
134 TUGboat, Volume 45 (2024), No. 1

Unusual bitmaps

Hans Hagen, Mikael P. Sundqvist

1 Introduction

In the early days of TEX, fonts mostly were bitmaps
and when such a bitmap was shown in zeros and
ones, the shape was rather recognizable. A recent
example of a special-purpose (TAOCP) bitmap font
is Don Knuths three–six font. Do you recognize this
character?

1111111111

1100110011

1100110011

0000110000

0000110000

0000110000

0001111000

0001111000

It has a rather low resolution, but can still serve its
purpose as we will see later on. One problem is of
course that such a low resolution doesn’t render too
well. Although vector images are often preferred, es-
pecially in a MetaPost context, below we will explain
how we can also use bitmaps in a constructive way.

2 Vectorizing bitmaps

The potrace library by Peter Selinger is a nice tool:
you feed it a bitmap and are rewarded with an out-
line specification. Details about the process can
be found in https://potrace.sourceforge.net/

potrace.pdf. When you limit yourself to only the
basics, there are not that many source files and there-
fore I decided to add it to LuaMetaTEX in order to
explore if we can do runtime conversions. Possible
applications are logos and maybe converted bitmap
fonts, although these can best be prepared before-
hand because consistent metrics need to be taken
care of. There are, however, other applications possi-
ble. Here I will discuss usage only in the perspective
of Metafun, simply because we have to be visual, and
Metafun is all about that. The library is of course
accessible from the Lua end, if only because that way
we can use it in Metafun.

We start with a simple example that also shows
a potential usage:

\startMPcode

string s ; s := "010 111 010";

draw lmt_potraced [

bytes = s,

] ysized 2cm

withpen pencircle scaled 4

withcolor darkgreen ;

\stopMPcode

We feed the lmt_potraced macro a 3×3 bitmap
encoded as a string and this is what we get back:

We expect a cross and get back a circle which
is not what we want. This is because we don’t have
much body in this bitmap and potrace needs more
pixels in order to give back a decent outline.

\startMPcode

string s ; s := "010 111 010";

draw lmt_potraced [

bytes = s,

explode = true,

] ysized 2cm

withpen pencircle scaled 4

withcolor darkgreen ;

\stopMPcode

So, this time we ‘explode’ the bitmap, that is:
we repeat every pixel three times in the horizontal
and vertical direction. One can specify nx and ny

but so far using different values doesn’t help more
than the magic threesome.

We’re getting there but need to do a bit more.

\startMPcode

string s ; s := "010 111 010";

draw lmt_potraced [

bytes = s,

threshold = 0.25,

explode = true,

] ysized 2cm

withpen pencircle scaled 4

withcolor darkgreen ;

\stopMPcode

Here we’ve set a threshold which will clip the
paths in a range so that our case will get a better fit:

By now you will have noticed that we get back
a path and this is an important feature of potrace:
it returns a closed path expressed in lines and curves
that one is supposed to fill. That result is converted

doi.org/10.47397/tb/45-1/tb139hagen-bitmaps

Hans Hagen, Mikael P. Sundqvist

https://potrace.sourceforge.net/potrace.pdf
https://potrace.sourceforge.net/potrace.pdf
https://doi.org/10.47397/tb/45-1/tb139hagen-bitmaps


TUGboat, Volume 45 (2024), No. 1 135

into a Lua table that we then can use for instance to
generate a valid MetaPost path. We can do whatever
we like with that path: draw or fill it for clipping.
Natively, the library might return multiple paths but
the user sees only one because we concatenate them
which is a feature of the MetaPost library that comes
with LuaMetaTEX.

