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Euclidean geometry with tkz-elements and
tkz-euclide

Alain Matthes

Abstract
tkz-elements [2]1 is based on Lua and LuaLATEX to
perform calculations and obtain point coordinates in
the plane. These coordinates are then transmitted
to a package that can plot them. Currently, plot-
ting is accomplished with TikZ or tkz-euclide, but
MetaPost is also a viable option.

This paper demonstrates how tkz-elements
can be utilized for tasks requiring mathematical com-
putations. With it, not only can you create Euclidean
geometry figures, but you can also conduct calcula-
tions within your document.

1 Introduction
The aim of the tkz-euclide [3] package is to pro-
vide a tool that would facilitate the construction
of Euclidean geometric figures, with a key focus on
being suitable for individuals who think mathemati-
cally, and even better, geometrically. tkz-euclide
is built on top of PGF and its associated front-end
TikZ. As a result, the calculations rely on TEX. To
aid TEX in performing certain calculations, auxiliary
packages are necessary. However, this approach can
be challenging to program, slow in execution, and
sometimes lacks accuracy.

An extension of TEX, LuaTEX, has been devel-
oped, enriching TEX with the programming language
Lua, which is fast, light and easy to program. tkz-
elements is an attempt to use Lua’s capabilities to
enhance tkz-euclide.

The final section of this paper explains the basics
of drawing objects with tkz-euclide.

2 What are the foundations of tkz-elements?
2.1 Structure
The package mainly comprises two environments: the
tkzelements environment and the tikzpicture en-
vironment. The former utilizes Lua-created functions
to acquire point coordinates, while the latter employs
tkz-euclide to draw figures. I have a preference
for tkz-euclide, as it includes all the fundamental
figures.

An important aspect is the relationship between
the two environments. The coordinates of the points
are stored in the only data structure available in Lua:
a table z (z being a common reference to the affixes of
complex numbers). This table is global, and its data

1 The current version is 2.00 and is required to compile
the examples in this paper.

is only cleared when a new tkzelements environ-
ment is initiated. At the start of the tikzpicture
environment, the tkzGetNodes macro retrieves the
coordinates and generates nodes whose names are
those of the z table keys.2

Following the tkzelements environment, you
can obtain results that can be incorporated into your
document (an advantage of a figure source within
your document), by using the \tkzUseLua command.
The definition of this macro is
\directlua{tex.print(tostring(#1))}.

Let’s look at the following example:3

% !TEX TS-program = lualatex
\documentclass{article}
\usepackage{tkz-euclide,tkz-elements}
\begin{document}
\begin{tkzelements} -- part elements
z.A = point : new (1,1)
z.B = point : new (3,2)
C.AB = circle : new (z.A,z.B)
z.C = C.AB : point (1/6)
T.ABC = triangle : new (z.A,z.B,z.C)

\end{tkzelements}
\begin{tikzpicture}% part tikz
\tkzGetNodes
\tkzDrawPolygon(A,B,C)
\tkzDrawCircle(A,B)
\tkzDrawPoints(A,B,C)
\tkzLabelPoints(A)
\tkzLabelPoints[above](B,C)

\end{tikzpicture}

The length of AC is \tkzDN[4]{\tkzUseLua{%
length(z.C,z.A)}}

Affix of $C$: \tkzUseLua{z.C}
\end{document}

Figure 1: Sample program

The result is shown in fig. 2.
The macro tkzDN serves as a formatting tool for

numerical results.
Now, let’s consider whether the triangle is equi-

lateral. If the ifthen package has been loaded, this
can be done with:
\ifthenelse{\equal{\tkzUseLua{%
T.ABC : check_equilateral ()}}{true}}{%
The triangle ABC is equilateral}{%
The triangle ABC is not equilateral}

2 The table type implements associative arrays. An asso-
ciative array is an array that can be indexed with numbers,
strings, or any other value; that is, they store a set of key/value
pairs.

