
TUGboat, Volume 45 (2024), No. 1 65

Specifying and populating documents in
YAML with lua-placeholders in LATEX

Erik Nijenhuis

Abstract

This article examines the implementation of the in-
voice template in GinVoice [3] and explores how the
invoice template can better align with the LATEX
ecosystem by introducing an additional data layer
in YAML using lua-placeholders. With the in-
troduction of lua-placeholders, LATEX users have
complete freedom in formatting invoice templates,
and the invoice templates are directly integratable
with the enhanced version of GinVoice.

Keywords

LuaLATEX, YAML

1 Introduction

During my work as a software engineer, I encountered
a challenge for a company that drafts agreements
and terms for multiple clients. One of the challeng-
ing aspects was keeping client data and regulatory
documentation separate. Previously, I addressed
this challenge in GinVoice [3] by generating addi-
tional LATEX files with Python, which were then
compiled alongside the main LATEX file. However,
this time, my goal was to provide a solution from
within the LATEX domain itself, rather than the appli-
cation domain. The solution I developed, now known
as lua-placeholders [5], introduces a shared data
layer with YAML between LATEX and application code.
The package provides an intermediary layer specifi-
cally for data through YAML files. To demonstrate
this solution, we use GinVoice as an example. This
example, a Python GTK application that generates
invoices with LATEX, offers slightly more complexity
and challenges than the legal domain has to offer.

1.1 The compiler— LuaLATEX

I decided to use LuaLATEX as the compiler for several
reasons. Since 2016, I have been using LuaLATEX,
which greatly helped me with documents within com-
puter science at the time. Over the years, I have
gained a lot of experience in compiling with Lua-
LATEX and see it as a suitable compiler as a devel-
oper, thanks to the ability to script in Lua, which I
naturally appreciate as a programmer.

The ability to script in Lua offers several advan-
tages. It allows me to perform complex tasks during
the compilation process, such as processing YAML
files or manipulating and structuring data. Addition-
ally, LuaLATEX supports Lua init scripts, allowing
me to implement a custom compilation process with

its own command line interface (CLI), further sim-
plifying and optimizing the integration process for
end solutions.

1.2 What is YAML?

As a DevOps engineer, I have often encountered
YAML while working with tools such as Docker Com-
pose, Travis CI, GitHub Actions, and Canonical’s
NetPlan (Ubuntu systems). YAML is widely used in
the DevOps world for automating and managing con-
figurations, functioning as a structured markup lan-
guage for defining configuration files and capturing
infrastructural and operational aspects of software
applications.

YAML has become a crucial component of mod-
ern software development and deployment due to
its simple syntax and flexibility. In combination
with LATEX, YAML provides a powerful mechanism
for defining and managing structured data, which is
particularly useful when integrating client data into
LATEX documents. Listing 1 shows an example of
YAML used in conjunction with LATEX.

supplier: grapefruit
client: juicing-joker
title: Grapefruit Inc. Invoice
subtitle: for fruits and stuff
currency: \$
number: 1
date: \today
...

Listing 1: invoice-001.yaml

2 GinVoice

In this section, we will take a closer look at Gin-
Voice, an open-source Python GTK application that
utilizes LATEX behind the scenes to create invoices.
Additionally, we will examine the provided invoice
template and delve into the associated data within
the invoice.

2.1 The application

GinVoice has multiple views. The most common is
the main view, where you can draft multiple invoices
simultaneously. In this view, depicted in figure 1,
almost all components are visible. You can see the
header, information tables, invoice rules, and the
closing text included in it. Figure 1 shows that the
input fields are already filled in, and their content
does not deviate much from the end result, as seen
in figure 2. Other application views will be discussed
later in this section.

doi.org/10.47397/tb/45-1/tb139nijenhuis-placeholders

Specifying and populating documents in YAML with lua-placeholders in LATEX

https://doi.org/10.47397/tb/45-1/tb139nijenhuis-placeholders

66 TUGboat, Volume 45 (2024), No. 1

Figure 1: GinVoice — the application

Grapefruit Inc. Invoice
for fruits and stuff

Juicing Joker

LATEX street 27

12345 AB, Alaska

Invoice nr: 1

Invoice date: January 28, 2024

Email: john.doe@example.com

Website: https://www.example.com

Account number: NL00 0000 0000 0000 0000 00

Description Date Quantity Price Total

Activities project x oct. 18 1h 30m $ 65.00 $ 97.50

oct. 19 6h 15m $ 65.00 $ 406.25

Material Costs oct. 19 20x $ 24.99 $ 499.80

Activities project x oct. 21 2h $ 65.00 $ 130.00

oct. 22 1h 30m $ 65.00 $ 97.50

Total (ex.) $1,229.05

VAT (21%) $ 258.10

Total (incl.) $1,487.15

Please send us the total of $ 1,487.15 within the coming 14 days to account number NL00 0000 0000 0000 0000 00 with

the note of the invoice number 1.

Questions about this invoice? Please contact us.

