
TUGboat, Volume 45 (2024), No. 1 59

Preparing Horizon Europe proposals in
LATEX with heria

Tristan Miller

Abstract

This article introduces heria, a LATEX class to format
funding proposals for the European Commission’s
Horizon Europe program. It provides a basic sum-
mary of the class’s use; compares it to existing pack-
ages for funding proposals; discusses its motivations,
design decisions, and limitations; and reports on
its real-world use and plans for future development.
Besides providing prospective Horizon Europe appli-
cants with an overview of the class, this article may
give prospective developers and users of classes for
other proposal types some idea of the work involved
and the potential pitfalls.

1 Introduction

Horizon Europe is a seven-year, €95.5 billion ini-
tiative of the European Commission (EC) that is
intended to fund research and innovation projects
in the European Union and its wider network of
global partners. The EC earmarks portions of the
total budget according to various topics and action
types, issues calls for proposals of projects support-
ing those topics and action types, and then disburses
the funds to applicants according to a competitive
evaluation process. The types of projects solicited
often require a large consortium of partners—po-
tentially dozens—and the calls prescribe a specific,
intricate structure for the proposals, which can run
to hundreds of pages. While the EC does not require
applicants to use any particular content authoring
tool, the only templates it distributes are in Rich
Text Format (RTF)—hardly the most convenient for-
mat for multiple authors to collaborate on producing
a lengthy, heavily (cross-)referenced technical text.

This article introduces heria, a LATEX class to
format proposals for the Research and Innovation
Actions (RIA) and Innovation Actions (IA) of Hori-
zon Europe. Using heria and a networked source
control system or collaborative online LATEX editor, it
becomes easier for a dozen or more authors to jointly
produce an elegant, internally consistent proposal
conforming to the EC’s requirements. Unlike the
default RTF template, the heria class manages the
numbering of and references to project elements (par-
ticipants, work packages, etc.) as they are added and
removed, and programmatically regenerates and re-
sums the requisite data tables (for staff effort, project
costs, etc.). This helps ensure that data changed in

doi.org/10.47397/tb/45-1/tb139miller-horizon

https://doi.org/10.47397/tb/45-1/tb139miller-horizon


60 TUGboat, Volume 45 (2024), No. 1

one part of the proposal remains consistent with ex-
plicit and implicit references to it elsewhere in the
proposal. The class also preserves the instructions
from the original template, but allows users to tog-
gle their visibility, either individually or en masse,
so that instructions can be hidden once they are
fulfilled, or once the proposal is ready to submit.

Besides providing a very basic summary of how
heria is meant to be used, this article compares it
to existing packages for funding proposals; discusses
its motivation, design decisions, and limitations; and
reports on its real-world use and plans for future
development. This material should help prospective
Horizon Europe applicants decide whether it makes
sense to use heria for their proposal; perhaps equally
importantly, it may inspire others to develop and
publish their own packages for other types of funding
proposals (whether for Horizon Europe or some other
funding scheme) and it may give them some idea of
the work involved and the potential pitfalls.

2 Previous proposal packages

Perhaps surprisingly, given the TEX ecosystem’s pop-
ularity among academics and technologists, CTAN

boasts only a handful of packages for typesetting re-
search funding proposals. The nih package [2], last
updated in 2005, provides a LATEX class to format
grant applications to the US National Institutes of
Health (NIH). The more recent grant package [7],
last modified in 2019, also handles LATEX proposals
for NIH, as well as five further American agencies, in-
cluding the National Science Foundation and the De-
fense Advanced Research Projects Agency. Neither
package provides much in the way of formal documen-
tation, though nih at least comes with substantial
example documents. The mynsfc package [10], last
changed in 2020, provides a X ELATEX class for pro-
posals to the National Natural Science Foundation
of China (NSFC). As with the previous two packages,
there is little or no technical documentation concern-
ing how to use the class; however, the package does
reproduce the NSFC’s instructions concerning the
content and formatting of the proposal.