3 “-- part elements” is a comment in Lua;
“% part tikz” is a comment in LATEX.
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The length of AC is 2.2361
Affix of C: 1.13+3.23i

Figure 2: Result of sample program fig-1

which, for our example, outputs:
The triangle ABC is equilateral

2.2 Tools
2.2.1 Complex numbers
Our primary aim was precision in calculations, and
since programming with Lua is much easier than
in TEX, we considered utilizing mathematical tools
better suited to geometry instead of basic arithmetic
operations like addition and subtraction. The initial
concept was to incorporate complex numbers.

A complex number, denoted as z, can be rep-
resented by an ordered pair (Re(z), Im(z)) of real
numbers, which can be interpreted as coordinates of
a point in a two-dimensional space such as the Eu-
clidean plane. This plane is commonly referred to as
the complex plane or the Argand plane (Fig. 4). To
create a point object, we specify its two coordinates
and its name (future node name); for example: z.A=
point : new (2,3). What happens here? An ob-
ject of type point is created, consisting of attributes
and methods stored in the table (associative array) z.

The key A is associated with the data. The
tostring method has been adapted to display the
affix corresponding to the point. That is,
tex.print(tostring(z.A)) outputs 2+3i.

Point objects behave similarly to the affixes that
represent them. Hence, we can manipulate them with
the same operations. Here’s an example: adding two
points means obtaining another point whose affix is
the sum of the affixes of the previous points.

Let’s consider a second point:
z.B = point : new (2,-1)
Then z.C = z.A+z.B has affix 4+2i; analogously,
z.D = z.A*z.B has affix 7+4i.

Let’s check: \tkzUseLua{z.A*z.B} computes:
7+4.00i.

Refer to the documentation for a comprehensive
list of all methods available. Some are more signifi-
cant than others, one being the complex conjugate:
z.B = z.A : conj(), which can alternatively be ex-
pressed as z.B = point.conj (z.A).

It’s important to note that two operations have
been repurposed from their conventional meanings:
“..”, typically represents concatenation but here
denotes scalar product, and “^”, usually signifies
exponentiation but here denotes the determinant.4
z.A .. z.B = (z.A * z.B : conj()).re = 1
z.A ^ z.B = (z.A : conj() * z.B).im = −8

2.2.2 Barycenter
Another useful tool is the barycenter, which is uti-
lized numerous times in our diagrams. Here are two
examples demonstrating the advantages of combining
complex numbers and barycenters:

• Obtaining the incenter in a triangle defined by
its three vertices (a,b,c):
function in_center_ (a,b,c)

local ka = point.abs (b-c)
local kc = point.abs (b-a)
local kb = point.abs (c-a)
return barycenter_ ({a,ka},{b,kb},{c,kc})

end

point.abs is a method which gives the modulus
of a complex number.

• Obtaining the orthocenter:
function ortho_center_ (a,b,c)

local ka = math.tan (get_angle_ (a,b,c))
local kb = math.tan (get_angle_ (b,c,a))
local kc = math.tan (get_angle_ (c,a,b))
return barycenter_ ({a,ka},{b,kb},{c,kc})

end

get_angle_ is an internal macro in the package
that produces a normalized angle defined by
three complex numbers.

2.2.3 Objects — OOP

Finally, while the package’s internal functions are
classically programmed using Lua, user functions
are based on object-oriented programming princi-
ples. Users manipulate points, lines, circles, tri-
angles, etc., all of which are objects from specific
classes. Currently, tkz-elements utilizes the fol-
lowing classes: point, line, circle, triangle, ellipse,
quadrilateral, square, rectangle, parallelogram, regu-
lar (polygon) and vector (matrix will be added soon).

An object (or instance) of the class point has
both state and behavior, defined by the class. The

4 Here we consider z.A and z.B as the vectors
−→
OA and

−−→
OB

with O as the origin of the plane.
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state is characterized by attributes, while behavior is
determined by methods. The structure of the object
class is shown in fig. 3; here, all the attributes are
listed but only a few of the available methods are
displayed. See [2], section “Class point” for the
complete definition.5

Attributes
re (real)

im (real)
type = 'point'

argument (rad)

modulus (cm)

Methods
homothety (coeff,obj)

rotation (angle,object)

symmetry (object)

...