Once we could do this it was no big deal to add
support for filtering. After all, we have more than 0

and 1 characters available. Take this example, where
we lay out the bitmap a bit differently, for clarity:

\startMPcode

string s ; s := "

211222122

133111311

211222122

";

path p[] ;

p[1] := lmt_potraced [

bytes = s,

threshold = 0.25,

explode = true,

value = "1",

] ;

p[2] := lmt_potraced [

bytes = s,

threshold = 0.25,

explode = true,

value = "2",

] ;

p[3] := lmt_potraced [

bytes = s,

threshold = 0.25,

explode = true,

value = "3",

] ;

fill p[1] withcolor darkgreen ;

draw p[1] withcolor darkyellow ;

draw p[2] withcolor darkred ;

draw p[3] withcolor darkblue ;

currentpicture

:= currentpicture xsized TextWidth ;

\stopMPcode

We save the paths so that we can use them
multiple times, here for a draw and fill operation
on the first path but you could scale, rotate, or
manipulate the result before rendering it.

This example demonstrates that a user can de-
fine outlines using a bitmap specification and that
the amount of code is rather small. At some point
we might add a few more helpers that might reduce
the amount of code even more.

\startMPcode

string s ; s := "

212111233

131111233

212222133

212222133 ";

path p[] ;

p[1] := lmt_potraced [

bytes = s,

threshold = 0.25,

explode = true, value = "1",

] ;

p[2] := lmt_potraced [

bytes = s,

threshold = 0.25,

explode = true, value = "2",

] ;

p[3] := lmt_potraced [

bytes = s,

threshold = 0.25,

explode = true, value = "3",

] ;

linejoin := butt ;

fill p[1] withcolor darkgreen

withtransparency (1,.50) ;

fill p[2] withcolor darkred

withtransparency (1,.50) ;

fill p[3] withcolor darkblue

withtransparency (1,.50) ;

draw p[1] withcolor darkyellow

withtransparency (1,.75) ;

draw p[2] withcolor darkyellow

withtransparency (1,.75) ;

draw p[3] withcolor darkyellow

withtransparency (1,.75) ;

currentpicture :=

:= currentpicture xsized TextWidth ;

\stopMPcode

Because we have single paths we can safely apply
properties like transparency, as shown below: cross-
ing lines come out right instead of with accumulated
transparent colors.

Unusual bitmaps



136 TUGboat, Volume 45 (2024), No. 1

Sometimes you want to swap the rows and col-
umns so we provide a feature for doing that:

\startMPcode

string s[] ;

s[1] := "1110 0110 0110 0111";

s[2] := "1000 1111 1111 0001";

draw lmt_potraced [

bytes = s[1],

explode = true,

] ysized 2cm withcolor darkgreen

withpen pencircle scaled 4 ;

draw lmt_potraced [

bytes = s[2],

explode = true,

] ysized 2cm withcolor darkblue

withpen pencircle scaled 4 ;

draw lmt_potraced [

bytes = s[1],

explode = true,

swap = true,

] ysized 2cm withcolor white

withpen pencircle scaled 2 ;

\stopMPcode

When one uses Lua input (as we will see later),
one can do that when generating the bitmap. At any
rate, this is what we get from the above:

The previous examples demonstrate that not
much code is needed in order to achieve nice effects.
It also illustrates that one needs to twist the mind
a little and think of bitmap specifications as actu-
ally efficient outline definitions. One could argue
that such rectangular shapes are easy to program
in MetaPost anyway, and going via bitmaps is kind
of strange. So, let’s move on to a more attractive
example.

3 How about fonts

In order to demonstrate building fonts we need a
decent bitmap font and it happens that Don Knuth’s
‘Font36’ is a good candidate (https://erikdemaine.
org/fonts/dissect). We have discussed that one
elsewhere and its usage can be found in the Metafun
threesix library. We happily borrow the definitions
from that library (actual source strings are all on
one line):

\startMPdefinitions

string dekthreesix[] ; path shapes[] ;

def DEK(expr n, b) =

dekthreesix[utfnum(n)] := b ;

enddef ;

DEK("0", "00111100 01111110 11000011 11000011

11000011 11000011 01111110 00111100");

...

DEK("Z", "11111111 10000111 00001110 00011100

00111000 01110000 11100001 11111111");

\stopMPdefinitions

We use these definitions in the MetaPost code
below. Helpers like utfnum are part of LuaMetafun
and we use (named) colors defined at the ConTEXt
end.

