August 1983 Repert No. STAN-CS-83-977

Word Hy-phen-a-tion by Com-put-er

Franklin Mark Liang

Depariment of Computer Science

Stanford University
- Stanford, CA 94303

WORD HY-PHEN-A-TION BY COM-PUT-ER

Franklin Mark Liang
Department of Computer Science

Stanford University
Stanford, California 94305

Abstract

™

This thesis describes rescarch leading to an improved word hyphenation algo-
rithm for the TEX82 typesetting system. Hyphenation is viewed primarily as a data
compression problem, where we are given a dictionary of words with allowable divi-
sion points, and try to devise methods that take advantage of the large amount of
redundancy present.

The new hyphenation algorithm is based on the idea of hyphenating and in-
hibiting patterns. These are simply strings of letters that, when they match in a

word, give us information about hyphcnation at some point in the pattern. For
example, ‘-tion’ and ‘c-c’ are good hyphenating patterns. An important feature of
this method is that a suitable set of patterns can be extracted automatically from
the dictionary.

In order to represent the set of patterns in a compact form that is also reasonably

eficient for searching, the author has developed a new data structure called a packed
trie. This data structure allows the very fast search times characteristic of indexed

tries, but in many cases it entirely eliminates the wasted space for null links usually
present in such tries. We demonstrate the versatility and practical advantages of
this data structure by using a variant of it as the critical component of the program
that generates the patterns from the dictionary.

The resulting hyphenation algorithm uses about 4500 patterns that compile
into a packed trie occupying 25K bytes of storage. These patterns find 89% of the
hyphens in a pocket dictionary word list, with essentially no error. By comparison,

the uncompressed dictionary occupies over 500K bytes.

This research was supported in part by the National Science Foundation under grants IST-82-
01926 and MSC-83-00984, and by the System Development Foundation. ‘TEX’ s a trademark

of the American Mathematical Society.

e 083 ,
: Copyright 1
- ©C : :
an
lin Mark Li
khin
Fran

Acknowledgments

I am greatly indebted to my adviser, Donald Knuth, for creating the research
eavironment that made this work possible. When I began work on the TEX project
as a summer job, I would not have predicted that computer typesetting would
become such an active area of computer science research. Prof. Knuth’s foresight
was to recognize that there were a number of fascinating problems in the field
waiting to be explored, and his pioneering efforts have stimulated many others to
think about these problems.

T am also grateful to the Stanford Computer Science Department for providing
the facilities and the community that have formed the major part of my life for the
past several years,

I thank my readers, Luis Trabb Pardo and John Gill, as well as Leo Guibas

who served on my orals committee on short notice.

In addition, thanks to David Fuchs and Tom Pressburger for helpful advice
and encouragement, '

Finally, this thesis is dedicated to my parents, for whom the experience of

pursuing a graduate degree has beea perhaps even more traumatic than it was for
myself.

1V

Table of contents

BREWDROCENE & 4 ¢ hnin i AT e e A ot R L
EEROIDIOE % s sl T h w e g a e e ke b i 2
TgX and hyphenation XN UL ol SR b o
LANS MAFAEING RIFSEIEIRIN 5 o o 0 vl h e @ R O SRR ST 4
Ao] SN SRS SRR SRR g I S PR S T ST
Overviewof thesis o e NG e Y ey 7
e gEhIanary Pproblem ¥ o i e T e it e b RN el e S e g T
EDRYR BUrBOILERAS " et ot o 7 0 S s TR S G e S PP |
Superimposed coding ., R R S S e L)
Dol PSRRI B AT o ks B e A s SR PR e L e e |
e T [AR Bl R g ot A s R a N S LU)
Suffix compression PR £ e R
Perived Horms Lot b v U o 0 il G e e e U N e R |)
Spelling checkers . . e B Mol Clbatia o T I O S |
£V a1 o, O e S S SRR L e L G e s ot e G el]
BVDRENAatIoN o, 0 i i o o e e g e s et et et ettt s e S
Finite-state machines with output g A 2 3
Minimization with don’tcares B e L
Patiern matching 0 w2 s b S o AR TR iy i 20
Pattern peneration ' . o v s e e ie e eriie tie et v)t e s 29
ETTTEW o Ul R e S A A Bt O o b e 30
Collecting pattern statistics e e s B 31
Dynamicpacked Lries ™ o i e Tt 5t o tu s e s e e o
Experimentalresults . . . ¢ ¢ ¢ 0 e o B sl e w8 Wi et 34
RamnBles . u s v 56 e b e P R PR MR PR S - o g L S0
History and Conclusion . , PP R A RT b PO s ok S0 2 39
RODERAIX & o s 0 o D e e ad el el e R K e R 45
The PATGEN program . , . . « o o o & AR R ey iy eEar Y
BT T T R R e A R e N L s BN e S T A B LT
Reloyences . s .+ s s s B B B R O SO o i e e Ry 83

Chapter 1

Introduction

* The work described in this thesis was inspired by the need for a word hyphen-
ation routine as part of Don Knuth’s TgX typesetting system [1]. This system was
initially designed in order to typeset Prof. Knuth’s seven-volume series of books,
The Art of Computer Programming, when he became dissatisfied with the qual-
ity of computer typesetting done by his publisher. Since Prof. Knuth'’s books were
to be a definitive treatise on computer science, he could not bear to see his schol-
arly work presented in an inferior manner, when the degradation was entirely due
to the fact that the material had been typeset by a computer! .

Since then, TEX (also known as Tau Epsilon Chi, a system for technical text)
has gained wide popularity, and it is being adopted by the American Mathematical
Society, the world’s largest publisher of mathematical literature, for use in its jour-
nals. TEX is distinctive among other systems for word processing/document prepa-
ration in its emphasis on the highest quality output, especially for technical mate-
rial, |

One necessary component of the system is a computer-based algorithm for hy-
phenating English words. This is part of the paragraph justification routine, and it
is intended to eliminate the need for the user to specify word division points explic-
itly when they are necessary for good paragraph layout. Hyphenation occurs rela-
tively infrequently in most book-format printing, but it becomes rather critical in
narrow-column formats such as newspaper printing. Insufficient attention paid to
this aspect of layout results in large expanses of unsightly white space, or (even
worse) in words split at inappropriate points, e.g. new-spaper.

