
240 TUGboat, Volume 45 (2024), No. 2

LATEX News
Issue 39, June 2024 (LATEX release 2024-06-01)

Contents

Introduction 1

News from the “LATEX Tagged PDF” project 1

Enhancements to the new mark mechanism 2

Providing xtemplate in the format 2

New or improved commands 3

doc: Provide \ProvideDocElement 3
doc: Better support for upquote 3
ifthen: Allow active characters in comparisons . 3
New conditionals: \IfClassAtLeastT and

friends . 3

Code improvements 3

Load packages only at the top level 3
Keep track of lost glyphs 3
Improve fontenc error message 3
Warn if counter names are problematic 3
Extended information in \listfiles 3
Optimize creation of simple document

commands 4
Handling of end-of-lines in +v arguments of

\NewDocumentCommand and friends 4
Declaring appropriate sub-encodings for TS1

symbol fonts 4
Behavior when loading textcomp without options 5
Rollback improvements 5

Documentation improvements 5

Further updates to the guides 5

Bug fixes 5

Fix inconsistent expansion of the package
option list 5

Fix logic for first mark (page region) 5
Struts at the end of footnotes or p columns . . 5
Fix a “missing \item” rollback error 5

Changes to packages in the amsmath category 5

amsmath: Correct equation tag placement . . . 5

Changes to packages in the tools category 6

array, longtable, tabularx: Support tagging . . . 6
array: No \unskip in math cells 6
verbatim: \verb showed visible spaces 6
verbatim: Support tabs in \verbatiminput* . . 6
multicol: \columnbreak interferes with mark

mechanism 6
showkeys: Allow \newline in amsthm to work . 6

xr: Support links and properties 6

Changes to files in the cyrillic category 6

Correct definition of \k 6

Introduction

The LATEX Project team remains strongly focused
on producing automatically tagged PDF output for
accessibility and reuse. At the beginning of 2024
the ISO PDF/UA-2 and the WTPDF (well-tagged
PDF) standards were released and we are glad to be
able to report that it is now possible to use LATEX to
automatically produce documents that conform to these
new standards.1 A sample collection of such documents
ranging from classical texts, such as the Bible, to recent
technical papers submitted to arXiv.org can be found
at https://github.com/latex3/tagging-project/

discussions/72.
In February Ulrike and Frank presented the current

project status during the 5th International Workshop
on “Digitization and E-Inclusion in Mathematics and
Science 2024” (DEIMS 2024) at Nihon University,
Tokyo, Japan; see [8].

News from the “LATEX Tagged PDF” project

In the previous LATEX News [7] we announced some
prototype support for tagged tabulars. Some of the
necessary code has now been moved from latex-lab to
the corresponding packages (using sockets and plugs)
and to the LATEX kernel (for those parts that are also
necessary for other aspects of tagging).

The kernel code specific to tagging is implemented
in the file lttagging.dtx. For now it contains
\UseTaggingSocket, a special invocation command for
sockets that are specific to tagging. This enables us to
also provide \SuspendTagging and \ResumeTagging,
i.e., a very efficient way to temporarily disable the
whole tagging process. This is, for example, necessary
if some code is doing trial typesetting. In that case
the trials should not generate tagging structures—only
the finally-chosen version should. Thus, tabularx, for
example, stops the tagging while doing its trials to
figure out the correct column widths to use, and then
re-enables tagging when the table is finally typeset.

Over time, lttagging.dtx will hold more general
tagging code as appropriate. For now it is only

1At the present time we are still in a trial/prototype phase in
which only a limited set of document classes and packages are sup-
ported. Over the next releases we expect to gradually lift these
restrictions and eventually provide the full functionality as part of
the core distribution, rather than through latex-lab modules.

doi.org/10.47397/tb/45-2/tb140ltnews39

LATEX News #39

TUGboat, Volume 45 (2024), No. 2 241

documented as part of source2e.pdf but long term we
will provide a separate guide for tagging, which will then
also include the information currently found in various
other places, e.g., tagpdf.pdf.

We also added support for a few missing commands
described in Leslie Lamport’s LATEX Manual [1]: If
phase-III is used the \marginpar command will be
properly tagged (depending on the PDF version) as
an Aside or a Note structure. In the standard classes
\maketitle will be tagged if the additional testphase
module title is used.

