
TUGboat, Volume 45 (2024), No. 1 25

Tracing bitmap fonts in LMTX

Hans Hagen, Mikael P. Sundqvist

This is a follow up on potrace-generated outlines
from bitmaps (see preceding article, “Unusual bit-
maps”). Most of today’s TEX users have probably
never generated a document with bitmap fonts but
back in the day we only had these, almost always
Computer Modern. Because we don’t use bitmap
fonts in ConTEXt there is no need to support so-
called PK (bitmap) fonts in the backend, but, be-
cause we did support them in MkIV, we still have
it in LMTX. After all, what is TEX without bitmap
fonts? We also owe it to Don Knuth.

It is a bit of challenge to load a traditional eight
bit font using only a TFM file because in ConTEXt
we map everything to Unicode. Regular Type 1 fonts
are still supported, although they are declared obso-
lete, and vendors have moved on to OpenType fonts.
When we define a font that has Type 1 resources, we
load it as if it were an OpenType font. These eight
bit fonts thus become wide (up to 64K glyphs) fonts
internally. Normally we consult the AFM and PFB

files and leave the TFM files, if present at all, for
what they are. You can think of runtime afmtotfm
conversion. An exception is the few traditional math
fonts that we support: Antykwa, Iwona and Kurier;
here the TFM files provide dimensions.

For the purpose of demonstrating what comes
next it is enough to know that in principle one can
still mess around with TFM values, either outline
or bitmap, and that encoding files play a role in
mapping them onto Unicode. We never set out to
do something like this, but, because we had the
loaders available anyway, some quick (few line) ex-
periments of passing PK bitmaps to the MetaPost
potrace helpers we got curious.

If you’ve run into an old TEX document on the
web you might have noticed bitmap fonts being used.
Often these are of a relatively low resolution. The
reason that one never noticed that in print is that,
when read on screen, we see glyphs large and can even
zoom in, while in print they are seen small. When
larger glyphs are used (say in a title) the scaled
glyphs are actually different bitmaps: they have the
same resolution as the smaller ones but more pixels
because they are larger. Take these characters at 600
dpi, scaled up from their original 10 point size:

How do these patterns translate into an outline?
For this we use the potrace library that we have
available in LuaMetaTEX and interfaced to Metafun
in ConTEXt (as discussed in the companion article),
although for fonts we follow a more direct route.

So why do these glyphs look somewhat different
(smoother) from a normal outline Computer Modern?
This is because the 600 may sound like a lot but
actually isn’t. Distributed over an inch we have 600
pixels on 25.4 mm so roughly one pixel per 0.05 mm,
which might be acceptable in a small print but not
when scaled. Here is how an ‘m’ in 600 dpi pixels is
coded (64 by 37 pixels):

In the days of sending bitmaps to printers, pos-
sibly wrapped in a PostScript file, one could often
recognize the characters from blobs like this. You
might also remember some of that line printer art. At
any rate, it shows that 600 dots per inch is much less
than it sounds. A decent 2400 dpi (dots per inch) is
more normal these days for printing on presses (with
ink) but although there are 1200 dpi laser printers,

doi.org/10.47397/tb/45-1/tb139hagen-tracefonts

Tracing bitmap fonts in LMTX

https://doi.org/10.47397/tb/45-1/tb139hagen-tracefonts


26 TUGboat, Volume 45 (2024), No. 1

600 became the norm. After all, toner particles are
not that small. For quite a while the authors used
high speed OCE low temperature toner printer (first
508 dpi, later 600 dpi) and these were visually supe-
rior to most of what the competition had—but OCE

never quite managed to do the same in color (only
in lab testing, not reaching the market). Nowadays
we use HP full width high speed inkjet printers that
give a rather good quality full color experience at
600 dpi. This is what a scaled-up 2400 dpi bitmap
look like:

This already looks more crisp although we can
go back to the smoother variant by setting a higher
threshold in potrace:

We can go higher. In the next rendering we use
7200 dpi bitmaps and now we see some details that
didn’t show up before. Keep in mind that subtle
details might not be noticed in 10 point running text.