Hyphenation algorithms for existing typesetting systems are usually either rule-
based or dictionary-based. Rule-based algorithms rely on a set of division rules such
as given for English in the preface of Webster’s Unabridged Dictionary [2]. These in-
clude recognition of common prefixes and suflixes, splitting between double conso-

SR L { " Ay " \ |
nants, and other more specialized rules. Some of the “rules” are not particularly

2 INTRODUCTION

amenable to computer implementation;.e.g. “split between the elements of a com-
pound word”. Rule-based schemes are inevitably subject to error, and they rarely
cover all possible cases. In addition, the task of finding a suitable set of rules in the
first place can be a difficult and lengthy project.

Dictionary-based routines simiply store an entire word list along with the allow-
able division points. The obvious disadvantage of this method is the excessive stor-
age required, as well as the slowing down of the justification process when the hy-
phenation routine needs to access a part of the dictionary on secondary store.

Examples

To demonstrate the importance of hyphenation, consider Figure 1, which shows
a paragraph set in three different ways by TgX. The Srst example uses TEX’s nor-
mal paragraph justification parameters, but with the hyplenation routine turned
off. Because the line width in this example is rather narrow, TgX is unable to find
an acceptable way of justifying the paragraph, resulting in the phenomenon known
as an “overfull box”.

One way ¢o fix this problem is to increase the “stretchability” of the spaces be-
tween words, as shown in the second example. (TEX users: This was done by in-
creasing the stretch component of spaceskip to .5em.) The right margin is now
straight, as desired, but the overall spacing is somewhat loose.

In the third example, the hyphenation routine is turned on, and everything is

beautiful.

In olden times when wish-
ing atill helped one, there lived
2 king whose daughters were all
beautiful, but the youngest was
80 beautiful that the sun itself,

In olden times when wishing
still helped one, there lived a
king whose daughters were all
beautiful, but the youngest was
so beautiful that the sun itsell,

In olden titnes when wishin
till helped one, there lived a kin
hose daughters were all beautifyl,
ut the youngest was so beautifu
hat the sun itsell, which has scer

mo much, was astonislied whenevc
(thone in her face. Close b

he king's castle lay a great dar

‘orest, and under an old lime-tre
n the forest was a well, and when
khe day was very warm, the king'’
child went out into the forest and
Eat down by the side of the conl!

ountain, and when she was borcj
klie Ltook & golden ball, and thre
tl up on high and caught it, and

Lhis ball was her favorite plaything.

which has scen so much, was
astonished whenever it shone in
her fuce. Close by the king's
castle lay a great dark [crest,
and under £ old liinc-tree in
the forest was a well, and when
the day was very warm, the
king's child went out into the
forcst and sat down by the side
of the cool fountain, and when
she was borcd she took a golden
ball, and threw it up on high
and caught it, and this ball was
her favorite plaything.

which has seen 80 much, was as-
tonished whenever it shone in her
face. Close by Lhe king's castle
lay a great dark florest, and un-
der an old lime-tree in the forest
was a well, and when the day was
very warim, the king’s child went
oul into the forest and sat down
by the side of the cool fountain,
and when she was bored she took
s golden ball, and threw it up on
high and caught it, and Lhis ball
was her lavorite playlhing.

Figure 1. A typical paragraph with and without hyphenation.

INTRODUCTION | | 3

gel-fadjoint as-so-ciate as-go-ci-ate
Pit-tsburgh prog-ress pro-gress
clearin-ghouse rec-ord re-cord
fun~draising a-rith me-tic ar-ith-met-ic¢
ho-meowners eve-ning even-ing
playw-right pe-ri-od-ic ~ per-i-o-dic
algori-thm '

walkth-rough | in-de-pen-dent in-de-pend-ent
Re-agan tri-bune trib-une

Figure 2. Difficult hyphenationas.

However, life is not alwaye so simple. Figure 2 shows that hyphenation can be
difficult. The first column shows erroneous hyphenations made by various typeset-
ting systems (which shall remain nameless). The next group of cxamples are words
that hyphenate differently depending on how they are used. This happens most
commonly with words that can serve as both nouns and verbs. The last two ex-
amples show that different dictionaries do not alwa*y.s agree on hyphena.ion (in this
case Webster’s vs. American Heritage).

TEX and hyphenation

The original TEX hyphenation algorithm was designed by Prof. Knuth and
the author in the summer of 1977. It is essentially a rule-based algorithm, with
three main types of rules: (1) suffix removal, (2) prefix removal, and (3) vowel-
consonant-consonant-vowel (vcev) breaking. The latter rule states that when the
pattern ‘vowel-consonant-consonant-vowel’ appears in a word, we can in most cases
split between the consonants. There are also many special case rules; for example,
“break vowel-q” or “break after ck”. Finally a small exception dictionary (about
300 words) is used to handle particularly objectionable errors made by the above
rules, and to hyphenate certain common words (e.g. pro-gram) that are not split by
the rules. The complete algorithm is described in Appendix H of the old TEX man-

ual.

In practice, the above algorithm has served quite well. Although it does not
find all possible division points in a word, it very rarely makes an error. Tests on a
pocket dictionary word list indicate that about 40% of the allowable hyphen points
are found, with 1% error (relative to the total number of hyphen points). The al-

gorithm requires 4K 36-bit words of code, including the exception dictionary.

4 INTRODUCTION

The goal ol the present research was to develop a better hyphenation algo-
rithm. By “better” we mean finding more hyphens, with little or no error, and us-
ing as little additional space as possible. Recall that one way to perform hyphen-
~ation is to simply store the entire dictionary. Thus we can view our task as a data
compression problem. Since there is a good deal of redundancy in English, we can
hope for substantial improvement over the straightforward representation.

Another goal was to automate the design of the algorithm as much as pos-
sible. The criginal TgX algorithm was developed mostly by hand, with a good
deal of trial and eirror. Extending such a rule-based scheme to find the remain-
ing hyphens seems very difficult. Furthermore such an effort must be repeated for
each new language. The former approach can be a problem even for English, be-
cause pronunciation (and thus hyphenation) tends to change over time, and be-
cause different types of publication may call for different sets of admissible hy-

phens.

