
TUGboat, Volume 45 (2024), No. 1 97

Illustrating finite automata with Grail+

and TikZ

Alastair May, Taylor J. Smith

Abstract

In this article, we discuss a new software tool that in-
teracts with Grail+, a library of automata-theoretic
command-line utilities. Our software, the Grail+ Vi-
sualizer, takes the textual representation of a finite
automaton produced by Grail+ and generates TikZ
code to illustrate the finite automaton, with auto-
matic layout of states and transitions. In addition to
giving an overview of the basics of automata theory
and Grail+, we discuss how the Grail+ Visualizer
works in detail and suggest avenues for future work.

1 Introduction

Grail+ is a C++ library of command-line utilities
that performs symbolic manipulation of various mod-
els of finite automata, regular expressions, and finite
languages. Each utility, called a filter in Grail+

terminology, can either handle input directly or be
piped together to create a chain of filters. Grail+ con-
sists of nearly one hundred filters that can compute
common operations or procedures that a theoretical
computer scientist might want to perform; among
many other tasks, these filters can enumerate the
elements of a language (fmenum), convert a finite au-
tomaton to an equivalent regular expression (fmtore)
and vice versa (retofm), and minimize (fmmin) or
determinize (fmdeterm) a finite automaton. These
predefined filters, together with the ability to chain
filters together, allow users to perform thousands of
formal language and automata-theoretic tasks.

The original environment, Grail, was developed
by Darrell Raymond at the University of Water-
loo and Derick Wood at the University of Western
Ontario [6]. Following major changes instituted in
version 3.0, the name of the environment changed
to Grail+ and coordination of the development work
was taken over by Sheng Yu, again at the University
of Western Ontario. Presently, Grail+ is being de-
veloped and maintained by Cezar Câmpeanu at the
University of Prince Edward Island, and the current
stable version is 3.4.5 [2].

2 Finite automata in Grail+

Since Grail+ runs in a command-line interface, all
input and output is plain text. For models that
can be represented naturally in text, like regular
expressions, Grail+ follows the conventional notation
in theoretical computer science; for instance, the
union of regular expressions a and b is a + b, and
the concatenation of these regular expressions is ab.

q0start q1

a

b

b

a

Figure 1: An example of a finite automaton.

For non-textual models like finite automata, however,
Grail+ defines its own convention.

As an example, consider the finite automaton
depicted in Figure 1. This finite automaton takes
a word (or string) consisting of as and bs as its
input. It has two states, labelled q0 and q1, and
transitions on these states labelled by a and b. The
contents of the word determine which transition the
finite automaton follows at any given step of its
computation; for example, if the finite automaton
reads the symbol b in the word while it is in state q0,
then it will transition to state q1 before reading the
next symbol. The state q0 is the initial state, or the
state where the computation of the finite automaton
begins. The state q1 is a final or accepting state;
if, after reading all symbols in the word, the finite
automaton finds itself in state q1, then it accepts
that word. The set of all words accepted by a finite
automaton is the language of that finite automaton.

In Grail+, finite automata are represented as
lists of instructions. Each individual instruction
consists of three pieces of information: a source state,
a label, and a sink state. Additionally, there are two
special pseudo-instructions to indicate which states
are initial and which states are final. Returning to
Figure 1, this finite automaton would be represented
in Grail+ as the following list:

(START) |- 0

0 a 0

0 b 1

1 a 1

1 b 0

1 -| (FINAL)

There is no particular ordering to the instructions
in the lists produced by Grail+ as output, and no
ordering is enforced when giving a list to Grail+ as
input. Additionally, while the example given here
has one initial state and one final state, a finite
automaton may contain multiple initial and/or final
states.

3 Typesetting finite automata

For authors who wish to include illustrations of fi-
nite automata in their documents, the most straight-
forward way to do so—apart from importing an
external image file— is to use TikZ and the PGF

doi.org/10.47397/tb/45-1/tb139may-automata

Illustrating finite automata with Grail+ and TikZ

https://doi.org/10.47397/tb/45-1/tb139may-automata

98 TUGboat, Volume 45 (2024), No. 1

\begin{tikzpicture}[node distance=2cm]

\node[state, initial] (q0) {q_{0}};

\node[state, accepting, right of=q0] (q1) {q_{1}};

\path[->] (q0) edge[loop above] node[above] {\texttt{a}} (q0);

\path[->] (q0) edge[bend left] node[above] {\texttt{b}} (q1);

\path[->] (q1) edge[bend left] node[below] {\texttt{b}} (q0);

\path[->] (q1) edge[loop above] node[above] {\texttt{a}} (q1);

\end{tikzpicture}

Figure 2: The (human-written) TikZ code producing the finite automaton in Figure 1.

package [9] to create the illustration. TikZ includes
an automata drawing library with special shapes and
styles specific to finite automata (see Chapter 43
of the TikZ & PGF manual [8]; see also the article
in TUGboat 44:1 by Igor Borja [1]). An example
of TikZ code using the automata drawing library is
given in Figure 2.

