
TUGboat, Volume 45 (2024), No. 1 89

Fast regression testing of TEX packages:
Multiprocessing and batching

Vít Starý Novotný, Marei Peischl

Abstract

In the version 3.0.0 of the Markdown package for TEX,
the number of regression tests increased from 143 to
783. This caused the tests to run for up to 15 hours,
which slowed down our development cycle. In this
article, we describe a novel technique for batching
test files that reduced our testing time from 15 hours
to just 15 minutes. With batching, the amount of
time that is spent on actual testing increased from
5% to 97%. When combined with multiprocessing on
32 CPUs, our batching technique achieved a speed
increase of up to 161 times compared to running
without any multiprocessing or batching.

1 Introduction

Small TEX packages, typically developed in a sin-
gle iteration rather than through ongoing updates,
can depend on user feedback to maintain the code.
However, this approach has its limitations. Larger
projects, especially those that are continuously de-
veloped, require a more robust solution. Automated
regression tests are crucial in these cases. They en-
sure that any changes, either in the code itself or
its external dependencies, do not alter the expected
behavior of the code.

The Markdown package for TEX also features
a set of regression tests. These tests, designed to be
completed in just a few minutes, provide immediate
feedback and are automatically conducted on any up-
dates submitted to the package’s GitHub repository.

After the implementation of the CommonMark
standard in version 3.0.0 of the Markdown package,
the number of tests increased from 143 to 783 (about
a 5.5-fold increase). This caused the tests to take up
to 15 hours to run, using free GitHub-hosted runners,
too slow to provide any benefit to developers.

In order to increase the testing speed, we imple-
mented a novel technique for batching test files and
we added self-hosted runners with up to 12 CPUs.
After these changes, the tests finish in about 15 min-
utes, which is a 60-fold speed increase and which
makes the tests practically useful to developers.

In this article, we describe the testing framework
of the Markdown package. In sections 2 through 4,
we describe the definition files, techniques, and strate-
gies used in our framework. In Section 5, we describe
the details of our implementation. In sections 6
and 7, we describe our experiments and their results.
In Section 8, we discuss prior work related to our

framework. We conclude in Section 9 by summariz-
ing our contributions and outlining future work.

2 Definition files

In the future, an AI agent might examine the code of a
TEX package and identify any incorrect behavior. For
the moment, regression testing requires the manual
creation of many definition files that describe the
expected behavior and how it should be validated.

In this section, we describe the definition files
used in our framework: test files, formats, commands,
and templates.

2.1 Test files

The Markdown package converts markdown text to
TEX commands. To validate the conversion, our
framework redefines these TEX commands to pro-
duce output in the .log file, which we then examine.

A test file consists of a) TEX code that configures
the Markdown package, b) markdown text, and c) the
expected output in the .log file.

As an example, strike-through.test tests the
strike-through syntax extension:
\markdownSetup

{ strikeThrough }
<<<
Hello ~~world~~!
>>>
BEGIN document
strikeThrough: world
END document

a

b

c
strike-

through.test

2.2 Formats, commands, and templates

The Markdown package supports several combina-
tions of TEX formats and engines. For each TEX
format, there are also several ways to input mark-
down text. Our framework ensures that a markdown
text always produces the same output.

A format consists of one or more a) commands
that can be used to typeset documents in a TEX
format using different TEX engines and b) templates
that specify the different ways in which markdown
text can be input with the TEX format.

An example format plain contains commands
for the pdfTEX, X ETEX, and LuaTEX engines:
pdftex --shell-escape

TEST_FILENAME↪→

xetex --shell-escape
TEST_FILENAME↪→

luatex TEST_FILENAME1 COMMANDS.m4

1 The Markdown package uses Lua to parse markdown
text. Whereas LuaTEX can execute Lua code directly, other
TEX engines must use the shell of the operating system to

doi.org/10.47397/tb/45-1/tb139starynovotny-testing

Fast regression testing of TEX packages: Multiprocessing and batching

https://doi.org/10.47397/tb/45-1/tb139starynovotny-testing

90 TUGboat, Volume 45 (2024), No. 1

The format plain also contains two templates. One
uses the \markdownInput TEX macro and the other
one uses the \markdownBegin and End TEX macros:

