
Is a given input a valid TEX 〈number〉?

Udo Wermuth

Abstract

This article discusses the question of how one can
determine if a given string of characters represents
a valid number for TEX. A macro that looks and
behaves like a Boolean conditional is implemented
to answer the question.

1 Introduction

TEX operates with several data types and structures.
We all know, for example, characters, numbers, di-
mensions, skips, token lists, boxes, files, and mac-
ros. Such structures are created and manipulated
during the text processing and sometimes we need
to get information about the currently stored con-
tents. Thus, TEX provides a couple of conditional
tests to gain insights; see pages 209–210 of The TEX-
book [1]. Except for one, all of these tests return a
Boolean result, i.e., true or false, and allow there-
fore two branches with different text and code. Five
tests compare two items and two of them require
a relation for the test as they don’t test only for
agreement of a single common characteristic.

All Boolean conditionals use the same scheme
“\if... 〈true branch〉\else 〈false branch〉\fi” in
which the \else and 〈false branch〉 can be omitted
if this branch is empty. The structure itself is ex-

pandable ([1], p. 213) and the conditionals can be
nested as TEX keeps track about the control words
\if..., \else, and \fi even if they aren’t executed;
conditionals are skippable ([1], p. 211).

Plain TEX provides the command \newif so
that users can create new Boolean conditionals ([1],
p. 211). The user must set the conditional: Whatever
the flag should mean its result must be computed be-
fore. The names of these flags must start with \if

and thus these conditionals match the above scheme.

For example, TEX has no built-in test for the
question if a given input string represents a valid
number. So one must code a macro for this test and
then a user-created Boolean conditional can be set
to true or false. Unfortunately, the macro that must
be coded turns out to be rather complex.

The TEX FAQ (accessible through TUG’s In-
ternet site or https://texfaq.org/FAQ-isitanum)
contains information about this question. It focuses
on short code snippets and so it limits itself to a dis-
cussion about “Is the input a not too large signed or
unsigned decimal number?” without giving an an-
swer. Similar limitations occur in the code shown

106 TUGboat, Volume 45 (2024), No. 1

on page 361f. of https://ctan.org/tex-archive/
info/apprendre-a-programmer-en-tex/output/

apprendre-a-programmer-en-tex.pdf.

Encodings. TEX knows many encodings for inte-
gers ([1], p. 269 and p. 118): decimal, octal, hexa-
decimal, and as an alphabetic constant. It accepts
numbers in the range from −231 + 1 to 231 − 1. For
example, valid numbers are:

+-"FF (a hexadecimal number; value −255),
+- -+"FF (another hexadecimal number; 255),
-’777 (an octal number; −511),
‘a (an alphabetic constant; 97),
+2147483647 (= 231−1, the largest number)

whereas 2147483648 (= 231) is invalid as it’s out of
TEX’s range.

To check all cases that TEX allows as the encod-
ing of a number and to do a range check is an un-
necessary effort for most macro packages with user-
supplied integer arguments. Only if the macro of-
fers an interface for receiving integers from external
sources does one need to implement TEX’s syntax
rules.

Contents. This article describes how to implement
a TEX macro looking like a Boolean conditional that
decides if a given input string forms a valid number.
The macro is named \ifisint.

Section 2 lists a few expectations that the con-
ditional should fulfill. Section 3 contains the code
for \ifisint.

2 Expectations a.k.a. goals

Let’s state as precisely as possible what we want to
achieve with \ifisint.

(1) A Boolean conditional should be coded that
has a structure similar to the other Boolean condi-
tionals of TEX. It carries the name \ifisint. The
argument that is tested for being a valid TEX num-
ber is delimited by \Boolend. Except for this control
word the structure is familiar: \ifisint 〈argument〉
\Boolend 〈true branch〉\else 〈false branch〉\fi.

The conditional itself doesn’t output anything;
only the branches might output something.

(2) Any valid number for TEX in any allowed
encoding either unbraced and then followed by any
number of spaces or between braces and no spaces in
front of \Boolend is recognized by \ifisint and the
tokens in 〈true branch〉 are processed. Any other in-
put makes TEX execute 〈false branch〉 if it is present.