The top of the ‘K’ now has a little dent (likely
not visible except with magnification). If you ever
viewed a document with Latin Modern outlines you
might recognize this. It is a side effect of outlines
having that information while a bitmap needs to get
the exact bits, which won’t happen if such a dent
stays beyond the pixel threshold. We now are ready
for some real text. We define two font features to
load bitmap and outlines, respectively:

\definefontfeature[whateverpk][default]

[reencode=ontarget-cmr.enc,bitmap=pk]

\definefontfeature[whateverpt][default]

[reencode=ontarget-cmr.enc,bitmap=outline]

and some colors:

\definecolor[pkcolor][r=1,t=.5,a=1]

\definecolor[ptcolor][b=1,t=.5,a=1]

We use the following three font definitions in
three overlaid examples (figure 1). The results are

close enough to justify a closer look at the possibili-
ties.

\definefont[PKdemoA]

[file:lmroman10-regular.otf*default sa 1.2]

\definefont[PKdemoB]

[file:ontarget-cmr10.tfm*whateverpk sa 1.2]

\definefont[PKdemoC]

[file:ontarget-cmr10.tfm*whateverpt sa 1.2]

We thrive in information--thick worlds because of our
marvelous and everyday capacity to select, edit, sin­
gle out, structure, highlight, group, pair, merge, har­
monize, synthesize, focus, organize, condense, reduce,
boil down, choose, categorize, catalog, classify, list, ab­
stract, scan, look into, idealize, isolate, discriminate,
distinguish, screen, pigeonhole, pick over, sort, inte­
grate, blend, inspect, filter, lump, skip, smooth, chunk,
average, approximate, cluster, aggregate, outline, sum­
marize, itemize, review, dip into, flip through, browse,
glance into, leaf through, skim, refine, enumerate, glean,
synopsize, winnow the wheat from the chaff and sepa­
rate the sheep from the goats.

We thrive in information--thick worlds because of our
marvelous and everyday capacity to select, edit, sin-
gle out, structure, highlight, group, pair, merge, har-
monize, synthesize, focus, organize, condense, reduce,
boil down, choose, categorize, catalog, classify, list, ab-
stract, scan, look into, idealize, isolate, discriminate,
distinguish, screen, pigeonhole, pick over, sort, inte-
grate, blend, inspect, filter, lump, skip, smooth, chunk,
average, approximate, cluster, aggregate, outline, sum-
marize, itemize, review, dip into, flip through, browse,
glance into, leaf through, skim, refine, enumerate, glean,
synopsize, winnow the wheat from the chaff and sepa-
rate the sheep from the goats.

We thrive in information--thick worlds because of our
marvelous and everyday capacity to select, edit, sin-
gle out, structure, highlight, group, pair, merge, har-
monize, synthesize, focus, organize, condense, reduce,
boil down, choose, categorize, catalog, classify, list, ab-
stract, scan, look into, idealize, isolate, discriminate,
distinguish, screen, pigeonhole, pick over, sort, inte-
grate, blend, inspect, filter, lump, skip, smooth, chunk,
average, approximate, cluster, aggregate, outline, sum-
marize, itemize, review, dip into, flip through, browse,
glance into, leaf through, skim, refine, enumerate, glean,
synopsize, winnow the wheat from the chaff and sepa-
rate the sheep from the goats.

Figure 1: Overlaid regular, bitmap and potraced text.

In figure 2 we see from top to bottom: Latin
Modern OpenType outlines, a bitmap Computer
Modern and a potraced Computer Modern. The
fourth line has the bitmap and potraced overlaid.
Figure 3 shows a small portion of the last one as seen
on screen. Blown up, some drift is seen but so far we
didn’t find a way to get rid of it. Some is due to the
way glyph streams get rendered and synchronized
(after spacing, for instance).

Smooth
Smooth
Smooth
SmoothSmooth
Figure 2: Bitmap and potraced compared; from top
to bottom: OpenType, PK, potraced and overlaid.

Hans Hagen, Mikael P. Sundqvist



TUGboat, Volume 45 (2024), No. 1 27

Figure 3: An enlarged clip of the overlay.

