
What is TEX?

LATEX is a document preparation program for creating
documents that are

• beautiful

• easy to correct

• easy to update

• portable to any machine

For simple papers, the essential commands can be
learned quickly, and provide easy ways to create sections
(and subsections, and subsubsections) that are automat-
ically renumbered, cross-references that have a natural
format and are easy to enter, and bibliographies that can
easily be formatted in a wide of styles. Beyond these
easy-to-use commands is a wide range of capabilities to
do just about anything necessary for the typesetting of
documents from leaflets to books, including

• creating or importing graphics files

• making complex tables

• writing mathematical equations of all types

• multilingual documents

• nested lists, either enumerated or bulleted

It is important to note that it is a document prepara-
tion system, not a word processor. This affects the user
in various ways. For instance,

• Rather than simply entering text, you enter text
and commands to format the text.

• You can create fully formatted text, if you are writ-
ing a book, you can create a file which can simply
be copied and bound.

Peter Flom

What Is TEX?

Prelude. The Eiffel Tower is perhaps the world’s most
beautiful radio tower. It adds beauty to a utilitarian func-
tion to such a degree that most of us don’t consider its
role in radio transmission. And indeed, it was created to
be the world’s tallest building for Paris’ Exposition Uni-
verselle in 1889. It is an example of the fusion of mod-
ern industrial design, a open steel structure, with the hu-
man need to create beautiful objects. At a different scale,
the Eighteenth Century Windsor chair combines a light,
strong beautiful structure to fulfill an everyday need.

Books share both the public nature of the Eiffel Tower
and the personal aspect of a Windsor chair. Whether
a book’s typography transparently supports the text or
burdens readability with excess decoration depends on
both the designer and the capability of her typesetting
system. TEX offers the designer the capability to create
beautiful books that are also highly readable.

Getting Started. I had known about TEX for twenty
years before I used it for a project. And for years, I
could produce documents that were attractive and useful
with a word processor—PC-Write, MS Word, OpenOf-
fice—but did not need the capability to produce books
or pamphlets. After my wife and I became docents
at the Los Angeles Zoo and Botanical Gardens (http:
//www.lazoo.org), we became involved in various spe-
cialities within the docent program. I joined the Botany
Committee, a small group of docents whose goal is to
present the Zoo’s varied plant collection to patrons. The
Committee’s chairman mentioned that she and another
docent had written a self-guided botanical tour complete
botanical illustrations. “How do I get Word to include
my drawings and turn this into a booklet?” she asked.
“You don’t,” I told her. “You need a typesetting system.”

Off and Running. I bought Kopka and Daly’s Guide
to LATEX [1], installed TEX and LATEX from the enclosed
CD and tried a few of the book’s exercises. I also licensed
WinEdt for editing LATEX documents. This combination
was sufficient for several projects and only upgraded when
I joined the TEX Users Group (TUG) and received up-
dated versions TEX.

I saved the Word files of the botanical tour as plain

text files and opened them in WinEdt. Next, I scanned
the botanical illustrations and then edited them. With
text and illustrations available to WinEdt, I did a first run
and showed the results to the Botany Committee. “This
looks so professional,” was the initial reaction. Having
seen what was possible, expectations rose and we gener-
ated several alternatives for the page layout, fonts, table
of contents and index.

Looking at design alternatives helped me clarify my
own values. The Eiffel Tower and Windsor chair are
metaphors of what I find attractive: the structure itself
should be beautiful and useful. On a printed page, this
means the placement of text, fonts, titles and illustra-
tions without extraneous elements. Viewed as rectangles
on the page, the arrangement should be balanced and
harmonious. Readability is the primary measure of qual-
ity. While layouts are matters of personal taste, there are
many helpful references. The documentation for Peter
Wilson’s memoir class[2] is an excellent overview of book
design.

Finale. After weeks of editing and experimenting with
layouts, we settled on a final design. TEX is not a mono-
lithic system and can evolve as design goals change. This
is done by changing document classes and calling vari-
ous software packages. There seems to be a package for
anything I need, but it’s important to know that develop-
ers are often revising and writing new packages that add
features.

A Botanical Tour of the Los Angeles Zoo and Botani-
cal Gardens was published in November 2004 and is avail-
able in the Zoo’s gift shops. Many docents are using it
as part of the tours for schools and other groups. Ear-
lier this spring, a Botany Committee colleague showed
me a botanical tour booklet from another organization.
She pointed to the excellent color photographs, but men-
tioned that the coated paper used for the booklet made
it heavier than she liked. She pointed to the page breaks,
the index and other features that her now-critical eye im-
mediately spotted. I suspect the source of her comments
came from the awareness she developed by seeing what
TEX could do when applied as intended. Bravo Panthera
leo!
Joe Hogg (Joseph.Hogg@bigfoot.com)

References

[1] Helmut Kopka and Patrick Daly. Guide to LATEX. Tools and Techniques for Computer Typesetting.
Addison-Wesley, Boston, MA, USA, 4th edition, 2004. ISBN 0-201-17385-6.