The math module has been extended and now includes
options to attach MathML files to the structures.
First tests with a PDF reader and screen reader that
support associated files look very promising. Examples
of PDF files tagged with the new method can be found
at https://github.com/latex3/tagging-project/

discussions/72.
At last various small bugs and problems reported at

https://github.com/latex3/tagging-project have
been fixed. Such feedback is very valuable, so we hope
to see you there and thank you for any contribution,
whether it is an issue or a post on a discussion thread.

Enhancements to the new mark mechanism

In June 2022 we introduced a new mark mechanism [2,
p. 76] that allows keeping track of multiple independent
marks. It also properly supports top marks, something
that wasn’t reliably possible with LATEX before.

There was, however, one limitation: to retrieve
the marks from the page data it was necessary to
\vsplit that data artificially so that TEX would
produce split marks that the mechanism could then
use. Unfortunately, TEX gets very upset if it finds
infinite negative glue (e.g., from \vss) within this data.
This is not totally surprising because such glue would
allow splitting off any amount of material as such glue
would hide its size. TEX therefore responds with an
error message if it find such glue while doing a \vsplit

operation (and it does so even if a later glue item cancels
the infinite glue).

To account for this, the code in 2022 attempted to
detect this situation beforehand and if so did not do any
splitting but, of course, it would then also not extract
any mark information.

In this release the approach has been changed and we
always do a \vsplit operation and thus always get the
right mark data extracted. While it is not possible to
avoid upsetting TEX in case we have infinite negative
glue present, it is possible to hide this (more or less)
from the user.2 With the new code TEX will neither
stop nor show anything on the terminal. What we can’t

2A note to l3build users that make use of its testing capabilities:
the new mechanism temporarily changes \interactionmode and,
for implementation reasons in TEX, that results in extra newlines
in the .log file, so instead of seeing [1] [2] you will see each on
separate lines. This means that test files might show differences of
that nature, once the code is active, and must therefore be regen-
erated as necessary.

do, though, is avoid an error being written to the log
file, but to make it clear that this error is harmless and
should be ignored we have arranged the code so that the
error message, if it is issued, takes the following format:

! Infinite glue shrinkage found in box being split.

<argument> Infinite shrink error above ignored !

l. ... }

Not perfect (especially the somewhat unmotivated
<argument>), but you can only do so much when error
messages and their texts are hard-wired in the engine.

So why all this? There are two reasons: we do not lose
marks in edge cases any more, and perhaps more im-
portantly we are now also reliably able to extract marks
from arbitrarily boxed data, something that wasn’t
possible at all before. This is necessary, for example, to
support extended marks in multicols environments or
extract them from floats, marginpars, etc.

Details about the implementation can be found
in texdoc ltmarks-code or in the shorter texdoc

ltmarks-doc (which only describes the general concepts
and the command interfaces).

Providing xtemplate in the format

In LATEX News 32, we described the move of one
long-term experimental idea into the kernel: the package
xparse, which was integrated as ltcmd. With this edition,
we move another long-term development idea to stable
status: templates.

In this context, templates are a mechanism to abstract
out various elements of a document (such as “sectioning”)
in such a way that different implementations can be
interchanged, and design decisions can be implemented
efficiently and controllably.

In contrast to ltcmd, which provides a mechanism that
many document authors will exploit routinely, templates
are a more specialised tool. We anticipate that they will
be used by a small number of programmers, providing
generic ideas that will then be used within document
classes. Most document authors will therefore likely
directly encounter templates only rarely. We anticipate
though that they will be using templates provided by
the team or others.

The template system requires three separate ideas

• Template type: the “thing” we are using templates
for, such as “sectioning” or “enumerated-list”

• A template: a combination of code and keys that
can be used to implement a type. Here for example
we might have “standard-LATEX-sectioning” as a
template for “sectioning”

• One or more instances: a specific use case of a
template where (some) keys are set to known
values. We might for example see “LATEX-section”,
“LATEX-subsection”, etc.

As part of the move from the experimental xtemplate

to kernel integration, the team have revisited the
commands provided. The stable set now comprises

LATEX News #39

242 TUGboat, Volume 45 (2024), No. 2

• \NewTemplateType

• \DeclareTemplateInterface

• \DeclareTemplateCode

• \DeclareTemplateCopy

• \EditTemplateDefault

• \UseTemplate

• \DeclareInstance

• \DeclareInstanceCopy

• \EditInstance

• \UseInstance

• \IfInstanceExistsTF and variants

To support existing package authors, we have released
an updated version of xtemplate which will work
smoothly with the new kernel-level code. The existing
commands provided in xtemplate will continue to work,
but we encourage programmers to move to the set above.

