Semi-automated $\mathrm{Ti}k\mathbf{Z}$ directed acyclic graphs in R

Travis Stenborg

Abstract

Directed acyclic graphs (DAGs) are a key visualisation tool in graph theory. Semi-automated generation of TikZ code for rendering DAGs is introduced. Automatic TikZ generation via the causalDisco package of the R statistical programming language is proposed. Such easy, rapid DAG generation for LATEX environments alleviates the need for tedious manual layout of DAG vertices and edges.

1 Directed acyclic graphs

Directed acyclic graphs (DAGs) are a type of mathematical graph structure consisting of *vertices* connected by *edges*. DAGs have two properties that distinguish them from general graphs. Firstly, DAGs have edges with an associated direction defining an order to the vertices (hence, *directed*). Secondly, the edges never define a path wherein the starting vertex of a path is also its ending vertex (hence, *acyclic*).

DAGs have applications in fields such as causal data science [4], computational optimisation [5] and even TEX paragraph aesthetics [7]. TikZ rendering allows fine tuning of graph presentation, and easy font matching with underlying IATEX documents.

2 The causalDisco R package

The "causal discovery" R package, causalDisco, can autogenerate TikZ code to render DAGs from a concise vertex and edge specification. A version (0.9.1) is available from CRAN, but the more recent version (0.9.3) from GitHub addresses rendering bugs. Additionally, causalDisco has Bioconductor package dependencies. A combined download call in R is:

BiocManager::install(c("graph", "RBGL"))
github_repo <- "annennenne/causalDisco"
devtools::install_github(github_repo)</pre>

3 Automated TikZ from R

Example R code to render a DAG in TikZ is given below. A seven-vertex graph derived from coral reef ecology [1] was used here.

dag_matrix = matrix(

c(0,	0,	0,	0,	0,	0,	0,
0,	0,	0,	0,	0,	0,	0,
0,	0,	0,	0,	0,	0,	0,
1,	1,	0,	0,	0,	0,	0,
1,	0,	1,	1,	0,	0,	0,
Ο,	1,	1,	0,	1,	0,	0,
0,	0,	0,	1,	0,	1,	0),
nrow	= 7, ncol =				7,	byrow = TRUE)

```
# Specify matching matrix row and column names.
rownames(dag_matrix) <- c(</pre>
  "a_nd1", "a_nd2", "a_nd3",
  "b_nd4", "b_nd5", "b_nd6", "c_nd7")
colnames(dag_matrix) = rownames(dag_matrix)
# Create a temporal adjacency matrix.
model <- causalDisco::tamat(</pre>
 dag_matrix, c("a", "b", "c"))
# Render TikZ and copy to clipboard.
causalDisco::maketikz(model, xjit = 0,
 markperiods = FALSE, addAxis = FALSE,
 varLabels = list(
    a_nd1 = "Depth",
    a_nd2 = "\\footnotesize Structural\\\\
             \\footnotesize Complexity",
    a_nd3 = "\\footnotesize Human\\\\
             \\footnotesize Gravity",
    b_nd4 = "MPA",
    b_nd5 = "\\footnotesize Fishing\\\\
             \\footnotesize Pressure",
    b_nd6 = "\\footnotesize Reef Fish\\\\
```

)

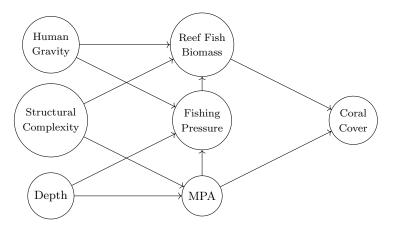
By default, causalDisco generates \small vertex labels. To better balance the size of graph vertices with multiline vs. single line labels, judicious label adjustment via \footnotesize was made.