The proposal [8] and h2020proposal [6] pack-
ages are seemingly the only ones until now that
specifically target the preparation of European
grant proposals. The most recent CTAN release
of proposal dates to 2016, but development has
continued on the project’s GitHub repository at
github.com/KWARC/LaTeX-proposal. The package
includes LATEX classes for proposals to the Ger-
man Research Foundation and the EC’s Frame-
work Programme 7 (FP7), along with documenta-
tion and examples. The h2020proposal package,

dating to 2015, contains classes for RIA proposals
in the EC’s Horizon 2020 program, the predeces-
sor of Horizon Europe. The templates are set up
for use with LATEX but contain guidance on adapt-
ing them for use with X ELATEX. As with proposal,
h2020proposal includes documentation and exam-
ples, and like mynsfc, the templates helpfully repro-
duce the funding agency’s content- and formatting-
related guidelines.

Although these last two packages are fairly elab-
orate, and (according to their authors) have even
been used to prepare real proposals for submission
to the EC, they share two significant shortcomings.
First, neither package supports the proposal format
used by Horizon Europe, the current EC framework
program that runs from 2021 until 2027. (FP7 ran
from 2007 to 2013, and Horizon 2020 from 2014 to
2020.) Second, both packages are admittedly in-
complete: the documentation for proposal indicates
that the package is “relatively early in its develop-
ment”, and the documentation for h2020proposal
warns would-be users that it is “still in a beta-testing
stage” and should not be distributed.

3 Motivation and design decisions

The principal motivation for producing a new pro-
posal class, rather than extending an existing one,
was to support applications to the current Horizon
Europe RIA and IA actions. Although proposal

and h2020proposal have many good ideas in terms
of their implementation, the historic proposal types
they support differ so much in terms of form and
content from current ones that it would be very
challenging to extend or even adapt these packages.
The heria class was therefore written entirely from
scratch, though it does draw some inspiration from
the interface of h2020proposal.

The Unix philosophy was another influence on
heria, or more specifically its maxim, “Make each
program do one thing well. To do a new job, build
afresh rather than complicate old programs by adding
new ‘features’.” [9] The two aforementioned packages
include some extra bells and whistles that are not
strictly necessary for preparing a proposal. Besides
supporting both European and German proposals,
proposal includes functionality for preparing grant
agreements and final project reports, which are sig-
nificantly different in structure and formatting. And
both packages provide a mechanism for generating
Gantt charts for use in the proposal; while the offi-
cial Horizon Europe application instructions require
applicants to indicate the “timing of the different
work packages and their components”, it does not
require this to be in the form of a Gantt chart. In any

Tristan Miller

https://github.com/KWARC/LaTeX-proposal


TUGboat, Volume 45 (2024), No. 1 61

case, in the present author’s experience, how best
to style and structure a Gantt chart varies greatly
from project to project, and so having heria pro-
vide its own implementation would pose a number
of challenges. Either the implementation could be
a simple one targeting the lowest common denomi-
nator, which many users would find limiting, or it
could allow for great versatility in the design of the
chart, in which case it could end up as little more
than a wrapper for the pgfgantt package [12]. Since
pgfgantt already exists and is fairly simple to use,
heria assumes that proposal authors will simply use
that if they want a Gantt chart.

It was also important that heria be easy to use.
Like proposal and h2020proposal, the macros it
provides are fairly simple and often store information
for use later in the proposal, and like h2020proposal,
it helpfully exposes the official application instruc-
tions to the user. With seven pages of prose, the
documentation for heria is comparable in breadth
and depth to that of h2020proposal; direct com-
parison with proposal is not practical owing to the
latter’s goal of supporting more funding schemes and
non-proposal document types.

A final design decision that was of great impor-
tance to the developer was that the package should
allow users to produce a proposal using only free
software [4]. The heria package is therefore re-
leased under the terms of the LATEX Project Public
License. The packages it depends on, as well as
LATEX and TEX themselves, are also available under
various licenses permitting free use, modification,
and (re)distribution. While proposal co-authors may
choose to collaboratively edit their heria-based pro-
posal using a proprietary online service such as Over-
leaf, they could alternatively use an entirely free
authoring pipeline with a source control system such
as Git.

4 User interface

The intention of this section is not to recapitulate
the complete package documentation, but rather to
give a very general overview of heria’s interface and
features. This serves as an introduction to prospec-
tive users and as context for some of the observations
and discussions found later in this article.