\startMPcode

def shapethem(expr first, last) =

for i = utfnum(first) upto utfnum(last) :

shapes[i] := lmt_potraced [

bytes = dekthreesix[i],

explode = true,

% threshold = .25, % more rectangular

value = "1",

] ;

endfor ;

enddef ;

def drawthem(expr first, last, dx, dy) =

numeric d ; d := 0 ;

numeric f ; f := utfnum(first) ;

numeric l ; l := utfnum(last) ;

for i = f upto l :

fill shapes[i] shifted (d,dy)

withcolor "middlegray" ;

draw shapes[i] shifted (d,dy)

withcolor "darkgreen" ;

% draw boundingbox shapes[i] shifted (d,dy);

d := d + bbwidth(shapes[i]) + dx;

endfor ;

enddef ;

shapethem("0","9") ;

shapethem("A","Z") ;

drawthem("0", "9", 10, -00) ;

drawthem("A", "J", 10, -30) ;

drawthem("K", "S", 10, -60) ;

drawthem("T", "Z", 10, -90) ;

currentpicture

:= currentpicture xsized TextWidth ;

\stopMPcode

Here we don’t integrate it as a font but just show
the characters as they come out, which hopefully is
easier to understand. You can take a close look at the

Hans Hagen, Mikael P. Sundqvist

https://erikdemaine.org/fonts/dissect
https://erikdemaine.org/fonts/dissect


TUGboat, Volume 45 (2024), No. 1 137

bitmaps in order to see what we get rendered below.
Setting a lower threshold will give more rectangular
results.

Because we’re not going to use this font for
typesetting here, a simple example of a definition
will do. We first load an already existing module so
that we don’t need to define the bitmap definitions;
basically they are the same as above.

\useMPlibrary[threesix]

\startMPcalculation{simplefun}

vardef ThreeSixPotraced

(expr code, spread, lift) =

draw lmt_potraced [

bytes = code,

explode = true,

value = "1",

] scaled (1/3) shifted (spread,lift) ;

enddef ;

\stopMPcalculation

Next we register a Metafun font using similar
trickery as in that module. There we define a few
variants but that is not needed here.

\startluacode

local utfbyte = utf.byte

local f_code = string.formatters

[’ThreeSixPotraced("%s",%s,%s);’]

function MP.registerthreesixpotraced(name)

fonts.dropins.registerglyphs {

name = name,

units = 12,

usecolor = true,

}

for u, data in table.sortedhash(MP.font36) do

local ny = 8

local nx = ((#data + 1) // ny) - 1

local height = ny * 1.1 - 0.1

local width = nx * 1.1 - 0.1

local spread = 0.9

local lift = 0.3

fonts.dropins.registerglyph {

category = name,

unicode = utfbyte(u),

width = width + spread,

height = height,

code = f_code(data,spread,lift),

}

end

end

MP.registerthreesixpotraced

("fontthreesixpotraced")

\stopluacode

Finally we define a font feature that will hook
the previous code into the font handler. There a
Type 3 font will be constructed.

\definefontfeature

[fontthreesixpotraced]

[default]

[metapost=fontthreesixpotraced,

spacing=.375 plus .2 minus .1 extra .375]

\definefont[DEKFontP][Serif*fontthreesixpotraced]

We now show an example of usage (abridged).
This font only has uppercase characters so one might
consider duplicating these into the lowercase slots.
Because we replace glyphs in the serif font used, we
still have a complete font, albeit of mixed design.

\DEKFontP \WORD{\samplefile{knuth}}

This gives us a rendering that is quite readable,
especially when you consider how small the bitmaps
are (the red bar is the overfull box marker):

Just in case Don Knuth runs into this example,
we need to cheat a little here and redefine the TEX
logo definition:

\protected\def\TeX

{\dontleavehmode

\begingroup

T%

\kern-.40\fontcharwd\font‘T%

\lower.45\fontcharht\font‘X\hbox{E}%

\kern-.15\fontcharwd\font‘X%

X%

\endgroup}

A real font would have proper font kerns but
if needed you can set that up using the OpenType
feature plug in mechanism that ConTEXt provides.
A font like this can also be colored:

Unusual bitmaps



138 TUGboat, Volume 45 (2024), No. 1

4 External bitmaps

A convenient way to include traced images is to use
the potrace command line tool. However, we can also
include grayscale single-byte PNG-encoded images:

\startMPcode

path p ; p := lmt_potraced [

filename = "mill.png",

criterium = 100,

] ;

fill last_potraced_bounds

withcolor "middlegray" ;

fill p withcolor "darkgreen" ;

draw p withcolor "darkred"

withpen pencircle scaled 1.5 ;

setbounds currentpicture

to last_potraced_bounds ;

currentpicture

:= currentpicture xsized TextWidth ;

\stopMPcode

This is not the best image but the photograph
happens to be part of the ConTEXt distribution so
why not use it. You can of course apply a different
criterion and overlay a subsequent trace in a different
color. The result is shown in figure 1.

In addition to the last_potraced_bounds path
variable we also have last_potraced_width and
last_potraced_height numeric available.

5 Using Lua-generated bitmaps

It is tempting to see what can be done with a bit-
map generated by Lua, but let’s first give a simple
example. Here we register a bitmap:

\startluacode

local s = [[

000000010000000000000010000000

000000101000000000000101000000

000001000100000000001000100000

000010000010000000010000010000

000100000001000000100000001000

001000000000100001000000000100

010000000000010010000000000010

100000000000001100000000000001

]]

potrace.setbitmap("mybitmap",s)

\stopluacode

\startMPcode

path p ; p := lmt_potraced [

Figure 1: A traced PNG image

stringname = "mybitmap",

] ;

fill p ysized 2cm withcolor "darkblue" ;

\stopMPcode

We could play with the parameters but what we
get is an outline that is supposed to be filled:

Next we create a bitmap from a dataset; in this
case, we draw a function. Of course we could create
some handy helpers to do this:

\startluacode

local d = table.setmetatableindex("table")

local t = { }

local step = 100

local ymin = 0

local ymax = 0

local x = 0

local dx = 10*math.pi/step

for i=1,step do

local y = math.round(math.cos(x)*20)

x = x + dx

Hans Hagen, Mikael P. Sundqvist



TUGboat, Volume 45 (2024), No. 1 139

if y > ymax then

ymax = y

end

if y < ymin then

ymin = y

end

t[i] = y

end

for i=1,step do

for j=ymin, ymax do

d[j][i] = ’0’

end

end

for i=1,step do

d[t[i]][i] = ’1’

end

for y=ymin,ymax do

d[y] = table.concat(d[y])

end

potrace.setbitmap("mybitmap",

table.concat(d," ",ymin,ymax))

\stopluacode

\startMPcode

path p ; p := lmt_potraced [

stringname = "mybitmap",

explode = true,

% tolerance = 0.5,

threshold = 0,

% optimize = true,

] ;

fill p withcolor "darkblue" ;

\stopMPcode

To what extent this is a useful application is to
be decided:

Later we will see that it is less work if we stay
in the first quadrant, using (1, 1) as lower left corner.
Here we explicitly need to provide concat the range
because we have a negative ymin.

It quickly gets more interesting when we use an
intermediate bitmap for (a kind of) surface plots.

\startluacode

local sin, cos, pi = math.sin, math.cos, math.pi

local pp = pi/10

local function f(x,y)

local z = sin(pp*x) + cos(pp*y)

if z > 0.5 then

return ’1’

elseif z > 0 then

return ’2’

elseif z < -0.5 then

return ’3’

else

return’4’

end

end

potrace.setbitmap("mybitmap",

potrace.contourplot(100,100,f))

\stopluacode

Here we use a helper that runs the given function
over the maxima and collects the results in a bitmap.
More such helpers will be provided when users come
up with more demands.