When not overlaid we get this for a normal Latin
Modern Regular:

We thrive in information--thick worlds because of our marvelous and
everyday capacity to select, edit, single out, structure, highlight,
group, pair, merge, harmonize, synthesize, focus, organize, condense,
reduce, boil down, choose, categorize, catalog, classify, list, abstract,
scan, look into, idealize, isolate, discriminate, distinguish, screen, pi­
geonhole, pick over, sort, integrate, blend, inspect, filter, lump, skip,
smooth, chunk, average, approximate, cluster, aggregate, outline,
summarize, itemize, review, dip into, flip through, browse, glance
into, leaf through, skim, refine, enumerate, glean, synopsize, win­
now the wheat from the chaff and separate the sheep from the goats.

And this for a Computer Modern Roman PK bitmap:

We thrive in information--thick worlds because of our marvelous and
everyday capacity to select, edit, single out, structure, highlight,
group, pair, merge, harmonize, synthesize, focus, organize, condense,
reduce, boil down, choose, categorize, catalog, classify, list, abstract,
scan, look into, idealize, isolate, discriminate, distinguish, screen, pi-
geonhole, pick over, sort, integrate, blend, inspect, filter, lump, skip,
smooth, chunk, average, approximate, cluster, aggregate, outline,
summarize, itemize, review, dip into, flip through, browse, glance
into, leaf through, skim, refine, enumerate, glean, synopsize, win-
now the wheat from the chaff and separate the sheep from the goats.

The same Computer Modern Roman outlined by
potrace gives this:

We thrive in information--thick worlds because of our marvelous and
everyday capacity to select, edit, single out, structure, highlight,
group, pair, merge, harmonize, synthesize, focus, organize, condense,
reduce, boil down, choose, categorize, catalog, classify, list, abstract,
scan, look into, idealize, isolate, discriminate, distinguish, screen, pi-
geonhole, pick over, sort, integrate, blend, inspect, filter, lump, skip,
smooth, chunk, average, approximate, cluster, aggregate, outline,
summarize, itemize, review, dip into, flip through, browse, glance
into, leaf through, skim, refine, enumerate, glean, synopsize, win-
now the wheat from the chaff and separate the sheep from the goats.

Because these are outlines we can scale them
nicely with \glyphscale 800 here:

We thrive in information--thick worlds because of our marvelous and everyday ca-

pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo-

nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,

catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis-

tinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump,

skip, smooth, chunk, average, approximate, cluster, aggregate, outline, summarize,

itemize, review, dip into, flip through, browse, glance into, leaf through, skim, re-

fine, enumerate, glean, synopsize, winnow the wheat from the chaff and separate the

sheep from the goats.

We can scale further, for instance with an extra
\glyphxscale 1200. This can of course also be done
with bitmaps but outlines are a safer bet.

We thrive in information--thick worlds because of our marvelous and

everyday capacity to select, edit, single out, structure, highlight, group,

pair, merge, harmonize, synthesize, focus, organize, condense, reduce,

boil down, choose, categorize, catalog, classify, list, abstract, scan, look

into, idealize, isolate, discriminate, distinguish, screen, pigeonhole, pick

over, sort, integrate, blend, inspect, filter, lump, skip, smooth, chunk,

average, approximate, cluster, aggregate, outline, summarize, itemize,

review, dip into, flip through, browse, glance into, leaf through, skim,

refine, enumerate, glean, synopsize, winnow the wheat from the chaff

and separate the sheep from the goats.

The conversion happens in the backend and can
have some impact on the runtime but we cache the
outlines, so a subsequent run is faster. Of course
outlines are more efficient than bitmaps in terms of
bytes and viewers also tend to render them better
than bitmaps, which, especially at a lower resolution,
can look pretty bad (in some viewers).

One might wonder if bitmaps are worse than
outlines. When we use a reasonable resolution there
is no need to generate more than one size, and in
ConTEXt we assume this anyway because we scale all
fonts to 10 big points and scale that shared instance
on demand. The 600 dpi ‘m’ that we showed has 64
pixels in the horizontal direction. So, 75 of these (a
line of text) need 4800 pixels, which is more than
enough for a 4–8 display. Unfortunately viewers still
render a bitmap font somewhat badly.

