (96%) were carried out
online in Overleaf and 4% were committed through
Git. It should be noted, however, that Overleaf’s
tracking of changes is considerably more fine-grained
than Git’s. Someone writing offline might produce
several pages’ worth of material and then submit it
in a single commit to the Git repository, but had the
same material been entered directly into Overleaf,
the service may have recorded this as hundreds of
distinct changes. It should also be borne in mind
that the package developer was among the co-authors,
and about 10% of the Git commits included updates
to the heria class itself.

At the time, there was no formal documenta-
tion for heria; the other co-authors were provided
only with a lightly commented skeleton proposal and
a 300-word README explaining how to compile it,
add citations and to-do notes, and toggle the visi-
bility of the instructions. Nonetheless, the writing
process proceeded smoothly, with the package devel-
oper receiving virtually no questions of a TEXnical
nature, even from the LATEX neophytes. The writ-
ing process exposed a few bugs in the package code,
which were duly fixed, and also provided the impetus
for a few optimizations and aesthetic improvements.
The present author was among those who helped per-
form an internal consistency check of the final draft
of the proposal, and found considerably fewer issues
than in a past experience with a Horizon proposal
written in Microsoft Word. In the end, the heria-
formatted proposal was submitted on time; it passed
all formal checks by the funding agency and so was
duly forwarded to the reviewers. It is either great
modesty or great shame that prevents the author
from revealing the final accept/reject decision here,
though for our purposes it suffices to say that the
use of heria played no direct part in it.

After the proposal was submitted, the devel-
oper informally surveyed its other 18 co-authors for
their feedback on the writing process insofar as it
related to using LATEX and Overleaf in general and
heria in particular, and asked them to compare the
experience with those for any past proposals collabo-

Preparing Horizon Europe proposals in LATEX with heria

64 TUGboat, Volume 45 (2024), No. 1

ratively written with different tools. Eight responses
were received and all indicated a positive experience
with the heria-based workflow. Four respondents
specifically highlighted heria’s capacity to enforce
consistency in the proposal’s structure, formatting,
and/or references; three respondents expressed ap-
preciation or enjoyment at being able to leverage
their existing LATEX knowledge; and two thought
that the package enhanced the group’s ability to edit
collaboratively.

Several responses described past experiences
with Microsoft Word, Microsoft 365, and Google
Docs as being inefficient or even “painful”, indicating
that “formatting will be a mess with many people col-
laborating”. Nonetheless, they recognized that these
tools are more familiar to those outside computer
science, and so may have a lower barrier to entry.
They also praised Google Docs’s commenting facility,
which allows co-authors to annotate documents with
tasks, to assign them to individual collaborators,
and to receive email notifications whenever tasks are
created, replied to, or resolved. The heria-based
workflow had no comparable commenting facility;
co-authors used a mixture of comments in the LATEX
source code, in-document comments typeset with
the todonotes package, and Overleaf’s own com-
menting feature. This proved to be problematic,
since the source code comments were not always
visible to co-authors using Overleaf’s visual editor
and the Overleaf comments were not visible to co-
authors who checked out the project with Git to edit
it offline. Since providing a general-purpose issue
tracking system is well beyond the scope of heria,
anyone considering heria (or any other LATEX-based
workflow) for a large collaborative project should
therefore consider how best to coordinate tasks and
discussions during the writing process.

7 Availability and future development

The heria package has an official website at
logological.org/heria that includes links to its
documentation, source code repository, and bug
tracker. The package saw its initial release to CTAN

on December 4, 2023, and it was added to TEX Live
the following day. By the time this article is pub-
lished, heria may also be available in other TEX
distributions and online editors.

From time to time, the EC revises the official
template for Horizon Europe RIA and IA proposals,
and it is intended that heria, over the course of its
development, will track these revisions. Whether this
intention is realized depends on the availability and
motivation of its maintainers, a group that for the
moment consists solely of the present author. Any-

one interested in directly contributing to the further
development of heria is welcome to get in touch.
Failing that, the best possible impetus for continued
improvement of the package is the opportunity for
the author to participate in further Horizon Europe
proposals. (Readers are welcome to take this as a coy
solicitation to collaborate on high-quality research
projects.)

References

[1] N.H.F. Beebe. 25 Years of TEX and
METAFONT: Looking back and looking
forward—TUG 2003 keynote address. TUGboat

25(1):7–30, 2004. tug.org/TUGboat/tb25-

1/beebe-2003keynote.pdf

[2] B. Donald. The nih package, 2005-06-01.
ctan.org/pkg/nih

[3] D. Els, S. Fear. The booktabs package, version
1.61803398, 2020. ctan.org/pkg/booktabs

[4] Free Software Foundation. What is free
software?, Feb. 2021. www.gnu.org/

philosophy/free-sw.en.html

[5] H. Hagen. LuaTEX: Howling to the
moon. TUGboat 26(2):152–157, 2005.
tug.org/TUGboat/tb26-2/hagen.pdf

[6] G. Indiveri. The h2020proposal package,
version 1.0, 2015-09-20. ctan.org/pkg/

h2020proposal

[7] J. Karr. The grant package, version 0.0.5,
2019-02-26. ctan.org/pkg/grant

[8] M. Kohlhase. The proposal package, version
1.5, 2016-04-15. ctan.org/pkg/proposal

[9] D. McIlroy, E.N. Pinson, B.A. Tague. Unix
time-sharing system: Foreword. The Bell

System Technical Journal, 57(6):1899–1904,
July–Aug. 1978. archive.org/details/

bstj57-6-1899

[10] F. Qi. The mynsfc package, version 1.30,
2020-08-18. ctan.org/pkg/mynsfc

[11] R. Reich. Does TEX/LATEX give a headstart
with other programming languages? [answer],
Jan. 2012. tex.stackexchange.com/a/42749/
22603

[12] W. Skala. The pgfgantt package, version 5.0,
2018. ctan.org/pkg/pgfgantt

⋄ Tristan Miller

Department of Computer Science

University of Manitoba

Tristan.Miller (at) umanitoba

dot ca

https://logological.org

ORCID 0000-0002-0749-1100

Tristan Miller

https://logological.org/heria
https://tug.org/TUGboat/tb25-1/beebe-2003keynote.pdf
https://tug.org/TUGboat/tb25-1/beebe-2003keynote.pdf
https://ctan.org/pkg/nih
https://ctan.org/pkg/booktabs
https://www.gnu.org/philosophy/free-sw.en.html
https://www.gnu.org/philosophy/free-sw.en.html
https://tug.org/TUGboat/tb26-2/hagen.pdf
https://ctan.org/pkg/h2020proposal
https://ctan.org/pkg/h2020proposal
https://ctan.org/pkg/grant
https://ctan.org/pkg/proposal
https://archive.org/details/bstj57-6-1899
https://archive.org/details/bstj57-6-1899
https://ctan.org/pkg/mynsfc
https://tex.stackexchange.com/a/42749/22603
https://tex.stackexchange.com/a/42749/22603
https://ctan.org/pkg/pgfgantt

TUGboat, Volume 45 (2024), No. 1 65

Specifying and populating documents in

YAML with lua-placeholders in LATEX

Erik Nijenhuis

Abstract

This article examines the implementation of the in-
voice template in GinVoice [3] and explores how the
invoice template can better align with the LATEX
ecosystem by introducing an additional data layer
in YAML using lua-placeholders. With the in-
troduction of lua-placeholders, LATEX users have
complete freedom in formatting invoice templates,
and the invoice templates are directly integratable
with the enhanced version of GinVoice.

Keywords

LuaLATEX, YAML

1 Introduction

During my work as a software engineer, I encountered
a challenge for a company that drafts agreements
and terms for multiple clients. One of the challeng-
ing aspects was keeping client data and regulatory
documentation separate. Previously, I addressed
this challenge in GinVoice [3] by generating addi-
tional LATEX files with Python, which were then
compiled alongside the main LATEX file. However,
this time, my goal was to provide a solution from
within the LATEX domain itself, rather than the appli-
cation domain. The solution I developed, now known
as lua-placeholders [5], introduces a shared data
layer with YAML between LATEX and application code.
The package provides an intermediary layer specifi-
cally for data through YAML files. To demonstrate
this solution, we use GinVoice as an example. This
example, a Python GTK application that generates
invoices with LATEX, offers slightly more complexity
and challenges than the legal domain has to offer.

1.1 The compiler— LuaLATEX

I decided to use LuaLATEX as the compiler for several
reasons. Since 2016, I have been using LuaLATEX,
which greatly helped me with documents within com-
puter science at the time. Over the years, I have
gained a lot of experience in compiling with Lua-
LATEX and see it as a suitable compiler as a devel-
oper, thanks to the ability to script in Lua, which I
naturally appreciate as a programmer.

The ability to script in Lua offers several advan-
tages. It allows me to perform complex tasks during
the compilation process, such as processing YAML

files or manipulating and structuring data. Addition-
ally, LuaLATEX supports Lua init scripts, allowing
me to implement a custom compilation process with

its own command line interface (CLI), further sim-
plifying and optimizing the integration process for
end solutions.

1.2 What is YAML?

As a DevOps engineer, I have often encountered
YAML while working with tools such as Docker Com-
pose, Travis CI, GitHub Actions, and Canonical’s
NetPlan (Ubuntu systems). YAML is widely used in
the DevOps world for automating and managing con-
figurations, functioning as a structured markup lan-
guage for defining configuration files and capturing
infrastructural and operational aspects of software
applications.

YAML has become a crucial component of mod-
ern software development and deployment due to
its simple syntax and flexibility. In combination
with LATEX, YAML provides a powerful mechanism
for defining and managing structured data, which is
particularly useful when integrating client data into
LATEX documents. Listing 1 shows an example of
YAML used in conjunction with LATEX.

supplier: grapefruit

client: juicing-joker

title: Grapefruit Inc. Invoice

subtitle: for fruits and stuff

currency: \$

number: 1

date: \today

...

Listing 1: invoice-001.yaml

2 GinVoice

In this section, we will take a closer look at Gin-
Voice, an open-source Python GTK application that
utilizes LATEX behind the scenes to create invoices.
Additionally, we will examine the provided invoice
template and delve into the associated data within
the invoice.

2.1 The application

GinVoice has multiple views. The most common is
the main view, where you can draft multiple invoices
simultaneously. In this view, depicted in figure 1,
almost all components are visible. You can see the
header, information tables, invoice rules, and the
closing text included in it. Figure 1 shows that the
input fields are already filled in, and their content
does not deviate much from the end result, as seen
in figure 2. Other application views will be discussed
later in this section.

doi.org/10.47397/tb/45-1/tb139nijenhuis-placeholders

Specifying and populating documents in YAML with lua-placeholders in LATEX

https://doi.org/10.47397/tb/45-1/tb139nijenhuis-placeholders

66 TUGboat, Volume 45 (2024), No. 1

Figure 1: GinVoice — the application

Grapefruit Inc. Invoice
for fruits and stuff

Juicing Joker

LATEX street 27

12345 AB, Alaska

Invoice nr: 1

Invoice date: January 28, 2024

Email: john.doe@example.com

Website: https://www.example.com

Account number: NL00 0000 0000 0000 0000 00

Description Date Quantity Price Total

Activities project x oct. 18 1h 30m $ 65.00 $ 97.50

oct. 19 6h 15m $ 65.00 $ 406.25

Material Costs oct. 19 20x $ 24.99 $ 499.80

Activities project x oct. 21 2h $ 65.00 $ 130.00

oct. 22 1h 30m $ 65.00 $ 97.50

Total (ex.) $1,229.05

VAT (21%) $ 258.10

Total (incl.) $1,487.15

Please send us the total of $ 1,487.15 within the coming 14 days to account number NL00 0000 0000 0000 0000 00 with

the note of the invoice number 1.

Questions about this invoice? Please contact us.

Figure 2: Sample invoice generated with GinVoice

2.2 LATEX template

Below is an example of the code within the document
environment:

52 \begin{document}

53 \thispagestyle{headermain}

54 \makeheader

55 \vspace{2cm}

56 \begin{tabular}{@{}l@{}}

57 \begin{tabular}{@{}l@{}}

58 \addressee

59 \end{tabular} \\

60 \begin{tabular}{@{}l l@{}}

61 \customerinfo

62 \end{tabular}

63 \end{tabular}

64 \hfill

65 \begin{tabular}{@{}l r@{}}

66 \supplierinfo

67 \end{tabular}\\

68

69 \input{table}

70 \begin{invoice}{\columndef}{\tableheader}

71 {\tablefooter}

72 \tablerecords

73 \end{invoice}

74

75 {\footnotesize \theending{}}

76 \vfill

77 \begin{center}

78 \images

79 \end{center}

80

81 \end{document}

Listing 2: invoice.tex

The source code in listing 2 demonstrates various
macros that will be replaced by lua-placeholders:
\addressee, \customerinfo, \supplierinfo,
\tablefooter, \tablerecords, \theending, and
\images. Additionally, there are variables such as
title- and style-related information and \currency

that will be handled.

2.3 Generated LATEX files

It is important to note that GinVoice [3] currently
uses a Python script, generator.py, to generate
additional TEX files. These TEX files are then in-
cluded in the template using \include, making the
necessary macros available.

Starting with the language setting:

\usepackage[english]{babel}

Listing 3: languages.tex

Erik Nijenhuis

TUGboat, Volume 45 (2024), No. 1 67

Figure 3: Language settings

At the time, I chose to include a separate language
setting in the application, as shown in figure 3, so that
words within the invoice are correctly hyphenated
using babel.

Another aspect within the preamble is setting
the document properties. These macros are imported
from the generated file meta.tex, whose macros are
later used in the \hypersetup.

\global\def\currency{\$}

\global\def\author{Erik Nijenhuis}

\global\def\title{Grapefruit Inc. Invoice}

\global\def\subject{Invoice for Juicing Joker}

\global\def\keywords{Invoice Grapefruit ←↩

Juicing Joker}

\global\def\producer{GinVoice Generator}

\global\def\creator{gingen}

\global\def\continuationheader{\title{} -- ←↩

\subject{}}

\global\def\continuationfooter{See next page.}

Listing 4: meta.tex

Common macros, such as \title, are used in mul-
tiple places. That is also why the \title does not
need to be in the header.tex.

\global\def\subtitle{for fruits and stuff}

Listing 5: header.tex

The customer’s address is placed in a macro, with
the address lines separated by a newline.

\newcommand{\addressee}{Juicing Joker\\ ←↩

\LaTeX{} street 27\\12345 AB, Alaska}

Listing 6: addressee.tex

This approach would be suitable for a table with a
single column or for, say, an enumerate environment.

The customer and supplier information assumes
a table environment with two columns.

\newcommand{\customerinfo}{

& \\

Invoice nr: & 1 \\

Invoice date: & \today \\

}

Listing 7: customer_info.tex

\newcommand{\supplierinfo}{

Email: & john.doe@example.com \\

Website: & https://www.example.com \\

Account number: & NL00 0000 0000 0000 ←↩

0000 00 \\

& \\

& \\

& \\

}

Listing 8: supplier_info.tex

The drawback of this setup is that an ampersand
(&) does not have any function within the context of
the macro itself. That would only be the case when
working within a tabular environment. Despite
most LATEX editors giving an error for this, strangely
enough, this approach still works.

The most significant challenge within the ap-
plication was making the invoice table configurable.
For this, there is a separate view, as seen in figure 4.
In the figure, you can see that each column can have
a different width, including length of text, maximum
available space, or hidden. This added complexity
from the application resulted in quite complex out-
put in the generated table.tex file, as shown in the
following code:

\newlength{\rowsize}

\setlength{\rowsize}{\linewidth}

\newlength{\cIsize}

\settowidth{\cIsize}{oct. 22}

\addtolength{\rowsize}{-\cIsize}

\addtolength{\rowsize}{-2\tabcolsep}

Figure 4: Table settings

Specifying and populating documents in YAML with lua-placeholders in LATEX

68 TUGboat, Volume 45 (2024), No. 1

\newlength{\cIIsize}

\settowidth{\cIIsize}{\textbf{Quantity}}

\addtolength{\rowsize}{-\cIIsize}

\addtolength{\rowsize}{-2\tabcolsep}

\newlength{\cIIIsize}

\settowidth{\cIIIsize}{\textbf{Total (incl.)}}

\addtolength{\rowsize}{-\cIIIsize}

\addtolength{\rowsize}{-2\tabcolsep}

\newlength{\cIVsize}

\settowidth{\cIVsize}{\$ 1,000.00}

\addtolength{\rowsize}{-\cIVsize}

\addtolength{\rowsize}{-2\tabcolsep}

\newcommand{\columncount}{5}

\newcolumntype\columndef ←↩

{L{1.00\rowsize-2\tabcolsep} R{\cIsize} ←↩

L{\cIIsize} F{\cIIIsize} F{\cIVsize}}

\newcommand{\tableheader}{\rowheadercolor ←↩

Description&\rowheadercolor ←↩

Date&\rowheadercolor ←↩

Quantity&\rowheadercolor ←↩

Price&\rowheadercolor Total\\}

\newcommand{\tablerecords}{

Activities project x & oct. 18 & 1h 30m ←↩

& \currency\hfill\financial{65.00} & ←↩

\currency\hfill\financial{97.50}\\

& oct. 19 & 6h 15m & ←↩

\currency\hfill\financial{65.00} & ←↩

\currency\hfill\financial{406.25}\\

Material Costs & oct. 19 & 20x & ←↩

\currency\hfill\financial{24.99} & ←↩

\currency\hfill\financial{499.80}\\

Activities project x & oct. 21 & 2h & ←↩

\currency\hfill\financial{65.00} & ←↩

\currency\hfill\financial{130.00}\\

& oct. 22 & 1h 30m & ←↩

\currency\hfill\financial{65.00} & ←↩

\currency\hfill\financial{97.50}\\}

\newcommand{\cumoffset}{& & & }

\newcommand{\tablefooter}{\cum{Total ←↩

(ex.)}{1229.05}

\cum{VAT (21\%)}{258.10}

\cum{Total (incl.)}{1487.15}

}

Listing 9: table.tex

In addition to the complex column configuration,
there are \tablerecords and \tablefooter, both
similar to, for example, the supplier information.

The last generated file footer.tex defines the
remaining missing macros, \theending and \images:

\newcommand{\theending}{Please send us the ←↩

total of \$ \financial{1487.15}

within the coming 14 days

to account number NL00 0000 0000 0000 0000 00

with the note of the invoice number 1.

Questions about this invoice?

Please contact us.}

\graphicspath{{/home/erik/share/ginvoice/img/}}

\newcommand{\images}{

\includegraphics[width=.1\textwidth]{image1}

\hspace{1.5em}

\includegraphics[width=.1\textwidth]{image2}

\hspace{1.5em}

\includegraphics[width=.1\textwidth]{image3}

}
Listing 10: footer.tex

At the time, I chose to store all graphic files some-
where within the GinVoice environment. I linked this
to LATEX by using \graphicspath.

2.4 Invoice data

When looking at all the information coming from
GinVoice, a few exceptions aside, we end up with the
data presented in figure 5. For convenience, I have
already divided all the information into separate
entities, which will correspond to the YAML files,
extensively discussed in the next section.

Invoice

title : String = Invoice
subtitle : String
currency : String = \EUR

number : Number
date : String = \today

records : Table
totals : Table/Object
ending : String

Supplier

email : String
website : String
accountnr : String

Client

name : String
street : String
postal : String
place : String

Style

images : List
main font : String
mono font : String
foreground color : String
background color : String
colored table : Boolean

Figure 5: Class diagram of the invoice

Erik Nijenhuis

TUGboat, Volume 45 (2024), No. 1 69

Application layer

*.py *.glade

Data layer

*.yaml *.json

LuaTEX layer

*.lua

LuaLATEX layer

*.tex *.cls *.sty *.cfg

writes payloadreads spec

reads data

calls

LuaLATEX

calls LuaTEX

Author

Programmer

Figure 6: Levels within GinVoice

3 Invoice templates with lua-placeholders

This section demonstrates how YAML interfaces, also
known as recipes, can be used as interfaces for invoice
templates and how they can be linked to LATEX.

The ultimate goal is to provide an efficient and
customizable invoicing interface that can be easily
integrated into an enhanced version of GinVoice. Fig-
ure 6 illustrates a representation of the new situation,
with techniques irrelevant for this article crossed out.

Thus, the data, as seen in figure 5, is moved
from the application level to the data level. This
allows both Python programmers and LATEX users
to interact with the data level, something that is
impossible in the current situation.

3.1 YAML specifications

Based on the data analysis in section 2.4, we can start
working with the recipes. All recipes are placed in
the recipes directory relative to the LATEX project.
Alternatively, you could store the recipes directory
under $TEXMFHOME/tex/ to make the recipes avail-
able everywhere.

3.1.1 The invoice

The invoice recipe, recipes/invoice.yaml, spec-
ifies two relationships: supplier and client, as
mentioned earlier in section 2.4.

1 # Actors

2 supplier:

3 type: string

4 client:

5 type: string

Listing 11: recipes/invoice.yaml

How the corresponding recipes are loaded based on
these values is described in section 3.2.3.

The data within the invoice part can optionally
be standardized using a default field, as done for
title. You can even invoke LATEX from a default
value, including other parameters using \param.

6 # Invoice variables

7 title:

8 type: string

9 default: Invoice \param{number}

10 subtitle:

11 type: string

12 placeholder: Subtitle

13 currency:

14 type: string

15 default: \EUR

16 number:

17 type: string

18 placeholder: Invoice number

19 date:

20 type: string

21 placeholder: Invoice date

In addition to default values, temporary placeholders
can also be specified.

The most complex part of the invoice is the
invoice table, where you can specify columns just
like you do for other data types.

22 records:

23 type: table

24 columns:

25 description:

26 type: string

27 date:

28 type: string

29 quantity:

30 type: string

31 default: 0x

32 price:

33 type: number

34 default: 0

35 total:

36 type: number

37 default: 0

For most LATEX users, the total column can be omit-
ted and calculated using a package like invoice2 [2].
To do that, it is also necessary to make the quantity
field of type number and add an extra field like
quantity type, so that you can display the correct
notation for the quantity column.

For the final totals, I chose the type object so
that I can manually set the different totals in LATEX.

Specifying and populating documents in YAML with lua-placeholders in LATEX

70 TUGboat, Volume 45 (2024), No. 1

38 totals:

39 type: object

40 fields:

41 total ex:

42 type: number

43 default: 0

44 vat:

45 type: number

46 default: 0

47 total incl:

48 type: number

49 default: 0

The final totals could also be handled in a more
generic way, like the extra fields field in the sup-
plier recipe (see section 3.1.3).

The last field of the invoice, message, uses the
special YAML feature of multiline strings in the de-
fault value.

50 message:

51 type: string

52 default: |

53 Please send us the total of ←↩

\currency~\paramfield{totals}{total ←↩

incl}

54 within the coming 14 days to account ←↩

number

55 \param[supplier]{account number} with ←↩

the note of the invoice number ←↩

\param{number}.\\[2em]

56

57 Questions about this invoice? Please ←↩

contact us.

Using the pipe (|) activates this mode. This con-
struction is ideal for large texts, possibly with LATEX
syntax.

3.1.2 Client

The client data does not have any special specifica-
tions compared to the invoice.

1 name:

2 type: string

3 placeholder: Client namme

4 street:

5 type: string

6 placeholder: Street + nr

7 postal:

8 type: string

9 placeholder: 9999 ZZ

10 place:

11 type: string

12 placeholder: City

Listing 12: recipes/client.yaml

Alternatively, all address details could be specified
as a list type, along with a specification, as seen
in extra fields in the supplier recipe. This would
make the interface more generic but less adaptable
within the LATEX context.

3.1.3 Supplier

In the recipe for the supplier, the style field serves
the same function as supplier and client of the
invoice, allowing the user to choose which style to
apply.

1 name:

2 type: string

3 placeholder: Supplier name

4 email:

5 type: string

6 placeholder: Email

7 website:

8 type: string

9 account number:

10 type: string

11 placeholder: Account number

12 extra fields:

13 type: table

14 columns:

15 key:

16 type: string

17 val:

18 type: string

19 # Suppliers style

20 style:

21 type: string

Listing 13: recipes/supplier.yaml

Another interesting field in this specification is
extra fields. This field uses the table type to
allow arbitrary additional information fields, such as
the supplier’s account number, VAT number, or any
other relevant details. Using a table instead of a fixed
number of fields gives the end-user the flexibility to
add as much extra information as needed, without
imposing restrictions.

3.1.4 Style

In the style recipe, fonts, colors, and multiple images
can be specified. As mentioned earlier: for LATEX
users, this could be fully specified in LATEX itself.
The style recipe could then be omitted.

1 images:

2 type: list

3 item type: string

4 main font:

5 type: string

Erik Nijenhuis

TUGboat, Volume 45 (2024), No. 1 71

6 default: Ubuntu

7 mono font:

8 type: string

9 default: Ubuntu Mono

10 foreground color:

11 type: string

12 default: 000000

13 background color:

14 type: string

15 default: FFFFFF

Listing 14: recipes/style.yaml

A notable point here is the type for images, namely
list. In section 3.3, you can see how this list is
loaded at the bottom of the invoice.

3.2 The new invoice

Now that the recipes are in order, we can proceed
to integrate them into LATEX (in invoice.tex).

3.2.1 Loading recipes in the preamble

The recipes are loaded using the \loadrecipe macro.

44 \loadrecipe[\jobname]{recipes/invoice.yaml}

45 \loadrecipe{recipes/supplier.yaml}

46 \loadrecipe{recipes/client.yaml}

47 \loadrecipe{recipes/style.yaml}

For the invoice recipe, you can see that it is given
a ⟨namespace⟩ of \jobname (the optional argument).
This is because the \param macro by default uses
\jobname as the ⟨namespace⟩, simplifying its use.

The other recipes do not specify a ⟨namespace⟩,
meaning they use the ‘basename’ of the path as the
⟨namespace⟩. In this case, respectively, supplier,
client, and style.

3.2.2 Currency

Regarding the currency, I have chosen to disguise it
in the \currency macro. This is because it is also
used in other files, such as invoice.cls.

49 \def\currency{\rawparam{\jobname}{currency}}

If the ⟨currency⟩ is not set, the default value from
style.yaml is used. In this case, it defaults to \EUR.

3.2.3 Loading values

I’ve chosen to manage all YAML files related to the
data in corresponding directories.

⟨project name⟩
recipes

⟨recipe⟩.yaml
invoices

⟨invoice-xxx ⟩.yaml
clients
etc.

Values, also called the payload, are loaded simi-
larly to recipes but with the \loadpayload macro.
Due to the relationships described in section 2.4,
it is slightly more complex than recipes because
lua-placeholders does not offer anything standard
for this.

51 \IfFileExists{invoices/\jobname.yaml}{

52 \loadpayload[\jobname] ←↩

{invoices/\jobname.yaml}

53 \strictparams

54 }{}

When loading invoice values, it is checked whether a
corresponding YAML file exists. If so, that payload is
loaded, and the experimental macro \strictparams

is used, which means that errors will occur in the
future if mandatory data is missing. If no correspond-
ing file is found, an invoice template is compiled.

After loading the invoice data, we can check if
a client is specified in the invoice data. We do this
using \hasparam. This concerns the invoice data, for
which we do not need to specify a ⟨namespace⟩.

56 \hasparam{client}{%

57 \loadpayload[client] ←↩

{clients/\rawparam{\jobname} ←↩

{client}.yaml}

58 }{}

Generally, \param is not intended for use within
the preamble because it can also yield placeholders
with LATEX markup. For such difficult situations,
the macro \rawparam is written, as done for the
client and supplier. This macro has no optional argu-
ments; they often cause problems with, for example,
pgfkeys.

60 \hasparam{supplier}{%

61 \loadpayload[supplier] ←↩

{suppliers/\rawparam{\jobname} ←↩

{supplier}.yaml}

62 }{}

As you can see, loading the supplier does not differ
from loading the client. However, there is a follow-up
action after loading the supplier, namely checking
if the style can be loaded. This is done in the same
way as with the client and supplier themselves, but
here you see that the ⟨namespace⟩ must be set.

64 \hasparam[supplier]{style}{%

65 \loadpayload[style] ←↩

{styles/\rawparam{supplier}{style}.yaml}

66 \setmainfont{\rawparam{style}{main ←↩

font}}

67 \setmonofont{\rawparam{style}{mono ←↩

font}}

Specifying and populating documents in YAML with lua-placeholders in LATEX

72 TUGboat, Volume 45 (2024), No. 1

68 \definecolor{backgroundcolor}{HTML} ←↩

{\rawparam{style}{background color}}

69 \colorlet{bgcolor}{backgroundcolor}

70 \definecolor{foregroundcolor}{HTML} ←↩

{\rawparam{style}{foreground color}}

71 \colorlet{textcolor}{foregroundcolor}

72 }{}

For the style-related data, I chose to configure
the values directly in the corresponding macros, such
as \setmainfont and \definecolor, as long as a
style is specified. You could also choose to set the
style values by default based on the default values
specified in the style recipe, by placing the configu-
ration outside the \hasparam block.

3.3 Processing in the document

Before we can move on to compiling invoices, we have
one more task: setting all values in the document
itself.

3.3.1 Header

The \makeheader macro comes from invoice.cls.
It expects the title and subtitle as arguments, for
which we use \param:

76 \begin{document}

77 \thispagestyle{headermain}

78 \makeheader{\param{title}}{\param{subtitle}}

79 \vspace{2cm}

3.3.2 Information

The left column of the information is quite tricky, as
it contains both client information and invoice data,
such as the number and date.

80 \begin{tabular}{@{}l@{}}

81 \begin{tabular}{@{}l@{}}

82 \param[client]{name}\\

83 \param[client]{street}\\

84 \param[client]{postal}, ←↩

\param[client]{place}\\

85 \end{tabular} \\

86 \begin{tabular}{@{}l l@{}}

87 Invoice number: & \param{number}\\

88 Invoice date: & \param{date}\\

89 \end{tabular}

90 \end{tabular}

91 \hfill

You can see in the address lines that a line break
is set for each line. This could also have been done
if, for example, a field address lines of type list

was present. Then it would have been solved in
one go with \param[client]{address lines}, as-
suming that postal and place are merged on one

line in YAML. This alternative assumes that the
\paramlistconjunction macro is set to ‘\\’, in-
stead of the default ‘,˜’.

92 \begin{tabular}{@{}l r@{}}

93 Company: & \param[supplier]{name} \\

94 Email: & \param[supplier]{email} \\

95 Website: & \param[supplier]{website} \\

96 Account nr: & ←↩

\param[supplier]{account number} \\

97 \hasparam[suplier]{extra fields}{%

98 \def\formatsupplierextra{\key & ←↩

\val\\}%

99 \fortablerow[supplier]{extra ←↩

fields}{formatsupplierextra}

100 }{}

101 \end{tabular}\\

The right column of information is similar to the
left, except it has one additional special field, namely
extra fields of type table. This allows for a vari-
able number of rows to be added. The same could
potentially be applied to the client details in the left
column. Then only the choice remains whether to
place them above or below the invoice information.

3.3.3 Table

As mentioned earlier, standardizing the column defi-
nition is difficult.

On line 105, you can see what the \columdefs

could have provided, except for the counters that I
previously used.

103 \begin{invoice}

104 % Column definition based on 540pt

105 {@{}L{180pt-\tabcolsep} ←↩

R{80pt-2\tabcolsep} ←↩

L{60pt-2\tabcolsep} ←↩

F{120pt-2\tabcolsep} ←↩

F{100pt-\tabcolsep}@{}}

For the second argument of the invoice envi-
ronment, a static header is set.

106 % Header

107 {\textbf{Description} & \textbf{Date} & ←↩

\textbf{Quantity} & \textbf{Price} & ←↩

\textbf{Total} \\ \hline}

For the third argument of the invoice environ-
ment, you can see how the final totals are set in
the table. These totals are placed in the last two
columns of each row, so that they align neatly with
the rest of the table.

Erik Nijenhuis

TUGboat, Volume 45 (2024), No. 1 73

108 % Totals

109 {%

110 & & & \textbf{Total (ex.)} & ←↩

\currency\hfill{\ttfamily ←↩

\paramfield{totals}{total ex}} \\

111 & & & \textbf{VAT} & ←↩

\currency\hfill{\ttfamily ←↩

\paramfield{totals}{vat}} \\

112 & & & \textbf{Total (incl.)} & ←↩

\currency\hfill{\ttfamily ←↩

\paramfield{totals}{total incl}} \\

113 }

In the final part of the table, you can see how
each invoice line is set using \fortablerow with the
help of \formatrecords.

114 \newcommand\formatrecords{%

115 \description & \date & \quantity &%

116 \currency\hfill{\ttfamily\price} &%

117 \currency\hfill{\ttfamily\total} \\}

118 \fortablerow{records}{formatrecords}

119 \end{invoice}

The overall structure of the table is still from
the previous situation. The notable difference from
the old situation is that the data can be put into any
sort of table structure, since the data is decoupled
from the LATEX and application domains, and the
challenges of typesetting are shifted to the LATEX
domain.

3.3.4 Closing text and images

Where we previously saw an advanced YAML specifi-
cation for the message field, the implementation in
LATEX remains virtually the same:

121 {\footnotesize\param{message}}

The only difference is:
\theending → \param{message}

The images, on the other hand, are slightly more
difficult to implement in LATEX due to the list type.

122 \newcommand\formatimage[1] ←↩

{\hspace{.75em}\includegraphics ←↩

[width=2cm]{#1}\hspace{.75em}}%

123 \hasparam[style]{images}{%

124 \vfill

125 \begin{center}

126 \forlistitem[style]{images} ←↩

{formatimage}

127 \end{center}

128 }{}

129 \end{document}

Where previously in Python all images were
neatly placed next to each other, with a \hspace

of 1.5em between each image, I chose to insert half
that value as an \hspace on each side of each image.
This is because the \forlistitem macro does not
yet have a convenient way to specify a separator, like
\param does by setting \paramlistconjunction to
‘\hspace{1.5em}’.

4 Execution

Now that the legacy invoice has been completely
transformed, let’s see what the result looks like. If
you want to participate via the command line, please
refer to the full source code [4] of these examples.

4.1 The template version

Without providing any values, we get the following
result, as shown in figure 7.
As mentioned earlier, lua-placeholders can only

be compiled with LuaLATEX. The example can be
compiled as follows:

lualatex --jobname=invoice-template \

--output-directory="${OUTPUT_DIR}" \

invoice

Listing 15: Compiling with lualatex

Invoice [Invoice number]
[Subtitle]

[Client namme]

[Street + nr]

[9999 ZZ], [City]

Invoice number: [Invoice number]

Invoice date: [Invoice date]

Company: [Supplier name]

Email: [Email]

Website: [website]

Account nr: [Account number]

Description Date Quantity Price Total

[description] [date] 0x AC 0,00 AC 0,00

Total (ex.) AC 0,00

VAT AC 0,00

Total (incl.) AC 0,00

Please send us the total of AC 0,00 within the coming 14 days to account number [Account number] with the note of the

invoice number [Invoice number].

Questions about this invoice? Please contact us.

Figure 7: invoice-template.pdf

Specifying and populating documents in YAML with lua-placeholders in LATEX

74 TUGboat, Volume 45 (2024), No. 1

where ${OUTPUT_DIR} is the desired output direc-
tory.

However, if you are designing a template, con-
tinuous generation with latexmk [1] is more user-
friendly:

latexmk -pvc -lualatex \

--jobname=invoice-template \

--output-directory="${OUTPUT_DIR}" \

invoice

Listing 16: Compiling with latexmk

With the -pvc option, you don’t have to recompile
with TEX every time there is a change; it happens
automatically.

4.2 YAML values

To get a filled invoice, we will need the following
YAML files:

⟨project dir⟩
invoices

⟨invoice⟩.yaml
suppliers

⟨supplier⟩.yaml
styles

⟨style⟩.yaml
clients

⟨client⟩.yaml

This structure is based on the implementation
described in section 3.2.3. Before discussing the con-
tents of the YAML files, let’s first consider alternative
project structures.

4.2.1 Alternative project structure

Everyone is free to create their desired folder struc-
ture. For example, you could place styles under

/suppliers/⟨supplier⟩/style.yaml
so that you can even omit the style field in the sup-
plier recipe. Another option is to place the clients

folder under the supplier level, so you don’t acciden-
tally mix clients of different suppliers. This could be
achieved as follows:

⟨project dir⟩
suppliers

⟨supplier⟩.yaml
⟨supplier⟩

⟨client⟩.yaml

This way, the implementation for loading clients
would require the variables ⟨supplier⟩ and ⟨client⟩,
to then reach the path

suppliers/⟨supplier⟩/⟨client⟩.yaml.
The same consideration could be applied to the

invoices, but this is a more difficult scenario, as the
invoice data is based on \jobname in the implemen-
tation of section 3.2.3. One possible solution for this

is to manage the project per supplier. You can then
place the recipes in the $TEXMFHOME/tex directory
so that they are available for all projects. Here’s an
example of a possible project structure:

$HOME/texmf/tex

recipes

invoice.yaml

client.yaml

supplier.yaml

style.yaml

invoice.cls

invoice.tex

⟨project dir⟩
invoices

⟨invoice⟩.yaml
clients

⟨client⟩.yaml
supplier.yaml

style.yaml

In this example, all data is separated per supplier,
including client information and final invoices.

4.3 Suppliers and clients

In the example result of GinVoice, a client Juicing

Joker was shown. In YAML, this would translate to:

name: Juicing Joker

street: \LaTeX-street 27

postal: 12345 AB

place: Alaska

Listing 17: clients/juicing-joker.yaml

This way, the client can be referenced in the invoice
with juicing-joker.

For the supplier, we saw Grapefruit Inc. in the
example, which translates to:

name: Grapefruit

email: john.doe@example.com

website: https://www.example.com

account number: NL00 0000 0000 0000 0000 00

style: grapefruit

Listing 18: suppliers/grapefruit.yaml or
grapefruit/supplier.yaml

And for the style:

main font: Ubuntu

mono font: Ubuntu Mono

foreground color: c4a000

background color: 360519

images:

- img/image1

- img/image2

- img/image3

Listing 19: styles/grapefruit.yaml or
grapefruit/style.yaml

Erik Nijenhuis

TUGboat, Volume 45 (2024), No. 1 75

Invoice [Invoice number]
[Subtitle]

[Client name]

[Street name + nr]

[9999 ZZ], [City]

Invoice number: [Invoice number]

Invoice date: [Invoice date]

Company: Grapefruit

Email: john.doe@example.com

Website: https://www.example.com

Account nr: NL00 0000 0000 0000 0000 00

Description Date Quantity Price Total

[description] [date] 0x AC 0,00 AC 0,00

Total (ex.) AC 0,00

VAT AC 0,00

Total (incl.) AC 0,00

Please send us the total of AC 0,00 within the coming 14 days to account number NL00 0000 0000 0000 0000 00 with the

note of the invoice number [Invoice number].

Questions about this invoice? Please contact us.

(a) invoice-template.pdf

Grapefruit Inc. Invoice
for fruits and stuff

Juicing Joker

LATEX-street 27

12345 AB, Alaska

Invoice number: 1

Invoice date: January 28, 2024

Company: Grapefruit

Email: john.doe@example.com

Website: https://www.example.com

Account nr: NL00 0000 0000 0000 0000 00

Description Date Quantity Price Total

Activities project x oct. 18 1h 30m $ 65,00 $ 97,50

oct. 19 6h 15m $ 65,00 $ 406,25

Material Costs oct. 19 20x $ 24,99 $ 499,80

Activities project x oct. 21 2h $ 65,00 $ 130,00

oct. 22 1h 30m $ 65,00 $ 97,50

Total (ex.) $ 1 229,05

VAT $ 258,10

Total (incl.) $ 1 487,15

Please send us the total of $ 1 487,15 within the coming 14 days to account number NL00 0000 0000 0000 0000 00 with

the note of the invoice number 1.

Questions about this invoice? Please contact us.

(b) invoice-001.pdf

Xerdi
Factuur 2

Juicing Joker
LATEX-street 27
12345 AB, Alaska
Invoice number: 2
Invoice date: 12 februari 2024

Company: Xerdi
Email: erik@xerdi.com
Website: https://www.xerdi.com
Account nr: NL00 0000 0000 0000 0000 00

Description Date Quantity Price Total

Werkzaamheden project x oct. 18 1u 30m AC 65,00 AC 97,50
oct. 19 6u 15m AC 65,00 AC 406,25

Materiaalkosten oct. 19 20x AC 24,99 AC 499,80
Werkzaamheden project x oct. 21 2u AC 65,00 AC 130,00

oct. 22 1u 30m AC 65,00 AC 97,50

Total (ex.) AC 1229,05
VAT AC 258,10
Total (incl.) AC 1487,15

Please send us the total of AC 1487,15 within the coming 14 days to account number NL00 0000 0000 0000

0000 00 with the note of the invoice number 2.

Questions about this invoice? Please contact us.

(c) invoice-002.pdf

Figure 8: Invoice Examples

The advantage of the alternative project structure is
that invoice-template automatically picks up the
styling as well as the supplier information, as seen
in figure 8a.

4.4 Invoices

To create an invoice that exactly matches the stan-
dard example of GinVoice, as seen in figure 8b, we
use the following YAML example:

1 supplier: grapefruit

2 client: juicing-joker

3 title: Grapefruit Inc. Invoice

4 subtitle: for fruits and stuff

5 currency: \$

6 number: 1

7 date: January 28, 2024

8 records:

9 - description: Activities project x

10 date: oct. 18

11 quantity: 1h 30m

12 price: 65

13 total: 97.5

14 - description: ’’

15 date: oct. 19

Listing 20: invoices/invoice-001.yaml

The actors grapefruit and juicing-joker, dis-
cussed in section 4.3, are seen in the invoice. Ad-
ditionally, the example has the same general infor-
mation to achieve the same result. In the records

field, you can see that one row of the table takes up
many lines. In the second row of the table, you can

see that the description field has an empty value.
If the quotes are omitted in YAML, you will get an
error when converting to data. Since the rows do
not differ too much from each other, we continue the
example at the totals field:

34 totals:

35 total ex: 1229.05

36 vat: 258.10

37 total incl: 1487.15

38 message: |

39 Please send us the total of ←↩

\currency~\paramfield{totals}{total ←↩

incl}

40 within the coming 14 days to account ←↩

number

41 \param[supplier]{account number} with ←↩

the note of the invoice number ←↩

\param{number}.\\[2em]

42

43 Questions about this invoice? Please ←↩

contact us.

Lastly in the example, we see the totals and the
closing text.

This invoice can then be compiled with the fol-
lowing command:

lualatex --jobname=invoice-001 \

--output-directory="${OUTPUT_DIR}" \

invoice

Specifying and populating documents in YAML with lua-placeholders in LATEX

76 TUGboat, Volume 45 (2024), No. 1

5 Conclusion

In this study, we have not only examined the im-
plementation of invoice templates in GinVoice but
also proposed an innovative method to seamlessly
integrate these templates with the LATEX ecosys-
tem. By using YAML as an intermediate layer and
lua-placeholders for dynamic insertions, we have
provided a robust and flexible solution for invoice
generation while creating a framework where various
document components, such as client information,
can be utilized across documents.

This approach not only grants LATEX users the
freedom to customize invoice templates as desired
but also opens the door to a wider range of applica-
tions. By employing the same YAML-based structure,
different documents, including contracts and invoices,
can be generated and maintained with ease. This
not only enhances consistency across various doc-
ument types but also boosts the efficiency of the
documentation process as a whole.

The utilization of lua-placeholders in con-
junction with YAML enables the addition of dynamic
content to templates, resulting in a more streamlined
workflow for users. This flexibility makes it easy to
separate data and formatting across different docu-
ments while allowing these components to be used
across documents.

In conclusion, this approach not only makes a
valuable contribution to optimizing billing processes
but also unveils new possibilities for efficiently gen-
erating and managing various types of documents
within an organization.

6 Discussion

6.1 LATEX compilers

In the article, I assume the LuaLATEX compiler. For
other compilers, lua-placeholders does not pro-
vide a solution. Although some compilers still offer
support for Lua, lua-placeholders does not take
this into account. Research and implementation
could improve the adoption of lua-placeholders

within the LATEX community.

6.2 JSON vs. YAML

I did not delve into the choice of YAML over JSON

in the article. Both are intended for data, and while
JSON is more well-known and has broader compati-
bility with programming languages, I chose YAML

for the sake of readability of LATEX source code. As
demonstrated extensively, the files contain a lot of
LATEX source code. When using JSON every back-
slash would need to be escaped. For example:

title: Invoice \param{number}

Listing 21: YAML example

{"title": "\\param{number}" }

Listing 22: JSON example

As a LATEX user, I find it more convenient to adjust
values in YAML for testing purposes than in JSON.

6.3 GinVoice roadmap

Development has been stagnant for some time, but I
recently discovered that the solution can also work
for Windows platforms. Bringing GinVoice to the
Windows platform significantly expands the target
audience and, in my expectation, could garner more
support for LATEX.

As for the introduction of lua-placeholders,
there are still a few obstacles to overcome, such as
challenges related to translation and the variable
column definition, which is precisely a user-friendly
part of the application that has not been discussed.

References

[1] J. Collins, E. McLean, D.J. Musliner. The

latexmk package. www.cantab.net/users/

johncollins/latexmk/index.html

[2] S. Dierl. The invoice2 package.
github.com/no-preserve-root/invoice2

[3] E. Nijenhuis. The GinVoice GTK application.
gitlab.gnome.org/MacLotsen/ginvoice

[4] E. Nijenhuis. The GinVoice template.
github.com/Xerdi/ginvoice-template/tree/

maps

[5] E. Nijenhuis. The lua-placeholders package.
ctan.org/pkg/lua-placeholders

⋄ Erik Nijenhuis
Frans Halsstraat 38
Leeuwarden, 8932 JC
The Netherlands
erik (at) xerdi dot com

https://github.com/MacLotsen

Erik Nijenhuis

https://www.cantab.net/users/johncollins/latexmk/index.html
https://www.cantab.net/users/johncollins/latexmk/index.html
https://github.com/no-preserve-root/invoice2
https://gitlab.gnome.org/MacLotsen/ginvoice
https://github.com/Xerdi/ginvoice-template/tree/maps
https://github.com/Xerdi/ginvoice-template/tree/maps
https://ctan.org/pkg/lua-placeholders

TUGboat, Volume 45 (2024), No. 1 77

Building a modern editing environment on

Windows around GNU Emacs and AUCTEX

Arash Esbati

Abstract

In this article, we describe how to set up GNU Emacs
with AUCTEX as an editing environment for (LA)TEX
on Microsoft Windows using the MSYS2 distribu-
tion.