\input markdown
\input TEST_SETUP_FILENAME
\markdownInput

{TEST_INPUT_FILENAME}↪→

\bye input.tex.m4

\input markdown
\input TEST_SETUP_FILENAME
\markdownBegin
undivert(TEST_INPUT_FILENAME)
\markdownEnd
\bye verbatim.tex.m4

2.3 Materialized templates and commands

During testing, the texts TEST_SETUP_FILENAME and
TEST_INPUT_FILENAME in templates are replaced with
names of auxiliary files that contain the TEX code and
the markdown text parts of a test file, respectively.
Also, the text undivert(TEST_INPUT_FILENAME) is re-
placed with the literal markdown text from the test
file. After the replacement, we say that the template
has been materialized.

Here is the template verbatim.tex.m4 from
Section 2.2 after it has been materialized with the
test file strike-through.test from Section 2.1:

verbatim.tex.m4 + strike-
through.test

↰

\input markdown
\input test-setup.tex
\markdownBegin
Hello ~~world~~!
\markdownEnd
\bye verbatim.tex

\markdownSetup
{ strikeThrough }

test-setup.tex

After a template has been materialized, the text
TEST_FILENAME in all commands is replaced with the
filename of the materialized template. After the re-
placement, the command has also been materialized.

execute Lua code. Since accessing the shell is a security risk,
users must express their consent by writing --shell-escape.

Here are the commands COMMANDS.m4 from Sec-
tion 2.2 after they have been materialized:

COMMANDS.m4 + verbatim.tex ↰
pdftex --shell-escape

verbatim.tex↪→

xetex --shell-escape
verbatim.tex↪→

luatex verbatim.tex COMMANDS
During testing, the materialized commands are exe-
cuted. Each command produces a .log file, which is
compared to the expected output from the test file.

3 Computational techniques

While testing all combinations of test files, templates,
and commands ensures comprehensive coverage of all
potential configurations, it can be time-consuming.

In this section, we describe the computational
techniques of multiprocessing, the batching of test
files, and how they increase the speed of testing in
our framework. Furthermore, the batching of test
files raises challenges with load balancing and the
attribution of errors. We discuss the challenges and
describe the techniques of batch size limiting and
batch splitting to address them.

3.1 Multiprocessing

Whereas TEX uses only a single CPU, modern PCs
can contain several CPUs. Therefore, we can increase
the speed of testing by using multiprocessing, where
each CPU processes a different test file:

first.test
second.test

third.test
Using N CPUs increases testing speed up to N times.

3.2 Batching of test files

At the beginning of a document, TEX initializes pack-
ages, fonts, Lua scripts, and other assets, which slows
down testing:
\input markdown
\input test-setup.tex
\markdownBegin
Hello ~~world~~!
\markdownEnd
\bye

slow

fast

verbatim.tex

Vít Starý Novotný, Marei Peischl

TUGboat, Volume 45 (2024), No. 1 91

To increase the speed of testing, we can amortize
the cost of initialization by materializing a template
with a batch of several test files:

input.tex.m4 + first.test,
second.test,
third.test

↰

\input markdown
{\input first-test-setup.tex
\markdownInput{first.md}}

{\input second-test-setup.tex
\markdownInput{second.md}}

{\input third-test-setup.tex
\markdownInput{third.md}}
\bye

input.tex

Batching N test files decreases initialization cost N
times. How much this speeds up testing depends on
the ratio between the time spent on initialization and
the time spent on processing the rest of the template.

3.3 Batch size limiting

When we use both multiprocessing and batching with
large batch sizes, most CPUs will be unused:

used
unused

unused

We can limit the batch size so that all CPUs are used:

used
used

used

Limiting the batch size increases the speed of testing,
because every used CPU has less work to do.2

3.4 Batch splitting

When we test batches of test files, a .log file is split
into sections corresponding to individual test files and
compared with the expected test file outputs. How-
ever, if a fatal error occurs, the .log file may become
malformed. To find the test file responsible for the er-
ror, we repeatedly split the batch using binary search.

2 However, the CPUs do more work overall, because every
used CPU has to pay the initialization cost and more CPUs are
used. Therefore, limiting the batch size increases the speed of
testing but decreases energy efficiency.

