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IMAGE PROCESSING ASPECTS OF TYPE

ROBERT A. MORRIS

The University of Massachusetts at Boston and Interleaf, Inc.

ABSTRACT

Classical image processing models can be applied to individual letters and to text as a whole. By combining these
models with contemporary models of human vision, some aspects of type design can be considered to reflect needs
of the visual system.

1. Spectra

Type, both black-and-white and gray-scale, can be regarded as a function mapping
points in the plane into intensities, which are numbers between 0 and 1. Since
(western) type is made up largely of vertical strokes, we can sometimes conven-
iently represent it as a one-dimensional signal, with the intensity at horizontal posi-
tion x, considered as the average intensity along the vertical line at x. In either the
one- or two-dimensional case, it is possible to talk about the spatial frequencies
present in the signal and about the amplitude of the image at each frequency. These
spatial frequencies characterize the image and can reflect features of the type, de-
tailed below. In addition, the human visual system has different responses to differ-
ent spatial frequencies, and this affects the way we see type (see Section 2.).

1.1. Generalities

In the one-dimensional black-and-white case, spatial frequency can be conven-
iently thought of as the rate of alternation of the strokes between black and white,
per unit distance. This distance is most appropriately measured not in a fixed linear
measure, but rather in the amount of visual angle subtended by the image under
study. Intuitively, this is reasonable: 100-point type viewed at 400 cm. will subtend
the same visual angle as 10-point type at the normal 40 cm. reading distance. If we
had no visual cues about the viewing distances, we would judge these to be the
same size type (ignoring for now the important typographic pnnciple that type
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should not be linearly scaled). For example, 10-point type at 40 cm. alternates be-
tween black and white at the rate of about 7-8 cycles per degree (cpd) of visual
angle. (This can be confirmed with a ruler and simple trigonometry on the reader’s
favorite 10-point type.) This spatial subtense measure is also appropriate for the
two-dimensional.case, which we discuss later.

Even when we are viewing essentially analog type, such as might be produced by
ink which flows on the page (as opposed to the discrete marking produced by laser
printers or digital photo-typesetters on their original film), the visual system is sam-
pling the image we see. This is because the image is perceived early in the process
by discrete photoreceptors on the retina. The distance between these receptors is a
limiting factor in the resolution with which we can perceive an image. It is known
to be about 1 minute of visual angle, corresponding to a maximum perceivable fre-
quency of 60 cpd. Some of the implications for digital typography of these limits
were observed in [Bigelow83]. Omitting considerations of half-toning, in which
multiple one bit pixels make one gray cell, this limit implies that pixels about
1/600-th inch apart can not be distinguished even at the minimum distances at
which one can focus. Thus, a resolution of 1200 dots per inch (dpi) permits the
finest distinguishable alternation of white with black, and, indeed, digital typeset-
ters traditionally are manufactured at about this resolution.

Sampling continuous signals, either in the marking process or in the vision sys-
tem, creates several well-known problems for whatever system is reconstructing
the image. In the computer graphics literature, all of these are coloquially known as
aliasing, but the major one is simply the roundoff error inherent in making a dis-
crete choice from a continuous signal. This is most evident in the familiar
““jaggies,’” or staircase effect, seen in curves and some diagonal lines. Aliasing re-
sults when two signals become indistinguishable due to undersampling. Both arti-
facts can be dealt with by increasing the sample rate, i.e., the resolution, but, in
theory, never completely (see Ch. 12 of [Castleman79] for a treatment of the trade-
offs in dealing with sampled signals). Any signal with sharp edges is guaranteed to
have components of arbitrarily high spatial frequency.