" Time magazine algorithm |
A number of approaches were considered, including methods that have been dis-

cussed in the literature or implemented in existing typesetting systems. One of the
methods studied was the so-called Time magazine algorithm, which is table-based

rather than rule-based. _

The idea is to look at four letters surrounding each possible 'reakpoint, namely
two letters preceding and two letters following the given point. However we do not
want to store a table of 264 = 456,970 entries representing all possible four-letter
combinations. (In practice only about 15% of these four-letter combinations actu-
ally occur in Fnglish words, but it is not immediately obvious how to take advan-
tage of this.)

Instead, the method uses three tables of size 262, corresponding to the two let-
ters preceding, surrounding, and following a potential hyphen point. That is, if
the letter pattern wx-yz occurs in a word, we look up three values correspond-
ing to the letter pairs wx, xy, and yz, and use these values to determine if we can
split the pattern.

What should the three tables contain? In the Tiiane algorithm the table values
were the probabilities that a hyphen could occur after, hetween, or before two given
letters, respectively. The probability that the pattern wx-yz can be split i1s then es-
timated as the product of these three values (as if the probabilities were indepen-
dent, which they aren’t). Finally the estimated value 18 compared against a thresh-

old to determine hyphenation. Iigure 3 shows an example of hyphenation proba-

bilities computed by this method.

INTRODUCTION D

ale vl D b

SUPERCALIFRAGIILIISTICEXPIALIDOCIOUS

Figure 8. Hyphenation probabilities.

The advantage of this table-based approach is that the tables can be gen-
erated automatically from the dicticnary. However, some experiments with the
method yiclded discouraging rcsults. One cstimate is 40% of the hyphens found,
with 8% error. Thus a large exception dictionary would be required for good per-
formance.

The reason for the limited performance of the above scheme is that just four let-
ters of context surrounding the potential break point are not enough in many cases.
In an extreme example, we might have to look as many as 10 letters ahead in or-
der to determine hyphenation, e.g. dem-on-stra-tion vs. de-mon-stra-tive.

So a more powerful method is needed.

Patterns
A good deal of experimentation led the author to a more powerful method

based on the idea of hyphenation patterns. These are simply strings of letters that,
when they match in a word, will tell us how to hyphenate at some point in the pat-
tern. For example, the pattern ‘tion’ might tell us that we can hyphenate be-

fore the ‘¢’. Or when the pattern ‘cc’ appears in a word, we can usually hy-
phenate between the c's. Here are some more examples of good hyphenating pat-

terns:
.in-d .in-8 .in-t .un-d b-s8 -cia con-s con-t e-ly er-l1 er-m
ex- -ful it-t i-ty -less 1-1ly -ment n-co -ness n-f n-1 n-si

n-v om-m -sjon e-ly s-nes ti-ca X-p

(The character ‘." matches the beginning or end of a word.)

0 INTRODUCTION

Patterns have many advantages. They are a general form of “hyphenation rule”
that can include prefix, suffix, and other rules as special cases. Patterns can even de-
scribe an exception dictionary, namely by using entire words as patterns. (Actu-
ally, patterns are often more concise than an exception dictionary because a sin-
gle pattern can handle several variant forms of a word; e.g. pro-gram, pro-grams,
and pro-grammed.)

More importantly, the pattern matching approach has proven very effective. An
appropriate set of patterns captures very concisely the information needed to per-
form hyphenation. Yet the pattern rules are of simple enough form that they can
be generated automatically from the dictionary.

When looking for good hyphenating patterns, we soon discover that almost all
of them have some exceptions. Although -tion is a very “safe” pattern, it fails on
the word cat-ion. Most other cases are less clear-cut; for example, the common pat-
tern n-t can be hyphenated about 80 percent of the time. It definitely seems worth-
while to use such pattefns, provided that we can deal with the exceptious in some
manner.

After choosiLg a set of hyphenating patterns, we may end up with thousands
of exceptions. Theze could be listed in an exception dictionary, but we soon no-
tice there are many similarities among the exceptions. For example, in the orig-
inal TEX algorithm we found that the vowel-consonant-consonant-vowel rule re-
sulted in hundreds «f errors of the form X-Yer or X-Yers, for certain consonant

pairs XY, so we put in a new rule to prevent.those errors.
Thus, therc may be “rules” that can handle large classes of exceptions. To take

advar.tage of this, patterns come to the rescue again; but this time they are inhibit-*
irg patterns, because they show where hyphens should not be placed. Some good ex-
amples of inhibiting patterns are: b=1y (don’t break between b and 1y), bs=, =cing,
io=n, i=tin, =18, nn=, ns=t, n=ted, =pt, ti=al, =tly, =ts, and tt=.

As it turns out, this approach is worth pursuing further. That is, after ap-
plving hypbenating and inhibiting patterns as discussed above, we might have an-
other set of hyphenaiing patterns, then another set of inhibiting patterns, and
g0 on. We can think of cach level of patterns as being “exceptions to the ex-
ceptions” of the previous level. The current TEX82 algorithm uses five alternat-
ing levels of hyphenating and inhibiting patterns. The reasons for this will be ex-

plained in Chapter 4.
The idea of patterns is the basis of the new TEX hyphenation algorithm, and

it was the inspiration for much of the intermediate investigation, that will be de-

scribed.

INTRODUCTION ‘ 7

Overview of thesis

In developing the pattern scheme, two main questions arose: (1) How can we
represent the set of hyphenation patterns in a compact form that is also reason-
ably ellicicnt for searching? (2) Given a hyphenated word list, how can we gener-
ate a suitable set of patterns?

To solve these problems, the author has developed a new data structure called
a patked trie. This data structurc aliows the very fast search times characteris-
tic of indexed tries, but in many cases it entirely eliminates the wasted space for
null links usually present in such tries.