Creating illustrations from scratch using TikZ
puts the decision-making entirely in the user’s hands,
allowing for ample customization in layout, style,
and other aspects. At the same time, creating illus-
trations from scratch using TikZ puts the decision-
making entirely in the user’s hands, leading to po-
tential pitfalls. For particularly large or complicated
finite automata, laying out states and transitions
in an aesthetically pleasing way can become very
difficult. Thus, using external software to assist in
constructing and laying out the finite automaton can
make the illustration process easier.

Andrew Mertz, William Slough, and Nancy Van
Cleave wrote in TUGboat 35:2 about methods of
illustrating computer science concepts using LATEX
packages [5]. In particular, in Section 7 of their
article, the authors discuss typesetting automata
using JFLAP [7], which is a Java software package for
manipulating finite automata and formal languages.
In contrast to Grail+, JFLAP uses a graphical user
interface, and it is capable of exporting illustrations
of finite automata to various image formats. The
jflap2tikz package [4] additionally allows users to
convert a finite automaton produced by JFLAP to
TikZ code that can be included in a LATEX document.

4 Motivation

While JFLAP is a popular software package, and
while it is capable of handling more theoretical mod-
els of computation than Grail+ currently handles—
namely grammars, pushdown automata, and Turing
machines— there are reasons why users may still pre-
fer to work with Grail+. For one, Grail+ can be run
on any computer that is capable of compiling C++

code, and the suite can be customized and extended
by anyone who is capable of writing C++ code. Sub-

jectively, users may find the text-based command-line
interface of Grail+ to be faster or easier to use than
a point-and-click graphical user interface. Lastly,
while software like JFLAP emphasizes pedagogy and
learning about formal languages and automata the-
ory, researchers and practitioners may value Grail+

for its efficient implementation and wider array of
features specific to finite automata. (Together with
these reasons, Canadians may uniquely value Grail+

for being made-in-Canada software.)
What Grail+ lacks, however, is a way to render

its textual output in a more human-friendly form.
It can be extremely difficult, especially with finite
automata having many states or many transitions,
for a user to parse the textual output and to gain
an understanding of the structure of the finite au-
tomaton without representing it visually. Given that
TikZ has a built-in automata drawing library, and
that both the output from Grail+ and the TikZ code
to produce an illustration of a finite automaton fol-
low a fixed, pre-specified format, TikZ is a natural
candidate for automatically laying out illustrations
of finite automata produced by Grail+.

5 The Grail+ Visualizer

Our software tool, the Grail+ Visualizer [3], offers a
more human-friendly—and beginner-friendly—way
to construct, manipulate, and display automata.
Working alongside Grail+, our visualizer transforms
the textual output of Grail+ into TikZ code that
can be either typeset and displayed on its own or
inserted into an existing LATEX document.

The visualizer software is written in Bash and
can be run directly from a command-line interface,
just like Grail+ itself. The software can therefore act
as the final link in a chain of Grail+ filters, providing
an immediate visual indication of the result.

5.1 How the visualizer works

The Grail+ Visualizer takes as input the textual
representation of a finite automaton produced by
Grail+ (i.e., the list of instructions) and parses the
text to extract state labels, which are stored in a

Alastair May, Taylor J. Smith

TUGboat, Volume 45 (2024), No. 1 99

list. At the same time, state type labels are stored in
an auxiliary list to distinguish whether a particular
state is initial, final, or both. Transitions are also
parsed and stored in three lists: one containing source
state labels, one containing transition labels, and one
containing sink state labels.

The visualizer then begins to lay out states and
transitions. Each state is placed at coordinate (x, y)
on a square grid according to the following procedure:

1. Assign x-coordinates to states in the order they
are read from the input; that is, the first state
read from input is assigned x = 0, the second
state is assigned x = 1, and so on.

2. Initialize an all-zero array A of size |Q|, where
|Q| is the number of unique states identified
in the input processing step. Indices of A cor-
respond to x-coordinates of states; for exam-
ple, A[0] corresponds to the state having x-
coordinate 0. Entries in A correspond to y-
coordinates of states. At this point, each state
has an initial y-coordinate of 0.

3. For each pair of states p and q connected by
a transition in the finite automaton, where p
has x-coordinate i, q has x-coordinate j, and
assuming i < j without loss of generality:

(a) Denote by m the maximum entry in the
subarray A[i..j].