New or improved commands

doc: Provide \ProvideDocElement

In addition to \NewDocElement and \RenewDocElement

we now also offer a \ProvideDocElement declaration
that does nothing unless the doc element could be
declared with \NewDocElement. This can be useful if
documentation files are processed both individually and
combined.

doc: Better support for upquote
In LATEX News 37 [6] we wrote that support for the
upquote package was added to the doc package, but back
then this was added only for \verb and the verbatim

environments. However, in a typical .dtx file, most
of the code will be in the body of some macrocode or
macrocode* environments, and neither of these was
affected by adding upquote. We have now updated doc

so that upquote alters the quote characters in these
environments as well. (github issue 1230)

ifthen: Guard against active characters in comparisons
The \ifthenelse command now ensures that <, = and
> are safe in numeric tests, even if they have been
made active (typically by babel language shorthands).

(github issue 756)

New conditionals: \IfClassAtLeastT and friends
Around 2020 we added a number of con-
ditionals with CamelCase names, i.e.,
\IfClassAtLeastTF, \IfClassLoadedTF,
\IfClassLoadedWithOptionsFF, \IfFormatAtLeastTF,
\IfPackageAtLeastTF, \IfPackageLoadedTF, and
\IfPackageLoadedWithOptionsTF to help arranging
conditional code that depends on the release of a
particular class, package or format. However, we only
provided the TF commands and not also the T and F

variants. This has now been changed.
In 2023 we introduced \IfFileAtLeastTF but we

did not also provide \IfFileLoadedTF at the same

time. This conditional and its T and F variants have
now also been added. Remember that one can only
test for files that contain a \ProvidesFile line. We
did the same for the conditionals \IfLabelExistsTF

and \IfPropertyExistsTF, also introduced in 2023.3

(github issues 1222 1262)

Code improvements

Load packages only at the top level
Classes and packages must be loaded only by using
the commands \documentclass and \usepackage or
the class interface commands such as \LoadClass or
\RequirePackageWithOptions; moreover, all of these
must always be used at the top level, and not inside a
group of any type (for example, within an environment).
Previously LATEX did not check this, which would often
lead to low level errors later on if package declarations
were reverted when a group ended. LATEX now checks
the group level and an error is thrown if the class or
package is loaded in a group. (github issue 1185)

Keep track of lost glyphs
A while ago we changed the LATEX default value for
\tracinglostchars from 1 to 2 so that missing glyphs
generate at least a warning, but we forgot to make the
same change to \tracingnone. Thus, when issuing
that command LATEX stopped generating warnings
about missing glyphs. This has now been corrected.

(github issue 549)

Improve fontenc error message
If the fontenc package is asked to load a font encoding
for which it doesn’t find a suitable .def file then it
generates an error message indicating that the encoding
name might be misspelled. That is, of course, one of the
possible causes, but another one is that the installation
is missing a necessary support package, e.g., that no
support for Cyrillic fonts has been installed. The error
message text has therefore been extended to explain the
issue more generally. (github issue 1102)

Warn if counter names are problematic
In the past it was possible to declare, for example,
\newcounter{index} with the side-effect that this
defines \theindex, even though LATEX has a theindex

environment that then got clobbered by the declaration.
This has now been changed: if \the⟨counter⟩ is already
defined it is not altered, but instead a warning message
is displayed. (github issue 823)

Extended information in \listfiles

The \listfiles command provides useful information
when finding issues related to variation in package
versions. However, this has to date relied on the
information in the \ProvidesPackage line, or similar:

3By mistake they were initially introduced under the names
\IfLabelExistTF and \IfPropertyExistTF; we corrected that at
the same time. This is a breaking change, but the commands have
been used so far only in kernel code.