The heria package consists of a class file
(heria.cls), a set of LATEX files containing the ap-
plication instructions, a skeleton proposal (heria-
example.tex), and the package documentation
(heria.pdf). Since the official Horizon Europe pro-
posal template requires proposals to follow a fairly
strict and detailed structure, the best way of starting
a new proposal is to make a copy of the skeleton

proposal and then adapt it by replacing its dummy
data and supplying any missing information.

As in the official template, lengthy application
instructions are interspersed throughout the skele-
ton proposal. Most of these instructions are emitted
via an \heinstructions macro at the appropriate
place in the proposal document; the argument to this
macro specifies one of the aforementioned files con-
taining the instruction text. Other instructions take
the form of recommended page limits printed next to
section headings; these limits are specified via an op-
tional argument to the \section, \subsection, and
\subsubsection macros. Instructions are printed
only when the showinstructions option is passed to
\documentclass; instructions can alternatively be
omitted on a case-by-case basis by removing or com-
menting out the corresponding \heinstructions

macro (or option to the section heading macro, as
the case may be).

The class, which is derived from the standard
LATEX article class, takes care of setting the fonts,
margins, etc. as mandated by the official template,
and redefines some common commands (\maketitle,
\section, etc.) to produce titles and headings in
the prescribed format. This includes the so-called
“tags” (cryptic identifiers such as “#§CON-MET-
CM§#”) that the official template places around
certain section headings and warns applicants not to
move, remove, or change in any way.

For many parts of the proposal, applicants can
simply provide free-form text, along with whatever
lists, tables, figures, etc. they think necessary. For
other parts, the official template requires applicants
to provide information in a fixed format, usually cor-
responding to one or more tables. Often these tables,
and/or the rows or columns within them, must be
printed in a particular order that is determined by
information entered elsewhere in the proposal. For
example, the table summarizing the staff effort has
one row for each participant in the project, and these
rows must be arranged in the same order as in the ear-
lier table listing the participants; it also has one col-
umn for each work package in the project, and these
columns must be arranged in the same order as the
earlier table listing the work packages. Besides this,
the staff effort table needs to include a final row that
sums the numbers in each column, and a final col-
umn that sums the numbers in each row. To obviate
the need for users to tediously re-arrange and re-sum
such tables every time a participant or work pack-
age is added, removed, or re-ordered, heria provides
(a) macros such as \participant and \workpackage

for defining participants, work packages, and other
project data in such a way that heria remembers

Preparing Horizon Europe proposals in LATEX with heria



62 TUGboat, Volume 45 (2024), No. 1

their original order and that users can explicitly ref-
erence them in subsequent macros and environments,
and (b) macros such as \makeparticipantstable

and \makeworkpackagestable that automatically
generate the data tables in the correct order, and
with automatically computed sums, on the basis of
the order and content of the previous definitions.

Perhaps the most typographically complex part
of the official template is the “summary canvas”, a
tableau of framed text boxes that is spread across
the whole of one or two pages with landscape ori-
entation. The heria class provides summarycanvas
and summarybox environments for typesetting these
boxes, as well as a SidewaysFigure environment
that takes care of rotating the page in a way that
preserves readability in PDF viewers.

5 Limitations and workarounds

The official RTF template has a number of oddities
and limitations, and in adapting it to LATEX it was
necessary to decide, on a case-by-case basis, whether
to preserve or work around them. The following
points discuss some of these decisions:

Vague instructions. Some of the official instruc-
tions for filling in the tables admit of more than one
possible interpretation. Perhaps the only such am-
biguity with bearing on heria’s behaviour concerns
how purchase costs in a given category are to be
listed in the associated table; it is not clear whether
applicants should itemize these costs across separate
rows or combine them into a single row. The heria
class takes the latter interpretation, though future
releases might include support for itemized costs.