Let’s dive a little into why bitmaps might render
suboptimally in PDF viewers. Consider these three
lines typeset in our three fonts:

\PKdemoA Smooth \vskip.1ex

\PKdemoB Smooth \vskip.1ex

\PKdemoC Smooth \vskip.1ex

These ‘Smooth’ lines (this time in 12pt) end up
in the PDF file as follows :

BT

/F1 10 Tf

1.195514 0 0 1.195514 0 30.316793 Tm

[<000100020003>-28<000300040005>] TJ

/F2 10 Tf

1.195514 0 0 1.195514 0 15.415656 Tm

[<010203>-28<030405>] TJ

/F3 10 Tf

1.195514 0 0 1.195514 0 0.514763 Tm

[<010203>-28<030405>] TJ

ET

This code first switches to font /F1, a wide
outline font so we have four-byte indices (in angle
brackets). Next we trigger /F2, the bitmap variant
and finally the potraced /F3; these are both Type 3
fonts so they get two-byte indices. We don’t scale
except to the 10 big points design size. After such
a switch comes lines of text and there we do scale,
here by 1.195514 in both directions. We’re slightly
off 1.2 because the PDF font system (by tradition)
is set up in PostScript (big) points so we need to
scale up a little from 12pt to 12bp. Scaling an out-
line is translated (in the end) to some factor and

Tracing bitmap fonts in LMTX



28 TUGboat, Volume 45 (2024), No. 1

the renderer can keep the device into account when
it comes to rounding. With bitmaps it’s different,
because these are not mathematically-defined fonts,
but some image that gets scaled. This can introduce
the first inaccuracy. An inline bitmap in PDF is given
between ID and EI operators, as demonstrated in
the next two charproc entries for the Type 3 bitmap
font (reformatted and abridged to save space):

21 0 obj

<< /Length 40708 >>

stream

556 0 55 -22 498 703 d1

q

442 0 0 725 55 -22 cm

BI

/W 442 /H 725 /IM true /BPC 1 /D [1 0]

ID ...bytes...

EI

Q

endstream endobj

Notice the difference in the /Length:

22 0 obj

<< /Length 42784 >>

stream

833 0 33 0 809 440 d1

q

775 0 0 440 33 0 cm

BI

/W 775 /H 440 /IM true /BPC 1 /D [1 0]

ID ...bytes...

EI

Q

endstream endobj

In contrast, a character in the potraced outline
font looks like this:

31 0 obj

<< /Length 3678 >>

stream

556 0 55 -22 498 703 d1

q

1 0 0 1 55 -22 cm

172 723.96045697 m 144.84445441 720.6382363 ...

Q

endstream endobj

The length is much smaller and the outline
shape is just a sequence of moveto (m), lineto (l)
and curveto (c) operators mixed with numbers.

32 0 obj

<< /Length 4260 >>

stream

833 0 33 0 809 440 d1

q

1 0 0 1 33 0 cm

68.5 434.44174379 m 32.2 431.50947593 1.9375 ...

Q

endstream endobj

Experiments demonstrated that it’s better to
use rounded widths because otherwise (at least in
SumatraPDF) we get some accumulated drift. The
bitmap variants have a transform matrix like this:

442 0 0 725 55 -22 cm

775 0 0 440 33 0 cm

and the potraced outlines have:

1 0 0 1 55 -22 cm

1 0 0 1 33 0 cm

This means that a bitmap again gets scaled,
luckily by an integer, but still there is some inac-
curacy. In the end, we get the bits put on screen
and especially at small scales we end up with ar-
tifacts in positioning and scaling. Where the font
renderer is optimized for (indeed) rendering fonts,
the bitmap renderer isn’t. In figure 4 we see bitmaps
being rendered bolder when they become smaller,
because in the end, even at high resolutions, we’re
not talking pixels but bits (that can occupy multiple
pixels). Outline fonts talk pixels, bitmap fonts speak
in bits.

smallest small normal

Figure 4: Three zoom levels compared.

We haven’t yet discussed how we got the bit-
maps that we used. You might have noticed in the
examples that there are some differences with the
outline when it comes to dimensions. This is partly
due to the fact that where Latin Modern is an Open-
Type font with no limits to dimensions, Computer
Modern has to accommodate the limited number of
heights, depths and widths that the TFM format per-
mits. Think of arbitrary values of height compared
to categories of height.