1 Introduction

What we know today as GNU Emacs is a text editor
originally developed by Richard Stallman, who is also
the founder of the Free Software Foundation (FSF)
and the initiator of the GNU Project. The earliest
recorded release of GNU Emacs is version 13 from
March 1985, though a long history preceded that.
Emacs’ original inception was as a set of macros
and keybindings for the TECO text editor (hence
the meaning of “Emacs” as “editor macros”). For a
thorough overview of Emacs timeline and technical
development, please refer to [4].

TEX had major releases TEX78, TEX82 and
TEX3.0 in 1990. Considering that these programs
were developed more or less in the same time period
and both are free software (free in terms of “free
software” and not “open source”[6]), it is not a sur-
prise that Emacs has a long history and very good
support for editing TEX files.

Software around TEX and Emacs have their her-
itage on Unix-like operating systems where the source
is provided and the software is built by distros or
by the user. On Microsoft Windows, the process of
building software by a user is rather uncommon. Fi-
nally, porting and building *nix software on Windows
is not a task for casual users.

And this is where MSYS2 comes into play. It
introduces itself as “a collection of tools and libraries
providing an easy-to-use environment for building,
installing and running native Windows software. . . .
Our package repository contains more than 2.600
pre-built packages ready to install.” [5]

We will use MSYS2 in order to compile Emacs
from the source and install auxiliary packages which
will be used by Emacs during editing.

2 Installing the MSYS2 distribution

Before we start: As of March 2020, MSYS2 cannot
be installed on a 32-bit system. And since January
2023, MSYS2 no longer supports Windows 7 and 8.0.
So we need a 64-bit version of Windows 8.1 or higher
in order to install the distribution. There are two
other points to consider:

1. choosing a installation directory, and

2. choosing a HOME directory.

Regarding item 1, MSYS2 requires extracting its
distribution into a folder where the name consists of
only ASCII characters and no spaces. It also makes
good sense to use a path that is not too long (due
to PATH_MAX being 260); c:\msys64 is ideal.

Regarding item 2, I suggest following the ad-
vice “ASCII only, no spaces”, and possibly choosing
a directory other than c:\Users\<username>. I
recommend setting the value of the HOME environ-
ment variable to the directory chosen above globally
on Windows—this is the only variable set outside
MSYS2. The HOME directory is the place where Emacs
looks for its init file upon start.1

Now we can fetch MSYS2 from repo.msys2.

org/distrib. We want to install the portable ver-
sion, so we download the msys2-x86_64-latest.

tar.xz archive and unpack it under c:\. In the
file Explorer, we go to c:\msys64 and double click
on msys2.exe which opens a MSYS shell, does the
initial setup and ideally shows:

We follow the advice, close the window and
double click msys2.exe again. To update all pack-
ages we run the command pacman -Syu. We follow
the instructions and close the terminal if requested,
then we start a new terminal and update again with
pacman -Su. That’s it!

Working with MSYS2 is easy: If we want to
update the distribution or install new packages, we
open a MSYS shell (msys2.exe) and when we want
to use the installed packages, we open a MinGW64

shell (mingw64.exe).2

3 Installing Emacs

There are some options available for installing Emacs
on Windows. The current stable release is Emacs
29.1.

3.1 Emacs release

The Emacs project provides pre-compiled binaries for
Windows on a best-effort basis from ftpmirror.gnu.

1 gnu.org/software/emacs/manual/html_node/

efaq-w32/Location-of-init-file.html
2 This is the way the author uses MSYS2; changing the

shells isn’t strictly necessary any more; it is more a habit.

doi.org/10.47397/tb/45-1/tb139esbati-auctex

Building a modern editing environment on Windows around GNU Emacs and AUCTEX

https://repo.msys2.org/distrib
https://repo.msys2.org/distrib
https://ftpmirror.gnu.org/emacs
https://ftpmirror.gnu.org/emacs
https://gnu.org/software/emacs/manual/html_node/efaq-w32/Location-of-init-file.html
https://ftpmirror.gnu.org/emacs
https://gnu.org/software/emacs/manual/html_node/efaq-w32/Location-of-init-file.html
https://ftpmirror.gnu.org/emacs
https://ftpmirror.gnu.org/emacs
https://doi.org/10.47397/tb/45-1/tb139esbati-auctex

78 TUGboat, Volume 45 (2024), No. 1

org/emacs in the windows/ subdirectory where each
major version of Emacs is kept in its own subdirec-
tory. The compressed files also contain the libraries
needed to support various features in Emacs, such
as image support.

3.2 MSYS2 release

TheMSYS2 project provides also pre-compiled Emacs
binaries, usually the latest stable version. It can be
installed via pacman with:

MSYS shell
$ pacman -S mingw-w64-x86_64-emacs

3.3 Building from the source

First, we have to install some tools we need for build-
ing Emacs. We want to have a full-fledged Emacs,
hence we install a large number of packages. Please
refer to [2] for more details. We run msys2.exe and
enter the following command in the shell (you can
paste them into the shell with Shift+Ins):

MSYS shell
$ pacman -S --needed base-devel \

mingw-w64-x86_64-toolchain \

mingw-w64-x86_64-xpm-nox \

mingw-w64-x86_64-gmp \

mingw-w64-x86_64-giflib \

mingw-w64-x86_64-gnutls \

mingw-w64-x86_64-harfbuzz \

mingw-w64-x86_64-jansson \

mingw-w64-x86_64-lcms2 \

mingw-w64-x86_64-libjpeg-turbo \

mingw-w64-x86_64-libpng \

mingw-w64-x86_64-librsvg \

mingw-w64-x86_64-libtiff \

mingw-w64-x86_64-libwebp \

mingw-w64-x86_64-libxml2 \

mingw-w64-x86_64-sqlite3 \

mingw-w64-x86_64-tree-sitter \

mingw-w64-x86_64-zlib

We will build the current development version
of Emacs from the Git repository. The code is in
sync with what will be Emacs 30. First, install Git:

MSYS shell
$ pacman -S git

The autocrlf feature of Git may interfere with the
configure file, so we disable it by running:

MSYS shell
$ git config --global core.autocrlf false

Next we close the current MSYS shell and run
mingw64.exe. We clone the Emacs repository under
a temporary directory:

MinGW64 shell
$ mkdir emacs-git

$ cd emacs-git

$ git clone \

https://git.savannah.gnu.org/git/emacs.git

$ cd emacs

The next series of commands builds Emacs.3 With
this setup, there is no need to install Emacs; we can
invoke it out of the Git tree from the src directory.
But to do an installation, we create a directory and
run make install passing that directory to prefix:

MinGW64 shell
$ mkdir -p /c/msys64/opt/emacs

$./autogen.sh

$./configure --with-native-compilation \

--without-dbus --without-imagemagick \

--without-mailutils --without-pop

$ make

$ make install prefix=/c/msys64/opt/emacs

Note that we can run make with the -j option:

$ make -jN

where N is the number of CPU-cores in our system;
the parallel execution will run significantly faster,
speeding up the build process.

3.4 Adjusting the $PATH

The final step is to add the directory which contains
emacs.exe, e.g., c:\msys64\opt\emacs\bin, to our
$PATH. We do this in our ~/.bash_profile:

MinGW64 shell
$ cd ~

$ touch .bash_profile

$ echo 'export \

PATH=$PATH:/c/msys64/opt/emacs/bin' \

>>.bash_profile

And while we’re at it, we do the same for TEXLive:

MinGW64 shell
$ echo 'export \

PATH=$PATH:/c/texlive/2023/bin/windows' \

>>.bash_profile

4 Starting Emacs

The above installs Emacs as a portable application.
We will configure other applications, that we’ll install
later, in our ~/.bash_profile. So we have to invoke
Emacs and other programs from the command-line in-
terface (CLI), mingw64.exe in our case, which starts
bash. We type:

MinGW64 shell
$ emacs &

This starts Emacs in graphical mode, as shown in
figure 1.

3 There is a known issue with GCC 13.1; if the build process
breaks, have a look at the file etc/PROBLEMS in the Emacs
source tree and search for “Building the MS-Windows port
with native compilation fails”.

Arash Esbati

https://ftpmirror.gnu.org/emacs

TUGboat, Volume 45 (2024), No. 1 79

Figure 1: Emacs appearance: Vanilla Emacs (left); with doom-one theme, Windows
dark mode and line numbers (middle); and doom-one-light theme (right), the latter
two with disabled tool bar

5 Customizing Emacs

Emacs has the reputation for being highly custom-
izable, and some even say Emacs users “customize
to live”. For basic usage and customization of Emacs,
please refer to the Emacs manual [7], especially chap-
ter 49. A good beginner’s guide is also available.4

Next, we briefly mention some initialization code
which is useful for installing and using AUCTEX. We
will use the GNU Emacs Lisp Package Archive (ELPA)
to install AUCTEX. The command list-packages

gives for me a GPG error, but this can be circum-
vented by adding this to the Emacs init file:

Emacs init file
(setq package-check-signature nil)

We have to start server communicatoins for backward
search in PDF files:

Emacs init file
(server-start)

We also like to select some text and then start typing
where typed text replaces the selection, therefore:

Emacs init file
(delete-selection-mode 1)

Just in case we want to use a mouse to get a context
menu, we add:

Emacs init file
(context-menu-mode 1)

Finally, if we want to change the font used by
Emacs, we use the entry Options in the menu bar
and go to Set Default Font. Figure 1 shows the
result of some customization effort: On the left, we
see Emacs showing this file without any adjustments,
to the middle, a dark theme with Windows dark
mode, and to the right, the way the author uses
Emacs.

4 www.masteringemacs.org/article/

beginners-guide-to-emacs

The famous last words before entering the Emacs
customizing realms:

• Try to use the Easy Customization Interface.

• Don’t copy every snippet you find on the net
into your init file.

• If you do that, read the manual and/or the
docstring try to understand what the code does.

• If you don’t understand the change, you proba-
bly don’t need it.

6 Choosing a TEX mode for Emacs

After installing Emacs, it’s time to choose the appro-
priate support for authoring (LA)TEX files. Emacs has
two major modes for this purpose: A built-in mode
and the one provided by the AUCTEX package.5

So, which to choose? A general guideline might
be: If you rely only on vanilla LATEX commands
and environments, then try the built-in variant. If
you will use large number of packages, want com-
pletion for the macros or environments and their
(key-value) arguments, including syntax highlighting,
and might define your own macros and environments
and completion support for them is desired, then go
for AUCTEX.

7 Installing AUCTEX

The modern and strongly recommended way of in-
stalling AUCTEX is by using the package manager
integrated in Emacs to fetch it from ELPA. We type
M-x list-packages RET /n auctex RET, put the
cursor on auctex, press i and we see this:

5 Each mode provides dedicated support for plain TEX,
LATEX, DocTEX (for .dtx files) and SliTEX, but we will focus
on LATEX.

Building a modern editing environment on Windows around GNU Emacs and AUCTEX

https://www.masteringemacs.org/article/beginners-guide-to-emacs
https://www.masteringemacs.org/article/beginners-guide-to-emacs

80 TUGboat, Volume 45 (2024), No. 1

Now we hit x to execute the installation procedure.
That’s all. Using the ELPA version has several advan-
tages. Besides being platform and OS independent,
we will receive intermediate bugfix releases between
major AUCTEX releases.

A word of caution: The way we installed AUC-
TEX, we must not have a line like this in our init
file:

(load "auctex.el" nil t t)

or even worse:

(require 'tex-site)

Having either such line in our init file may be harmful
for the correct operations of AUCTEX.

8 Configuring AUCTEX

AUCTEX comes with a huge number of customization
options; the figure below shows the various groups
of options, some with subgroup(s).

They are well described in the AUCTEX manual [10].
We will discuss some important options below which
should be set before starting work.

Documents we edit can be a single file, or spread
over many files consisting of a “master” file in which
we include other files via LATEX macros like \input
and \include. AUCTEX can deal with both sin-
gle and multi-file projects and knows which file to
compile via the variable TeX-master. This variable
should be set in the Emacs init file and will also be
inserted in each file’s local variables. In general, it is
a good idea to do:

Emacs init file
(setq-default TeX-master nil)

which means that when we create a new TEX file,
AUCTEX will ask for the name of the “master” file
associated with the buffer and insert a marker as a

file variable in that file. For a single file project, it
will look like this:

.tex file
%%% Local Variables:

%%% mode: latex

%%% TeX-master: t

%%% End:

For a multi-file project, it might look like this:

.tex file
%%% Local Variables:

%%% mode: latex

%%% TeX-master: "../phd-main"

%%% End:

Another important variable is TeX-parse-self.
AUCTEX depends heavily on being able to extract
information from the buffers by parsing them. Since
parsing the buffer can be somewhat slow, the parsing
is initially disabled. We enable it by adding the
following line to our init file:

Emacs init file
(setq TeX-parse-self t)

This change means: Upon loading a ⟨filename⟩.tex,
AUCTEX will look in an auto subdirectory for parsed
information stored in ⟨filename⟩.el. If it finds that
file, it is loaded and the information from it is applied
to the current editing buffer. If there is no such
file, AUCTEX parses the current buffer and applies
that information to the buffer. The information
applied consists of names of used packages, where
AUCTEX loads its corresponding support files, user-
defined macros and environments, defined labels for
completion, etc. There is a catch here: AUCTEX
doesn’t distinguish among extensions of parsed files.
So if we have a TEX file named, say, geometry.tex:

Example for geometry.tex
\documentclass{article}

\usepackage{xcolor}

\begin{document}

text

\end{document}

AUCTEX will save the information after parsing in
geometry.el; upon the next loading of the saved
geometry.el, it loads article.el, xcolor.el and
the file geometry.el provided by AUCTEX itself
which adds support for macros provided by geometry.
sty—but we did not load that package. In general,
we should always use distinct names for our TEX files
in order to avoid this sort of clash.

A related option is TeX-auto-save. When set
to non-nil, AUCTEX will parse the file and write the
information each time the TEX file is saved. Again,
this option is initially disabled. We can still force
the parsing of the TEX file by pressing C-c C-n for
TeX-normal-mode. This is often the best choice, as

Arash Esbati

TUGboat, Volume 45 (2024), No. 1 81

we will be able to decide when it is necessary to
reparse the file.

If we use packages which define table environ-
ments and we want to put captions above the tables,
we adjust the variable LaTeX-top-caption-list:

Emacs init file
(setq LaTeX-top-caption-list

'("table" "table*"

"SCtable" "SCtable*"

"sidewaystable" "sidewaystable*"))

Finally, we tell AUCTEX to convert all tabs in
multiple spaces, preserving the indentation, when we
save a file:

Emacs init file
(setq TeX-auto-untabify t)

9 Using AUCTEX

AUCTEX has an extensive manual which describes its
usage in great detail [10]. Hence, we will discuss only
some general usage aspects, focusing on completion
of macros and environments with their arguments.

The file latex.el that comes with AUCTEX
provides completion support for basic LATEX macros
and environments. As package files extend LATEX’s
functionality, AUCTEX’s style files extend its com-
pletion support. These style files are named after
the package or class names used in a TEX file or the
TEX file which was parsed, so (as mentioned above)
geometry.el contains completion support for the
macros provided by geometry.sty.

Completion support in AUCTEX is built around
Emacs’ minibuffer completion.6 The entry points
for inserting with completion are the functions TeX-
insert-macro (bound to C-c C-m or C-c RET) and
LaTeX-insert-environment (bound to C-c C-e).
For example, this is what we see after hitting C-c

C-m L followed by a TAB for completion candidates:

AUCTEX presents the known candidates and we can
narrow down the choices by typing further and hit-
ting RET once we have the right macro which is
inserted into the buffer and further arguments are
queried, if applicable.

6 gnu.org/software/emacs/manual/html_node/emacs/

Completion.html

But sometimes we just want to insert the macro
directly into the buffer, or find out we have forgotten
a key-value pair in an argument where hitting the
keystrokes described above will not help: we want
in-buffer completion. As in the scenario above where
we wanted to insert the \LaTeX macro, we can insert
\L in the buffer followed by TAB and we get:

where we can choose the macro and hit RET to insert.
AUCTEX also checks if we are in math mode

and offers math symbols
for completion. In order
to get in-buffer comple-
tion, we need to install
a package like corfu7 or
company8 and configure
it accordingly. It should
be noted that in-buffer
completion is not imple-
mented in AUCTEX for all macro and environment
arguments; this is work in progress.

10 Hacking AUCTEX

One of AUCTEX’s chief achievements is that its parser
is “hackable”, i.e., AUCTEX users and style files can
extend the built-in parser with Lisp code. For exam-
ple, this document uses the fvextra package, which
loads fancyvrb in turn, and defines a custom verbatim
environment, named codesnippet, like this:

Custom environment
\DefineVerbatimEnvironment{codesnippet}

{Verbatim}{%

fontsize = \small ,

frame = topline ,

breaklines ,

framesep = 4pt

}

AUCTEX has a style file fvextra.el, which loads
the style fancyvrb.el in turn, which contains code
telling AUCTEX about the macro and its arguments
defining a new verbatim environment. With the
TEX code above in a file, AUCTEX sets its inter-
nal variables properly itself upon next parsing and
no user intervention is needed. The new environ-
ment codesnippet is available when C-c C-e is hit,
including completion and query for the optional key-
value argument. Syntax highlighting support is also
set automatically:

7 github.com/minad/corfu
8 company-mode.github.io

Building a modern editing environment on Windows around GNU Emacs and AUCTEX

https://gnu.org/software/emacs/manual/html_node/emacs/Completion.html
https://gnu.org/software/emacs/manual/html_node/emacs/Completion.html
https://github.com/minad/corfu
https://company-mode.github.io

82 TUGboat, Volume 45 (2024), No. 1

The general strategy for extending the parser is
to write an AUCTEX style file where we:

• initialize the new entry to the parser by call-
ing the TeX-auto-add-type lisp macro with its
arguments;

• write a variable containing the regular expres-
sion which should be added to the parser and
plug it into AUCTEX inside the hook;

• write a function which is run before parsing,
resetting the results from the last parser run;

• write a function which is run after parsing, pro-
cessing the results from the actual parser run.

We will discuss this process with two examples.

10.1 A simple example

The geometry package provides a facility to save
the page dimensions as a ⟨name⟩ and load these
dimensions later in the document. The macros are
\savegeometry for saving the page dimensions, and
\loadgeometry for loading. The AUCTEX style file
geometry.el has the following code to parse the
newly defined ⟨name⟩. First, a new entry for the
parser is setup with:

geometry.el
(TeX-auto-add-type "geometry-savegeometry"

"LaTeX"

"geometry-savegeometries")

TeX-auto-add-type is a Lisp macro which takes two
mandatory and one optional arguments: The first
argument is a ⟨name⟩, which is prefixed by the sec-
ond argument ⟨prefix ⟩. Usually, ⟨name⟩ is composed
as ⟨package-macro⟩ and ⟨prefix ⟩ is the name of the
engine or format used, in this case LaTeX. The third
argument is the plural form of the first argument; by
default just an s is added. The Lisp macro defines:
the variable LaTeX-auto-geometry-savegeometry

which holds the bare results after a successful parsing
run; the function LaTeX-geometry-savegeometry-

list which sorts and eliminates any dupes from
LaTeX-auto-geometry-savegeometry; the variable
LaTeX-geometry-savegeometry-list which holds
the information returned by the function of the
same name; and the function LaTeX-add-geometry-

savegeometries which can be used to add new ele-
ments to LaTeX-geometry-savegeometry-list.

Next, geometry.el defines the variable LaTeX-
geometry-savegeometry-regexp:

geometry.el
(defvar LaTeX-geometry-savegeometry-regexp

'("\\\\savegeometry{\\([^}]+\\)}"

1 LaTeX-auto-geometry-savegeometry))

which is a list of three elements: A string with the reg-
ular expression to match against, including a group-
ing construct for future reference, in this case the
argument of \savegeometry with {\\([^}]+\\)}.
The second element is an integer or a list of integers
containing the number(s) of substring(s) matched,
and finally the name of the variable to put the parsed
substring(s) in. After this, a function is defined in
preparation for parsing and is added to TeX-auto-

prepare-hook:

geometry.el
(defun LaTeX-geometry-auto-prepare ()

(setq LaTeX-auto-geometry-savegeometry nil))

(add-hook 'TeX-auto-prepare-hook

#'LaTeX-geometry-auto-prepare t)

And finally, the defined regular expression is added to
the parser with the function TeX-auto-add-regexp

inside the hook. Also, two entries are defined for the
LATEX macros:

geometry.el
(TeX-add-style-hook

"geometry"

(lambda ()

(TeX-auto-add-regexp

LaTeX-geometry-savegeometry-regexp)

(TeX-add-symbols

`("savegeometry"

,(lambda (optional)

(let ((name (TeX-read-string

(TeX-argument-prompt

optional nil "Name"))))

(LaTeX-add-geometry-savegeometries

name)

(TeX-argument-insert name

optional))))

'("loadgeometry"

(TeX-arg-completing-read

(LaTeX-geometry-savegeometry-list)

"Name")))))

The entry for "savegeometry" queries for a name
and adds the user input to list of new names. The
entry for "loadgeometry" retrieves all defined names
and offers them as argument with completion.

10.2 A more complex example

For a more complex example, we look at the AUC-
TEX style file enumitem.el which contains code to
parse new environments defined with the \newlist
macro:

Arash Esbati

TUGboat, Volume 45 (2024), No. 1 83

enumitem.el
(TeX-auto-add-type "enumitem-newlist" "LaTeX")

(defvar LaTeX-enumitem-newlist-regexp

'("\\\\newlist{\\([^}]+\\)}{\\([^}]+\\)}"

(1 2) LaTeX-auto-enumitem-newlist))

\newlist takes three arguments, but only the first
two, a ⟨name⟩ and ⟨type⟩, are relevant. So the regu-
lar expression matches two arguments and both are
added to the variable containing the results. Next,
two functions are defined to prepare the parsing and
process the results:

enumitem.el
(defun LaTeX-enumitem-auto-prepare ()

(setq LaTeX-auto-enumitem-newlist nil))

(defun LaTeX-enumitem-auto-cleanup ()

;; \newlist{<name>}{<type>}{<depth>}

;; env=<name>, type=<type>

(dolist (env-type

(LaTeX-enumitem-newlist-list))

(let* ((env (car env-type))

(type (cadr env-type)))

(LaTeX-add-environments

`(,env

LaTeX-env-item-args

[TeX-arg-key-val

(LaTeX-enumitem-key-val-options)]))

(when (member type '("description"

"description*"))

(add-to-list

'LaTeX-item-list

`(,env . LaTeX-item-argument)))

(TeX-ispell-skip-setcdr

`((,env ispell-tex-arg-end 0))))))

The second function is the interesting one: Every
user-defined environment is added to the list of
known environments, including support for key-value
query for the optional argument. For description-like
environments, the optional argument of \item will be
queried as well. And finally, the optional argument
of the environment is ignored during spell-checking
(see §14). These functions and the regular expression
are added to AUCTEX with:

enumitem.el
(add-hook 'TeX-auto-prepare-hook

#'LaTeX-enumitem-auto-prepare t)

(add-hook 'TeX-auto-cleanup-hook

#'LaTeX-enumitem-auto-cleanup t)

(TeX-add-style-hook

"enumitem"

(lambda ()

(TeX-auto-add-regexp

LaTeX-enumitem-newlist-regexp)))

The techniques described above can also be used
for any user-defined macros which define new mac-
ros and/or environments. The best approach is to
put the LATEX macros inside a package and the corre-
sponding Lisp code inside an AUCTEX style file saved
in a directory which is part of TeX-style-private.
This way, the Lisp code is loaded each time the
custom package is requested with \usepackage.

11 Using preview-latex

preview-latex is a package embedding preview frag-
ments into Emacs source buffers under the AUCTEX
editing environment for LATEX. It uses preview.sty for
the extraction of certain environments (most notably
displayed formulas). preview-latex was originally writ-
ten by David Kastrup and is now maintained by the
AUCTEX team. It has an extensive manual describing
the relevant aspects of usage and configuration [3].

12 Using RefTEX

RefTEX is a package for managing labels, references,
citations and index entries for LATEX documents
within Emacs. RefTEX has been bundled and pre-
installed with Emacs since version 20.2. Originally
written by Carsten Dominik, it is currently main-
tained by the AUCTEX team. RefTEX has an ex-
cellent manual describing its functionality and op-
tions [1].

RefTEX can be used with both the built-in LATEX
mode and AUCTEX. In order to plug RefTEX into
AUCTEX, these two lines in our init file suffice:

Emacs init file
(add-hook 'LaTeX-mode-hook #'turn-on-reftex)

(setq reftex-plug-into-AUCTeX t)

The first line activates RefTEX automatically when
AUCTEX is loaded and the second line turns on all
RefTEX features within AUCTEX. The integration of
the packages is seamless: AUCTEX checks in its style
files if RefTEX is activated and updates RefTEX’s
variables with parsed elements where appropriate,
and RefTEX’s advanced mechanism for inserting la-
bels and referencing them is used when AUCTEX’s
functions are invoked.

For example, within this document, a new en-
vironment codesnippet is defined (see §10). The
fancyvrb package provides a key reflabel to define a
new label to be used by \pageref. Now when we hit
C-c C-e code<TAB> RET ref<TAB> RET without =
and a value, AUCTEX completes the key and also
adds ={lst:1} to the key where the value is gener-
ated by RefTEX. We can now reference this label by
hitting C-c C-m RET pageref RET and now AUC-
TEX delegates the request for labels to RefTEX and

Building a modern editing environment on Windows around GNU Emacs and AUCTEX

84 TUGboat, Volume 45 (2024), No. 1

we choose the label type in the minibuffer with l

and see the following:

Similar things happen with citation macros.
Since the LATEX release of October 2019, it is

possible to use non-ASCII characters in labels such
as \label{eq:größer}. With the standard setup,
RefTEX will not allow us to enter such a label and
complain about invalid characters. This behavior
can be changed with the following addition to our
Emacs init file:

Emacs init file
(setq reftex-label-illegal-re

"[^-[:alnum:]_+=:;,.]")

13 Using a PDF viewer

On Windows, there are two TEX friendly PDF view-
ers: SumatraPDF9 and Sioyek.10 Both keep the PDF

file unlocked, and both support SyncTEX. Suma-
traPDF has been around since 2006, Sioyek since
2021. We will use SumatraPDF. Installing Suma-
traPDF is easy: We fetch the portable version and un-
pack the single binary into c:\msys64\usr\local\

bin. We run mingw64.exe and rename the file:

MinGW64 shell
$ cd /usr/local/bin

$ mv SumatraPDF-3.4.6-64.exe SumatraPDF.exe

Now we have to tell both parties, Emacs and
SumatraPDF, about their counterparts. AUCTEX
has built-in support for SumatraPDF, so there is not
much to do but put this in our init file:

Emacs init file
(setq TeX-view-program-selection

'((output-pdf "SumatraPDF")))

Emacs will find SumatraPDF.exe since it’s installed
in the MSYS2 file tree.

Next, under SumatraPDF options for inverse
search command-line, we enter the following (except
all on one line):

SumatraPDF options
c:\msys64\opt\emacs\bin\emacsclientw.exe -n

--alternate-editor=

c:\msys64\opt\emacs\bin\runemacs.exe

+%l "%f"

which means: Use the program emacsclientw.exe

to connect to Emacs server, and if there is no Emacs
server running, invoke runemacs.exe to open Emacs
and connect to it. Note that this only works when
SumatraPDF is invoked from a MinGW64 shell with:

9 sumatrapdfreader.org
10 sioyek.info

Figure 2: AUCTEX options for SumatraPDF, including
inverse search.

MinGW64 shell
$ SumatraPDF.exe &

Or when invoked with C-c C-v from Emacs, every-
thing works just fine.

Finally, we tell AUCTEX during editing to en-
able SyncTEX (“inverse search”) when running the
compiler; see figure 2. If we want to enable SyncTEX
ad-hoc for a file, we can hit C-c C-t C-s which acti-
vates TeX-source-correlate-mode for the current
file. If we want to have this mode activated for a
specific file, we can add the following to the file:

.tex file
%%% Local Variables:

%%% mode: latex

%%% TeX-source-correlate-mode: t

%%% End:

And if we want to have the mode always enabled, we
can customize the variable TeX-source-correlate-
mode to t.

14 Using a spelling checker program

Emacs supports the external spell checkers Hunspell,
Aspell, Ispell and Enchant. These programs are
not part of Emacs and must be installed separately.
We’ll use Hunspell because it has the feature that we
can use multiple language dictionaries at once. The
complete setup consists of three parts:

• install the program itself;

• install the language dictionaries;

• set up Emacs to use the above.

Arash Esbati

https://sumatrapdfreader.org
https://sioyek.info

TUGboat, Volume 45 (2024), No. 1 85

Installing the program is easy: We run msys2.exe

and enter:

MSYS shell
$ pacman -S mingw-w64-x86_64-hunspell

Next we need to create the directory where we
will install the dictionaries, say under /usr/local/
share/hunspell. We enter this in the shell and exit:

MSYS shell
mkdir -p /c/msys64/usr/local/share/hunspell

In our ~/.bashrc, we add the following lines:

˜/.bashrc
DICPATH=/c/msys64/usr/local/share/hunspell

WORDLIST=$HOME/.emacs.d/hunspell_default

export DICPATH WORDLIST

Next we download dictionaries for US English11

and other languages.12 We rename the .oxt exten-
sion to .zip so we can open the archive easily and
we move the files with .aff and .dic extension into
the DICPATH directory chosen above. Now we run
mingw64.exe and enter:

MinGW64 shell
$ hunspell -D

Hunspell should report the available dictionaries in
the msys64 file tree.

Now we tell Emacs about Hunspell and add the
following line to our init file:

Emacs init file
(setopt ispell-program-name "hunspell")

The next line tells Emacs about the default dictionary
to use. E.g., for people preferring to write in German,
it would be:

Emacs init file
(setq ispell-dictionary "deutsch8")

When we’re writing LATEX, we have to pass the -t

option to Hunspell:

Emacs init file
(add-hook 'LaTeX-mode-hook

(lambda ()

(setq-local ispell-extra-args

'("-t"))))

We also set the name of our personal dictionary:

Emacs init file
(setq ispell-personal-dictionary

(expand-file-name

"~/.emacs.d/hunspell_default"))

This file must exist for Hunspell, but it can be an
empty file. Finally, we define some key bindings to
switch dictionaries:

11 downloads.sourceforge.net/wordlist/hunspell-en_

US-2020.12.07.zip
12 extensions.libreoffice.org

Emacs init file
(keymap-global-set

"C-c i e"

(lambda ()

(interactive)

(ispell-change-dictionary "english")))

(keymap-global-set

"C-c i d"

(lambda ()

(interactive)

(ispell-change-dictionary "deutsch8")))

(keymap-global-set

"C-c i a"

(lambda ()

(interactive)

(require 'ispell)

(ispell-set-spellchecker-params)

(ispell-hunspell-add-multi-dic

"de_DE,en_US")

(ispell-change-dictionary

"de_DE,en_US")))

Now we can invoke Hunspell inside Emacs with
M-x ispell or inside AUCTEX with C-c C-c Spell.
More information can be obtained from the Emacs
manual.13 AUCTEX provides a library tex-ispell.

el which contains extensions for skipping certain
macros, arguments and environments when spell
checking. The supported packages are listed in the
header of the library. These extensions are activated
by default; they can be disabled by setting the value
of TeX-ispell-extend-skip-list to nil.

15 Using Pygments

If we want to use the minted package, we have to
install the additional software Pygments. We run
msys2.exe and enter:

MSYS shell
$ pacman -S mingw-w64-x86_64-python-pygments

We can check the installation by running mingw64.exe
and:

MinGW64 shell
$ which pygmentize.exe

which returns /mingw64/bin/pygmentize.exe.
minted requires that we pass the -shell-escape

option to the LATEX processor. This can be done by
setting the AUCTEX variable TeX-command-extra-

options as a file local variable:

.tex file
%%% Local Variables:

%%% mode: latex

%%% TeX-command-extra-options: "-shell-escape"

%%% End:

13 gnu.org/software/emacs/manual/html_node/emacs/

Spelling.html

Building a modern editing environment on Windows around GNU Emacs and AUCTEX

https://downloads.sourceforge.net/wordlist/hunspell-en_US-2020.12.07.zip
https://downloads.sourceforge.net/wordlist/hunspell-en_US-2020.12.07.zip
https://extensions.libreoffice.org
https://gnu.org/software/emacs/manual/html_node/emacs/Spelling.html
https://gnu.org/software/emacs/manual/html_node/emacs/Spelling.html

86 TUGboat, Volume 45 (2024), No. 1

AUCTEX has extensive support for the minted

package, so using the package should work flawlessly.

16 Using a linter

There are two linters available for LATEX documents:
lacheck14 and ChkTEX.

15 Both of them are available
with TEXLive as part of collection-binextra.

Both programs are supported by AUCTEX, so
the question is how to invoke them. This is mostly
a matter of preference: Some people like running
the linter now and then and see the results, and
some want to have it running all the time during
typing. For the former case, one can hit C-c C-c

Check RET for lacheck or C-c C-c ChkTeX RET for
ChkTEX. Then a buffer is created with the result:

For the latter case of on-the-fly syntax checking,
Emacs provides a minor mode called Flymake which
is supported by AUCTEX. It can be activated with
M-x flymake-mode. The same result now looks like
this:

Note also the visual effects we get with Flymake.
Flymake has also an extensive manual [8].

17 Using a LSP server

Emacs 29 ships with a new library called eglot.el

(for Emacs Polyglot) which is a built-in client for
the Language Server Protocol (LSP). LSP is a stan-
dardized communications protocol between source
code editors and language servers—programs ex-
ternal to Emacs which analyze the source code on
behalf of Emacs. We can now open a source file and
type M-x eglot, presuming that an appropriate lan-
guage server is installed. Eglot comes with a manual
describing the details [9].

14 ctan.org/pkg/lacheck
15 ctan.org/pkg/chktex

Currently, two LSP servers are available for
LATEX: TexLab16 and Digestif.17 Installing TexLab is
easy: We download the correct version from project’s
page and unpack texlab.exe into c:\msys64\usr\

local\bin. Digestif is part of TEXLive and distrib-
uted as digestif.exe.

eglot knows about both TexLab and Digestif,
so we can activate a LSP server by hitting M-x eglot

and choosing the one we want in case both servers
are installed. That’s it. The next figure shows an
example for this document with TexLab which adds
the section number to the \labelmacro and provides
annotated completion for the \ref macro.

18 Editing BIBTEX databases

Emacs has a built-in major mode for editing BibTEX
files which is used when we open a .bib file. This
major mode supports both BibTEX and BibLATEX;
BibTEX is the default. This can be changed by
customizing the variable bibtex-dialect:

Emacs init file
(setopt bibtex-dialect 'biblatex)

Once the mode is active, it is easy to use the menus
or the context menu to add new entries and operate
on the fields.

19 Miscellaneous settings

This section describes various other settings which
should make the daily work easier.

AUCTEX provides in-buffer completion which
can be activated with the TAB key. The TAB key is
somewhat overloaded since it is also used for inden-
tation. The operation of TAB can be controlled with
the variable tab-always-indent. We can set this
in our init file:

Emacs init file
(setq tab-always-indent 'complete)

which means: TAB first tries to indent the current
line, and if the line was already indented, then try
to complete the thing at point.

TEXLive provides a batch script tlmgr.bat for
managing the distribution. Being a batch file, it
is not possible to run the script inside a MinGW64

shell. We can change this by putting this small

16 github.com/latex-lsp/texlab
17 github.com/astoff/digestif

Arash Esbati

https://ctan.org/pkg/lacheck
https://ctan.org/pkg/chktex
https://github.com/latex-lsp/texlab
https://github.com/astoff/digestif

TUGboat, Volume 45 (2024), No. 1 87

snippet under c:\msys64\usr\local\bin and name
it tlmgr:

tlmgr script
#!/bin/sh

This is a small wrapper around tlmgr.bat

Note the double // for escaping /

cmd.exe //c tlmgr.bat "$@"; exit $?

When we’re inside the MinGW64 shell, hitting
TAB provides completion for executables and/or file
names. Under Windows, also files with .dll suffix
are offered for executable completion. We change
this with this line in our ~/.bashrc:

˜/.bashrc
export EXECIGNORE=*.dll

EXECIGNORE is a colon-separated list of glob patterns
to ignore when completing on executables. This is
an MSYS218 feature.

Another handy idea is to alias emacsclient to
run emacsclient.exe with some options:

˜/.bashrc
alias emacsclient='emacsclient -n \

--alternate-editor=runemacs'

20 Conclusion

TEX has been around for some time now, and so
has Emacs. Both carry the original ideas of their
developers, but they have also managed to evolve
over the decades. Emacs can be set up to look
modern,19 but more importantly, it also supports
modern techniques to support users to write LATEX
documents.

With the advent of MSYS2, it is easily possible
to build Emacs from the source on Windows, so an
initial barrier to getting the program is gone. With
AUCTEX, a configurable major mode for LATEX is
available which can be installed easily as a package
from ELPA. RefTEX is a great tool for managing la-
bels and citations and is bundled with Emacs. Other
tools around the editor such as spell-checker, PDF

viewer, Pygments, linter, etc., can be integrated into
the editing environment without trouble.

One new feature in Emacs 29 is the built-in
client for LSP servers which works out of the box
for available language servers. The support for this
feature is expected to grow. Another new feature in
Emacs 29 is the built-in support for the incremental
parsing library Tree-sitter. The usage of Tree-sitter
with Emacs for TEX editing is an area which needs
more exploration in the future.

18 Cygwin, to be more precise.
19 Depending on the definition, which currently seems to

be Microsoft Visual Studio Code.

Overall, Emacs provides a very good environ-
ment for editing (LA)TEX documents using up-to-date
tools and techniques which can be easily set up on
Windows.

Acknowledgments

I’m grateful to the AUCTEX development team and
Óscar Fuentes (MSYS2 contributor) for their com-
ments on this article.

References

[1] C. Dominik. RefTEX—Support for LATEX
labels, references, citations and index entries
with GNU Emacs. gnu.org/software/auctex/
manual/reftex.index.html

[2] Emacs. Building and Installing Emacs
on 64-bit MS-Windows using MSYS and
MinGW-w64. git.savannah.gnu.org/cgit/
emacs.git/tree/nt/INSTALL.W64

[3] D. Kastrup, J.Å. Larsson, et al. preview-latex—
A LATEX preview mode for AUCTEX in
Emacs. gnu.org/software/auctex/manual/
preview-latex.index.html

[4] S. Monnier, M. Sperber. Evolution of Emacs
Lisp. Proc. ACM Program. Lang., 4(HOPL),
June 2020. doi.org/10.1145/3386324

[5] MSYS. MSYS Software Distribution and
Building Platform for Windows. msys2.org

[6] R. Stallman. Why Open Source Misses the
Point of Free Software. gnu.org/philosophy/
open-source-misses-the-point.en.html,
2007–2021.

[7] R. Stallman, et al. GNU Emacs Manual
(updated for Emacs version 29.1), 1985–2023.
gnu.org/software/emacs/manual/emacs

[8] J. Távora, P. Kobiakov. GNU Flymake.
gnu.org/software/emacs/manual/flymake.

html

[9] J. Távora, E. Zaretskii. Eglot: The Emacs
Client for the Language Server Protocol.
joaotavora.github.io/eglot/

[10] K.K. Thorup, P. Abrahamsen, et al. AUCTEX:
A sophisticated TEX environment for Emacs.
gnu.org/software/auctex/manual/auctex.

index.html

⋄ Arash Esbati
Germany
arash (at) gnu dot org

Building a modern editing environment on Windows around GNU Emacs and AUCTEX

https://gnu.org/software/auctex/manual/reftex.index.html
https://gnu.org/software/auctex/manual/reftex.index.html
https://git.savannah.gnu.org/cgit/emacs.git/tree/nt/INSTALL.W64
https://git.savannah.gnu.org/cgit/emacs.git/tree/nt/INSTALL.W64
https://gnu.org/software/auctex/manual/preview-latex.index.html
https://gnu.org/software/auctex/manual/preview-latex.index.html
https://doi.org/10.1145/3386324
https://msys2.org
https://gnu.org/philosophy/open-source-misses-the-point.en.html
https://gnu.org/philosophy/open-source-misses-the-point.en.html
https://gnu.org/software/emacs/manual/emacs
https://gnu.org/software/emacs/manual/flymake.html
https://gnu.org/software/emacs/manual/flymake.html
https://joaotavora.github.io/eglot/
https://gnu.org/software/auctex/manual/auctex.index.html
https://gnu.org/software/auctex/manual/auctex.index.html

88 TUGboat, Volume 45 (2024), No. 1

Wikipedia to LATEX, PDF, EPUB and ODT

Dirk Hünniger

Abstract

The MediaWiki2Latex program converts wiki content
to LATEX and other formats. It has been more than
10 years since we last mentioned it in TUGboat,1 so
there is quite a bit of news to report.

1 Introduction

A wiki is a great way of working on a document
with a distributed group of authors. MediaWiki is
the Wiki system used by Wikipedia, owned by the
Wikimedia Foundation.

Wikipedia used to provide ways to download
the contents in various formats. Their idea was to
finance the service by selling printed copies of articles
as books; this did not prove cost effective, due to
a lack of demand. In turn the download functions
were not maintained, and eventually removed. Many
efforts were undertaken to re-enable exporting, but
all such development stopped years ago.

Our open source approach, as a hobby project
with no financing, recently celebrated its tenth an-
niversary, and is still under active development. It
is deployed on a server kindly provided to us by the
Wikimedia Foundation.

2 User experience and web service

We dropped the development of a specific binary
package for Windows. Instead we offer a docker file
that can be run on any operating system. In addi-
tion, we still update and support the package for
the Debian Linux distribution, which is included
in many other Linux distributions too. We fur-
thermore provide an online conversion service at
mediawiki2latex.wmflabs.org.

This service takes the url to a wiki article and
outputs a resulting file for download. We also added
additional output file formats. You can choose be-
tween a PDF file compiled with LATEX, its respective
LATEX source code as a zip file, as well as the word
processing format ODT and the ebook format EPUB.

Some Wiki pages extensively use HTML tricks
to create browser-viewable graphics, such as election
diagrams or maps with marked positions. For those
cases we optionally offer rendering the tables via
the Chromium engine. It is also possible to process
collections of wiki articles to a single output file.

1 TUGboat 34:2, “Converting Wikipedia articles to LATEX”,

tug.org/TUGboat/tb34-2/tb107huenniger.pdf

3 Command line interface

We offer a command line interface that can be in-
stalled locally as a docker container. This provides
the same features as the web service described above.

There is a feature in MediaWiki called “tem-
plates” which is similar to \newcommand in LATEX. In
the command line interface you can specify parsing of
the wiki source code, instead of the HTML generated
by MediaWiki. Here you can provide a mapping of
templates to LATEX commands which allows you to
customize the output in various ways. Also you can
let MediaWiki expand the templates to Wiki syntax
and use it as input for MediaWiki2LaTeX. When
wiki syntax is processed, MediaWiki2LaTeX will re-
solve references inside the document to sections and
page numbers.

4 Technical details

MediaWiki2LaTeX is written entirely in the purely
functional programming language Haskell. The im-
age processing is done by ImageMagick in C++. Re-
cently we added http2 multiplexing and compression
using curl for the download of images and their re-
spective contributor information, which resulted in
a speedup of a factor of two to five, with the highest
speedups on articles containing many small images.
We also attempted to implement http multiplexing
with multi-threading, but this did not work due to
servers denying multiple connections.

Furthermore, many smaller bugs have been fixed;
they are tracked in a detailed change log in the source
package, so we will not discuss them here. The
runtime and memory usage of various parts of the
program were improved, also tracked in the change
log. The documentation has also been improved.

Due to the remaining problem of no free font
covering the whole Unicode range, we implemented
an algorithm to switch between various fonts during
the X ELATEX run as needed. This allowed Media-
Wiki2LaTeX to become an official part of the Debian
Linux distribution, which was not possible with the
computationally combined font which we used before.
A man page and Makefile were added to support easy
packaging of the software. Support for http has been
dropped in favor of https. Finally, a progress bar
was added in the web interface as well as a graphical
user interface for Debian.

⋄ Dirk Hünniger

Emil-Schweitzer Straße S 10

D-47506 Neukirchen-Vluyn, Germany

dirk.hunniger (at) googlemail dot com

https://de.wikibooks.org/wiki/

Benutzer:Dirk_Huenniger

doi.org/10.47397/tb/45-1/tb139huenniger-mediawiki2latex

Dirk Hünniger

https://mediawiki2latex.wmflabs.org
https://tug.org/TUGboat/tb34-2/tb107huenniger.pdf
https://doi.org/10.47397/tb/45-1/tb139huenniger-mediawiki2latex

TUGboat, Volume 45 (2024), No. 1 89

Fast regression testing of TEX packages:

Multiprocessing and batching

Vít Starý Novotný, Marei Peischl

Abstract

In the version 3.0.0 of the Markdown package for TEX,
the number of regression tests increased from 143 to
783. This caused the tests to run for up to 15 hours,
which slowed down our development cycle. In this
article, we describe a novel technique for batching
test files that reduced our testing time from 15 hours
to just 15 minutes. With batching, the amount of
time that is spent on actual testing increased from
5% to 97%. When combined with multiprocessing on
32 CPUs, our batching technique achieved a speed
increase of up to 161 times compared to running
without any multiprocessing or batching.

1 Introduction

Small TEX packages, typically developed in a sin-
gle iteration rather than through ongoing updates,
can depend on user feedback to maintain the code.
However, this approach has its limitations. Larger
projects, especially those that are continuously de-
veloped, require a more robust solution. Automated
regression tests are crucial in these cases. They en-
sure that any changes, either in the code itself or
its external dependencies, do not alter the expected
behavior of the code.