A famous theorem of signal processing theory, the Shannon—-Nyquist sampling
theorem, asserts that aliasing is not possible for a band-limited signal (one with an
upper bound on frequencies present) when the signal is sampled at a rate at least
twice that of the highest frequency. Unfortunately, any signal with sharp edges is
never band limited. Increasing the sample rate of any signal can move the aliasing
artifacts to frequencies not perceivable, but the ‘‘anti—aliased’’ gray-scale fonts in
some use are smoothing the jaggies principally by reducing the roundoff error in
the image’s representation. In addition, some recent vision research ([Yellott34])
cpd has shown that the visual system is in fact not subject to as much aliasing as
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Figure 1: Pattern with multiple spatial frequencies
A ELEELE L] [ ] [ ]

might be expected from the 60 cpd limit onits sampling rate. This apparently is due
to the fact that the sampling is not uniform, a * ‘technique’’ also applied in sampling
oscilloscopes, whereby periodic signals of higher frequency than the instrument’s
sample rate can be reconstructed by sampling at different points in successive cy-
cles. We will not touch much on aliasing issues in type, nor directly on gray-scale
fonts, which only recently have been modeled with sufficient rigor to advance be-
yond elementary stages ([Naiman88]).

It is easy to understand that the visual system has differing responses to different
spatial frequencies by consideration of an image such as in Figure 1, due to
Kirkham ([Sekuler85], p. 169). There are actually patterns at two spatial frequen-
cies present, but the lower one, three extra clusters of dark dots, will become visible
to most viewers only if they squint, which has the effect of filtering out the higher
spatial frequency, making visible the pattern at the low frequency.

It is important to note that no enhancement of the low frequency has taken place,
but rather only an attenuation of the higher one. An even more dramatic illustration
of these issues can be had by viewing the figure from a distance of several feet
instead of at arms length. This has the effect of raising both spatial frequencies, to
the point where the response to the higher one is negligible compared to the re-
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sponse to the lower. The higher frequency pattern will then be a uniform gray and
the lower one will be visible.

A signal can be decomposed into a weighted sum of all the spatial frequencies it
contains by means of Fourier analysis. These frequencies can be computed by
Fourier Transforms in one or two dimensions. The resulting collection of complex
numbers is called the spectrum of the signal

Since our interest is in sampled signals, namely the digital representation on a
discrete grid of black-and-white characters we can study the Discrete Fourier
Transform (DFT) whose k—th sarpple frequency F(k) is given in one-dimension by
F(k) = Zf(n)exp(2nikn/N), where f{n) is the signal at the n—th sample point, N is the
number of samples, and the sum is taken over all N samples. In the corresponding
two-dimensional case we would consider a signal which is given a value at integer
points (u,v). In both cases we assume thatfis 0 outside some interval (rectangle, in
the two-dimensional case). For black-and-white characters, f will always be O or 1,
namely the pixel value at coordinate (u,v).

The DFT has several advantages. The main one is that it enables us to use bit-
mapped fonts as the samples from which to compute the transform with no further
sampling required. In addition, it is efficiently computable by well-known Fast
Fourier Transforms. Also, there is a discrete inverse transform analogous to the
inverse Fourier Transform from which one can perfectly reconstruct the original
discrete signal given its DFT. Finally, under suitable conditions it gives a good ap-
proximation to the complete spectrum. We do not dwell here on the conditions
which make this true, nor on techniques for improving this approximation when it
fails, but we turn next to some specific spectra which we have computed with
FFT’s, so that some of these points can be illustrated.

1.2. Average amplitude spectra for lines of text

In general the spectrum is a complex valued function. T he magnitude of the spec-
trum is the amplitude spectrum and its square is called the power spectrum, for ade-
quate physical reasons in simple cases (cf. Sec. 4.3 [Oppenheim83]). It is thus a
measure of how much signal is present at each frequency. Earlier we suggested that
the spatial frequency due to the strokes of letters, which we call the letterform fre-
quency, is an obvious component of a line of text, and we shall see next that it is a
major one. A second component is the wordform frequency due to alternation be-
tween black and white of the words of text in a line such as might be perceived from
a distance too great to distinguish letters (i.e., at which the spatial frequencies pre-
sented by the strokes are too high to be perceived). Without more detail, suffice itto
say that we might expect to see fequencies in the spectrum corresponding at least to
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Figure 2: Idealized text signals.
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these two rates of alternation. Idealized text is roughly a product of the stroke pat-
tern and the wordform pattern (Figure 2). A more accurate model multiplies the
wordform signal by the duty cycle (the fraction “‘on’’ of the letterform signal), re-
flecting the overall grayness of the font. The spectrum of such a composite signal
will contain each of the fundamental frequencies, all of their harmonics (with de-
creasing amplitude), and all the sums and differences of all of these frequencies.