When you generate a bitmap you rely on scripts
that do the work and these work together with so-
called printer modes as defined in the METAFONT file
modes.mf (https://ctan.org/pkg/modes). These
modes are for printers which means that there can
be compensation going on: rounding up or down
of points exceeding bounding box edges, the size of
printer pixels (toner, ink) and accuracy of positioning
them, etc. In our case, when we went for 8000 dpi we
ended up with a device that did more compensation
than needed. Better is to investigate time in figuring
out how to control the machinery to cook up (maybe)
7200 dpi bitmaps because down the inclusion route
there is some division by 72. If we decide to play

Hans Hagen, Mikael P. Sundqvist

https://ctan.org/pkg/modes


TUGboat, Volume 45 (2024), No. 1 29

a bit more, we might as well first figure out how to
control the bitmap generation and see if we can come
up with this 7200 resolution. Not only does it divide
nicely by 72 (for display) but also by 600 (for the
average printer). To what extent that matters is to
be seen.

A bitmap font (instance) is generated by META-
FONT and driven by a (printer) mode defined in
modes.mf. We added this one:

mode_def potrace =

mode_param (pixels_per_inch, 2 * 3600) ;

mode_param (blacker, 0) ;

mode_param (fillin, 0) ;

mode_param (o_correction, 1) ;

mode_common_setup_ ;

enddef;

The 2 * 3600 is a trick to get around META-
FONT maxing out at 4096 but internally being capa-
ble to deal with larger numbers. Of course we for-
got to run fmtutil-sys --byfmt mf which is needed
to get these modes in the format file, but eventu-
ally we managed to generate the 7200 dpi PK file
for cmr10. Generating is easiest done with pdfTEX
with \pdfmapfile {}, which wipes the mapping to
a Type 1 file.

We mentioned using MetaPost in our first at-
tempts to get an idea how well potrace can vectorize
the bitmaps. Here is how that is done:

\startluacode

local f = fonts.handlers.tfm.readers.loadpk

("cmr10.pk")

if f then

local g = f.glyphs[string.byte("R")]

if g then

local b

= fonts.handlers.tfm.readers.showpk(g)

potrace.setbitmap("demo",b)

end

end

\stopluacode

\startMPpage[offset=1ts]

draw lmt_potraced [

stringname = name,

value = "1",

];

\stopMPpage

In figure 5 we demonstrate three such renderings.
Watch how the number of points increases as the
shape gets better. In figure 6 we show the potraced
variant alongside the OpenType outline. Left is the
default potrace output, next comes the regular Open-
Type (here CFF) outline, and at the right we see
two potraced results, both with optimize = true

passed; the first has the default tolerance of 0.2 and

Figure 5: Using MetaPost for analysis.

Figure 6: Comparing potraced bitmaps with Type 1.

Figure 7: Comparing control points.

the second uses 0.5 and thereby has less points. For
sure the middle one has less points which is nice, but
the potrace ones are not that excessive so we can
live with it. We’ve run into cases (especially math)
where the regular outlines are also not perfect. Most
will go unnoticed anyway given the small size at
which glyphs are normally rendered. When you look
closely at the rightmost output you’ll notice that
the bend in the stems makes for more points which
is an indication that the METAFONT output might
actually be more subtle. In figure 7 we also show the
controls and you see subtle differences in the angles
there. Also note that when there are no lines that
indicates that there is likely a lineto instead of a
curveto.

If you like the look of these shapes, take a look
at Volume E of Don Knuth’s “Computers & Typeset-
ting” series. An incredible amount of work went into
the details of the fonts and you’ll run into brackets,
beaks, crisps, notches, slabs, juts, dishes and more
elements and parameters that are used. For instance
the serifs as seen in the ‘R’ are actually made pro-
grammatically (so that they can be discarded in the
sans shapes). If you check out the proof sheet of the
‘R’ you will only see the basic points that describe

Tracing bitmap fonts in LMTX



30 TUGboat, Volume 45 (2024), No. 1

the character, not the points we see above, after
conversion to (any kind of) outline.

So now that we can turn a PK into a proper
outline we’re done, right? Well, not entirely. Because
we have relatively simple shapes (moveto, lineto and
curveto) we can directly go to CFF and avoid the
MetaPost to Type 3 conversions. Because we already
can load (and adapt) CFF outlines it is not that
complicated to do the reverse. The backend already
can include them so we can also borrow code there.