Here is how we would split a batch of test files
first.test, second.test, and third.test, where
second.test causes a fatal error:

first.test second.test third.test

first.test second.test third.test

caused error → second.test third.test

First, we try processing all files together but we
encounter a fatal error. Therefore, we divide the
files into two groups: one with first.test and
the other with second.test and third.test. Pro-
cessing these separately, we again face a fatal error
in the group with second.test and third.test.
We then split this group into two individual files,
second.test and third.test, and we process them.
The fatal error occurs with second.test, which we
identify as the cause of the error.

When only one test file out of N files in a batch
causes a fatal error, batch splitting executes at most
2(log2 N+1) commands. This is less than or equal to
N for sufficiently large batch sizes N ≥ 8. Therefore,
in the presence of no more than a few fatal errors,
batching is still faster than sequential processing.

4 Error handling strategies

Developers and maintainers have different needs
when it comes to the handling of errors. Whereas
developers need immediate feedback during the devel-
opment of new features, maintainers require a com-
prehensive summary of all errors when they deal with
unexpected breakage.

In this section, we describe the error handling
strategies of developer- and maintainer-oriented test-
ing and updating test files. We also discuss how
these strategies increase the speed of development
and decrease maintenance costs.

Fast regression testing of TEX packages: Multiprocessing and batching

92 TUGboat, Volume 45 (2024), No. 1

4.1 Developer-oriented testing

In the practice of test-driven development, before
adding a new feature, developers first write new
test files that describe the expected behavior of the
feature. Then, they develop the feature until all test
files have passed. At the beginning, old test files will
pass, whereas new test files will fail. At the end, all
test files, both old and new, should pass.

In order to increase the speed of development,
tests should fail fast to provide immediate feedback.
Therefore, developers can configure our framework
to start with the new test files, which are the most
likely to fail, and stop at the first error rather than
wait until all tests have finished.

For example, imagine a TEX package with two
test files: first.test and second.test. For sim-
plicity, the package has only one format with one
template and with three commands for the pdfTEX,
X ETEX, and LuaTEX engines. Before the develop-
ment of a new feature, developers add a new test file
third.test and they run the tests with the following
results:

pdfTEX X ETEX LuaTEX

first.test

second.test

third.test ✗

Since third.test was new, it was tested first and
immediately failed, providing immediate feedback to
developers. This is how we test all updates submitted
to the GitHub repository of the Markdown package.

4.2 Maintainer-oriented testing

Tests can fail not just during the development of new
features but also during maintenance. These errors
are often caused by changes to external dependencies
such as TEX engines, formats, and packages.

In order to decrease maintenance costs, tests
should provide comprehensive feedback. Therefore,
maintainers can configure our framework to always
process all test files and produce a helpful summary
of all errors.

Continuing the example from the previous sec-
tion, developers finish the new feature and release an
updated version of their package on CTAN. However,
after a month, the tests fail with the following results:

pdfTEX X ETEX LuaTEX

first.test ✓ ✗ ✓

second.test ✓ ✗ ✓

third.test ✓ ✗ ✓

At a glance, the summary shows that the errors are
related to the X ETEX engine. This is how we test
the Markdown package every week.

4.3 Updating test files

Although test-driven development is well-suited to
adding new features, fundamental changes to the
code may require that existing test files are updated
as well. Furthermore, writing test files before the
development of a feature can be difficult, especially
for complex features with incomplete requirements.

In order to increase the speed of development,
developers can configure our framework to update
test files instead of failing. Developers can make
fundamental changes and our framework will update
the expected outputs in test files to match the actual
output. Furthermore, developers can also develop
a feature, write partial test files for the feature that
contain only the TEX code and markdown text, and
use our framework to fill in the expected output.
Then, developers can review the changes and deter-
mine whether they are correct.

Our framework will update a test file only if all
templates and commands produce consistent outputs.
In the example from the previous section, the com-
mand for the X ETEX engine failed for all test files,
whereas the other commands did not. Therefore, our
framework would not update any test files and fail.

5 Implementation

Before Markdown 3.0.0, our framework was imple-
mented by a Bash script test.sh; see Listing 1.