The Markdown package for TEX also features
a set of regression tests. These tests, designed to be
completed in just a few minutes, provide immediate
feedback and are automatically conducted on any up-
dates submitted to the package’s GitHub repository.

After the implementation of the CommonMark
standard in version 3.0.0 of the Markdown package,
the number of tests increased from 143 to 783 (about
a 5.5-fold increase). This caused the tests to take up
to 15 hours to run, using free GitHub-hosted runners,
too slow to provide any benefit to developers.

In order to increase the testing speed, we imple-
mented a novel technique for batching test files and
we added self-hosted runners with up to 12 CPUs.
After these changes, the tests finish in about 15 min-
utes, which is a 60-fold speed increase and which
makes the tests practically useful to developers.

In this article, we describe the testing framework
of the Markdown package. In sections 2 through 4,
we describe the definition files, techniques, and strate-
gies used in our framework. In Section 5, we describe
the details of our implementation. In sections 6
and 7, we describe our experiments and their results.
In Section 8, we discuss prior work related to our

framework. We conclude in Section 9 by summariz-
ing our contributions and outlining future work.

2 Definition files

In the future, an AI agent might examine the code of a
TEX package and identify any incorrect behavior. For
the moment, regression testing requires the manual
creation of many definition files that describe the
expected behavior and how it should be validated.

In this section, we describe the definition files
used in our framework: test files, formats, commands,
and templates.

2.1 Test files

The Markdown package converts markdown text to
TEX commands. To validate the conversion, our
framework redefines these TEX commands to pro-
duce output in the .log file, which we then examine.

A test file consists of a) TEX code that configures
the Markdown package, b) markdown text, and c) the
expected output in the .log file.

As an example, strike-through.test tests the
strike-through syntax extension:

\markdownSetup

{ strikeThrough }

<<<

Hello ~~world~~!

>>>

BEGIN document

strikeThrough: world

END document

a

b

c
strike-

through.test

2.2 Formats, commands, and templates

The Markdown package supports several combina-
tions of TEX formats and engines. For each TEX
format, there are also several ways to input mark-
down text. Our framework ensures that a markdown
text always produces the same output.

A format consists of one or more a) commands

that can be used to typeset documents in a TEX
format using different TEX engines and b) templates

that specify the different ways in which markdown
text can be input with the TEX format.

An example format plain contains commands
for the pdfTEX, X ETEX, and LuaTEX engines:

pdftex --shell-escape

TEST_FILENAME↪→

xetex --shell-escape

TEST_FILENAME↪→

luatex TEST_FILENAME1
COMMANDS.m4

1 The Markdown package uses Lua to parse markdown

text. Whereas LuaTEX can execute Lua code directly, other

TEX engines must use the shell of the operating system to

doi.org/10.47397/tb/45-1/tb139starynovotny-testing

Fast regression testing of TEX packages: Multiprocessing and batching

https://doi.org/10.47397/tb/45-1/tb139starynovotny-testing

90 TUGboat, Volume 45 (2024), No. 1

The format plain also contains two templates. One
uses the \markdownInput TEX macro and the other
one uses the \markdownBegin and End TEX macros:

\input markdown

\input TEST_SETUP_FILENAME

\markdownInput

{TEST_INPUT_FILENAME}↪→

\bye input.tex.m4

\input markdown

\input TEST_SETUP_FILENAME

\markdownBegin

undivert(TEST_INPUT_FILENAME)

\markdownEnd

\bye verbatim.tex.m4

2.3 Materialized templates and commands

During testing, the texts TEST_SETUP_FILENAME and
TEST_INPUT_FILENAME in templates are replaced with
names of auxiliary files that contain the TEX code and
the markdown text parts of a test file, respectively.
Also, the text undivert(TEST_INPUT_FILENAME) is re-
placed with the literal markdown text from the test
file. After the replacement, we say that the template
has been materialized.

Here is the template verbatim.tex.m4 from
Section 2.2 after it has been materialized with the
test file strike-through.test from Section 2.1:

verbatim.tex.m4 + strike-

through.test
↰

\input markdown

\input test-setup.tex

\markdownBegin

Hello ~~world~~!

\markdownEnd

\bye verbatim.tex

\markdownSetup

{ strikeThrough }

test-setup.tex

After a template has been materialized, the text
TEST_FILENAME in all commands is replaced with the
filename of the materialized template. After the re-
placement, the command has also been materialized.

execute Lua code. Since accessing the shell is a security risk,

users must express their consent by writing --shell-escape.

Here are the commands COMMANDS.m4 from Sec-
tion 2.2 after they have been materialized:

COMMANDS.m4 + verbatim.tex ↰

pdftex --shell-escape

verbatim.tex↪→

xetex --shell-escape

verbatim.tex↪→

luatex verbatim.tex COMMANDS

During testing, the materialized commands are exe-
cuted. Each command produces a .log file, which is
compared to the expected output from the test file.

3 Computational techniques

While testing all combinations of test files, templates,
and commands ensures comprehensive coverage of all
potential configurations, it can be time-consuming.

In this section, we describe the computational
techniques of multiprocessing, the batching of test
files, and how they increase the speed of testing in
our framework. Furthermore, the batching of test
files raises challenges with load balancing and the
attribution of errors. We discuss the challenges and
describe the techniques of batch size limiting and
batch splitting to address them.

3.1 Multiprocessing

Whereas TEX uses only a single CPU, modern PCs
can contain several CPUs. Therefore, we can increase
the speed of testing by using multiprocessing, where
each CPU processes a different test file:

first.test
second.test

third.test

Using N CPUs increases testing speed up to N times.

3.2 Batching of test files

At the beginning of a document, TEX initializes pack-
ages, fonts, Lua scripts, and other assets, which slows
down testing:

\input markdown

\input test-setup.tex

\markdownBegin

Hello ~~world~~!

\markdownEnd

\bye

slow

fast

verbatim.tex

Vít Starý Novotný, Marei Peischl

TUGboat, Volume 45 (2024), No. 1 91

To increase the speed of testing, we can amortize
the cost of initialization by materializing a template
with a batch of several test files:

input.tex.m4 + first.test,
second.test,
third.test

↰

\input markdown

{\input first-test-setup.tex

\markdownInput{first.md}}

{\input second-test-setup.tex

\markdownInput{second.md}}

{\input third-test-setup.tex

\markdownInput{third.md}}

\bye

input.tex

Batching N test files decreases initialization cost N

times. How much this speeds up testing depends on
the ratio between the time spent on initialization and
the time spent on processing the rest of the template.

3.3 Batch size limiting

When we use both multiprocessing and batching with
large batch sizes, most CPUs will be unused:

used
unused

unused

We can limit the batch size so that all CPUs are used:

used
used

used

Limiting the batch size increases the speed of testing,
because every used CPU has less work to do.2

3.4 Batch splitting

When we test batches of test files, a .log file is split
into sections corresponding to individual test files and
compared with the expected test file outputs. How-
ever, if a fatal error occurs, the .log file may become
malformed. To find the test file responsible for the er-
ror, we repeatedly split the batch using binary search.

2 However, the CPUs do more work overall, because every

used CPU has to pay the initialization cost and more CPUs are

used. Therefore, limiting the batch size increases the speed of

testing but decreases energy efficiency.

Here is how we would split a batch of test files
first.test, second.test, and third.test, where
second.test causes a fatal error:

first.test second.test third.test

first.test second.test third.test

caused error → second.test third.test

First, we try processing all files together but we
encounter a fatal error. Therefore, we divide the
files into two groups: one with first.test and
the other with second.test and third.test. Pro-
cessing these separately, we again face a fatal error
in the group with second.test and third.test.
We then split this group into two individual files,
second.test and third.test, and we process them.
The fatal error occurs with second.test, which we
identify as the cause of the error.

When only one test file out of N files in a batch
causes a fatal error, batch splitting executes at most
2(log

2
N+1) commands. This is less than or equal to

N for sufficiently large batch sizes N ≥ 8. Therefore,
in the presence of no more than a few fatal errors,
batching is still faster than sequential processing.

4 Error handling strategies

Developers and maintainers have different needs
when it comes to the handling of errors. Whereas
developers need immediate feedback during the devel-
opment of new features, maintainers require a com-
prehensive summary of all errors when they deal with
unexpected breakage.

In this section, we describe the error handling
strategies of developer- and maintainer-oriented test-
ing and updating test files. We also discuss how
these strategies increase the speed of development
and decrease maintenance costs.

Fast regression testing of TEX packages: Multiprocessing and batching

92 TUGboat, Volume 45 (2024), No. 1

4.1 Developer-oriented testing

In the practice of test-driven development, before
adding a new feature, developers first write new
test files that describe the expected behavior of the
feature. Then, they develop the feature until all test
files have passed. At the beginning, old test files will
pass, whereas new test files will fail. At the end, all
test files, both old and new, should pass.

In order to increase the speed of development,
tests should fail fast to provide immediate feedback.
Therefore, developers can configure our framework
to start with the new test files, which are the most
likely to fail, and stop at the first error rather than
wait until all tests have finished.

For example, imagine a TEX package with two
test files: first.test and second.test. For sim-
plicity, the package has only one format with one
template and with three commands for the pdfTEX,
X ETEX, and LuaTEX engines. Before the develop-
ment of a new feature, developers add a new test file
third.test and they run the tests with the following
results:

pdfTEX X ETEX LuaTEX

first.test

second.test

third.test ✗

Since third.test was new, it was tested first and
immediately failed, providing immediate feedback to
developers. This is how we test all updates submitted
to the GitHub repository of the Markdown package.

4.2 Maintainer-oriented testing

Tests can fail not just during the development of new
features but also during maintenance. These errors
are often caused by changes to external dependencies
such as TEX engines, formats, and packages.

In order to decrease maintenance costs, tests
should provide comprehensive feedback. Therefore,
maintainers can configure our framework to always
process all test files and produce a helpful summary
of all errors.

Continuing the example from the previous sec-
tion, developers finish the new feature and release an
updated version of their package on CTAN. However,
after a month, the tests fail with the following results:

pdfTEX X ETEX LuaTEX

first.test ✓ ✗ ✓

second.test ✓ ✗ ✓

third.test ✓ ✗ ✓

At a glance, the summary shows that the errors are
related to the X ETEX engine. This is how we test
the Markdown package every week.

4.3 Updating test files

Although test-driven development is well-suited to
adding new features, fundamental changes to the
code may require that existing test files are updated
as well. Furthermore, writing test files before the
development of a feature can be difficult, especially
for complex features with incomplete requirements.

In order to increase the speed of development,
developers can configure our framework to update

test files instead of failing. Developers can make
fundamental changes and our framework will update
the expected outputs in test files to match the actual
output. Furthermore, developers can also develop
a feature, write partial test files for the feature that
contain only the TEX code and markdown text, and
use our framework to fill in the expected output.
Then, developers can review the changes and deter-
mine whether they are correct.

Our framework will update a test file only if all
templates and commands produce consistent outputs.
In the example from the previous section, the com-
mand for the X ETEX engine failed for all test files,
whereas the other commands did not. Therefore, our
framework would not update any test files and fail.

5 Implementation

Before Markdown 3.0.0, our framework was imple-
mented by a Bash script test.sh; see Listing 1.

At first, test.sh processed test files sequentially
and did not use the computational techniques from
Section 3 to increase the speed of testing. Since
Markdown 2.4.0, we used the GNU Parallel command-
line tool [7] to implement multiprocessing:

$ find -name '*.test' | parallel ./test.sh

Out of the error handling strategies from Section 4,
test.sh could only update test files.

While Bash is convenient for simple programs,
more complicated programs are better written in
a more expressive language. In Markdown 3.0.0, we
rewrote our framework from Bash to Python 3 [4].

Out of the techniques and strategies from Sec-
tions 3 and 4, the higher expressiveness of Python
allowed us to implement the batching of test files,
developer- and maintainer-oriented testing, and batch
splitting. Furthermore, Python’s built-in support for
multiprocessing allowed us to stop using GNU Paral-
lel and implement batch size limiting.

Vít Starý Novotný, Marei Peischl

TUGboat, Volume 45 (2024), No. 1 93

#!/bin/bash

set -o errexit -o pipefail -o nounset

BUILDDIR="$(mktemp -d)"

trap 'rm -rf "$BUILDDIR"' INT TERM

for TESTFILE; do

printf 'Testfile %s\n' "$TESTFILE"

for FORMAT in templates/*/; do

printf ' Format %s\n' "$FORMAT"

for TEMPLATE in "${FORMAT}"*.tex.m4; do

printf ' Template %s\n' "$TEMPLATE"

m4 -DTEST_FILENAME=test.tex <"$FORMAT"/COMMANDS.m4 |

(while read -r COMMAND; do

printf ' Command %s\n' "$COMMAND"

Set up the testing directory.

cp support/* "$TESTFILE" "$BUILDDIR"

cd "$BUILDDIR"

sed -r '/^\s*<<<\s*$/{x;q}' \

<"${TESTFILE##*/}" >test-setup.tex

sed -rn '/^\s*<<<\s*$/,/^\s*>>>\s*$/{/^\s*(<<<|>>>)\s*$/!p}' \

<"${TESTFILE##*/}" >test-input.md

sed -n '/^\s*>>>\s*$/,${/^\s*>>>\s*$/!p}' \

<"${TESTFILE##*/}" >test-expected.log

m4 -DTEST_SETUP_FILENAME=test-setup.tex \

-DTEST_INPUT_FILENAME=test-input.md <"$OLDPWD"/"$TEMPLATE" >test.tex

Run the test, filter the output and concatenate adjacent lines.

eval "$COMMAND" >/dev/null 2>&1 ||

printf ' Command terminated with exit code %d.\n' $?

touch test.log

sed -nr '/^\s*TEST INPUT BEGIN\s*$/,/^\s*TEST INPUT END\s*$/{

/^\s*TEST INPUT (BEGIN|END)\s*$/!H

/^\s*TEST INPUT END\s*$/{s/.*//;x;s/\n//g;p}

}' <test.log >test-actual.log

Compare the expected outcome against the actual outcome.

diff -a -c test-expected.log test-actual.log ||

Uncomment the below lines to update the testfile.

(sed -n '1,/^\s*>>>\s*$/p' <"${TESTFILE##*/}" &&

cat test-actual.log) >"$OLDPWD"/"$TESTFILE" ||

false

Clean up the testing directory.

cd "$OLDPWD"

find "$BUILDDIR" -mindepth 1 -exec rm -rf {} +

done)

done

done

done

rm -rf "$BUILDDIR"

a

b

c

d

test.sh

Listing 1: The shell script test.sh that implemented the testing framework of the
Markdown package before version 3.0.0. For each test file, test.sh a) materializes
templates in a temporary directory, b) executes materialized commands, c) compares
the .log file against the expected output, and d) optionally updates the test file.

Fast regression testing of TEX packages: Multiprocessing and batching

94 TUGboat, Volume 45 (2024), No. 1

6 Experiments

In this section, we describe our experiments with
multiprocessing and batching. In our experiments,
we aimed to answer the following research questions:

1. What is the speed benefit of multiprocessing?

2. What is the speed benefit of batching test files?

3. What is the speed benefit of batch size limiting?

To answer the questions, we tested the Markdown
package with different CPU counts and batch sizes:

• Numbers of CPUs: 1, 2, 4, 8, 16, and 32

• Batch sizes: 1, 2, 4, 8, . . . , 256, 512, and 1024

To ensure reliability of our findings, we repeated each
test configuration five times and we measured the
median testing time to control for sample variance.
Our experimental code is available online. [6]

We tested the Markdown package at Git commit
7613632 from August 21, 2023. At this commit, the
Markdown package contained 783 test files. For
each test file, 14 commands were materialized and
executed: four for plain TEX, four for LATEX, and
six for ConTEXt MkIV. Therefore, TEX formats were
initialized up to 14·783 = 10,962 times during testing.

To show the speed benefit of batch size limiting,
we deactivated it in our experiments, thereby high-
lighting the speed reduction caused by its absence.

We ran the experiments for 33 days on a shared
GNU/Linux server with 400 GB of RAM and 80 CPUs,
each at 2.1 GHz.

7 Results

Figure 1 shows the results of our experiments. In this
section, we discuss the results and how they relate to
the three research questions outlined in the previous
section.

1 2 4 8 16 32 64 128 256 512 1024
Batch size

10m
15m

30m

1h

2h

4h

8h

16h

32h

M
ed

ia
n

tim
e

Median Time vs. Batch Size for Different Numbers of CPUs

1 CPU
2 CPUs
4 CPUs
8 CPUs
16 CPUs
32 CPUs

Figure 1: The median testing times for different
numbers of CPUs and batch sizes

7.1 Multiprocessing

With batch size 1, the testing speed scales almost
linearly with the number of CPUs, as we would ex-
pect: Whereas with 1 CPU, the median testing time
is 27 hours and 2 minutes, it is only 1 hour and
6 minutes with 32 CPUs (about 24-fold speed-up).3

7.2 Batching of test files

With 1 CPU, the testing speed also scales almost
linearly with the batch size, up to a point. Whereas
with batch size 1, the median testing time is 27 hours
and 2 minutes, it is only 4 hours and 30 minutes with
batch size 8 (about 6-fold speed-up), and 1 hour and
20 minutes with batch size 512 (about 21-fold speed-
up). This indicates that initialization dominates the
testing time.

To better understand the relationship between
the initialization and the testing time, we can solve
the following series of equations:

14 · (783 · (X + Y)) = 27 hours and 2 minutes

14 · (X + 783 · Y) = 1 hour and 16 minutes

On the left-hand side of the equations, the variable
X stands for the mean time that it takes to initialize
a TEX format and the variable Y stands for the
mean time that it takes to process the markdown
text from a single test file. On the right-hand side
of the equations are the median testing times with
1 CPU and batch sizes 1 (above) and 1024 (below).

The solution shows that whereas it takes a full
X ≈ 8.47 seconds to initialize a TEX format, it takes
only Y ≈ 0.41 seconds to process a markdown text.
In other words, without batching, 95% of time is
spent on initialization and only 5% on actual testing;
with batching, up to 97% of time is spent on testing.

7.3 Batch size limiting

The speed improvements from multiprocessing and
batching are additive, up to a point. Whereas with
1 CPU and batch size 1, the median testing time is
27 hours and 2 minutes, it is only 10 minutes with
32 CPUs and batch size 32 (about 161-fold speed-up).

When the number of CPUs multiplied by the
batch size exceeds the number of test files (783), we
cannot use all CPUs and the testing speed decreases.
Whereas with 32 CPUs and batch size 16, the median
testing time is only 11 minutes, it is 1 hour and
24 minutes with the same number of CPUs and batch
size 1024 (about 8-fold slow-down). Our framework
prevents this effect by limiting the batch size.

3 The reason that we did not achieve the theoretical 32-fold

speedup is likely tasks from other users on our server.

Vít Starý Novotný, Marei Peischl

TUGboat, Volume 45 (2024), No. 1 95

8 Related work

Besides our framework, there exist other frameworks
for regression testing of TEX packages. Furthermore,
the computational techniques in our framework are
often adapted from previous work in other fields.

In this section, we discuss the regression test-
ing framework of the l3build package management
system and we compare it with our framework. Fur-
thermore, we discuss the origin of the batching of
test files and batch splitting.

8.1 The l3build package

The l3build package [2, 9, 8, 1] provides a compre-
hensive system for TEX package management that
also includes a regression testing framework.

Whereas our framework is written in Python,
l3build is written in Lua. Each language presents its
own set of strengths and weaknesses. On one hand,
every modern installation of TEX includes a Lua
interpreter, which makes l3build more accessible for
TEX users compared to our framework. On the other
hand, unlike Python, Lua has no built-in support
for multiprocessing. Therefore, l3build users must
use external tools like GNU Parallel to use multiple
CPUs for testing, whereas our framework can use
multiple CPUs out of the box.

In our framework, each test file is designed to
hold a single self-contained test that avoids modify-
ing the global state. This design allows for straight-
forward grouping of tests into batches, where each
test is isolated from others using TEX groups, as we
discussed in Section 3.2.

In l3build, a single test file may contain multiple
tests. These tests can be interdependent, creating
a challenge in separating them from their files. Ad-
ditionally, these tests might change the global state,
which poses a risk of unexpected conflicts when tests
are grouped into batches. Due to these complexi-
ties, l3build does not support the batching of tests.
Nonetheless, the practice of including multiple tests
in a single test file can be seen as a form of manual
batching that amortizes the cost of initialization.

Both our framework and l3build support the
updating of test files [1, Section 2.7]. This allows
developers to automatically generate parts of test
files when they make fundamental changes to the
code or when they develop complex new features, as
discussed in Section 4.3.

8.2 Batching and batch splitting

The techniques of batching and batch splitting were
perhaps first used with TEX in the ARQMath com-
petitions in large-scale indexing of math formulae.

In the first ARQMath competition, the MIRMU

team used the LATEXML tool to convert TEX formu-
lae to XML [5, Section 2.2]. Due to speed issues
when processing each formula separately, MIRMU

processed them in batches. However, a single error
would cause the loss of an entire batch. Therefore,
MIRMU used batch splitting to recover correct for-
mulae after an error [3].

In the third ARQMath competition, the orga-
nizers used the same techniques to provide math
formulae in the XML format to all participants.

9 Conclusion

Larger TEX packages commonly use regression tests
to ensure code integrity over time. In this study, we
explored techniques for speeding up the regression
testing of TEX packages. We have shown that batch-
ing test files can improve the testing efficiency from
5% to 97%. We have also shown that multiprocessing
on 32 CPUs combined with the batching of test files
increases testing speed up to 161 times.

The lessons learned from our work are as follows:

• Whereas TEX uses only a single CPU, modern
PCs can contain several CPUs. Multiprocessing
can increase testing speed by using these CPUs.

• Writing small isolated test files is convenient
for authors but carries a high initialization cost
during testing. For TEX packages such as the
Markdown package, where tests are easy to iso-
late, the batching of test files can be used to
recover the initialization cost.

• Whereas developers need tests to fail as fast as
possible, maintainers benefit from a comprehen-
sive summary of all errors.

We hope that our practical lessons will improve
the regression testing practices used in the devel-
opment and maintenance of TEX packages. With
fast regression testing, developers can quickly intro-
duce new features, while maintainers can proactively
address emerging issues before they affect users.

Disclaimer

No wolves were harmed in the making of this article.

Fast regression testing of TEX packages: Multiprocessing and batching

96 TUGboat, Volume 45 (2024), No. 1

Acknowledgements

We would like to gratefully acknowledge the Natural
Language Processing Center at the Faculty of Infor-
matics, Masaryk University, Brno, who kindly pro-
vided computational resources for our experiments.

We also wish to extend our special thanks to
Joseph Wright, Ben Frank, Barbara Beeton, and
Karl Berry for their invaluable insights and thorough
review of our work. Their expertise and thoughtful
feedback have been instrumental in shaping the final
manuscript.

Donation request

Despite our breakthroughs in testing speed, addi-
tional computational resources would greatly accel-
erate the development and maintenance of the Mark-
down package for TEX.

We graciously invite donations of GitHub self-
hosted runners, particularly those hosted on GNU/
Linux servers with at least 16 GB of RAM and 12
CPUs. For more information, please contact us by
email. Donors will be acknowledged in the project
documentation, with the option to remain anony-
mous upon request.

References

[1] LATEX project team. l3build: A testing and
building system for (LA)TEX, Nov. 2023.
ctan.org/pkg/l3build

[2] F. Mittelbach, W. Robertson, LATEX3 team.
l3build: A modern Lua test suite for TEX
programming. TUGboat 35(3):287–293, 2014.
tug.org/TUGboat/tb35-3/tb111mitt-

l3build.pdf

[3] V. Novotný. ARQMath data preprocessing,
June 2020. github.com/MIR-MU/ARQMath-

data-preprocessing/blob/main/scripts/

latex_tsv_to_cmml_and_pmml_tsv.py

[4] V. Novotný. Implement batching and
summarization to unit tests, Jan. 2023.
github.com/witiko/markdown/issues/245

[5] V. Novotný, P. Sojka, et al. Three is better than
one. In CEUR Workshop Proceedings: ARQMath

task at CLEF conference, vol. 2696, pp. 1–30,
Thessaloniki, Greece, 2020. CEUR-WS.
ceur-ws.org/Vol-2696/paper_235.pdf

[6] V. Starý Novotný. Measure the speed of
tests with different numbers of processes and
batch sizes, Oct. 2023. github.com/Witiko/

markdown/blob/main/experiments/2023-10-

12-test-batching

[7] O. Tange. GNU Parallel: The command-line
power tool. USENIX Mag, 36(1):42–47, 2011.
Available from doi.org/10.5281/zenodo.

8278274.

[8] J. Wright. l3build: The beginner’s guide.
TUGboat 43(1):40–43, 2022. tug.org/TUGboat/
tb43-1/tb133wright-l3build.pdf

[9] J. Wright, LATEX3 team. Automating LATEX(3)
testing. TUGboat 36(3):234–236, 2015.
tug.org/TUGboat/tb36-3/tb114wright.pdf

⋄ Vít Starý Novotný
Studená 453/15
Brno 63800, Czech Republic
witiko (at) mail dot muni dot cz

github.com/witiko

⋄ Marei Peischl
Gneisenaustr. 18
Hamburg 20253, Germany
marei (at) peitex dot de

peitex.de

Vít Starý Novotný, Marei Peischl

https://ctan.org/pkg/l3build
https://tug.org/TUGboat/tb35-3/tb111mitt-l3build.pdf
https://tug.org/TUGboat/tb35-3/tb111mitt-l3build.pdf
https://github.com/MIR-MU/ARQMath-data-preprocessing/blob/main/scripts/latex_tsv_to_cmml_and_pmml_tsv.py
https://github.com/MIR-MU/ARQMath-data-preprocessing/blob/main/scripts/latex_tsv_to_cmml_and_pmml_tsv.py
https://github.com/MIR-MU/ARQMath-data-preprocessing/blob/main/scripts/latex_tsv_to_cmml_and_pmml_tsv.py
https://github.com/witiko/markdown/issues/245
https://ceur-ws.org/Vol-2696/paper_235.pdf
https://github.com/Witiko/markdown/blob/main/experiments/2023-10-12-test-batching
https://github.com/Witiko/markdown/blob/main/experiments/2023-10-12-test-batching
https://github.com/Witiko/markdown/blob/main/experiments/2023-10-12-test-batching
https://doi.org/10.5281/zenodo.8278274
https://doi.org/10.5281/zenodo.8278274
https://tug.org/TUGboat/tb43-1/tb133wright-l3build.pdf
https://tug.org/TUGboat/tb43-1/tb133wright-l3build.pdf
https://tug.org/TUGboat/tb36-3/tb114wright.pdf

TUGboat, Volume 45 (2024), No. 1 97

Illustrating finite automata with Grail+

and TikZ

Alastair May, Taylor J. Smith

Abstract

In this article, we discuss a new software tool that in-
teracts with Grail+, a library of automata-theoretic
command-line utilities. Our software, the Grail+ Vi-
sualizer, takes the textual representation of a finite
automaton produced by Grail+ and generates TikZ
code to illustrate the finite automaton, with auto-
matic layout of states and transitions. In addition to
giving an overview of the basics of automata theory
and Grail+, we discuss how the Grail+ Visualizer
works in detail and suggest avenues for future work.

1 Introduction

Grail+ is a C++ library of command-line utilities
that performs symbolic manipulation of various mod-
els of finite automata, regular expressions, and finite
languages. Each utility, called a filter in Grail+

terminology, can either handle input directly or be
piped together to create a chain of filters. Grail+ con-
sists of nearly one hundred filters that can compute
common operations or procedures that a theoretical
computer scientist might want to perform; among
many other tasks, these filters can enumerate the
elements of a language (fmenum), convert a finite au-
tomaton to an equivalent regular expression (fmtore)
and vice versa (retofm), and minimize (fmmin) or
determinize (fmdeterm) a finite automaton. These
predefined filters, together with the ability to chain
filters together, allow users to perform thousands of
formal language and automata-theoretic tasks.

The original environment, Grail, was developed
by Darrell Raymond at the University of Water-
loo and Derick Wood at the University of Western
Ontario [6]. Following major changes instituted in
version 3.0, the name of the environment changed
to Grail+ and coordination of the development work
was taken over by Sheng Yu, again at the University
of Western Ontario. Presently, Grail+ is being de-
veloped and maintained by Cezar Câmpeanu at the
University of Prince Edward Island, and the current
stable version is 3.4.5 [2].

2 Finite automata in Grail+

Since Grail+ runs in a command-line interface, all
input and output is plain text. For models that
can be represented naturally in text, like regular
expressions, Grail+ follows the conventional notation
in theoretical computer science; for instance, the
union of regular expressions a and b is a + b, and
the concatenation of these regular expressions is ab.

q0start q1

a

b

b

a

Figure 1: An example of a finite automaton.

For non-textual models like finite automata, however,
Grail+ defines its own convention.

As an example, consider the finite automaton
depicted in Figure 1. This finite automaton takes
a word (or string) consisting of as and bs as its
input. It has two states, labelled q0 and q1, and
transitions on these states labelled by a and b. The
contents of the word determine which transition the
finite automaton follows at any given step of its
computation; for example, if the finite automaton
reads the symbol b in the word while it is in state q0,
then it will transition to state q1 before reading the
next symbol. The state q0 is the initial state, or the
state where the computation of the finite automaton
begins. The state q1 is a final or accepting state;
if, after reading all symbols in the word, the finite
automaton finds itself in state q1, then it accepts
that word. The set of all words accepted by a finite
automaton is the language of that finite automaton.

In Grail+, finite automata are represented as
lists of instructions. Each individual instruction
consists of three pieces of information: a source state,
a label, and a sink state. Additionally, there are two
special pseudo-instructions to indicate which states
are initial and which states are final. Returning to
Figure 1, this finite automaton would be represented
in Grail+ as the following list:

(START) |- 0

0 a 0

0 b 1

1 a 1

1 b 0

1 -| (FINAL)

There is no particular ordering to the instructions
in the lists produced by Grail+ as output, and no
ordering is enforced when giving a list to Grail+ as
input. Additionally, while the example given here
has one initial state and one final state, a finite
automaton may contain multiple initial and/or final
states.

3 Typesetting finite automata

For authors who wish to include illustrations of fi-
nite automata in their documents, the most straight-
forward way to do so—apart from importing an
external image file— is to use TikZ and the PGF

doi.org/10.47397/tb/45-1/tb139may-automata

Illustrating finite automata with Grail+ and TikZ

https://doi.org/10.47397/tb/45-1/tb139may-automata

98 TUGboat, Volume 45 (2024), No. 1

\begin{tikzpicture}[node distance=2cm]

\node[state, initial] (q0) {q_{0}};

\node[state, accepting, right of=q0] (q1) {q_{1}};

\path[->] (q0) edge[loop above] node[above] {\texttt{a}} (q0);

\path[->] (q0) edge[bend left] node[above] {\texttt{b}} (q1);

\path[->] (q1) edge[bend left] node[below] {\texttt{b}} (q0);

\path[->] (q1) edge[loop above] node[above] {\texttt{a}} (q1);

\end{tikzpicture}

Figure 2: The (human-written) TikZ code producing the finite automaton in Figure 1.

package [9] to create the illustration. TikZ includes
an automata drawing library with special shapes and
styles specific to finite automata (see Chapter 43
of the TikZ & PGF manual [8]; see also the article
in TUGboat 44:1 by Igor Borja [1]). An example
of TikZ code using the automata drawing library is
given in Figure 2.

Creating illustrations from scratch using TikZ
puts the decision-making entirely in the user’s hands,
allowing for ample customization in layout, style,
and other aspects. At the same time, creating illus-
trations from scratch using TikZ puts the decision-
making entirely in the user’s hands, leading to po-
tential pitfalls. For particularly large or complicated
finite automata, laying out states and transitions
in an aesthetically pleasing way can become very
difficult. Thus, using external software to assist in
constructing and laying out the finite automaton can
make the illustration process easier.

Andrew Mertz, William Slough, and Nancy Van
Cleave wrote in TUGboat 35:2 about methods of
illustrating computer science concepts using LATEX
packages [5]. In particular, in Section 7 of their
article, the authors discuss typesetting automata
using JFLAP [7], which is a Java software package for
manipulating finite automata and formal languages.
In contrast to Grail+, JFLAP uses a graphical user
interface, and it is capable of exporting illustrations
of finite automata to various image formats. The
jflap2tikz package [4] additionally allows users to
convert a finite automaton produced by JFLAP to
TikZ code that can be included in a LATEX document.

4 Motivation

While JFLAP is a popular software package, and
while it is capable of handling more theoretical mod-
els of computation than Grail+ currently handles—
namely grammars, pushdown automata, and Turing
machines— there are reasons why users may still pre-
fer to work with Grail+. For one, Grail+ can be run
on any computer that is capable of compiling C++

code, and the suite can be customized and extended
by anyone who is capable of writing C++ code. Sub-

jectively, users may find the text-based command-line
interface of Grail+ to be faster or easier to use than
a point-and-click graphical user interface. Lastly,
while software like JFLAP emphasizes pedagogy and
learning about formal languages and automata the-
ory, researchers and practitioners may value Grail+

for its efficient implementation and wider array of
features specific to finite automata. (Together with
these reasons, Canadians may uniquely value Grail+

for being made-in-Canada software.)
What Grail+ lacks, however, is a way to render

its textual output in a more human-friendly form.
It can be extremely difficult, especially with finite
automata having many states or many transitions,
for a user to parse the textual output and to gain
an understanding of the structure of the finite au-
tomaton without representing it visually. Given that
TikZ has a built-in automata drawing library, and
that both the output from Grail+ and the TikZ code
to produce an illustration of a finite automaton fol-
low a fixed, pre-specified format, TikZ is a natural
candidate for automatically laying out illustrations
of finite automata produced by Grail+.

5 The Grail+ Visualizer

Our software tool, the Grail+ Visualizer [3], offers a
more human-friendly—and beginner-friendly—way
to construct, manipulate, and display automata.
Working alongside Grail+, our visualizer transforms
the textual output of Grail+ into TikZ code that
can be either typeset and displayed on its own or
inserted into an existing LATEX document.

The visualizer software is written in Bash and
can be run directly from a command-line interface,
just like Grail+ itself. The software can therefore act
as the final link in a chain of Grail+ filters, providing
an immediate visual indication of the result.

5.1 How the visualizer works

The Grail+ Visualizer takes as input the textual
representation of a finite automaton produced by
Grail+ (i.e., the list of instructions) and parses the
text to extract state labels, which are stored in a

Alastair May, Taylor J. Smith

TUGboat, Volume 45 (2024), No. 1 99

list. At the same time, state type labels are stored in
an auxiliary list to distinguish whether a particular
state is initial, final, or both. Transitions are also
parsed and stored in three lists: one containing source
state labels, one containing transition labels, and one
containing sink state labels.

The visualizer then begins to lay out states and
transitions. Each state is placed at coordinate (x, y)
on a square grid according to the following procedure:

1. Assign x-coordinates to states in the order they
are read from the input; that is, the first state
read from input is assigned x = 0, the second
state is assigned x = 1, and so on.

2. Initialize an all-zero array A of size |Q|, where
|Q| is the number of unique states identified
in the input processing step. Indices of A cor-
respond to x-coordinates of states; for exam-
ple, A[0] corresponds to the state having x-
coordinate 0. Entries in A correspond to y-
coordinates of states. At this point, each state
has an initial y-coordinate of 0.

3. For each pair of states p and q connected by
a transition in the finite automaton, where p

has x-coordinate i, q has x-coordinate j, and
assuming i < j without loss of generality:

(a) Denote by m the maximum entry in the
subarray A[i..j].

(b) Increment m by 1.

(c) Compare the value m to the entries A[i]
(i.e., the y-coordinate of state p) and A[j]
(i.e., the y-coordinate of state q). The
largest of these three values will be the
new y-coordinate of both states p and q.

These coordinates are used to generate a list of TikZ
\nodes, which is written to the output file. The label
of each node corresponds to the state label stored
during the input processing step. If a state is distin-
guished as initial or final, then the appropriate option
(initial or accepting, respectively) is added to the
corresponding node.

Next, where a transition exists from a source
state p to a sink state q, the visualizer writes a TikZ
\path to the output file producing a directed edge
from p to q. This path is labelled by the transition
label stored during the earlier input processing step.
Some special cases are also handled during this step:

• Where there exists a transition from a state p

to itself, the visualizer adds the option loop

above to the corresponding path.

• Where there exist multiple transitions between
a source state p and a sink state q, those mul-
tiple transitions are consolidated into a single

path. The labels of the multiple transitions are
obtained via pattern-matching existing lines of
the output file and stored in a temporary vari-
able. The existing paths are deleted, and a new
path labelled by the stored transition labels is
written to the output file.

At this stage, the TikZ code is complete, and
the output file is ready for compilation. The file is
typeset by PDFLATEX and can be opened by a PDF

viewer immediately, or the TikZ code may be copied
into another LATEX document.

5.2 An example

To demonstrate some of the capabilities of the Grail+

Visualizer, consider the following list of instructions
produced by Grail+:

(START) |- 0

(START) |- 6

(START) |- 3

0 a 1

1 c 3

1 d 5

6 b 7

7 c 9

7 d 11

3 -| (FINAL)

5 -| (FINAL)

9 -| (FINAL)

11 -| (FINAL)

In this list of instructions, we have eight states un-
ordered and numbered non-consecutively (e.g., there
is a state 1 and a state 3, but no state 2). Of these
states, three are initial states and four are final states,
and state 3 is both initial and final. There is also a
total of six transitions.

The Grail+ Visualizer begins by parsing the list
of instructions and extracting the state labels from
these instructions. From this input, the visualizer
produces two preliminary lists: one of state labels
and one of state types. At this stage, the state labels
list may contain duplicates. For instance, state 3

appears three times in the preliminary state label
list, corresponding to its appearances in lines 3, 5,
and 10 of the input list of instructions.

The visualizer also extracts transition data and
produces an additional three lists:
0 1 1 6 7 7

a c d b c d

1 3 5 7 9 11

From top to bottom, these three lists indicate the
transition source states, the transition labels, and
the transition sink states.

Illustrating finite automata with Grail+ and TikZ

100 TUGboat, Volume 45 (2024), No. 1

Duplicate state labels are then removed from
the preliminary lists created earlier. In this example,
the unique state labels are identified in the order 0,
6, 3, 1, 5, 7, 9, and 11, and the lists produced by
the Grail+ Visualizer are as follows:
0 6 3 1 5 7 9 11

S S B – F – F –
The top list contains state labels, while the bottom
list contains state types. States may have one of four
types: “S” denotes an initial state, “F” denotes a
final state, “B” denotes a state that is both initial
and final, and “–” denotes an undistinguished state.

Next, state positions are calculated according to
the procedure outlined in Section 5.1. This procedure
assigns the following y-coordinates to states:
0 6 3 1 5 7 9 11

1 4 0 3 0 6 0 6
From top to bottom, these lists indicate the state
label and that state’s y-coordinate. Recall that the
state’s x-coordinate is its index in the list, so state 0
is at position (0, 1), state 6 is at position (1, 4), and
so on.

At this point, the various lists created by the
visualizer are then used to produce the TikZ code
corresponding to the automaton. The final TikZ
code produced by the visualizer is shown in Figure 3,
and typesetting the code produces the automaton
shown in Figure 4.

6 Conclusions and future work

In this article, we introduced the Grail+ Visualizer,
explained how the visualizer interacts with Grail+ to
produce a typeset illustration of a finite automaton,
and worked through an example demonstrating how
the visualizer works. We hope that this software
tool stimulates a greater interest in both automata
theory and the Grail+ library.

There remain some areas for improvement in
the visualizer software. For instance, the layout
procedure could be optimized to place states shar-
ing many transitions closer to one another or to
avoid large numbers of crossing transitions. For
certain finite automata, a more optimized layout pro-
cedure might use a “system of springs” technique
inspired by that of Tutte [10]. Another desirable
feature might allow the user to specify some de-
gree of customization for the output; say, in set-
ting the colours of states, the minimum distance
between states, or the exact positions of certain
states. Lastly, implementing the Grail+ Visualizer
as a LATEX package rather than as a separate piece of
software would greatly simplify the workflow for users.
This could allow a user to write a command like
\grailautomaton{instruction_list} that would

generate and include TikZ code within any LATEX
document at typesetting time.

Acknowledgements

The work done by the first author of this article was
supported by an Alley Heaps undergraduate research
internship provided by St. Francis Xavier University.

References

[1] I. Borja. An introduction to automata design
with TikZ’s automata library. TUGboat

44(1):102–107, 2023. tug.org/TUGboat/

tb44-1/tb136prado-automata.pdf

[2] Department of Computer Science, University
of Prince Edward Island. Theory of Computing
Software Server. grail.smcs.upei.ca.

[3] A. May, T.J. Smith. Grail+ Visualizer. github.
com/flarelabstfx/Grail-Visualisation.

[4] A. Mertz, W. Slough. The jflap2tikz

package. ctan.org/pkg/jflap2tikz.

[5] A. Mertz, W. Slough, N. Van Cleave.
Typesetting figures for computer science.
TUGboat 35(2):179–191, 2014.
tug.org/TUGboat/tb35-2/tb110mertz.pdf

[6] D. Raymond, D. Wood. Grail: A C++ library
for automata and expressions. Journal of

Symbolic Computation, 17(4):341–350, 1994.

[7] S.H. Rodger, T.W. Finley. JFLAP: An

Interactive Formal Languages and Automata

Package. Jones & Bartlett Publishers, Sudbury,
MA, 2006.

[8] T. Tantau, et al. The TikZ and PGF Packages:

Manual for Version 3.1.10, January 2023.
mirrors.ctan.org/graphics/pgf/base/doc/

pgfmanual.pdf

[9] The PGF/TikZ Team. The pgf package.
ctan.org/pkg/pgf.

[10] W.T. Tutte. How to draw a graph. Proceedings
of the London Mathematical Society,
s3-13:743–767, 1963.

⋄ Alastair May
Department of Computer Science
St. Francis Xavier University
Antigonish, NS, B2G 2W5 Canada
x2016owd (at) stfx dot ca

⋄ Taylor J. Smith
Department of Computer Science
St. Francis Xavier University
Antigonish, NS, B2G 2W5 Canada
tjsmith (at) stfx dot ca

https://people.stfx.ca/tjsmith/

ORCID 0000-0001-7838-3409

Alastair May, Taylor J. Smith

https://tug.org/TUGboat/tb44-1/tb136prado-automata.pdf
https://tug.org/TUGboat/tb44-1/tb136prado-automata.pdf
http://grail.smcs.upei.ca
https://github.com/flarelabstfx/Grail-Visualisation
https://github.com/flarelabstfx/Grail-Visualisation
https://ctan.org/pkg/jflap2tikz
https://tug.org/TUGboat/tb35-2/tb110mertz.pdf
https://mirrors.ctan.org/graphics/pgf/base/doc/pgfmanual.pdf
https://mirrors.ctan.org/graphics/pgf/base/doc/pgfmanual.pdf
https://ctan.org/pkg/pgf

TUGboat, Volume 45 (2024), No. 1 101

\begin{tikzpicture}[node distance=2cm]

\node[state,initial] (0) at (0,1) {0};

\node[state,initial] (6) at (1,4) {6};

\node[state,initial,accepting] (3) at (2,0) {3};

\node[state] (1) at (3,3) {1};

\node[state,accepting] (5) at (4,0) {5};

\node[state] (7) at (5,6) {7};

\node[state,accepting] (9) at (6,0) {9};

\node[state] (11) at (7,6) {11};

\path[->] (0) edge[] node[align=center, anchor=center, above, sloped] {a} (1);

\path[->] (1) edge[] node[align=center, anchor=center, above, sloped] {c} (3);

\path[->] (1) edge[] node[align=center, anchor=center, above, sloped] {d} (5);

\path[->] (6) edge[] node[align=center, anchor=center, above, sloped] {b} (7);

\path[->] (7) edge[] node[align=center, anchor=center, above, sloped] {c} (9);

\path[->] (7) edge[] node[align=center, anchor=center, above, sloped] {d} (11);

\end{tikzpicture}

Figure 3: TikZ code produced by the Grail+ Visualizer from the example input of Section 5.2.

0start

6start

3start

1

5

7

9

11

a

c d

b

c

d

Figure 4: The illustration produced by compiling the TikZ code in Figure 3.

Illustrating finite automata with Grail+ and TikZ

102 TUGboat, Volume 45 (2024), No. 1

Including PDF files

Hans Hagen

Rendering glyphs in a PDF happens based on infor-
mation in the page stream. In such a stream we find
font triggers that use identifiers like F1 and after-
wards placement operators inject shapes by referring
to an index in the font, say hexadecimal 0003, and
that index can refer to any shape. The identifier is
resolved via the Font entry in the Resources dictio-
nary of the page:

5 0 obj

<<

/Contents 3 0 R

/Resources << /Font << /F1 1 0 R >>

/ProcSet 2 0 R >>

...

/Type /Page

>>

endobj

Following the F1 reference we end up at:

1 0 obj

<<

/BaseFont /TNTUFI+LMRoman10-Regular

/DescendantFonts [11 0 R]

/Encoding /Identity-H

/Subtype /Type0

/ToUnicode 14 0 R

/Type /Font

>>

endobj

and when we then descend into the first entry in the
DescendantFonts array we come to:

11 0 obj

<<

/BaseFont /TNTUFI+LMRoman10-Regular

/CIDSystemInfo << /Ordering (Identity)

/Registry (Adobe)

/Supplement 0 >>

/FontDescriptor 9 0 R

/LMTXRegistry 8 0 R

/Subtype /CIDFontType0

/Type /Font

/W 10 0 R

>>

endobj

The W entry value, rather short relative to the
other keys, refers to an array object that holds the
widths of the glyphs so that the viewer knows how
much to advance; the FontDescriptor points to the
shapes; and LMTXRegistry will be discussed later.
These examples come from typesetting:

\starttext

\startTEXpage

test

\stopTEXpage

\stoptext

With LuaTEX we see this in the page stream:

BT

/F1 11.955168 Tf

1 0 0 1 0 0.11949 Tm [<0069003200620069>]TJ

ET

and also this in the mapping from index to Unicode,
which is object 14, defined by the ToUnicode value
shown above (I added the characters as comments):

3 beginbfchar

<0032> <0065> % e

<0062> <0073> % s

<0069> <0074> % t

endbfchar

When we use LuaMetaTEX instead we get:

BT

/F1 10 Tf

1.195517 0 0 1.195517 0 0.065717 Tm

[<0001000200030001>] TJ

ET

and:

3 beginbfchar

<0001> <0074> % t

<0002> <0065> % e

<0003> <0073> % s

endbfchar

Thus, where LuaTEX uses the original index in
the font (not to be confused with the character’s Uni-
code value, if it has one at all), in LuaMetaTEX, or
more accurately with the ConTEXt backend, we start
at one and number upwards. This gives smaller files.