Figure 2: Sample invoice generated with GinVoice

2.2 LATEX template

Below is an example of the code within the document
environment:

52 \begin{document}
53 \thispagestyle{headermain}
54 \makeheader
55 \vspace{2cm}
56 \begin{tabular}{@{}l@{}}
57 \begin{tabular}{@{}l@{}}
58 \addressee
59 \end{tabular} \\
60 \begin{tabular}{@{}l l@{}}
61 \customerinfo
62 \end{tabular}
63 \end{tabular}
64 \hfill
65 \begin{tabular}{@{}l r@{}}
66 \supplierinfo
67 \end{tabular}\\
68

69 \input{table}
70 \begin{invoice}{\columndef}{\tableheader}
71 {\tablefooter}
72 \tablerecords
73 \end{invoice}
74

75 {\footnotesize \theending{}}
76 \vfill
77 \begin{center}
78 \images
79 \end{center}
80

81 \end{document}

Listing 2: invoice.tex

The source code in listing 2 demonstrates various
macros that will be replaced by lua-placeholders:
\addressee, \customerinfo, \supplierinfo,
\tablefooter, \tablerecords, \theending, and
\images. Additionally, there are variables such as
title- and style-related information and \currency
that will be handled.

2.3 Generated LATEX files

It is important to note that GinVoice [3] currently
uses a Python script, generator.py, to generate
additional TEX files. These TEX files are then in-
cluded in the template using \include, making the
necessary macros available.

Starting with the language setting:

\usepackage[english]{babel}

Listing 3: languages.tex

Erik Nijenhuis

TUGboat, Volume 45 (2024), No. 1 67

Figure 3: Language settings

At the time, I chose to include a separate language
setting in the application, as shown in figure 3, so that
words within the invoice are correctly hyphenated
using babel.

Another aspect within the preamble is setting
the document properties. These macros are imported
from the generated file meta.tex, whose macros are
later used in the \hypersetup.

\global\def\currency{\$}
\global\def\author{Erik Nijenhuis}
\global\def\title{Grapefruit Inc. Invoice}
\global\def\subject{Invoice for Juicing Joker}
\global\def\keywords{Invoice Grapefruit ←↩

Juicing Joker}
\global\def\producer{GinVoice Generator}
\global\def\creator{gingen}
\global\def\continuationheader{\title{} -- ←↩

\subject{}}
\global\def\continuationfooter{See next page.}

Listing 4: meta.tex

Common macros, such as \title, are used in mul-
tiple places. That is also why the \title does not
need to be in the header.tex.

\global\def\subtitle{for fruits and stuff}

Listing 5: header.tex

The customer’s address is placed in a macro, with
the address lines separated by a newline.

\newcommand{\addressee}{Juicing Joker\\ ←↩

\LaTeX{} street 27\\12345 AB, Alaska}

Listing 6: addressee.tex

This approach would be suitable for a table with a
single column or for, say, an enumerate environment.

The customer and supplier information assumes
a table environment with two columns.

\newcommand{\customerinfo}{

& \\
Invoice nr: & 1 \\
Invoice date: & \today \\

}
Listing 7: customer_info.tex

\newcommand{\supplierinfo}{
Email: & john.doe@example.com \\
Website: & https://www.example.com \\
Account number: & NL00 0000 0000 0000 ←↩

0000 00 \\
& \\
& \\
& \\

}
Listing 8: supplier_info.tex

The drawback of this setup is that an ampersand
(&) does not have any function within the context of
the macro itself. That would only be the case when
working within a tabular environment. Despite
most LATEX editors giving an error for this, strangely
enough, this approach still works.

The most significant challenge within the ap-
plication was making the invoice table configurable.
For this, there is a separate view, as seen in figure 4.
In the figure, you can see that each column can have
a different width, including length of text, maximum
available space, or hidden. This added complexity
from the application resulted in quite complex out-
put in the generated table.tex file, as shown in the
following code:

\newlength{\rowsize}
\setlength{\rowsize}{\linewidth}
\newlength{\cIsize}
\settowidth{\cIsize}{oct. 22}
\addtolength{\rowsize}{-\cIsize}
\addtolength{\rowsize}{-2\tabcolsep}

Figure 4: Table settings

Specifying and populating documents in YAML with lua-placeholders in LATEX

68 TUGboat, Volume 45 (2024), No. 1

\newlength{\cIIsize}
\settowidth{\cIIsize}{\textbf{Quantity}}
\addtolength{\rowsize}{-\cIIsize}
\addtolength{\rowsize}{-2\tabcolsep}
\newlength{\cIIIsize}
\settowidth{\cIIIsize}{\textbf{Total (incl.)}}
\addtolength{\rowsize}{-\cIIIsize}
\addtolength{\rowsize}{-2\tabcolsep}
\newlength{\cIVsize}
\settowidth{\cIVsize}{\$ 1,000.00}
\addtolength{\rowsize}{-\cIVsize}
\addtolength{\rowsize}{-2\tabcolsep}
\newcommand{\columncount}{5}
\newcolumntype\columndef ←↩

{L{1.00\rowsize-2\tabcolsep} R{\cIsize} ←↩

L{\cIIsize} F{\cIIIsize} F{\cIVsize}}
\newcommand{\tableheader}{\rowheadercolor ←↩