We will demonstrate the versatility and practical advantages of this data struc-
turc "y using it not only to represent the hyphenation patterns in the final algo-
rithm, but also a3 the critical coxﬁponent of the program that generates the pat-
terns from the dictionary. Packed tries have many other potential applications, in-
cluding ideniifier lookup, spelling checking, and lexicographic sorting.

Chapter 2 considers the simpler problem of recognizing, rather than hyphenat-
ing, a set of words such as a dictionary, and uses this problem to motivate and ex-
plain the advantages of the packed trie data structure. We also point out the close re-
lationship between tries and finite-state machines.

Chapter 3 discusses ways of applying thesec ideas to hyphenation. After con-
sidering various approaches, including minimization with don’t cares, we return to
the idca of patterns. '

Chapter 4 discusses the heuristic method used to select patterns, introduces dy-
namic packed tries, and describes some experiments with the pattern generation pro-»
gram,

Chapter 5 gives a brief history, and mentions ideas for future research.

Finally, the appendix contains the WEB (3] listing of the portable pattern gen-
eration program PATGEN, as well as the set of patterns currently used by TjA82.

Note: The present chapter has been typeset by giving unusual instructions to
TEX so that it hyphenates words much more often than usual; therefore the reader
can sce numerous examples of word breaks that were discovered by the new algo-

rithm.

Chapter 2

The dictionary problem

In this chapter we consider the problem of recognizing a set of words over anu
alphabet. To be more precise, an alphabet is a set of characters or symbols, for
example the I ciers A through Z, or the ASCII character set. A word is a scquence
of characters from the alphabet. Given a set of words, our problem is to design a
data structure that will allow us to determine efficiently whether or not some word
is in the set.

In particular, we will usc spelling checking as an example throughout this
chapter. This is a topic of interest in its own right, but we discuss it here because
the pattern matching techniques we proposc will turn out to be very useful in our
hyphenation algorithm.

Our problem is a special case of the general set recognition problem, because the
elements of our set have the additional structure of being variable-length sequences
of symbols from a finite alphabet. This naturally suggests methods based on a
character-by-character examination of the key, rather than methods that operate
on the entire key at once. Also, the redundancy present in natural languages such as
English suggests additional opportunities for compression of the set represcntation.

We will be especially interested in space minimization. Most data structures for
set 1epresentation, including the one we propose, are recasonably fast for searching.
That is, a search for a key docsn’t take much more time than is needed to examine
the key itself. However, most of these algorithms assume that everything is “in
core”, that is, in the pritnary memory of the computer. In many situations, such
as our spelling checking example, this is not [casible. Since secondary mecmory

access times are typically much longer, it is worthwhile to try compressing the data

structure as much as possible.
In addition to determining whether a given word is in the set, there are other

operations we might wish to perform on the set representation. The most basic are
insertion and deletion of words from the set. More complicated operations include

performing the union of two scts, partitioning a set according to some criterion,

THE DICTIONARY PROBLEM D

determining which of several sets an element is a member of, or operations based
on an ordering or other auxiliary information associated with the keys in the set.
For the data structures we consider, we will pay some attention to methods for
insertion and deletion, but we shall not discuss the more complicated operations.
We first survey some known methods for set representation, and then propose

a new data structure called a “packed trie”.

Data structures
Methods for set representation include the following: sequential lists, sorted

lists, binary search trees, balanced trees, hashing, superimposed coding, bit vec-
tors, and digital search trees (also known as tries). Good discussions of these data
structures can be found in a number of texts, including Knuth [4], Standish [5], and
AHU [6]. Below we make a few remarks about each of these representations.

A sequential list is the most straightforward representation. It requires both
space and search time proportional to the number of characters in the dictionary.

A sorted list assumes an ordering on the keys, such as alphabetical order.
Binary search allows the search time to be reduced to the logarithm of the size of

the dictionary, but space is not reduced.
A binary search tree also allows search in logarithmic time. This can be thought

of as a more flexible version of a sorted list that can be optimized in various ways.
For example if the probabilities of scarching for different keys in the tree are known,
then the tree can be adapted to improve the expected search time. Search trees
can also handle insertions and deletions easily, although an unfavorable sequence of
such operations may degrade the performance of the tree.

Balanced tree schemes (including AVL trees, 2-3 trees, and B-trees) correct
the above-mentioned problem, so that insertions, deletions, and searches can all
be performed in logarithmic time in the worst case. Variants of trees have other
nice properties, too; they allow merging and splitting of sets, and priority queue
operations. B-trees are well-suited to large applications, because they are designed
to minimize the number of secondary memory accesses required to perform a search.
However, space utilization is not improved by any of these tree schemes, and in fact
it 1s usually increased because of the need for extra pointers. _

Hashing is an essentially different approach to the problem. Here a suitable
randomizing function is used to compute the location at which a key is stored.

Hashing methods are very fast on the average, although the worst case is linear;

fortunately this worst case almost never happens.
An interesting variant of hashing, called superimposed coding, was proposed

by Bloom [7] (sce also [4, §6.5], [8]), and at last provides for reduction in space,

10 TIIE DICTIONARY PROBLEM

although at the expense of allowing some error. Since this method is perhaps less
well known we give a description of it here.

Superimposed coding

- The 1dea is as follows. We use a single large bit array, initialized to geros, plus
a suitable set of d different hash functions. To represent a word, we use the hash
functions to compute d bit positions in the large array of bits, and set these bits to
ones. We do this for each word in the set. Note that some bits may be set by more
than one word.

