
TUGboat, Volume 45 (2024), No. 1 109

Is a given input a valid TEX 〈dimen〉?

Udo Wermuth

Abstract

This article discusses the question of how one can
determine if a given string of characters represents
a valid dimension for TEX. A macro that looks and
behaves like a Boolean conditional is implemented
to answer the question.

1 Introduction

This text is a follow-on article to [3], which explains
how one can decide if a given string of characters
is a valid number for TEX; the macro implemented
there is named \ifisint. In the current article we
look at the problem to decide if a given input is a
valid dimension for TEX.

This paper also explains the implementation of
a macro named \ifisdim with the structure known
from \ifisint. It is essential that a reader of this
article has studied [3] as this text often refers to [3]
without repeating the introduced techniques.

Contents. This article follows the analysis found
in [3] and describes how to implement a TEX macro
looking like a Boolean conditional to answer the
question of the title; as mentioned above, the macro
is named \ifisdim. The expectations formulated
in [3], section 2, apply to \ifisdim accordingly.

Section 2 lists facts about TEX’s dimensions
that are important to understand \ifisdim. Sec-
tion 3 contains the code for \ifisdim.

2 About dimensions

It’s too näıve to say that a dimension is a TEX num-
ber and a unit; what’s correct is that a dimension
consists of a numeric part and a unit ([1], pp. 270–
271). One option for the numeric part is a TEX
〈number〉, i.e., an integer. All encodings (see [3]) are
allowed but not their full range; see below. Another
option is the 〈decimal constant〉, i.e., a number fol-
lowed by a period or comma and a sequence of digits
that builds the fraction. TEX reads all digits that it
finds after the period or comma but at most the first
seventeen can influence the value of the dimension;
see §452 of [2].

TEX respects different traditions of writing dec-
imal constants and therefore accepts two symbols as
the separator between the integer part and the frac-
tion. TEX also respects the history of different print-
ing traditions and comes with plenty of units. There
are nine 〈physical unit〉s ([1], p. 57): One can use
pt (point) and pc (pica) from the American stan-

doi.org/10.47397/tb/45-1/tb139wermuth-isdim

Is a given input a valid TEX 〈dimen〉?



dardization in the 19th century or dd (didot point)
and cc (cicero) based on the practice of François-
Ambroise Didot in the 18th century. Next, TEX ac-
cepts in (inch) or units in the metric system: mm
(millimeter) and cm (centimeter). It introduced bp

(big point) and sp (scaled point). Moreover, TEX
also knows about traditional units used by typeset-
ters, ex (x-height) and em (quad width), that depend
on the font that’s currently in use ([1], p. 60).

The units ex and em don’t belong to the physi-
cal units as another parameter is required to deter-
mine their values: a font. Here we fix the font to
TEX’s default font cmr10 and include both units in
the tests of the new macro \ifisdim.

The two syntactic quantities 〈mudimen〉 and 〈fil
dimen〉 carry the word “dimen” in their description
but they cannot be assigned to a \dimen register.
〈mudimen〉 ([1], p. 270) must be used with a muskip,
which is a glue specification. 〈fil dimen〉 ([1], p. 271)
only occurs in stretch or shrink components of skips
and muskips; again it’s part of glue specifications.
\ifisdim doesn’t recognize these quantities as valid
TEX dimensions.

A valid unit is either one of the nine 〈physical
unit〉s that can be preceded by the keyword true

to protect it against magnification or the two font-
dependent units em and ex. All units are keywords so
that they can be written with category 11 or 12 char-
acters, in upper-, lower-, or mixed-case, and with
optional spaces in front of them; see [1], p. 268.

Dimensions are internally represented by TEX
in scaled points and TEX uses the unit pt if it has to
show a stored one. The numeric part of a dimension
in scaled points must lie between−230+1 and 230−1.
Thus, the range is smaller than the one for numbers;
see [3]. 1 sp is a very small distance, 65536 sp give
1 pt and that means the maximum decimal constant
for the unit pt is much smaller than 230 − 1.

Table 1: Ranges for physical units

unit max. decimal constant
†

shown as

pt 16383.99999237060546874 16383.99998pt∗

pc 1365.33333587646484374 16383.99994pt
in 226.70540618896484374 16383.99915pt
bp 16322.78954315185546874 16383.99998pt∗

dd 15312.02584075927734374 16383.99997pt
cc 1276.00215911865234374 16383.99995pt
mm 5758.31742095947265624 16383.99997pt
cm 575.83174896240234374 16383.99997pt
sp 1073741823.99999999999999999 16383.99998pt∗

Using the \fontdimen of cmr10:
ex 3805.32811737060546874 16383.99997pt
em 1638.39749908447265624 16383.99991pt

† With the (at most) seventeen significant decimal places.
∗ TEX represents this value as 230 − 1 sp = 1073741823 sp.