Description&\rowheadercolor ←↩

Date&\rowheadercolor ←↩

Quantity&\rowheadercolor ←↩

Price&\rowheadercolor Total\\}
\newcommand{\tablerecords}{

Activities project x & oct. 18 & 1h 30m ←↩

& \currency\hfill\financial{65.00} & ←↩

\currency\hfill\financial{97.50}\\
& oct. 19 & 6h 15m & ←↩

\currency\hfill\financial{65.00} & ←↩

\currency\hfill\financial{406.25}\\
Material Costs & oct. 19 & 20x & ←↩

\currency\hfill\financial{24.99} & ←↩

\currency\hfill\financial{499.80}\\
Activities project x & oct. 21 & 2h & ←↩

\currency\hfill\financial{65.00} & ←↩

\currency\hfill\financial{130.00}\\
& oct. 22 & 1h 30m & ←↩

\currency\hfill\financial{65.00} & ←↩

\currency\hfill\financial{97.50}\\}
\newcommand{\cumoffset}{& & & }
\newcommand{\tablefooter}{\cum{Total ←↩

(ex.)}{1229.05}
\cum{VAT (21\%)}{258.10}
\cum{Total (incl.)}{1487.15}
}

Listing 9: table.tex

In addition to the complex column configuration,
there are \tablerecords and \tablefooter, both
similar to, for example, the supplier information.

The last generated file footer.tex defines the
remaining missing macros, \theending and \images:

\newcommand{\theending}{Please send us the ←↩

total of \$ \financial{1487.15}
within the coming 14 days
to account number NL00 0000 0000 0000 0000 00

with the note of the invoice number 1.

Questions about this invoice?
Please contact us.}
\graphicspath{{/home/erik/share/ginvoice/img/}}
\newcommand{\images}{

\includegraphics[width=.1\textwidth]{image1}
\hspace{1.5em}
\includegraphics[width=.1\textwidth]{image2}
\hspace{1.5em}
\includegraphics[width=.1\textwidth]{image3}

} Listing 10: footer.tex

At the time, I chose to store all graphic files some-
where within the GinVoice environment. I linked this
to LATEX by using \graphicspath.

2.4 Invoice data

When looking at all the information coming from
GinVoice, a few exceptions aside, we end up with the
data presented in figure 5. For convenience, I have
already divided all the information into separate
entities, which will correspond to the YAML files,
extensively discussed in the next section.

Invoice
title : String = Invoice
subtitle : String
currency : String = \EUR
number : Number
date : String = \today
records : Table
totals : Table/Object
ending : String

Supplier

email : String
website : String
accountnr : String

Client
name : String
street : String
postal : String
place : String

Style

images : List
main font : String
mono font : String
foreground color : String
background color : String
colored table : Boolean

Figure 5: Class diagram of the invoice

Erik Nijenhuis

TUGboat, Volume 45 (2024), No. 1 69

Application layer
*.py *.glade

Data layer
*.yaml *.json

LuaTEX layer
*.lua

LuaLATEX layer
*.tex *.cls *.sty *.cfg

writes payloadreads spec

reads data

calls
LuaLATEX

calls LuaTEX

Author

Programmer

Figure 6: Levels within GinVoice

3 Invoice templates with lua-placeholders

This section demonstrates how YAML interfaces, also
known as recipes, can be used as interfaces for invoice
templates and how they can be linked to LATEX.

The ultimate goal is to provide an efficient and
customizable invoicing interface that can be easily
integrated into an enhanced version of GinVoice. Fig-
ure 6 illustrates a representation of the new situation,
with techniques irrelevant for this article crossed out.

Thus, the data, as seen in figure 5, is moved
from the application level to the data level. This
allows both Python programmers and LATEX users
to interact with the data level, something that is
impossible in the current situation.

3.1 YAML specifications

Based on the data analysis in section 2.4, we can start
working with the recipes. All recipes are placed in
the recipes directory relative to the LATEX project.
Alternatively, you could store the recipes directory
under $TEXMFHOME/tex/ to make the recipes avail-
able everywhere.

3.1.1 The invoice

The invoice recipe, recipes/invoice.yaml, spec-
ifies two relationships: supplier and client, as
mentioned earlier in section 2.4.

1 # Actors
2 supplier:
3 type: string
4 client:
5 type: string

Listing 11: recipes/invoice.yaml

How the corresponding recipes are loaded based on
these values is described in section 3.2.3.

The data within the invoice part can optionally
be standardized using a default field, as done for
title. You can even invoke LATEX from a default
value, including other parameters using \param.

6 # Invoice variables
7 title:
8 type: string
9 default: Invoice \param{number}

10 subtitle:
11 type: string
12 placeholder: Subtitle
13 currency:
14 type: string
15 default: \EUR
16 number:
17 type: string
18 placeholder: Invoice number
19 date:
20 type: string
21 placeholder: Invoice date

In addition to default values, temporary placeholders
can also be specified.

The most complex part of the invoice is the
invoice table, where you can specify columns just
like you do for other data types.

22 records:
23 type: table
24 columns:
25 description:
26 type: string
27 date:
28 type: string
29 quantity:
30 type: string
31 default: 0x
32 price:
33 type: number
34 default: 0
35 total:
36 type: number
37 default: 0

For most LATEX users, the total column can be omit-
ted and calculated using a package like invoice2 [2].
To do that, it is also necessary to make the quantity
field of type number and add an extra field like
quantity type, so that you can display the correct
notation for the quantity column.