\startMPcode

fill lmt_potraced [

stringname = "mybitmap",

value = "1",

explode = true,

threshold = 0.25,

% tolerance = 0.1,

% threshold = 1.0,

optimize = true,

] withcolor "darkred" ;

fill lmt_potraced [

stringname = "mybitmap",

value = "2",

explode = true,

threshold = 0.25,

% tolerance = 0.1,

% threshold = 1.0,

optimize = true,

] withcolor "darkgreen" ;

fill lmt_potraced [

stringname = "mybitmap",

value = "3",

explode = true,

threshold = 0.25,

% tolerance = 0.1,

% threshold = 1.0,

optimize = true,

] withcolor "darkblue" ;

fill lmt_potraced [

stringname = "mybitmap",

value = "4",

explode = true,

threshold = 0.25,

% tolerance = 0.1,

% threshold = 1.0,

Unusual bitmaps



140 TUGboat, Volume 45 (2024), No. 1

optimize = true,

] withcolor "darkyellow" ;

clip currentpicture to

last_potraced_bounds enlarged -1;

currentpicture := currentpicture

xysized (.45*TextWidth,4cm) ;

\stopMPcode

\startMPcode

fill lmt_potraced [

stringname = "mybitmap",

value = "1",

explode = true,

% threshold = 0.25,

tolerance = 0.1,

threshold = 1.0,

optimize = true,

] withcolor "darkred" ;

fill lmt_potraced [

stringname = "mybitmap",

value = "2",

explode = true,

% threshold = 0.25,

tolerance = 0.1,

threshold = 1.0,

optimize = true,

] withcolor "darkgreen" ;

fill lmt_potraced [

stringname = "mybitmap",

value = "3",

explode = true,

% threshold = 0.25,

tolerance = 0.1,

threshold = 1.0,

optimize = true,

] withcolor "darkblue" ;

fill lmt_potraced [

stringname = "mybitmap",

value = "4",

explode = true,

% threshold = 0.25,

tolerance = 0.1,

threshold = 1.0,

optimize = true,

] withcolor "darkyellow" ;

clip currentpicture to

last_potraced_bounds enlarged -1;

currentpicture := currentpicture

xysized (.45*TextWidth,4cm) ;

\stopMPcode

Here we are only exploring the possibilities so
there is no interface like we have with contour plots.
One can imagine that we provide this as a plugin,
which is not that hard but whether it eventually

happens depends on user demand or rainy days. So
to summarize: here we generate the bitmap, we call
out to potrace for a vector representation, that gets
fed into MetaPost and which gives us back a result
that can be converted to PDF. Of course we could
go directly from potrace output to PDF if we want
to, but now we get full control over the final result.
In case you wonder about performance: it compiles
real fast!

Some work is needed to scale the image to the
proportions that reflect the input ranges but because
we have a vector image that does not affect the
quality of the outcome. Here we also show the effects
of tolerance which influences the optimizing and
threshold that determines the accuracy (number
of points). In the second rendering: we use the
commented values that work quite well with this
kind of more mathematical images.

6 Experimenting

You can use bitmaps as a design tool but it needs
a little experimenting to get the idea. Take these
examples:

We started with a simple X-like symbol:

\startMPcode

fill lmt_potraced [ bytes = "

00100000001

01010000010

10001000100

01000101000

00100010000

00010101000

00001000100

00010100010

00100010001

01000001010

10000000100

" ] xsized 2cm

withcolor darkgreen ;

Hans Hagen, Mikael P. Sundqvist



TUGboat, Volume 45 (2024), No. 1 141

\stopMPcode

Next we started filling the shape a bit and tried
to make it less spiked:

\startMPcode

fill lmt_potraced [ bytes = "

00100000001

01010000011

10001000100

01000101000

00100010000

00010101000

00001000100

00010100010

00100010001

11000001010

10000000100

" ] xsized 2cm

withcolor darkblue ;

\stopMPcode

And finally we add even more ones to the bitmap.
You need to fill a bitmap area in order to get an
efficient fill.

\startMPcode

fill lmt_potraced [ bytes = "

00100000011

01110000111

11111001110

01111111100

00111111000

00011111000

00011111100

00111111110

01110011111

11100001110

11000000100

" ] xsized 2cm

withcolor darkyellow ;

\stopMPcode

If you’re in doubt you can also render the bitmap,
assuming that it has reasonable proportions.