We can test this expectation against a trivial text string which conforms quite
closely to this model, namely repetitions of pair of ‘‘words™ consisting of upper
case I’s in a sans-serif font (111l Hll). We use the Computer Modern (cm) family in
our studies because MetaFont provides a powerful tool for making manipulations
of the image as well as for varying sample rate (i.e., resolution). We have also be-
gun studies with Lucida fonts [Bigelow86], which were kindly provided us by
Bigelow and Holmes. Several spectra are shown in Figure 3. Computer Modern
bitmaps in the TeX pxl format were used. These are named <fontname>.Npxl,
where N/500 is the resolution in dots per inch at which the fonts were made. Except
for the Chinese characters, all examples in this paper are at 300 dpi.

These spectra are computed by finding the amplitude spectrum on each scanline
and averaging over all the scanlines in the text. All of the spectra shown are normal-
ized to the amplitude at frequency 0 (often called the dc component after the electri-
cal applications), which represents the average intensity of the signal, i.e., the ratio
of “‘on’’ to total duration of the signal. It is also interesting to average Over an entire
page, as is done by Rubinstein and Ulichney [Rubinstein87]. However, since we
want to relate this to human vision and reading fixates one line at a time, we do not
do this. Averaging over a page will have the effect of raising the average signal (the
dc) due to having more white space. With the normalization described, this will
reduce the variation shown among frequencies in the text itself. An alternative in
this case might be to normalize to the maximum non-dc amplitude, which will gen-
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Figure 3:

One-dimensional spectra
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erally be the letterform frequency. The dc gives a measure of the overall grayness
of the font.

The spectra are computed through a truncation window as shown. For strings
containing fewer samples than this window, the signal is considered to be repli-
cated throughout the window. The legends show the string as produced from the
actual pixels in the bitmap representation of the font. If 4 is the viewing distance in
pixel width’s, then the viewing angle is Arctan(//d). For example, if we regard the
bitmap as displayed on a 300 dpi device viewed at 18 inches (5400 pixel widths),
the angle subtended by one pixel is Arctan(1/5400) = .0106 degrees, or about 38
seconds of arc. The total frequency span on each axis would be 1/.0106 , or about 94
cpd, but amplitude spectra are symmetric about 1/2 the maximum frequency, and
these graphs are plotted only to that frequency, i.e., about 47 cpd with the viewing
hypotheses above. Below each graph are tick marks at one octave intervals, begin-
ning at 1 cpd. In the trivial string, the principal component is close to 8 cpd, and this
could have also been deduced by trigonometry from the bitmap. (The upper case |
in cmss10 is 4 pixels wide with 11 pixels of setwidth, i.e., 7 white pixels between
characters. The space between the ‘‘words’’ is 13 pixels.) Real spectra are, of
course, more complex, as shown in the spectra for cmr10 and its san-serif cousin
cmss10. The serif face generally has thinner strokes, which puts relatively more
energy in the principal frequency; both faces have peaks a little above 8 cpd. The
over-boldness of the sans-serif face corresponds to raising the value of the
wordform signal (which, recall, is multiplied by the duty cycle of the letterform
signal); this is what leads to more energy in the lower frequencies. This is visible in
the spectra, with cmss having slightly more energy around 2 cpd.