For the final totals, I chose the type object so
that I can manually set the different totals in LATEX.

Specifying and populating documents in YAML with lua-placeholders in LATEX

70 TUGboat, Volume 45 (2024), No. 1

38 totals:
39 type: object
40 fields:
41 total ex:
42 type: number
43 default: 0
44 vat:
45 type: number
46 default: 0
47 total incl:
48 type: number
49 default: 0

The final totals could also be handled in a more
generic way, like the extra fields field in the sup-
plier recipe (see section 3.1.3).

The last field of the invoice, message, uses the
special YAML feature of multiline strings in the de-
fault value.

50 message:
51 type: string
52 default: |
53 Please send us the total of ←↩

\currency~\paramfield{totals}{total ←↩

incl}
54 within the coming 14 days to account ←↩

number
55 \param[supplier]{account number} with ←↩

the note of the invoice number ←↩

\param{number}.\\[2em]
56

57 Questions about this invoice? Please ←↩

contact us.

Using the pipe (|) activates this mode. This con-
struction is ideal for large texts, possibly with LATEX
syntax.

3.1.2 Client

The client data does not have any special specifica-
tions compared to the invoice.

1 name:
2 type: string
3 placeholder: Client namme
4 street:
5 type: string
6 placeholder: Street + nr
7 postal:
8 type: string
9 placeholder: 9999 ZZ

10 place:
11 type: string
12 placeholder: City

Listing 12: recipes/client.yaml

Alternatively, all address details could be specified
as a list type, along with a specification, as seen
in extra fields in the supplier recipe. This would
make the interface more generic but less adaptable
within the LATEX context.

3.1.3 Supplier

In the recipe for the supplier, the style field serves
the same function as supplier and client of the
invoice, allowing the user to choose which style to
apply.

1 name:
2 type: string
3 placeholder: Supplier name
4 email:
5 type: string
6 placeholder: Email
7 website:
8 type: string
9 account number:

10 type: string
11 placeholder: Account number
12 extra fields:
13 type: table
14 columns:
15 key:
16 type: string
17 val:
18 type: string
19 # Suppliers style
20 style:
21 type: string

Listing 13: recipes/supplier.yaml

Another interesting field in this specification is
extra fields. This field uses the table type to
allow arbitrary additional information fields, such as
the supplier’s account number, VAT number, or any
other relevant details. Using a table instead of a fixed
number of fields gives the end-user the flexibility to
add as much extra information as needed, without
imposing restrictions.

3.1.4 Style

In the style recipe, fonts, colors, and multiple images
can be specified. As mentioned earlier: for LATEX
users, this could be fully specified in LATEX itself.
The style recipe could then be omitted.

1 images:
2 type: list
3 item type: string
4 main font:
5 type: string

Erik Nijenhuis

TUGboat, Volume 45 (2024), No. 1 71

6 default: Ubuntu
7 mono font:
8 type: string
9 default: Ubuntu Mono

10 foreground color:
11 type: string
12 default: 000000
13 background color:
14 type: string
15 default: FFFFFF

Listing 14: recipes/style.yaml

A notable point here is the type for images, namely
list. In section 3.3, you can see how this list is
loaded at the bottom of the invoice.

3.2 The new invoice

Now that the recipes are in order, we can proceed
to integrate them into LATEX (in invoice.tex).

3.2.1 Loading recipes in the preamble

The recipes are loaded using the \loadrecipe macro.

44 \loadrecipe[\jobname]{recipes/invoice.yaml}
45 \loadrecipe{recipes/supplier.yaml}
46 \loadrecipe{recipes/client.yaml}
47 \loadrecipe{recipes/style.yaml}

For the invoice recipe, you can see that it is given
a ⟨namespace⟩ of \jobname (the optional argument).
This is because the \param macro by default uses
\jobname as the ⟨namespace⟩, simplifying its use.

The other recipes do not specify a ⟨namespace⟩,
meaning they use the ‘basename’ of the path as the
⟨namespace⟩. In this case, respectively, supplier,
client, and style.

3.2.2 Currency

Regarding the currency, I have chosen to disguise it
in the \currency macro. This is because it is also
used in other files, such as invoice.cls.

49 \def\currency{\rawparam{\jobname}{currency}}

If the ⟨currency⟩ is not set, the default value from
style.yaml is used. In this case, it defaults to \EUR.

3.2.3 Loading values

I’ve chosen to manage all YAML files related to the
data in corresponding directories.

⟨project name⟩
recipes

⟨recipe⟩.yaml
invoices

⟨invoice-xxx ⟩.yaml
clients
etc.

Values, also called the payload, are loaded simi-
larly to recipes but with the \loadpayload macro.
Due to the relationships described in section 2.4,
it is slightly more complex than recipes because
lua-placeholders does not offer anything standard
for this.

51 \IfFileExists{invoices/\jobname.yaml}{
52 \loadpayload[\jobname] ←↩

{invoices/\jobname.yaml}
53 \strictparams
54 }{}

When loading invoice values, it is checked whether a
corresponding YAML file exists. If so, that payload is
loaded, and the experimental macro \strictparams
is used, which means that errors will occur in the
future if mandatory data is missing. If no correspond-
ing file is found, an invoice template is compiled.