\\footnotesize Biomass",

\\footnotesize Cover")

c_nd7 = "\\footnotesize Coral\\\\

4 Finishing touches


There is no shortage of learning material for TikZ beginners [2, 6, 8, 10, 11, 12, 13, 14, 15, 16, 17]. Assuming TikZ basics are familiar, the causalDisco manual recommends the following TikZ preamble.

```
\usepackage{tikz}
\usetikzlibrary{arrows, arrows.meta,
   automata, backgrounds, shapes, snakes,
   petri}
\usepackage{pgfplots}
```

The example causalDisco code copies TikZ commands to the system clipboard. They should be pasted into a $TikZ \begin{tikzpicture} and \end{tikzpicture} block. The compiled results generate$ *naked nodes*, i.e. nodes without any encapsulating boundary. Here however, additional <math>TikZ shape calls, shown below, were manually added to nodes to encircle them (hence, *semi-automated*).

\node (1) at (0,1) [shape=circle,draw]
 {Depth};

The end result is given in Figure 1.

Figure 1: Directed acyclic graph visualising the causal structure of the influence of marine protected areas (MPAs [9]) on reef fish biomass. Adapted from an example in coral reef ecology [1]. *Human gravity* measures the human population near a reef, divided by the square of the time it takes to travel to that reef [3].

Acknowledgements

This work was supported by the Australian Research Council Training Centre in Data Analytics for Resources and Environments (project ICI9010031).

References

- S. Arif, M.A. MacNeil. Utilizing causal diagrams across quasi-experimental approaches. *Ecosphere*, 13(4):e4009, 2022.
- [2] I. Borja. An introduction to automata design with TikZ's automata library. *TUGboat* 44(1):102-107, 2023. doi.org/10.47397/tb/ 44-1/tb136prado-automata
- [3] J.E. Cinner, E. Maire, et al. Gravity of human impacts mediates coral reef conservation gains. *Proc. Natl. Acad. Sci. USA*, 115(27):E6116–E6125, 2018.
- [4] G. Gao, B. Mishra, D. Ramazzotti. Causal data science for financial stress testing. *J. Comput. Sci.*, 26:294–304, 2018.
- [5] J.L. Gross, J. Yellen, P. Zhang. Handbook of Graph Theory, 2nd Edition. Chapman and Hall/CRC, 2013.
- [6] G. Grätzer. More Math Into LATEX. Springer, Cham, 5th ed., 2016.
- Y. Haralambous. T_EX as a path, a talk given at Donald Knuth's 80th birthday celebration symposium. *TUGboat* 39(1):8-15, 2018. tug.org/TUGboat/ tb39-1/tb121haralambous-knuth80.pdf
- [8] S. Kottwitz. *IAT_EX graphics with TikZ*. Packt, Birmingham, 2023.

- D. Laffoley, J.M. Baxter, et al. Ch. 29: Marine protected areas. In World Seas: An Environmental Evaluation, pp. 549–569. Elsevier, second ed., 2019.
- C. Maggi. The DuckBoat: The Morse code of TikZ. TUGboat 39(1):21-26, 2018. tug.org/ TUGboat/tb39-1/tb121duck-tikz.pdf
- [11] C. Maggi. The DuckBoat: You do not need to be Neo to cope with a TikZ matrix. TUGboat 41(1):20-25, 2020. tug.org/TUGboat/tb41-1/ tb127duck-matrix.pdf
- [12] A. Mertz, W. Slough. Graphics with PGF and TikZ. TUGboat 28(1):91-99, 2007. tug.org/TUGboat/tb28-1/tb88mertz.pdf
- [13] A. Mertz, W. Slough. A TikZ tutorial: Generating graphics in the spirit of T_EX. *TUGboat* 30(2):214-226, 2009. tug.org/TUGboat/tb30-2/tb95mertz.pdf
- T. Stenborg. A TikZ rendering of the Arecibo message. TUGboat 44(3):375-377, 2023. doi.org/10.47397/tb/44-3/ tb138stenborg-arecibo
- [15] M.R.C. van Dongen. LATEX and Friends. Springer, Berlin, 2012.
- [16] Z. Walczak. Graphics in LATEX using TikZ. TUGboat 29(1):176-179, 2008. tug.org/TUGboat/tb29-1/tb91walczak.pdf
- [17] K. Wolcott. Three-dimensional graphics with PGF/TikZ. TUGboat 33(1):102-113, 2012. tug.org/TUGboat/tb33-1/tb103wolcott. pdf

Travis Stenborg
 Sydney, Australia
 ORCID 0000-0002-2693-9628