The only way to find out what an index is ac-
tually referring to is to consult the abovementioned
ToUnicode vector in the font resource because there
we map from index to Unicode. That information is
used when you search in a PDF file or cut-and-paste
from it. Because glyphs can be unrelated to Unicode,
and because multiple glyphs can share the same Uni-
code slot, the index is what makes a glyph unique.

When a (page from) a PDF file is included in
a document LuaTEX will copy the relevant objects
to the main file. Of course the page itself is copied
(with the page stream making up the content). Copy-
ing is also driven by the Resources key in the page
dictionary. In addition to the Font list we’ve seen
above, there can also be an XObject array and its
entries need to be copied as well. This copying is
recursive because the resources themselves can point
to objects with resources. It is quite normal in a
PDF file to share resources. The rendered glyphs, for
instance, come from fonts that contain the shape defi-
nitions and basically these are the same, independent
of scaling.

doi.org/10.47397/tb/45-1/tb139hagen-pdfincl

Hans Hagen

https://doi.org/10.47397/tb/45-1/tb139hagen-pdfincl

TUGboat, Volume 45 (2024), No. 1 103

Table 1: Comparison of LuaTEX, LMTX, PDF compression, and advanced merging.

native compact=no compact=yes

LuaTEX MkIV compressed 839 KB / .20 sec 731 KB / 0.20 sec 231 KB / 0.22 sec
decompressed 1784 KB / .20 sec 943 KB / 0.22 sec 426 KB / 0.23 sec

LuaMetaTEX MkXL compressed 544 KB / 0.18 sec 147 KB / 0.24 sec
decompressed 783 KB / 0.16 sec 552 KB / 0.19 sec

The index can be the original glyph index in the
font but, because we subset, it can also be a differ-
ent one, depending on what gets included. This
is illustrated in the example above. By default
the LuaTEX engine just copies and doesn’t worry
about what gets copied. However, in MkIV we can
load some code that plugs into the LuaTEX backend
and is thereby capable of merging fonts from the
included PDF (page) with one used in the document.
This process is driven by setting the compact key in
\externalfigure to the value yes. Here we assume
that the references to glyphs in the page stream are
the original (or equivalent) indices but this is not
guaranteed to be true. We can check a little by
comparing the Unicode mapping as well as doing a
visual check afterwards, but neither are robust. It
still works ok as long we use exactly the same font;
essentially, we check the name and when it matches
we force the glyph into the current file and use the
font reference of main document for the embedded
reference instead.

In LuaMetaTEX we do it differently and there
are reasons for this. First of all, we have different
numbering in the main file and inserted file, so we
cannot use the indices directly. In addition, we have
to also take care of Type 3 fonts that refer to fonts
that we merge (we use these fonts in, for instance,
math delimiters). Finally we cannot simply look
at the name because we can have a variable font
instance that has different axis properties. So we
have to be more clever: we need to parse the content
streams of the page, XObjects and charprocs to find
out what glyphs are referenced and replace indices
when applicable. In addition we consult some ex-
tra information that is included when ConTEXt did
typeset the (to be embedded) file. That information
contains a stream index to original index mapping,
and also has a variable font recipe if needed. There
is also some additional information so that we at
least check if we have the same font.

In Table 1 we compare three alternatives. The
native inclusion in LuaTEX leaves the work to the
engine. When the plugin is loaded, we will use the
Lua-based inclusion code which is a bit more clever
in sharing objects. In the LuaMetaTEX variant we

also copy objects into the main file but there we
have no plugin and sharing happens anyway. Here
with compact=yes we also merge fonts but this time
based on parsing the streams. This parsing is more
demanding and bumps runtime but is also more
rewarding in terms of file size. For completeness
we show the results with and without PDF object
stream (zip) compression. The need to decompress
and compress also has some impact on performance.

In case the slightly slower inclusion in LuaMeta-
TEX bothers you, there might be some comfort in
knowing that the 20 files accumulate to 564 KB and
a fresh run takes 49 seconds. When we use LuaTEX
the file size total bumps to 748 KB and the initial
runtime goes up to 94 seconds. So in the end the
LuaMetaTEX-based variant is more efficient.

So, in MkIV there are two reasons for having
the plugin. The first is that by sharing common
objects we can, for instance, include many pages
from the same document with little overhead. For
this, compact doesn’t need to be active. However
when for instance we include many documents we
can see that merging fonts does pay off handsomely.
In MkXL we already have the first benefit (sharing)
by default and here we can also do better by merging
fonts. Because that merging is more aggressive you
see better numbers in the table for MkXL.

A practical usage scenario is making manuals
where we process examples (using ConTEXt buffers)
in independent runs so that they are independent
from the main document. Of course there is only
a gain if these examples share fonts with the main
document or with each other. Here is the test case:

\startbuffer[common]

\usebodyfont [dejavu]

\usebodyfont [lucida]

\usebodyfont [bonum]

\setupbodyfont[modern]

\setupalign[tolerant,stretch]

\stopbuffer

We load four different font sets in a common
buffer but also use them in the main document:

\getbuffer[common]

We define two additional buffers that each cre-
ate a document with two pages. We use different

Including PDF files

104 TUGboat, Volume 45 (2024), No. 1

languages because otherwise there is little to merge,
as the sample texts use the regular Latin script:

\startbuffer[demo-1]

\start

\switchtobodyfont[dejavu]\samplefile{ward}

\stop \blank

\start

\switchtobodyfont[lucida]\samplefile{davis}

\stop \page

\start

\switchtobodyfont[bonum] \samplefile{knuth}

\stop \blank

\start

\switchtobodyfont[modern]\samplefile{tufte}

\stop \blank

\stopbuffer

\startbuffer[demo-2]

\start

\switchtobodyfont[dejavu]\mainlanguage[es]

\samplefile{cervantes-es.tex}

\stop \blank

\start

\switchtobodyfont[lucida]\mainlanguage[sv]

\samplefile{alfredsson-sv.tex}

\stop \page

\start

\switchtobodyfont[bonum] \mainlanguage[de]

\samplefile{aesop-de.tex}

\stop \blank

\start

\switchtobodyfont[modern]\mainlanguage[cz]

\samplefile{komensky-cz}

\stop \blank

\stopbuffer

Optionally we enable compact inclusion:

% \setupexternalfigures[compact=yes]

Here is the main document:

\starttext

\dorecurse{10}{

\startTEXpage[offset=1ex]

\start \switchtobodyfont[dejavu]

\samplefile{ward} \stop \blank

\start \switchtobodyfont[lucida]

\samplefile{davis} \stop \blank

\start \switchtobodyfont[bonum]

\samplefile{knuth} \stop \blank

\start \switchtobodyfont[modern]

\samplefile{tufte} \stop \blank

% #1 is the iterator:

\setbuffer[#1]#1\endbuffer

\hbox\bgroup

\typesetbuffer[common,demo-1,#1]

[width=10cm,page=1]

\typesetbuffer[common,demo-1,#1]

[width=10cm,page=2]

\egroup

\blank

\hbox\bgroup

% these are processed in separate runs:

\typesetbuffer[common,demo-2,#1]

[width=10cm,page=1]

\typesetbuffer[common,demo-2,#1]

[width=10cm,page=2]

\egroup

\stopTEXpage

}

\stoptext

In order to get ten times two unique documents
to be included, we smuggle an extra buffer into the
subsidiary runs. We need to do this because other-
wise the hashes of the content of these sub-documents
are the same and we’d end up with only two docu-
ments and successive inclusions would share these.
Of course the first run with fresh buffers will take
more runtime because the sub-documents need to be
processed (twice in order to get multi-pass activities
resolved).

There are a few pitfalls. First of all we have
to make sure that we only merge references to the
same font. This is often no problem as long as we
don’t update fonts with different shapes in the same
slots but we can assume that the version number is
different then. For the application we have in mind,
buffered sub-runs or inclusion in related documents
that get processed in a short time span, we are prob-
ably ok. We can make the check more tolerant or
more clever, and might do that in the future. On
the average the inclusion is already rather efficient
when a few pages from a few documents are used.

A second pitfall is that when we improve the
ConTEXt (font) backend we can have better shapes
or more precise metrics but because metrics are un-
likely to change much in the glyph programs we’re
probably okay. Even mixing the more efficient so-
called compact font mode with normal font mode
(not to be confused with compact inclusion) should
work out well enough. In case of doubt: trust your
eyes or just regenerate the documents involved in
the inclusion.

Finally it is worth mentioning that there is a
noticeable overhead but if becomes necessary I can
optimize the handling of the stream a bit by replacing
the more general stream parser by a dedicated one
for this purpose.

Let’s stress one thing again. Because shared
font usage will never be (guaranteed) watertight you
do need to check visually. A bad merge will immedi-
ately show up by the included image rendering with
garbled text. There are some extra safeguards in
the MkXL approach that are absent in the MkIV

Hans Hagen

TUGboat, Volume 45 (2024), No. 1 105

solution which is why the latter is considered an
experiment and not loaded by default. I could spend
time on it but as we moved on to LMTX (the MkXL

LuaMetaTEX combination) it makes little sense.
Does the story end here? Not entirely. Occa-

sional validation requirements have a side effect that
some users have to fix old PDF files to suit demands.
Let’s mention a few issues users run into:

• Embedded so-called Type 0 fonts can lack a
/CIDSet and/or CIDToGIDMap entry that needs
to be added.

• A document can refer to external files that are
not embedded. Normally these are in WinAnsi

encoding and page stream indices match encod-
ing indices so we can smuggle these files into the
document.

• Font resources can be embedded multiple times
with different subsets, likely per page. Different
names are used, which complicates matters, but
it makes sense to try to merge them.

• Fonts with the same name but in Type 1 as well
as TrueType format, both using the original
indices, occur in the same document so they can
be merged.

We can deal with this quite well if we have
the original fonts available. Failures to do this well
immediately show up so we can again trust our eyes.
In an automatic large scale fix operation we can built
in some safeguards.

Then, as we’re fixing included pages anyway, we
may as well try to conform to standard even better,
for instance:

• Instead of gray scales CMYK and RGB colors are
used, or one of these color spaces is not handled
right and we need to remap colors. It can be
a side effect of lazy programming in producer
software.

• Extended graphic states are used, for instance
for transparencies while there is no transparency
actually being used. These can be side effects
of producers just emitting as much as they can.

• Irrelevant grouping can be applied to pages and
/XObjects. In fact, when a validator complains
we can just as well get rid of them.

For such things we need to fix the /Resources
as well as the page content streams so it adds a little
more overhead but when we just convert documents
it is a one-time effort so a few more milliseconds
won’t be a big burden.

But discussing these details doesn’t really fit in
this font discussion so we end by mentioning that we
have a framework in place for plugging in fixers of any
kind. The approach is to configure what standard
to use and what fixes to apply. Only time will tell if
this is sufficient. Most users probably never have to
worry about it anyway.

⋄ Hans Hagen
Pragma ADE

Including PDF files

Is a given input a valid TEX 〈number〉?

Udo Wermuth

Abstract

This article discusses the question of how one can
determine if a given string of characters represents
a valid number for TEX. A macro that looks and
behaves like a Boolean conditional is implemented
to answer the question.

1 Introduction

TEX operates with several data types and structures.
We all know, for example, characters, numbers, di-
mensions, skips, token lists, boxes, files, and mac-
ros. Such structures are created and manipulated
during the text processing and sometimes we need
to get information about the currently stored con-
tents. Thus, TEX provides a couple of conditional
tests to gain insights; see pages 209–210 of The TEX-
book [1]. Except for one, all of these tests return a
Boolean result, i.e., true or false, and allow there-
fore two branches with different text and code. Five
tests compare two items and two of them require
a relation for the test as they don’t test only for
agreement of a single common characteristic.

All Boolean conditionals use the same scheme
“\if... 〈true branch〉\else 〈false branch〉\fi” in
which the \else and 〈false branch〉 can be omitted
if this branch is empty. The structure itself is ex-

pandable ([1], p. 213) and the conditionals can be
nested as TEX keeps track about the control words
\if..., \else, and \fi even if they aren’t executed;
conditionals are skippable ([1], p. 211).

Plain TEX provides the command \newif so
that users can create new Boolean conditionals ([1],
p. 211). The user must set the conditional: Whatever
the flag should mean its result must be computed be-
fore. The names of these flags must start with \if

and thus these conditionals match the above scheme.

For example, TEX has no built-in test for the
question if a given input string represents a valid
number. So one must code a macro for this test and
then a user-created Boolean conditional can be set
to true or false. Unfortunately, the macro that must
be coded turns out to be rather complex.

The TEX FAQ (accessible through TUG’s In-
ternet site or https://texfaq.org/FAQ-isitanum)
contains information about this question. It focuses
on short code snippets and so it limits itself to a dis-
cussion about “Is the input a not too large signed or
unsigned decimal number?” without giving an an-
swer. Similar limitations occur in the code shown

106 TUGboat, Volume 45 (2024), No. 1

on page 361f. of https://ctan.org/tex-archive/
info/apprendre-a-programmer-en-tex/output/

apprendre-a-programmer-en-tex.pdf.

Encodings. TEX knows many encodings for inte-
gers ([1], p. 269 and p. 118): decimal, octal, hexa-
decimal, and as an alphabetic constant. It accepts
numbers in the range from −231 + 1 to 231 − 1. For
example, valid numbers are:

+-"FF (a hexadecimal number; value −255),
+- -+"FF (another hexadecimal number; 255),
-’777 (an octal number; −511),
‘a (an alphabetic constant; 97),
+2147483647 (= 231−1, the largest number)

whereas 2147483648 (= 231) is invalid as it’s out of
TEX’s range.

To check all cases that TEX allows as the encod-
ing of a number and to do a range check is an un-
necessary effort for most macro packages with user-
supplied integer arguments. Only if the macro of-
fers an interface for receiving integers from external
sources does one need to implement TEX’s syntax
rules.

Contents. This article describes how to implement
a TEX macro looking like a Boolean conditional that
decides if a given input string forms a valid number.
The macro is named \ifisint.

Section 2 lists a few expectations that the con-
ditional should fulfill. Section 3 contains the code
for \ifisint.

2 Expectations a.k.a. goals

Let’s state as precisely as possible what we want to
achieve with \ifisint.

(1) A Boolean conditional should be coded that
has a structure similar to the other Boolean condi-
tionals of TEX. It carries the name \ifisint. The
argument that is tested for being a valid TEX num-
ber is delimited by \Boolend. Except for this control
word the structure is familiar: \ifisint 〈argument〉
\Boolend 〈true branch〉\else 〈false branch〉\fi.

The conditional itself doesn’t output anything;
only the branches might output something.

(2) Any valid number for TEX in any allowed
encoding either unbraced and then followed by any
number of spaces or between braces and no spaces in
front of \Boolend is recognized by \ifisint and the
tokens in 〈true branch〉 are processed. Any other in-
put makes TEX execute 〈false branch〉 if it is present.

(3) Of course, not all characters might appear in
〈argument〉. For example, TEX’s comment character,
the percent sign, is never part of a number; TEX
reports an error if \Boolend is commented out. On

doi.org/10.47397/tb/45-1/tb139wermuth-isint

Udo Wermuth

the other hand, the input “2^3” should throw no
error message although the math shifts are missing.

The input “{2^3}” can be passed to any macro
as an argument without error. But without braces
“2^3” as a single argument throws an error if the
argument is not delimited. Entered as 〈argument〉
to \ifisint there should not be an error message.

Not all of TEX’s special characters can occur.
For example, a single ‘{’ starts a group and without
an ending ‘}’ TEX will report an error.

If a user wants to test any input string with-
out error messages, TEX’s special characters need
other category codes. Plain TEX provides the macro
\dospecials that helps in this task; see page 380
of [1]. Furthermore, TEX’s special double-hat nota-

tion ([1], p. 45; “hat” p. 369) doesn’t work if ‘^’ does
not have category 7. The valid encoding of −1 as
“^^m^^31” is then rejected. So leave the hat charac-
ter as special if that is possible.

(4) The 〈argument〉 should receive written-out
input. It doesn’t make sense to test data stored in,
say, a \count register to find out if it represents a
valid TEX number. But a simple macro that stores a
number in its replacement text should be accepted;
undefined macros shall be reported.

This makes \ifisint different from, for ex-
ample, \ifodd, as this conditional accepts, for ex-
ample, count registers for its test. With \ifisint,
code this: \expandafter \ifisint \the\count〈n〉
\Boolend. Of course, if “〈n〉” isn’t allowed after
\count, say, because n > 255, an error is raised.

(5) The conditional must be skippable, i.e., the
following input with nested \ifs

\iffalse\ifisint 117\Boolend\message{A}%

\else\message{B}\fi

\else\message{C}\fi

generates no error message and outputs “C” on the
terminal.

(6) It is not expected that the new conditional
\ifisint is expandable.

3 The code for \ifisint

What is a valid integer? This is specified in detail on
pages 268–269 of [1]. There are four types of integers
in 〈normal integer〉: a) the 〈integer constant〉, b) the
〈octal constant〉 that starts with a right quote, c) the
〈hexadecimal constant〉 that starts with the ditto
mark, and d) the alphabetic constant built from a
left quote and a 〈character token〉. We are not inter-
ested in the syntactic quantity 〈internal integer〉 as
it stands for valid integers stored in control words of
TEX; see page 271 of [1]. Any type can be followed by
an optional space. Moreover, integers can have signs

TUGboat, Volume 45 (2024), No. 1 107

of category 12: ‘+’ and ‘−’. One can use a chain of
signs and separate them by spaces: Page 268 defines
〈plus and minus〉 and on page 269 it’s stated that
in 〈optional signs〉, the signs might be followed by
〈optional spaces〉.

And what does TEX do if it expects a number
but finds none? For an answer we have to look into
[2], part 26, “Basic scanning subroutines”. Sections
440–446 contain the code for the scan int procedure
that reads a number. Here we also find the three
error messages that can occur. Section 442 presents
the first error message “Improper alphabetic con-
stant”, section 445 contains “Number too big”, and
section 446 includes the code for the third message
“Missing number, treated as zero”.

The last message tells us what TEX does if, for
example, a letter is read but a digit was expected:
It recovers by inserting the number 0; nothing is
removed from the input. In the first error it hap-
pens too, as explained in the help text. TEX uses
its largest known integer 2147483647 when it finds
a number whose absolute value is too big; again, in-
formation from the help text. In this case all digits
of the large number are read and digested by TEX.

Analysis. Thus, in essence there are six cases that
our new macro must distinguish.

1. TEX reads a valid number; no more input.
2. TEX reads a valid number; more input available.
3. TEX doesn’t find a number, uses 0 instead; no

more input.
4. TEX doesn’t find a number, uses 0 instead; more

input available.
5. TEX reads a number that’s outside of its range,

uses 2147483647 instead; no more input.
6. TEX reads a number that’s outside of its range,

uses 2147483647 instead; more input available.

Only case 1 is a valid TEX number. When we
are able to determine if more input is available then
cases 2, 4, and 6 are detectable.

Only the following input strings fulfill case 3:
the empty input, ‘’’, ‘"’, and ‘‘’. All can be preceded
by any number of signs.

Case 5 remains. To distinguish it from case 1
we must be able to check the infinite number of in-
puts that represent the largest number of TEX. The
number is infinite as we can always add another plus
or minus sign and more leading zeros in the input.

What we need is a canonical form into which we
transform the input. With unsigned numbers only a
few forms for case 3 remain. An unsigned number
with exactly one leading zero leaves for case 5 only
three forms: the largest number with a leading zero
in decimal, octal, and hexadecimal notation.

Is a given input a valid TEX 〈number〉?

Thus, a couple of comparisons solve the main
task if we find answers to the following problems.

A. Find a way to detect if the number is followed
by more input.

B. Find a way to construct the canonical form.

Problem A is solved with an assignment of the
input string to a count register inside an hbox. This
box is empty if only a number is input.

\setbox0=\hbox{\count255=<input>}%

\ifdim\wd0>0pt % <input> is not a number

Problem B is solved with two macros: The first
removes the signs and the second leading zeros but
also assures that one is present. They use the tech-
nique called tail recursion ([1], p. 219) to do their
job. For example, the following code removes signs.

\def\II@rmsign #1{\ifx#1+\else\ifx#1-\else

\II@endrm#1\fi\fi\II@rmsign}

\def\II@endrm #1\fi\fi#2{\fi\fi#1}

If the argument to \II@rmsign is ‘+’ or ‘−’, one of
the two \ifx becomes true, the sign is gobbled as
nothing is done in the branch, but at the end the
macro is called again. The macro stops if the argu-
ment isn’t a sign; a trick to shuffle the argument and
the \fis is needed, though. To make sure that the
macro stops we add a sentinel, the letter ‘W’, to the
input. This moves the detection of a bad alphabetic
constant from case 3 to the box-width check.

But this solution has a shortcoming. It removes
not only signs but also signs in curly braces, while
such symbols aren’t allowed in a valid number. Well,
the validity of the number is determined by other
means. We don’t care that valid and invalid numbers
are mapped to the same canonical form at this stage.

To summarize: We do the following steps in a
TEX macro.

Step 1: 1) Remove signs; add sentinel. 2) Test that
case 3 is excluded; otherwise return false.

Step 2: Create canonical form.
Step 3: 1) Assign the input to a \count register in-

side an hbox. 2) Test that the box width is
the width of the sentinel; 3) otherwise re-
turn false (cases 2, 4, 6).

Step 4: 1) Return true if the number isn’t TEX’s
maximum. 2) Otherwise test if the canonical
form is TEX’s maximum. If yes, return true
(case 1). 3) Otherwise return false (case 5).

Note the procedure works with errors that are
generated intentionally. As TEX limits the number
of errors in a single paragraph to 100 ([2], §76) the
macro shouldn’t be applied, for example, in a loop.

One task is still open: How to suppress TEX’s er-
ror messages? We cannot do that but we can switch

108 TUGboat, Volume 45 (2024), No. 1

to \batchmode so that the messages aren’t displayed
on the terminal. The terminal gets a blank line when
we switch between \batchmode and another mode.

There is a little problem as modes are globally
set and in the original TEX we don’t know to which
mode we must return. The macro uses a configurable
parameter; the default is \errorstopmode.

My implementation. Note, Step 1 includes the
expansion in an \edef; see the discussion in sec-
tion 2, no. 4. And \Boolend is given the signifi-
cance of \iffalse to make the macro skippable; see
section 2, no. 5. Moreover, \hbox{\II@font W} has
width 10.2778 pt if \II@font represents cmr10.

\catcode‘\@=11 % use the private prefix ‘‘II@’’

\newif\ifII@itis % main result of the macro

%% helper macros

\def\II@rmsign #1{\ifx#1+\else\ifx#1-\else

\II@endrm#1\fi\fi\II@rmsign}

\def\II@endrm #1\fi\fi#2{\fi\fi#1}

\def\II@zeros #1{\ifx#1’’\else\ifx#1""\else

\II@cont#1\fi\fi\II@zeros}

\def\II@cont #1\fi\fi#2{\fi\fi\II@hdlzero#1}

\def\II@hdlzero #1{\ifx#10 \else

\II@xchgfi #1\fi\II@hdlzero}

\def\II@xchgfi #1\fi#2{\fi\ifx#1‘\else0\fi#1}

%% constants with the sentinel ‘W’

\def\II@cfd{02147483647W}% canonical forms with

\def\II@cfh{"07FFFFFFFW}% W of TeX’s max integer

\def\II@cfo{’017777777777W}% in dec, hex, oct

\def\II@W{W}\def\II@hexW{"W}% all unsigned input

\def\II@octW{’W}% with W for which TeX inserts 0

%% assignments

\let\Boolend=\iffalse \font\II@font=cmr10

\let\IIcurrentmode=\errorstopmode % CONFIGURE

%% main macro

\def\ifisint #1\Boolend{\II@itisfalse % see S1.2

\edef\II@digs{\II@rmsign#1W}% S1.1 with 2 \edef

\edef\II@digs{\expandafter\II@rmsign\II@digs}%

\ifx\II@digs\II@W\else\ifx\II@digs\II@octW

\else\ifx\II@digs\II@hexW\else % S1.2 finished

\edef\II@cf{\expandafter\II@zeros\II@digs}% S2

\wlog{=== start ignore}\batchmode\begingroup

\setbox0=\hbox{\count255=\II@cf

\xdef\II@val{\the\count255}}%

\setbox0=\hbox{\II@font\count255=#1W}% S3.1

\xdef\II@wd{\the\wd0}%

\endgroup\IIcurrentmode\wlog{=== stop ignore}%

\ifdim\II@wd=10.2778pt % \wd of hbox ‘W’; S3.2

\II@itistrue \ifnum\II@val=2147483647 % S4.1

\ifx\II@cf\II@cfd

\else\ifx\II@cf\II@cfh

\else\ifx\II@cf\II@cfo % S4.2

\else \II@itisfalse % S4.3

\fi\fi\fi\fi

\else \II@itisfalse % S3.3

\fi\fi\fi\fi \ifII@itis}

\catcode‘\@=12

Udo Wermuth

A few remarks. The second \edef for \II@digs
can be deleted if macro expansion as in section 2,
no. 4, is not needed. Currently it’s possible to code:

\def\mynum{-1234 }\ifisint\mynum\Boolend ...

This expansion is performed outside of \batchmode
so that errors are shown to the user. I did this to
avoid misinterpretations if the user enters a faulty
sequence and thinks the contents of the macro was
tested, i.e., if the user enters something erroneous
like this: \ifisint\maynum\Boolend ...

The control word \Boolend is used in the macro
\ifisint as delimiter, i.e., \ifisint has a delim-

ited parameter ([1], p. 203f.). But in the case of
delayed execution of \ifisint, for example, if the
primitive \expandafter precedes it, the user must
be careful not to execute \Boolend.

As mentioned above, \Boolend receives via a
\let-assignment the meaning of \iffalse. Thus if
TEX executes \Boolend it also executes \ifisint’s
〈false branch〉. Therefore, the use of a \count reg-
ister in section 2, no. (4), requires a space between
the number of the \count register and the delim-
iter \Boolend to avoid the erroneous execution of
\Boolend that destroys the macro \ifisint.

A second \let-assignment gives the control se-
quence \IIcurrentmode the meaning of TEX’s prim-
itive \errorstopmode. A user can change this by
another \let-assignment so that \ifisint returns
to the mode that is currently active. (With ε-TEX
one can query the current mode and return to it
after \ifisint has done its work.)

Execution time. TEX needs more time to exe-
cute \ifisint than it needs to perform \ifodd,
i.e., the only built-in conditional with a single num-
ber. Measurements on my system with my own TEX
port in Pascal show that \ifisint is ≈ 8.5 times
slower than \ifodd when the “real” times of 100,000
calls of “\ifodd 255\fi” and of 100,000 calls of
“\ifisint 255\Boolend\fi”, with the additional
assignment “\def\wlog #1{}”, are compared.

References

[1] Donald E. Knuth, The TEXbook, Volume A of
Computers & Typesetting, Boston, Massachusetts:
Addison-Wesley, 1984.

[2] Donald E. Knuth, TEX: The Program, Volume B of
Computers & Typesetting, Boston,
Massachusetts: Addison-Wesley, 1986.

⋄ Udo Wermuth
Dietzenbach, Germany
u dot wermuth (at) icloud dot com

TUGboat, Volume 45 (2024), No. 1 109

Is a given input a valid TEX 〈dimen〉?

Udo Wermuth

Abstract

This article discusses the question of how one can
determine if a given string of characters represents
a valid dimension for TEX. A macro that looks and
behaves like a Boolean conditional is implemented
to answer the question.

1 Introduction

This text is a follow-on article to [3], which explains
how one can decide if a given string of characters
is a valid number for TEX; the macro implemented
there is named \ifisint. In the current article we
look at the problem to decide if a given input is a
valid dimension for TEX.

This paper also explains the implementation of
a macro named \ifisdim with the structure known
from \ifisint. It is essential that a reader of this
article has studied [3] as this text often refers to [3]
without repeating the introduced techniques.

Contents. This article follows the analysis found
in [3] and describes how to implement a TEX macro
looking like a Boolean conditional to answer the
question of the title; as mentioned above, the macro
is named \ifisdim. The expectations formulated
in [3], section 2, apply to \ifisdim accordingly.

Section 2 lists facts about TEX’s dimensions
that are important to understand \ifisdim. Sec-
tion 3 contains the code for \ifisdim.

2 About dimensions

It’s too näıve to say that a dimension is a TEX num-
ber and a unit; what’s correct is that a dimension
consists of a numeric part and a unit ([1], pp. 270–
271). One option for the numeric part is a TEX
〈number〉, i.e., an integer. All encodings (see [3]) are
allowed but not their full range; see below. Another
option is the 〈decimal constant〉, i.e., a number fol-
lowed by a period or comma and a sequence of digits
that builds the fraction. TEX reads all digits that it
finds after the period or comma but at most the first
seventeen can influence the value of the dimension;
see §452 of [2].

TEX respects different traditions of writing dec-
imal constants and therefore accepts two symbols as
the separator between the integer part and the frac-
tion. TEX also respects the history of different print-
ing traditions and comes with plenty of units. There
are nine 〈physical unit〉s ([1], p. 57): One can use
pt (point) and pc (pica) from the American stan-

doi.org/10.47397/tb/45-1/tb139wermuth-isdim

Is a given input a valid TEX 〈dimen〉?

dardization in the 19th century or dd (didot point)
and cc (cicero) based on the practice of François-
Ambroise Didot in the 18th century. Next, TEX ac-
cepts in (inch) or units in the metric system: mm
(millimeter) and cm (centimeter). It introduced bp

(big point) and sp (scaled point). Moreover, TEX
also knows about traditional units used by typeset-
ters, ex (x-height) and em (quad width), that depend
on the font that’s currently in use ([1], p. 60).

The units ex and em don’t belong to the physi-
cal units as another parameter is required to deter-
mine their values: a font. Here we fix the font to
TEX’s default font cmr10 and include both units in
the tests of the new macro \ifisdim.

The two syntactic quantities 〈mudimen〉 and 〈fil
dimen〉 carry the word “dimen” in their description
but they cannot be assigned to a \dimen register.
〈mudimen〉 ([1], p. 270) must be used with a muskip,
which is a glue specification. 〈fil dimen〉 ([1], p. 271)
only occurs in stretch or shrink components of skips
and muskips; again it’s part of glue specifications.
\ifisdim doesn’t recognize these quantities as valid
TEX dimensions.

A valid unit is either one of the nine 〈physical
unit〉s that can be preceded by the keyword true

to protect it against magnification or the two font-
dependent units em and ex. All units are keywords so
that they can be written with category 11 or 12 char-
acters, in upper-, lower-, or mixed-case, and with
optional spaces in front of them; see [1], p. 268.

Dimensions are internally represented by TEX
in scaled points and TEX uses the unit pt if it has to
show a stored one. The numeric part of a dimension
in scaled points must lie between−230+1 and 230−1.
Thus, the range is smaller than the one for numbers;
see [3]. 1 sp is a very small distance, 65536 sp give
1 pt and that means the maximum decimal constant
for the unit pt is much smaller than 230 − 1.

Table 1: Ranges for physical units

unit max. decimal constant
†

shown as

pt 16383.99999237060546874 16383.99998pt∗

pc 1365.33333587646484374 16383.99994pt
in 226.70540618896484374 16383.99915pt
bp 16322.78954315185546874 16383.99998pt∗

dd 15312.02584075927734374 16383.99997pt
cc 1276.00215911865234374 16383.99995pt
mm 5758.31742095947265624 16383.99997pt
cm 575.83174896240234374 16383.99997pt
sp 1073741823.99999999999999999 16383.99998pt∗

Using the \fontdimen of cmr10:
ex 3805.32811737060546874 16383.99997pt
em 1638.39749908447265624 16383.99991pt

† With the (at most) seventeen significant decimal places.
∗ TEX represents this value as 230 − 1 sp = 1073741823 sp.

110 TUGboat, Volume 45 (2024), No. 1

The line in Table 1 for the unit pt tells us that
an infinite number of input strings with this unit are
mapped to TEX’s largest dimension. Plain TEX sets
\maxdimen to 16383.99999 pt but TEX shows it as
16383.99998 pt. When TEX has to show a dimension
it outputs at most five digits ([2], §103).

Enter the values 16383.99997711181640625 pt,
16322.78952789306640625 bp, and 1073741823 sp to
specify \maxdimen with the smallest decimal con-
stants for the three units that can do that.

3 The code for \ifisdim

A valid dimension is (1) an integer followed by a
valid unit or (2) a 〈decimal constant〉 with a valid
unit as described in section 2. Thus, we encounter
the three error messages of TEX when it reads an
integer as discussed in [3]. The scan dimen proce-
dure in [2], part 26, adds a few new error situations.
Sections 456 and 459 contain the message “Illegal
unit of measure” once for dimensions and once for
〈mudimen〉. And section 460 includes the error mes-
sage “Dimension too large”. In total we have to deal
with five error messages that TEX might show when
it reads a dimension.

The first new error message means that TEX
has found (or inserted) a numeric part and expects
now one of the valid units—maybe prefixed with
the keyword true. If it doesn’t find one it inserts
the unit pt to get a valid dimension. The numeric
part might have been generated by TEX if it wasn’t
able to read a number, i.e., TEX might have inserted
a zero as described in [3].

The second error message tells us that the com-
bination of numeric part and unit results in a scaled-
point value larger than 1073741823 sp. The help text
of the error message informs us that TEX throws the
input away and uses its largest dimension instead.

Analysis. Let’s list all possible scenarios. Several
of the following cases appear with and without more
input. We know how to handle this from \ifisint

so it isn’t mentioned here again. Only if it is impor-
tant that no more data is available is it handled as
a separate case.

1. TEX reads a valid dimension.

2. TEX doesn’t find a numeric part, uses 0 instead,
finds a valid unit.

3. TEX doesn’t find a numeric part, uses 0 instead,
doesn’t find a unit, uses pt instead.

4. TEX doesn’t find a numeric part, uses 0 instead,
finds an invalid unit, uses pt instead.

5. TEX finds as numeric part a number larger than
2147483647, uses 2147483647 instead, finds a

Udo Wermuth

valid unit, thus the dimension is too large and
TEX uses \maxdimen instead.

6. TEX finds as numeric part a number larger than
2147483647, uses 2147483647 instead, finds no
valid unit, inserts pt, thus the dimension is too
large and TEX uses \maxdimen instead.

7. TEX finds a numeric part and a valid unit but
the combination creates a dimension that’s too
large, uses \maxdimen instead.

8. TEX finds a numeric part but no unit, inserts
unit pt and builds a valid dimension.

9. TEX finds a numeric part but no unit, inserts
unit pt, the combination creates a dimension
that’s too large, uses \maxdimen instead.

The list is much longer than the one in [3] for
\ifisint. But a second check shows that several
cases can be deleted. Cases 5 and 6 are just special
cases of 7 with more error messages. Next, cases 3, 8
and 9 can be avoided if the sentinel (see [3]) is a valid
unit, for example, mm. This gives a width for an hbox
with an assignment [3] that disagrees with the width
of the string ‘mm’. And this happens with case 4 too
as the invalid unit and the sentinel remain.

We are left with cases 2 and 7 for invalid dimen-
sions. Looking at [3] we are faced in essence with the
same cases but this time each case involves units.
For example, case 2 excludes input like “’pt” that
TEX transforms into “0pt”. So it looks like we have
to execute the three tests of [3] together with all
valid units. But no, it doesn’t hurt to exclude input
with invalid units. All we have to do is to check that
the input has at most three characters (without the
keyword true) and starts with ‘’’ or ‘"’. The in-
complete alphabetic constant is again moved; here
it destroys the unit and generates an error.

Case 7 remains. The solution in [3] was to use
a list of the canonical forms of the largest integer in
all encodings. So here we need a list of the canonical
forms for \maxdimen. But there seems to be no sim-
ple form for the infinitely many input strings that
represent \maxdimen, as we saw in Table 1.

In order to distinguish case 7 from case 1 we
need to do some calculations: We need to determine
the input value in scaled points and compare the
result against 230 − 1 sp. To do that without risk of
getting a false result we use three elements.

a. The integer part of the numeric part: \II@int.
b. The fractional part plus the unit: \II@frac.
c. The unit, maybe prefixed with true: \II@unit.

The key to success is the fact that in TEX the
range for numbers is larger than the range for di-
mensions expressed in scaled points. Thus the fol-
lowing computation doesn’t generate a “Dimension

TUGboat, Volume 45 (2024), No. 1 111

too large” error if \II@int is at most as large as the
integer part of the maximum decimal constant for
\II@unit according to Table 1.

\dimen255=\II@int\II@unit

\count255=\dimen255 % coerce dimension to number

\advance\count255 by \II@frac

\def\II@calc{\number\count255 }

\II@calc contains the sum of the number of scaled
points of \dimen255 and \II@frac; see [1], p. 270.

How do we get the required information? If
we have a dimension, \II@dist=\II@int\II@frac,
two assignments fill the variables, with an error mes-
sage if \II@dist contains neither a decimal point
nor a decimal comma.

\afterassignment\II@frac \II@int=\II@dist

It’s easy to avoid the error by inserting a zero.
It is not much harder to identify the unit. We

assign the digits of the fraction—after removing the
period or comma—to a \count register, leaving the
two characters of the unit. Using an hbox we can
distinguish the three strings ‘pt’, ‘bp’, and ‘sp’ by
their widths. (In general it is not possible to identify
all units, for example, the strings ‘bp’ and ‘dd’ have
the same width. But we are only interested in the
width if the dimension equals \maxdimen and that
cannot happen with ‘dd’; see Table 1.) The keyword
truemust also be considered; its width is subtracted
if the width of the hbox exceeds a certain value.

There is one problem: Keywords can be written
in different ways with lower- and uppercase charac-
ters; the characters might even be of category 12.
We need to transform them into a canonical form,
for example, lowercase letters, to get a unique width.

Thus we need to realize the following procedure.

Step 1: 1) Remove signs; add sentinel. 2) Test that
case 2 is excluded. 3) Otherwise return false.

Step 2: Get the parts: 1) \II@int, 2) \II@frac, and
3) \II@unit (as a width).

Step 3: 1) Assign the input to a \dimen register in-
side an hbox. 2) Test that the box width is
the width of the sentinel; 3) otherwise re-
turn false (includes cases with more data).

Step 4: 1) Return true if the dimension isn’t TEX’s
\maxdimen. 2) Otherwise test if \II@calc
is TEX’s \maxdimen. 3) If no, return false
(case 7). 4) Otherwise return true (case 1).

This procedure works with a lot of intentional
errors that TEX reports while \batchmode is active.
Thus TEX’s limit of 100 error messages per para-
graph ([2], §76) is reached much earlier than with
\ifisint.

My implementation. The following private con-
trol words—the two declarations \ifII@itis and

Is a given input a valid TEX 〈dimen〉?

\II@font, the macros \II@W, \II@octW, \II@hexW,
\II@rmsign, and \II@endrm, and the \let-assign-
ments \Boolend and \IIcurrentmode—are reused
from the code of [3]. Their code is marked with two
comment characters at the right end of the lines in
the following code. You might delete this code if you
load via \input the file that contains the code of [3].

\catcode‘\@=11

\newif\ifII@itis %% reused from \ifisint %%

\def\II@rmsign #1{\ifx#1+\else\ifx#1-\else %%

\II@endrm#1\fi\fi\II@rmsign}% remove signs: %%

\def\II@endrm #1\fi\fi#2{\fi\fi#1}% ‘+’ & ‘-’ %%

\let\Boolend=\iffalse \font\II@font=cmr10 % %%

\let\IIcurrentmode=\errorstopmode % CONFIGURE %%

\def\II@W{W}\def\II@octW{’W}\def\II@hexW{"W}% %%

%% declarations

\newdimen\II@frac

\countdef\II@cnt=255 \dimendef\II@dim=255

%% helper macros; some use \ifisint’s sentinel W

\def\II@bad #1#2#3#4#5#6\II@end{% numeric part

\def\II@id{#1W}% is missing but maybe with unit

\edef\II@X{#6}\ifx\II@X\empty

\edef\II@X{#5}\ifx\II@X\empty\else\II@Bad\fi

\else \edef\II@X{\II@mklc#2#3#4W}%

\ifx\II@X\II@rueW

\else\ifx\II@X\II@truW\II@Bad

\else \II@itistrue

\fi\fi\fi}

\def\II@rueW{rueW}\def\II@truW{truW}

\def\II@Bad{\ifx\II@id\II@W

\else\ifx\II@id\II@octW

\else\ifx\II@id\II@hexW

\else \II@itistrue

\fi\fi\fi}

\def\II@mklc #1{\if#1pp\else\if#1Pp\else

\if#1tt\else\if#1Tt\else

\if#1bb\else\if#1Bb\else

\if#1ss\else\if#1Ss\else

\if#1rr\else\if#1Rr\else

\if#1uu\else\if#1Uu\else

\if#1ee\else\if#1Ee\else

\II@endlc#1\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi

\fi\fi\fi \II@mklc}% ‘W’ and ‘m’ stop \II@mklc

\def\II@endlc #1\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi

\fi\fi\fi\fi#2{\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi

\fi\fi\fi\fi#1}

\def\II@getfrac #1mm\II@end{\global\II@frac=0#1}

\def\II@getcalc{%\II@calc=coerced\II@int\II@frac

\ifdim\II@unit=26.11119pt % \II@unit is ‘‘pt’’

\II@dim=\ifnum\II@int<16384

\II@int\else 0\fi pt

\else\ifdim\II@unit=27.77786pt % it is ‘‘bp’’

\II@dim=\ifnum\II@int<16323

\II@int\else 0\fi bp

\else\ifdim\II@unit=26.16673pt % it is ‘‘sp’’

\II@dim=\ifnum\II@int<1073741824

\II@int\else 0\fi sp

\else \II@dim=0pt \fi\fi\fi

112 TUGboat, Volume 45 (2024), No. 1

\II@cnt=\II@dim \advance\II@cnt by \II@frac

\edef\II@calc{\number\II@cnt}}

\def\II@point #1#2\II@end{% assign digits of the

\afterassignment\II@mklc % fraction to \II@cnt

\ifx#1.\II@cnt=0#2%

\else\ifx#1,\II@cnt=0#2%

\else \II@cnt=0#1#2%

\fi\fi}

\def\II@getunit #1{\afterassignment\II@hdlfrac

\II@cnt=#1\relax}

\def\II@rmtrue{\ifdim\wd0>40pt \the\II@dim

\else \the\wd0 \fi}

%% main macro

\def\ifisdim #1\Boolend{\II@itisfalse % S1.3

\edef\II@dist{\II@rmsign#1mm}% S1.1

\edef\II@dist{\expandafter\II@rmsign\II@dist}%

\expandafter\II@bad

\II@dist\empty\empty\empty\empty\II@end % S1.2

\ifII@itis % S4.1, S4.4

\wlog{=== start ignore}\batchmode\begingroup

\setbox0=\hbox{\II@font

\afterassignment\II@getfrac

\II@cnt=\II@dist\II@end % S2.2

\xdef\II@int{\the\II@cnt}}% S2.1

\setbox0=\hbox{\II@font

\afterassignment\II@point

\II@cnt=\II@dist\II@end}\II@dim=\wd0

\advance\II@dim by -17.80559pt % width ‘true’

\xdef\II@unit{\II@rmtrue}% S2.3

\setbox0=\hbox{\II@font\II@dim=#1mm% S3.1

\xdef\II@val{\ifdim\II@dim<0pt-\fi

\the\II@dim}}%

\xdef\II@wd{\the\wd0}%

\endgroup\IIcurrentmode\wlog{=== stop ignore}%

\ifdim\II@wd=16.66672pt % width ‘‘mm’’ S3.2

\ifdim\II@val=\maxdimen \II@getcalc

\ifnum\II@calc=1073741823 % S4.2

\else \II@itisfalse % S4.3

\fi\fi

\else \II@itisfalse % S3.3

\fi\fi \ifII@itis}

\catcode‘\@=12

References

[1] Donald E. Knuth, The TEXbook, Volume A of
Computers & Typesetting, Boston, Massachusetts:
Addison-Wesley, 1984.

[2] Donald E. Knuth, TEX: The Program, Volume B of
Computers & Typesetting, Boston,
Massachusetts: Addison-Wesley, 1986.

[3] Udo Wermuth, “Is a given input a valid TEX
〈number〉?”, TUGboat 45:1 (2024), 106–109.
tug.org/TUGboat/tb45-1/tb138wermuth-isint.

pdf

⋄ Udo Wermuth
Dietzenbach, Germany
u dot wermuth (at) icloud dot com

Udo Wermuth

TUGboat, Volume 45 (2024), No. 1 113

Visualizing the Mandelbrot set with

METAPOST

Max Günther

Abstract

With the advance of modern programming languages
allowing for parallelized and optimized computation,
visualizing the Mandelbrot set has become easier
than ever before. METAPOST was not designed for
such time-consuming tasks, nevertheless it has sur-
prisingly acceptable performance.

1 Introduction

The Mandelbrot set is a set of points in the complex
plane. A point c is part of this set if the sequence zn
defined as zn+1 = z2

n
+ c with zn, c ∈ C and z0 = 0

does not diverge to infinity [1, 2]. In practical appli-
cations, it is impossible to perform an infinite number
of iterations for zn. For this reason we define a max-
imum number of iterations nmax. In addition, we
can stop the iteration as soon as the norm of the
position vector z⃗n exceeds a radius of 2, since it can
be shown that in this case zn will eventually diverge
to infinity [4].