(3) Of course, not all characters might appear in
〈argument〉. For example, TEX’s comment character,
the percent sign, is never part of a number; TEX
reports an error if \Boolend is commented out. On

doi.org/10.47397/tb/45-1/tb139wermuth-isint

Udo Wermuth



the other hand, the input “2^3” should throw no
error message although the math shifts are missing.

The input “{2^3}” can be passed to any macro
as an argument without error. But without braces
“2^3” as a single argument throws an error if the
argument is not delimited. Entered as 〈argument〉
to \ifisint there should not be an error message.

Not all of TEX’s special characters can occur.
For example, a single ‘{’ starts a group and without
an ending ‘}’ TEX will report an error.

If a user wants to test any input string with-
out error messages, TEX’s special characters need
other category codes. Plain TEX provides the macro
\dospecials that helps in this task; see page 380
of [1]. Furthermore, TEX’s special double-hat nota-

tion ([1], p. 45; “hat” p. 369) doesn’t work if ‘^’ does
not have category 7. The valid encoding of −1 as
“^^m^^31” is then rejected. So leave the hat charac-
ter as special if that is possible.

(4) The 〈argument〉 should receive written-out
input. It doesn’t make sense to test data stored in,
say, a \count register to find out if it represents a
valid TEX number. But a simple macro that stores a
number in its replacement text should be accepted;
undefined macros shall be reported.

This makes \ifisint different from, for ex-
ample, \ifodd, as this conditional accepts, for ex-
ample, count registers for its test. With \ifisint,
code this: \expandafter \ifisint \the\count〈n〉 
\Boolend. Of course, if “〈n〉” isn’t allowed after
\count, say, because n > 255, an error is raised.

(5) The conditional must be skippable, i.e., the
following input with nested \ifs

\iffalse\ifisint 117\Boolend\message{A}%

\else\message{B}\fi

\else\message{C}\fi

generates no error message and outputs “C” on the
terminal.

(6) It is not expected that the new conditional
\ifisint is expandable.

3 The code for \ifisint

What is a valid integer? This is specified in detail on
pages 268–269 of [1]. There are four types of integers
in 〈normal integer〉: a) the 〈integer constant〉, b) the
〈octal constant〉 that starts with a right quote, c) the
〈hexadecimal constant〉 that starts with the ditto
mark, and d) the alphabetic constant built from a
left quote and a 〈character token〉. We are not inter-
ested in the syntactic quantity 〈internal integer〉 as
it stands for valid integers stored in control words of
TEX; see page 271 of [1]. Any type can be followed by
an optional space. Moreover, integers can have signs

TUGboat, Volume 45 (2024), No. 1 107

of category 12: ‘+’ and ‘−’. One can use a chain of
signs and separate them by spaces: Page 268 defines
〈plus and minus〉 and on page 269 it’s stated that
in 〈optional signs〉, the signs might be followed by
〈optional spaces〉.

And what does TEX do if it expects a number
but finds none? For an answer we have to look into
[2], part 26, “Basic scanning subroutines”. Sections
440–446 contain the code for the scan int procedure
that reads a number. Here we also find the three
error messages that can occur. Section 442 presents
the first error message “Improper alphabetic con-
stant”, section 445 contains “Number too big”, and
section 446 includes the code for the third message
“Missing number, treated as zero”.

The last message tells us what TEX does if, for
example, a letter is read but a digit was expected:
It recovers by inserting the number 0; nothing is
removed from the input. In the first error it hap-
pens too, as explained in the help text. TEX uses
its largest known integer 2147483647 when it finds
a number whose absolute value is too big; again, in-
formation from the help text. In this case all digits
of the large number are read and digested by TEX.

Analysis. Thus, in essence there are six cases that
our new macro must distinguish.

1. TEX reads a valid number; no more input.
2. TEX reads a valid number; more input available.
3. TEX doesn’t find a number, uses 0 instead; no

more input.
4. TEX doesn’t find a number, uses 0 instead; more

input available.
5. TEX reads a number that’s outside of its range,

uses 2147483647 instead; no more input.
6. TEX reads a number that’s outside of its range,

uses 2147483647 instead; more input available.

Only case 1 is a valid TEX number. When we
are able to determine if more input is available then
cases 2, 4, and 6 are detectable.

Only the following input strings fulfill case 3:
the empty input, ‘’’, ‘"’, and ‘‘’. All can be preceded
by any number of signs.