(b) Increment m by 1.

(c) Compare the value m to the entries A[i]
(i.e., the y-coordinate of state p) and A[j]
(i.e., the y-coordinate of state q). The
largest of these three values will be the
new y-coordinate of both states p and q.

These coordinates are used to generate a list of TikZ
\nodes, which is written to the output file. The label
of each node corresponds to the state label stored
during the input processing step. If a state is distin-
guished as initial or final, then the appropriate option
(initial or accepting, respectively) is added to the
corresponding node.

Next, where a transition exists from a source
state p to a sink state q, the visualizer writes a TikZ
\path to the output file producing a directed edge
from p to q. This path is labelled by the transition
label stored during the earlier input processing step.
Some special cases are also handled during this step:

• Where there exists a transition from a state p
to itself, the visualizer adds the option loop

above to the corresponding path.

• Where there exist multiple transitions between
a source state p and a sink state q, those mul-
tiple transitions are consolidated into a single

path. The labels of the multiple transitions are
obtained via pattern-matching existing lines of
the output file and stored in a temporary vari-
able. The existing paths are deleted, and a new
path labelled by the stored transition labels is
written to the output file.

At this stage, the TikZ code is complete, and
the output file is ready for compilation. The file is
typeset by PDFLATEX and can be opened by a PDF

viewer immediately, or the TikZ code may be copied
into another LATEX document.

5.2 An example

To demonstrate some of the capabilities of the Grail+

Visualizer, consider the following list of instructions
produced by Grail+:

(START) |- 0

(START) |- 6

(START) |- 3

0 a 1

1 c 3

1 d 5

6 b 7

7 c 9

7 d 11

3 -| (FINAL)

5 -| (FINAL)

9 -| (FINAL)

11 -| (FINAL)

In this list of instructions, we have eight states un-
ordered and numbered non-consecutively (e.g., there
is a state 1 and a state 3, but no state 2). Of these
states, three are initial states and four are final states,
and state 3 is both initial and final. There is also a
total of six transitions.

The Grail+ Visualizer begins by parsing the list
of instructions and extracting the state labels from
these instructions. From this input, the visualizer
produces two preliminary lists: one of state labels
and one of state types. At this stage, the state labels
list may contain duplicates. For instance, state 3

appears three times in the preliminary state label
list, corresponding to its appearances in lines 3, 5,
and 10 of the input list of instructions.

The visualizer also extracts transition data and
produces an additional three lists:
0 1 1 6 7 7

a c d b c d

1 3 5 7 9 11
From top to bottom, these three lists indicate the
transition source states, the transition labels, and
the transition sink states.

Illustrating finite automata with Grail+ and TikZ

100 TUGboat, Volume 45 (2024), No. 1

Duplicate state labels are then removed from
the preliminary lists created earlier. In this example,
the unique state labels are identified in the order 0,
6, 3, 1, 5, 7, 9, and 11, and the lists produced by
the Grail+ Visualizer are as follows:
0 6 3 1 5 7 9 11

S S B – F – F –
The top list contains state labels, while the bottom
list contains state types. States may have one of four
types: “S” denotes an initial state, “F” denotes a
final state, “B” denotes a state that is both initial
and final, and “–” denotes an undistinguished state.

Next, state positions are calculated according to
the procedure outlined in Section 5.1. This procedure
assigns the following y-coordinates to states:
0 6 3 1 5 7 9 11

1 4 0 3 0 6 0 6
From top to bottom, these lists indicate the state
label and that state’s y-coordinate. Recall that the
state’s x-coordinate is its index in the list, so state 0
is at position (0, 1), state 6 is at position (1, 4), and
so on.

At this point, the various lists created by the
visualizer are then used to produce the TikZ code
corresponding to the automaton. The final TikZ
code produced by the visualizer is shown in Figure 3,
and typesetting the code produces the automaton
shown in Figure 4.

6 Conclusions and future work

In this article, we introduced the Grail+ Visualizer,
explained how the visualizer interacts with Grail+ to
produce a typeset illustration of a finite automaton,
and worked through an example demonstrating how
the visualizer works. We hope that this software
tool stimulates a greater interest in both automata
theory and the Grail+ library.

There remain some areas for improvement in
the visualizer software. For instance, the layout
procedure could be optimized to place states shar-
ing many transitions closer to one another or to
avoid large numbers of crossing transitions. For
certain finite automata, a more optimized layout pro-
cedure might use a “system of springs” technique
inspired by that of Tutte [10]. Another desirable
feature might allow the user to specify some de-
gree of customization for the output; say, in set-
ting the colours of states, the minimum distance
between states, or the exact positions of certain
states. Lastly, implementing the Grail+ Visualizer
as a LATEX package rather than as a separate piece of
software would greatly simplify the workflow for users.
This could allow a user to write a command like
\grailautomaton{instruction_list} that would

generate and include TikZ code within any LATEX
document at typesetting time.