At first, test.sh processed test files sequentially
and did not use the computational techniques from
Section 3 to increase the speed of testing. Since
Markdown 2.4.0, we used the GNU Parallel command-
line tool [7] to implement multiprocessing:

$ find -name '*.test' | parallel ./test.sh

Out of the error handling strategies from Section 4,
test.sh could only update test files.

While Bash is convenient for simple programs,
more complicated programs are better written in
a more expressive language. In Markdown 3.0.0, we
rewrote our framework from Bash to Python 3 [4].

Out of the techniques and strategies from Sec-
tions 3 and 4, the higher expressiveness of Python
allowed us to implement the batching of test files,
developer- and maintainer-oriented testing, and batch
splitting. Furthermore, Python’s built-in support for
multiprocessing allowed us to stop using GNU Paral-
lel and implement batch size limiting.

Vít Starý Novotný, Marei Peischl

TUGboat, Volume 45 (2024), No. 1 93

#!/bin/bash
set -o errexit -o pipefail -o nounset
BUILDDIR="$(mktemp -d)"
trap 'rm -rf "$BUILDDIR"' INT TERM
for TESTFILE; do

printf 'Testfile %s\n' "$TESTFILE"
for FORMAT in templates/*/; do

printf ' Format %s\n' "$FORMAT"
for TEMPLATE in "${FORMAT}"*.tex.m4; do

printf ' Template %s\n' "$TEMPLATE"
m4 -DTEST_FILENAME=test.tex <"$FORMAT"/COMMANDS.m4 |
(while read -r COMMAND; do

printf ' Command %s\n' "$COMMAND"

Set up the testing directory.
cp support/* "$TESTFILE" "$BUILDDIR"
cd "$BUILDDIR"
sed -r '/^\s*<<<\s*$/{x;q}' \

<"${TESTFILE##*/}" >test-setup.tex
sed -rn '/^\s*<<<\s*$/,/^\s*>>>\s*$/{/^\s*(<<<|>>>)\s*$/!p}' \

<"${TESTFILE##*/}" >test-input.md
sed -n '/^\s*>>>\s*$/,${/^\s*>>>\s*$/!p}' \

<"${TESTFILE##*/}" >test-expected.log
m4 -DTEST_SETUP_FILENAME=test-setup.tex \

-DTEST_INPUT_FILENAME=test-input.md <"$OLDPWD"/"$TEMPLATE" >test.tex

Run the test, filter the output and concatenate adjacent lines.
eval "$COMMAND" >/dev/null 2>&1 ||

printf ' Command terminated with exit code %d.\n' $?
touch test.log
sed -nr '/^\s*TEST INPUT BEGIN\s*$/,/^\s*TEST INPUT END\s*$/{

/^\s*TEST INPUT (BEGIN|END)\s*$/!H
/^\s*TEST INPUT END\s*$/{s/.*//;x;s/\n//g;p}

}' <test.log >test-actual.log

Compare the expected outcome against the actual outcome.
diff -a -c test-expected.log test-actual.log ||
Uncomment the below lines to update the testfile.

(sed -n '1,/^\s*>>>\s*$/p' <"${TESTFILE##*/}" &&
cat test-actual.log) >"$OLDPWD"/"$TESTFILE" ||

false

Clean up the testing directory.
cd "$OLDPWD"
find "$BUILDDIR" -mindepth 1 -exec rm -rf {} +

done)
done

done
done
rm -rf "$BUILDDIR"

a

b

c

d

test.sh

Listing 1: The shell script test.sh that implemented the testing framework of the
Markdown package before version 3.0.0. For each test file, test.sh a) materializes
templates in a temporary directory, b) executes materialized commands, c) compares
the .log file against the expected output, and d) optionally updates the test file.