Class Object Point

Figure 3: The Point object

We can access the instance’s attributes as follows
to obtain the real part (the point’s abscissa): z.A.re.

We can already benefit from the use of LuaLATEX.
To obtain figure 4, the point A has been defined as
follows z.A = point : new (2,3). Therefore, we
can use the attributes of this point. The modulus of
zA is 3.60555 . This value is obtained as follows:
\tkzUseLua{z.A.modulus}

A : 3 + 2i

x

y

mod(zA
)=

|zA
|

θ = arg(zA)

Figure 4: Argand diagram

Other classes possess their unique attributes and
methods. We recommend consulting the documen-
tation. In the remainder of this article, we’ll utilize
examples to elucidate specific attributes and meth-
ods. It’s not feasible to cover all the documentation
in this article, so we’ll employ examples to illustrate
certain attributes and methods. Refer to [2], sections
“Class line”, “Class circle”, etc.

5 It’s recommended to have the package documentation at
hand while reading this paper.

3 Small examples
Let’s examine two brief examples. While they don’t
require high-precision calculations, they will demon-
strate how to create a figure and utilize objects.

3.1 Alternate angles
\documentclass{article}
\usepackage{tkz-euclide}
\usepackage{tkz-elements}
\begin{document}
\begin{tkzelements}

scale = .8
z.A = point : new (0 , 0)
z.B = point : new (6 , 0)
z.C = point : new (1 , 5)
T.ABC = triangle : new (z.A,z.B,z.C)
L.AD = T.ABC : bisector ()
z.D = L.AD.pb
L.LLC = T.ABC.ab : ll_from (z.C)
z.E = intersection (L.AD,L.LLC)

\end{tkzelements}
\begin{tikzpicture}

\tkzGetNodes
\tkzDrawPolygon(A,B,C)
\tkzDrawLine(C,E)
\tkzDrawSegment(A,E)
\tkzMarkAngles[mark=|](B,A,D D,A,C)
\tkzMarkAngles[mark=|](C,E,D)
\tkzDrawPoints(A,...,E)
\tkzLabelPoints(A,B)
\tkzLabelPoints[above](C,D,E)
\tkzMarkSegments[mark=s||](A,C C,E)

\end{tikzpicture}
\end{document}

A B

C

D

E

Figure 5: Alternate angles

First, we create three points, then a triangle
named T.ABC. Subsequently, we define the bisector
emanating from vertex A.

L.AD = T.ABC : bisector (): The bisector is
defined by two points: the vertex A and the foot D
on the opposite side. For the bisector from B you
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need to use L.BE = T.ABC : bisector (1), where
1 is for the next point of the triangle.

To find the intersection of the bisector with a
line parallel to the (AB) line at C, we’d have to name
this line, but this is already done in the triangle’s
attributes: T.ABC.ab represents the triangle line
defined by the first and second vertices. Finally,
z.E = intersection (L.AD,L.LLC) gives the last
point.

The tkz-euclide section gives an overview of
the possibilities the package provides to mark seg-
ments and angles.

3.2 An Apollonius circle
Given k a positive real number other than 1, and
A and B two points in the plane, the set of points
M verifying MA/MB = k is a so-called Apollonius
circle. In the example below, k is defined by k =
EA/EB.
\begin{tkzelements}

scale = .5
z.A = point : new (0,0)
z.B = point : new (6.5,0)
z.E = point : new (7,4)
T.EAB = triangle : new (z.E,z.A,z.B)
EA = length (z.E,z.A)
EB = length (z.E,z.B)
C.OE = T.EAB.bc : apollonius (EA/EB)
L.bis = T.EAB : bisector ()
z.C = L.bis.pb
z.O = C.OE.center
z.D = C.OE : antipode (z.C)
z.F = T.EAB.ab : point (-0.5)

\end{tkzelements}

A BC DO

E

F

Figure 6: Apollonius MA/MB = k

• We define the triangle after defining three points:
T.EAB = triangle : new (z.E,z.A,z.B)

• The length EA is determined with
length(z.E,z.A)

• T.EAB.bc represents the straight line (AB) b for
the second point and c for the third. Find the
circle defined by these two points and the ratio
EA/EB. It is called C.EC because its center
will be O and it passes through E.