When going from potrace output to CFF, we
need a high resolution, so we started out again with
7200 dpi. Although in the end we were quite satis-
fied with the results, we tested with 20000 dpi and
thought it looks even better than the Latin Modern
successor (although one can argue about it). Some
first experiments showed that it was doable but it
actually took a whole day to (test and) decide how
to get better results. For instance, MetaPost uses
floats while a renderer uses integers, so we run into
rounding issues if we delegate that (although we can
include floats in CFF, it is not a success). When
overlaying the MetaPost output and the CFF shapes
the latter was quite disappointing: weird protrusions
and bubbles. Of course one may doubt the imple-
mentation, but double and triple checking showed
that we use the same numbers.

The results improved a lot when the results
from potrace were multiplied by 10 (or 20) effectively
giving very huge glyphs (on a 10000 unit canvas) and
in the page stream scaling down by that factor. By
then using rounded values we got enough precision
to get the CFF results close to the (always) high
quality MetaPost rendering. In figure 8 we can see
how close they became.

The next question is, how do we control this:
PK, MetaPost Type 3 or native CFF? Even more
challenging is that we had wanted to use different
resolutions, and mix these three methods, if only be-
cause we want to be able to experiment and document
the mix. That means that it has to be available not
only in the font feature mechanism, which is rather
trivial, but also in the backend, which then involves a
font with the same name (say CMR10) to be rendered
differently, so we need different handlers, distinctive
caching of streams, etc. In the end we got there. It is
even possible to mix variants with different potrace
parameters in one document.

We start with CFF definitions. In figure 9 we
show three resolutions overlaid, with the 7200 dpi
variant below. In figure 10 we show the default and
optimized (fewer points) traces.

\definefontfeature[CMRCFF]

[reencode=ontarget-cmr.enc,bitmap=cff]

s
Figure 8: A MetaPost rendering on top of its CFF

counterpart.

Figure 9: Above: 7200, 2400, 600 dpi CFF variants
overlaid; bottom: cf. 7200 dpi CFF variant alone.

\definefontfeature[MyFontCffA]

[default,CMRCFF][resolution=7200]

\definefontfeature[MyFontCffB]

[default,CMRCFF][resolution=2400]

\definefontfeature[MyFontCffC]

[default,CMRCFF][resolution=600]

\definefontfeature[MyFontCffD]

[default,CMRCFF][resolution=7200,

potrace={optimize=true}]

The overlays look fuzzy, demonstrating the need
for high resolutions. Font definitions are done as
follows; we only show one definition:

Hans Hagen, Mikael P. Sundqvist



TUGboat, Volume 45 (2024), No. 1 31

Figure 10: Above: Normal and optimized 7200 dpi
variants overlaid; below: cf. 7200 dpi variant alone.

We thrive in information--thick worlds because of our marvelous and everyday ca-

pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo-

nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,

catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis-

tinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump,

skip, smooth, chunk, average, approximate, cluster, aggregate, outline, summa-

rize, itemize, review, dip into, flip through, browse, glance into, leaf through,

skim, refine, enumerate, glean, synopsize, winnow the wheat from the chaff and

separate the sheep from the goats.

We thrive in information--thick worlds because of our marvelous and everyday ca-

pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo-

nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,

catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis-

tinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump,

skip, smooth, chunk, average, approximate, cluster, aggregate, outline, summa-

rize, itemize, review, dip into, flip through, browse, glance into, leaf through,

skim, refine, enumerate, glean, synopsize, winnow the wheat from the chaff and

separate the sheep from the goats.

We thrive in information--thick worlds because of our marvelous and everyday ca-

pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo-

nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,

catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis-

tinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump,

skip, smooth, chunk, average, approximate, cluster, aggregate, outline, summa-

rize, itemize, review, dip into, flip through, browse, glance into, leaf through,

skim, refine, enumerate, glean, synopsize, winnow the wheat from the chaff and

separate the sheep from the goats.

We thrive in information--thick worlds because of our marvelous and everyday ca-

pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo-

nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,

catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis-

tinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump,

skip, smooth, chunk, average, approximate, cluster, aggregate, outline, summa-

rize, itemize, review, dip into, flip through, browse, glance into, leaf through,

skim, refine, enumerate, glean, synopsize, winnow the wheat from the chaff and

separate the sheep from the goats.