110 TUGboat, Volume 45 (2024), No. 1

The line in Table 1 for the unit pt tells us that
an infinite number of input strings with this unit are
mapped to TEX’s largest dimension. Plain TEX sets
\maxdimen to 16383.99999 pt but TEX shows it as
16383.99998 pt. When TEX has to show a dimension
it outputs at most five digits ([2], §103).

Enter the values 16383.99997711181640625 pt,
16322.78952789306640625 bp, and 1073741823 sp to
specify \maxdimen with the smallest decimal con-
stants for the three units that can do that.

3 The code for \ifisdim

A valid dimension is (1) an integer followed by a
valid unit or (2) a 〈decimal constant〉 with a valid
unit as described in section 2. Thus, we encounter
the three error messages of TEX when it reads an
integer as discussed in [3]. The scan dimen proce-
dure in [2], part 26, adds a few new error situations.
Sections 456 and 459 contain the message “Illegal
unit of measure” once for dimensions and once for
〈mudimen〉. And section 460 includes the error mes-
sage “Dimension too large”. In total we have to deal
with five error messages that TEX might show when
it reads a dimension.

The first new error message means that TEX
has found (or inserted) a numeric part and expects
now one of the valid units—maybe prefixed with
the keyword true. If it doesn’t find one it inserts
the unit pt to get a valid dimension. The numeric
part might have been generated by TEX if it wasn’t
able to read a number, i.e., TEX might have inserted
a zero as described in [3].

The second error message tells us that the com-
bination of numeric part and unit results in a scaled-
point value larger than 1073741823 sp. The help text
of the error message informs us that TEX throws the
input away and uses its largest dimension instead.

Analysis. Let’s list all possible scenarios. Several
of the following cases appear with and without more
input. We know how to handle this from \ifisint

so it isn’t mentioned here again. Only if it is impor-
tant that no more data is available is it handled as
a separate case.

1. TEX reads a valid dimension.

2. TEX doesn’t find a numeric part, uses 0 instead,
finds a valid unit.

3. TEX doesn’t find a numeric part, uses 0 instead,
doesn’t find a unit, uses pt instead.

4. TEX doesn’t find a numeric part, uses 0 instead,
finds an invalid unit, uses pt instead.

5. TEX finds as numeric part a number larger than
2147483647, uses 2147483647 instead, finds a

Udo Wermuth



valid unit, thus the dimension is too large and
TEX uses \maxdimen instead.

6. TEX finds as numeric part a number larger than
2147483647, uses 2147483647 instead, finds no
valid unit, inserts pt, thus the dimension is too
large and TEX uses \maxdimen instead.

7. TEX finds a numeric part and a valid unit but
the combination creates a dimension that’s too
large, uses \maxdimen instead.

8. TEX finds a numeric part but no unit, inserts
unit pt and builds a valid dimension.

9. TEX finds a numeric part but no unit, inserts
unit pt, the combination creates a dimension
that’s too large, uses \maxdimen instead.

The list is much longer than the one in [3] for
\ifisint. But a second check shows that several
cases can be deleted. Cases 5 and 6 are just special
cases of 7 with more error messages. Next, cases 3, 8
and 9 can be avoided if the sentinel (see [3]) is a valid
unit, for example, mm. This gives a width for an hbox
with an assignment [3] that disagrees with the width
of the string ‘mm’. And this happens with case 4 too
as the invalid unit and the sentinel remain.

We are left with cases 2 and 7 for invalid dimen-
sions. Looking at [3] we are faced in essence with the
same cases but this time each case involves units.
For example, case 2 excludes input like “’pt” that
TEX transforms into “0pt”. So it looks like we have
to execute the three tests of [3] together with all
valid units. But no, it doesn’t hurt to exclude input
with invalid units. All we have to do is to check that
the input has at most three characters (without the
keyword true) and starts with ‘’’ or ‘"’. The in-
complete alphabetic constant is again moved; here
it destroys the unit and generates an error.

Case 7 remains. The solution in [3] was to use
a list of the canonical forms of the largest integer in
all encodings. So here we need a list of the canonical
forms for \maxdimen. But there seems to be no sim-
ple form for the infinitely many input strings that
represent \maxdimen, as we saw in Table 1.