• We get the circle with
T.EAB.bc : apollonius (EA/EB)

• Next, we look for the bisector of the angle ÂEB.
It intersects the opposite side at point C of
C(O,E).

In T.EAB : bisector (), the first point des-
ignates the vertex. The bisector is defined by
the vertex and the intersection with the opposite
side; L.bis.pb designates the second point.

• In z.O = C.OE.center, center is a circle at-
tribute, then the “antipode” method is used to
obtain the diametrically opposite point
z.D = C.OE : antipode (z.C).

• Finally we need a point F to mark an angle in
tkz-euclide.

4 Harmonic mean of two numbers

O A BI

H

K

G

Figure 7: Means of two numbers

For two numbers a and b, such as OA = a
and AB = b, here are the definitions and geometric
representations of three means:

Mean Definition Segment

Arithmetic A =
a+ b

2
IK

Geometric G =
√
ab AG

Harmonic H =
2ab

a+ b
=

G2

A
HG

\begin{tkzelements}
local a = 5
local b = 1
z.O = point : new (0,0)
z.A = point : new (a,0)
z.B = z.A + b
L.OB = line : new (z.O,z.B)

Alain Matthes



TUGboat, Volume 45 (2024), No. 1 129

z.I = L.OB.mid
C.IO = circle : new (z.I,z.O)
L.orth = L.OB : ortho_from (z.A)
z.K = C.IO.north
z.G,z.Gp = intersection (L.orth,C.IO)
L.IG = line : new (z.I,z.G)
z.H = L.IG : projection (z.A)

\end{tkzelements}

Tracing with tkz-euclide:
\begin{tikzpicture}[gridded]

\tkzGetNodes
\tkzDrawSegments(I,G A,H O,B)
\tkzDrawSegments(O,G G,B I,K A,G)
\tkzDrawArc(I,B)(O)
\tkzLabelPoints[below right](O,A,B,I)
\tkzLabelPoints[above](H,K,G)
\tkzMarkRightAngles(O,I,K B,A,G)
\tkzMarkRightAngles(A,H,I O,G,B)
\tkzDrawPoints(O,A,B,G,K,H,I)

\end{tikzpicture}

Some explanations:
• z.B = z.A + b

Adding points means adding their corresponding
affixes. z.A is represented in this equation by
the affix, so it’s possible to add a real or complex
number to it. We have OB = a+ b.

• L.OB = line : new z.O,z.B): create a line
object with key OB. Then, in
z.I = L.OB.mid, mid is an attribute of the line
object giving the midpoint of the segment de-
fined by the two points characterizing the line.

• C.IO = circle : new (z.I,z.O): create a
circle object with key IO.

• In z.K = C.IO.north, the north attribute of a
circle is used.

• This is followed by an intersection:
intersection (L.orth,C.IO)
The arguments are objects, given in no particu-
lar order. Depending on the object types, the
function selects the correct algorithm.

The two points of intersection will be G and
G′ (Gp in Lua for the moment).

• projection is a method of the line object.
Let’s check some data:

• The coordinates of G are (5 ; 2.2361 ) with
\tkzUseLua{z.G.re} ; \tkzUseLua{z.G.im}

• The coordinates of H are (3.8889 ; 0.9938 )
• The harmonic mean is the length of GH =

2.2361 , i.e.,
√
5 with

\tkzUseLua{length(z.G,z.A)}
\begin{tkzelements}

scale =.8
dofile ("means_b.lua")

\end{tkzelements}

It’s good practice to place the Lua code in an
external file. This approach makes it easier to cor-
rect and reuse, and it helps avoid errors when using
special characters like the % symbol.