It is not necessary to compute FFT’s to ascertain the principal frequencies pre-
sent in these average amplitude spectra. It suffices to count strokes in a line, calling
each one cycle, and to divide by the visual subtense of the measured line. This gives
the letterform frequency. Similarly, counting words produces the wordform fre-
quency. This method produces results that are quite accurate for Computer Modern
and the heavily tuned bitmapped Interleaf Classic font, as well as for Bigelow and
Holmes’ Lucida fonts, and there is no reason it should not be for others. In Table 1
we show some of the computed frequencies obtained by this kind of measure ap-
plied to a large text (one hundred lines of Bronte’s Wuthering Heights). All letters
were assumed to have two strokes, excepti, j, 1, and t (one each) and m, and w (three
each). Visual subtense was computed from the font metrics assuming an 18-inch
viewing distance. |

A few things are worth noting. First, these frequencies are generally in agree-
ment with those given by the DFT methods, although of course this counting
scheme does not reveal amplitude. Second, apparent from these measurements is
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Table 1: Predominant Spatial Frequencies of Several Fonts

Font fl fw Font fl fw

cmr7 10.39 1731

cmr8 O 125 cmss8 10.29 1.3

cmrl0 8.20 1.04 cmss10 8.33 151

cmrl2 6.79 .89 cmss12 7.46 195

cmrl7 5.20 .66 cmss17 537 .69

clo6 10.57 ik

clo8 9.16 1.10 cmr = Computer Modern Roman

cl10 7.83 93 cmss = Computer Modern Sans-Serif

cli2 G 80 cl = Interleaf Classic

cll4 5.80 70 Type size in points is indicated in font name.
cl 18 453 55 fl'is letterform , fw is wordform frequency.

that the designers of all of these fonts have not scaled the fonts linearly down to
small sizes. If they had, cmr7 would have a letterform frequency of 10/7, that of
cmrl0, i.e., 11.7 cpd. One study of human vision [Legge87], described below, sug-
gests that readability drops off rapidly at high spatial frequencies, and this would
seem to argue in favor of these expanded fonts.

1.3. Two-dimensional spectra

Two-dimensional amplitude spectra reveal features of individual letters which are
not discernible by the scanline averaging described above, and also suggest ways to
quantify certain differences among typefaces (serif vs. san-serif faces, for exam-
ple). Figure 4 shows the spectra of several letters in various faces. The spectra are
centered at the origin, with a distance of about 47 cpd on each axis. In each of these
discrete amplitude spectra, the frequency samples represented are at about 94/128
= .74 cpd because these spectra were computed through a window of 128 samples.
Note.also that the characters are horizontally centered in a white space, which adds
a horizontal low frequency artifact to the spectra.

Some features in the spatial domain can be deduced from these two-dimensional
spectra. For example, in the spectrum of the cmr10 upper case X, one can see that
there is more low frequency energy in the spectral feature at 45 degrees than in that
at —45 degrees. Since the amplitude spectra represent variation in intensity, these
directions will generally be at 90 degrees to the letter features. Thus the spectrum
reflects that one stroke is thicker than the other, namely the one at angle —45 de-
grees in the character.
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Figure 4: Two—dimensional spectra of characters
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Of particular interest is the difference between serif and sans-serif characters. In
the Computer Modern fonts the serifs are largely horizontal, which means they rep-
resent variation in the vertical direction. For example, the serif upper case X shows
arepeating vertical pattern near the center line which is not manifest in the sans-ser-
if spectrum. The pattern repeats about 14 times in the upper half, which means its
base frequency is about 47/ 14 =3.36 cpd. Put another way, the serif presents a pat-
tern repeating at a distance of 1/3.36 = .30 degrees of visual angle. A similar differ-
ence can be seen between the serif and sans-serif lower case m. A character the
same except for a thinner serif would generally have similar low frequency ampli-
tude, but more, or higher intensity, highs. We suggest below that this additional
energy is at visually relevant frequencies, and this may lend weight to arguments
that serifs add to legibility.