Tables that aren’t tables. Many of the proposal
elements that the official template refers to as “tables”
are not, typographically speaking, tables, nor even
what some dismissively refer to as “tableaux” [3]. For
example, the template’s Table 3.1b, headed “Work
package description”, is actually a 2× 2 tableau for
entering the work package number and title, followed
by two separate, framed, full-width paragraph boxes
for entering the work package’s objectives and de-
scription of work. These three elements are to be
repeated, all under the same “Table 3.1b” caption,
for every work package. In a typical proposal, Ta-
ble 3.1b will have content running across several
pages, and almost none of it will be tabular. All
such “tables” in the official template are therefore
adapted into heria as LATEX subsections, with cus-
tom macros for the user to provide the “table” data
and another custom macro to finally output it in the
prescribed format, using an appropriate combination
of tabular-style environments and framed boxes.

No provision for floats. The RTF format has
little or no support for floating objects; the official
template is therefore written with the expectation
that all the required information will be presented
in a linear fashion and in the prescribed order. This
can pose problems when there is not enough room
remaining on a page to typeset a table; the table
would normally have to start at the top of the next
page, leaving wasted space on the previous page.
The heria class solves most such problems with
measures that allow tables to gracefully break across
pages. The one exception is the template’s landscape-
oriented “summary canvas” that forms the sole con-
tent of Section 2.3. The page rotation precludes any
possibility of beginning or ending the tableau on the
same page as the preceding or following material,
respectively. Here the skeleton proposal distributed
with heria makes an arguably justifiable departure
from the official template by putting the summary
canvas in a floating figure, and then adding a one-
line reference to it under the Section 2.3 heading.
While this may not be strictly in line with the official
template, it at least averts the danger of having the
canvas introduced by a page that, except for the
section heading, is nearly or entirely blank.

Other wasted space. Besides the lack of floats,
there are other cases in which the official template
doesn’t make or even allow for efficient use of space.
For example, the 2× 2 work package tableau men-
tioned above seems altogether gratuitous, since the
information it contains could easily have been com-
bined into a single line. In other cases, bona-fide
tables are given needlessly verbose column headings
that introduce extra line breaks or steal horizontal
space from the other columns. The heria version
of the template preserves the original’s gratuitous
structural elements (since the presence of these may
be subject to formal checks by the funding agency)
but takes some liberty in slightly abbreviating, or at
least hyphenating, some words in table headings.

Besides these imposed limitations, the package has a
few shortcomings that are down mostly to the rushed
initial development. For one, the class does very lit-
tle specialized error checking on its input. Usually
passing an invalid argument to one of its macros,
or neglecting to provide data necessary to generate
a table, will result in some sort of compilation er-
ror, though the diagnostic message emitted may be
somewhat obscure. Another issue is that the class
generally expects users to supply numeric data (for
person-months, costs, etc.) as integers. Though deci-
mal arguments to certain macros may be correctly
interpreted, and some provision has been made for

Tristan Miller



TUGboat, Volume 45 (2024), No. 1 63

the class to use floating-point arithmetic when calcu-
lating sums, the code that emits numbers in gener-
ated tables cannot be relied upon to produce elegant
output. Solving both these issues is on the agenda
for future development.

6 Reflections and case study

The process of developing heria proved to be re-
warding and frustrating in equal measures. On the
one hand, it presented the developer with the motive
and opportunity to apply and extend his LATEX pro-
gramming skills, and bestowed upon him an intimate
familiarity with the application requirements for an
active proposal submission (described below). On
the other hand, having to reproduce and stay within
the aesthetic and structural limitations of the official
RTF template felt unduly constraining, particularly
when those limitations seemed to be the product
of questionable or even deleterious design decisions.
This agony would perhaps have been felt less acutely
had the proposal co-authors decided to forgo the use
of LATEX in favour of a less capable tool.

Even still, LATEX itself was also at times a source
of consternation when developing heria. The sort of
high-level programming required to easily automate
the management of proposal data and the genera-
tion of data tables is not well supported by LATEX:
many of the basic data structures necessary for these
tasks, and the basic algorithms for accessing, sort-
ing, and iterating over them, are either not present
in the language, or require obscurely named and
relatively under-documented LATEX3 macros, or are
implemented only in third-party packages that must
first be discovered and then learned. Of course, these
criticisms of LATEX are hardly new (see, for example,
[1, 5, 11]). In hindsight, it may have been a better
idea to write the class in LuaTEX, even at the cost
of having to learn it (and Lua itself) from scratch.