[2] Peter Wilson. The Memoir Class for Configuarable Typesetting User Guide. The Herries Press, Normandy
Park, WA, USA, 6th edition, 2004. Available at
http://tug.org/tex-archive/macros/latex/contrib/memoir/memman.pdf.

1

What is TEX?

When someone asks you, “What is that word proces-
sor you are using?”, have you ever wished you had
a one page description to hand them? Here is one
such brief introduction.

Technically speaking, TEX is a computer appli-
cation for laying out (“typesetting”) pages of text
based on the text the user has written and other in-
structions the user has given. In other words, like
the ubiquitous Word, TEX decides where to split
lines of text, where to start a new page, and so on.

TEX was created by the noted computer sci-
entist and innovator in computer-based typesetting,
Donald Knuth, who developed it over many years
and made it freely available to the world. Knuth
provided for and invited users to enhance TEX, and
it has in fact been extended to many types of doc-
uments (letters, articles, books, slide shows, con-
cert posters, etc.) and many domains (chemistry,
chess, music, poetry, linguistics, critical editions,
etc.). The most popular enhancement to TEX is
called LATEX, which supports most needs in a straight-
forward manner.

TEX is always used in conjunction with a text
editor that lets you move around in your document
adding new text, revising text, and adding instruc-
tions for how you want the text formatted. Unlike
Word, TEX is available from a variety of commercial,
shareware or free sources, configured in ways that
different users find suitable (www.tug.org/begin.
html). But, at their core, all of these have the same
TEX “typesetter” from Knuth, and most documents
can be moved from one TEX implementation to an-
other without trouble.

Another way that TEX is different than Word
and many other word processors is that all typeset-
ting instructions are explicitly typed into and shown
in the document file. Here is a short, but perhaps
instructive, example LATEX file:

\documentclass{article}

\usepackage{a4}

\usepackage{times}

\begin{document}

This is a small example of a

two paragraph document.

This is the \emph{second} paragraph.

\end{document}

And here is the formatted output (plus a page num-
ber, not shown):

This is a small example of a two paragraph document.
This is thesecondparagraph.

Some points to note: Where Word uses an extra
strike of the Enter key to indicate a new paragraph
and this information is hidden after the last charac-
ter of the paragraph (or with the ¶ sign), LATEX uses
a visible blank line to indicate a paragraph break
(see the example). In Word you can select the style
of document, paper size, and font with various menu
commands; in LATEX you type these instructions into
your file as shown in the first lines of the example
(A4 paper, Times fonts). In Word you might type
control-I to turn on italics, then type a word, and
then type control-I again to turn off italics; in LATEX
you indicate emphasis explicitly (with \emph), as
shown in the example’s second paragraph.

Our purpose here is to explain what TEX is —
not to compare the power of TEX with the power of
other types of word processors. Suffice it to say that
many people find TEX and its companions useful in
a wide variety of applications.

Because TEX from any source has the same ex-
tendable basic capability and because the capabil-
ity for enhancement is very explicit, users are mo-
tivated to enhance TEX and there is tremendous
sharing of enhancements among TEX users. The
Comprehensive TEX Archive Network (CTAN) is a
massive collection of TEX enhancements for vari-
ous application domains, document types, and type-
setting flourishes. Discussion groups, for example,
comp.text.tex and texhax@tug.org, provide fo-
rums where users can seek help from other (some
very expert) users. The TEX Users Group (TUG)
and other national user groups provide resources
such as user conventions and journals (like this one).

If you aren’t already using TEX, you might try
proTEXt for Windows (www.tug.org/protext), TEX
Live for Unix (www.tug.org/tex-live), or gwTEX
for Mac OS X (www.rna.nl/tex.html). When asked
how much to install, it’s simplest to select all pack-
ages.

After getting a system installed, a first test is
to run pdflatex sample2e and view the resulting
sample2e.pdf. Then start reading documentation,
either online in “Not So Short Introduction to LATEX”
(www.tug.org/tex-archive/info/lshort/) or in
print in Kopka & Daly’s Guide to LATEX (www.tug.
org/books/). Reading the sample2e.tex source
file itself can also help in beginning to understand
LATEX. If you need help with a specific problem,
check the TEX FAQ (www.tex.ac.uk/faq). There
are many other resources available; the sites listed
here are a starting point for exploration.

David Walden (dave@walden-family.com)

1

What is TEX?

TEX is a program I use to make my living typesetting
books and journals. TEX is software that I’m fortu-
nately not required to install (I have a husband who
does that). Me, I’m an end-user. Note that when I
say ‘TEX’, I mean the program which is at the heart
of ‘plain TEX’ and ‘LaTeX’ and all the other vari-
ants out there (e.g., ConTeXt, pdfTeX); it’s a bit
confusing to have a program name being used this
way, and then find out that what I’m really mainly
talking about is ‘LaTeX’, whereas ‘TeX’ for some-
one else means they’re using the ‘ConTeXt’ variant.
When speaking in generalities, ‘TeX’ is sufficient.