Figure 9 illustrates how to obtain half the har-
monic mean and, importantly, demonstrates that
this method is independent of the distance d.

z.A = point : new (0,6)
z.B = point : new (6,4)
z.Bp = point : new (8,4)
z.I = point : new (0,0)
z.J = point : new (6,0)
z.Jp = point : new (8,0)
L.AJ = line : new (z.A,z.J)
L.IJ = line : new (z.I,z.J)
L.BI = line : new (z.B,z.I)
z.C = intersection (L.AJ,L.BI)
z.K = L.IJ : projection (z.C)
L.AJp = line : new (z.A,z.Jp)
L.BpI = line : new (z.Bp,z.I)
z.Cp = intersection (L.AJp,L.BpI)
z.Kp = L.IJ : projection (z.Cp)

Figure 8: File means_b.lua

\begin{tikzpicture}
\tkzSetUpPoint[size=8]
\tkzGetNodes
\tkzDrawSegments[dashed](A,J B,I I,J)
\tkzDrawSegments[dashed](A,J' B',I)
\tkzDrawPoints[gray,size = 8](A,I,C,K,B,J)
\tkzDrawPoints[black,size = 8](C',K',B',J')
\tkzSetUpLine[ultra thick]
\tkzDrawSegments[black](C',K' B',J')
\tkzDrawSegments[gray](C,K A,I B,J)

\end{tikzpicture}

d

c

a

b

1

c
=

1

a
+

1

b
either c =

ab

a+ b

Figure 9: Half of harmonic mean

5 THE Apollonius circle
The circle that touches all three excircles of a triangle
and encompasses them is commonly referred to as
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“THE” Apollonius circle. Our approach is from the
fourth definition given in [4], due to Kimberling [1,
p. 102].

The objective here is to determine the external
tangent circle to the three exinscribed circles of a
triangle. While this problem is mathematically chal-
lenging, the idea is to demonstrate that the package
offers some highly useful capabilities for experienced
geometers.

The approach involves determining the inner
tangent circle, and then transforming this inner circle
into an outer circle, also tangent to the exinscribed
circles. The result is shown in fig. 10.

The Lua code is created in an external file,
apollonius.lua, shown in fig. 11.

ON
A B

S

C

Figure 10: THE Apollonius circle

5.1 Code analysis
• A triangle object is created: T.ABC, then we

utilize its attributes and methods linked to the
triangle class.

• For example, z.N refers to the Euler center or
the center of the nine-point circle. Additionally,
T.feuerbach is a triangle created using a meth-
od. Its vertices are the points of contact of the
Euler circle with the exinscribed circles.

• Then, to draw them, we’ll need the points that
define the vertices of T.feuerbach. This is the
role of get_points (T.feuerbach).
get_points is a function that retrieves the

points (attributes) required to create the object.
In this case, these are the vertices of the triangle

scale = .32
z.A = point : new (0,0)
z.B = point : new (6,0)
z.C = point : new (0.8,4)
T.ABC = triangle : new (z.A,z.B,z.C)
z.N = T.ABC.eulercenter
T.feuerbach = T.ABC : feuerbach ()
T.excentral = T.ABC : excentral ()
z.Ea,z.Eb,z.Ec = get_points (T.feuerbach)
z.Ja,z.Jb,z.Jc = get_points (T.excentral)
z.S = T.ABC.spiekercenter
C.JaEa = circle : new (z.Ja,z.Ea)
r_ortho = math.sqrt (C.JaEa : power (z.S))
C.ortho = circle : radius (z.S,r_ortho)
z.a = C.ortho.south
C.euler = T.ABC : euler_circle ()
C.apo = C.ortho : inversion (C.euler)
z.O = C.apo.center
z.xa,
z.xb,
z.xc = C.ortho : inversion (z.Ea,z.Eb,z.Ec)

Figure 11: File apollonius.lua

Ea,Eb,Ec. The circle with center N passes
through these points.