On the whole, the initial development of heria
probably took about as much time as it would have
taken the coordinator of a large word-processed pro-
posal to manually resolve all the edit conflicts, for-
matting problems, bibliographical inconsistencies,
and outdated cross-references introduced over the
entire writing process. Anyone considering develop-
ing a LATEX class for proposals for another funding
program should therefore consider whether it makes
sense to invest the effort; if the template is unlikely
to be used more than once, then it may be better to
hold one’s nose and use the official version.

heria saw its first real-world use case in 2023,
for a highly interdisciplinary Horizon Europe RIA

proposal co-authored by 19 people across 14 organi-
zations in ten countries. The organizations included

universities, an independent research institute, sev-
eral small businesses, and branches of a multinational
company. Many of the co-authors held degrees in
computer science, but others came from the social
sciences or humanities. Accordingly, they varied
greatly in their prior knowledge of LATEX, from none
at all up to several decades’ experience.

The proposal document was hosted on Overleaf,
which allowed co-authors to edit it online or to check
it out via Git for offline editing. According to the
document’s edit history, there were 21 403 distinct
edits made, of which 20 631 (96%) were carried out
online in Overleaf and 4% were committed through
Git. It should be noted, however, that Overleaf’s
tracking of changes is considerably more fine-grained
than Git’s. Someone writing offline might produce
several pages’ worth of material and then submit it
in a single commit to the Git repository, but had the
same material been entered directly into Overleaf,
the service may have recorded this as hundreds of
distinct changes. It should also be borne in mind
that the package developer was among the co-authors,
and about 10% of the Git commits included updates
to the heria class itself.

At the time, there was no formal documenta-
tion for heria; the other co-authors were provided
only with a lightly commented skeleton proposal and
a 300-word README explaining how to compile it,
add citations and to-do notes, and toggle the visi-
bility of the instructions. Nonetheless, the writing
process proceeded smoothly, with the package devel-
oper receiving virtually no questions of a TEXnical
nature, even from the LATEX neophytes. The writ-
ing process exposed a few bugs in the package code,
which were duly fixed, and also provided the impetus
for a few optimizations and aesthetic improvements.
The present author was among those who helped per-
form an internal consistency check of the final draft
of the proposal, and found considerably fewer issues
than in a past experience with a Horizon proposal
written in Microsoft Word. In the end, the heria-
formatted proposal was submitted on time; it passed
all formal checks by the funding agency and so was
duly forwarded to the reviewers. It is either great
modesty or great shame that prevents the author
from revealing the final accept/reject decision here,
though for our purposes it suffices to say that the
use of heria played no direct part in it.

After the proposal was submitted, the devel-
oper informally surveyed its other 18 co-authors for
their feedback on the writing process insofar as it
related to using LATEX and Overleaf in general and
heria in particular, and asked them to compare the
experience with those for any past proposals collabo-

Preparing Horizon Europe proposals in LATEX with heria



64 TUGboat, Volume 45 (2024), No. 1

ratively written with different tools. Eight responses
were received and all indicated a positive experience
with the heria-based workflow. Four respondents
specifically highlighted heria’s capacity to enforce
consistency in the proposal’s structure, formatting,
and/or references; three respondents expressed ap-
preciation or enjoyment at being able to leverage
their existing LATEX knowledge; and two thought
that the package enhanced the group’s ability to edit
collaboratively.

Several responses described past experiences
with Microsoft Word, Microsoft 365, and Google
Docs as being inefficient or even “painful”, indicating
that “formatting will be a mess with many people col-
laborating”. Nonetheless, they recognized that these
tools are more familiar to those outside computer
science, and so may have a lower barrier to entry.
They also praised Google Docs’s commenting facility,
which allows co-authors to annotate documents with
tasks, to assign them to individual collaborators,
and to receive email notifications whenever tasks are
created, replied to, or resolved. The heria-based
workflow had no comparable commenting facility;
co-authors used a mixture of comments in the LATEX
source code, in-document comments typeset with
the todonotes package, and Overleaf’s own com-
menting feature. This proved to be problematic,
since the source code comments were not always
visible to co-authors using Overleaf’s visual editor
and the Overleaf comments were not visible to co-
authors who checked out the project with Git to edit
it offline. Since providing a general-purpose issue
tracking system is well beyond the scope of heria,
anyone considering heria (or any other LATEX-based
workflow) for a large collaborative project should
therefore consider how best to coordinate tasks and
discussions during the writing process.