Fast regression testing of TEX packages: Multiprocessing and batching

94 TUGboat, Volume 45 (2024), No. 1

6 Experiments

In this section, we describe our experiments with
multiprocessing and batching. In our experiments,
we aimed to answer the following research questions:

1. What is the speed benefit of multiprocessing?

2. What is the speed benefit of batching test files?

3. What is the speed benefit of batch size limiting?

To answer the questions, we tested the Markdown
package with different CPU counts and batch sizes:

• Numbers of CPUs: 1, 2, 4, 8, 16, and 32

• Batch sizes: 1, 2, 4, 8, . . . , 256, 512, and 1024

To ensure reliability of our findings, we repeated each
test configuration five times and we measured the
median testing time to control for sample variance.
Our experimental code is available online. [6]

We tested the Markdown package at Git commit
7613632 from August 21, 2023. At this commit, the
Markdown package contained 783 test files. For
each test file, 14 commands were materialized and
executed: four for plain TEX, four for LATEX, and
six for ConTEXt MkIV. Therefore, TEX formats were
initialized up to 14·783 = 10,962 times during testing.

To show the speed benefit of batch size limiting,
we deactivated it in our experiments, thereby high-
lighting the speed reduction caused by its absence.

We ran the experiments for 33 days on a shared
GNU/Linux server with 400 GB of RAM and 80 CPUs,
each at 2.1 GHz.

7 Results

Figure 1 shows the results of our experiments. In this
section, we discuss the results and how they relate to
the three research questions outlined in the previous
section.

1 2 4 8 16 32 64 128 256 512 1024
Batch size

10m
15m

30m

1h

2h

4h

8h

16h

32h

M
ed

ia
n

tim
e

Median Time vs. Batch Size for Different Numbers of CPUs

1 CPU
2 CPUs
4 CPUs
8 CPUs
16 CPUs
32 CPUs

Figure 1: The median testing times for different
numbers of CPUs and batch sizes

7.1 Multiprocessing

With batch size 1, the testing speed scales almost
linearly with the number of CPUs, as we would ex-
pect: Whereas with 1 CPU, the median testing time
is 27 hours and 2 minutes, it is only 1 hour and
6 minutes with 32 CPUs (about 24-fold speed-up).3

7.2 Batching of test files

With 1 CPU, the testing speed also scales almost
linearly with the batch size, up to a point. Whereas
with batch size 1, the median testing time is 27 hours
and 2 minutes, it is only 4 hours and 30 minutes with
batch size 8 (about 6-fold speed-up), and 1 hour and
20 minutes with batch size 512 (about 21-fold speed-
up). This indicates that initialization dominates the
testing time.

To better understand the relationship between
the initialization and the testing time, we can solve
the following series of equations:

14 · (783 · (X + Y)) = 27 hours and 2 minutes
14 · (X + 783 · Y) = 1 hour and 16 minutes

On the left-hand side of the equations, the variable
X stands for the mean time that it takes to initialize
a TEX format and the variable Y stands for the
mean time that it takes to process the markdown
text from a single test file. On the right-hand side
of the equations are the median testing times with
1 CPU and batch sizes 1 (above) and 1024 (below).

The solution shows that whereas it takes a full
X ≈ 8.47 seconds to initialize a TEX format, it takes
only Y ≈ 0.41 seconds to process a markdown text.
In other words, without batching, 95% of time is
spent on initialization and only 5% on actual testing;
with batching, up to 97% of time is spent on testing.

7.3 Batch size limiting

The speed improvements from multiprocessing and
batching are additive, up to a point. Whereas with
1 CPU and batch size 1, the median testing time is
27 hours and 2 minutes, it is only 10 minutes with
32 CPUs and batch size 32 (about 161-fold speed-up).

When the number of CPUs multiplied by the
batch size exceeds the number of test files (783), we
cannot use all CPUs and the testing speed decreases.
Whereas with 32 CPUs and batch size 16, the median
testing time is only 11 minutes, it is 1 hour and
24 minutes with the same number of CPUs and batch
size 1024 (about 8-fold slow-down). Our framework
prevents this effect by limiting the batch size.

3 The reason that we did not achieve the theoretical 32-fold
speedup is likely tasks from other users on our server.

Vít Starý Novotný, Marei Peischl

TUGboat, Volume 45 (2024), No. 1 95

8 Related work

Besides our framework, there exist other frameworks
for regression testing of TEX packages. Furthermore,
the computational techniques in our framework are
often adapted from previous work in other fields.

In this section, we discuss the regression test-
ing framework of the l3build package management
system and we compare it with our framework. Fur-
thermore, we discuss the origin of the batching of
test files and batch splitting.