• The same procedure is used to recover the cen-
ters of the exinscribed circles (Ja, Jb, Jc).

• On a more technical note, the radical axes of
the three exinscribed circles intersect at a point
called the “radical center”, which is none other
than the Spieker center. This point is known
to the package as one of the attributes of the
triangle: z.S = T.ABC.spiekercenter.

It’s also possible to directly request the radical
center. The radical center has the same power
with respect to the three circles. This allows for
determining the radius of a circle that will be
orthogonal to the three exinscribed circles. The
radius is
r_ortho = math.sqrt (C.JaEa : power (z.S)).

Calculate the power of point S with respect
to one of the three circles, then take the square
root of the result.

• The circle “ortho” can be defined as
C.ortho = circle : radius(z.S,r_ortho).

All that remains is to utilize this circle to
perform an inversion of the Euler circle, which
will give the Apollonius circle
C.apo = C.ortho : inversion(C.euler).

We then retrieve the center
z.O = C.apo.center (center is an attribute for
a circle) and the three points of contact with
the exinscribed circles. These are images of the
inverted contact points of the nine-point circle
or Euler circle.

Alain Matthes



TUGboat, Volume 45 (2024), No. 1 131

\begin{tikzpicture}
\tkzGetNodes
\tkzDrawPoints(xa,xb,xc)
\tkzDrawCircles(Ja,Ea Jb,Eb Jc,Ec S,a O,xa N,Ea)
\tkzClipCircle(O,xa)
\tkzDrawLines[add=3 and 3](A,B A,C B,C)
\tkzDrawPoints(O,A,B,C,S,Ea,Eb,Ec,N)
\tkzLabelPoints(O,N,A,B)
\tkzLabelPoints[right](S,C)

\end{tikzpicture}

6 Kissing circles
6.1 The problem
Given three circles tangent to each other and to a
straight line, the problem is to express the radius of
the middle circle in terms of the radii of the other
two. This problem was presented as a Japanese
temple problem on a tablet from 1824 in the Gunma
Prefecture (MathWorld). [5]

While not overly complicated, the construction
and justification with ruler and compass are interest-
ing. The desired output is shown in fig. 12.

The first step is to create a function to obtain
the centers of the three circles, and then to determine
the projections of these centers onto the common
tangent of the three circles.

We call the function responsible for doing this
kissing (fig. 13). In the following example, A, B
and C represent the centers of the circles, 4 and 3
the radii of the two given circles, and E, F and G
the projections of the centers.

Additionally, the function defines several useful
objects such as straight lines L.AB, L.EF, and circles
C.AE, C.BF and C.CH.

It’s worth noting that the function uses the
normal syntax L[c1..c2] instead of the “syntactic
sugar” L.name. While the function’s logic is not
overly complex, attention to syntax is essential for
proper execution.
\begin{tkzelements}

dofile ("kissing.lua")
\end{tkzelements}

Figure 12: Three tangent circles

function kissing(c1,r1,c2,r2,c3,h1,h3,h2)
local xk = math.sqrt (r1*r2)
local de = math.sqrt (r1) + math.sqrt (r2)
local cx = (2*r1*math.sqrt(r2))/de
local cy = (r1*r2)/(de^2)
z[c2] = point : new (2*xk,r2)
z[h2] = point : new (2*xk,0)
z[c1] = point : new (0,r1)
z[h1] = point : new (0,0)
L[c1..c2] = line : new (z[c1],z[c2])
L[h1..h2] = line : new (z[h1],z[h2])
z[c3] = point : new (cx,cy)
z[h3] = L[h1..h2] : projection (z[c3])
C[c1..h1] = circle : new (z[c1],z[h1])
C[c2..h2] = circle : new (z[c2],z[h2])
C[c3..h3] = circle : new (z[c3],z[h3])

end

Figure 13: The “kissing” function code

\begin{tkzelements}
scale = .5
kissing ("A",4,"B",3,"C","E","G","F")
L.AE = line : new (z.A,z.E)
z.H = L.AE : projection (z.B)