To test if a word is in the set, we compute the d bit positions asso.iated with
the word as above, and check to see if they are all ones in the array. If any of
them are zero, the word cannot be in the set, so we reject it. Otherwise if all of
the bits are ones, we accept the word. However, some words not in the set might
be erroneously accepted, if they happen to hash into bits that are all “covered” by

words in the set.
It can be shown (7] that the above scheme makes the best use of space when the

density of bits in the array, after all the words have been inserted, is approximately
one-half. In this case the probability that a word not in the set is erroneously
accepted is 27¢, For example if each word is hashed into 4 bit positions, the error
probability is 1/16. The required size of the bit array is approximately ndlge,

where n 1s the number of items in the set, and lge &~ 1.44.
In fact Bloom specifically discusses automatic hyphenation as an application

for his scheme! The scenario is as follows. Suppose we have a relatively compact
routine for hyphenation that works correctly for. 90 percent of the words in a large
dictionary, but it is in error or fails to hyphenate the other 10 percent. We would
then like some way to test if a word belongs to the 10 percent, but we do not have
room to store all of these words in main memory. If we instead use the superimposed
coding scheme to test for these words, the space required can be much reduced. For
example with d = 4 we only need about 6 bits per wcird. The penalty is that some
words will be erronecously identified as being in the 10 percent. However, this is
acceptable because usually the test word will be rcjected and we can then be sure
that it is not one of the exceptions. (ISither it is in the other 90 percent or it is not
in the dictionary at all.) In the comparatively rare case that the word is accepted,
we can go to secondary store, to check explicitly if the word is one of the exceptions.

The above technique is actually used in some commercial hyphenation routines.
For now, however, TiX will not have an external dictionary. Instead we will require

that our hyphenation routine be essentially free of error (although it may not achieve

complete hyphenation).

THE DICTIONARY PROBLEM 11

An extreme case of superimposed coding should also be mentioned, namely the
bit-vector representation of a set. (Imagine that each word is associated with a single
bit position, and one bit is allocated for each possible word.) This representation is
often very convenient, because it allows set intersection and union to be performed
by simple logical operations. But it also requires space proportional to the size of
the universe of the set, which is impractical for words longer than three or four

characters.

Tries
The final class of data structures we will consider are the digital search trees,

first described by de la Briandais [9] and Fredkin [10]. Fredkin also introduced the
term “trie” for this class of trees. (The term was derived from the word retrieval,
although it is now pronounced “try”.)

Tries are distinct from the other data structures discussed so far because they
explicitly assume that the keys are a sequence of values over some (finite) alphabet,
rather than a single indivisible entity. Thus tries are particularly well-suited for

handling variable-length keys. Also, when appropriately implemented, tries can
provide compression of the set represented, because common prefixes of words are

combined together; words with the same prefix follow the same search path in the

trie.
A trie can be thought of as an m-ary tree, where m is the number of characters

in the alphabet. A scarch is performed by examining the key one character at a

time and using an m-way branch to follow the appropriate path in the trie, starting

at the root.
We will use the set of 31 most common English words, shown below, to illustrate

different ways of implementing a trie.

A FOR IN THE
AND FROM 1S THIS
ARE HAD IT TO

AS HAVE NOT WAS
AT HE g, WHICH
BE HER ON WITH
BUT HIS OR YOU
BY I THAT

Figure 4. The 81 most common English words.

12

THE DICTIONARY PROBLEM

0
0
@ &
W) T
Sy e '
H{ B &
Cibe oo
Q) @ €
D ® @

Figure 5. Linked trie for the 81 most common English words.

THE DICTIONARY PROBLEM 13

I'igure 5 shows a linked trie representing this set of words. In a linked t;rie,
the m-way branch is performed using a sequential scries of comparisons. Thus in
Figure § each node represents a yes-no test against a particular character. There
are two link fields indicating the next node to take depending on the outcome of
the test. On a ‘yes’ answar, we also move to the next character of the key. The
underlined characters are terminal nodes, indicated by an extra bit in the node. If
the word ends when we are at a terminal node, then the word is in the set,

Note that we do not have to actually store the keys in the trie, because each
nedep implicitly represents a prefix of a word, namely the sequence of characters
leading to that node.

A linked trie is somewhat slow because of the sequential testing required for
each character of the key. The number of comparisons per character can be as large
as m, the size of the alphabet. In addition, the two link fields per node are somewhat
wasteful of space. (Under certain circumstances, it is possible to eliminate one of
these two links. We will explain this later.)

In an tndezed trie, the m-way branch is performed using an array of size m.
The elements of the array are pointers indicating the next family of the trie to
go to when the given character is scanned, where a “family” corresponds to the
group of nodes in a linked trie for testing a particular character of the key. When
performing a search in an indexed trie, the appropriate pointer can be accessed by
simply indexing from the base of the array. Thus search will be quite fast.

‘But indexed tries typically waste a lot of space, because most of the arrays have
only a few “valid” pointers (for words in the trie), with the rest of the links being
null. This is cspecially common near the bottom of the trie. I'igure 6 shows an
indexed trie for the set of 31 common words. This representation requires 26 X 32 =
832 array locations, compared to 59 nodes for the linked trie.

Various methods have been proposed to remedy the disadvantages of linked
and indexed tries. Trabb Pardo [11] describes and analyzes the space requirements
of some simple variants of binary tries. Knuth [4, ex. 6.3-20] analyzes a composite
method where an indexed trie is used for the first few levels of the trie, switching to
sequential search when only a few keys remain in a subtrie. Mehlhorn [12] suggests
using a linary scarch tree to represent each family of a trie. This requires storage
proportional to the number of “valid” links, as in a linked trie, but allows each
character of the key to be processed in at most logm comparisons. Maly [13] has
proposed a “compressed trie” that uses an implicit representation to eliminate links
entirely. Each level of the trie is represented by a bit array, where the bits indicate

whether or not some word in the set passes through the node corresponding to

14 THE DICTIONARY PROBLEM

ABCDEFGHRARIJKLMNOPRQHR

O 3-8 ¥ W & ¥l
! ﬂﬂlllllllllllllgllmlml
SENESNNEERNREROEEED TREE
JANENENERESEEERARERER T TS
SEEEEITEIEREREEREEER AR mE o T

SAEEENNEEEERAEEREERETER L S

SETEENEREENEERERERSE F%75

SEEEERNNEREERREUEREEEE 07 5

JERGFENDEREEREREERENEE. & .« ¢

JECRESRNEEEEEREURERERE TS T

o 5 6 5 A I R SR BB B B W00 0
HTEEETEERTESREREREEE ST 5T
CEEENREENENENECRERNNE S, -
TENEENVEEESESRRNEEFRE R L
. FENANSRIEEESEEEEDEEOERNRS .
s AEERESEEEESEEEREEN T T