Case 5 remains. To distinguish it from case 1
we must be able to check the infinite number of in-
puts that represent the largest number of TEX. The
number is infinite as we can always add another plus
or minus sign and more leading zeros in the input.

What we need is a canonical form into which we
transform the input. With unsigned numbers only a
few forms for case 3 remain. An unsigned number
with exactly one leading zero leaves for case 5 only
three forms: the largest number with a leading zero
in decimal, octal, and hexadecimal notation.

Is a given input a valid TEX 〈number〉?



Thus, a couple of comparisons solve the main
task if we find answers to the following problems.

A. Find a way to detect if the number is followed
by more input.

B. Find a way to construct the canonical form.

Problem A is solved with an assignment of the
input string to a count register inside an hbox. This
box is empty if only a number is input.

\setbox0=\hbox{\count255=<input>}%

\ifdim\wd0>0pt % <input> is not a number

Problem B is solved with two macros: The first
removes the signs and the second leading zeros but
also assures that one is present. They use the tech-
nique called tail recursion ([1], p. 219) to do their
job. For example, the following code removes signs.

\def\II@rmsign #1{\ifx#1+\else\ifx#1-\else

\II@endrm#1\fi\fi\II@rmsign}

\def\II@endrm #1\fi\fi#2{\fi\fi#1}

If the argument to \II@rmsign is ‘+’ or ‘−’, one of
the two \ifx becomes true, the sign is gobbled as
nothing is done in the branch, but at the end the
macro is called again. The macro stops if the argu-
ment isn’t a sign; a trick to shuffle the argument and
the \fis is needed, though. To make sure that the
macro stops we add a sentinel, the letter ‘W’, to the
input. This moves the detection of a bad alphabetic
constant from case 3 to the box-width check.

But this solution has a shortcoming. It removes
not only signs but also signs in curly braces, while
such symbols aren’t allowed in a valid number. Well,
the validity of the number is determined by other
means. We don’t care that valid and invalid numbers
are mapped to the same canonical form at this stage.

To summarize: We do the following steps in a
TEX macro.

Step 1: 1) Remove signs; add sentinel. 2) Test that
case 3 is excluded; otherwise return false.

Step 2: Create canonical form.
Step 3: 1) Assign the input to a \count register in-

side an hbox. 2) Test that the box width is
the width of the sentinel; 3) otherwise re-
turn false (cases 2, 4, 6).

Step 4: 1) Return true if the number isn’t TEX’s
maximum. 2) Otherwise test if the canonical
form is TEX’s maximum. If yes, return true
(case 1). 3) Otherwise return false (case 5).

Note the procedure works with errors that are
generated intentionally. As TEX limits the number
of errors in a single paragraph to 100 ([2], §76) the
macro shouldn’t be applied, for example, in a loop.

One task is still open: How to suppress TEX’s er-
ror messages? We cannot do that but we can switch

108 TUGboat, Volume 45 (2024), No. 1

to \batchmode so that the messages aren’t displayed
on the terminal. The terminal gets a blank line when
we switch between \batchmode and another mode.

There is a little problem as modes are globally
set and in the original TEX we don’t know to which
mode we must return. The macro uses a configurable
parameter; the default is \errorstopmode.

My implementation. Note, Step 1 includes the
expansion in an \edef; see the discussion in sec-
tion 2, no. 4. And \Boolend is given the signifi-
cance of \iffalse to make the macro skippable; see
section 2, no. 5. Moreover, \hbox{\II@font W} has
width 10.2778 pt if \II@font represents cmr10.

\catcode‘\@=11 % use the private prefix ‘‘II@’’

\newif\ifII@itis % main result of the macro

%% helper macros

\def\II@rmsign #1{\ifx#1+\else\ifx#1-\else

\II@endrm#1\fi\fi\II@rmsign}

\def\II@endrm #1\fi\fi#2{\fi\fi#1}

\def\II@zeros #1{\ifx#1’’\else\ifx#1""\else

\II@cont#1\fi\fi\II@zeros}

\def\II@cont #1\fi\fi#2{\fi\fi\II@hdlzero#1}

\def\II@hdlzero #1{\ifx#10 \else

\II@xchgfi #1\fi\II@hdlzero}

\def\II@xchgfi #1\fi#2{\fi\ifx#1‘\else0\fi#1}

%% constants with the sentinel ‘W’