\end{tkzelements}

Now the code for the TikZ part:
\begin{tikzpicture}
\tkzGetNodes
\tkzDrawSegment(E,F)
\tkzDrawCircles(A,E B,F C,G)

\end{tikzpicture}

6.2 Construction with an inversion
The diagram for a construction with an inversion is
shown in fig. 14.
\begin{tkzelements}

scale = .92
dofile ("kissing.lua")
kissing ("A",4,"B",2,"C","E","G","F")
z.X = intersection (C.AE,C.CG)
z.Y = intersection (C.BF,C.CG)
z.T = intersection (L.AB,C.AE)
z.H = L.EF : projection (z.T)
z.O = midpoint (z.T,z.H)
C.TH = circle : new (z.T,z.H)
z.x,z.xp = intersection (C.AE,C.TH)
z.y,z.yp = intersection (C.BF,C.TH)
z.x,z.xp = intersection (C.AE,C.TH)
if z.x.re < z.xp.re then else

z.x,z.xp = swap (z.x,z.xp) end
z.y,z.yp = intersection (C.BF,C.TH)
if z.y.re < z.yp.re then else

z.y,z.yp = swap (z.y,z.yp) end
L.OS = L.AB : ortho_from (z.O)
C.O = circle : new (z.O,z.H)
_,z.S = intersection (L.OS,C.O)
z.W = z.S : symmetry (z.O)
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z.Np = z.W : symmetry (z.S)
z.Ep,z.Fp,
z.N = C.TH : inversion (z.E,z.F,z.Np)
z.Xp,z.Yp= C.TH : inversion (z.X,z.Y)
T.EFN = triangle : new (z.E,z.F,z.N)
T.EFNp = triangle : new (z.E,z.F,z.Np)
z.I = T.EFN .circumcenter
z.Ip = T.EFNp.circumcenter
z.Bn = C.BF.north
z.Fp = z.Bn : symmetry (z.F)

\end{tkzelements}

6.2.1 Lua code analysis
After calling kissing, several points are defined such
as A, B, . . . , G. Additionally, circles C.AE, C.BF,
C.CG and lines L.AB and L.EF are defined.

• We designate as X, Y and T the contact points
between the three circles. These points are ob-
tained through intersections, for example:
z.X = intersection (C.AE,C.CG).

• H is obtained by projecting T onto the line
(EF ): z.H = L.EF : projection (z.T).

• To maintain consistent notation, a test is con-
ducted to ensure that x and y are closest to the
line (EF ). Depending on the results, the points
x, x′ and y, y′ may be exchanged.

• L.OS = L.AB : ortho_from (z.O)
is defined as the orthogonal line to (AB) passing
through O.

• The method symmetry attached to points is uti-
lized to determine point W , which is the sym-
metric of O with respect to S. This is obtained
with: z.W = z.S : symmetry (z.O).

• Finally, points E′, F ′ and N are obtained by
inversion with respect to the circle with center T
passing through H. This circle is denoted C.TH
and the transformations of the points are ob-
tained with:
z.Ep,z.Fp,
z.N = C.TH : inversion (z.E,z.F,z.Np).

Note the use of the letter p in the point names,
which indicates the “prime” when converting
points to nodes.

• The remaining steps involve using attributes and
methods which we’ve already discussed.

\begin{tikzpicture}
\tkzGetNodes
\tkzDrawSegments(E,F A,B E,A F,B A,C Bn,E)
\tkzDrawSegments[lightgray](T,X' T,Y' T,N')
\tkzDrawCircles(B,F T,H)
\tkzDrawCircles[](C,G)
\tkzDrawCircle[](O,H)
\tkzDrawCircle[](W,S)
\tkzDrawArc[delta=10](A,E)(x')
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Figure 14: Method with inversion