SECEEEHEREENEEIRE R R S
17 IIIIIIIIWIIIIIIIIIII
SESNERG NN EEEEDRERE L
FTEEEERMTEERESEEROREECEEEEET T
L 1 N I O P G =
< 0 7 I 7 5 - OO 58 O
sg o B bt e T] R G
23 IIIIII-IIIIHEIIIIIII
SITEEEEERET T EEEREEEEERE T x|
SRR TR ERNNEERRETE G s

- IlIllllll-lllllllllllll==

cRETNANEREMENEFC NN

RN lllllﬂlllllll

29 lll.lllll=llllllIll@llll b
-3 165 1 9 T O A R (-
31 IIIIII= D 0 T

$o— —1
s2 | | | [| ki '-ﬁlllllﬂlllll

Figure 6'.' Indezed trie for the 31 most common Englwh word:.

e

THE DICTIONARY PROBLEM 15

that bit. In addition each family contains a field indicating the number of nonzero
bits in the array for all nodes to the left of the current family, so that we can find
the desired family on the next level. The storage required for each family is thus
reduced to m+log n bits, where n is the tota! number of keys. However, compressed

tries cannot handle insertions and deletions easily, nor do they retain the speed of
indexed tries.

Packed tries

Our idea is to use an indexed trie, but to save the space for null links by
packing the different families of the trie into a single large array, so that links from
onc family may occupy space normally reserved for links for other families that
happen to be null. An example of this is illustrated below.

(In the following, we will sometimes refer to families of the indexed trie as
states, and pointers as transitions. This is by analogy with the terminology for

finite-state machines.)
When performing a search in the trie, we need a way to check if an indexed

pointer actually corresponds to the current family, or if it belongs to some other
family that just happens to be packed in the same location. This is done by ad-
ditionally storing the character indexing a transition along with that transition,
Thus a transition belongs to a state only if its character matches the character we
are indexing on. This test always works if one additional requirement is satisfied,
namely that different states may not be packed at the same base location.

The trie can be packed using a first-fit method. That is, we pack the states
one at a time, putting each state into the lowest-indexed location in which it will
fit (not overlapping any previously packed transitions, nor at an already occupied
base location). On numerous examples based on typical word lists, this heuristic
works extremely well. In fact, nearly all of the holes in the trie are often filled by
transitions from cther states.

Figure 7 shows the result when the indexed trie of Figure 6 is packed into
a single array using the first-fit method. (Actually we have used an additional
compression technique called suffix compression before packing the trie; this will be

explained in the next section.) The resulting trie fits into just 60 locations. Note

10 ' THE DICTIONARY PROBLEM

0
o [c5] | Jnofas[osalee] [onzio
30 [R_0[A20[U 4]D 0[S 0[E12|Y O[N O[F O[I15
o [0 almeals olr o]t 7[n el o[islo 0
o ¥ I e s A

Figure 7. Packed trie for the 31 most common English words.

that the packed trie is a single large array; the rows in the figure should be viewed
as one long row.

As an example, here’s what happens when we search for the word HAVE in the
packed trie. We associate the values 1 through 26 with the letters A through Z.
The root of the trie is packed at location 0, so we begin by looking at location 8
corresponding to the letter H. Since ‘H30’ is stored there, this is a valid transition
and we then go to location 30. Indexing by the letter A, we look in location 31,
which tells us to go to 29. Now indexing by V gets location 51, which points to 2.
Finally indexing by E gets location 7, which is underlined, indicating that the word
HAVE is indeed in the set.

Suffix compression
A big advantage of the trie data structure is that common prefixes of words

are combined automatically into common paths in the trie. This provides a good

dzal of compression. To save more space, we can try to take advantage of conmon

suffixes.

TIIE DICTIONARY PROBLEM 17

One way of doing this is to construct a trie in the usual manner, and then merge
common subtries together, starting from the leaves (lieves) and working upward.
We call this process suffiz compression.

For example, in the linked trie of Figure 5 the terminal nodes for the words
HIS and THIS, both of which test for the letter S and have no successors, can be
combined into a single node. That is, we can let their parent nodes both point
to the same node; this does not change the set of words accepted by the trie. It
turns out that we can then combine the parent nodes, since both of them test for I
and-go to the 8 node if successful, otherwise stop (no left successor). However, the

grandparent nodes (which are actually siblings of the I nodes) cannot be combined
even though they both test for E, because one of them goes to a terminal R node
upon success, while the other has no right successor.

With a larger set of words, a great deal of merging can be possible. Clearly all
- leaf nodes (nodes with no successors) that test the same character can be combined
together. This alone saves a number of nodes equal to the number of words in the
dictionary, minus the number of words that are prefixes of other words, plus at most
26. In addition, as we might expect, longer suffixes such as -1y, -ing, or -tion can
frequently be combined.

The suffix compression process may sound complicated, but actually it can
be described by a simple recursive algorithm. For each node of the trie, we first
compress each of its subtries, then determine if the node can be merged with some
other node. In effect, we traverse the trie in depth-first order, checking each node
to see if it is equivalent to any previously scen node. A hash table can be used to
identify equivalent nodes, based on their (merged) transitions,

The identification of nodes is somewhat casier using a binary tree representation
of the trie, rather than an m-ary representation, because each node will then have
just two link ficlds in addition to the character and output bit. Thus it will be
convenient to use a tinked trie when performing suffix compression. The linked
representation is also more convenient for constructing the trie in the first place,
because of the ease of performing insertions.

After applying suffix compression, the trie can be converted to an indexed
‘rie and packed as described previously. (We should remark that performing sufhix
compression on a linked trie can yield some additiona' ~ompression, because trie
families can be partially merged. However such compression 1s lost when the trie is
converted to indexed form.)

The author has performed numerous experiments with the above ideas. The re-

sults for some representative word lists are shown in Table 1 below. The last three

18 THE DICTIONARY PROBLEM

columns show the number of nodes in the linked, suflix-compressed, and packed
tries, respectively. Each transition of the packed trie consists of a pointer, a char-
acter, and a bit indicating if this is an accepting transition.

word list words characters linked compressed packed

pascal 35 145 125 104 120
murray 2720 19,144 8039 4272 4285
pocket 31,036 247,612 92,339 38,619 38,638
unabrd 235,545 2,256,805 759,045 — e

Table 1. Suffiz-compressed gucked tries.