In order to distinguish case 7 from case 1 we
need to do some calculations: We need to determine
the input value in scaled points and compare the
result against 230 − 1 sp. To do that without risk of
getting a false result we use three elements.

a. The integer part of the numeric part: \II@int.
b. The fractional part plus the unit: \II@frac.
c. The unit, maybe prefixed with true: \II@unit.

The key to success is the fact that in TEX the
range for numbers is larger than the range for di-
mensions expressed in scaled points. Thus the fol-
lowing computation doesn’t generate a “Dimension

TUGboat, Volume 45 (2024), No. 1 111

too large” error if \II@int is at most as large as the
integer part of the maximum decimal constant for
\II@unit according to Table 1.

\dimen255=\II@int\II@unit

\count255=\dimen255 % coerce dimension to number

\advance\count255 by \II@frac

\def\II@calc{\number\count255 }

\II@calc contains the sum of the number of scaled
points of \dimen255 and \II@frac; see [1], p. 270.

How do we get the required information? If
we have a dimension, \II@dist=\II@int\II@frac,
two assignments fill the variables, with an error mes-
sage if \II@dist contains neither a decimal point
nor a decimal comma.

\afterassignment\II@frac \II@int=\II@dist

It’s easy to avoid the error by inserting a zero.
It is not much harder to identify the unit. We

assign the digits of the fraction—after removing the
period or comma—to a \count register, leaving the
two characters of the unit. Using an hbox we can
distinguish the three strings ‘pt’, ‘bp’, and ‘sp’ by
their widths. (In general it is not possible to identify
all units, for example, the strings ‘bp’ and ‘dd’ have
the same width. But we are only interested in the
width if the dimension equals \maxdimen and that
cannot happen with ‘dd’; see Table 1.) The keyword
truemust also be considered; its width is subtracted
if the width of the hbox exceeds a certain value.

There is one problem: Keywords can be written
in different ways with lower- and uppercase charac-
ters; the characters might even be of category 12.
We need to transform them into a canonical form,
for example, lowercase letters, to get a unique width.

Thus we need to realize the following procedure.

Step 1: 1) Remove signs; add sentinel. 2) Test that
case 2 is excluded. 3) Otherwise return false.

Step 2: Get the parts: 1) \II@int, 2) \II@frac, and
3) \II@unit (as a width).

Step 3: 1) Assign the input to a \dimen register in-
side an hbox. 2) Test that the box width is
the width of the sentinel; 3) otherwise re-
turn false (includes cases with more data).

Step 4: 1) Return true if the dimension isn’t TEX’s
\maxdimen. 2) Otherwise test if \II@calc
is TEX’s \maxdimen. 3) If no, return false
(case 7). 4) Otherwise return true (case 1).

This procedure works with a lot of intentional
errors that TEX reports while \batchmode is active.
Thus TEX’s limit of 100 error messages per para-
graph ([2], §76) is reached much earlier than with
\ifisint.

My implementation. The following private con-
trol words—the two declarations \ifII@itis and

Is a given input a valid TEX 〈dimen〉?



\II@font, the macros \II@W, \II@octW, \II@hexW,
\II@rmsign, and \II@endrm, and the \let-assign-
ments \Boolend and \IIcurrentmode—are reused
from the code of [3]. Their code is marked with two
comment characters at the right end of the lines in
the following code. You might delete this code if you
load via \input the file that contains the code of [3].