\tkzDrawArc[delta=10](I,F)(E)
\tkzDrawArc[delta=10](Bn,F')(F)
\tkzDrawLines[add=.3 and 0.3](x,x' O,W)
\tkzDrawLines[add=.8 and 0.5](y,y')
\tkzDrawPoints(A,B,E,F,T,S,W,C,H,X,Y)
\tkzDrawPoints(X',Y',N',N,Bn,O)
\tkzLabelPoints(E,F,H,X,Y,N')
\tkzLabelPoints[right](X',Y',W)
\tkzLabelPoints[above](S,Bn,N,A,B,O,T,C)
\tkzLabelLine[pos = 1.15,right]%

(x,x'){$\mathcal{L}_A$}
\tkzLabelLine[pos = 1.3,right]%

(y,y'){$\mathcal{L}_B$}
\end{tikzpicture}

7 Drawing with tkz-euclide

If you’re utilizing tkz-elements and intend to use
TikZ, the macro \tkzGetNodes is essential. It gener-
ates nodes from points defined in the tkzelements
environment.

7.1 A few basics
1. Drawing: The role of tkz-euclide is minimized

in drawing simple Euclidean geometry objects.
• Points: \tkzDrawPoints(A,B,C)
• Segments: \tkzDrawSegements(A,B C,D)
• Lines: \tkzDrawLines(A,B C,D)
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• Circles: \tkzDrawCircles(A,B C,D)6

• Polygons: \tkzDrawPolygons(A,B,C D,E,F)7

• Ellipse: \tkzDrawLuaEllipse(C,A,B)8

You can define the styles of objects globally
or use a style locally. For example:
\tkzDrawPoints[style](A,B,C).

2. Marking: Additionally, you have the option to
mark segments or angles.

• \tkzMarkSegments[s|](A,B C,D)
• \tkzMarkArc(O,A)(B)
• \tkzMarkAngles(A,B,C)
• \tlkzMarkRightAngles(A,B,C)

3. Labeling:
• \tkzLabelPoints(A,B,C)
• \tkzLabelSegments(A,B C,D)
• \tkzLabelAngle(A,B,C){$\alpha$}
• \tkzLabelCircle(O,A)(60){$C(O,A)$}

7.2 Styling
The tkz-euclide package includes a configuration
file tkz-euclide.cfg containing all style definitions,
which can be duplicated and modified as needed.
Let’s explore the methods for changing point styles;
the principle will be identical for other objects.

7.2.1 Styling the points
Points: To draw points A, B and C, you can use
\tkzDrawPoints(A,B,C). This is the same as TikZ.
In tkz-euclide, points are represented as TikZ
coordinates.

Here are some additional details on styling points
in tkz-euclide:

• Setting global point size: You can set the global
point size for the entire figure or document.
\tkzSetUpPoint[size=.8pt]

You can also change this size locally when
needed. In some cases, you may need to use a
group or a scope for local modification.

• Creating local styles: You can create local styles
by customizing the style name. For example:
\tikzset{step 1/.style={cyan,thin}} and
\tikzset{step 2/.style={red,thick}}
which you can use in this way:
\tkzDrawPoints[step 1](A,B) and
\tkzDrawPoints[step 2](C)

• Combining general and specific styles: You can
define a general style and then create adapta-
tions from it. For example:
\tkzSetUpPoint[size=.8pt]

6 center A through B
7 triangle ABC
8 C = center, A = vertex, B = covertex

• Modifying predefined styles: It’s possible to
modify predefined styles directly:
\tikzset{point style/.style={...}}

• Retaining and modifying predefined styles: You
can retain part of a predefined style and add to
or modify it as needed.
\tikzset{point style/.append style={}}

• Finally, you can create your own local style from
a global style as follows:
\tikzset{new/.style={point style/
.append style={minimum size=8 pt,
fill=green}}}

This allows you to build upon a global style
and make specific modifications for local use.

7.2.2 Styling other objects
Besides point style, you can look at, modify, etc.,
these other styles:

• line style
• circle style
• compass style
• arc style
• vector style
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