\startMPcode

string s ; s := "

00100000011

01110000111

11111001110

01111111100

00111111000

00011111000

00011111100

00111111110

01110011111

11100001110

11000000100

" ;

fill lmt_potraced [ bytes = s ]

xsized 3cm

withcolor darkyellow ;

draw lmt_potraced [ bytes = s,

alternative = "text" ]

shifted (.25,.25)

xsized 3cm ;

\stopMPcode

The article that we mentioned in the introduc-
tion explains how potrace looks at a bits in relation
to its neighbors.

00100000011
01110000111
11111001110
01111111100
00111111000
00011111000
00011111100
00111111110
01110011111
11100001110
11000000100

00100000011
01110000111
11111001110
01111111100
00111111000
00011111000
00011111100
00111111110
01110011111
11100001110
11000000100

You can save some runtime (and coding) by
using the start-stop wrappers that keep the (inter-
mediate) potrace object available. This permits for
instance showing the ‘original’ polygon that serves
as basis for successive steps in the library towards
to the final curve(s).

\startMPcode

string s ; s :=

"01111111111111111111111111111100

11000000000000000000000000000110

11000000000000000000000000000011

11000000000000000000000000000011

11000000000000000000000000000011

01100000000000000000000000000011

00111111111111111111111111111110";

lmt_startpotraced [ bytes = s ] ;

p := lmt_potraced [

value = "0",

threshold = 0,

tolerance = 0,

optimize = true,

] ;

draw image (

p := p shifted - center p ;

draw p

withpen pencircle scaled 1

withcolor "darkblue" ;

drawpoints p

withpen pencircle scaled .5

withcolor "white" ;

draw boundingbox p

withpen pencircle scaled .1

withcolor "darkgray" ;

) ysized 3cm ;

path p ; p := lmt_potraced [

value = "0",

polygon = true,

Unusual bitmaps



142 TUGboat, Volume 45 (2024), No. 1

] ;

draw image (

p := p shifted - center p ;

draw p

withpen pencircle scaled .25

withcolor "middleyellow" ;

drawpoints p

withpen pencircle scaled .175

withcolor "white" ;

draw boundingbox p

withpen pencircle scaled .05

withcolor "darkgray" ;

) ysized 3cm ;

lmt_stoppotraced ;

\stopMPcode

The above is just a bit of exploring the possibil-
ities so eventually there will be a chapter on this in
the LuaMetafun manual, because it is definitely fun
to play with this in the perspective of MetaPost.

7 Contour plots

We end with showing how we can do rather nice
contour plots and region plots with help of the po-
tracer. Let us start with the latter type of graphics.
In a recent math paper Mikael was counting nodal
domains of Neumann eigenfunctions to the Laplace
operator in a square. These eigenfunctions are built
from cosines. One example is given by

Ψ(x, y) = cos(8πx) cos(3πy) + cos(3πy) cos(8πx) .

The related graphic of interest is to fill the part
of the unit square where Ψ is positive. In the arti-
cle, Wolfram Mathematica was used to produce this
graphic, with its built-in function RegionPlot. The
result was indeed satisfactory (Figure 2(a)).

If one looks closely at the graphics one will see
that the filled regions are made up of a mesh. With
potrace we instead receive one (!) path. To generate
the corresponding graphic we first use Lua to define
a function that takes a point as input and returns 1
if Ψ is positive at the point and 0 otherwise. We
then use it to generate a 1000× 1000 bitmap image
of zeros and ones accordingly.

\startluacode

local cos, pi = math.cos, math.pi

local N = 1000

local pp = pi/N

local pp3 = 3 * pp

local pp8 = 8 * pp

local cospp8y = 0

local cospp3y = 0

local function f(x,y)

if x == 1 then

cospp8y = cos(pp8*y)

cospp3y = cos(pp3*y)

end

local z = cos(pp8*x)*cospp3y

+ cos(pp3*x)*cospp8y

if z > 0 then

return ’1’

else

return ’0’

end

end

potrace.setbitmap("mybitmap",

potrace.contourplot(N,N,f))

\stopluacode

Once this is done, we can use the result in
lmt_potraced.