Herbert Voß has already implemented an al-
gorithm for visualizing the Mandelbrot set in the
German journal DTK [3]. My goal was to port his
code from Lua to METAPOST, examining how it
will perform and what difficulties will arise in this
process.

2 Where are the complex numbers?

The first obstacle I encountered was the lack of com-
plex numbers in METAPOST. To be fair, it is pretty
unlikely that you will need complex numbers when
creating graphics, so nobody bothered to include
them. Luckily, the calculation can be performed
using basic algebra!

Recall that a complex number a = x+yi consists
of both a real part x and an imaginary part y, which
can be used to represent the complex number as a
point in the complex plane, as shown in figure 1.
It is worth noting that this is a two-dimensional
coordinate system, which is (of course) supported by
METAPOST.

We also need to be able to add and square com-
plex numbers. By looking at the real and imaginary
part of a complex number separately, we can calcu-
late a+ b and a2 with ease:

(x+ yi) + (u+ vi) = (x+ u) + (y + v)i

(x+ yi)2 = x2 − y2 + 2xyi

Im

Re

c = 1 + 0.75i
0.75

1

√ 1
2 +

0.7
5
2

Figure 1: The complex number c = 1 + 0.75i in the

complex plane. Re is the real axis, Im the imaginary

axis. The equation notated diagonally uses Pythagoras’

theorem for calculating the distance between point c

and the origin of the coordinate system.

3 Several arithmetic overflows later. . .

After successfully setting up the innermost loop and
checking that the sequence zn has been calculated
correctly, I tried to integrate the two outer loops.
During this stage I encountered multiple arithmetic
overflows. The mistake was that I carelessly mixed
the operators = and := in the loop body. An equal
sign (without the colon) is the instruction for solv-
ing linear equations, not the assignment operator.
This resulted in unnecessarily constructing a gigantic
equation, too huge to be handled by METAPOST.

4 Let it be colorful!

At this point the Mandelbrot set was easy to recog-
nize, but rather dull: each pixel belonging to the set
was colored black, the rest was white. To uncover
more detail of the Mandelbrot set — especially in the
aura—we can use the escape time algorithm. The
color of a pixel depends on the number of iterations n
completed before the norm of the position vector z⃗

exceeds the radius of 2. In Voß’ implementation,
this results in a value between 0 and 255; however,
METAPOST expects RGB values between 0 and 1.
For that, we can use the following equation:

(nmax − n)

nmax

5 Optimizing the code

To speed up the computation, I implemented the
following optimizations:

1. Extract constants (like dx and dy) from the loop
body to prevent unnecessary computation.

2. Square Pythagoras’ theorem, so sqrt(re**2

+ im**2) > 2 becomes re**2 + im**2 > 4.

3. Fill the whole image with black and only draw
pixels not belonging to the Mandelbrot set.

doi.org/10.47397/tb/45-1/tb139guenther-mandelbrot

Visualizing the Mandelbrot set with METAPOST

https://doi.org/10.47397/tb/45-1/tb139guenther-mandelbrot

114 TUGboat, Volume 45 (2024), No. 1

Figure 2: The output of the METAPOST program.

The generation of this image with a resolution of

1000 by 1000 pixels took about three minutes on an

11th Gen Intel i7. The following values were used:

xmin = −2, xmax = 0.5, ymin = −1.25, xmax = 1.25,

nmax = 200 and res = 1000.

The last optimization has the positive side effect
of reducing the number of conditional statements
needed for drawing a pixel in the correct color.

6 Conclusion

Trying to implement Herbert Voß’ algorithm for vi-
sualizing the Mandelbrot set was a great experience.
After about 3.5 hours of tinkering I finally achieved
convincing results. I enjoyed the process and now
feel more confident about working with METAPOST

in the future.
Figure 2 shows the final image of the “Apfel-

männchen”, as this detail of the Mandelbrot set is
called in Germany, because it is reminiscent of a man
rotated by 90 degrees. The source code is displayed
in section 7. Feel free to try it out by yourself and
play around with the values to explore different parts
of the Mandelbrot set.

7 Final code

Save the following code as mandelbrot.mp and run
it using mpost mandelbrot.mp. The resulting image
is called mandelbrot.png.

outputtemplate := "%j.png";

outputformat := "png";

beginfig(1)

numeric x_min, x_max, y_min, y_max, res;

x_min := -2; x_max := 0.5;

y_min := -1.25; y_max := 1.25;

res := 1000;

numeric n_max, dx, dy; n_max := 200;

dx := (x_max - x_min) / res;

dy := (y_max - y_min) / res;

fill (0,0)--(res-1,0)--(res-1,res-1)

--(0,res-1)--cycle;

for x=0 upto res - 1:

for y=0 upto res - 1:

numeric re, im, old_re, old_im, a, b;

re := 0; im := 0;

re_old := 0; im_old := 0;

a := x * dx + x_min;

b := y * dy + y_min;

for n=0 upto n_max:

numeric squared_re, squared_im;

squared_re := re**2;

squared_im := im**2;

re_old := squared_re - squared_im;

im_old := 2.0 * re * im;

re := a + re_old;

im := b + im_old;

if squared_re + squared_im > 4:

numeric c; c := (n_max - n) / n_max;

numeric o; o := 0.95;

fill (x,y)--(x+o,y)--(x+o,y+o)

--(x,y+o)--cycle withpen pencircle

scaled .1pt withcolor (c, c, c);

fi;

exitif squared_re + squared_im > 4;

endfor;

endfor;

endfor;

endfig

end

References

[1] B. Fredriksson. An introduction to the
Mandelbrot set, Jan. 2015. www.kth.se/

social/files/5504b42ff276543e4aa5f5a1/

An_introduction_to_the_Mandelbrot_Set.

pdf

[2] J. Montelius. Generating a Mandelbrot Image,
2018. people.kth.se/~johanmon/courses/

id1019/seminars/mandel/mandel.pdf

[3] H. Voß. Chaotische Symmetrien mit Lua
berechnet. Die TEXnische Komödie, 32(3):51–57,
Aug. 2020. archiv.dante.de/DTK/PDF/

komoedie_2020_3.pdf

[4] E.W. Weisstein. The Mandelbrot set— from
Wolfram MathWorld. mathworld.wolfram.

com/MandelbrotSet.html

⋄ Max Günther

code-mg (at) mailbox dot org

www.guemax.de

Max Günther

https://www.kth.se/social/files/5504b42ff276543e4aa5f5a1/An_introduction_to_the_Mandelbrot_Set.pdf
https://www.kth.se/social/files/5504b42ff276543e4aa5f5a1/An_introduction_to_the_Mandelbrot_Set.pdf
https://www.kth.se/social/files/5504b42ff276543e4aa5f5a1/An_introduction_to_the_Mandelbrot_Set.pdf
https://www.kth.se/social/files/5504b42ff276543e4aa5f5a1/An_introduction_to_the_Mandelbrot_Set.pdf
https://people.kth.se/~johanmon/courses/id1019/seminars/mandel/mandel.pdf
https://people.kth.se/~johanmon/courses/id1019/seminars/mandel/mandel.pdf
https://archiv.dante.de/DTK/PDF/komoedie_2020_3.pdf
https://archiv.dante.de/DTK/PDF/komoedie_2020_3.pdf
https://mathworld.wolfram.com/MandelbrotSet.html
https://mathworld.wolfram.com/MandelbrotSet.html

TUGboat, Volume 45 (2024), No. 1 115

Semi-automated TikZ directed acyclic

graphs in R

Travis Stenborg

Abstract

Directed acyclic graphs (DAGs) are a key visualisa-
tion tool in graph theory. Semi-automated genera-
tion of TikZ code for rendering DAGs is introduced.
Automatic TikZ generation via the causalDisco

package of the R statistical programming language
is proposed. Such easy, rapid DAG generation for
LATEX environments alleviates the need for tedious
manual layout of DAG vertices and edges.

1 Directed acyclic graphs

Directed acyclic graphs (DAGs) are a type of math-
ematical graph structure consisting of vertices con-
nected by edges. DAGs have two properties that
distinguish them from general graphs. Firstly, DAGs
have edges with an associated direction defining an
order to the vertices (hence, directed). Secondly, the
edges never define a path wherein the starting vertex
of a path is also its ending vertex (hence, acyclic).

DAGs have applications in fields such as causal
data science [4], computational optimisation [5] and
even TEX paragraph aesthetics [7]. TikZ rendering
allows fine tuning of graph presentation, and easy
font matching with underlying LATEX documents.

2 The causalDisco R package

The “causal discovery” R package, causalDisco, can
autogenerate TikZ code to render DAGs from a con-
cise vertex and edge specification. A version (0.9.1)
is available from CRAN, but the more recent version
(0.9.3) from GitHub addresses rendering bugs. Ad-
ditionally, causalDisco has Bioconductor package
dependencies. A combined download call in R is:

BiocManager::install(c("graph", "RBGL"))

github_repo <- "annennenne/causalDisco"

devtools::install_github(github_repo)

3 Automated TikZ from R

Example R code to render a DAG in TikZ is given
below. A seven-vertex graph derived from coral reef
ecology [1] was used here.

dag_matrix = matrix(

c(0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0,

1, 1, 0, 0, 0, 0, 0,

1, 0, 1, 1, 0, 0, 0,

0, 1, 1, 0, 1, 0, 0,

0, 0, 0, 1, 0, 1, 0),

nrow = 7, ncol = 7, byrow = TRUE)

Specify matching matrix row and column names.

rownames(dag_matrix) <- c(

"a_nd1", "a_nd2", "a_nd3",

"b_nd4", "b_nd5", "b_nd6", "c_nd7")

colnames(dag_matrix) = rownames(dag_matrix)

Create a temporal adjacency matrix.

model <- causalDisco::tamat(

dag_matrix, c("a", "b", "c"))

Render TikZ and copy to clipboard.

causalDisco::maketikz(model, xjit = 0,

markperiods = FALSE, addAxis = FALSE,

varLabels = list(

a_nd1 = "Depth",

a_nd2 = "\\footnotesize Structural\\\\

\\footnotesize Complexity",

a_nd3 = "\\footnotesize Human\\\\

\\footnotesize Gravity",

b_nd4 = "MPA",

b_nd5 = "\\footnotesize Fishing\\\\

\\footnotesize Pressure",

b_nd6 = "\\footnotesize Reef Fish\\\\

\\footnotesize Biomass",

c_nd7 = "\\footnotesize Coral\\\\

\\footnotesize Cover")

)

By default, causalDisco generates \small ver-
tex labels. To better balance the size of graph vertices
with multiline vs. single line labels, judicious label
adjustment via \footnotesize was made.

4 Finishing touches

There is no shortage of learning material for TikZ
beginners [2, 6, 8, 10, 11, 12, 13, 14, 15, 16, 17].
Assuming TikZ basics are familiar, the causalDisco
manual recommends the following TikZ preamble.

\usepackage{tikz}

\usetikzlibrary{arrows, arrows.meta,

automata, backgrounds, shapes, snakes,

petri}

\usepackage{pgfplots}

The example causalDisco code copies TikZ
commands to the system clipboard. They should
be pasted into a TikZ \begin{tikzpicture} and
\end{tikzpicture} block. The compiled results
generate naked nodes, i.e. nodes without any encap-
sulating boundary. Here however, additional TikZ
shape calls, shown below, were manually added to
nodes to encircle them (hence, semi-automated).

\node (1) at (0,1) [shape=circle,draw]

{Depth};

The end result is given in Figure 1.

doi.org/10.47397/tb/45-1/tb139stenborg-dags

Semi-automated TikZ directed acyclic graphs in R

https://doi.org/10.47397/tb/45-1/tb139stenborg-dags

116 TUGboat, Volume 45 (2024), No. 1

Depth

Structural

Complexity

Human

Gravity

MPA

Fishing

Pressure

Reef Fish

Biomass

Coral

Cover

Figure 1: Directed acyclic graph visualising the causal structure of the influence of
marine protected areas (MPAs [9]) on reef fish biomass. Adapted from an example
in coral reef ecology [1]. Human gravity measures the human population near a reef,
divided by the square of the time it takes to travel to that reef [3].

Acknowledgements

This work was supported by the Australian Research
Council Training Centre in Data Analytics for Re-
sources and Environments (project ICI9010031).

References

[1] S. Arif, M.A. MacNeil. Utilizing causal
diagrams across quasi-experimental
approaches. Ecosphere, 13(4):e4009, 2022.

[2] I. Borja. An introduction to automata design
with TikZ’s automata library. TUGboat

44(1):102–107, 2023. doi.org/10.47397/tb/
44-1/tb136prado-automata

[3] J.E. Cinner, E. Maire, et al. Gravity
of human impacts mediates coral reef
conservation gains. Proc. Natl. Acad. Sci. USA,
115(27):E6116–E6125, 2018.

[4] G. Gao, B. Mishra, D. Ramazzotti. Causal
data science for financial stress testing.
J. Comput. Sci., 26:294–304, 2018.

[5] J.L. Gross, J. Yellen, P. Zhang. Handbook of

Graph Theory, 2nd Edition. Chapman and
Hall/CRC, 2013.

[6] G. Grätzer. More Math Into LATEX. Springer,
Cham, 5th ed., 2016.

[7] Y. Haralambous. TEX as a path, a talk
given at Donald Knuth’s 80th birthday
celebration symposium. TUGboat

39(1):8–15, 2018. tug.org/TUGboat/

tb39-1/tb121haralambous-knuth80.pdf

[8] S. Kottwitz. LATEX graphics with TikZ. Packt,
Birmingham, 2023.

[9] D. Laffoley, J.M. Baxter, et al. Ch. 29:
Marine protected areas. In World Seas:

An Environmental Evaluation, pp. 549–569.
Elsevier, second ed., 2019.

[10] C. Maggi. The DuckBoat: The Morse code of
TikZ. TUGboat 39(1):21–26, 2018. tug.org/
TUGboat/tb39-1/tb121duck-tikz.pdf

[11] C. Maggi. The DuckBoat: You do not need to
be Neo to cope with a TikZ matrix. TUGboat

41(1):20–25, 2020. tug.org/TUGboat/tb41-1/
tb127duck-matrix.pdf

[12] A. Mertz, W. Slough. Graphics with PGF and
TikZ. TUGboat 28(1):91–99, 2007.
tug.org/TUGboat/tb28-1/tb88mertz.pdf

[13] A. Mertz, W. Slough. A TikZ tutorial:
Generating graphics in the spirit of TEX.
TUGboat 30(2):214–226, 2009.
tug.org/TUGboat/tb30-2/tb95mertz.pdf

[14] T. Stenborg. A TikZ rendering of the
Arecibo message. TUGboat 44(3):375–377,
2023. doi.org/10.47397/tb/44-3/

tb138stenborg-arecibo

[15] M.R.C. van Dongen. LATEX and Friends.
Springer, Berlin, 2012.

[16] Z. Walczak. Graphics in LATEX using TikZ.
TUGboat 29(1):176–179, 2008.
tug.org/TUGboat/tb29-1/tb91walczak.pdf

[17] K. Wolcott. Three-dimensional graphics with
PGF/TikZ. TUGboat 33(1):102–113, 2012.
tug.org/TUGboat/tb33-1/tb103wolcott.

pdf

⋄ Travis Stenborg
Sydney, Australia
ORCID 0000-0002-2693-9628

Travis Stenborg

https://doi.org/10.47397/tb/44-1/tb136prado-automata
https://doi.org/10.47397/tb/44-1/tb136prado-automata
https://tug.org/TUGboat/tb39-1/tb121haralambous-knuth80.pdf
https://tug.org/TUGboat/tb39-1/tb121haralambous-knuth80.pdf
https://tug.org/TUGboat/tb39-1/tb121duck-tikz.pdf
https://tug.org/TUGboat/tb39-1/tb121duck-tikz.pdf
https://tug.org/TUGboat/tb41-1/tb127duck-matrix.pdf
https://tug.org/TUGboat/tb41-1/tb127duck-matrix.pdf
https://tug.org/TUGboat/tb28-1/tb88mertz.pdf
https://tug.org/TUGboat/tb30-2/tb95mertz.pdf
https://doi.org/10.47397/tb/44-3/tb138stenborg-arecibo
https://doi.org/10.47397/tb/44-3/tb138stenborg-arecibo
https://tug.org/TUGboat/tb29-1/tb91walczak.pdf
https://tug.org/TUGboat/tb33-1/tb103wolcott.pdf
https://tug.org/TUGboat/tb33-1/tb103wolcott.pdf

TUGboat, Volume 45 (2024), No. 1 117

Nodes and edges with METAPOST: The
MetaGraph environment

Federico García De Castro

1 Introduction
The aim of this article is to present MetaGraph, a set
of METAPOST macros and utilities developed over
the last couple of months as an open-ended environ-
ment for drawing graphs (in the sense of “nodes and
edges”), and intended to complement external graph
analysis engines with the versatility of programmatic
formatting.

After a quick glance at MetaGraph’s capabilities
through three demo graphs, the sections below offer
a general description of the system, highlighting the
data vs. procedure approach that makes it different
from the plotting routines typically available in those
external engines — with a special mention of TikZ —
and offering a general ‘feel’ for what this approach
entails and permits.

All graph-related techniques and terms men-
tioned here are used simply for illustration purposes,
and the details of what they mean in graph theory
or analysis do not matter much. What the ‘degree’
of a node illustrates in this or that example could
just as well have been illustrated by its ‘k-core num-
ber’, its various ‘centrality’ measures, or any such
node attribute — I will therefore not be discussing
these concepts in any depth. Similarly, I will not
go into much detail regarding METAPOST’s general
syntax — knowledge of METAPOST is surely a good
asset for using MetaGraph, but I don’t think it’s a
pre-requisite: the operations shown here should be
good base analogs for anyone potentially interested
in using the system, even without prior METAPOST

experience. I am happy to share the source code.

1.1 Three demo graphs
The graph in Figure 1 is a so-called ‘random geomet-
ric’ graph with 200 nodes and 860 edges, drawn with
a) two kinds of node marker (• and ◦) and b) “las-
sos”, that highlight two particular features of the
graph (resulting from two particular graph analysis
techniques).1

Figure 2 is a graph made from a much larger
set of data, but from an abstract point of view it is

1 For graph theory folks: The •-nodes are nodes with
‘revcore dependency’ equal to 0 (meaning that they are local
centers of density according to ‘reverse core decomposition’);
the groups of nodes lassoed in the figure are the node commu-
nities yielded by the ‘Louvain community detection’ algorithm.
Both things were computed in a graph-analysis engine, and
fed to MetaGraph in a ‘data file’, as will be explained in more
detail below.

Figure 1: A random geometric graph, 200 nodes and
860 edges

Figure 2: A region of Facebook, 4,039 nodes and 88,234
edges

essentially the same kind of object: a set of name-less
nodes and direction-less edges.2 The figure itself is a
much plainer representation of the graph — just black
node markers and grey edges — but there is nothing
to prevent the kind of lassoing, conditional format-
ting, or other graphic treatment that was done on
the first graph. The main reason to include Figure 2
here was to test the limits of MetaGraph; as it turns

2 These two graphs come from the documentation of the
Python library ‘Networkx’ at networkx.org/nx-guides/
content/exploratory_notebooks/facebook_notebook.html
and networkx.org/documentation/stable/auto_examples/
drawing/plot_random_geometric_graph.html.

doi.org/10.47397/tb/45-1/tb139garcia-metagraph

Nodes and edges with METAPOST: The MetaGraph environment

https://networkx.org/nx-guides/content/exploratory_notebooks/facebook_notebook.html
https://networkx.org/nx-guides/content/exploratory_notebooks/facebook_notebook.html
https://networkx.org/documentation/stable/auto_examples/drawing/plot_random_geometric_graph.html
https://networkx.org/documentation/stable/auto_examples/drawing/plot_random_geometric_graph.html
https://doi.org/10.47397/tb/45-1/tb139garcia-metagraph

118 TUGboat, Volume 45 (2024), No. 1

out, even its 88,234 edges are far from exhausting
METAPOST’s capacity (see section 3). The limit on
how large a graph MetaGraph can deal with is likely
to be practical rather than computational.

vii◦4
3/ii

IV

vii◦4
3/V

vii◦4
3

V2

ii2

V6
5

V
IIV6

4

IV4
7

vii◦7 /V
V

vii◦2

vii◦7/V

Vsus
7

IV4

2

ii7

I6

I6
4

ii6

V7/IV
I

V7

Figure 3: A directed graph of the harmonies of the first
prelude in J.S. Bach’s The Well-Tempered Clavier

The third demo graph is different in a couple of
deeper senses. It is a ‘directed’ graph — hence the ar-
rows in Figure 3 — and its nodes have names — hence
the node labels instead of markers. The visualization
in the figure features a) both a lasso and a shaded
region — for METAPOST the two things are not too
different, the former resulting from ‘draw dashed
evenly’, the latter from ‘fill’ — and b) conditional
formatting on the nodes and edges, according to node
‘degree’ and edge ‘weight’ (details in section 2.4).

It is this kind of graph that I have been working
on in the context of music-theory research, and it

is the need for chord-ciphers such as vii◦7/V
V , annoy-

ing outside of TEX, that led me to a) explore the
possibility of writing some useful macros; b) realize
how adequate METAPOST is for these matters; and
c) share the news. I imagine the truly easy han-
dling of nodes as LATEX expressions has wider appeal
(‘H2SO4’, etc.).

1.2 MetaGraph, TikZ, etc.
To be sure, most relevant external environments can
handle LATEX, ‘importing’ it or its output into their
workflow. In particular, TikZ (which handles TEX
natively, of course) has a truly sophisticated library
for graphs, which includes even algorithms that are
not present in all graph analysis engines — as well
as facilities to implement new ones. TikZ offers
options for the style, placement, coloring, and even
animation of nodes, as well as for (several) ways of

connecting them with edges. In addition, TikZ is
well integrated in the graph-analysis landscape, and
most engines have a backend to export their graphs
as TikZ code, just as they can typically export them
as matplotlib plots.

There is, however, little overlap between TikZ
and MetaGraph — in fact, just as little as there is
between MetaGraph and matplotlib. MetaGraph is
not intended to be a self-contained unit implement-
ing a comprehensive syntax for every possible node-
and edge-drawing need and option. If anything, it
pursues the opposite: as open-ended an environment
as possible, where the graph (its data, essentially)
is little more than ‘set up’ for later straightforward
drawing through METAPOST. The exact nature of
this approach, its possible benefits and utility, and
its difference with TikZ, will perhaps be clearer after
reading or even only surveying the sections below.

1.3 What is MetaGraph?
1.3.1 A set of METAPOST macros
In the strictest sense, MetaGraph is simply a set
of METAPOST macros: high-level shortcuts that ex-
pand into the plain METAPOST constructions that
draw edges, add node labels, etc.

For example, the allnodes macro expands to ‘0
upto last_node’, which one can use freely to loop,
‘for node = allnodes’. Another macro, addlabel,
expands to

addto currentpicture also label〈node-id〉
where label in turn stands for ‘nlabels〈node-id〉
shifted pos〈node-id〉’ — and so on: pos is itself a
macro (more on this in section 2.1).

There are also more complicated routines. When
drawing an edge (arrowedge or lineedge), the sys-
tem checks on the labels of the two nodes involved,
so that the edge is drawn starting and ending on the
corresponding intersection points, depending on var-
ious values such as labelpadding, edgeangle, etc.
There is a family of utilities — leftoflabel〈node〉,
belowrightoflabel〈node〉, abovelabel〈node〉, and
others — that return the coordinates of the requested
point, so that they can be used, for example, in the
drawing of lassos.

1.3.2 A graph-drawing system
Through macros like these — collected in the META-
POST file metagraph.mp — MetaGraph acts as an
interface between the actual node and edge data and
the METAPOST operations that are most commonly
useful to draw the actual graph out of those data.
In other words: given the node and edge data, there
are macros in MetaGraph that provide high-level,

Federico García De Castro

TUGboat, Volume 45 (2024), No. 1 119

graph-oriented utilities to have METAPOST produce
the images.

But these ‘node and edge data’ are expected
to come from somewhere else — typically an exter-
nal graph analysis engine — and they must follow
certain conventions in order to be understood by
metagraph.mp. In this wider sense, MetaGraph is
actually a system for drawing graphs, consisting, at
the time of writing, of a) the macros, and b) the con-
ventions that need to be followed to provide the raw
data of the graph. Eventually, MetaGraph should/
will also include c) documentation, and d) backends
for the most common graph-analysis engines.3

1.3.3 Dependencies and work flow
One of the good things about METAPOST (over its
inspiration, METAFONT) is that it handles TEX na-
tively. It may still give some installation/configu-
ration trouble, since it needs to be pointed to the
actual TEX engine used (plain? LATEX? other?); but
it is a primitive feature of METAPOST.

One needs also communication in the other direc-
tion: from METAPOST into TEX. Since METAPOST

produces generic image files (PNG or SVG in addi-
tion to PostScript), this is covered by the existing
methods to import images into TEX documents.

Of note in this connection is also LuaTEX/Lua-
LATEX, and its METAPOST library/package luamplib,
that takes full care of the communication in both
directions (with luamplib, a METAPOST picture is
just a TEX box). If one uses Overleaf, then there
is no hassle in ensuring that the different tools and
formats are well installed, mutually aware, etc.

1.3.4 Under construction
It must be said that MetaGraph is under construc-
tion. It is fairly operational — the graphs in these
pages were all created with its existing routines —
but there are points of syntax still undergoing im-
provement, a lingering low-levelness, and a chance
that further routines may be identified and imple-
mented as I myself become familiar with its capa-
bilities. (The lassoing routines, for example, were
entirely developed during and because of the writing
of this article — they were only an intuition before I
ran into the actual occasion to develop them.) More
damaging yet, I have yet to compile a complete, even
complete enough, reference manual.

MetaGraph will sooner or later make its way to
CTAN, and, in the form of backends, to Networkx
and other external graph tools. In the meantime,

3 At present, there exists the one I wrote for the combina-
tion of Networkx and pandas that I use for graph analysis in
Python.

I

IV

IV6
4

IV4
7

IV4

2

I6
4

V7/IV

I6

V
I

Vsus
7

V6
5V7

V2

ii7

ii2

ii6

vii◦4
3

vii◦2

vii◦4
3/V

vii◦7/V

vii◦7 /V
V

vii◦4
3/ii

I

IV

IV6
4

IV4
7

IV4

2

I6
4

V7/IV

I6

V
I

Vsus
7

V6
5V7

V2

ii7

ii2

ii6
vii◦4

3

vii◦2

vii◦4
3/V

vii◦7/V

vii◦7 /V
V

vii◦4
3/ii

Figure 4: Tweaking of the Figure 3 graph of Bach’s
prelude

if there is any interest, I am happy to share both
the macro definitions and the source code for the
illustrations here.

2 Data vs. drawing
The key fact about MetaGraph as a system is that it
keeps a complete separation between the graph data
and the drawing operations. The first line of code in
a MetaGraph graph is usually

input metagraph;
(the library of METAPOST macros), while the second
is, for example,

input rgdata;
(the data file for the random graph of Figure 1).

The two files are completely independent; they
are each useless by themselves, but they know exactly
nothing about each other.

This way of proceeding preserves two things:
a) a general programming environment, where the
data is assigned for its own sake, and can be used in
any way by any METAPOST routine; and, as a result,
b) direct access to individual graph nodes and edges,
for manual or programmatic manipulation, inside or
outside other procedures, in the same figure or in a
different one.

Figure 4, for example, shows the graph of Bach’s
prelude (the one in Figure 3), laying a ‘tweaked’ ver-
sion in black ink over a lighter-shade layout (yielded
by the Fruchterman-Reingold algorithm, one of the
‘force-directed’ algorithms for laying out graphs).
The tweaks include the nudging of certain nodes, to
avoid collisions present in the original layout in some
cases — in others simply to accommodate the lasso
of Figure 3. Some edges are also tweaked. Curved
arrows are usually good for directed graphs — they
make bi-directed edges easier to see — but the default

Nodes and edges with METAPOST: The MetaGraph environment

120 TUGboat, Volume 45 (2024), No. 1

outgoing angle, calculated blindly with respect to
the source node, often creates less-than-satisfying
layouts.

Theoretically, these tweaks are of course less
than crucial; but they provide a good illustration of
the benefit of direct access to individual nodes and
edges. Three kinds of commands were used to make
the tweaks in Figure 4 (only one instance of each is
listed):
npos[IV] := % avoid collision

npos[IV] rotated -3 + (.05, .05);
set_angle((IVj2, ii7), 0); % straight arrow
flipangle(IV, ii6); % flip the arrow

This kind of manipulation is much less straight-
forward in a system where both the data of nodes
and edges and the global graphic options (arrows
on/off, edge angle such and such, etc.) are issued in
the same line.4

2.1 Nodes, indices, and arrays
What we have been calling the ‘node data’ is simply
a series of METAPOST arrays. A ‘node’, for Meta-
Graph, is just the index number that points to the
node’s place in those arrays (naturally it is the same
in all of them).

In other words, the node’s index is the 〈node-
id〉 in expressions like addlabel〈node-id〉, for exam-
ple. As mentioned, this particular macro expands to
the METAPOST line ‘addto currentpicture also
label〈node-id〉’, passing 〈node-id〉 along to label.
The latter will pass it on in turn as pos〈node-id〉 and
nlabels〈node-id〉:

• The data file includes the position of the nodes
in the array npos〈node-id〉. Graph-analysis en-
gines typically issue position information with-
out thinking of a particular point size (usually
normalizing to the first quadrant, or to the unit
circle, etc.), and therefore the values in npos
need to be scaled; this is what pos〈node-id〉
does.

• Unlike node positions, node labels are not re-
quired by MetaGraph. If a graph does have
node labels, its data file will have created the
array nlabels, where MetaGraph will be able
to look up each node’s LATEX expression. In
label-less graphs, nlabels does not exist, and
MetaGraph will simply supply the default node
image (or whatever the user may define for it).

All throughout the process, 〈node-id〉 picks out the
information for the particular node at hand from
each of the data arrays.

4 One would have to issue three subgraphs: one with the
straight edges, one with the clockwise edges, and one with the
counterclockwise edges.

(50.4, -32.8)

(-78.9, 95)

(10.8, -70.9)

(50.2, 8.6)

(-22.4, 19)

(-24.9, -39.8)

(32.8, -25.8)

(-38.9, 37.4)

(82.3, -66.9)

(-7.1, -55.2)

(86.9, -20.6)
(5.3, -24.3)

(-63.2, 45.8)

(-6.4, -2.2)

(78.5, -39.8)

(-71.6, 70.3)

(-46.9, 62.3)

(14.2, 6.3)

(48.4, -61.9)

(35.1, 27.4)

(-36.1, -23)

(-92.3, 81.8)

Figure 5: A funny view of the Bach prelude’s graph,
with the (rounded) raw node positions as ‘labels’, and
blobs — rotated in the direction from one node to the
other — in the midpoint of each edge.

2.2 General programming environment
The preceding is the fate of 〈node-id〉 through the
addlabel process; but rather than illustrating the
workings of that particular macro, the point here
is to stress that we are performing general, open-
ended programming on raw values with no intrinsic
semantics. Adding the label will be the most common
use for the node position value; but at all times this
is just a pair variable like any other, and it can
be used as such. We can use it — as in Figure 5 —
as the label itself, or find the mid-point between
two of them, or find out, for whatever purpose, if
angle(npos〈node-id〉) > ctcl_angle.

2.3 The lassos
Interestingly, the general-purpose nature of META-
POST as a programming language makes MetaGraph
a suitable environment in which to implement graph-
theoretical techniques. It is relatively easy, for ex-
ample, to extract a graph’s ‘line-graph’ (a version
of the graph whose nodes are the original graph’s
edges, connected iff they originally share a node),
or perform ‘k-means’ or ‘DBSCAN’ clustering. But
these techniques are, after all, likely to be available
in whatever graph-analysis engine one is using in
connection with MetaGraph.

This is not the case with lassoing. Figure 6
zooms in on one of the communities (just SE of
the origin) of the random graph in Figure 1. This
particular lasso (the fifth place in an array of META-
POST paths created for the purpose, called comms)
was produced by the following code:

Federico García De Castro

TUGboat, Volume 45 (2024), No. 1 121

Figure 6: A close-up of one of the communities in the
random graph of Figure 1

comms[5] = 1/2[pos159, pos152]..tension 1.5
..1/2[pos129, pos40]..tension 1.3
..1/2[pos103, pos158]
..1/2[pos137, pos90]
..1/2[pos22, pos14]
..1/2[pos163, pos4]
..abovelabel168{left}
..1/2[pos152, pos168]
..cycle;

Except for ‘abovelabel’ (a MetaGraph macro that
finds the point above the label of a given node), this
is all plain METAPOST syntax:

• The ‘..’ connector creates a (Bézier) curved
path between two points. (‘--’ would create a
straight line.)

• The tension t modifier (with t = 1 by default)
is one of the ways to control the Bézier curves
thus created. (Another is ‘controls c1 and
c2’, to specify explicitly the two control points.)

• The convenient a
b [p1, p2] construction finds the

coordinates of the point that lies a
b of the way

from p1 to p2.
• ‘{left}’ tells METAPOST that the path should

travel left at that particular point. (Naturally,
one can direct a path {right} instead, or {up},
or {down}, or indeed any {〈custom vector〉}; if
one wants a particular angle θ, ‘dir(θ)’ provides
the corresponding vector.)

This path (and the others) was designed by visual
inspection and trial-and-error. From a run of the
‘Louvain community detection algorithm’ in Net-
workx I knew the sets of nodes (i.e., node indices)
in each community, and I was looking at a separate
version of the graph with the node indices as labels,
so that I could locate each community and design

its lasso. There is essentially no algorithmic way of
lassoing arbitrary sets of nodes, but direct access to
node information for varied uses makes it possible to
generate paths quickly and robustly.

Incidentally, the clipping of the graph to zoom
in on this particular region was also made through
node information: for Figure 6, I instructed Meta-
Graph to include only those nodes and edges that
are less than 50 points removed from the center of
the lasso (calculated ahead of time as ‘lassoctr’):
for edge = alledges:
if (length(pos[source(edge)]-lassoctr) < 50)
or (length(pos[target(edge)]-lassoctr) < 50):

lineedge(edge) withcolor .7white;
fi;

endfor;
for node = allnodes:
if length(pos[node]-lassoctr) < 50:

addlabel[node];
fi;

endfor;

2.4 Node (and edge) attributes
So far we have only referred to node positions and
node labels as part of the data that MetaGraph
expects to find in the graph data file. Other pieces
of information are also required contents of the data
file; we will discuss those in section 2.6. Here we shall
deal with the possibility of adding and manipulating
custom data.

Many attributes of nodes and edges are often
relevant for the way a graph is represented graphi-
cally (since they are often what needs to be shown).
This includes both intrinsic attributes like weights,
degrees, etc., and information resulting from global
graph analysis — things like k-core and -truss num-
bers, various ‘centrality’ measures, etc.5

Just like positions and labels, all these attributes
are raw data for MetaGraph. But while the arrays
of positions and labels are node-specific, one-by-one
arrays of n values (n being the number of nodes),
most other attributes are encoded in the data file as
arrays of lists — one list for each value v of the attri-
bute; paraphrasing, lists like “the nodes of attribute
foo equal to value v are: these and these”.

This is much more efÏcient and straightforward
to use than node-by-node arrays, since most metrics

5 The shaded region in Figure 3 (page 118), for example,
is the ‘3-truss’ of the graph, where every edge is part of at
least (3− 2) triangles, and the lasso its ‘2-core’, where every
node has at least 2 edges.

The ‘degree’ of a node is the number of edges incident upon
it; edge ‘weights’ usually encode empirical observations of a
kind or another — in the harmonic-behavior graphs like that of
Bach’s prelude, they represent the frequency of the progression
between two chord-nodes.

Nodes and edges with METAPOST: The MetaGraph environment

122 TUGboat, Volume 45 (2024), No. 1

group nodes and edges, rather than having single
values for each: rather than looping over nodes and
checking for their foo value, the program (or the user)
can loop over the list of foo-valued nodes.

The full specification of an attribute foo in
MetaGraph consists of:

• The pluralized foos, which holds a list of the
possible values the attribute takes.

• Single-value variables foo_min and foo_max.
• Explicit lists for each value, foo_values〈value〉,

whose contents is a list of the corresponding
indices.

• A macro foo that expands these lists.6
• A prefix: all of the above are actually nfoo or

efoo, according to whether they are node or
edge attributes.

For example, the attribute ‘frequency’ of the nodes
in the graph of Bach’s prelude is the number of
occurrences of each particular chord in the piece. It
can be represented as follows in the graph’s data file:
def nfreqs = 1, 2, 4, 5 enddef;
def nfreq = scantokens nfreq_values enddef;
string nfreq_values[]; % declares array
nfreq_values[1] =

"ii2, V65, ii6, V2, viid43, IVj7, sivd7,
viid2, sivd7oV, sid43, sivd43";

nfreq_values[2] =
"IV, I6, ii6, IVj2, ii7, I7, I64, Vsus7,
IV64, VoI";

nfreq_values[4] = "I";
nfreq_values[5] = "V7";
nfreq_min = 1; nfreq_max = 5;

Note that the lists are not given in terms of node
index numbers, but rather expressions that resemble
the labels of the nodes: ’ii2’, etc. This will be
addressed in the next section.

Armed with these lists, conditional formatting
based on a given attribute is straightforward. The
original view of the graph (Figure 3), for example,
makes the grey level and the width of the edges
depend on the attribute efreq:
for freq = efreqs: % freq values present

for edge = efreq[freq]: % edges of each freq
arrowedge(edge)

withpen pencircle scaled ((freq/5)*mm)
withcolor (.5*(efreq_max-freq))*white;

endfor; endfor;

The shading of the nodes, in turn, is a function
of another node attribute present in the data file —
the node degree:

6 Lists are not a METAPOST data type; they are imple-
mented as string variables, using the primitive scantokens to
process them; foo takes care of this.

for dg = ndegrees: % degree values present
for node = ndegree[dg]: % nodes of each dg

addlabel[node]
withcolor (.8 - dg/ndegree_max)*white;

endfor;
endfor;

Being raw data, the attributes can just as well be
used independently of the graph itself — for example,
to produce attribute distribution diagrams, common
in graph analysis. Here is the relevant loop for the
node degrees of the random graph of Figure 1:
pickup penrazor xscaled 6pt;
for dg = ndegrees:

count := 0;
for nodes = ndegree[dg]:

count := count + 1;
endfor;
draw (6*dg, 0) -- (6*dg, 2*count);

endfor;

2 16
0

27

Figure 7: Degree distribution of the graph in Figure 1

2.5 Nodes, labels, and aliases
We have seen that the MetaGraph’s 〈node-id〉s are
numbers (section 2.1). But nothing prevents one
from assigning these numbers to a series of named
variables, which then function essentially as node
aliases.

This is particularly relevant in graphs with la-
beled nodes. The data file of such a graph should
contain ASCII-friendly versions of the node labels, as
variable names equaling each node’s index. That is
the case with the graph of the Bach prelude, whose
data file creates these aliases as its first order of
business:
% Nodes
I = 0;
IV = 1;
...
viid43 = 16;
viid2 = 17;
...
As we have seen, even the data file uses these vari-
ables (rather than the indices) to define the lists of
node attributes. These aliases are in fact entirely
equivalent to the indices; both the program and —
more to the point — the user can use them to oper-
ate on the nodes (flipping or setting the angle of a

Federico García De Castro

TUGboat, Volume 45 (2024), No. 1 123

curved edge or nudging the position of the nodes,
as we did in Figure 4, or manually drawing edges
beyond those included in the data file, etc.) without
ever needing to care about the otherwise meaningless
index numbers.

It is quite fortunate then that METAPOST’s vari-
able name conventions allow for monstrosities like
viid43ofii, or possibly H2SO4, and of course benign
things like a. (The latter is not so benign after all;
before I knew better, I was repeatedly perplexed by
some strange graph-drawing behaviors, only eventu-
ally to find that a ‘for i’ loop had been clashing
with an ‘i’ that was one of my nodes.)

As long as it starts with a letter, virtually any
alphanumeric string is a valid METAPOST variable.
It may seem inconvenient to have to refer to vii◦7 /V

V
through the all-ASCII name viid7ofVoV. But the
concession does not come at the MetaGraph stage:
already in the graph-analysis engine, if one needs
to access nodes individually — to set or get their
attributes, for example, or to read out a list of nodes
resulting from some clustering operation — then code-
friendly names are all but required. Since the engine
will then already know these aliases, it can easily add
them as variable assignments in the data file. The
same names will be available to use at the drawing
stage with MetaGraph if they all start with a letter.

2.6 The data file
What attributes to include in a MetaGraph data file
is almost entirely discretionary; only a few pieces of
information are required. One of them, as mentioned,
is the node positions, that go in the npos array;
another is the last_node index, necessary for Meta-
Graph to loop over all the nodes.

Not mentioned so far is an addition array re-
quired by MetaGraph: the list of each node’s (out-
going) neighbors, nodes_to.

It may not be immediately obvious why this
should be required. On the one hand I can report
that I have often found myself needing that infor-
mation for particular graph drawings; on another, it
opens up the possibility of having MetaGraph extract
subgraphs — although this involves multiple levels of
nested loops, and at some point it is better to have
the external graph-analysis engine do the work and
produce a separate data file. Mostly it has to do
with implementing edges in an efÏcient way, as we
will see in the next section.

A minimal data file will then be something like
this (coming from rgdata.mp, the data file for the
random graph in Figure 1):

last_node = 199;
% npos (pair)
pair npos[]; i_ := -1;
for value = (0.585, 0.229), (0.722, 0.533),

...
(0.398, 0.516), (0.056, 0.328):

npos[incr i_] = value;
endfor;
% nodes_to (string)
string nodes_to[];

nodes_to[4] = "1";
nodes_to[7] = "5";
...
nodes_to[199] = "167, 13, 81, 50, 23";

Then the file may go on to set up the non-required
attributes. For example, the node degree attribute
in rgdata.mp is given by:
% ndegree (numeric)
string ndegree_values[]; % declares the array
def ndegrees = 2, 3, 4, 5, 6, 7, 8, 9,

10, 11, 12, 13, 14, 15, 16
enddef;
ndegree_values[2] = "25, 76, 100, 184, 196";
ndegree_values[3] = "24, 65, 92, 171, 181";
...
ndegree_values[16] = "131, 169, 182";

ndegree_min = 2; ndegree_max = 16;
def ndegree = scantokens ndegree_values enddef;

2.7 The edges
We have not dealt much with edges so far. Just as
a node in MetaGraph is a number, a MetaGraph
edge is a pair of numbers: the indices of the source
and target nodes. As a graphical, coordinate-based
language, METAPOST has a full infrastructure for
tuples of 2 numbers — its data type pair. Edges
are not coordinate pairs, of course, but they are
METAPOST pairs.

The first implementation of MetaGraph treated
the edges of a graph as an array of such pairs, each
given an 〈edge-id〉 number. Edge attributes were
analogous to node attributes: lists of 〈edge-id〉 num-
bers held in string variable arrays.

But the experiments with the Facebook graph
in Figure 2 revealed something interesting, having
to do with the assignment of an index number to
each edge. That is: to each of all 88,234 of them. . .
METAPOST users will know that this goes over the
language’s 4,096 arithmetic limit, but this is not the
issue: there are ways to get around it (see section 3).
The problem was that the program would take way,
way too long — I could not bear to let it finish a
single time — just reading the data file. . .

This seemed to doom the whole idea of Meta-
Graph, or at least limit it to relatively small graphs
with a manageable number of edges. But it is easy

Nodes and edges with METAPOST: The MetaGraph environment

124 TUGboat, Volume 45 (2024), No. 1

to see that the ‘edges’ array is redundant, especially
as we have a list of neighbors for each node (see sec-
tion 2.6). Storing the edges of the Facebook graph in
this way entails at most 4,039 assignments (actually
somewhat less, since not all nodes have outgoing
neighbors). This is a significant reduction — enough
to make the program run smoothly. The change
makes it a little more complicated to loop over the
edges, which now means looping over each node and
then again over its nodes_to. But the nuisance is
small enough, and the macro alledges implements
the loop, even taking care of neighbor-less nodes
(which would normally make the loop break).

Edge attributes are still possible, and they are
still lists, analogous to those for nodes (“edges of
attribute foo equal to value v are: these and these”),
only holding pair values instead of single numbers.
For example, this is the list of edges of frequency 2
in the Bach prelude graph:
efreq_values[2] = "(ii7, V7), (IVj2, ii7),

(I6, IVj2), (V7, I)";
One can still loop over these lists and format the
edges conditionally — the dark arrows in Figure 3
were ultimately a loop over this very list. Further-
more, nothing prevents one from creating new lists
of edge attributes, or indeed new edges, as needed,
in real time (i.e., outside the data file).

3 How much is too much?
Larger and larger graphs will of course exceed the
system’s capacity at some point. But even the 4,039
nodes and 88,234 edges of Figure 2 are far from ex-
hausting METAPOST’s (much less LuaTEX’s) mem-
ory, stack sizes, etc. The graph, in fact, is processed
by MetaGraph in a noticeably shorter time than
matplotlib takes to draw it (and then again to display
it, zoom over it, etc).

It is still a lucky coincidence that that particu-
lar graph has 4,039 nodes — dangerously close but
still shy of METAPOST’s arithmetic bound of 4,096.
(This bound, you may recall, is not a matter of
physical capacity, but a fundamental feature of the
language: there simply exists no n > 4096 in META-
POST.)

This issue is not particularly hard to get around.
The subscripts of a METAPOST array do not have

to be natural numbers, and we could assign the
attributes of a node of index i at position i

2
of the

arrays — where in ‘normal’ circumstances we assign
just i. This would give us up to 8,192 nodes. The
same capacity would be achieved by wrapping around
and using negative indices as well. Thus, indices of
the form, say, ±i/10, would give us 81,920 possible
nodes.

Still, in an earlier draft of this paper, where
the Facebook graph came after many other figures,
the processing of the document did overflow Over-
leaf’s free-version compile time. (The paid version,
12× faster, has no problem.) What can be done in
those cases?