LATEX News #39

TUGboat, Volume 45 (2024), No. 2 243

that can be misleading if for example a file has been
edited locally. We have now extended \listfiles to
take an optional argument which can include the MD5
hash and size of each file in the .log. Thus for example
you can use

\listfiles[hashes,sizes]

to get both the file sizes and file hashes in the .log as well
as the standard release information. (github issue 945)

Optimize creation of simple document commands
Creating document commands using declarations such as
\NewDocumentCommand, etc., provides a very flexible way
of grabbing arguments. When the document command
only takes simple mandatory arguments, this has to-date
added an overhead that could be avoided. We have
now refined the internal code path such that “simple”
document commands avoid almost any overhead at
point-of-use, making the results essentially as efficient as
using \newcommand for low-level TEX constructs. Note
that as \NewDocumentCommand makes engine-robust
commands, the direct equivalent to \newcommand is
\NewExpandableDocumentCommand. (github issue 1189)

Handling of end-of-lines in +v arguments of
\NewDocumentCommand and friends
The +v argument type provided by declarations such as
\NewDocumentCommand, etc., allows grabbing of multiple
lines of text in a verbatim-like argument. Almost always,
the result of this grabbing will be used in a typesetting
context. Previously, the end-of-line characters were
stored literally as category code 12 (“other”) ^^M tokens.
However, these are difficult to work with in general. We
have now revised this behavior, such that end-of-line
characters are converted to the \obeyedline command
when parsed by +v-type arguments. This change may
require adjustments to the source of some documents,
but the enhanced ability of users and programmers to
exploit the +v-type argument means we believe it is
necessary.

Declaring appropriate sub-encodings for TS1 symbol fonts
In 2020 we incorporated support for the TS1 symbol
encoding directly into the kernel and in this way
removed the need to load the textcomp package [3] to
make commands such as \texteuro available.

There is, however, a big problem with this TS1 symbol
encoding: only very few fonts provide every glyph that
is supposed to be part of TS1. This means that changing
font families might result in certain symbols becoming
unavailable. This can be a major disaster if, for example,
the symbol \texteuro (€) or \textohm (W) no longer
gets printed in your document, just because you altered
the text font family.

To mitigate this problem, in 2020 we also introduced
the declaration \DeclareEncodingSubset. This
declaration is supposed to be used in font definition files
for the TS1 encoding to specify which subset (we have
defined 10 common ones) a specific font implements.

If such a declaration is used then missing symbols are
automatically taken from a fallback font.

While this is not perfect, it is the best you can do
other than painstakingly checking that your document
uses only glyphs that the font supports and, if necessary,
switching to a different font or avoiding the missing
symbols. See also the discussion in [4].

To jumpstart the process we also added declarations to
the LATEX kernel for most of the fonts found in TEX Live
at the time—with the assumption that such declarations
would over time be superseded by declarations in the .fd
files. Unfortunately, this hasn’t happened yet (or not
often) and so many of the initial declarations went stale:
several fonts got new glyphs added to them (so their
sub-encoding should have been changed but didn’t);
others (mainly due to license issues) changed the family
name and thus our declarations became useless and
the renamed fonts (now without a declaration) ended
up in the default sub-encoding that offers only a few
glyphs; yet others such as CharisSIL (which triggered
the GitHub issue) were simply not around at the time.

We have, therefore, again attempted to provide the
(currently) correct declarations, but it is obvious that
this is not a workable process. As we do not maintain the
fonts we do not have the information that something has
changed, and to regularly check the ever growing font
support bundles is simply not possible. It is therefore
very important that maintainers of font packages not
only provide .fd files but also add such a declaration to
every TS1...fd font definition file that they distribute.

To simplify this process, we now provide a simple
LATEX file (checkencodingsubset.tex) for determining
the correct (safe) sub-encoding. If run, it asks for a font
family and then outputs its findings, for example, for
AlgolRevived-TLF you will get:

Testing font family AlgolRevived-TLF

(currently TS1-sub-encoding 9)

Some glyphs are missing from sub-encoding 8:

==> \textcelsius (137) is missing

==> \texttwosuperior (178) is missing

==> \textthreesuperior (179) is missing

==> \textonesuperior (185) is missing

Some glyphs are missing from sub-encoding 7:

==> \texteuro (191) is missing

All glyphs between sub-encoding 6 and 7 exist

All glyphs between sub-encoding 5 and 6 exist

All glyphs between sub-encoding 4 and 5 exist

Some glyphs are missing from sub-encoding 3:

==> \textwon (142) is missing

All glyphs between sub-encoding 2 and 3 exist

Some glyphs are missing from sub-encoding 1:

==> \textmho (77) is missing

==> \textpertenthousand (152) is missing

All glyphs between sub-encoding 0 and 1 exist

All glyphs in core exist

TS1 encoding subset for AlgolRevived-TLF (ok)

LATEX News #39

244 TUGboat, Volume 45 (2024), No. 2

Use sub-encoding 9

This output is meant for human consumption, e.g.,
you see which glyphs are missing and why a certain
sub-encoding is suggested, but it is not that hard to use
it in a script and extract the suggested sub-encoding by
grepping for the line starting with Use sub-encoding.