\startMPcode

path p ; p := lmt_potraced [

stringname = "mybitmap",

value = "1",

threshold = 0.25,

optimize = true,

] ;

p := p xsized .9TextWidth ;

fill p withcolor "darkred" ;

\stopMPcode

This results in Figure 2(b), which looks very sim-
ilar to the one generated by Wolfram Mathematica.
Note that p is one (disconnected) path.

We give one example of a contour plot. By a
contour plot, here we mean a plot of the curve that is
described as the solution to an equation F (x, y) = 0.
With F (x, y) = y − f(x) we realize that function
graphs y = f(x) provide a particular example, but
we can also handle more complicated curves here, for
example the unit circle (F (x, y) = x2 + y2 − 1).

Let us draw a part of the curve that goes under
the name the Trisectrix of Maclaurin, a curve that
can be used to trisect angles (named after Colin
Maclaurin in 1742). We use the function

F (x, y) = 2x(x2 + y2)− (3x2 − y2) .

Let us construct the path and draw it.

\startluacode

local N = 1000

local xx = 3/N

local yy = 3/N

Hans Hagen, Mikael P. Sundqvist



TUGboat, Volume 45 (2024), No. 1 143

Figure 2: (a) A region plot generated by Wolfram Mathematica.
(b) The same, generated by potrace and Metafun.

local function f(x,y)

local x = xx*x - 1

local y = yy*y - 1.5

local z = 2*x*(x^2 + y^2) - (3*x^2 - y^2)

if z > 0 then

return ’1’

else

return ’0’

end

end

potrace.setbitmap("mybitmap",

potrace.contourplot(N,N,f))

\stopluacode

\startMPcode

path p ; p := lmt_potraced [

stringname = "mybitmap",

value = "1",

tolerance = 0.1,

threshold = 1,

optimize = true,

] ;

p := p xsized TextWidth ;

draw p withcolor "darkred" ;

drawpoints p withcolor "orange" ;

drawpointlabels p ;

currentpicture

:= currentpicture xsized min(8cm, TextWidth);

\stopMPcode

0
1

2

345
6

7

8
9 10 11

12

13

14

15

16

17

18

19

20
212223

24

25

26
272829

30

31

32
33 34 35

36

373839

Figure 3: The Trisectrix of Maclaurin, with points
and labels.

We also draw the points and the point labels.
This way we can easily find out which part of the
path to draw. In this case it seems that we need the
first 34 points (Figure 3).

\startMPcode

Unusual bitmaps



144 TUGboat, Volume 45 (2024), No. 1

path p ; p := lmt_potraced [

stringname = "mybitmap",

value = "1",

tolerance = 0.1,

threshold = 1,

optimize = true,

] ;

p := subpath(0,33) of p ;

p := p xsized 4cm ;

draw p

withcolor "darkred"

withpen pencircle scaled .5mm ;

\stopMPcode

You need to keep the resolution (determined by
the input) and therefore scaling in mind and choose
the pen accordingly:

This method of drawing contour plots is efficient,
and it gives, in contrast to some traditional methods,
curves that look smooth, with relatively few points.
It also has weaknesses, one of them being that the
inequality F (x, y) > 0 does not always single out
the curve F (x, y) = 0; it might be the case that
the function F is positive on both sides of the curve
F (x, y) = 0.

We invite the reader to be creative and play
with this (to us) new toy. Have fun!

Coda

And, in the spirit of having fun, here are some final
images. This first one is a photo of a “tool” that we
came up with at the ConTEXt meeting. Willi Egger
made a kit for the attendees, so there was the usual
cutting and glueing involved. The dots are seeds.

Finally, here are dots laid out from an emoji that
Mikael’s children made when we were playing with
this feature. The first image has the rendering of
that input, while the second “explodes” the pixels in
the x direction (so columns are duplicated), resulting
in a more symmetric image.

⋄ Hans Hagen
Pragma ADE

⋄ Mikael P. Sundqvist
Department of Mathematics
Lund University
mickep (at) gmail dot com

Hans Hagen, Mikael P. Sundqvist


	Introduction
	Vectorizing bitmaps
	How about fonts
	External bitmaps
	Using Lua-generated bitmaps
	Experimenting
	Contour plots