The solution is to produce a PNG through an
external run of METAPOST, and \includegraphics
it in the document. As a final example, the file that
produced Figure 2 is reproduced below in its entirety.
The first couple of lines are the ones that make
METAPOST produce a PNG file (‘fbtopng-1.png’);
the rest is plain MetaGraph.

outputformat := "png";
outputtemplate := "%j-%c.png";

input metagraph;
input fbdata;

scale = 180;

beginfig(1);
pickup pencircle scaled .1pt;
for node = allnodes:

for tgt = nodes_to[node]:
draw pos[node] -- pos[tgt]

withcolor .8white;
endfor;

endfor;

addnodes;
endfig;
end.

� Federico García De Castro
Professor of Composition and Theory
EAFIT University
Medellín, Colombia
fgarciac1 (at) eafit dot edu dot co

Federico García De Castro

TUGboat, Volume 45 (2024), No. 1 125

Euclidean geometry with tkz-elements and
tkz-euclide

Alain Matthes

Abstract
tkz-elements [2]1 is based on Lua and LuaLATEX to
perform calculations and obtain point coordinates in
the plane. These coordinates are then transmitted
to a package that can plot them. Currently, plot-
ting is accomplished with TikZ or tkz-euclide, but
MetaPost is also a viable option.

This paper demonstrates how tkz-elements
can be utilized for tasks requiring mathematical com-
putations. With it, not only can you create Euclidean
geometry figures, but you can also conduct calcula-
tions within your document.

1 Introduction
The aim of the tkz-euclide [3] package is to pro-
vide a tool that would facilitate the construction
of Euclidean geometric figures, with a key focus on
being suitable for individuals who think mathemati-
cally, and even better, geometrically. tkz-euclide
is built on top of PGF and its associated front-end
TikZ. As a result, the calculations rely on TEX. To
aid TEX in performing certain calculations, auxiliary
packages are necessary. However, this approach can
be challenging to program, slow in execution, and
sometimes lacks accuracy.

An extension of TEX, LuaTEX, has been devel-
oped, enriching TEX with the programming language
Lua, which is fast, light and easy to program. tkz-
elements is an attempt to use Lua’s capabilities to
enhance tkz-euclide.

The final section of this paper explains the basics
of drawing objects with tkz-euclide.

2 What are the foundations of tkz-elements?
2.1 Structure
The package mainly comprises two environments: the
tkzelements environment and the tikzpicture en-
vironment. The former utilizes Lua-created functions
to acquire point coordinates, while the latter employs
tkz-euclide to draw figures. I have a preference
for tkz-euclide, as it includes all the fundamental
figures.

An important aspect is the relationship between
the two environments. The coordinates of the points
are stored in the only data structure available in Lua:
a table z (z being a common reference to the afÏxes of
complex numbers). This table is global, and its data

1 The current version is 2.00 and is required to compile
the examples in this paper.

is only cleared when a new tkzelements environ-
ment is initiated. At the start of the tikzpicture
environment, the tkzGetNodes macro retrieves the
coordinates and generates nodes whose names are
those of the z table keys.2

Following the tkzelements environment, you
can obtain results that can be incorporated into your
document (an advantage of a figure source within
your document), by using the \tkzUseLua command.
The definition of this macro is
\directlua{tex.print(tostring(#1))}.

Let’s look at the following example:3

% !TEX TS-program = lualatex
\documentclass{article}
\usepackage{tkz-euclide,tkz-elements}
\begin{document}
\begin{tkzelements} -- part elements
z.A = point : new (1,1)
z.B = point : new (3,2)
C.AB = circle : new (z.A,z.B)
z.C = C.AB : point (1/6)
T.ABC = triangle : new (z.A,z.B,z.C)

\end{tkzelements}
\begin{tikzpicture}% part tikz
\tkzGetNodes
\tkzDrawPolygon(A,B,C)
\tkzDrawCircle(A,B)
\tkzDrawPoints(A,B,C)
\tkzLabelPoints(A)
\tkzLabelPoints[above](B,C)

\end{tikzpicture}

The length of AC is \tkzDN[4]{\tkzUseLua{%
length(z.C,z.A)}}

Affix of C: \tkzUseLua{z.C}
\end{document}

Figure 1: Sample program

The result is shown in fig. 2.
The macro tkzDN serves as a formatting tool for

numerical results.
Now, let’s consider whether the triangle is equi-

lateral. If the ifthen package has been loaded, this
can be done with:
\ifthenelse{\equal{\tkzUseLua{%
T.ABC : check_equilateral ()}}{true}}{%
The triangle ABC is equilateral}{%
The triangle ABC is not equilateral}

2 The table type implements associative arrays. An asso-
ciative array is an array that can be indexed with numbers,
strings, or any other value; that is, they store a set of key/value
pairs.

3 “-- part elements” is a comment in Lua;
“% part tikz” is a comment in LATEX.

doi.org/10.47397/tb/45-1/tb139matthes-euclid

Euclidean geometry with tkz-elements and tkz-euclide

https://doi.org/10.47397/tb/45-1/tb139matthes-euclid

126 TUGboat, Volume 45 (2024), No. 1

A

B

C

The length of AC is 2.2361
AfÏx of C: 1.13+3.23i

Figure 2: Result of sample program fig-1

which, for our example, outputs:
The triangle ABC is equilateral

2.2 Tools
2.2.1 Complex numbers
Our primary aim was precision in calculations, and
since programming with Lua is much easier than
in TEX, we considered utilizing mathematical tools
better suited to geometry instead of basic arithmetic
operations like addition and subtraction. The initial
concept was to incorporate complex numbers.

A complex number, denoted as z, can be rep-
resented by an ordered pair (Re(z), Im(z)) of real
numbers, which can be interpreted as coordinates of
a point in a two-dimensional space such as the Eu-
clidean plane. This plane is commonly referred to as
the complex plane or the Argand plane (Fig. 4). To
create a point object, we specify its two coordinates
and its name (future node name); for example: z.A=
point : new (2,3). What happens here? An ob-
ject of type point is created, consisting of attributes
and methods stored in the table (associative array) z.

The key A is associated with the data. The
tostring method has been adapted to display the
afÏx corresponding to the point. That is,
tex.print(tostring(z.A)) outputs 2+3i.

Point objects behave similarly to the afÏxes that
represent them. Hence, we can manipulate them with
the same operations. Here’s an example: adding two
points means obtaining another point whose afÏx is
the sum of the afÏxes of the previous points.

Let’s consider a second point:
z.B = point : new (2,-1)
Then z.C = z.A+z.B has afÏx 4+2i; analogously,
z.D = z.A*z.B has afÏx 7+4i.

Let’s check: \tkzUseLua{z.A*z.B} computes:
7+4.00i.

Refer to the documentation for a comprehensive
list of all methods available. Some are more signifi-
cant than others, one being the complex conjugate:
z.B = z.A : conj(), which can alternatively be ex-
pressed as z.B = point.conj (z.A).

It’s important to note that two operations have
been repurposed from their conventional meanings:
“..”, typically represents concatenation but here
denotes scalar product, and “^”, usually signifies
exponentiation but here denotes the determinant.4
z.A .. z.B = (z.A * z.B : conj()).re = 1
z.A ^ z.B = (z.A : conj() * z.B).im = −8

2.2.2 Barycenter
Another useful tool is the barycenter, which is uti-
lized numerous times in our diagrams. Here are two
examples demonstrating the advantages of combining
complex numbers and barycenters:

• Obtaining the incenter in a triangle defined by
its three vertices (a,b,c):
function in_center_ (a,b,c)

local ka = point.abs (b-c)
local kc = point.abs (b-a)
local kb = point.abs (c-a)
return barycenter_ ({a,ka},{b,kb},{c,kc})

end

point.abs is a method which gives the modulus
of a complex number.

• Obtaining the orthocenter:
function ortho_center_ (a,b,c)

local ka = math.tan (get_angle_ (a,b,c))
local kb = math.tan (get_angle_ (b,c,a))
local kc = math.tan (get_angle_ (c,a,b))
return barycenter_ ({a,ka},{b,kb},{c,kc})

end

get_angle_ is an internal macro in the package
that produces a normalized angle defined by
three complex numbers.

2.2.3 Objects — OOP
Finally, while the package’s internal functions are
classically programmed using Lua, user functions
are based on object-oriented programming princi-
ples. Users manipulate points, lines, circles, tri-
angles, etc., all of which are objects from specific
classes. Currently, tkz-elements utilizes the fol-
lowing classes: point, line, circle, triangle, ellipse,
quadrilateral, square, rectangle, parallelogram, regu-
lar (polygon) and vector (matrix will be added soon).

An object (or instance) of the class point has
both state and behavior, defined by the class. The

4 Here we consider z.A and z.B as the vectors −→

OA and −−→

OB

with O as the origin of the plane.

Alain Matthes

TUGboat, Volume 45 (2024), No. 1 127

state is characterized by attributes, while behavior is
determined by methods. The structure of the object
class is shown in fig. 3; here, all the attributes are
listed but only a few of the available methods are
displayed. See [2], section “Class point” for the
complete definition.5

Attributes
re (real)
im (real)

type = 'point'

argument (rad)

modulus (cm)

Methods
homothety (coeff,obj)

rotation (angle,object)

symmetry (object)

...

Class Object Point

Figure 3: The Point object

We can access the instance’s attributes as follows
to obtain the real part (the point’s abscissa): z.A.re.

We can already benefit from the use of LuaLATEX.
To obtain figure 4, the point A has been defined as
follows z.A = point : new (2,3). Therefore, we
can use the attributes of this point. The modulus of
zA is 3.60555 . This value is obtained as follows:
\tkzUseLua{z.A.modulus}

A : 3 + 2i

x

y

mod(zA
)=

|zA
|

θ = arg(zA)

Figure 4: Argand diagram

Other classes possess their unique attributes and
methods. We recommend consulting the documen-
tation. In the remainder of this article, we’ll utilize
examples to elucidate specific attributes and meth-
ods. It’s not feasible to cover all the documentation
in this article, so we’ll employ examples to illustrate
certain attributes and methods. Refer to [2], sections
“Class line”, “Class circle”, etc.

5 It’s recommended to have the package documentation at
hand while reading this paper.

3 Small examples
Let’s examine two brief examples. While they don’t
require high-precision calculations, they will demon-
strate how to create a figure and utilize objects.

3.1 Alternate angles
\documentclass{article}
\usepackage{tkz-euclide}
\usepackage{tkz-elements}
\begin{document}

\begin{tkzelements}
scale = .8
z.A = point : new (0 , 0)
z.B = point : new (6 , 0)
z.C = point : new (1 , 5)
T.ABC = triangle : new (z.A,z.B,z.C)
L.AD = T.ABC : bisector ()
z.D = L.AD.pb
L.LLC = T.ABC.ab : ll_from (z.C)
z.E = intersection (L.AD,L.LLC)

\end{tkzelements}
\begin{tikzpicture}

\tkzGetNodes
\tkzDrawPolygon(A,B,C)
\tkzDrawLine(C,E)
\tkzDrawSegment(A,E)
\tkzMarkAngles[mark=|](B,A,D D,A,C)
\tkzMarkAngles[mark=|](C,E,D)
\tkzDrawPoints(A,...,E)
\tkzLabelPoints(A,B)
\tkzLabelPoints[above](C,D,E)
\tkzMarkSegments[mark=s||](A,C C,E)

\end{tikzpicture}
\end{document}

A B

C

D

E

Figure 5: Alternate angles

First, we create three points, then a triangle
named T.ABC. Subsequently, we define the bisector
emanating from vertex A.

L.AD = T.ABC : bisector (): The bisector is
defined by two points: the vertex A and the foot D
on the opposite side. For the bisector from B you

Euclidean geometry with tkz-elements and tkz-euclide

128 TUGboat, Volume 45 (2024), No. 1

need to use L.BE = T.ABC : bisector (1), where
1 is for the next point of the triangle.

To find the intersection of the bisector with a
line parallel to the (AB) line at C, we’d have to name
this line, but this is already done in the triangle’s
attributes: T.ABC.ab represents the triangle line
defined by the first and second vertices. Finally,
z.E = intersection (L.AD,L.LLC) gives the last
point.

The tkz-euclide section gives an overview of
the possibilities the package provides to mark seg-
ments and angles.

3.2 An Apollonius circle
Given k a positive real number other than 1, and
A and B two points in the plane, the set of points
M verifying MA/MB = k is a so-called Apollonius
circle. In the example below, k is defined by k =
EA/EB.
\begin{tkzelements}

scale = .5
z.A = point : new (0,0)
z.B = point : new (6.5,0)
z.E = point : new (7,4)
T.EAB = triangle : new (z.E,z.A,z.B)
EA = length (z.E,z.A)
EB = length (z.E,z.B)
C.OE = T.EAB.bc : apollonius (EA/EB)
L.bis = T.EAB : bisector ()
z.C = L.bis.pb
z.O = C.OE.center
z.D = C.OE : antipode (z.C)
z.F = T.EAB.ab : point (-0.5)

\end{tkzelements}

A BC DO

E

F

Figure 6: Apollonius MA/MB = k

• We define the triangle after defining three points:
T.EAB = triangle : new (z.E,z.A,z.B)

• The length EA is determined with
length(z.E,z.A)

• T.EAB.bc represents the straight line (AB) b for
the second point and c for the third. Find the
circle defined by these two points and the ratio
EA/EB. It is called C.EC because its center
will be O and it passes through E.

• We get the circle with
T.EAB.bc : apollonius (EA/EB)

• Next, we look for the bisector of the angle ÂEB.
It intersects the opposite side at point C of
C(O,E).

In T.EAB : bisector (), the first point des-
ignates the vertex. The bisector is defined by
the vertex and the intersection with the opposite
side; L.bis.pb designates the second point.

• In z.O = C.OE.center, center is a circle at-
tribute, then the “antipode” method is used to
obtain the diametrically opposite point
z.D = C.OE : antipode (z.C).

• Finally we need a point F to mark an angle in
tkz-euclide.

4 Harmonic mean of two numbers

O A BI

H

K

G

Figure 7: Means of two numbers

For two numbers a and b, such as OA = a
and AB = b, here are the definitions and geometric
representations of three means:

Mean Definition Segment

Arithmetic A =
a+ b

2
IK

Geometric G =
√
ab AG

Harmonic H =
2ab

a+ b
=

G2

A HG

\begin{tkzelements}
local a = 5
local b = 1
z.O = point : new (0,0)
z.A = point : new (a,0)
z.B = z.A + b
L.OB = line : new (z.O,z.B)

Alain Matthes

TUGboat, Volume 45 (2024), No. 1 129

z.I = L.OB.mid
C.IO = circle : new (z.I,z.O)
L.orth = L.OB : ortho_from (z.A)
z.K = C.IO.north
z.G,z.Gp = intersection (L.orth,C.IO)
L.IG = line : new (z.I,z.G)
z.H = L.IG : projection (z.A)

\end{tkzelements}
Tracing with tkz-euclide:

\begin{tikzpicture}[gridded]
\tkzGetNodes
\tkzDrawSegments(I,G A,H O,B)
\tkzDrawSegments(O,G G,B I,K A,G)
\tkzDrawArc(I,B)(O)
\tkzLabelPoints[below right](O,A,B,I)
\tkzLabelPoints[above](H,K,G)
\tkzMarkRightAngles(O,I,K B,A,G)
\tkzMarkRightAngles(A,H,I O,G,B)
\tkzDrawPoints(O,A,B,G,K,H,I)

\end{tikzpicture}
Some explanations:

• z.B = z.A + b
Adding points means adding their corresponding
afÏxes. z.A is represented in this equation by
the afÏx, so it’s possible to add a real or complex
number to it. We have OB = a+ b.

• L.OB = line : new z.O,z.B): create a line
object with key OB. Then, in
z.I = L.OB.mid, mid is an attribute of the line
object giving the midpoint of the segment de-
fined by the two points characterizing the line.

• C.IO = circle : new (z.I,z.O): create a
circle object with key IO.

• In z.K = C.IO.north, the north attribute of a
circle is used.

• This is followed by an intersection:
intersection (L.orth,C.IO)
The arguments are objects, given in no particu-
lar order. Depending on the object types, the
function selects the correct algorithm.

The two points of intersection will be G and
G′ (Gp in Lua for the moment).

• projection is a method of the line object.
Let’s check some data:

• The coordinates of G are (5 ; 2.2361) with
\tkzUseLua{z.G.re} ; \tkzUseLua{z.G.im}

• The coordinates of H are (3.8889 ; 0.9938)
• The harmonic mean is the length of GH =

2.2361 , i.e.,
√
5 with

\tkzUseLua{length(z.G,z.A)}
\begin{tkzelements}

scale =.8
dofile ("means_b.lua")

\end{tkzelements}

It’s good practice to place the Lua code in an
external file. This approach makes it easier to cor-
rect and reuse, and it helps avoid errors when using
special characters like the % symbol.

Figure 9 illustrates how to obtain half the har-
monic mean and, importantly, demonstrates that
this method is independent of the distance d.

z.A = point : new (0,6)
z.B = point : new (6,4)
z.Bp = point : new (8,4)
z.I = point : new (0,0)
z.J = point : new (6,0)
z.Jp = point : new (8,0)
L.AJ = line : new (z.A,z.J)
L.IJ = line : new (z.I,z.J)
L.BI = line : new (z.B,z.I)
z.C = intersection (L.AJ,L.BI)
z.K = L.IJ : projection (z.C)
L.AJp = line : new (z.A,z.Jp)
L.BpI = line : new (z.Bp,z.I)
z.Cp = intersection (L.AJp,L.BpI)
z.Kp = L.IJ : projection (z.Cp)

Figure 8: File means_b.lua

\begin{tikzpicture}
\tkzSetUpPoint[size=8]
\tkzGetNodes
\tkzDrawSegments[dashed](A,J B,I I,J)
\tkzDrawSegments[dashed](A,J' B',I)
\tkzDrawPoints[gray,size = 8](A,I,C,K,B,J)
\tkzDrawPoints[black,size = 8](C',K',B',J')
\tkzSetUpLine[ultra thick]
\tkzDrawSegments[black](C',K' B',J')
\tkzDrawSegments[gray](C,K A,I B,J)

\end{tikzpicture}

d

c

a

b

1

c
=

1

a
+

1

b
either c =

ab

a+ b

Figure 9: Half of harmonic mean

5 THE Apollonius circle
The circle that touches all three excircles of a triangle
and encompasses them is commonly referred to as

Euclidean geometry with tkz-elements and tkz-euclide

130 TUGboat, Volume 45 (2024), No. 1

“THE” Apollonius circle. Our approach is from the
fourth definition given in [4], due to Kimberling [1,
p. 102].

The objective here is to determine the external
tangent circle to the three exinscribed circles of a
triangle. While this problem is mathematically chal-
lenging, the idea is to demonstrate that the package
offers some highly useful capabilities for experienced
geometers.

The approach involves determining the inner
tangent circle, and then transforming this inner circle
into an outer circle, also tangent to the exinscribed
circles. The result is shown in fig. 10.

The Lua code is created in an external file,
apollonius.lua, shown in fig. 11.

ON
A B

S

C

Figure 10: THE Apollonius circle

5.1 Code analysis
• A triangle object is created: T.ABC, then we

utilize its attributes and methods linked to the
triangle class.

• For example, z.N refers to the Euler center or
the center of the nine-point circle. Additionally,
T.feuerbach is a triangle created using a meth-
od. Its vertices are the points of contact of the
Euler circle with the exinscribed circles.

• Then, to draw them, we’ll need the points that
define the vertices of T.feuerbach. This is the
role of get_points (T.feuerbach).
get_points is a function that retrieves the

points (attributes) required to create the object.
In this case, these are the vertices of the triangle

scale = .32
z.A = point : new (0,0)
z.B = point : new (6,0)
z.C = point : new (0.8,4)
T.ABC = triangle : new (z.A,z.B,z.C)
z.N = T.ABC.eulercenter
T.feuerbach = T.ABC : feuerbach ()
T.excentral = T.ABC : excentral ()
z.Ea,z.Eb,z.Ec = get_points (T.feuerbach)
z.Ja,z.Jb,z.Jc = get_points (T.excentral)
z.S = T.ABC.spiekercenter
C.JaEa = circle : new (z.Ja,z.Ea)
r_ortho = math.sqrt (C.JaEa : power (z.S))
C.ortho = circle : radius (z.S,r_ortho)
z.a = C.ortho.south
C.euler = T.ABC : euler_circle ()
C.apo = C.ortho : inversion (C.euler)
z.O = C.apo.center
z.xa,
z.xb,
z.xc = C.ortho : inversion (z.Ea,z.Eb,z.Ec)

Figure 11: File apollonius.lua

Ea,Eb,Ec. The circle with center N passes
through these points.

• The same procedure is used to recover the cen-
ters of the exinscribed circles (Ja, Jb, Jc).

• On a more technical note, the radical axes of
the three exinscribed circles intersect at a point
called the “radical center”, which is none other
than the Spieker center. This point is known
to the package as one of the attributes of the
triangle: z.S = T.ABC.spiekercenter.

It’s also possible to directly request the radical
center. The radical center has the same power
with respect to the three circles. This allows for
determining the radius of a circle that will be
orthogonal to the three exinscribed circles. The
radius is
r_ortho = math.sqrt (C.JaEa : power (z.S)).

Calculate the power of point S with respect
to one of the three circles, then take the square
root of the result.

• The circle “ortho” can be defined as
C.ortho = circle : radius(z.S,r_ortho).

All that remains is to utilize this circle to
perform an inversion of the Euler circle, which
will give the Apollonius circle
C.apo = C.ortho : inversion(C.euler).

We then retrieve the center
z.O = C.apo.center (center is an attribute for
a circle) and the three points of contact with
the exinscribed circles. These are images of the
inverted contact points of the nine-point circle
or Euler circle.

Alain Matthes

TUGboat, Volume 45 (2024), No. 1 131

\begin{tikzpicture}
\tkzGetNodes
\tkzDrawPoints(xa,xb,xc)
\tkzDrawCircles(Ja,Ea Jb,Eb Jc,Ec S,a O,xa N,Ea)
\tkzClipCircle(O,xa)
\tkzDrawLines[add=3 and 3](A,B A,C B,C)
\tkzDrawPoints(O,A,B,C,S,Ea,Eb,Ec,N)
\tkzLabelPoints(O,N,A,B)
\tkzLabelPoints[right](S,C)

\end{tikzpicture}

6 Kissing circles
6.1 The problem
Given three circles tangent to each other and to a
straight line, the problem is to express the radius of
the middle circle in terms of the radii of the other
two. This problem was presented as a Japanese
temple problem on a tablet from 1824 in the Gunma
Prefecture (MathWorld). [5]

While not overly complicated, the construction
and justification with ruler and compass are interest-
ing. The desired output is shown in fig. 12.

The first step is to create a function to obtain
the centers of the three circles, and then to determine
the projections of these centers onto the common
tangent of the three circles.

We call the function responsible for doing this
kissing (fig. 13). In the following example, A, B
and C represent the centers of the circles, 4 and 3
the radii of the two given circles, and E, F and G
the projections of the centers.

Additionally, the function defines several useful
objects such as straight lines L.AB, L.EF, and circles
C.AE, C.BF and C.CH.

It’s worth noting that the function uses the
normal syntax L[c1..c2] instead of the “syntactic
sugar” L.name. While the function’s logic is not
overly complex, attention to syntax is essential for
proper execution.
\begin{tkzelements}

dofile ("kissing.lua")
\end{tkzelements}

Figure 12: Three tangent circles

function kissing(c1,r1,c2,r2,c3,h1,h3,h2)
local xk = math.sqrt (r1*r2)
local de = math.sqrt (r1) + math.sqrt (r2)
local cx = (2*r1*math.sqrt(r2))/de
local cy = (r1*r2)/(de^2)
z[c2] = point : new (2*xk,r2)
z[h2] = point : new (2*xk,0)
z[c1] = point : new (0,r1)
z[h1] = point : new (0,0)
L[c1..c2] = line : new (z[c1],z[c2])
L[h1..h2] = line : new (z[h1],z[h2])
z[c3] = point : new (cx,cy)
z[h3] = L[h1..h2] : projection (z[c3])
C[c1..h1] = circle : new (z[c1],z[h1])
C[c2..h2] = circle : new (z[c2],z[h2])
C[c3..h3] = circle : new (z[c3],z[h3])

end
Figure 13: The “kissing” function code

\begin{tkzelements}
scale = .5
kissing ("A",4,"B",3,"C","E","G","F")
L.AE = line : new (z.A,z.E)
z.H = L.AE : projection (z.B)

\end{tkzelements}

Now the code for the TikZ part:
\begin{tikzpicture}

\tkzGetNodes
\tkzDrawSegment(E,F)
\tkzDrawCircles(A,E B,F C,G)

\end{tikzpicture}

6.2 Construction with an inversion
The diagram for a construction with an inversion is
shown in fig. 14.
\begin{tkzelements}

scale = .92
dofile ("kissing.lua")
kissing ("A",4,"B",2,"C","E","G","F")
z.X = intersection (C.AE,C.CG)
z.Y = intersection (C.BF,C.CG)
z.T = intersection (L.AB,C.AE)
z.H = L.EF : projection (z.T)
z.O = midpoint (z.T,z.H)
C.TH = circle : new (z.T,z.H)
z.x,z.xp = intersection (C.AE,C.TH)
z.y,z.yp = intersection (C.BF,C.TH)
z.x,z.xp = intersection (C.AE,C.TH)
if z.x.re < z.xp.re then else
z.x,z.xp = swap (z.x,z.xp) end

z.y,z.yp = intersection (C.BF,C.TH)
if z.y.re < z.yp.re then else
z.y,z.yp = swap (z.y,z.yp) end

L.OS = L.AB : ortho_from (z.O)
C.O = circle : new (z.O,z.H)
_,z.S = intersection (L.OS,C.O)
z.W = z.S : symmetry (z.O)

Euclidean geometry with tkz-elements and tkz-euclide

132 TUGboat, Volume 45 (2024), No. 1

z.Np = z.W : symmetry (z.S)
z.Ep,z.Fp,
z.N = C.TH : inversion (z.E,z.F,z.Np)
z.Xp,z.Yp= C.TH : inversion (z.X,z.Y)
T.EFN = triangle : new (z.E,z.F,z.N)
T.EFNp = triangle : new (z.E,z.F,z.Np)
z.I = T.EFN .circumcenter
z.Ip = T.EFNp.circumcenter
z.Bn = C.BF.north
z.Fp = z.Bn : symmetry (z.F)

\end{tkzelements}

6.2.1 Lua code analysis
After calling kissing, several points are defined such
as A, B, . . . , G. Additionally, circles C.AE, C.BF,
C.CG and lines L.AB and L.EF are defined.

• We designate as X, Y and T the contact points
between the three circles. These points are ob-
tained through intersections, for example:
z.X = intersection (C.AE,C.CG).

• H is obtained by projecting T onto the line
(EF): z.H = L.EF : projection (z.T).

• To maintain consistent notation, a test is con-
ducted to ensure that x and y are closest to the
line (EF). Depending on the results, the points
x, x′ and y, y′ may be exchanged.

• L.OS = L.AB : ortho_from (z.O)
is defined as the orthogonal line to (AB) passing
through O.

• The method symmetry attached to points is uti-
lized to determine point W , which is the sym-
metric of O with respect to S. This is obtained
with: z.W = z.S : symmetry (z.O).

• Finally, points E′, F ′ and N are obtained by
inversion with respect to the circle with center T
passing through H. This circle is denoted C.TH
and the transformations of the points are ob-
tained with:
z.Ep,z.Fp,
z.N = C.TH : inversion (z.E,z.F,z.Np).

Note the use of the letter p in the point names,
which indicates the “prime” when converting
points to nodes.

• The remaining steps involve using attributes and
methods which we’ve already discussed.

\begin{tikzpicture}
\tkzGetNodes
\tkzDrawSegments(E,F A,B E,A F,B A,C Bn,E)
\tkzDrawSegments[lightgray](T,X' T,Y' T,N')
\tkzDrawCircles(B,F T,H)
\tkzDrawCircles[](C,G)
\tkzDrawCircle[](O,H)
\tkzDrawCircle[](W,S)
\tkzDrawArc[delta=10](A,E)(x')

E FH

X Y

N ′

I

X ′

Y ′

W

S

Bn

N

A

B

O

T

C

LA

LB

Figure 14: Method with inversion

\tkzDrawArc[delta=10](I,F)(E)
\tkzDrawArc[delta=10](Bn,F')(F)
\tkzDrawLines[add=.3 and 0.3](x,x' O,W)
\tkzDrawLines[add=.8 and 0.5](y,y')
\tkzDrawPoints(A,B,E,F,T,S,W,C,H,X,Y)
\tkzDrawPoints(X',Y',N',N,Bn,O)
\tkzLabelPoints(E,F,H,X,Y,N')
\tkzLabelPoints[right](X',Y',W)
\tkzLabelPoints[above](S,Bn,N,A,B,O,T,C)
\tkzLabelLine[pos = 1.15,right]%

(x,x'){\mathcal{L}_A}
\tkzLabelLine[pos = 1.3,right]%

(y,y'){\mathcal{L}_B}
\end{tikzpicture}

7 Drawing with tkz-euclide
If you’re utilizing tkz-elements and intend to use
TikZ, the macro \tkzGetNodes is essential. It gener-
ates nodes from points defined in the tkzelements
environment.

7.1 A few basics
1. Drawing: The role of tkz-euclide is minimized

in drawing simple Euclidean geometry objects.
• Points: \tkzDrawPoints(A,B,C)
• Segments: \tkzDrawSegements(A,B C,D)
• Lines: \tkzDrawLines(A,B C,D)

Alain Matthes

TUGboat, Volume 45 (2024), No. 1 133

• Circles: \tkzDrawCircles(A,B C,D)6

• Polygons: \tkzDrawPolygons(A,B,C D,E,F)7

• Ellipse: \tkzDrawLuaEllipse(C,A,B)8

You can define the styles of objects globally
or use a style locally. For example:
\tkzDrawPoints[style](A,B,C).

2. Marking: Additionally, you have the option to
mark segments or angles.

• \tkzMarkSegments[s|](A,B C,D)
• \tkzMarkArc(O,A)(B)
• \tkzMarkAngles(A,B,C)
• \tlkzMarkRightAngles(A,B,C)

3. Labeling:
• \tkzLabelPoints(A,B,C)
• \tkzLabelSegments(A,B C,D)
• \tkzLabelAngle(A,B,C){α}
• \tkzLabelCircle(O,A)(60){$C(O,A)$}

7.2 Styling
The tkz-euclide package includes a configuration
file tkz-euclide.cfg containing all style definitions,
which can be duplicated and modified as needed.
Let’s explore the methods for changing point styles;
the principle will be identical for other objects.

7.2.1 Styling the points
Points: To draw points A, B and C, you can use
\tkzDrawPoints(A,B,C). This is the same as TikZ.
In tkz-euclide, points are represented as TikZ
coordinates.

Here are some additional details on styling points
in tkz-euclide:

• Setting global point size: You can set the global
point size for the entire figure or document.
\tkzSetUpPoint[size=.8pt]

You can also change this size locally when
needed. In some cases, you may need to use a
group or a scope for local modification.

• Creating local styles: You can create local styles
by customizing the style name. For example:
\tikzset{step 1/.style={cyan,thin}} and
\tikzset{step 2/.style={red,thick}}
which you can use in this way:
\tkzDrawPoints[step 1](A,B) and
\tkzDrawPoints[step 2](C)

• Combining general and specific styles: You can
define a general style and then create adapta-
tions from it. For example:
\tkzSetUpPoint[size=.8pt]

6 center A through B
7 triangle ABC
8 C = center, A = vertex, B = covertex

• Modifying predefined styles: It’s possible to
modify predefined styles directly:
\tikzset{point style/.style={...}}

• Retaining and modifying predefined styles: You
can retain part of a predefined style and add to
or modify it as needed.
\tikzset{point style/.append style={}}

• Finally, you can create your own local style from
a global style as follows:
\tikzset{new/.style={point style/
.append style={minimum size=8 pt,
fill=green}}}

This allows you to build upon a global style
and make specific modifications for local use.

7.2.2 Styling other objects
Besides point style, you can look at, modify, etc.,
these other styles:

• line style
• circle style
• compass style
• arc style
• vector style

References
[1] C. Kimberling. Triangle centers and central

triangles. Congressus Numerantium, 129:1–295,
1998.

[2] A. Matthes. tkz-elements 2.00c, 2024.
ctan.org/pkg/tkz-elements

[3] A. Matthes. tkz-euclide 5.06c, 2024.
ctan.org/pkg/tkz-euclide

[4] E.W. Weisstein. Apollonius circle. From
MathWorld — A Wolfram Web Resource, n.d.
mathworld.wolfram.com/ApolloniusCircle.
html

[5] E.W. Weisstein. Tangent circles. From
MathWorld — A Wolfram Web Resource, n.d.
mathworld.wolfram.com/TangentCircles.
html

� Alain Matthes
5 rue de Valence
Paris V, 75005
France
alain (dot) matthes (at) mac (dot) com
https://altermundus.fr

Euclidean geometry with tkz-elements and tkz-euclide

https://ctan.org/pkg/tkz-elements
https://ctan.org/pkg/tkz-euclide
https://mathworld.wolfram.com/ApolloniusCircle.html
https://mathworld.wolfram.com/ApolloniusCircle.html
https://mathworld.wolfram.com/TangentCircles.html
https://mathworld.wolfram.com/TangentCircles.html

134 TUGboat, Volume 45 (2024), No. 1

Unusual bitmaps

Hans Hagen, Mikael P. Sundqvist

1 Introduction

In the early days of TEX, fonts mostly were bitmaps
and when such a bitmap was shown in zeros and
ones, the shape was rather recognizable. A recent
example of a special-purpose (TAOCP) bitmap font
is Don Knuths three–six font. Do you recognize this
character?

1111111111

1100110011

1100110011

0000110000

0000110000

0000110000

0001111000

0001111000

It has a rather low resolution, but can still serve its
purpose as we will see later on. One problem is of
course that such a low resolution doesn’t render too
well. Although vector images are often preferred, es-
pecially in a MetaPost context, below we will explain
how we can also use bitmaps in a constructive way.

2 Vectorizing bitmaps

The potrace library by Peter Selinger is a nice tool:
you feed it a bitmap and are rewarded with an out-
line specification. Details about the process can
be found in https://potrace.sourceforge.net/

potrace.pdf. When you limit yourself to only the
basics, there are not that many source files and there-
fore I decided to add it to LuaMetaTEX in order to
explore if we can do runtime conversions. Possible
applications are logos and maybe converted bitmap
fonts, although these can best be prepared before-
hand because consistent metrics need to be taken
care of. There are, however, other applications possi-
ble. Here I will discuss usage only in the perspective
of Metafun, simply because we have to be visual, and
Metafun is all about that. The library is of course
accessible from the Lua end, if only because that way
we can use it in Metafun.

We start with a simple example that also shows
a potential usage:

\startMPcode

string s ; s := "010 111 010";

draw lmt_potraced [

bytes = s,

] ysized 2cm

withpen pencircle scaled 4

withcolor darkgreen ;

\stopMPcode

We feed the lmt_potraced macro a 3×3 bitmap
encoded as a string and this is what we get back:

We expect a cross and get back a circle which
is not what we want. This is because we don’t have
much body in this bitmap and potrace needs more
pixels in order to give back a decent outline.

\startMPcode

string s ; s := "010 111 010";

draw lmt_potraced [

bytes = s,

explode = true,

] ysized 2cm

withpen pencircle scaled 4

withcolor darkgreen ;

\stopMPcode

So, this time we ‘explode’ the bitmap, that is:
we repeat every pixel three times in the horizontal
and vertical direction. One can specify nx and ny

but so far using different values doesn’t help more
than the magic threesome.

We’re getting there but need to do a bit more.

\startMPcode

string s ; s := "010 111 010";

draw lmt_potraced [

bytes = s,

threshold = 0.25,

explode = true,

] ysized 2cm

withpen pencircle scaled 4

withcolor darkgreen ;

\stopMPcode

Here we’ve set a threshold which will clip the
paths in a range so that our case will get a better fit:

By now you will have noticed that we get back
a path and this is an important feature of potrace:
it returns a closed path expressed in lines and curves
that one is supposed to fill. That result is converted

doi.org/10.47397/tb/45-1/tb139hagen-bitmaps

Hans Hagen, Mikael P. Sundqvist

https://potrace.sourceforge.net/potrace.pdf
https://potrace.sourceforge.net/potrace.pdf
https://doi.org/10.47397/tb/45-1/tb139hagen-bitmaps

TUGboat, Volume 45 (2024), No. 1 135

into a Lua table that we then can use for instance to
generate a valid MetaPost path. We can do whatever
we like with that path: draw or fill it for clipping.
Natively, the library might return multiple paths but
the user sees only one because we concatenate them
which is a feature of the MetaPost library that comes
with LuaMetaTEX.

Once we could do this it was no big deal to add
support for filtering. After all, we have more than 0

and 1 characters available. Take this example, where
we lay out the bitmap a bit differently, for clarity:

\startMPcode

string s ; s := "

211222122

133111311

211222122

";

path p[] ;

p[1] := lmt_potraced [

bytes = s,

threshold = 0.25,

explode = true,

value = "1",

] ;

p[2] := lmt_potraced [

bytes = s,

threshold = 0.25,

explode = true,

value = "2",

] ;

p[3] := lmt_potraced [

bytes = s,

threshold = 0.25,

explode = true,

value = "3",

] ;

fill p[1] withcolor darkgreen ;

draw p[1] withcolor darkyellow ;

draw p[2] withcolor darkred ;

draw p[3] withcolor darkblue ;

currentpicture

:= currentpicture xsized TextWidth ;

\stopMPcode

We save the paths so that we can use them
multiple times, here for a draw and fill operation
on the first path but you could scale, rotate, or
manipulate the result before rendering it.

This example demonstrates that a user can de-
fine outlines using a bitmap specification and that
the amount of code is rather small. At some point
we might add a few more helpers that might reduce
the amount of code even more.

\startMPcode

string s ; s := "

212111233

131111233

212222133

212222133 ";

path p[] ;

p[1] := lmt_potraced [

bytes = s,

threshold = 0.25,

explode = true, value = "1",

] ;

p[2] := lmt_potraced [

bytes = s,

threshold = 0.25,

explode = true, value = "2",

] ;

p[3] := lmt_potraced [

bytes = s,

threshold = 0.25,

explode = true, value = "3",

] ;

linejoin := butt ;

fill p[1] withcolor darkgreen

withtransparency (1,.50) ;

fill p[2] withcolor darkred

withtransparency (1,.50) ;

fill p[3] withcolor darkblue

withtransparency (1,.50) ;

draw p[1] withcolor darkyellow

withtransparency (1,.75) ;

draw p[2] withcolor darkyellow

withtransparency (1,.75) ;

draw p[3] withcolor darkyellow

withtransparency (1,.75) ;

currentpicture :=

:= currentpicture xsized TextWidth ;

\stopMPcode

Because we have single paths we can safely apply
properties like transparency, as shown below: cross-
ing lines come out right instead of with accumulated
transparent colors.

Unusual bitmaps

136 TUGboat, Volume 45 (2024), No. 1

Sometimes you want to swap the rows and col-
umns so we provide a feature for doing that:

\startMPcode

string s[] ;

s[1] := "1110 0110 0110 0111";

s[2] := "1000 1111 1111 0001";

draw lmt_potraced [

bytes = s[1],

explode = true,

] ysized 2cm withcolor darkgreen

withpen pencircle scaled 4 ;

draw lmt_potraced [

bytes = s[2],

explode = true,

] ysized 2cm withcolor darkblue

withpen pencircle scaled 4 ;

draw lmt_potraced [

bytes = s[1],

explode = true,

swap = true,

] ysized 2cm withcolor white

withpen pencircle scaled 2 ;

\stopMPcode

When one uses Lua input (as we will see later),
one can do that when generating the bitmap. At any
rate, this is what we get from the above:

The previous examples demonstrate that not
much code is needed in order to achieve nice effects.
It also illustrates that one needs to twist the mind
a little and think of bitmap specifications as actu-
ally efficient outline definitions. One could argue
that such rectangular shapes are easy to program
in MetaPost anyway, and going via bitmaps is kind
of strange. So, let’s move on to a more attractive
example.

3 How about fonts

In order to demonstrate building fonts we need a
decent bitmap font and it happens that Don Knuth’s
‘Font36’ is a good candidate (https://erikdemaine.
org/fonts/dissect). We have discussed that one
elsewhere and its usage can be found in the Metafun
threesix library. We happily borrow the definitions
from that library (actual source strings are all on
one line):

\startMPdefinitions

string dekthreesix[] ; path shapes[] ;

def DEK(expr n, b) =

dekthreesix[utfnum(n)] := b ;

enddef ;

DEK("0", "00111100 01111110 11000011 11000011

11000011 11000011 01111110 00111100");

...

DEK("Z", "11111111 10000111 00001110 00011100

00111000 01110000 11100001 11111111");

\stopMPdefinitions

We use these definitions in the MetaPost code
below. Helpers like utfnum are part of LuaMetafun
and we use (named) colors defined at the ConTEXt
end.

\startMPcode

def shapethem(expr first, last) =

for i = utfnum(first) upto utfnum(last) :

shapes[i] := lmt_potraced [

bytes = dekthreesix[i],

explode = true,

% threshold = .25, % more rectangular

value = "1",

] ;

endfor ;

enddef ;

def drawthem(expr first, last, dx, dy) =

numeric d ; d := 0 ;

numeric f ; f := utfnum(first) ;

numeric l ; l := utfnum(last) ;

for i = f upto l :

fill shapes[i] shifted (d,dy)

withcolor "middlegray" ;

draw shapes[i] shifted (d,dy)

withcolor "darkgreen" ;

% draw boundingbox shapes[i] shifted (d,dy);

d := d + bbwidth(shapes[i]) + dx;

endfor ;

enddef ;

shapethem("0","9") ;

shapethem("A","Z") ;

drawthem("0", "9", 10, -00) ;

drawthem("A", "J", 10, -30) ;

drawthem("K", "S", 10, -60) ;

drawthem("T", "Z", 10, -90) ;

currentpicture

:= currentpicture xsized TextWidth ;

\stopMPcode

Here we don’t integrate it as a font but just show
the characters as they come out, which hopefully is
easier to understand. You can take a close look at the

Hans Hagen, Mikael P. Sundqvist

https://erikdemaine.org/fonts/dissect
https://erikdemaine.org/fonts/dissect

TUGboat, Volume 45 (2024), No. 1 137

bitmaps in order to see what we get rendered below.
Setting a lower threshold will give more rectangular
results.

Because we’re not going to use this font for
typesetting here, a simple example of a definition
will do. We first load an already existing module so
that we don’t need to define the bitmap definitions;
basically they are the same as above.

\useMPlibrary[threesix]

\startMPcalculation{simplefun}

vardef ThreeSixPotraced

(expr code, spread, lift) =

draw lmt_potraced [

bytes = code,

explode = true,

value = "1",

] scaled (1/3) shifted (spread,lift) ;

enddef ;

\stopMPcalculation

Next we register a Metafun font using similar
trickery as in that module. There we define a few
variants but that is not needed here.

\startluacode

local utfbyte = utf.byte

local f_code = string.formatters

[’ThreeSixPotraced("%s",%s,%s);’]

function MP.registerthreesixpotraced(name)

fonts.dropins.registerglyphs {

name = name,

units = 12,

usecolor = true,

}

for u, data in table.sortedhash(MP.font36) do

local ny = 8

local nx = ((#data + 1) // ny) - 1

local height = ny * 1.1 - 0.1

local width = nx * 1.1 - 0.1

local spread = 0.9

local lift = 0.3

fonts.dropins.registerglyph {

category = name,

unicode = utfbyte(u),

width = width + spread,

height = height,

code = f_code(data,spread,lift),

}

end

end

MP.registerthreesixpotraced

("fontthreesixpotraced")

\stopluacode

Finally we define a font feature that will hook
the previous code into the font handler. There a
Type 3 font will be constructed.

\definefontfeature

[fontthreesixpotraced]

[default]

[metapost=fontthreesixpotraced,

spacing=.375 plus .2 minus .1 extra .375]

\definefont[DEKFontP][Serif*fontthreesixpotraced]

We now show an example of usage (abridged).
This font only has uppercase characters so one might
consider duplicating these into the lowercase slots.
Because we replace glyphs in the serif font used, we
still have a complete font, albeit of mixed design.

\DEKFontP \WORD{\samplefile{knuth}}

This gives us a rendering that is quite readable,
especially when you consider how small the bitmaps
are (the red bar is the overfull box marker):

Just in case Don Knuth runs into this example,
we need to cheat a little here and redefine the TEX
logo definition:

\protected\def\TeX

{\dontleavehmode

\begingroup

T%

\kern-.40\fontcharwd\font‘T%

\lower.45\fontcharht\font‘X\hbox{E}%

\kern-.15\fontcharwd\font‘X%

X%

\endgroup}

A real font would have proper font kerns but
if needed you can set that up using the OpenType
feature plug in mechanism that ConTEXt provides.
A font like this can also be colored:

Unusual bitmaps

138 TUGboat, Volume 45 (2024), No. 1

4 External bitmaps

A convenient way to include traced images is to use
the potrace command line tool. However, we can also
include grayscale single-byte PNG-encoded images:

\startMPcode

path p ; p := lmt_potraced [

filename = "mill.png",

criterium = 100,

] ;

fill last_potraced_bounds

withcolor "middlegray" ;

fill p withcolor "darkgreen" ;

draw p withcolor "darkred"

withpen pencircle scaled 1.5 ;

setbounds currentpicture

to last_potraced_bounds ;

currentpicture

:= currentpicture xsized TextWidth ;

\stopMPcode

This is not the best image but the photograph
happens to be part of the ConTEXt distribution so
why not use it. You can of course apply a different
criterion and overlay a subsequent trace in a different
color. The result is shown in figure 1.

In addition to the last_potraced_bounds path
variable we also have last_potraced_width and
last_potraced_height numeric available.