Acknowledgements

The work done by the first author of this article was
supported by an Alley Heaps undergraduate research
internship provided by St. Francis Xavier University.

References

[1] I. Borja. An introduction to automata design
with TikZ’s automata library. TUGboat
44(1):102–107, 2023. tug.org/TUGboat/

tb44-1/tb136prado-automata.pdf

[2] Department of Computer Science, University
of Prince Edward Island. Theory of Computing
Software Server. grail.smcs.upei.ca.

[3] A. May, T.J. Smith. Grail+ Visualizer. github.
com/flarelabstfx/Grail-Visualisation.

[4] A. Mertz, W. Slough. The jflap2tikz

package. ctan.org/pkg/jflap2tikz.

[5] A. Mertz, W. Slough, N. Van Cleave.
Typesetting figures for computer science.
TUGboat 35(2):179–191, 2014.
tug.org/TUGboat/tb35-2/tb110mertz.pdf

[6] D. Raymond, D. Wood. Grail: A C++ library
for automata and expressions. Journal of
Symbolic Computation, 17(4):341–350, 1994.

[7] S.H. Rodger, T.W. Finley. JFLAP: An
Interactive Formal Languages and Automata
Package. Jones & Bartlett Publishers, Sudbury,
MA, 2006.

[8] T. Tantau, et al. The TikZ and PGF Packages:
Manual for Version 3.1.10, January 2023.
mirrors.ctan.org/graphics/pgf/base/doc/

pgfmanual.pdf

[9] The PGF/TikZ Team. The pgf package.
ctan.org/pkg/pgf.

[10] W.T. Tutte. How to draw a graph. Proceedings
of the London Mathematical Society,
s3-13:743–767, 1963.

⋄ Alastair May
Department of Computer Science
St. Francis Xavier University
Antigonish, NS, B2G 2W5 Canada
x2016owd (at) stfx dot ca

⋄ Taylor J. Smith
Department of Computer Science
St. Francis Xavier University
Antigonish, NS, B2G 2W5 Canada
tjsmith (at) stfx dot ca

https://people.stfx.ca/tjsmith/

ORCID 0000-0001-7838-3409

Alastair May, Taylor J. Smith

https://tug.org/TUGboat/tb44-1/tb136prado-automata.pdf
https://tug.org/TUGboat/tb44-1/tb136prado-automata.pdf
http://grail.smcs.upei.ca
https://github.com/flarelabstfx/Grail-Visualisation
https://github.com/flarelabstfx/Grail-Visualisation
https://ctan.org/pkg/jflap2tikz
https://tug.org/TUGboat/tb35-2/tb110mertz.pdf
https://mirrors.ctan.org/graphics/pgf/base/doc/pgfmanual.pdf
https://mirrors.ctan.org/graphics/pgf/base/doc/pgfmanual.pdf
https://ctan.org/pkg/pgf

TUGboat, Volume 45 (2024), No. 1 101

\begin{tikzpicture}[node distance=2cm]

\node[state,initial] (0) at (0,1) {0};

\node[state,initial] (6) at (1,4) {6};

\node[state,initial,accepting] (3) at (2,0) {3};

\node[state] (1) at (3,3) {1};

\node[state,accepting] (5) at (4,0) {5};

\node[state] (7) at (5,6) {7};

\node[state,accepting] (9) at (6,0) {9};

\node[state] (11) at (7,6) {11};

\path[->] (0) edge[] node[align=center, anchor=center, above, sloped] {a} (1);

\path[->] (1) edge[] node[align=center, anchor=center, above, sloped] {c} (3);

\path[->] (1) edge[] node[align=center, anchor=center, above, sloped] {d} (5);

\path[->] (6) edge[] node[align=center, anchor=center, above, sloped] {b} (7);

\path[->] (7) edge[] node[align=center, anchor=center, above, sloped] {c} (9);

\path[->] (7) edge[] node[align=center, anchor=center, above, sloped] {d} (11);

\end{tikzpicture}

Figure 3: TikZ code produced by the Grail+ Visualizer from the example input of Section 5.2.

0start

6start

3start

1

5

7

9

11

a

c d

b

c

d

Figure 4: The illustration produced by compiling the TikZ code in Figure 3.

Illustrating finite automata with Grail+ and TikZ

	Introduction
	Finite automata in Grail+
	Typesetting finite automata
	Motivation
	The Grail+ Visualizer
	How the visualizer works
	An example

	Conclusions and future work