8.1 The l3build package

The l3build package [2, 9, 8, 1] provides a compre-
hensive system for TEX package management that
also includes a regression testing framework.

Whereas our framework is written in Python,
l3build is written in Lua. Each language presents its
own set of strengths and weaknesses. On one hand,
every modern installation of TEX includes a Lua
interpreter, which makes l3build more accessible for
TEX users compared to our framework. On the other
hand, unlike Python, Lua has no built-in support
for multiprocessing. Therefore, l3build users must
use external tools like GNU Parallel to use multiple
CPUs for testing, whereas our framework can use
multiple CPUs out of the box.

In our framework, each test file is designed to
hold a single self-contained test that avoids modify-
ing the global state. This design allows for straight-
forward grouping of tests into batches, where each
test is isolated from others using TEX groups, as we
discussed in Section 3.2.

In l3build, a single test file may contain multiple
tests. These tests can be interdependent, creating
a challenge in separating them from their files. Ad-
ditionally, these tests might change the global state,
which poses a risk of unexpected conflicts when tests
are grouped into batches. Due to these complexi-
ties, l3build does not support the batching of tests.
Nonetheless, the practice of including multiple tests
in a single test file can be seen as a form of manual
batching that amortizes the cost of initialization.

Both our framework and l3build support the
updating of test files [1, Section 2.7]. This allows
developers to automatically generate parts of test
files when they make fundamental changes to the
code or when they develop complex new features, as
discussed in Section 4.3.

8.2 Batching and batch splitting

The techniques of batching and batch splitting were
perhaps first used with TEX in the ARQMath com-
petitions in large-scale indexing of math formulae.

In the first ARQMath competition, the MIRMU
team used the LATEXML tool to convert TEX formu-
lae to XML [5, Section 2.2]. Due to speed issues
when processing each formula separately, MIRMU
processed them in batches. However, a single error
would cause the loss of an entire batch. Therefore,
MIRMU used batch splitting to recover correct for-
mulae after an error [3].

In the third ARQMath competition, the orga-
nizers used the same techniques to provide math
formulae in the XML format to all participants.

9 Conclusion

Larger TEX packages commonly use regression tests
to ensure code integrity over time. In this study, we
explored techniques for speeding up the regression
testing of TEX packages. We have shown that batch-
ing test files can improve the testing efficiency from
5% to 97%. We have also shown that multiprocessing
on 32 CPUs combined with the batching of test files
increases testing speed up to 161 times.

The lessons learned from our work are as follows:
• Whereas TEX uses only a single CPU, modern

PCs can contain several CPUs. Multiprocessing
can increase testing speed by using these CPUs.

• Writing small isolated test files is convenient
for authors but carries a high initialization cost
during testing. For TEX packages such as the
Markdown package, where tests are easy to iso-
late, the batching of test files can be used to
recover the initialization cost.

• Whereas developers need tests to fail as fast as
possible, maintainers benefit from a comprehen-
sive summary of all errors.
We hope that our practical lessons will improve

the regression testing practices used in the devel-
opment and maintenance of TEX packages. With
fast regression testing, developers can quickly intro-
duce new features, while maintainers can proactively
address emerging issues before they affect users.

Disclaimer

No wolves were harmed in the making of this article.

Fast regression testing of TEX packages: Multiprocessing and batching

96 TUGboat, Volume 45 (2024), No. 1

Acknowledgements

We would like to gratefully acknowledge the Natural
Language Processing Center at the Faculty of Infor-
matics, Masaryk University, Brno, who kindly pro-
vided computational resources for our experiments.

We also wish to extend our special thanks to
Joseph Wright, Ben Frank, Barbara Beeton, and
Karl Berry for their invaluable insights and thorough
review of our work. Their expertise and thoughtful
feedback have been instrumental in shaping the final
manuscript.

Donation request

Despite our breakthroughs in testing speed, addi-
tional computational resources would greatly accel-
erate the development and maintenance of the Mark-
down package for TEX.

We graciously invite donations of GitHub self-
hosted runners, particularly those hosted on GNU/
Linux servers with at least 16 GB of RAM and 12
CPUs. For more information, please contact us by
email. Donors will be acknowledged in the project
documentation, with the option to remain anony-
mous upon request.