1.4. Phase in letter spectra
The spectra in Figure 4 represent amplitude, i.e., the magnitude of the complex val-
ues F(u,v) = F(u,v)l exp(i0(u,v)). Ou,v) is called the phase of the spectral value at
the two-dimensional spatial frequency (,v). Roughly speaking, phase is a measure
of the position of patterns in an image. If two spectra differed only in phase, and by
a constant amount, then the original images would be translations of one another.
On the other hand, the amplitude of the spectral values is a measure of the local
contrast variation of the image. If there is a particularly high spectral amplitude at a
given frequency, then the image has a lot of repetition of a pattern at this frequency.
In a series of papers beginning in the early 1980’s ([Hayes80], [Oppenheim81)),
Hayes, Oppenheim, Lim, and others began exploring the role of phase vs. ampli-
tude for images of a general nature. Their original motivation was the reproduction
of signals from incomplete spectral information, especially when either phase or
magnitude was not accurately known. They found that phase is more significant
than amplitude in several reasonable senses. If one takes the phase from the spec-
trum of image A and the amplitude from image B, combining them to make a syn-
thetic spectrum, and then takes the inverse Fourier Transform, the resulting image
is generally recognizable as image A (see [Oppenheim83] Figure 4.35 for an exam-
ple). This suggests that amplitude plays little role, and, in fact, the aforementioned
series of papers give iterative algorithms for reproducing an image using essen-
tially constant amplitude and only the phase of the spectrum under study. Upon
reflection, this might not be entirely surprising, given that most images in the
world, zebras and butterflies aside, do not have much local contrast variation, but
varying the position of objects in a scene radically changes the scene.
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Figure 5: Reconstruction from phase only (left), one bit of phase (right)

.';

In work with my colleague Guozhen Duan (Duan88), we wondered whether
these generalities applied to letter shapes as well. Indeed, when we examined am-
plitude spectra of entire lines of text, as opposed to individual letters, we found that,
just as in the case of the one-dimensional scanline averaging spectra, only a few
predominant frequencies were distinguishable, the rest being present over a not
very wide range of amplitudes. This may have important implications for human
vision. The visual system has radically different responses to different spatial fre-
quencies, with an overall peak at about 4 cpd. The example of Figure 1 shows that
very low, as well as very high, frequencies may need substantially more amplitude
to be distinguishable when among intermediate frequencies. Although we have not
done so, we suggest that a more meaningful way to normalize spectra of images is
to weight the spatial frequencies by the human visual system’s response. The hu-
man vision literature is sufficiently consistent about the gross structure of this re-
sponse, if not about the details, that such a project seems reasonable. For type, this
is likely to reveal, as suggested in Section 2. below, that font artists have been de-
signing type along lines consistent with contemporary models of high visual re-
sponse (which, of course, would be a reaffirmation of the vision models, not the
designs! Undoubtedly skilled font artists already have the “‘correct’”” notion of
what is easy to see, no matter whether the vision scientists do or not.)

Duan proposed, for technical reasons, that we consider the amplitude spectra of
each character to have the same features as that of a square black box of about the
same size. The iterative algorithms of [Hayes80] amount to this: Take a discrete
spectrum with at least twice as many samples as there are points in the support of
the image (that is, if the character vanishes outside an NxN rectangle, take an MxM
DFT with Mx2N ). In this enlarged spectrum, replace the amplitude with the “‘vir-
tual’’ amplitude of Duan, or perhaps some similar amplitude spectrum which is
independent of the character (for example, [Hayes80] uses constant amplitude for
this initial estimate). Take the inverse DFT to obtain a new image. Next constructa
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restricted image which coincides with the new one on the NxN rectangle, but is 0
outside it. Finally, compute a new spectrum by taking the MxM DFT of this image
and replacing its phase with the phase of the initial MxM DFT.
Roughly speaking, increasing the frequency sampling corresponds to increasing
the frequency reselution of the spectrum, i.e., a finer division of the spectrum is
computed. The algorithm sketched above is known to converge only under condi-
tions on the so-called z-transform of the samples — conditions which seem not to
hold for general binary sample sequences such as describe black-and-white charac-
ters. However, it is always the case that the error between the true image and the
iterated approximation is non-decreasing and, in real cases, the image seems al-
ways to be quite recoverable. Garcia and Calero ([Garcia84]) suggest that initial
amplitude estimates should depend somewhat on the image content, and this is the
direction we are exploring. Note that the inverse transform may not return to an
image with only two levels in it, nor even necessarily look like the original charac-
ter. But after only a few iterations of this procedure, the original character is easily
recognized, especially if some threshold is selected and all gray values below that
are set to black and all above it set to white. We can take this as an indication that
the amplitude of the spectrum is relatively unimportant in distinguishing characters
from one another. This is illustrated in Figure 5, which represents a reconstructed
upper case S from Computer Modern Roman digitized at 300dpi, after 30 iterations
of the Hayes algorithm as implemented by Duan. In related investigations, we
found that using all the amplitude information and only one bit of phase informa-
tion also recovered the character quickly with similar iterative algorithms. [Cur-
tis84] gives some abstract conditions for an image to be reconstructed from 1 bit of
phase data, and shows that as the image size gets larger, the probability approaches
1 that a randomly chosen image meets these conditions.