\def\II@cfd{02147483647W}% canonical forms with

\def\II@cfh{"07FFFFFFFW}% W of TeX’s max integer

\def\II@cfo{’017777777777W}% in dec, hex, oct

\def\II@W{W}\def\II@hexW{"W}% all unsigned input

\def\II@octW{’W}% with W for which TeX inserts 0

%% assignments

\let\Boolend=\iffalse \font\II@font=cmr10

\let\IIcurrentmode=\errorstopmode % CONFIGURE

%% main macro

\def\ifisint #1\Boolend{\II@itisfalse % see S1.2

\edef\II@digs{\II@rmsign#1W}% S1.1 with 2 \edef

\edef\II@digs{\expandafter\II@rmsign\II@digs}%

\ifx\II@digs\II@W\else\ifx\II@digs\II@octW

\else\ifx\II@digs\II@hexW\else % S1.2 finished

\edef\II@cf{\expandafter\II@zeros\II@digs}% S2

\wlog{=== start ignore}\batchmode\begingroup

\setbox0=\hbox{\count255=\II@cf

\xdef\II@val{\the\count255}}%

\setbox0=\hbox{\II@font\count255=#1W}% S3.1

\xdef\II@wd{\the\wd0}%

\endgroup\IIcurrentmode\wlog{=== stop ignore}%

\ifdim\II@wd=10.2778pt % \wd of hbox ‘W’; S3.2

\II@itistrue \ifnum\II@val=2147483647 % S4.1

\ifx\II@cf\II@cfd

\else\ifx\II@cf\II@cfh

\else\ifx\II@cf\II@cfo % S4.2

\else \II@itisfalse % S4.3

\fi\fi\fi\fi

\else \II@itisfalse % S3.3

\fi\fi\fi\fi \ifII@itis}

\catcode‘\@=12

Udo Wermuth



A few remarks. The second \edef for \II@digs
can be deleted if macro expansion as in section 2,
no. 4, is not needed. Currently it’s possible to code:

\def\mynum{-1234 }\ifisint\mynum\Boolend ...

This expansion is performed outside of \batchmode
so that errors are shown to the user. I did this to
avoid misinterpretations if the user enters a faulty
sequence and thinks the contents of the macro was
tested, i.e., if the user enters something erroneous
like this: \ifisint\maynum\Boolend ...

The control word \Boolend is used in the macro
\ifisint as delimiter, i.e., \ifisint has a delim-

ited parameter ([1], p. 203f.). But in the case of
delayed execution of \ifisint, for example, if the
primitive \expandafter precedes it, the user must
be careful not to execute \Boolend.

As mentioned above, \Boolend receives via a
\let-assignment the meaning of \iffalse. Thus if
TEX executes \Boolend it also executes \ifisint’s
〈false branch〉. Therefore, the use of a \count reg-
ister in section 2, no. (4), requires a space between
the number of the \count register and the delim-
iter \Boolend to avoid the erroneous execution of
\Boolend that destroys the macro \ifisint.

A second \let-assignment gives the control se-
quence \IIcurrentmode the meaning of TEX’s prim-
itive \errorstopmode. A user can change this by
another \let-assignment so that \ifisint returns
to the mode that is currently active. (With ε-TEX
one can query the current mode and return to it
after \ifisint has done its work.)

Execution time. TEX needs more time to exe-
cute \ifisint than it needs to perform \ifodd,
i.e., the only built-in conditional with a single num-
ber. Measurements on my system with my own TEX
port in Pascal show that \ifisint is ≈ 8.5 times
slower than \ifodd when the “real” times of 100,000
calls of “\ifodd 255\fi” and of 100,000 calls of
“\ifisint 255\Boolend\fi”, with the additional
assignment “\def\wlog #1{}”, are compared.

References

[1] Donald E. Knuth, The TEXbook, Volume A of
Computers & Typesetting, Boston, Massachusetts:
Addison-Wesley, 1984.

[2] Donald E. Knuth, TEX: The Program, Volume B of
Computers & Typesetting, Boston,
Massachusetts: Addison-Wesley, 1986.

⋄ Udo Wermuth
Dietzenbach, Germany
u dot wermuth (at) icloud dot com

TUGboat, Volume 45 (2024), No. 1 109

Is a given input a valid TEX 〈number〉?