References

[1] LATEX project team. l3build: A testing and
building system for (LA)TEX, Nov. 2023.
ctan.org/pkg/l3build

[2] F. Mittelbach, W. Robertson, LATEX3 team.
l3build: A modern Lua test suite for TEX
programming. TUGboat 35(3):287–293, 2014.
tug.org/TUGboat/tb35-3/tb111mitt-
l3build.pdf

[3] V. Novotný. ARQMath data preprocessing,
June 2020. github.com/MIR-MU/ARQMath-
data-preprocessing/blob/main/scripts/
latex_tsv_to_cmml_and_pmml_tsv.py

[4] V. Novotný. Implement batching and
summarization to unit tests, Jan. 2023.
github.com/witiko/markdown/issues/245

[5] V. Novotný, P. Sojka, et al. Three is better than
one. In CEUR Workshop Proceedings: ARQMath
task at CLEF conference, vol. 2696, pp. 1–30,
Thessaloniki, Greece, 2020. CEUR-WS.
ceur-ws.org/Vol-2696/paper_235.pdf

[6] V. Starý Novotný. Measure the speed of
tests with different numbers of processes and
batch sizes, Oct. 2023. github.com/Witiko/
markdown/blob/main/experiments/2023-10-
12-test-batching

[7] O. Tange. GNU Parallel: The command-line
power tool. USENIX Mag, 36(1):42–47, 2011.
Available from doi.org/10.5281/zenodo.
8278274.

[8] J. Wright. l3build: The beginner’s guide.
TUGboat 43(1):40–43, 2022. tug.org/TUGboat/
tb43-1/tb133wright-l3build.pdf

[9] J. Wright, LATEX3 team. Automating LATEX(3)
testing. TUGboat 36(3):234–236, 2015.
tug.org/TUGboat/tb36-3/tb114wright.pdf

⋄ Vít Starý Novotný
Studená 453/15
Brno 63800, Czech Republic
witiko (at) mail dot muni dot cz
github.com/witiko

⋄ Marei Peischl
Gneisenaustr. 18
Hamburg 20253, Germany
marei (at) peitex dot de
peitex.de

Vít Starý Novotný, Marei Peischl

https://ctan.org/pkg/l3build
https://tug.org/TUGboat/tb35-3/tb111mitt-l3build.pdf
https://tug.org/TUGboat/tb35-3/tb111mitt-l3build.pdf
https://github.com/MIR-MU/ARQMath-data-preprocessing/blob/main/scripts/latex_tsv_to_cmml_and_pmml_tsv.py
https://github.com/MIR-MU/ARQMath-data-preprocessing/blob/main/scripts/latex_tsv_to_cmml_and_pmml_tsv.py
https://github.com/MIR-MU/ARQMath-data-preprocessing/blob/main/scripts/latex_tsv_to_cmml_and_pmml_tsv.py
https://github.com/witiko/markdown/issues/245
https://ceur-ws.org/Vol-2696/paper_235.pdf
https://github.com/Witiko/markdown/blob/main/experiments/2023-10-12-test-batching
https://github.com/Witiko/markdown/blob/main/experiments/2023-10-12-test-batching
https://github.com/Witiko/markdown/blob/main/experiments/2023-10-12-test-batching
https://doi.org/10.5281/zenodo.8278274
https://doi.org/10.5281/zenodo.8278274
https://tug.org/TUGboat/tb43-1/tb133wright-l3build.pdf
https://tug.org/TUGboat/tb43-1/tb133wright-l3build.pdf
https://tug.org/TUGboat/tb36-3/tb114wright.pdf

	Introduction
	Definition files
	Test files
	Formats, commands, and templates
	Materialized templates and commands

	Computational techniques
	Multiprocessing
	Batching of test files
	Batch size limiting
	Batch splitting

	Error handling strategies
	Developer-oriented testing
	Maintainer-oriented testing
	Updating test files

	Implementation
	Experiments
	Results
	Multiprocessing
	Batching of test files
	Batch size limiting

	Related work
	The l3build package
	Batching and batch splitting

	Conclusion