1.5. Chinese

We have begun studies with the the Song font of Chinese characters produced with
MetaFont by Hobby and Gu [Hobby83]. Chinese characters have substantially
more horizontal strokes than do western fonts. This is visible in the amplitude spec-
tra as 90 degree rotational symmetries not common in western spectra. The charac-
ter represented in Figure 4 also shows the presence of a strong diagonal stroke at
right angles to the corresponding spectral feature. This character is shown at two
resolutions, with more high frequency visible in the high resolution spectrum. The
low resolution picture can be regarded as an enlargement of the center of the high
resolution one (but note that they are not entirely comparable because each charac-
ter is in a 128x128 window with white side bearings extending to the window edge.
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Since the higher resolution character fills this window more, it does not show as
much of the low frequency energy which represents the artificial replication
through the window.)

At this writing we have not begun reconstruction studies with Chinese characters
of the sort described above. The complexity of Chinese characters would lead to the
conjecture that stroke position, hence phase in the spectrum, is even more critical
for them than for western characters.

2.Vision

2.1. Visual models and type models

In recent years, a substantial amount has been learned about spatial vision
(Sekuler85, pp. 145-178). In particulér, it has been known since 1968 that mono-
chromatic vision can be modeled by independent spatial frequency tuned channels,
in much the same way that color vision can be modeled by three channels tuned
with peaks at the frequencies of red, green, and blue light. The fundamental evi-
dence for this consists of measuring a subject’s response to two different spatial
frequencies, then adapting the subject to one of these frequencies, causing the vis-
ual system to reduce its response to that pattern. If the frequencies are sufficiently
widely separated, the response will not be reduced at the non-adapted frequency.

There is much literature on the details of these channels. Recently, work of
Wilson [Wilson84] suggests that there may be as few as six channels, each with a
response which is given by the difference of two Gaussian functions, and having
peaks approximately at .8, 1.7, 2.8, 4, 8, and 16 cpd. Generally, these channels
overlap in pairs, but not otherwise. In essence, the channels behave as filters, each
responding to signals within its passband. The information of all of them is
summed in a way that makes the entire pattern present an image to the visual sys-
tem. This kind of model is confirmed by psychophysical experiments with humans,
as well as by probes inserted into single cells of the visual cortex of cats and mon-
keys. Cells can be isolated that respond to patterns of some frequency and orienta-
tion but not to others. There is intuitive appeal to multi-channel models, in that they
can easily distinguish signals from (uniformly distributed) noise. (The noise is that
which has equal output in all channels. All else is signal. In fact, this observation
has been used to reduce noise in medical images [Baker80].)

We will speculate in this section how some of the spectral properties of type,
which we have described above, fit in with these models of human vision. Roughly,
we want to argue that type designers have implicitly designed with parameters
which cause the type to evoke high response from the human visual system. It is
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difficult to separate our cognitive processes, in particular the recognition of words,
from the reading process. Type designers attempt to do this with their initial design
color studies, in which conventional collections of letters are studied. In the final
analysis, though, type is about words, and the design of a typeface is not complete
without the study of the appearance of real text.