The algorithms for building a linked trie, suffix compression, and first-fit pack-
ing are used in TEX82 to preprocess the set of hyphenation patterns into a packed
trie used by the hyphenation routine. A WEB description of these algorithms can be

found in [14],

Derived forms

Most dictionaries do not list the most common derived forms of words, namely
regular plurals of nouns and verbs (-8 forms), participles and gerunds of verbs (-ed
and -ing forms), and comparatives and superlatives of adjectives (-er and -est).
This makes sense, because a user of the dictionary can easily determine when a word
possesses one of these regular forms. However, if we use the word list from a typical
dictionary for spelling checking, we will be faced with the problem of determining
when a word is one of these-derived forms.

Some spelling checkers deal with this problem by attempting to recognize af-
fixes. This is done not only for the derived formis mentioned above but other com-
mon variant forms as well, with the purpose of reducing the number of words that
have to be stored in the dictionary. A set of logical rules is used to determine when
certain prefixes and suffixes can be stripped from the word under consideration.

However such rules can be quite complicated, and they inevitably make errors.
The situation is not unlike that of finding rules for hyphenation, which should
not be surprising, since aflix recognition is an important part of any rule-based
hyphenation algorithm. This problem has been studied in some detail in a series of
papers by Resnikoff and Dolby [15].

Since affix recognition is diflicult, it is preferable to base a spelling checker on
a complete werd list, including all derived forms. However, a lot of additional space

will be required to store all of these forms, even though much of the added data is

THIE DICTIONARY PROBLEM 19

redundant. We might hope that some appropriate method could provide substan-
tial compression of the expanded word list. It turns out that suffix-compressed tries
handle this quite well. When derived forms were added to our pocket dictionary
word list, it increased in size to 49,858 words and 404,946 characters, but the result-

ing packed trie only increased to 46,553 transitions (compare the pocket dictionary
statistics in Table 1).

“Hyphenation programs also need to dcal with the problem of derived forms.
In our pattern-matching approach, we intend to extract the hyphenation rules au-

tomatically from the dictionary. Thus it is again preferable for our word list to
include all derived forms.

The creation of such an expanded word list required a good deal of work.
The author had access to a computer-readable copy of Webster’s Pocket Dictionary
116}, including parts of speech and definitions. This made it feasible to identify
nouns, verbs, etc., and to generate the appropriate derived forms mechanically.
Unfortunately the resulting word lists required extensive editing to eliminate many
never-used or somewhat nonscnsical derived forms, e.g. ‘informations’.

Spelling checkers _

Computer-based word processing systems unave recently come into widespread
use. As aresult there has been a surge of interest in programs for automatic spelling
checking and correction. Here we will consider the dictionary represcntatxons used
by some cxisting spelling checkers. ‘

One of the carliest programs, designed for a large timesharing computer, was
the DEC-10 SPELL program written by Ralph Gorin [17]. It uses a 12,000 word
dictionary stored in main memnory. A simple hash function assigns a unique ‘bucket’
to each word depending on its length and the first two characters. Words in the
same bucket are listed sequentially. The number of words in each bucket is relatively
small (typically 5 to 50 words), so this representation is fairly efficient for searching.
In addition, the buckets provide convenient access to groups of similar words; this
1s uscful when the program tries to correct spelling errors.

The dictionary used by SPICLL does not contain derived forms. Instead sonic
simple affix stripping rules are normally used; the author of the program notes that
these are “error-prone”.

Another spelling checker is described by James L. Peterson [18]. His program
uses three scparate dictionaries: (1) a small list of 258 cominon English words, (2)
a dynamic ‘cache’ of about 1000 document-specific words, and (3) a large, compre-
Liensive dictionary, stored on disk. The list of common words (which is static) is

represented using a suflix-compressed linked trie. The dynamic cache is maintained

20 THE DICTIONARY PROBLEM

using a hash table. Doth of these dictionaries are kept in main memory for speed.

The disk dictionary uses an in-core index, so that at most one disk access is required
per search.

Robert Nix [19] describes a spelling checker ba.scd. dn the superimposed codin'g
method. e reports that this method allows the dictionary from the SPELL pro-

gram to be compressed to just 20 percent of its original size, while allowing 0.1%
chance of error.

A considerably different approach to spelling checking was taken by the TYPO
program developed at Bell Labs [20]. This program uses digram and trigram fre-
quencies to identily “improbable” words. After processing a document, the words
are listed in order of decreasing improbability for the user to peruse. (Woxrds ap-
pearing in a list of 2726 common technical words are not shown.) The authors
report that this format is “psychologically rewarding”, because many errors are
found at the beginning, inducing the user to continuc scanning the list until errors
become rare. |

In addition to the above, there have recently been a number of spelling checkers
developed for the “personal computer” market. Decause these programs run on
small microprocessor-based systems, it is especially important to reduce the size of
the dictionary. Standard techniques include hash coding (allowing some error), in-
core cacnes of common words, and special codes for common prefixes and suffixes.
One program first constructs a sorted list of all words in the document, and then
compares this list with the dictionary in a single sequential pass. The dictionary
can then be stored in a compact form suited for sequential scanning, where cach

word is represented by its diffcrence from the previous word.

Besides simply detecting when words are not in a dictionary, the design of a
practical spelling checker involves a number of other issues. For example many
spelling checkers also try to perform spelling correction. This is usually done by
searching the dictionary for words similar to the misspelled word. Errors and sug-
gested replacements can be presented in an interactive fashion, allowing the user to
sce the context from the document and make the necessary changes. The contents
of the dictionary are of course very important, and each user may want to modily
the word list to match his or her own vocabulary. Finally, a plain spelling checker
cannot detect problems such as incorrect word usage or mistakes In grammar; a

more sophisticated program performing syntactic and perhaps semantic analysis of

the text would be necessary.