\catcode‘\@=11

\newif\ifII@itis %% reused from \ifisint %%

\def\II@rmsign #1{\ifx#1+\else\ifx#1-\else %%

\II@endrm#1\fi\fi\II@rmsign}% remove signs: %%

\def\II@endrm #1\fi\fi#2{\fi\fi#1}% ‘+’ & ‘-’ %%

\let\Boolend=\iffalse \font\II@font=cmr10 % %%

\let\IIcurrentmode=\errorstopmode % CONFIGURE %%

\def\II@W{W}\def\II@octW{’W}\def\II@hexW{"W}% %%

%% declarations

\newdimen\II@frac

\countdef\II@cnt=255 \dimendef\II@dim=255

%% helper macros; some use \ifisint’s sentinel W

\def\II@bad #1#2#3#4#5#6\II@end{% numeric part

\def\II@id{#1W}% is missing but maybe with unit

\edef\II@X{#6}\ifx\II@X\empty

\edef\II@X{#5}\ifx\II@X\empty\else\II@Bad\fi

\else \edef\II@X{\II@mklc#2#3#4W}%

\ifx\II@X\II@rueW

\else\ifx\II@X\II@truW\II@Bad

\else \II@itistrue

\fi\fi\fi}

\def\II@rueW{rueW}\def\II@truW{truW}

\def\II@Bad{\ifx\II@id\II@W

\else\ifx\II@id\II@octW

\else\ifx\II@id\II@hexW

\else \II@itistrue

\fi\fi\fi}

\def\II@mklc #1{\if#1pp\else\if#1Pp\else

\if#1tt\else\if#1Tt\else

\if#1bb\else\if#1Bb\else

\if#1ss\else\if#1Ss\else

\if#1rr\else\if#1Rr\else

\if#1uu\else\if#1Uu\else

\if#1ee\else\if#1Ee\else

\II@endlc#1\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi

\fi\fi\fi \II@mklc}% ‘W’ and ‘m’ stop \II@mklc

\def\II@endlc #1\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi

\fi\fi\fi\fi#2{\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi

\fi\fi\fi\fi#1}

\def\II@getfrac #1mm\II@end{\global\II@frac=0#1}

\def\II@getcalc{%\II@calc=coerced\II@int\II@frac

\ifdim\II@unit=26.11119pt % \II@unit is ‘‘pt’’

\II@dim=\ifnum\II@int<16384

\II@int\else 0\fi pt

\else\ifdim\II@unit=27.77786pt % it is ‘‘bp’’

\II@dim=\ifnum\II@int<16323

\II@int\else 0\fi bp

\else\ifdim\II@unit=26.16673pt % it is ‘‘sp’’

\II@dim=\ifnum\II@int<1073741824

\II@int\else 0\fi sp

\else \II@dim=0pt \fi\fi\fi

112 TUGboat, Volume 45 (2024), No. 1

\II@cnt=\II@dim \advance\II@cnt by \II@frac

\edef\II@calc{\number\II@cnt}}

\def\II@point #1#2\II@end{% assign digits of the

\afterassignment\II@mklc % fraction to \II@cnt

\ifx#1.\II@cnt=0#2%

\else\ifx#1,\II@cnt=0#2%

\else \II@cnt=0#1#2%

\fi\fi}

\def\II@getunit #1{\afterassignment\II@hdlfrac

\II@cnt=#1\relax}

\def\II@rmtrue{\ifdim\wd0>40pt \the\II@dim

\else \the\wd0 \fi}

%% main macro

\def\ifisdim #1\Boolend{\II@itisfalse % S1.3

\edef\II@dist{\II@rmsign#1mm}% S1.1

\edef\II@dist{\expandafter\II@rmsign\II@dist}%

\expandafter\II@bad

\II@dist\empty\empty\empty\empty\II@end % S1.2

\ifII@itis % S4.1, S4.4

\wlog{=== start ignore}\batchmode\begingroup

\setbox0=\hbox{\II@font

\afterassignment\II@getfrac

\II@cnt=\II@dist\II@end % S2.2

\xdef\II@int{\the\II@cnt}}% S2.1

\setbox0=\hbox{\II@font

\afterassignment\II@point

\II@cnt=\II@dist\II@end}\II@dim=\wd0

\advance\II@dim by -17.80559pt % width ‘true’

\xdef\II@unit{\II@rmtrue}% S2.3

\setbox0=\hbox{\II@font\II@dim=#1mm% S3.1

\xdef\II@val{\ifdim\II@dim<0pt-\fi

\the\II@dim}}%

\xdef\II@wd{\the\wd0}%

\endgroup\IIcurrentmode\wlog{=== stop ignore}%

\ifdim\II@wd=16.66672pt % width ‘‘mm’’ S3.2

\ifdim\II@val=\maxdimen \II@getcalc

\ifnum\II@calc=1073741823 % S4.2

\else \II@itisfalse % S4.3

\fi\fi

\else \II@itisfalse % S3.3

\fi\fi \ifII@itis}

\catcode‘\@=12

References

[1] Donald E. Knuth, The TEXbook, Volume A of
Computers & Typesetting, Boston, Massachusetts:
Addison-Wesley, 1984.

[2] Donald E. Knuth, TEX: The Program, Volume B of
Computers & Typesetting, Boston,
Massachusetts: Addison-Wesley, 1986.

[3] Udo Wermuth, “Is a given input a valid TEX
〈number〉?”, TUGboat 45:1 (2024), 106–109.
tug.org/TUGboat/tb45-1/tb138wermuth-isint.

pdf

⋄ Udo Wermuth
Dietzenbach, Germany
u dot wermuth (at) icloud dot com

Udo Wermuth