Very few psychophysical studies have been made about reading with attention to
spatial frequency models of vision. The most careful of those few is a series of
works by Legge et al., culminating in [Legge87]. That work relates reading rate to
text contrast and character width. It makes an experimental conclusion which is
consistent with a well-known typographic phenomenon, for which we describe a
somewhat theoretical foundation below. Legge’s conclusion is that at the high con-
trast typical of reading, the reading rate is highest for characters subtending about
25 degrees. Given that most characters have approximately two strokes, this
means that the spatial frequency presented by the strokes is about 8 cpd. As our
table of measurements above shows, this is about the frequency of most 10-point
type, and it is well known that type gets harder, not easier to read as its size in-
creases well above 12-point. Most reading authorities speculate that this decreased
legibility comes from the requirement to make longer saccadic eye motions, the
motions between fixations which we make when reading, with the attendant re-
duced information content per line. We will suggest below that the multi-channel
models imply that bigger type actually presents information at frequencies less dis-
cernible to the early part of the visual system.

The Legge study mentioned above also relates reading rate to psychophysical
contrast, but this is not the same thing as the contrast which type designers manipu-
late when they vary stem weights. (Note that Legge’s experiments were done on
CRT’s, not paper, possibly a consequential difference.) In type design, what is
changed is the duty cycle (the fraction ‘‘on’”) of the letterform signal idealized in
Figure 2. Indeed, even that example is unreal in that the white space between
strokes is typically several times the stroke width. The duty cycle of the wordform
signal, however, is an artifact of the mean word width, which is, of course, a func-
tion not only of the type but of the language as well. For example, German text is
often printed in 9-point type, which then tends to have wordform frequencies simi-
lar to larger English type, even though higher letterform frequencies (however, the
response curves for human visual response are broader at their peaks than on their
shoulders, which means that we might expect more tolerance in the letterform than
the wordform frequencies). In addition, a more accurate form of this idealized
model multiplies the wordform signal by the duty cycle of the letterform signal to
account for the overall average grayness of text without regard to the details of let-
ters. That notion of contrast — sometimes called the color of the text— then becomes
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built into the compound signal model and can have filters, such as proposed in
[Wilson84] applied to the signal.

It is beyond the scope of this paper to detail the application of multi-channel fil-
tering models to type models, but the central feature is this: The overall peak of
visual response is not near 8 cpd, but rather near 4 cpd. If the visual system were
responding only to the strokes in letters, we would expect best response not from
10-point type but rather from something about twice as large. What is known is that
recognition of individual words or even letters does increase as size increases
above 12-point, although reading rate for text decreases. The overall response to a
compound signal, such as presented by text (namely, the major frequencies pre-
sented by strokes and by words), can indeed be shown to decrease as the stroke
frequency decreases below 8 cpd (i.e., the type size increases above 10-point).
Thus, we can speculate that 10-point type is actually easier for the early visual sys-
tem to process than much bigger type, and we need not resort to eye motion expla-
nations.

2.2. Two—dimensional vision

The one-dimensional model of Wilson can be extended to two-dimensions
(Wilson83), but we have not attempted much to combine it with type models, as our
two-dimensional work has largely consisted of the reconstruction studies described
in Section 1.4. There is some evidence in the vision literature that monochromatic
vision is more sensitive to phase than to spectral amplitude changes and this would
be expected if natural images have most of their information in their phase. Since
this seems to be the case for letters also, once again it would suggest that type de-
signers have implicitly chosen ‘‘optimal’’ variables to manipulate. Roughly speak-
ing, radical changes in spectral amplitude throughout a font could be accomplished
by radical changes in stroke width. It is probably difficult for the unskilled eye to
detect these changes as much as mis-positioning of strokes, which are phase
changes. For example, a lower case m with its third stroke too close to the second
might be more easily mistaken for an n than would one whose strokes were uni-
formly a little too thick. Indeed, the amplitude spectra of an m and an n are nearly
identical because repeated m’s and repeated n’s present little difference from one
another in their rate of alternation of black and white.

On the other hand, serifs, especially horizontal ones (as would be the case in
most western letters), do present additional information both in phase and ampli-
tude, and our preliminary indication is that they are at visually relevant frequencies,
i.e., their presence enhances the signal in the Wilson model.
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