5 Using Lua-generated bitmaps

It is tempting to see what can be done with a bit-
map generated by Lua, but let’s first give a simple
example. Here we register a bitmap:

\startluacode

local s = [[

000000010000000000000010000000

000000101000000000000101000000

000001000100000000001000100000

000010000010000000010000010000

000100000001000000100000001000

001000000000100001000000000100

010000000000010010000000000010

100000000000001100000000000001

]]

potrace.setbitmap("mybitmap",s)

\stopluacode

\startMPcode

path p ; p := lmt_potraced [

Figure 1: A traced PNG image

stringname = "mybitmap",

] ;

fill p ysized 2cm withcolor "darkblue" ;

\stopMPcode

We could play with the parameters but what we
get is an outline that is supposed to be filled:

Next we create a bitmap from a dataset; in this
case, we draw a function. Of course we could create
some handy helpers to do this:

\startluacode

local d = table.setmetatableindex("table")

local t = { }

local step = 100

local ymin = 0

local ymax = 0

local x = 0

local dx = 10*math.pi/step

for i=1,step do

local y = math.round(math.cos(x)*20)

x = x + dx

Hans Hagen, Mikael P. Sundqvist

TUGboat, Volume 45 (2024), No. 1 139

if y > ymax then

ymax = y

end

if y < ymin then

ymin = y

end

t[i] = y

end

for i=1,step do

for j=ymin, ymax do

d[j][i] = ’0’

end

end

for i=1,step do

d[t[i]][i] = ’1’

end

for y=ymin,ymax do

d[y] = table.concat(d[y])

end

potrace.setbitmap("mybitmap",

table.concat(d," ",ymin,ymax))

\stopluacode

\startMPcode

path p ; p := lmt_potraced [

stringname = "mybitmap",

explode = true,

% tolerance = 0.5,

threshold = 0,

% optimize = true,

] ;

fill p withcolor "darkblue" ;

\stopMPcode

To what extent this is a useful application is to
be decided:

Later we will see that it is less work if we stay
in the first quadrant, using (1, 1) as lower left corner.
Here we explicitly need to provide concat the range
because we have a negative ymin.

It quickly gets more interesting when we use an
intermediate bitmap for (a kind of) surface plots.

\startluacode

local sin, cos, pi = math.sin, math.cos, math.pi

local pp = pi/10

local function f(x,y)

local z = sin(pp*x) + cos(pp*y)

if z > 0.5 then

return ’1’

elseif z > 0 then

return ’2’

elseif z < -0.5 then

return ’3’

else

return’4’

end

end

potrace.setbitmap("mybitmap",

potrace.contourplot(100,100,f))

\stopluacode

Here we use a helper that runs the given function
over the maxima and collects the results in a bitmap.
More such helpers will be provided when users come
up with more demands.

\startMPcode

fill lmt_potraced [

stringname = "mybitmap",

value = "1",

explode = true,

threshold = 0.25,

% tolerance = 0.1,

% threshold = 1.0,

optimize = true,

] withcolor "darkred" ;

fill lmt_potraced [

stringname = "mybitmap",

value = "2",

explode = true,

threshold = 0.25,

% tolerance = 0.1,

% threshold = 1.0,

optimize = true,

] withcolor "darkgreen" ;

fill lmt_potraced [

stringname = "mybitmap",

value = "3",

explode = true,

threshold = 0.25,

% tolerance = 0.1,

% threshold = 1.0,

optimize = true,

] withcolor "darkblue" ;

fill lmt_potraced [

stringname = "mybitmap",

value = "4",

explode = true,

threshold = 0.25,

% tolerance = 0.1,

% threshold = 1.0,

Unusual bitmaps

140 TUGboat, Volume 45 (2024), No. 1

optimize = true,

] withcolor "darkyellow" ;

clip currentpicture to

last_potraced_bounds enlarged -1;

currentpicture := currentpicture

xysized (.45*TextWidth,4cm) ;

\stopMPcode

\startMPcode

fill lmt_potraced [

stringname = "mybitmap",

value = "1",

explode = true,

% threshold = 0.25,

tolerance = 0.1,

threshold = 1.0,

optimize = true,

] withcolor "darkred" ;

fill lmt_potraced [

stringname = "mybitmap",

value = "2",

explode = true,

% threshold = 0.25,

tolerance = 0.1,

threshold = 1.0,

optimize = true,

] withcolor "darkgreen" ;

fill lmt_potraced [

stringname = "mybitmap",

value = "3",

explode = true,

% threshold = 0.25,

tolerance = 0.1,

threshold = 1.0,

optimize = true,

] withcolor "darkblue" ;

fill lmt_potraced [

stringname = "mybitmap",

value = "4",

explode = true,

% threshold = 0.25,

tolerance = 0.1,

threshold = 1.0,

optimize = true,

] withcolor "darkyellow" ;

clip currentpicture to

last_potraced_bounds enlarged -1;

currentpicture := currentpicture

xysized (.45*TextWidth,4cm) ;

\stopMPcode

Here we are only exploring the possibilities so
there is no interface like we have with contour plots.
One can imagine that we provide this as a plugin,
which is not that hard but whether it eventually

happens depends on user demand or rainy days. So
to summarize: here we generate the bitmap, we call
out to potrace for a vector representation, that gets
fed into MetaPost and which gives us back a result
that can be converted to PDF. Of course we could
go directly from potrace output to PDF if we want
to, but now we get full control over the final result.
In case you wonder about performance: it compiles
real fast!

Some work is needed to scale the image to the
proportions that reflect the input ranges but because
we have a vector image that does not affect the
quality of the outcome. Here we also show the effects
of tolerance which influences the optimizing and
threshold that determines the accuracy (number
of points). In the second rendering: we use the
commented values that work quite well with this
kind of more mathematical images.

6 Experimenting

You can use bitmaps as a design tool but it needs
a little experimenting to get the idea. Take these
examples:

We started with a simple X-like symbol:

\startMPcode

fill lmt_potraced [bytes = "

00100000001

01010000010

10001000100

01000101000

00100010000

00010101000

00001000100

00010100010

00100010001

01000001010

10000000100

"] xsized 2cm

withcolor darkgreen ;

Hans Hagen, Mikael P. Sundqvist

TUGboat, Volume 45 (2024), No. 1 141

\stopMPcode

Next we started filling the shape a bit and tried
to make it less spiked:

\startMPcode

fill lmt_potraced [bytes = "

00100000001

01010000011

10001000100

01000101000

00100010000

00010101000

00001000100

00010100010

00100010001

11000001010

10000000100

"] xsized 2cm

withcolor darkblue ;

\stopMPcode

And finally we add even more ones to the bitmap.
You need to fill a bitmap area in order to get an
efficient fill.

\startMPcode

fill lmt_potraced [bytes = "

00100000011

01110000111

11111001110

01111111100

00111111000

00011111000

00011111100

00111111110

01110011111

11100001110

11000000100

"] xsized 2cm

withcolor darkyellow ;

\stopMPcode

If you’re in doubt you can also render the bitmap,
assuming that it has reasonable proportions.

\startMPcode

string s ; s := "

00100000011

01110000111

11111001110

01111111100

00111111000

00011111000

00011111100

00111111110

01110011111

11100001110

11000000100

" ;

fill lmt_potraced [bytes = s]

xsized 3cm

withcolor darkyellow ;

draw lmt_potraced [bytes = s,

alternative = "text"]

shifted (.25,.25)

xsized 3cm ;

\stopMPcode

The article that we mentioned in the introduc-
tion explains how potrace looks at a bits in relation
to its neighbors.

00100000011
01110000111
11111001110
01111111100
00111111000
00011111000
00011111100
00111111110
01110011111
11100001110
11000000100

00100000011
01110000111
11111001110
01111111100
00111111000
00011111000
00011111100
00111111110
01110011111
11100001110
11000000100

You can save some runtime (and coding) by
using the start-stop wrappers that keep the (inter-
mediate) potrace object available. This permits for
instance showing the ‘original’ polygon that serves
as basis for successive steps in the library towards
to the final curve(s).

\startMPcode

string s ; s :=

"01111111111111111111111111111100

11000000000000000000000000000110

11000000000000000000000000000011

11000000000000000000000000000011

11000000000000000000000000000011

01100000000000000000000000000011

00111111111111111111111111111110";

lmt_startpotraced [bytes = s] ;

p := lmt_potraced [

value = "0",

threshold = 0,

tolerance = 0,

optimize = true,

] ;

draw image (

p := p shifted - center p ;

draw p

withpen pencircle scaled 1

withcolor "darkblue" ;

drawpoints p

withpen pencircle scaled .5

withcolor "white" ;

draw boundingbox p

withpen pencircle scaled .1

withcolor "darkgray" ;

) ysized 3cm ;

path p ; p := lmt_potraced [

value = "0",

polygon = true,

Unusual bitmaps

142 TUGboat, Volume 45 (2024), No. 1

] ;

draw image (

p := p shifted - center p ;

draw p

withpen pencircle scaled .25

withcolor "middleyellow" ;

drawpoints p

withpen pencircle scaled .175

withcolor "white" ;

draw boundingbox p

withpen pencircle scaled .05

withcolor "darkgray" ;

) ysized 3cm ;

lmt_stoppotraced ;

\stopMPcode

The above is just a bit of exploring the possibil-
ities so eventually there will be a chapter on this in
the LuaMetafun manual, because it is definitely fun
to play with this in the perspective of MetaPost.

7 Contour plots

We end with showing how we can do rather nice
contour plots and region plots with help of the po-
tracer. Let us start with the latter type of graphics.
In a recent math paper Mikael was counting nodal
domains of Neumann eigenfunctions to the Laplace
operator in a square. These eigenfunctions are built
from cosines. One example is given by

Ψ(x, y) = cos(8πx) cos(3πy) + cos(3πy) cos(8πx) .

The related graphic of interest is to fill the part
of the unit square where Ψ is positive. In the arti-
cle, Wolfram Mathematica was used to produce this
graphic, with its built-in function RegionPlot. The
result was indeed satisfactory (Figure 2(a)).

If one looks closely at the graphics one will see
that the filled regions are made up of a mesh. With
potrace we instead receive one (!) path. To generate
the corresponding graphic we first use Lua to define
a function that takes a point as input and returns 1
if Ψ is positive at the point and 0 otherwise. We
then use it to generate a 1000× 1000 bitmap image
of zeros and ones accordingly.

\startluacode

local cos, pi = math.cos, math.pi

local N = 1000

local pp = pi/N

local pp3 = 3 * pp

local pp8 = 8 * pp

local cospp8y = 0

local cospp3y = 0

local function f(x,y)

if x == 1 then

cospp8y = cos(pp8*y)

cospp3y = cos(pp3*y)

end

local z = cos(pp8*x)*cospp3y

+ cos(pp3*x)*cospp8y

if z > 0 then

return ’1’

else

return ’0’

end

end

potrace.setbitmap("mybitmap",

potrace.contourplot(N,N,f))

\stopluacode

Once this is done, we can use the result in
lmt_potraced.

\startMPcode

path p ; p := lmt_potraced [

stringname = "mybitmap",

value = "1",

threshold = 0.25,

optimize = true,

] ;

p := p xsized .9TextWidth ;

fill p withcolor "darkred" ;

\stopMPcode

This results in Figure 2(b), which looks very sim-
ilar to the one generated by Wolfram Mathematica.
Note that p is one (disconnected) path.

We give one example of a contour plot. By a
contour plot, here we mean a plot of the curve that is
described as the solution to an equation F (x, y) = 0.
With F (x, y) = y − f(x) we realize that function
graphs y = f(x) provide a particular example, but
we can also handle more complicated curves here, for
example the unit circle (F (x, y) = x2 + y2 − 1).

Let us draw a part of the curve that goes under
the name the Trisectrix of Maclaurin, a curve that
can be used to trisect angles (named after Colin
Maclaurin in 1742). We use the function

F (x, y) = 2x(x2 + y2)− (3x2
− y2) .

Let us construct the path and draw it.

\startluacode

local N = 1000

local xx = 3/N

local yy = 3/N

Hans Hagen, Mikael P. Sundqvist

TUGboat, Volume 45 (2024), No. 1 143

Figure 2: (a) A region plot generated by Wolfram Mathematica.
(b) The same, generated by potrace and Metafun.

local function f(x,y)

local x = xx*x - 1

local y = yy*y - 1.5

local z = 2*x*(x^2 + y^2) - (3*x^2 - y^2)

if z > 0 then

return ’1’

else

return ’0’

end

end

potrace.setbitmap("mybitmap",

potrace.contourplot(N,N,f))

\stopluacode

\startMPcode

path p ; p := lmt_potraced [

stringname = "mybitmap",

value = "1",

tolerance = 0.1,

threshold = 1,

optimize = true,

] ;

p := p xsized TextWidth ;

draw p withcolor "darkred" ;

drawpoints p withcolor "orange" ;

drawpointlabels p ;

currentpicture

:= currentpicture xsized min(8cm, TextWidth);

\stopMPcode

0
1

2

345
6

7

8
9 10 11

12

13

14

15

16

17

18

19

20
212223

24

25

26
272829

30

31

32
33 34 35

36

373839

Figure 3: The Trisectrix of Maclaurin, with points
and labels.

We also draw the points and the point labels.
This way we can easily find out which part of the
path to draw. In this case it seems that we need the
first 34 points (Figure 3).

\startMPcode

Unusual bitmaps

144 TUGboat, Volume 45 (2024), No. 1

path p ; p := lmt_potraced [

stringname = "mybitmap",

value = "1",

tolerance = 0.1,

threshold = 1,

optimize = true,

] ;

p := subpath(0,33) of p ;

p := p xsized 4cm ;

draw p

withcolor "darkred"

withpen pencircle scaled .5mm ;

\stopMPcode

You need to keep the resolution (determined by
the input) and therefore scaling in mind and choose
the pen accordingly:

This method of drawing contour plots is efficient,
and it gives, in contrast to some traditional methods,
curves that look smooth, with relatively few points.
It also has weaknesses, one of them being that the
inequality F (x, y) > 0 does not always single out
the curve F (x, y) = 0; it might be the case that
the function F is positive on both sides of the curve
F (x, y) = 0.

We invite the reader to be creative and play
with this (to us) new toy. Have fun!

Coda

And, in the spirit of having fun, here are some final
images. This first one is a photo of a “tool” that we
came up with at the ConTEXt meeting. Willi Egger
made a kit for the attendees, so there was the usual
cutting and glueing involved. The dots are seeds.

Finally, here are dots laid out from an emoji that
Mikael’s children made when we were playing with
this feature. The first image has the rendering of
that input, while the second “explodes” the pixels in
the x direction (so columns are duplicated), resulting
in a more symmetric image.

⋄ Hans Hagen
Pragma ADE

⋄ Mikael P. Sundqvist
Department of Mathematics
Lund University
mickep (at) gmail dot com

Hans Hagen, Mikael P. Sundqvist

TUGboat, Volume 45 (2024), No. 1 145

Signing PDF files

Hans Hagen

Here I discuss a feature of PDF documents that
TEX users can safely ignore most of the time but
that is part of the package. But before we arrive at
describing what it is, first a few words about PDF

and the way it is used.
When PDF showed up as a format, DVI was

what TEX users had to deal with. It was possible
to preview the result with a DVI viewer or convert
it to some format suitable for a printer. The DVI

format is rather minimal and has no resources like
fonts and images embedded. Basically the file only
positions glyphs and rules on a canvas and the glyphs
are references to external fonts. Color and similar
effects have to be implemented using the \special
primitive that puts directives for the backend driver
in the file. Although technically one could embed
fonts and images using specials and thereby create a
self-contained file it never happened, partly because
it demands a dedicated viewer and (definitely at that
time) increased runtime.

At that time PostScript was one of the popu-
lar output formats. For a long time I used DVIPS-

ONE for (robust) printer output (with outline fonts)
and DVIWINDO for previewing (because it was fast,
supported color, graphics and hyperlinks). The ini-
tial road to PDF was to add another step to the
conversion: using Acrobat to convert a PostScript
(enhanced with so-called pdfmarks) into a PDF file.
Later direct DVI to PDF converters showed up along-
side pdfTEX that integrated an alternative backend.
We can realize that without these more direct meth-
ods TEX would not be as popular as it is now. The
fact that in ConTEXt we had a rather generic (ab-
stract) backend, where specific drivers plugged in,
indicates that we didn’t foresee that PDF would
eventually take over.

One of the reasons PDF showed up alongside
PostScript is that it removes the interpretation part
from the end result. Where PostScript is a program-
ming language and the result needs to be interpreted
in the printer or in a viewer (like GhostView), PDF

is a collection of related objects that express what
gets rendered in what way. Often the PDF files are
smaller, also due to compression (so they transfer
faster), and the lack of additional processing removes
a bottleneck in high speed and high resolution print-
ing. If you look at it this way, PDF is primarily a
printer format.

Some tools in the Adobe suite of editing pro-
grams use(d) a mix of binary and PostScript to store
the state. At some point PDF became the container

format, although one could find curious mixes of
PostScript, PDF, even configurations stored as type-
set streams, but that might have been normalized
by now. So, from this perspective PDF is a storage

format, kind of an object-oriented one.
When PDF showed up it had some rudimentary

support for annotations, like hyperlinks, and also for
embedding of audio and video. I’m pretty sure that
TEX was among the first programs to support this.
Over time more annotation types showed up, like
widgets (forms), complex media and 3D, JavaScript,
comments and attachments. Widgets evolved a bit
and one has to play rather safe (and not use all fea-
tures) because some bugs and side effects became
features and there is limited support in viewers, if
only because often JavaScript is assumed. Media
have always been sort of a mess, especially when the
straightforward annotations were dropped. We have
always supported them but I consider them unreli-
able in the long run. Most hyperlinks are working
as expected, comments (a form of PDF annotations)
when used wisely also work ok, although that de-
pends on the viewer (interfaces change). No matter
what one thinks of all this, here PDF is definitely a
viewing format. Because comments can be added,
PDF files can also be used in redacting workflows.

It is also worth remembering that in the early
days only Acrobat was available for viewing; there
was even a version for MS-DOS. The Reader only
offered basic functionality and for the real deal one
needed Exchange, which didn’t come free. There
was a complicated scheme for shipping a special ver-
sion with documents: basically that was the business
model for using PDF for an on-screen reading experi-
ence. This was not a success (cumbersome as well as
expensive), and when Internet access became more
common, using CD-ROM for distributing documents
was soon obsolete, let alone installing a related closed
source and operating system dependent viewer. We’ll
see that with document signing, another attempt at
a business model is made.

Following up on that we now arrive at two ad-
ditional aspects. One is accessibility and I could
spend a whole article on that. Let’s stick to the
observations that the idea is that rendered content
can be reinterpreted for reading aloud, for reflow
(sic), maybe for cut-and-paste. Personally I wonder
why one would use PDF to provide adaptive accessi-
bility, because HTML is meant for that. Distributing
a structured source might be more efficient when
interpretation is needed. Anyway, it’s not that hard
to support but we end up with a bloated PDF file,
while the PDF format started out with attempts to
minimize size. I understand that publishers don’t

doi.org/10.47397/tb/45-1/tb139hagen-pdfsign

Signing PDF files

https://doi.org/10.47397/tb/45-1/tb139hagen-pdfsign

146 TUGboat, Volume 45 (2024), No. 1

like to distribute sources but if this is the solution one
can wonder. The second addition is to render and
present text in a way that cannot be tampered with
and this is where signing comes in: can we somehow
mark a document such that the receiver can trust its
content. More about that later, but what we can say
here is that PDF has become a distribution format.
Conforming to standards, tagging, encryption and
signing all play a role in this.

No matter what usage we consider, all of them
depend on reliability. Can we show and process a
document in the future? Can PDF be relied upon
as a long-term archival format? From that perspec-
tive, standardization has to be mentioned. Already
early in the history of PDF, plugins (and additional
workflows) provided the printing industry ways to
check if a file was okay. One should think of color
spaces being used, fonts being present, etc. Some
tools manipulated the PDF, not always with the best
outcome, but we leave that aside. Other tools were a
bit more tolerant than might be considered healthy,
for instance by ignoring a bad xref table (basically
the registry of objects in a PDF file) and either fixing
it or just generating one from scratch. Although
Acrobat can complain or fail to open a document,
on the average commercial and open source tools
are tolerant enough and the lack of a proper error
log means that the PDF generators don’t get fixed
when that still can be done. It is also good to keep
in mind that there is a whole industry around PDF

generation, validation, manipulation, etc. and huge
money making machines are not always on the retina
of, for instance, TEX users who produce PDF. Of
course by now there are so many documents in PDF

format around that being tolerant kind of comes with
the package. Validators like VeraPDF evolve and a
document that is ok today (2023) might fail the test
tomorrow, and the verdict even depends on the PDF

framework being used (there are options). Where
TEX users can often regenerate a document from
source this is not true for the majority of documents
produced elsewhere.

It is also important to notice that rather soon
in the history of PDF, Ghostscript became an option
for viewing and at some point commercial and open
source viewers showed up. Not all were perfect and
even today there are differences in quality and func-
tionality. A good test is how well cut-and-paste deals
with spaces and how well a test area gets selected.
The open source viewers are slow in catching up,
but because the evolution of media PDF annotations
isn’t that stable either for most purposes viewers like
SumatraPDF (Windows) or Okular (Linux) is what
I use today, especially now that Acrobat has moved

to the cloud. There is also some competition from
browsers that show PDF. For purposes of signing
(which we’ll get to next) one probably has to rely on
Acrobat for a while, but we’ll see.

So, what does signing bring to this? Digital
signatures have been around for a while. You can for
instance sign a document with a certificate (similar
to what secure webservers do with sites). In that case
the distributed blob has security-related information
as well as the content. A validating application can
take the content and check if it has been tampered
with. It can do so off line (with limited security) but
also go online and check the embedded certificate.
With signed PDF files the same is true apart from
the fact that here the signature is a partial one,
not embedding the data. Instead the signature is
embedded in the PDF file.

Before we move on we have to stress that signing
is not the same as (password protected) encryption.
A signed PDF file is by default just readable, unless
one explicitly encrypts the file. These processes are
independent. Here we ignore encryption; suffice it
to say that ConTEXt can do it, but apart from users
asking for it I don’t know if it ever gets applied. We
discuss the process of signing in the perspective of
ConTEXt, although in itself it is not bound to that
macro package.

Let’s first look at how text ends up in a PDF

file. Take this source file, in ConTEXt-speak:

\startTEXpage[offset=1dk]

some text

\stopTEXpage

This leads to a so-called page stream that con-
tains this (except normally you are likely to see
garbage because compression is applied, so decom-
press first):

BT

/F1 10 Tf

1.195517 0 0 1.195517 7.485099 7.616534 Tm

[<000100020003000400050006000400070006>] TJ

ET

We switch to a font (Tf) with id F1, set up a
text transform matrix (Tm) and render the four plus
four characters (TJ) indicated by their index into a
(in our case subsetted) font. The 0005 is not really
a character: it refers to a space. It looks unreadable
but one can figure out the text by consulting the
ToUnicode resource associated with the font as it
has the mapping from the index numbers to Unicode
(with comments added):

<0001> <0073> % s

<0002> <006F> % o

<0003> <006D> % m

<0004> <0065> % e

Hans Hagen

TUGboat, Volume 45 (2024), No. 1 147

<0005> <0020> %

<0006> <0074> % t

<0007> <0078> % x

There is nothing hidden here and one can actu-
ally even change the text by changing an index in
the page stream, although of course you can only use
indices that are available and you also have to accept
weird rendering due to the change in progression
when the referenced glyph has different dimensions.
More extensive tampering with the document has
more severe consequences. For instance, the page
object looks like this:

3 0 obj

<< /Length 118 >>

stream

...

endstream endobj

So changing the content also demands changing
the Length. Even worse, there is an entry in the
object cross reference table:

0000000075 00000 n

0000000244 00000 n

that needs to be adapted, including all following
entries. So, tampering is possible but not something
that is likely to happen. Nevertheless we continue as
if some guard against this is needed. We now assume
the following document:

\nopdfcompression

\setupinteraction[state=start]

\definefield[signature][signed]

\defineoverlay[signature][my signature]

\starttext

\startTEXpage[offset=1ts,frame=on,

framecolor=darkblue]

sign: \inframed

[background=signature,framecolor=darkred]

{\fieldbody[signature][width=3cm,

option=hidden]}

\stopTEXpage

\stoptext

We get a small, one page, document:

This document has a widget that looks like this
(some less relevant entries are omitted):

2 0 obj

<<

/Type /Annot

/Subtype /Widget

/FT /Sig

/T <feff007300690067....074007500720065>

/V 1 0 R

/Rect [38.445125 11.522571

123.484489 23.471172]

>>

endobj

In principle we could add an appearance stream
and decorate the widget but when adding signature
support to ConTEXt I found that using a parent-kid
approach, for instance, was not appreciated by some
programs (I used mutool (mupdf), pdfsig (poppler),
Okular and Acrobat Reader for some basic testing),
so in the end the V key ended up in the root widget. It
probably relates to fuzzy specifications, experiments
with specific tool chains, non-public validation pro-
cesses, etc. Round trip signing and verification seems
not entirely trivial, so best to play safe.

When the value of a Sig widget is a string,
signing is up to the viewer but when we have a
dictionary the signature can be in the file. The V

value of 1 0 R is a reference to a dictionary with
object number 1. Here is what that value looks like
when we generate this document:

1 0 obj

<<

/ByteRange [2000000000 2000000000

2000000000 2000000000]

/Contents <0000000000000....00000000000000>

/Filter /Adobe.PPKLite

/SubFilter /adbe.pkcs7.detached

/Type /Sig

>>

endobj

The Filter and SubFilter entries are sort of
default, though alternatives are possible, which then
requires additional information to be added and also
a viewer (or validator) able to deal with it. We leave
that aside. The Contents hex-encoded string is a
placeholder for the signature and in our case is 4096
bytes long. We could compute a bogus signature
and check the size instead. Here the ByteRange

and Contents are actually invalid but viewers are
(supposed to be) tolerant so it triggers no error. After
all this widget is only consulted when signatures are
checked. The general structure of the file is like this:

%PDF-1.7

....

1 0 obj

<< /ByteRange [....] /Contents <....> >>

endobj

....

xref

The signature ends up between < and > and
has to be calculated over the bytes specified by the
ByteRange entries. Although one might think that

Signing PDF files

148 TUGboat, Volume 45 (2024), No. 1

these can be arbitrary, in practice it looks like it is
best sticking to the recommendation:

start of file

length up to position < of contents

position after > of contents

length up to end of file

So basically all except the Contents value is
taken into account. Because the ranges are part of
that, they need to be filled in properly, something
that has to be done after the PDF file is finished
because only then is the size known. In ConTEXt
that could be done as part of the main run, but it
makes little sense because we need to adapt the file
anyway. If the file is called sign-001.tex, we get
this:

mtxrun --script pdf --sign \

--certificate=sign-001.pem \

--password=test sign-001

The script will set the byte ranges and fill in
the content. It does that by making a data file and
running openssl with the appropriate parameters,
although with --library one can avoid the tempo-
rary file and gain a bit. Just for the record: we don’t
depend on that library but have only a minimal de-
layed binding to a few functions, with Lua wrappers
so it has no impact on (compiling) the LuaMetaTEX
binary. Eventually one ends up with something like
this (values abridged):

1 0 obj

<<

/ByteRange [0000000000 0000006276

0000010375 0000000380]

/Contents <3082061a06092a....a082060b308206>

....

endobj

Verifying can be done as follows:

mtxrun --script pdf --verify \

--certificate=sign-001.pem \

--password=test sign-001

which reports:

sign pdf | signature in file ’sign-001.pdf’

matches the content

while changing a byte in the trailer id results in:

sign pdf | signature in file ’sign-001.pdf’

doesn’t match the content

For verifying we can load the PDF file and use
the ByteRange specification but for signing this is less
trivial: when we load a PDF file we load a structure
that is ignorant of the position in the file. We could
use the cross reference table to find the position in the
file of the object but that assumes that this table is
available. So here we have two alternatives. We can
write an auxiliary file (sign-001.sig) at the end of

the TEX run that has the relevant information. This
approach permits us to keep the PDF file simple: we
reserve enough characters for the ranges and content
so we can overwrite them. If the file is lacking, the
sign routine tries to locate the object in the PDF

from the list of widgets and once we know its number
we also know where the object is in the file. This
alternative adds a little overhead because at least
the cross reference table has to be loaded. Whatever
route we take, it is still prettier than appending
additional objects to the file and basically creating a
new version, which not only makes the file larger but
also keeps unused objects around. Applications like
mutool and Acrobat prefer that route, though, in
part because they add their own appearance streams.

We now need to discuss these certificates and
that is where it becomes less convenient. For testing,
I use a Let’s Encrypt certificate but these officially
cannot be used as they are flagged as web certifi-
cates. There is (what’s new here) a whole industry
behind this signing. You need to get a certificate
someplace and for that often have to sign up for
a yearly subscription. In the worst case you get a
token instead of a file and then have to set up some
delegated workflow. Feeding a document into a USB

token is not the most efficient of all processes, so
you will find alternative solutions where you end up
with a dedicated machine in a server rack. This all
makes it a no-go for a low or zero budget situation. It
also means that for just printing, viewing or storing
purposes signing doesn’t make that much sense: it
only adds overhead.

One can argue that signing is not that robust
anyway. Just like we can add a signature to a file,
so can anybody. It’s all about trust. When a byte in
a PDF file is changed validation fails anyway so that
is already a signal; we don’t need to verify the cer-
tificate for that. And it’s not that hard to let a user
upload a file to the origin and let it validate there
where the private key is known. But wait, isn’t it
more convenient to do that without uploading? Sure,
but here are some pitfalls. First of all, who knows
if a certificate is still valid? An organization has to
spend quite some money on it yearly. And (even
root) certificates expire so in the end the document
refers to something invalid anyway, which effectively
makes the document expire after some time. Sav-
ing documents and providing them again might be
cheaper and also has the advantage of archiving. For
long term archiving signing makes little sense anyway
(expiration, cracking).

So why do we bother to add signing to Con-
TEXt? The answer is simple: user demand. Just
like being forced to use some PDF standard, users

Hans Hagen

TUGboat, Volume 45 (2024), No. 1 149

can be forced to comply with what the organization
prescribes with respect to signing, even when in the
end it’s just a demand, and nothing is actually done
with it. So the main question is: after showing that
it can be done, what eventually happens; how does
the workflow look? It’s comparable to tagging: it
is sometimes demanded, but after that the lack of
useful tools make it just a box to be ticked.

There are other alternatives to making users feel
good about a document: provide a printed copy, keep
the original someplace for downloading, maybe make
it possible to regenerate a document from source,
maybe even provide the resource. Generate a string
hash and keep that available alongside the original.
In the end it is all about trust, indeed.

Let’s end on a positive note. Getting to know
what has to end up in the file is not that trivial and
as with much on the Internet, looking for solutions
quickly brings you to a subset of partial and some-
times confusing answers and solutions. This is why
in the end I decided to just look in the code base
of openssl that comes with examples and eventu-
ally one can sort out something not too complex.
One of the interesting observations was that the bi-
nary blob is a structured key/value sequence using
technology from decades ago (1984), when data had
to be transferred reliably between architectures and
programming languages: Abstract Syntax Notation
One (ASN.1). It makes old TEXies feel young when
old tools survive beyond the modern short lifespan
of fancy web technologies. I might eventually spend
some more time on this, just for the fun of it.

If you want to know more details: the official
ISO standard on PDF has some sections on the mat-
ter; a more comprehensive summary can be found in
“Digital Signatures in a PDF, Adobe Systems Incor-
porated, May 2012”. There is also “CDS Certificate
Policy, Adobe Systems Incorporated, October 2005”
but I suggest to ignore that one unless you’re forced
to implement the more expensive route.

Some final words on the mentioned formats. For
printing and storage this feature is not needed. Nor
for regular viewing, because users probably don’t
care that much if a manual or book is signed and
it’s unlikely that certificates last that long (or stay
secure for that matter). But it might make sense
for distributing documents with some legal meaning
in the short term. In that perspective having this
feature in ConTEXt makes most sense in specific
workflows. But it doesn’t hurt to know that TEX is
still able to adapt itself to these situations.

⋄ Hans Hagen

Pragma ADE

Computer Modern shape curiosities

Hans Hagen

azö (upright)

azö (italic)

azö (bold)

azö (bold italic)

When playing with some (upcoming) new font fea-
tures in LuaMetaTEX, I overlaid regular and bold
versions of Latin Modern characters. I took an ‘a’
with diaeresis as a test.

While staring at the overlays I noticed that the
little hook of regular was not present in the bold
variant. After displaying the whole upright alpha-
bet, that was the only difference in shapes. In the
italic shapes, the ‘z’ was a bit different. And when
blown up the dots are somewhat larger in the bold.
(Computer Modern is the same, naturally.)

So, the question is: how many users who can
immediately recognize Computer Modern have no-
ticed this difference in ‘a’? Another question is: did
personal taste win over consistency?

We can also wonder if Latin Modern should
have a few stylistic alternates, but maybe no one
is willing to pay the prices in additional overhead.
Of course most such details get hidden at a small
10 point size. When blown up enough, a few other
interesting design details can be seen, but I leave
noticing that to the reader. After all, these shapes
were never meant to be seen that large.

� Hans Hagen
Pragma ADE

doi.org/10.47397/tb/45-1/tb139hagen-cmshapes

150 TUGboat, Volume 45 (2024), No. 1

Radical delimiters

Hans Hagen, Mikael P. Sundqvist

Every TEX user who typesets math knows that left
and right fences (parentheses) can grow with what
they span. The same is true for the rule in a fraction,
wide accents and braces (for instance) on top of a
subformula. These are called horizontal and vertical
extensibles. There are also special extensibles like
integrals, sums and products. Integrals sometimes
can grow indefinitely but the latter two come in a
limited set of variants. Even (for instance) parenthe-
ses start with stepwise larger variants before we end
up with an extensible.

A math radical is also an extensible: the left part
of this symbol can grow but in traditional TEX the
bar at the top is a rule. There is no real concept of a
two-dimensional extensible and for reasons unknown
to us OpenType didn’t bother to add them. That
would also introduce a right part being supported. In
the next abstraction we show a bunch of properties
that we have to deal with.

Because we have no hope that this will become
available we’ve rolled our own. The middle piece can
be a glyph like with any extensible and we support a
right piece. For this the engine was adapted. But it’s
not enough. When a variant grows, the angle might
change slowly till we go upwards. In many fonts the
number of variants is not enough to accommodate
proper rendering; think of plain symbols, symbols
with a script, fractions, fractions that themselves
contain symbols with scripts. It can be hard to come
up with a configuration that works well for each of
them when we lack variants.

The next graphic shows what we’re dealing with.
Here the radical shape is made from a single left,
repeated middle and a single right piece but the left
and right ones can also be made from pieces, when
they are upright.

When a variant is sufficiently sloped, there is a
danger that it will clash with the content, so we need
some kerns that depend on the shape. In the picture
above, they’re shown as the vertical bars at left and
right under the radical in red and blue, respectively
(grayscaled for TUGboat), and hopefully also visible
in this example:

�−−−
1
−−−
2

This is a character-specific property. We already have
the distance between content and top as a parameter
(horizontal bar at top, in green) and of course this is
different for text and display math. Then we have
the degree of the radical, which has its own vertical
positional parameter but again we need something
per size. Because we have only a shared parameter
the leftmost part of the symbol is always the same,
although we could abuse some depth trickery here.
So we need proper anchors so that the degree can
stick out to the left of that anchor (gray dot) instead
of using some heuristic (if at all: we can also overlap).
This shape-dependent margin is not to be confused
with margins that we add in ConTEXt, at the left
and/or right, as well as enforced by struts.

We can even think of kerning between the radical
left symbol and the first one seen in the content. This
is kind of complicated because we get a chicken-egg
situation as the symbol depends on the content and
if that becomes wider we need to recalculate the
assembly. So for now there is no extra kern (after
the red) even if we do support kerning in some cases.

The radical as whole also has properties, for
instance the right symbol can demand some top kern
(magenta). Actually a prescript will kern before the
left symbols but is not needed in case of a degree and
given the white areas there, such a kern is unlikely.
And the user might also expect the radicals in a
formula made from more than one radical to have
the same size. There is also the math axis (heavy
black line) to deal with because the symbol gets
vertically centered over the content.

So we have quite a few extra shape-dependent
properties to deal with: margins, offsets and (corner)
kerns. We also need multiple passes in order to
meet demands like comparable sizes and calculating
content dimensions that are needed for the sizing.
Keep in mind that traditional TEX is eight bit and
assumes a single extensible font (number three of the
hard coded four family setup) and the 256 slots have
to be distributed across variants and sizes and so
TEX can provide only a limited solution space here.

All this (plus some more) is supported in Lua-
MetaTEX but it only works out well if the macro
package provides the information that is lacking in
the fonts, which is yet another reason why we have
companion fonts (adding sizes and fixing inconsisten-
cies which are hard to tweak) as well as math font
goodie files that add the information needed. It goes
without saying that the authors spent a considerable

doi.org/10.47397/tb/45-1/tb139hagen-radicals

Hans Hagen, Mikael P. Sundqvist

https://doi.org/10.47397/tb/45-1/tb139hagen-radicals

TUGboat, Volume 45 (2024), No. 1 151

amount of time on getting all this right. For example,
we found out that the four variants of the radical in
Latin Modern: √ √ √ √ √
could benefit from extra sizes, some intermediate,
and some larger. As in:√ � � � � � � � � � � � � � � � �

Compare the output of a few typical radicals:√2 + √22 + √12 √−−−2 + �−−−−−22 + �−−−1−−−2
original companion

It is fair to mention that in ConTEXt we do use
struts inside radicals and fractions to enforce consis-
tency, and therefore the outcome of these examples
might look different in other macro packages.

In principle all math symbols have these extra
properties attached but their usage differs, so for
instance in accents the margins are around the (wide)
accent. With radicals the top and bottom margins
are ignored but as we progress they might get some
meaning. In some cases the implementation is less
straightforward, for instance in a ‘binop’ we have a
fraction with built-in fences so there we need to carry
over the kerns that come with the chosen fences.

This all means that the math engine is more
complex so it starts making sense to consider remov-
ing the traditional code paths: no new old school
math fonts are likely to show up, and the ones that
we had have acquired OpenType implementations
by now anyway.

Sometimes, when we see what users try to com-
pensate for, or ask for fixes about (on Stack Ex-
change, for instance), we wonder if this is a recent
observation. After all, nothing like the above made
it into OpenType math and fonts. Maybe observa-
tions get lost after some quick fix instead of being
accumulated in some proposal, or maybe nothing got
fixed anyway. We never get (or see) reports from
editors (of journals) and none of them seem to follow
developments like this (or we’d have noticed).1 Of
course much goes unnoticed when seen in print (at
desktop or office printer resolution), but can be seen
when proofing or reading on screen.

⋄ Hans Hagen

⋄ Mikael P. Sundqvist

1 An exception is TUGboat’s Karl Berry who gives us

valuable and inspiring feedback.

TheTreasure Chest

These are the new packages posted to CTAN (ctan.
org) from October 2023–April 2024. Descriptions are
based on the announcements and edited for extreme
brevity.

Entries are listed alphabetically within CTAN

directories. More information about any package can
be found at ctan.org/pkg/pkgname.

A few entries which the editors subjectively be-
lieve to be especially notable are starred (*); of
course, this is not intended to slight the other con-
tributions.

� Karl Berry

https://tug.org/TUGboat/Chest

https://ctan.org/topic

biblio

chicagolinks in biblio

Annotated bibliographies including DOI links.

iran-bibtex in biblio/bibtex/contrib

Implementation of the Iran Manual of Style

Citation Guide for BibTEX.

fonts

junicodevf in fonts

Variable font family for mediaevalists. (See
article on pp. 12–17.)

lato-math in fonts

Lato-based OpenType math font.

ysabeau in fonts

Garamond-like design with a low-contrast sans
serif.

graphics

pmdraw in graphics

Draw elements of the partition monoids.

graphics/pgf/contrib

argumentation in graphics/pgf/contrib

Create abstract argumentation frameworks.

pictochrono in graphics/pgf/contrib

Inline chronometer pictograms, with durations.

polyhedra in graphics/pgf/contrib

A TikZ package for drawing polyhedra.

thematicpuzzle in graphics/pgf/contrib

Add horizontal banners in a puzzle style.

tikzdotncross in graphics/pgf/contrib

Defining/marking coordinates and crossing
paths with jumps.

doi.org/10.47397/tb/45-1/tb139chest

graphics/pgf/contrib/tikzdotncross

152 TUGboat, Volume 45 (2024), No. 1

tikzquads in graphics/pgf/contrib

Shapes designed to be used with CircuiTikZ.

trivialpursuit in graphics/pgf/contrib

Generic Trivial Pursuit board game.

twoxtwogame in graphics/pgf/contrib

Visualize 2×2 normal-form games.

info

typstfun in info

Typst function equivalents of LATEX commands.

macros/generic

calcfrac in macros/generic

Calculate value of an expression containing
fractions.

macros/latex/contrib

affilauthor in macros/latex/contrib

Tag author and affiliation information in a
key–value style.

amnestyreport in macros/latex/contrib

Class for Amnesty International.

beautynote in macros/latex/contrib

Book design with several chapter and page
styles.

chemformula-ru in macros/latex/contrib

Using chemformula with babel-russian.

cidarticle in macros/latex/contrib

Class for Commentarii informaticae didacticae.

cleveref-forward in macros/latex/contrib

Forward-referencing functionality for cleveref.

cjs-rcs-article in macros/latex/contrib

Class for The Canadian Journal of Statistics.

coloredbelts in macros/latex/contrib

Insert colored belts as vector images.

coloredtheorem in macros/latex/contrib

A colorful boxed theorem environment.

contract in macros/latex/contrib

Typeset formalized legal documents such as
contracts, statutes, etc.

cs-techrep in macros/latex/contrib

Technical report style, similar to IEEE.

dashrulex in macros/latex/contrib

Draw dashed rules.

decimalcomma in macros/latex/contrib

Comma for decimal numbers.

didactic in macros/latex/contrib

Tools for writing teaching material: semantic
environments, slides and notes from the same
source, code and output side by side, etc.

didec in macros/latex/contrib

Fixed-point arithmetic with two decimal
places, for financial transactions.

fadingimage in macros/latex/contrib

Full width fading pictures at the top or bottom
of a page.

fontscale in macros/latex/contrib

Flexible interface for setting font sizes.

freealign in macros/latex/contrib

Align math formulas in different lines.

genealogy-profiles in macros/latex/contrib

Genealogical profiles for LATEX.

heria in macros/latex/contrib

Class for Horizon Europe RIA and IA grant
proposals. (See article on pp. 59–64.)

iaria in macros/latex/contrib

Class for IARIA scholarly publications, including
citation style.

iaria-lite in macros/latex/contrib

IARIA support except for citation style.

ipsum in macros/latex/contrib

Insert multilingual placeholder text.

jsonparse in macros/latex/contrib

Parse JSON data from files or strings into
token variables.

latex2pydata in macros/latex/contrib

Write data to file in Python literal format.

litebook in macros/latex/contrib

Fresh cover and chapter design for books.

litesolution in macros/latex/contrib

Light design for solutions of test papers.

litetable in macros/latex/contrib

Class schedules with colorful course blocks.

medmath in macros/latex/contrib

Improve the mediummath option in nccmath.

nameauth in macros/latex/contrib

Name authority mechanism for consistency in
body text and index.

notebeamer in macros/latex/contrib

Template for presentations on notepaper.

odesandpdes in macros/latex/contrib

Optimizing workflow involving odes and pdes.

pdfannotations in macros/latex/contrib

Annotate PDF slides.

pgfkeysearch in macros/latex/contrib

Find keys in a given pgfkeys path recursively,
unlike pgfkeysvalueof.

pynotebook in macros/latex/contrib

Present code, along with execution, as in a
Jupyter notebook.

q-and-a in macros/latex/contrib

Typesetting Q&A-style conversations.

macros/latex/contrib/didactic

https://ctan.org/pkg/tikzquads
https://ctan.org/pkg/trivialpursuit
https://ctan.org/pkg/twoxtwogame
https://ctan.org/pkg/typstfun
https://ctan.org/pkg/calcfrac
https://ctan.org/pkg/affilauthor
https://ctan.org/pkg/amnestyreport
https://ctan.org/pkg/beautynote
https://ctan.org/pkg/chemformula-ru
https://ctan.org/pkg/cidarticle
https://ctan.org/pkg/cleveref-forward
https://ctan.org/pkg/cjs-rcs-article
https://ctan.org/pkg/coloredbelts
https://ctan.org/pkg/coloredtheorem
https://ctan.org/pkg/contract
https://ctan.org/pkg/cs-techrep
https://ctan.org/pkg/dashrulex
https://ctan.org/pkg/decimalcomma
https://ctan.org/pkg/didactic
https://ctan.org/pkg/didec
https://ctan.org/pkg/fadingimage
https://ctan.org/pkg/fontscale
https://ctan.org/pkg/freealign
https://ctan.org/pkg/genealogy-profiles
https://ctan.org/pkg/heria
https://ctan.org/pkg/iaria
https://ctan.org/pkg/iaria-lite
https://ctan.org/pkg/ipsum
https://ctan.org/pkg/jsonparse
https://ctan.org/pkg/latex2pydata
https://ctan.org/pkg/litebook
https://ctan.org/pkg/litesolution
https://ctan.org/pkg/litetable
https://ctan.org/pkg/medmath
https://ctan.org/pkg/nameauth
https://ctan.org/pkg/notebeamer
https://ctan.org/pkg/odesandpdes
https://ctan.org/pkg/pdfannotations
https://ctan.org/pkg/pgfkeysearch
https://ctan.org/pkg/pynotebook
https://ctan.org/pkg/q-and-a

TUGboat, Volume 45 (2024), No. 1 153

randexam in macros/latex/contrib

Make an exam paper and randomized variants.

regulatory in macros/latex/contrib

Flexible drafting of legal documents, especially
in Dutch.

reptheorem in macros/latex/contrib

Replication of theorem environments, including
across documents.

responsive in macros/latex/contrib

Responsive design methods for LATEX.

sfee in macros/latex/contrib

LATEX class for the Smart Factory and Energy

Efficiency journal.

sim-os-menus in macros/latex/contrib

Insert a ‘terminal’ or ‘context menu’ or ‘viewer’
image, as from an OS.

sjtutex in macros/latex/contrib

LATEX classes for Shanghai Jiao Tong University.

tblr-extras in macros/latex/contrib

Libraries for tabularray for caption and
babel compatibility.

thmlist in macros/latex/contrib

Adding new theorem-like environments.

tikzquests in macros/latex/contrib

A parametric questions’ repository framework.

tutodoc in macros/latex/contrib

Typeset tutorial-like documentation.

udepcolor in macros/latex/contrib

University of Piura colors.

undar-digitacion in macros/latex/contrib

Musical fingering diagrams for flute, recorder,
sax, et al.

useclass in macros/latex/contrib

Load classes as packages; developed for l3doc.

vectorlogos in macros/latex/contrib

Some logos in vector format, mostly TEX-related.

verifycommand in macros/latex/contrib

Verify definitions are unchanged, such as
before patching.

weiqi in macros/latex/contrib

Use LATEX3 to typeset Weiqi (Go).

xkeymask in macros/latex/contrib

Extension of xkeyval to dynamically (un)mask
options.

m/l/c/beamer-contrib/themes

beamerthemeconcrete in m/l/c/b-c/themes

Collection of flat beamer themes.

moloch in m/l/c/b-c/themes

Updated version of the Metropolis theme.

macros/luatex/latex

autotype in macros/luatex/latex

Automatic language-specific typography:
weighted hyphenation, et al., for German.

gitinfo-lua in macros/luatex/latex

Display git project information.

ideavault in macros/luatex/latex

Idea (concept) management, e.g., for handbooks.

longmath in macros/luatex/latex

Nested delimiter groups extending over multiple
array cells or lines.

lua-placeholders in macros/luatex/latex

Specifying external values for insertion into
templates. (See article on pp. 65–76.)

macros/unicodetex/latex

emotion in macros/unicodetex/latex

Make emojis easier to typeset.

macros/xetex/latex

quran-en in macros/xetex/latex

English translation extension to the quran

package.

quran-id in macros/xetex/latex

Indonesian translation extension to quran.

support

* l3sys-query in support

System queries for LATEX using Lua.

latex-dependency-grapher in support

Java program to visualize the dependencies of
LATEX files, using GraphViz.

ppmcheckpdf in support

Convert PDF to PNG and compare PNG files
after l3build.

texblend in support

Compile segments of LATEX documents.

support/texblend

https://ctan.org/pkg/randexam
https://ctan.org/pkg/regulatory
https://ctan.org/pkg/reptheorem
https://ctan.org/pkg/responsive
https://ctan.org/pkg/sfee
https://ctan.org/pkg/sim-os-menus
https://ctan.org/pkg/sjtutex
https://ctan.org/pkg/tblr-extras
https://ctan.org/pkg/thmlist
https://ctan.org/pkg/tikzquests
https://ctan.org/pkg/tutodoc
https://ctan.org/pkg/udepcolor
https://ctan.org/pkg/undar-digitacion
https://ctan.org/pkg/useclass
https://ctan.org/pkg/vectorlogos
https://ctan.org/pkg/verifycommand
https://ctan.org/pkg/weiqi
https://ctan.org/pkg/xkeymask
https://ctan.org/pkg/beamerthemeconcrete
https://ctan.org/pkg/moloch
https://ctan.org/pkg/autotype
https://ctan.org/pkg/gitinfo-lua
https://ctan.org/pkg/ideavault
https://ctan.org/pkg/longmath
https://ctan.org/pkg/lua-placeholders
https://ctan.org/pkg/emotion
https://ctan.org/pkg/quran-en
https://ctan.org/pkg/quran-id
https://ctan.org/pkg/latex-dependency-grapher
https://ctan.org/pkg/ppmcheckpdf
https://ctan.org/pkg/texblend

154 TUGboat, Volume 45 (2024), No. 1

Production notes

Karl Berry

We publish a “complete” PDF with each issue of
TUGboat, as the file tb⟨nnn⟩complete.pdf. These
complete.pdf files start with the back cover table
of contents, then the inside front cover, then all the
interior pages of the issue, and end with the inside
back cover, the “contents by difficulty”. The printed
front cover is omitted, since it may include large
images that would greatly increase the file size.