7 Availability and future development

The heria package has an official website at
logological.org/heria that includes links to its
documentation, source code repository, and bug
tracker. The package saw its initial release to CTAN

on December 4, 2023, and it was added to TEX Live
the following day. By the time this article is pub-
lished, heria may also be available in other TEX
distributions and online editors.

From time to time, the EC revises the official
template for Horizon Europe RIA and IA proposals,
and it is intended that heria, over the course of its
development, will track these revisions. Whether this
intention is realized depends on the availability and
motivation of its maintainers, a group that for the
moment consists solely of the present author. Any-

one interested in directly contributing to the further
development of heria is welcome to get in touch.
Failing that, the best possible impetus for continued
improvement of the package is the opportunity for
the author to participate in further Horizon Europe
proposals. (Readers are welcome to take this as a coy
solicitation to collaborate on high-quality research
projects.)

References

[1] N.H.F. Beebe. 25 Years of TEX and
METAFONT: Looking back and looking
forward—TUG 2003 keynote address. TUGboat
25(1):7–30, 2004. tug.org/TUGboat/tb25-

1/beebe-2003keynote.pdf

[2] B. Donald. The nih package, 2005-06-01.
ctan.org/pkg/nih

[3] D. Els, S. Fear. The booktabs package, version
1.61803398, 2020. ctan.org/pkg/booktabs

[4] Free Software Foundation. What is free
software?, Feb. 2021. www.gnu.org/

philosophy/free-sw.en.html

[5] H. Hagen. LuaTEX: Howling to the
moon. TUGboat 26(2):152–157, 2005.
tug.org/TUGboat/tb26-2/hagen.pdf

[6] G. Indiveri. The h2020proposal package,
version 1.0, 2015-09-20. ctan.org/pkg/

h2020proposal

[7] J. Karr. The grant package, version 0.0.5,
2019-02-26. ctan.org/pkg/grant

[8] M. Kohlhase. The proposal package, version
1.5, 2016-04-15. ctan.org/pkg/proposal

[9] D. McIlroy, E.N. Pinson, B.A. Tague. Unix
time-sharing system: Foreword. The Bell
System Technical Journal, 57(6):1899–1904,
July–Aug. 1978. archive.org/details/

bstj57-6-1899

[10] F. Qi. The mynsfc package, version 1.30,
2020-08-18. ctan.org/pkg/mynsfc

[11] R. Reich. Does TEX/LATEX give a headstart
with other programming languages? [answer],
Jan. 2012. tex.stackexchange.com/a/42749/
22603

[12] W. Skala. The pgfgantt package, version 5.0,
2018. ctan.org/pkg/pgfgantt

⋄ Tristan Miller
Department of Computer Science
University of Manitoba
Tristan.Miller (at) umanitoba

dot ca

https://logological.org

ORCID 0000-0002-0749-1100

Tristan Miller

https://logological.org/heria
https://tug.org/TUGboat/tb25-1/beebe-2003keynote.pdf
https://tug.org/TUGboat/tb25-1/beebe-2003keynote.pdf
https://ctan.org/pkg/nih
https://ctan.org/pkg/booktabs
https://www.gnu.org/philosophy/free-sw.en.html
https://www.gnu.org/philosophy/free-sw.en.html
https://tug.org/TUGboat/tb26-2/hagen.pdf
https://ctan.org/pkg/h2020proposal
https://ctan.org/pkg/h2020proposal
https://ctan.org/pkg/grant
https://ctan.org/pkg/proposal
https://archive.org/details/bstj57-6-1899
https://archive.org/details/bstj57-6-1899
https://ctan.org/pkg/mynsfc
https://tex.stackexchange.com/a/42749/22603
https://tex.stackexchange.com/a/42749/22603
https://ctan.org/pkg/pgfgantt

	Introduction
	Previous proposal packages
	Motivation and design decisions
	User interface
	Limitations and workarounds
	Reflections and case study
	Availability and future development