THE DICTIONARY PROBLEM 21

Conclusion and related ideas

The dictionary problem is a fundamental problem of computer science, and

it has many applications besides spelling checking. Most data structures for this

problem consider the clements of the set as atomic entities, fitting into a single com-
puter word. However in many applications, particularly word processing, the keys
are actually variable-length strings of characters. Most of the standard techniques
are sﬁomcwhat awkward when dealing with variable length keys. Only the trie data
structure i1s well-suited for this situation.

We have proposed a variant of tries that we call a packed trie. Search in a
packed trie is performed by indexing, and it is therefore very fast. The first-fit
packing technique usually produces a fairly compact representation as well.

We have not discussed how to perform dynamic insertions and deletions with a
packed trie. In Chapter 4 we discuss a way to handle this problem, when no suffix

compression is used, by repacking states when necessary.

The i1dea of sufix cbmprcssion 1s not new. As mentioned, Peterson’s spelling
checker uses this idea also. But in fact, if we view our trie as a finite-state machine,
suflix compression is equivalent to the well-known idea of state minimization. In
our case the machine is acyclic, that is, it has no loops. '

Suffix compression is also closcly related to the common subexpression problem
from compiler theory. In particular, it can be considered a special case of a problem
called acyclic congruence closure, which has been studied by Downey, Sethi, and
Tarjan {21]. They give a lincar-time algorithm for suflix compression that does not
usc hashing, but it is somewhat complicated to implement and requires additional
data structures.

The idea for the first-fit packing method was inspired by the paper “Storing a
sparse table” by Tarjan and Yao [22]. The technique has been used for compressing
parsing tables, as discussed by Zeigler [23] (sce also [24]). However, our packed
trie implementation differs somewhat from the applications discussed in the above
references, because of our emphasis on space minimization. In particular, the idea
of storing the character that indexes a transition, along with that transition, scems
to be new. This has an advantage over other techniques for distinguishing states,
such as the use of back pointers, because the character requires fewer bits.

The paper by Tarjan and Yao also contains an interesting theorem character-
izing the performance of the first-fit packing method. They consider a modification
suggested by Zeigler, where the states are first sorted into decrcasing order based
on the number of non-null transitions in cach state. The idea is that small states,

which can be packed more casily, will be saved to the end. They prove that if the

L

22 THLE DICTIONARY PRODLEM

distribution of transitions among states satisfics a “harmonic decay” condition, then

essentially all of the holes in the first-fit packing will be filled.
More precisely, let n({) be the total number of non-null transitions in states with

more than { transitions, for [> 0. If the harmonic decay property n(l) < n/(l + 1)
is satished, then the first-fit-decreasing packing satisfies 0 < b(1) < n for all 2, where
n = n(0) is the total number of transitions and b(z) is the base location at which

the 1th state is packed.
The above theorem does not take into account our additional restriction that

no two states may be packed at the same base location. When the proof is modified
to include this restriction, the bound goes up by a factor of two. However in practice

we scem to be able to do much better.
The main reason for the good performance of the first-fit packing scheme is

the fact that there are usually enough single-transition states to fill in the holes
created by larger states. It is not really necessary to sort the states by number of
transitions; any packing order that distributes large and small states fairly evenly
will work well. We have found it convenicnt simply to use the order obtained by

traversing ‘he linked trie.

Improvements on the algorithms discussed in this chapter are possible in certain
cases. If we store a linked trie in o specific traversal order, we can eliminate one
of the link fields. For example, if we list the nodes of the trie in preorder, the left
successor of a node will always appear iinmediately after that node. An extra bit 1s
used to indicate that a node has no left successor. Of course this technique works

for other types of trees as well. | : -
If the word list is already sorted, linked tric insertion can be performed with

only a small portion of the tric in memory at any time, namcly the portion along
the current insertion path. This can be a great advantage if we are are processing

a large dictionary and cannot store the entire linked trie in memory.

Chapter 8

Hyphenation

Let us now try to apply the ideas of the previous chapter to the problem of
hyphenation. TEX82 will use the pattern matching method described in Chapter 1,
but we shall first discuss some related approaches that were considered.

Finite-state machines with output

We can modify our trie-based dictionary representation to perform hyphenation
by changing the output of the trie (or finite-state machine) to a multiple-valued
output indicating how the word can be hyphenated, instead of just a binary yes-no
output indicating whether or not the word is in the dictionary. That is, instead of
associating a single bit with each trie transition, we would have a larger “output”
field indicating the hyphenation “action” to be taken on this transition. Thus on

recognizing the word hy-phen-a-tion, the output would say “you can hyphenate
this word after the second, sixth, or seventh letters”.

To represent the hyphenation output, we could simply list the hyphen positions,
or we could use a bit vector indicating the allowable hyphen points. Since there
are only a few hundred different outputs and most of them occur many times, we
can save some space by assigning each output a unique code and storing the actual

hyphen positions in a separate table.
To conveniently handle the variable number of hyphen positions in outputs,

we will use a linked representation that allows different outputs to share common
portions of their output lists. This i1s implemented using a hash table containing
pairs of the form (output, nezt), where output is a hyphenation position and nezt
1s a (possibly null) pointer to another entry in the table. To add a new output list
to the table, we hash cach of its outputs in turn, making each output point to the
previous one. Interestingly, this process is quite similar to sufix compression. |
The trie with hyphenation output can be suflix-compressed and packed in the
same manner as discussed in Chapter 2. Because of the greater variety of out-

puts more of the subtries will be distinct, and there is somewhat less compression.

23

24 HYPIIENATION

From our pocket dictionary (with hyphens), for example, we obtained a packed trie
occupying 51,699 locations.

We can improve things slightly by “pushing outputs forward”. That is, we can
output partial hyphenations as soon as possible instead of waiting until the end of
the word. This allows some additional suffix compression.

For example, upon scanning the letters hyph at the beginning of a word, we
can already say “hyphenate after the second letter” because this is allowed for all
words beginning with those letters. Note we could not say this after scanning j. at
hyp, because of words like hyp-not-ic. Upon further scanning ena, we can say
“hyphenate after the sixth letter”.

When implementing this idea, we run into a small problem. There are quite
a few words that are prefixes of other words, but hyphenate differently on the
letter<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>