After loading the invoice data, we can check if
a client is specified in the invoice data. We do this
using \hasparam. This concerns the invoice data, for
which we do not need to specify a ⟨namespace⟩.

56 \hasparam{client}{%
57 \loadpayload[client] ←↩

{clients/\rawparam{\jobname} ←↩

{client}.yaml}
58 }{}

Generally, \param is not intended for use within
the preamble because it can also yield placeholders
with LATEX markup. For such difficult situations,
the macro \rawparam is written, as done for the
client and supplier. This macro has no optional argu-
ments; they often cause problems with, for example,
pgfkeys.

60 \hasparam{supplier}{%
61 \loadpayload[supplier] ←↩

{suppliers/\rawparam{\jobname} ←↩

{supplier}.yaml}
62 }{}

As you can see, loading the supplier does not differ
from loading the client. However, there is a follow-up
action after loading the supplier, namely checking
if the style can be loaded. This is done in the same
way as with the client and supplier themselves, but
here you see that the ⟨namespace⟩ must be set.

64 \hasparam[supplier]{style}{%
65 \loadpayload[style] ←↩

{styles/\rawparam{supplier}{style}.yaml}
66 \setmainfont{\rawparam{style}{main ←↩

font}}
67 \setmonofont{\rawparam{style}{mono ←↩

font}}

Specifying and populating documents in YAML with lua-placeholders in LATEX

72 TUGboat, Volume 45 (2024), No. 1

68 \definecolor{backgroundcolor}{HTML} ←↩

{\rawparam{style}{background color}}
69 \colorlet{bgcolor}{backgroundcolor}
70 \definecolor{foregroundcolor}{HTML} ←↩

{\rawparam{style}{foreground color}}
71 \colorlet{textcolor}{foregroundcolor}
72 }{}

For the style-related data, I chose to configure
the values directly in the corresponding macros, such
as \setmainfont and \definecolor, as long as a
style is specified. You could also choose to set the
style values by default based on the default values
specified in the style recipe, by placing the configu-
ration outside the \hasparam block.

3.3 Processing in the document

Before we can move on to compiling invoices, we have
one more task: setting all values in the document
itself.

3.3.1 Header

The \makeheader macro comes from invoice.cls.
It expects the title and subtitle as arguments, for
which we use \param:

76 \begin{document}
77 \thispagestyle{headermain}
78 \makeheader{\param{title}}{\param{subtitle}}
79 \vspace{2cm}

3.3.2 Information

The left column of the information is quite tricky, as
it contains both client information and invoice data,
such as the number and date.

80 \begin{tabular}{@{}l@{}}
81 \begin{tabular}{@{}l@{}}
82 \param[client]{name}\\
83 \param[client]{street}\\
84 \param[client]{postal}, ←↩

\param[client]{place}\\
85 \end{tabular} \\
86 \begin{tabular}{@{}l l@{}}
87 Invoice number: & \param{number}\\
88 Invoice date: & \param{date}\\
89 \end{tabular}
90 \end{tabular}
91 \hfill

You can see in the address lines that a line break
is set for each line. This could also have been done
if, for example, a field address lines of type list
was present. Then it would have been solved in
one go with \param[client]{address lines}, as-
suming that postal and place are merged on one

line in YAML. This alternative assumes that the
\paramlistconjunction macro is set to ‘\\’, in-
stead of the default ‘,˜’.

92 \begin{tabular}{@{}l r@{}}
93 Company: & \param[supplier]{name} \\
94 Email: & \param[supplier]{email} \\
95 Website: & \param[supplier]{website} \\
96 Account nr: & ←↩

\param[supplier]{account number} \\
97 \hasparam[suplier]{extra fields}{%
98 \def\formatsupplierextra{\key & ←↩

\val\\}%
99 \fortablerow[supplier]{extra ←↩

fields}{formatsupplierextra}
100 }{}
101 \end{tabular}\\

The right column of information is similar to the
left, except it has one additional special field, namely
extra fields of type table. This allows for a vari-
able number of rows to be added. The same could
potentially be applied to the client details in the left
column. Then only the choice remains whether to
place them above or below the invoice information.

3.3.3 Table

As mentioned earlier, standardizing the column defi-
nition is difficult.

On line 105, you can see what the \columdefs
could have provided, except for the counters that I
previously used.

103 \begin{invoice}
104 % Column definition based on 540pt
105 {@{}L{180pt-\tabcolsep} ←↩

R{80pt-2\tabcolsep} ←↩

L{60pt-2\tabcolsep} ←↩

F{120pt-2\tabcolsep} ←↩

F{100pt-\tabcolsep}@{}}

For the second argument of the invoice envi-
ronment, a static header is set.

106 % Header
107 {\textbf{Description} & \textbf{Date} & ←↩

\textbf{Quantity} & \textbf{Price} & ←↩

\textbf{Total} \\ \hline}

For the third argument of the invoice environ-
ment, you can see how the final totals are set in
the table. These totals are placed in the last two
columns of each row, so that they align neatly with
the rest of the table.