Figure 11: Above: 7200, 2400, 600 dpi PK variants
overlaid; below: cf. 7200 dpi PK variant alone.

\definefont[MyFont]

[file:ontarget-cmr10.tfm*MyFontCffA]

These definitions are used in figure 11. The
differences aren’t immediately apparent in small print
but zoom in (if you’re online) and you’ll understand
why we need more than 600 dpi to feel comfortable.

Finally we show the MetaPost-generated three-
some in figure 12 and these look quite reasonable.
One thing to keep in mind when wrapping shapes
into a Type 3 font is that one has to make sure that
color keeps working.

So, how useful is all this? Maybe it’s time for a
revival of METAFONT. Or maybe we can get some
old designs out of the archives where they got tagged
obsolete and use them again. Or maybe it’s just for
the fun of it. We started out with PK bitmaps that we
need to support anyway. Next we were curious how
well a traced outline would look, and for that using a
MetaPost Type 3 font makes sense. Then we took the
challenge to turn potrace output into a CFF Open-
Type font. We could now make a whole tool chain
but it makes little sense: we can do it in ConTEXt,
so we’re fine, and we don’t expect widespread usage

We thrive in information--thick worlds because of our marvelous and everyday ca-

pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo-

nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,

catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis-

tinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump,

skip, smooth, chunk, average, approximate, cluster, aggregate, outline, summa-

rize, itemize, review, dip into, flip through, browse, glance into, leaf through,

skim, refine, enumerate, glean, synopsize, winnow the wheat from the chaff and

separate the sheep from the goats.

We thrive in information--thick worlds because of our marvelous and everyday ca-

pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo-

nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,

catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis-

tinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump,

skip, smooth, chunk, average, approximate, cluster, aggregate, outline, summa-

rize, itemize, review, dip into, flip through, browse, glance into, leaf through,

skim, refine, enumerate, glean, synopsize, winnow the wheat from the chaff and

separate the sheep from the goats.

We thrive in information--thick worlds because of our marvelous and everyday ca-

pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo-

nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,

catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis-

tinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump,

skip, smooth, chunk, average, approximate, cluster, aggregate, outline, summa-

rize, itemize, review, dip into, flip through, browse, glance into, leaf through,

skim, refine, enumerate, glean, synopsize, winnow the wheat from the chaff and

separate the sheep from the goats.

We thrive in information--thick worlds because of our marvelous and everyday ca-

pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo-

nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,

catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis-

tinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump,

skip, smooth, chunk, average, approximate, cluster, aggregate, outline, summa-

rize, itemize, review, dip into, flip through, browse, glance into, leaf through,

skim, refine, enumerate, glean, synopsize, winnow the wheat from the chaff and

separate the sheep from the goats.

Figure 12: Above: 7200, 2400, 600 dpi MetaPost
variants overlaid; below: cf. 7200 dpi MP variant alone.

aaa a
Type3: PK Type3:

MetaPost
OpenType: CFF Type1: PFBType 3: PK Type 3: MP OpenType: CFF Type 1: PFB

Figure 13: A test with one of the allrunes fonts.
Left is using the PK at a 7200 dpi resolution. Next is
the potraced 7200 PK original outline. Third from left
is the generated CFF. Right is the shipped PFB.

aaaa
Type3: PK Type3:

MetaPost
OpenType:

CFF
Type1: PFB

Figure 14: Enlarged clips of the variants in figure 13.

outside the TEX ecosystem. Next on the agenda is
to locate some interesting METAFONTs and see if
they can be put to use. In case you wonder how
these eight bit fonts fit into the Unicode ecosystem,
don’t worry, we can use the virtual font mechanism
to hook shapes into existing fonts (which is what we
do anyway) or create combined fonts. We can even
make variable fonts using METAFONT, but for that
we need to become experienced designers first. As a
teaser we show a character from the runes font by
Carl-Gustav Werner in figures 13 and 14. Mikael,
knowing the author, promised to come up with a
proper encoding for that one, so stay tuned.

⋄ Hans Hagen
Pragma ADE

⋄ Mikael P. Sundqvist
Department of Mathematics
Lund University
mickep (at) gmail dot com

Tracing bitmap fonts in LMTX