Of course, this check will only work if the missing
glyphs are really missing: some fonts placed “tofu”4 into
such slots and in this case it looks to TEX as if the glyph
is provided. For example, for the old Palatino fonts
(family ppl) it would report

TS1 encoding subset for ppl (bad)

Use sub-encoding 0 (not 5)

thus it claims that all glyphs are provided, while
in reality more than twenty are missing and sub-
encoding 5, as declared in the kernel, is in fact correct.

(github issue 1257)

Behavior when loading textcomp without options
When incorporating the textcomp package into the
LATEX kernel, in the February 2020 release [3], the
default type of its package messages was changed from
package info (Package textcomp Info) to LATEX kernel
info (LaTeX Info). But if textcomp was loaded without
options, the message type got restored to package info.
This restoration has now been canceled.

Note that loading textcomp with one of the options
error, warn, or info still changes the message type to
an error, warning, or info message from the textcomp

package. (github issue 1333)

Rollback improvements
When requesting a rollback of the LATEX kernel
and/or packages, several packages produced the error
“Suspicious rollback date” because their rollback section
contained only data about recent releases even if the
package, such as array, was available since the first
release of LATEX 2ε in 1994. We now suppress this
error and load the first release that is still part of the
distribution (and hope for the best). This change was
implemented for the packages amsmath, array, doc,
graphics, longtable, multicol, showkeys, textcomp, and
varioref. (github issue 1333)

Documentation improvements

Further updates to the guides
We reported about the updated versions of usrguide

and clsguide in LATEX News 37 [6]. We have now
revised fntguide as well to reflect the changes and
macros added to the kernel over the last years of
development. Note that the file name hasn’t changed
and there is no fntguide-historic.

4Little squares to indicate a missing symbol.

Bug fixes

Fix inconsistent expansion of the package option list
LATEX applies one-step expansion to the raw option list
of packages and classes, so that constructions such as

\def\myoptions{opt1,opt2}

\usepackage[\myoptions]{foo}

are supported. But if a package declares its options
using the new key/value approach [5] and it gets loaded
a second time, then its raw option list will not be
expanded and so an error might be raised. This has now
been corrected. (github issue 1298)

Fix logic for first mark (page region)
In the new mark mechanism introduced in June 2022 [5]
the result of \FirstMark on a two-column page was
incorrect if the first column contained no marks. In that
case it should have returned the first mark of the second
column but didn’t. This has now been corrected.

Documents using \leftmark are not affected, because
that command is still using the old mechanism for now.

(github issue 1359)

Struts at the end of footnotes or p columns
To produce consistent spacing in footnotes and tabular
p-cells LATEX adds a strut at the beginning and end of
the content. This assumed, however, that the content of
the footnote or tabular cell ended in horizontal mode and
so, until now, these struts were unconditionally added;
as a result, if this content ended with vertical material
then this strut started a new paragraph consisting of
a single line with just the strut in it. This has finally
been corrected and now the placement logic for the strut
changes when vertical mode is detected.

(First seen in a bug report for footmisc in combination
with bigfoot)

Fix a “missing \item” rollback error
If LATEX is rolled back to a date between 2023/06/01
(inclusive) and 2024/06/01 (exclusive), any list-based
environment would raise an error (shown on two lines
for TUGboat):

! LaTeX Error:

Something’s wrong--perhaps a missing \item.

This has now been corrected as a hotfix in patch level
2, by enhancing the 2023/06/01 version rollback code of
the new paragraph mechanism. (github issue 1386)

Changes to packages in the amsmath category

amsmath: Correct equation tag placement
If there is not enough space to place an equation tag on
the same line as the equation then amsmath calculates a
suitable offset and it places the tag above (or below) the
equation. In the case of the gather environment this
offset was not reset at the end, with the result that it
also got applied to any following environment, resulting
in incorrect spacing in certain situations. This has now
been corrected. (github issue 1289)

LATEX News #39

TUGboat, Volume 45 (2024), No. 2 245

Changes to packages in the tools category

array, longtable, tabularx: Support tagging
These three packages have been extended so they can
now, on request, produce tagged tabular. This is done
by adding a number of sockets (see [7]) that, by default,
do nothing; but when tagged PDF is requested they get
equipped with appropriate plugs.