Erik Nijenhuis

TUGboat, Volume 45 (2024), No. 1 73

108 % Totals
109 {%
110 & & & \textbf{Total (ex.)} & ←↩

\currency\hfill{\ttfamily ←↩

\paramfield{totals}{total ex}} \\
111 & & & \textbf{VAT} & ←↩

\currency\hfill{\ttfamily ←↩

\paramfield{totals}{vat}} \\
112 & & & \textbf{Total (incl.)} & ←↩

\currency\hfill{\ttfamily ←↩

\paramfield{totals}{total incl}} \\
113 }

In the final part of the table, you can see how
each invoice line is set using \fortablerow with the
help of \formatrecords.

114 \newcommand\formatrecords{%
115 \description & \date & \quantity &%
116 \currency\hfill{\ttfamily\price} &%
117 \currency\hfill{\ttfamily\total} \\}
118 \fortablerow{records}{formatrecords}
119 \end{invoice}

The overall structure of the table is still from
the previous situation. The notable difference from
the old situation is that the data can be put into any
sort of table structure, since the data is decoupled
from the LATEX and application domains, and the
challenges of typesetting are shifted to the LATEX
domain.

3.3.4 Closing text and images

Where we previously saw an advanced YAML specifi-
cation for the message field, the implementation in
LATEX remains virtually the same:

121 {\footnotesize\param{message}}

The only difference is:
\theending → \param{message}

The images, on the other hand, are slightly more
difficult to implement in LATEX due to the list type.

122 \newcommand\formatimage[1] ←↩

{\hspace{.75em}\includegraphics ←↩

[width=2cm]{#1}\hspace{.75em}}%
123 \hasparam[style]{images}{%
124 \vfill
125 \begin{center}
126 \forlistitem[style]{images} ←↩

{formatimage}
127 \end{center}
128 }{}
129 \end{document}

Where previously in Python all images were
neatly placed next to each other, with a \hspace

of 1.5em between each image, I chose to insert half
that value as an \hspace on each side of each image.
This is because the \forlistitem macro does not
yet have a convenient way to specify a separator, like
\param does by setting \paramlistconjunction to
‘\hspace{1.5em}’.

4 Execution

Now that the legacy invoice has been completely
transformed, let’s see what the result looks like. If
you want to participate via the command line, please
refer to the full source code [4] of these examples.

4.1 The template version

Without providing any values, we get the following
result, as shown in figure 7.
As mentioned earlier, lua-placeholders can only

be compiled with LuaLATEX. The example can be
compiled as follows:

lualatex --jobname=invoice-template \
--output-directory="${OUTPUT_DIR}" \
invoice

Listing 15: Compiling with lualatex

Invoice [Invoice number]
[Subtitle]

[Client namme]

[Street + nr]

[9999 ZZ], [City]

Invoice number: [Invoice number]

Invoice date: [Invoice date]

Company: [Supplier name]

Email: [Email]

Website: [website]

Account nr: [Account number]

Description Date Quantity Price Total

[description] [date] 0x AC 0,00 AC 0,00

Total (ex.) AC 0,00

VAT AC 0,00

Total (incl.) AC 0,00

Please send us the total of AC 0,00 within the coming 14 days to account number [Account number] with the note of the

invoice number [Invoice number].

Questions about this invoice? Please contact us.

Figure 7: invoice-template.pdf

Specifying and populating documents in YAML with lua-placeholders in LATEX

74 TUGboat, Volume 45 (2024), No. 1

where ${OUTPUT_DIR} is the desired output direc-
tory.

However, if you are designing a template, con-
tinuous generation with latexmk [1] is more user-
friendly:

latexmk -pvc -lualatex \
--jobname=invoice-template \
--output-directory="${OUTPUT_DIR}" \
invoice

Listing 16: Compiling with latexmk

With the -pvc option, you don’t have to recompile
with TEX every time there is a change; it happens
automatically.

4.2 YAML values

To get a filled invoice, we will need the following
YAML files:

⟨project dir⟩
invoices

⟨invoice⟩.yaml
suppliers

⟨supplier⟩.yaml
styles

⟨style⟩.yaml
clients

⟨client⟩.yaml
This structure is based on the implementation

described in section 3.2.3. Before discussing the con-
tents of the YAML files, let’s first consider alternative
project structures.

4.2.1 Alternative project structure

Everyone is free to create their desired folder struc-
ture. For example, you could place styles under

/suppliers/⟨supplier⟩/style.yaml
so that you can even omit the style field in the sup-
plier recipe. Another option is to place the clients
folder under the supplier level, so you don’t acciden-
tally mix clients of different suppliers. This could be
achieved as follows:

⟨project dir⟩
suppliers

⟨supplier⟩.yaml
⟨supplier⟩

⟨client⟩.yaml
This way, the implementation for loading clients
would require the variables ⟨supplier⟩ and ⟨client⟩,
to then reach the path

suppliers/⟨supplier⟩/⟨client⟩.yaml.
The same consideration could be applied to the

invoices, but this is a more difficult scenario, as the
invoice data is based on \jobname in the implemen-
tation of section 3.2.3. One possible solution for this

is to manage the project per supplier. You can then
place the recipes in the $TEXMFHOME/tex directory
so that they are available for all projects. Here’s an
example of a possible project structure:

$HOME/texmf/tex
recipes

invoice.yaml
client.yaml
supplier.yaml
style.yaml

invoice.cls
invoice.tex

⟨project dir⟩
invoices

⟨invoice⟩.yaml
clients

⟨client⟩.yaml
supplier.yaml
style.yaml

In this example, all data is separated per supplier,
including client information and final invoices.