For several years (since vol. 38, no. 3, in 2017),
the page numbers on both tables of contents have
been internal links to the given article within the
issue, for easy navigation to a particular article.
(Thanks to Frank Mittelbach for prodding us to
implement that.) With that feature, however, the
external hyperlinks (to web pages, etc.) within the
document have been lost within the complete.pdfs.

This is because the complete.pdf is necessarily
created by concatenating various PDF files. (We can-
not create it in a single TEX run because different ar-
ticles require different engines, among other reasons.)
Essentially any PDF tool will do the concatenation,
but they all lose the links within the included file. I
tried pdfTEX itself, Ghostscript, qpdf, mupdf, and
plenty more.

This is not surprising, since links as such are not
a basic concept of the PDF format: external links
are so-called annotations that define an action for a
rectangular area on a page, and internal links go to
objects within the PDF file. Normally, it does not
make sense to preserve either of these when including
one PDF in another.

The newpax package by Ulrike Fischer (ctan.
org/pkg/newpax), updating Heiko Oberdiek’s pax,
can preserve links by use of external code (written
in Lua for newpax and Java for pax). The problem
for me was that the associated newpax.sty requires
LATEX, and all of TUGboat’s table of contents pro-
cessing is written in plain TEX. (The original TUG-

boat code was written before LATEX existed, and
we are still using it, largely unchanged.) I was not
enthused about rewriting the entire process in LATEX.

So I asked on the development mailing list,
ntg-pdftex. Taco Hoekwater (thanks Taco) pointed
out that ConTEXt supported keeping “interaction”
elements, such as links, when including a PDF. This
was a step forward, but unfortunately the internal
links from the table of contents were still lost.

Ultimately, Hans Hagen came to the rescue,
implementing the exact feature needed, in his LMTX

engine and ConTEXt. Thanks so much, Hans! The
invocation looks like:

context --extra=copy --template tbcomplete.lua
mv context-extra.pdf tbNNNcomplete.pdf

where the Lua “template” file looks approximately
like this (for TUGboat 44:2):

return { list = {
 {
 filename = "toclinks.pdf",
 first = 1, --cover1
 last = 2, --cover2
 interaction = "all", pageoffset = 0,
 },
 {
 filename = "issue.pdf",
 first = 1, --interior of issue
 last = 176,
 interaction = "all", pageoffset = 0,
 },
 {
 filename = "toclinks.pdf",
 first = 179, --cover3, first page
 last = 180, --cover3, second page
 interaction = "all", pageoffset = 0,
 },
}}

Here, toclinks.pdf is the PDF made with the
interior toc links and issue.pdf is the full issue (176
pages in this case) with active external links. This is-
sue was so long that the contents by difficulty printed
on the inside back cover (“cover3”) spilled over to an
additional page. (The pageoffset parameter allows
for skipping pages, which we don’t need here. There
is plenty of other functionality, too.)

With this new functionality available, I have
remade the complete.pdf files back to vol. 40, no. 2,
so they now contain both tables of contents inter-
nal links and external hyperlinks within the issue.
(Before that, the issue pages did not contain (m)any
hyperlinks, so there’s little benefit.)

I also took the opportunity to extend the inter-
nal links to also be active on the author names and
titles, as well as the starting page numbers, as of
issue vol. 44, no. 2.

Examples of the source code are available in
the TUGboat source repository at tug.org/svn/

tugboat/trunk/covers (or its mirror at github.

com/TeXUsersGroup/tugboat). The main files are
tbcomplete.lua for the Lua template file above,
and tbcomplete.tex for the plain TEX that adds
the links to the tocs. Although the code is not di-
rectly runnable in other environments, it might serve
as a basis for those interested.

Thanks again Hans!

⋄ Karl Berry
github.com/TeXUsersGroup

doi.org/10.47397/tb/45-1/tb139prod

https://ctan.org/pkg/newpax
https://ctan.org/pkg/newpax
https://tug.org/svn/tugboat/trunk/covers
https://tug.org/svn/tugboat/trunk/covers
https://github.com/TeXUsersGroup/tugboat
https://github.com/TeXUsersGroup/tugboat
https://doi.org/10.47397/tb/45-1/tb139prod

TUGboat, Volume 45 (2024), No. 1 155

Book review: Shift Happens by

Marcin Wichary

Barbara Beeton, Karl Berry, Boris Veytsman

Marcin Wichary, Shift Happens, October 2023,
1216+160 pp., 2+1 vols., ISBN 9798985873900.
https://shifthappens.site

The book Shift Happens by Marcin Wichary, men-
tioned in Barbara’s column in the last TUGboat,1

was published near the end of 2023. The book tells
the story of keyboards from the earliest typewriters
(ca. 1870) to the virtual keyboards made of pixels
in our pockets today, in approximately 1200 pages
and 1300 photographs (many taken by the author).
Notwithstanding the profusion of photos, it is not a
“coffee table” book; the text tells the story.

There is a wealth of information about the book
and keyboards in general on its web site: a commen-
tary on the text, essays on related topics, the run
of the newsletter that the author published during
the book’s production, and several keyboard games
(e.g., “make your own dvorak hands”). The book is
strikingly designed and typeset by the author. He
also oversaw the final production process, visiting the

1 tug.org/TUGboat/tb44-3/tb138beet.pdf

printing plant (in Maine) in person, and has plenty
of interesting things to say about the whole process.
The Kickstarter campaign updates tell much of the
story.2

Before publication, the Museum of Printing
(MoP) hosted a panel with the author and other
typographic luminaries. The discussion, more than
an hour long, was recorded, and is posted on MoP’s
YouTube channel in three parts.3

For those interested in the nuts and bolts of
publication, Glenn Fleishman, the book’s editor and
manager of print production, crowdfunding, and ful-
fillment, wrote a terrific essay about the funding
campaign and how Kickstarter works on the back
end: “How We Crowdfunded $750,000 for a Giant
Book about Keyboard History”.4

Along with the book, Wichary worked with type
designer Inga Plönnings to create Gorton Perfected
No. 2, an OpenType font based on the design origi-
nating with the George Gorton Machine Company of
Racine, Wisconsin, ca. 1900. The original has been
pervasively used on engraved signs of all kinds, and
later adapted to keycaps. A sample is shown below,
and Marcin created a 96-page specimen booklet with
many in situ examples.5

The book is completely sold out, but you can
express interest in participating in another print run,
in the event that one happens, on the web site.

Congratulations, Marcin!

⋄ Barbara Beeton, Karl Berry, Boris Veytsman

tug.org/books

2 kickstarter.com/projects/mwichary/shift-happens
3 youtube.com/watch?v=HrlcFB_Q_UE

youtube.com/watch?v=-8a4XwOtd9k

youtube.com/watch?v=SWfDrcdXfaM
4 glennf.medium.com/how-we-crowdfunded-750-000-

for-a-giant-book-about-keyboard-history-c30e24c4022e
5 shifthappens.site/gorton-perfected-specimen.pdf

On November 14, 1885, Senator & Mrs. Leland Stanford called together at
their San Francisco mansion the 24 prominent men who had been chosen as
the first trustees of The Leland Stanford Junior University. They handed to the
board the Founding Grant of the University, which they had executed three days
before. This document—with various amendments, legislative acts, and court
decrees—remains as the University’s charter. In bold, sweeping language it stip-
ulates that the objectives of the University are “to qualify students for personal
success and direct usefulness in life; and to promote the publick welfare by ex-
ercising an influence in behalf of humanity and civilization, teaching the bless-
ings of liberty regulated by law, and inculcating love and reverence for the great
principles of government as derived from the inalienable rights of man to life,
liberty, and the pursuit of happiness.” ¿But aren’t Kafka’s Schloß and Æsop’s
Œuvres often naïve vis-à-vis the dæmonic phœnix’s official rôle in fluffy souf-
flés? (¡THE DAZED BROWN FOX QUICKLY GAVE 12345–67890 JUMPS!)
№1@2. €100.00=$108.74=10874¢=£85.46. ←↑→↓↩⇤⇥⇧⌃⌘⌥⌦⌫⎀

doi.org/10.47397/tb/45-1/tb139reviews-wichary

Book review: Shift Happens by Marcin Wichary

https://shifthappens.site
https://tug.org/TUGboat/tb44-3/tb138beet.pdf
https://kickstarter.com/projects/mwichary/shift-happens
https://youtube.com/watch?v=HrlcFB_Q_UE
https://youtube.com/watch?v=-8a4XwOtd9k
https://youtube.com/watch?v=SWfDrcdXfaM
https://glennf.medium.com/how-we-crowdfunded-750-000-for-a-giant-book-about-keyboard-history-c30e24c4022e
https://glennf.medium.com/how-we-crowdfunded-750-000-for-a-giant-book-about-keyboard-history-c30e24c4022e
https://shifthappens.site/gorton-perfected-specimen.pdf
https://doi.org/10.47397/tb/45-1/tb139reviews-wichary

156 TUGboat, Volume 45 (2024), No. 1

Die TEXnische Komödie 3/2023–1/2024

Die TEXnische Komödie is the journal of DANTE e.V.,
the German-language TEX user group (dante.de).

Die TEXnische Komödie 3/2023

Luzia Dietsche, Eindrücke von Bonn,
Mitgliederversammlung und TUG 23 [Impressions
from the DANTE e.V. members’ meeting and
TUG 23]; pp. 7–11

This year, the general meeting of DANTE e.V.
took place in Bonn, just before the TUG conference.

Keno Wehr, LATEX und Schulphysik 3:
Messwertdiagramme [LATEX and Physics in
School 3: Diagrams for measured values];
pp. 12–25

The third installment of this series covers various
diagrams useful in physics education.

Christian Böttger, LATEX per pandoc mit
Markdown füttern [Feeding LATEX with Markdown
via pandoc]; pp. 26–36

For many, Markdown has become an alternative
to common typesetting engines or word processors.
In this article the author shows how LATEX can be
fed by Markdown and the Pandoc converter.

Pfarrer HG Unckell, Erfahrungsbericht zum
Einsatz von TEX im Alltag eines Gemeindepfarrers
[Experiences of the usage of TEX in the daily work
of a parish priest]; pp. 36–37

A short article on how LATEX can be used by a
German parish priest.

Henning Hraban Ramm, ConTEXt kurz notiert
[Short notes on ConTEXt]; pp. 38–41

Frank Mittelbach, LATEX-News – Issue 37,
Juni 2023 [LATEX News — Issue 37, June 2023];
pp. 42–54

[Published in TUGboat 44:2; translated by
Thomas Demmig. Posted at latex-project.org/

news/latex2e-news.]

Jürgen Fenn, Neue Pakete auf CTAN

[New packages on CTAN]; pp. 55–58

Uwe Ziegenhagen, LATEX Cookbook,

1. Auflage — Buchrezension [LATEX Cookbook,

1st edition — book review]; pp. 59–60
A review of the first edition of Stefan Kottwitz’s

LATEX cookbook. (English translation published in
this issue.)

Uwe Ziegenhagen, LATEX Graphics with TikZ –
Buchrezension [LATEX Graphics with TikZ — book
review]; pp. 61–62

A review of the first edition of Stefan Kottwitz’s
book on TikZ.

Die TEXnische Komödie 4/2023

Volker RW Schaa, Protokoll der 65. Mitglie-
derversammlung von DANTE e. V. am 13. Juli
2023 im Collegium Leoninum, Bonn [Minutes of
the 65th user group meeting of DANTE e. V. on
July 13th, 2023 at Collegium Leoninum in Bonn];
pp. 7–14

The official minutes of the user group meeting
in Bonn.

Doris Behrendt, Bericht der Schatzmeisterin
für das Jahr 2022 [Report of the Treasurer for the
year 2022]; pp. 15–22

Nadia Kwast and Marei Peischl, Bericht der
Kassenprüfer für das Jahr 2022 [Report of the
internal auditors for the year 2022]; pp. 22–26

Martin Sievers, DANTE e.V. sucht Veranstalter
für Tagungen [DANTE e.V. seeks meeting
organizers]; p. 27

Keno Wehr, LATEX und Schulphysik 4:
Messinstrumente [LATEX and Physics in School 4:
Measuring devices]; pp. 28–37

The fourth article of this series focuses on the
display of measuring devices in LATEX documents.

Ralf Mispelhorn, Darstellen von Mengen-
Operationen mit TikZ [Showing set operations
in TikZ]; pp. 38–44

To visualize the set operations of the Python
scripting language, diagrams were created with TikZ
with the help of clipping functionality and the even-

odd fill rule. Originally a lecture at the Duale Hoch-
schule Horb.

Günter Rau, Serienbriefe im Adressfeld
frankieren [Adding postage to the address label of
bulk mail]; pp. 44–51

With the help of the letter package scrlttr2

and the CSV package csvsimple, it is easy to create
a template with which you can send individual and
form letters which are automatically franked.

Werner Lemberg, Verbesserung des @code

Befehls in Texinfo mit LuaTEX [Improvements to
the @code command in Texinfo with the help of
LuaTEX]; pp. 52–64

This article describes how someone using the
@code command in Texinfo with LuaTEX can in-
telligently improve line breaking at the symbols -

and _.

https://dante.de
https://latex-project.org/news/latex2e-news
https://latex-project.org/news/latex2e-news

TUGboat, Volume 45 (2024), No. 1 157

Henning Hraban Ramm, ConTEXt Meeting 2023
[ConTEXt Meeting 2023]; pp. 65–71

Notes from the ConTEXt Meeting 2023.

Jürgen Fenn, Neue Pakete auf CTAN

[New packages on CTAN]; pp. 71–77

Die TEXnische Komödie 1/2024

Martin Sievers, Grußwort [Greeting]; pp. 4–5
Introductory words from the DANTE president.

Martin Sievers and Thomas Hilarius Meyer,
Einladung zur Frühjahrstagung 2024 und 66.
Mitgliederversammlung von DANTE e.V. im
Goethe-Nationalmuseum in Weimar [Invitation
to the spring conference 2024 and 66th general
meeting of DANTE e.V. in the Goethe National
Museum in Weimar]; pp. 6–7

The spring conference of DANTE will take place
from April 4th to April 6th at the Goethe National
Museum in Weimar.

Martin Sievers and Thomas Hilarius Meyer,
Beiträge gesucht [Call for presentations]; p. 8

Call for presentations for the spring conference.

Martin Sievers, DANTE Tasse [DANTE cup];
p. 9

The DANTE cup is available.

Keno Wehr, LATEX und Schulphysik 5: Mechanik
und Astronomie [LATEX and Physics In School 5:
Mechanics and astronomy]; pp. 10–23

The fifth part of the series of articles on school
physics deals with graphics representations from the
fields of mechanics and astronomy. It presents the
MetaPost fiziko package as well as the pst-pulley

and pst-solarsystem packages.

Keno Wehr, Sprachspezifische Typographie mit
autotype [Language-specific typography with
autotype]; pp. 23–44

The LuaLATEX autotype package can be used
to meet language-specific typographical requirements
automatically. One can choose one syllable hyphen-
ation method with differently weighted separation
points. At the moment only the German language
(old and new spellings) is supported.

Henning Hraban Ramm, ConTEXt kurz notiert
[ConTEXt news]; pp. 44–46

There’s a lot going on in the ConTEXt world
that’s worth mentioning, but does not justify an
entire article.

Frank Mittelbach, LATEX-News – Issue
38, November 2023 [LATEX News — Issue 38,
November 2023]; pp. 47–55

[Posted at latex-project.org/news/latex2e-

news.]

Jürgen Fenn, Neue Pakete auf CTAN [New
packages on CTAN]; pp. 55–60

Jerzy Ludwichowski, The 29th GUST TEX
conference — Composed thoughts; pp. 61–62

This year’s theme, “Composed thoughts”, can be
interpreted in several ways. First, it can be seen as a
reference to the process of creating a document with
TEX, during which thoughts can be separated from
the final graphical form into which they will be com-
posed. Second, the theme can be seen as a reference
to TEX’s potential for “composing” thoughts: ways
of conveying complex ideas, structuring arguments,
and illustrating them with specialized notations and
diagrams. Finally, this year’s theme can be seen as
an invitation to reflect on where the order, structure,
and “being well composed” ends, and in what situa-
tions the tool we use ceases to be elegant, and chaos
creeps into files.

We invite you to participate in this year’s con-
ference and encourage you to show your “composed
thoughts”, as well as those more chaotic because, at
BachoTEX, ideas are born between heads.

[Received from Uwe Ziegenhagen.]

https://fiziko
https://latex-project.org/news/latex2e-news
https://latex-project.org/news/latex2e-news

158 TUGboat, Volume 45 (2024), No. 1

La Lettre GUTenberg 51, 2023

La Lettre GUTenberg is a publication of
GUTenberg, the French-language TEX user group
(gutenberg-asso.org)

La Lettre GUTenberg #51

Published November 12, 2023.
doi.org/10.60028/lettre.vi51

Patrick Bideault, Éditorial [Editorial]; pp. 1–2

François Druel, Procès verbaux [Reports of
board’s meetings]; pp. 2–7

Journée GUTenberg 2023, le 18 novembre,
en présentiel [GUTenberg Day and General
Assembly 2023]; pp. 7–8

The day’s program includes two lectures, by
Alain Matthes and Bastien Dumont and a presenta-
tion of the new French FAQ, by Denis Bitouzé.

Maxime Chupin, Bilan moral : janvier —
novembre 2023 [Moral assessment: January—
November 2023]; pp. 9–13

François Druel, Rapport financier 2023, budget
2024 et proposition de cotisation [Financial
report for the year 2023, budget for 2024 and fees
proposal]; pp. 14–18

Maxime Chupin, Exposés mensuels sur (LA)TEX
et autres logiciels, l’aventure est lancée [Monthly
conferences: a successful launch]; pp. 19–21

GUTenberg has offered online conferences every
month since last summer.

Patrick Bideault, Denis Bitouzé, Maxime

Chupin & Yvon Henel, Et maintenant, une
bonne vieille veille technologique ! [Technology
watch]; pp. 21–33

70 new CTAN packages, June–October 2023.

Victor Sannier, TEX et LATEX hors ligne : TUG

2023 à Bonn [TEX and LATEX offline: the TUG

2023 conference in Bonn]; pp. 33–35
Report about the conference by Victor Sannier,

whose conference about his typeface work was funded
by GUTenberg.

Barbara Beeton, Ce que tout débutant (LA)TEX
devrait savoir [What every (LA)TEX newbie should
know]; pp. 36–48

A translation of the article published in TUG-

boat volume 44:2, 2023.

Cédric Pierquet, Brève introduction à une
compilation assistée, grâce à arara [A short
introduction to assisted compilation with arara];
pp. 48–58

Maxime Chupin, La fonte du numéro : Arsenal
[This issue’s font: Arsenal]; pp. 59–62

Arsenal is a font created by Andrij Shevchenko.
It won the Ukrainian Type Design Competition ‘Mys-
tetsky Arsenal’ in 2011 and was recently packaged
for LATEX by Boris Veytsman.

Patrick Bideault & Maxime Chupin, En bref
[At a glance]; pp. 63–65

Short news items about the analysis of the ty-
pographic composition of a novel, a few wallpapers,
a video and more.

[Received from Patrick Bideault.]

doi.org/10.47397/tb/45-1/tb139lettre

gutenberg-asso.org
https://doi.org/10.60028/lettre.vi51
https://doi.org/10.47397/tb/45-1/tb139lettre

TUGboat, Volume 45 (2024), No. 1 159

Zpravodaj 2024/3–4

Zpravodaj is the journal of CSTUG, the TEX user
group oriented mainly but not entirely to the Czech
and Slovak languages. The full issue can be down-
loaded at cstug.cz/bulletin.

Vít Starý Novotný, Úvodník [Editorial];
pp. 61–62

The editorial presents an overview of the articles
from this issue and announces TUG 2024, which will
be held in Prague.

Vít Starý Novotný, CSTUG na konferenci
TUG 2023 [CSTUG at the TUG 2023 conference];
pp. 63–65

A report on the participation of CSTUG mem-
bers at TUG 2023 in Bonn.

Jan Šustek, Generování dokumentovaného
zdrojového souboru po blocích v TEXu [On
generating documented source code by blocks in
TEX]; pp. 66–101

This paper concerns writing programs and their
documentation. We show author’s package gensrc

running on OPmac, which allows writing both pro-
gram code and its documentation in one TEX file.
We also show more possibilities and applications of
this package.

Jan Šustek, Jak umožnit stránkový zlom uvnitř
vložených obrázků [How to enable page breaks in
embedded images]; pp. 102–110

This paper defines and describes TEX macros
for inserting objects which are so tall that the page
breaking is difficult. These objects can be images,
text examples or generally a content of a box. The
macros insert the object at the current position and
they allow a page break in the middle of the object.

Vít Starý Novotný, Markdown 3: Co je nového
a co se chystá? [Markdown 3: What’s new, what’s
next?]; pp. 111–124

The Markdown package for TEX has provided
an extensible and format-agnostic markup language
for the past seven years. In this article, I present the
third major release of the Markdown package and
the changes it brings compared to version 2.10.0. In
the article, I target the three major stakeholders of
the Markdown package. Writers will learn about the
new elements which they can type in their Markdown
documents, TEXnicians will learn how they can style
Markdown documents in different TEX formats, and
developers will learn about the governance and the
development of the Markdown package and how they
can extend Markdown with new elements. This
article is a Czech translation of my talk at TUG 2023.

Ondřej Sojka, Petr Sojka, Jakub Máca,
A roadmap for universal syllabic segmentation;
pp. 125–138

An extended version of the article with the same
title from TUGboat 44:2.

Barbara Beeton, Co by každý (LA)TEXový
nováček měl znát [What every (LA)TEX newbie
should know]; pp. 139–152

A Czech translation of the article from TUG-

boat 44:2. Translation by Jan Šustek.

Vít Starý Novotný, Sazba textu české lidové
písně „Když jsem já sloužil“ pomocí modulu l3seq

jazyka expl3 [Typesetting the lyrics of the Czech
folksong “Když jsem já sloužil”]; pp. 153–164

The language of TEX was developed for type-
setting books. Although it is Turing-complete, it
was not designed for software development. Whereas
writing and designing documents is straightforward
in plain TEX, programming is difficult due to a lack
of basic data structures and complex macro expan-
sion, both quite different from modern imperative
programming languages.

In the LuaTEX engine, authors can also program
in the imperative programming language Lua. Al-
though Lua does not share the limitations of plain
TEX, passing data between TEX and Lua is not
straightforward and important information such as
token category codes are lost in transit.

The expl3 programming language combines the
best of both worlds and allows authors to program
in TEX in a way that is similar to modern imperative
programming languages.

In this article, I introduce the l3seq module
of the expl3 language that provides the list data
structure. Using l3seq, I typeset the lyrics of the
Czech folksong Když jsem já sloužil. I also compare
the l3seq implementation with one in plain TEX.

[Received from Vít Novotný.]

https://cstug.cz/bulletin

160 TUGboat, Volume 45 (2024), No. 1

TUG financial statements for 2023

Karl Berry, TUG treasurer

The financial statements for 2023 have been reviewed
by the TUG board but have not been audited. The
totals may vary slightly due to rounding. As a US

tax-exempt organization, TUG’s annual information
returns are publicly available on our web site, below.

Revenue (income) highlights

Membership dues revenue was slightly down in 2023
compared to 2022; we ended the year with 1,162 paid
members, 12 fewer than in 2022; this is better than
expected, since there were no DANTE joint members
in 2023, a situation that is remedied for 2024.

The 2023 online conference had a small loss,
due mostly to unfavorable exchange rate variations.
General contributions and product sales returned to
their normal levels after the one-time large revenue
items in 2022. Thus, overall, 2023 income was down
around 33%.

Other highlights; the bottom line

TUGboat production and mailing fees increased sub-
stantially. With that and one-time costs incurred
with a change in the office, our bottom line for 2023
was negative: −$26,167.

Balance sheet highlights

TUG’s end-of-year asset total decreased, following
that loss.

Committed Funds are reserved for designated
projects: LATEX, CTAN, MacTEX, the TEX develop-
ment fund, and others (https://tug.org/donate).
TUG charges no overhead to administer these funds.

The Prepaid Member Income category is mem-
ber dues that were paid in earlier years for the current
year (and beyond). The 2023 portion of this liabil-
ity was converted into regular Membership Dues in
January of 2023. The payroll liabilities are for 2023
state and federal taxes due in January, 2024.

Notes for 2024

We have increased membership fees slightly in 2024,
for the first time in many years, as inflation and ship-
ping costs have not stood still. Worldwide support
from members and donations are what allow us to
continue, so thank you! As always, we welcome ideas
for new TUG benefits or activities.

⋄ Karl Berry, TUG treasurer

https://tug.org/tax-exempt

TUG 12/31/2023 (vs. 2022) Revenue, Expense

Dec 31, 23 Dec 31, 22

ORDINARY INCOME/EXPENSE

Income

Membership Dues 75,918 76,940

Product Sales 3,655 20,008

Contributions Income 12,597 37,055

Annual Conference (989) 4,325

Interest Income 4,144 742

Advertising Income 340 375

Reimbursed Expenses (1,600) 375

Total Income 94,065 139,445

Cost of Goods Sold

TUGboat Prod/Mailing (29,540) (22,639)

TUGboat Crossref (490) (369)

Software Prod/Mailing (3,120) (2,818)

Members Postage/Delivery (2,480) (1,822)

Lucida Sales to B&H (1,495) (9,595)

Member Renewal (639) (520)

Total COGS (37,753) (37,763)

Gross Profit 56,312 101,682

Expense

Office Overhead (15,783) (12,647)

Payroll Expense (60,496) (71,565)

Professional Fees (41)

Interest Expense (6)

Total Expense (76,776) (84,212)

Net Ordinary Income (20,464) 17,470

OTHER INCOME/EXPENSE

Prior year adjustment (5,703) 5,921

NET INCOME (26,167) 23,391

TUG 12/31/2023 (vs. 2022) Balance Sheet

Dec 31, 23 Dec 31, 22

ASSETS

Current Assets

Total Checking/Savings 168,572 198,499

Accounts Receivable 0 2,335

Total Current Assets 168,572 200,834

LIABILITIES & EQUITY

Current Liabilities

Committed Funds 51,538 53,524

Administrative Services 1,443

Prepaid Member Income 13,290 11,395

Payroll Liabilities 978 3,539

Total Current Liabilities 65,806 71,901

Equity

Unrestricted 128,934 105,542

Net Income (26,166) 23,392

Total Equity 102,768 128,934

TOTAL LIABILITIES & EQUITY 168,574 200,835

doi.org/10.47397/tb/45-1/tb139treas

BachoTEX 2024

Bachotek, Poland

May 1–5

gust.org.pl/bachotex/2024-en

GuiT 2024

Brescia, Italy

May 4

guitex.org

GUTenberg

Exposés mensuels

(monthly presentations)

gutenberg-asso.fr/

-Exposes-mensuels-

TUGboat, Volume 45 (2024), No. 1 161

TEX conferences and lectures

TUG 2024

Prague, Czech Republic

July 19–21

tug.org/tug2024

ConTEXt 2024

Lutten, The Netherlands

August 17-23

meeting.contextgarden.net/2024

xkcd.com/2863

2024

Apr 16 – 20 Association Typographique Internationale,
ATypI Brisbane 2024,
“Crafted Technology”,
Brisbane, Australia.
atypi.org/conferences-events/

atypi-brisbane-2024

May 1 – 5 BachoTEX2024, “Composed thoughts”,

29th BachoTEX Conference,
Bachotek, Poland.
www.gust.org.pl/bachotex/2024-en

May 4 GuIT Meeting 2024,

20th Annual Conference,
Brescia, Italy.
www.guitex.org/home/en/meeting

Jun 1 Type Paris: Now24, talks on
typography’s visible impact;
Workshops Jun 2:
Workshop No. 19: Glyph Font Making 101;
Workshop No. 20: Script lettering.
Paris, France. typeparis.com/now24

Jun 4 –
Jul 12

Type Paris Summer 24,
intensive type design program,
Paris, France. typeparis.com

Jun 6 – 8 XML Prague 2024, a conference on
markup languages and data on the web.
University of Economics,
Prague, Czech Republic. xmlprague.cz

Jun 12 – 13 Year of Printing Heritage Conference,
Centre for Printing History &
Culture, CPHC, Birmingham, UK.
cphc.org.uk/events

Jun 26 – 28 Twenty-second International Conference
on New Directions in the Humanities,
“Traveling Concepts: The Transfer of
Ideas in the Humanities”,
Sapienza University of Rome,
Rome, Italy, and online.
thehumanities.com/2024-conference

162 TUGboat, Volume 45 (2024), No. 1

Calendar

Jul 1 – 5 SHARP 2024, “Global Book Cultures:
Materialities, Collaborations, Access”,
Society for the History of Authorship,
Reading & Publishing,
University of Reading, Berkshire, UK.
sharpweb.org/main/conferences

TUG 2024 Prague, Czech Republic.

Jul 19 – 21 The 44th annual meeting of the
TEX Users Group.
Presentations covering the TEX world
tug.org/tug2024

Jul 24 – 27 TypeCon 2024,
Revolution Hall, Portland, Oregon.
typecon.com

Jul 28 Final papers due for TUG 2024

proceedings.

Jul 28 –
Aug 1

SIGGRAPH 2024,
Denver, Colorado.
s2024.siggraph.org

Jul 29 –
Aug 2

Balisage: The Markup Conference
(virtual). www.balisage.net

Aug 6 – 9 Digital Humanities 2024, Alliance of
Digital Humanities Organizations,
“Reinvention & Responsibility”,
Arlington, Virginia, and online.
dh2024.adho.org

Aug 17 – 23 18th International ConTEXt Meeting,
“Keeping up”, Lutten, The Netherlands.
meeting.contextgarden.net/2024

Aug 20 – 23 24th ACM Symposium on Document
Engineering, Adobe, San Jose, California.
doceng.org/doceng2024

Oct 4 TUGboat 45:3, submission deadline.

Oct 23 – 25 Grapholinguistics in the 21st century—
From graphemes to knowledge,
Università Ca’ Foscari, Venice, Italy.
(Donald Knuth is listed as a presenter)
grafematik2024.sciencesconf.org

Status as of 15 April 2024

For additional information on TUG-sponsored events listed here, contact the TUG office
by email: office@tug.org. For events sponsored by other organizations, please use the
contact address provided.

User group meeting announcements are posted at tug.org/meetings.html. Interested
users can subscribe and/or post to the related mailing list, and are encouraged to do so.

Other calendars of typographic interest are linked from tug.org/calendar.html.

The information here comes from the consultants

themselves. We do not include information we know

to be false, but we cannot check out any of the

information; we are transmitting it to you as it was

given to us and do not promise it is correct. Also, this

is not an official endorsement of the people listed here.

We provide this list to enable you to contact service

providers and decide for yourself whether to hire one.

TUG also provides an online list of consultants at

tug.org/consultants. If you’d like to be listed,

please visit that page.

Boris Veytsman Consulting

132 Warbler Ln.
Brisbane, CA 94005
+1 703-915-2406
Email: borisv (at) lk.net

Web: www.borisv.lk.net

TEX and LATEX consulting, training, typesetting
and seminars. Integration with databases,
automated document preparation, custom LATEX
packages, conversions (Word, OpenOffice etc.) and
much more.

I have about two decades of experience in TEX
and three decades of experience in teaching &
training. I have authored more than forty packages
on CTAN as well as Perl packages on CPAN

and R packages on CRAN, published papers in
TEX-related journals, and conducted several
workshops on TEX and related subjects. Among
my customers have been Amnesty International,
Annals of Mathematics, ACM, FAO UN, Google,
Israel Journal of Mathematics, No Starch Press,
Philosophers’ Imprint, Res Philosophica, US Army
Corps of Engineers, US Treasury, and many others.

We recently expanded our staff and operations
to provide copy-editing, cleaning and
troubleshooting of TEX manuscripts as well as
typesetting of books, papers & journals, including
multilingual copy with non-Latin scripts, and more.

Dangerous Curve

Email: khargreaves (at) gmail.com

Typesetting for over 40 years, we have experience
in production typography, graphic design, font
design, and computer science, to name a few
things. One DC co-owner co-authored, designed,
and illustrated a TEX book (TEX for the

Impatient).

TUGboat, Volume 45 (2024), No. 1 163

TEXConsultants

We can: convert your documents to LATEX
from just about anything type up your
handwritten pages proofread, copyedit, and
structure documents in English apply publishers’
specs write custom packages and documentation
resize and edit your images for a better aesthetic

effect make your mathematics beautiful produce
commercial-quality tables with optimal column
widths for headers and wrapped paragraphs
modify bibliography styles make images

using TEX-related graphic programs design
programmable fonts using METAFONT and more!
(Just ask.)

Our clients include high-end branding and
advertising agencies, academics at top universities,
leading publishers. We are a member of TUG, and
have supported the GNU Project for decades
(including working for them). All quote work is
complimentary.

Hendrickson, Amy

57 Longwood Avenue Apt. 8
Brookline, MA 02446
+1 617-738-8029
Email: amyh (at) texnology.com

Web: www.texnology.com

Full time LATEX consultant for more than 30
years; have worked for major publishing
companies, leading universities, and scientific
journals. Our macro packages are distributed
on-line and used by thousands of authors. See our
site for many examples: texnology.com.

LATEX Macro Writing: Packages for books,
journals, slides, posters, e-publishing and more;
Sophisticated documentation for users.

Data Visualization, database publishing.
Innovative uses for LATEX, creative solutions

our speciality.
LATEX Training, customized to

your needs, on-site or via Zoom. See
https://texnology.com/train.htm for sample of
course notes.

Call or send email: I’ll be glad to discuss your
project with you.

Latchman, David

2005 Eye St. Suite #6
Bakersfield, CA 93301
+1 518-951-8786
Email: david.latchman

(at) texnical-designs.com

Web: www.texnical-designs.com

LATEX consultant specializing in the typesetting of
books, manuscripts, articles, Word document
conversions as well as creating the customized
LATEX packages and classes to meet your needs.
Contact us to discuss your project or visit the
website for further details.

LATEX Typesetting

Auckland, New Zeland
Email: enquiries (at) latextypesetting.com

Web: www.latextypesetting.com

LATEX Typesetting has been in business since
2013 and is run by Vel, the developer behind
LaTeXTemplates.com. The primary focus of
the service is on creating high quality LATEX
templates and typesetting for business purposes,
but individual clients are welcome too.

I pride myself on a strong attention to detail,
friendly communication, high code quality with
extensive commenting and an understanding of
your business needs. I can also help you with
automated document production using LATEX. I’m
a scientist, designer and software developer, so no
matter your field, I’ve got you covered.

I invite you to review the extensive collection of
past work at the showcase on my web site. Submit
an enquiry for a free quote!

164 TUGboat, Volume 45 (2024), No. 1

Monsurate, Rajiv

Web: www.rajivmonsurate.com
latexwithstyle.com

I offer: design of books and journals for print
and online layouts with LATEX and CSS;
production of books and journals for any layout
with publish-ready PDF, HTML and XML from
LATEX (bypassing any publishers’ processes);
custom development of LATEX packages with
documentation; copyediting and proofreading for
English; training in LATEX for authors, publishers
and typesetters.

I have over two decades of experience in
academic publishing, helping authors, publishers
and typesetters use LATEX. I’ve built typesetting
and conversion systems with LATEX and provided
TEX support for a major publisher.

Warde, Jake

90 Resaca Ave.
Box 452
Forest Knolls, CA 94933
+1 650-468-1393
Email: jwarde (at) wardepub.com

Web: myprojectnotebook.com

I have been in academic publishing for 30+ years.
I was a linguistics major at Stanford in the
mid-1970s, then started a publishing career. I
knew about TEX from editors at Addison-Wesley
who were using it to publish beautifully set math
and computer science books.

Long story short, I started using LATEX for
exploratory projects (see website above). I have
completed typesetting projects for several journal
articles. I have also explored the use of multiple
languages in documents extensively. I have a
strong developmental editing background in STEM

subjects. If you need assistance getting your
manuscript set in TEX I can help. And if I cannot
help I’ll let you know right away.

Advanced (continued)

65 Erik Nijenhuis / Specifying and populating documents in YAML with lua-placeholders in LATEX
• invoice template implementation with the GTK application GinVoice

106 Udo Wermuth / Is a given input a valid TEX 〈number〉?
• plain TEX conditional-like macro to test for a syntactic 〈number〉

109 Udo Wermuth / Is a given input a valid TEX 〈dimen〉?
• plain TEX conditional-like macro to test for a syntactic 〈dimen〉

Reports and notices
2 Institutional members

155 Barbara Beeton, Karl Berry, Boris Veytsman / Book reviews: Shift Happens, by Marcin Wichary
• a monumental history of keyboards, with sample of the companion Gorton Perfected font

156 From other TEX journals: Die TEXnische Komödie 3/2023–1/2024; La Lettre GUTenberg 51 (2023);
Zpravodaj 2023/3–4

160 Karl Berry / TUG financial statements for 2023
161 Randall Munroe / Comic: Space typography
161 TEX conferences and lectures
162 Calendar
163 TEX consulting and production services

TUGBOAT Volume 45 (2024), No. 1

Introductory
4 Barbara Beeton / Editorial comments

• typography and TEX news

6 Nelson Beebe / Bibliography of Niklaus Wirth (1934–2024)
• with notes on Pascal, TEX, and more

10 Peter Flynn / Typographers’ Inn
• Dashing it off III (em rules reprise); Bookshelves; Afterthought

3 Arthur Rosendahl / From the president
• What’s in a TEX?

7 Boris Veytsman / Face/Interface 2023 conference: Global type design and human-computer interaction
• report on this two-day conference at Stanford on non-Latin scripts

Intermediate
12 Peter S. Baker / Variable fonts in LuaTEX, with an introduction to two new fonts: Junicode VF

• restoring optical scaling to digital fonts, with precise control along multiple design axes

151 Karl Berry / The treasure chest
• new CTAN packages, October 2023–April 2024

113 Max Günther / Visualizing the Mandelbrot set with METAPOST

• complex numbers in METAPOST, and implementing generation of the Mandelbrot set, with optimizations

149 Hans Hagen / Computer Modern shape curiosities
• differing design choices in different CM variants

150 Hans Hagen, Mikael Sundqvist / Radical delimiters
• generalizing the extensibility of radicals

88 Dirk Hünniger / Wikipedia to LATEX, PDF, EPUB and ODT
• many updates to the mediawiki2latex.wmflabs.org service and package

45 Carla Maggi / The DuckBoat — Beginners’ Pond: Tcolorchat!
• step-by-step use of tcolorbox to generate a colored chat transcript

59 Tristan Miller / Preparing Horizon Europe proposals in LATEX with heria
• a new class for these complex grant proposals, with motivations, design decisions, real-world use

115 Travis Stenborg / Semi-automated TikZ directed acyclic graphs in R
• brief tutorial on using the causalDisco R package to generate DAGs

Intermediate Plus
18 Abdelouahad Bayar / dynMath: A PostScript Type 3-based LATEX package to support extensible mathematical symbols

• extensible parentheses, braces, etc., while preserving the original design

154 Karl Berry / Production notes
• PDF inclusion/concatenation while preserving both internal and external links

77 Arash Esbati / Building a modern editing environment on Windows around GNU Emacs and AUCTEX
• step-by-step installation of MSYS2, Emacs, and AUCTEX, with practical configuration and usage examples

102 Hans Hagen / Including PDF files
• optimizing sharing of font instances

145 Hans Hagen / Signing PDF files
• methods and representation of cryptographic signatures in PDF

134 Hans Hagen, Mikael P. Sundqvist / Unusual bitmaps
• making vector graphics and plots from bitmaps with potrace

25 Hans Hagen, Mikael P. Sundqvist / Tracing bitmap fonts in LMTX
• from high-resolution bitmaps to Type 3, Type 1 and OpenType, through MetaPost

97 Alastair May, Taylor J. Smith / Illustrating finite automata with Grail+ and TikZ
• automatic layout of finite automata with the Grail+ Visualizer

52 Frank Mittelbach, Ulrike Fischer / Enhancing LATEX to automatically produce tagged and accessible PDF
• background, status, prospects for generating tagged PDF from LATEX

89 Vı́t Starý Novotný, Marei Peischl / Fast regression testing of TEX packages: Multiprocessing and batching
• batch limiting and splitting, developer vs. maintainer use

Advanced
44 Janusz Bień / Towards an inventory of old print characters: Ungler’s Rubricella, a case study — Errata

• some small errata for the prior article, https://tug.org/TUGboat/tb44-3/tb138bien-rubricella.pdf

32 Janusz Bień / Basic Latin brevigraphs listed in Polonia Typographica Saeculi Sedecimi— Progress report
• variations of printed glyphs in some early Polish printing

117 Federico Garćıa De Castro / Nodes and edges with METAPOST: The MetaGraph environment
• general-purpose programming with data sets of nodes and edges

125 Alain Matthes / Euclidean geometry with tkz-elements and tkz-euclide
• construction of precise geometric figures, using Lua for calculation

Advanced (continued)

65 Erik Nijenhuis / Specifying and populating documents in YAML with lua-placeholders in LATEX
• invoice template implementation with the GTK application GinVoice

106 Udo Wermuth / Is a given input a valid TEX 〈number〉?
• plain TEX conditional-like macro to test for a syntactic 〈number〉

109 Udo Wermuth / Is a given input a valid TEX 〈dimen〉?
• plain TEX conditional-like macro to test for a syntactic 〈dimen〉

Reports and notices
2 Institutional members

155 Barbara Beeton, Karl Berry, Boris Veytsman / Book reviews: Shift Happens, by Marcin Wichary
• a monumental history of keyboards, with sample of the companion Gorton Perfected font

156 From other TEX journals: Die TEXnische Komödie 3/2023–1/2024; La Lettre GUTenberg 51 (2023);
Zpravodaj 2023/3–4

160 Karl Berry / TUG financial statements for 2023
161 Randall Munroe / Comic: Space typography
161 TEX conferences and lectures
162 Calendar
163 TEX consulting and production services