In the previous LATEX release this was handled in
latex-lab, by patching the packages when tagging was
requested.

array: No \unskip in math cells
Math cells in the standard array environment of the
kernel are not subject to space removal at the right end
of the cell, i.e., explicit spaces from \hspace or \␣, etc.
are honored (normal spaces are automatically ignored
in math). In the array package all spaces got removed
by calling \unskip unconditionally, regardless of the
type of cell. This difference in behavior has now been
removed by correcting the processing of math cells in
array. (github issue 1323)

verbatim: \verb showed visible spaces
A recent change in the kernel was not reflected in the
verbatim package, with the result that \verb showed
visible spaces (␣) after the package was loaded. This
has already been corrected in a hotfix for the November
2023 release. (github issue 1160)

verbatim: Support tabs in \verbatiminput*

Mimicking the November 2023 kernel update that
allowed \verb* to mark tabs as spaces, the verbatim

package has now been updated so that \verbatiminput*
also marks tabs as spaces. (github issue 1245)

multicol: \columnbreak interferes with mark mechanism
The multicol package has to keep track of marks
(from \markright or \markboth) as part of its output
routine code and can’t rely on LATEX handling that
automatically. It does so by artificially splitting page
data with \vsplit to extract the mark data. With
the introduction of \columnbreak that code failed
sometimes, because it was not seeing any mark that
followed such a forced column break.

This has now been corrected, but there is further
work to do, because as of now multicol does not yet
handle marks using the new mark mechanism—see
the discussion at the beginning of the newsletter.

(github issue 1130)

showkeys: Allow \newline in amsthm to work
Previously showkeys added an extra box layer which
disabled the \newline of amsthm theorem styles. This
extra box has now been avoided. (github issue 1123)

xr: Support links and properties
The xr package implements a system for eXternal
References. The xr-hyper package (in the hyperref

bundle) extended this to also support links to external
documents. Using last year’s extension of the \label

command, which unified the label syntax of LATEX and
hyperref, it became possible to merge the two packages
and thus make xr-hyper obsolete. With this change it
is also possible to refer to properties that are stored
in external documents using \RecordProperties.

(github issue 1180)

Changes to files in the cyrillic category

Correct definition of \k

Ages ago, the encoding-specific definitions for various
accent commands were changed to guard against altering
some parameter values non-locally by mistake. For some
reason the definition for \k in the Cyrillic encodings T2A,
T2B, and T2C didn’t get this treatment. This oversight
has now been corrected. (github issue 1148)

References

[1] Leslie Lamport. LATEX: A Document Preparation
System: User’s Guide and Reference Manual.
Addison-Wesley, Reading, MA, USA, 2nd edition,
1994. ISBN 0-201-52983-1. Reprinted with
corrections in 1996.

[2] LATEX Project Team. LATEX 2ε news 1–39. June,
2024. https://latex-project.org/news/
latex2e-news/ltnews.pdf

[3] LATEX Project Team. LATEX 2ε news 31. February,
2020. https://latex-project.org/news/
latex2e-news/ltnews31.pdf

[4] LATEX Project Team. LATEX 2ε news 33. June 2021.
https://latex-project.org/news/

latex2e-news/ltnews33.pdf

[5] LATEX Project Team. LATEX 2ε news 35. June 2022.
https://latex-project.org/news/

latex2e-news/ltnews35.pdf

[6] LATEX Project Team. LATEX 2ε news 37. June 2023.
https://latex-project.org/news/

latex2e-news/ltnews37.pdf

[7] LATEX Project Team. LATEX 2ε news 38. November
2023. https://latex-project.org/news/
latex2e-news/ltnews38.pdf

[8] Frank Mittelbach and Ulrike Fischer. Enhancing
LATEX to automatically produce tagged and
accessible PDF. TUGboat 45:1, 2024.
https://latex-project.org/publications/

indexbyyear/2024/

LATEX News #39