4.3 Suppliers and clients

In the example result of GinVoice, a client Juicing
Joker was shown. In YAML, this would translate to:

name: Juicing Joker
street: \LaTeX-street 27
postal: 12345 AB
place: Alaska

Listing 17: clients/juicing-joker.yaml

This way, the client can be referenced in the invoice
with juicing-joker.

For the supplier, we saw Grapefruit Inc. in the
example, which translates to:

name: Grapefruit
email: john.doe@example.com
website: https://www.example.com
account number: NL00 0000 0000 0000 0000 00
style: grapefruit

Listing 18: suppliers/grapefruit.yaml or
grapefruit/supplier.yaml

And for the style:

main font: Ubuntu
mono font: Ubuntu Mono
foreground color: c4a000
background color: 360519
images:
- img/image1
- img/image2
- img/image3

Listing 19: styles/grapefruit.yaml or
grapefruit/style.yaml

Erik Nijenhuis

TUGboat, Volume 45 (2024), No. 1 75

Invoice [Invoice number]
[Subtitle]

[Client name]

[Street name + nr]

[9999 ZZ], [City]

Invoice number: [Invoice number]

Invoice date: [Invoice date]

Company: Grapefruit

Email: john.doe@example.com

Website: https://www.example.com

Account nr: NL00 0000 0000 0000 0000 00

Description Date Quantity Price Total

[description] [date] 0x AC 0,00 AC 0,00

Total (ex.) AC 0,00

VAT AC 0,00

Total (incl.) AC 0,00

Please send us the total of AC 0,00 within the coming 14 days to account number NL00 0000 0000 0000 0000 00 with the

note of the invoice number [Invoice number].

Questions about this invoice? Please contact us.

(a) invoice-template.pdf

Grapefruit Inc. Invoice
for fruits and stuff

Juicing Joker

LATEX-street 27

12345 AB, Alaska

Invoice number: 1

Invoice date: January 28, 2024

Company: Grapefruit

Email: john.doe@example.com

Website: https://www.example.com

Account nr: NL00 0000 0000 0000 0000 00

Description Date Quantity Price Total

Activities project x oct. 18 1h 30m $ 65,00 $ 97,50

oct. 19 6h 15m $ 65,00 $ 406,25

Material Costs oct. 19 20x $ 24,99 $ 499,80

Activities project x oct. 21 2h $ 65,00 $ 130,00

oct. 22 1h 30m $ 65,00 $ 97,50

Total (ex.) $ 1 229,05

VAT $ 258,10

Total (incl.) $ 1 487,15

Please send us the total of $ 1 487,15 within the coming 14 days to account number NL00 0000 0000 0000 0000 00 with

the note of the invoice number 1.

Questions about this invoice? Please contact us.

(b) invoice-001.pdf

Xerdi
Factuur 2

Juicing Joker

LATEX-street 27

12345 AB, Alaska

Invoice number: 2

Invoice date: 12 februari 2024

Company: Xerdi

Email: erik@xerdi.com

Website: https://www.xerdi.com

Account nr: NL00 0000 0000 0000 0000 00

Description Date Quantity Price Total

Werkzaamheden project x oct. 18 1u 30m AC 65,00 AC 97,50

oct. 19 6u 15m AC 65,00 AC 406,25

Materiaalkosten oct. 19 20x AC 24,99 AC 499,80

Werkzaamheden project x oct. 21 2u AC 65,00 AC 130,00

oct. 22 1u 30m AC 65,00 AC 97,50

Total (ex.) AC 1229,05

VAT AC 258,10

Total (incl.) AC 1487,15

Please send us the total of AC 1487,15 within the coming 14 days to account number NL00 0000 0000 0000

0000 00 with the note of the invoice number 2.

Questions about this invoice? Please contact us.

(c) invoice-002.pdf

Figure 8: Invoice Examples

The advantage of the alternative project structure is
that invoice-template automatically picks up the
styling as well as the supplier information, as seen
in figure 8a.

4.4 Invoices

To create an invoice that exactly matches the stan-
dard example of GinVoice, as seen in figure 8b, we
use the following YAML example:

1 supplier: grapefruit
2 client: juicing-joker
3 title: Grapefruit Inc. Invoice
4 subtitle: for fruits and stuff
5 currency: \$
6 number: 1
7 date: January 28, 2024
8 records:
9 - description: Activities project x

10 date: oct. 18
11 quantity: 1h 30m
12 price: 65
13 total: 97.5
14 - description: ’’
15 date: oct. 19

Listing 20: invoices/invoice-001.yaml

The actors grapefruit and juicing-joker, dis-
cussed in section 4.3, are seen in the invoice. Ad-
ditionally, the example has the same general infor-
mation to achieve the same result. In the records
field, you can see that one row of the table takes up
many lines. In the second row of the table, you can

see that the description field has an empty value.
If the quotes are omitted in YAML, you will get an
error when converting to data. Since the rows do
not differ too much from each other, we continue the
example at the totals field:

34 totals:
35 total ex: 1229.05
36 vat: 258.10
37 total incl: 1487.15
38 message: |
39 Please send us the total of ←↩

\currency~\paramfield{totals}{total ←↩

incl}
40 within the coming 14 days to account ←↩

number
41 \param[supplier]{account number} with ←↩

the note of the invoice number ←↩

\param{number}.\\[2em]
42

43 Questions about this invoice? Please ←↩

contact us.

Lastly in the example, we see the totals and the
closing text.

This invoice can then be compiled with the fol-
lowing command:

lualatex --jobname=invoice-001 \
--output-directory="${OUTPUT_DIR}" \
invoice

Specifying and populating documents in YAML with lua-placeholders in LATEX

76 TUGboat, Volume 45 (2024), No. 1

5 Conclusion

In this study, we have not only examined the im-
plementation of invoice templates in GinVoice but
also proposed an innovative method to seamlessly
integrate these templates with the LATEX ecosys-
tem. By using YAML as an intermediate layer and
lua-placeholders for dynamic insertions, we have
provided a robust and flexible solution for invoice
generation while creating a framework where various
document components, such as client information,
can be utilized across documents.

This approach not only grants LATEX users the
freedom to customize invoice templates as desired
but also opens the door to a wider range of applica-
tions. By employing the same YAML-based structure,
different documents, including contracts and invoices,
can be generated and maintained with ease. This
not only enhances consistency across various doc-
ument types but also boosts the efficiency of the
documentation process as a whole.

The utilization of lua-placeholders in con-
junction with YAML enables the addition of dynamic
content to templates, resulting in a more streamlined
workflow for users. This flexibility makes it easy to
separate data and formatting across different docu-
ments while allowing these components to be used
across documents.

In conclusion, this approach not only makes a
valuable contribution to optimizing billing processes
but also unveils new possibilities for efficiently gen-
erating and managing various types of documents
within an organization.

6 Discussion

6.1 LATEX compilers

In the article, I assume the LuaLATEX compiler. For
other compilers, lua-placeholders does not pro-
vide a solution. Although some compilers still offer
support for Lua, lua-placeholders does not take
this into account. Research and implementation
could improve the adoption of lua-placeholders
within the LATEX community.

6.2 JSON vs. YAML

I did not delve into the choice of YAML over JSON
in the article. Both are intended for data, and while
JSON is more well-known and has broader compati-
bility with programming languages, I chose YAML

for the sake of readability of LATEX source code. As
demonstrated extensively, the files contain a lot of
LATEX source code. When using JSON every back-
slash would need to be escaped. For example:

title: Invoice \param{number}

Listing 21: YAML example

{"title": "\\param{number}" }
Listing 22: JSON example

As a LATEX user, I find it more convenient to adjust
values in YAML for testing purposes than in JSON.

6.3 GinVoice roadmap

Development has been stagnant for some time, but I
recently discovered that the solution can also work
for Windows platforms. Bringing GinVoice to the
Windows platform significantly expands the target
audience and, in my expectation, could garner more
support for LATEX.

As for the introduction of lua-placeholders,
there are still a few obstacles to overcome, such as
challenges related to translation and the variable
column definition, which is precisely a user-friendly
part of the application that has not been discussed.

References

[1] J. Collins, E. McLean, D.J. Musliner. The
latexmk package. www.cantab.net/users/
johncollins/latexmk/index.html

[2] S. Dierl. The invoice2 package.
github.com/no-preserve-root/invoice2

[3] E. Nijenhuis. The GinVoice GTK application.
gitlab.gnome.org/MacLotsen/ginvoice

[4] E. Nijenhuis. The GinVoice template.
github.com/Xerdi/ginvoice-template/tree/
maps

[5] E. Nijenhuis. The lua-placeholders package.
ctan.org/pkg/lua-placeholders

⋄ Erik Nijenhuis
Frans Halsstraat 38
Leeuwarden, 8932 JC
The Netherlands
erik (at) xerdi dot com
https://github.com/MacLotsen

Erik Nijenhuis

https://www.cantab.net/users/johncollins/latexmk/index.html
https://www.cantab.net/users/johncollins/latexmk/index.html
https://github.com/no-preserve-root/invoice2
https://gitlab.gnome.org/MacLotsen/ginvoice
https://github.com/Xerdi/ginvoice-template/tree/maps
https://github.com/Xerdi/ginvoice-template/tree/maps
https://ctan.org/pkg/lua-placeholders

	Introduction
	The compiler–LuaLaTeX
	What is YAML?

	GinVoice
	The application
	LaTeX template
	Generated LaTeX files
	Invoice data

	Invoice templates with lua-placeholders
	YAML specifications
	The invoice
	Client
	Supplier
	Style

	The new invoice
	Loading recipes in the preamble
	Currency
	Loading values

	Processing in the document
	Header
	Information
	Table
	Closing text and images

	Execution
	The template version
	YAML values
	Alternative project structure

	Suppliers and clients
	Invoices

	Conclusion
	Discussion
	LaTeX compilers
	JSON vs. YAML
	GinVoice roadmap