TEX, just like MS Word, is only part of the ever-
expanding context in which text, and documents,
are being handled these days. It is not an archival or
ancient program confined to math and science type-
setting on paper; it can be integrated into the world
of PDF, HTML, XML, and so on, because of the
efforts of users around the globe, who believe, some
quite fiercely, in high-quality output being available
to everyone. Yes, it does require a computer, and
these days, access to the Internet, so one can argue
that it’s not really a tool for the entire planet. But
once you get the infrastructure, you can make beau-
tiful text appear on paper. You can typeset the text-
books and literary materials that your clients — or
your people — need. Beholden to no-one’s pockets,
or equipment, or fonts. Sounds almost subversive,
doesn’t it ;-)

TEX is also the only program I’ve ever heard
of where files coded up in 1983 can still be run. So
it’s made it possible for me to be rather stunningly
lazy — I haven’t had to learn much about any other
software for almost the past quarter century (you
figure it: 1983 till 2005). Well, other than all those
TEX add-on packages ;-) And in almost all cases,
they’ve made things easier, not harder, so the up-
grade experience has been very pleasant indeed.

TEX is the entry to a community of awfully
kind, awfully clever people who, when they see a
need, write add-on packages that expand TEX’s ca-
pability and make the add-ons publicly available.
Sometimes we meet at conferences — often we meet
via e-mail —where I try to thank them once I be-
gin to use their offerings. These add-ons sometimes
address specific, narrow needs (such as ‘soul’, which
makes spacing out words, letterspacing, underlining,
and striking out easier to do) and sometimes major,
general enhancements, such the graphics packages
(‘graphics’ and ‘graphicx’).

TEX is of course frustrating at times — very
definitely a program which does exactly what you

tell it, as opposed to what you’d like it to do. But
it’s also very gratifying in what it does to ASCII
characters on a piece of paper (or on-screen). The
defaults are pretty damn’d good; with perseverance
and good packages, the results are sometimes spec-
tacularly rewarding.

TEX is not only for math or science or the tech-
nical fields — it’s for all typeset material, be it on
paper or on screen (granted, it may be overkill for
letters, if that’s all you do; but if you want to have
letters that seem to stand out because of how the
characters sit on paper, then it’s a neat thing to
do).

TEX is not confined to English (but sometimes
it seems to be constrained by it). I periodically re-
quire something like a string of Hebrew or Cyrillic or
Greek or, most recently, Polish — and it’s all there
for me. Granted, it’s much easier because I have
good reference tools.

Books on TEX, once few and far between, are
now available in good variety, either general or very
focussed — and not just in English ;-) I find the re-
vised LATEX Companion one of my mainstays, along
with its first version. Kopka and Daly’s Guide to
LATEX is also necessary —where one explanation doesn’t
get through to me, the other often does. So resource
books and printouts of many free on-line guides are
a necessary component to learning and using TEX
to do what you want (as opposed to that ‘what you
tell it to do’ thing, mentioned above).

And then there are the internet lists — the usual
crew of (c.t.t.) and texhax, ling-tex, typo-l. But
trolling via Google also leads you to a massive num-
ber of hits that quickly tells you that this is a pro-
gram with depth — years and years of experience
exist out there, and lots of it within all kinds of
organisations and associations, institutions beyond
the universities, and of course, many well outside the
math/science domains which TEX is so often mistak-
enly relegated to.

TEX isn’t word processing, where content and
form (two favourite aspects in the linguistics world)
are so intermingled and entwined, it’s sometimes
very difficult to pull them apart and understand
the distinction. But that distinction is one of the
main aspects to TEX which newcomers are often not
(made) aware of. TEX is the second half of the equa-
tion—the manipulation of the characters on-screen,
the saving of the files, these are all done by a sepa-
rate program, your text editor.

TEX is something you learn, and appreciate, in
layers. If you want to do your thesis in it, start

2

using it for your first outline! Use it for your re-
minder notes and letters. Approach complex lay-
outs or equations or tables in layers —get the sub-
sets right first, then build the fraction, or the square
root; do the column headings and the first row of the
table and make them look right first before adding
the 10 or 20 rows of data. Same thing for a book.
It’s seat-time that counts, so pull your chair over
to the keyboard, fire up the editor and process the
first bits to see what you get. Don’t be a perfection-
ist and spend hours trying to move some element
in the equation over a squidge, just to make it look
right — leave the futzing for later. Same for tables.
Write and do minimal coding while you’re writing,
to keep the distractions of TEX to a minimum. If it
processes, be happy— and then write some more!

And if it’s someone else’s splendid work which
you have to put into TEX, it’s pretty much the same
thing: layers. Process a paragraph or equation at a
time, to keep on top of mistakes. It’s extremely de-
pressing to process a file only after the whole thing’s
been coded up, untested, and then find that you’ve
made a silly or perfectly honest blunder for 53 equa-
tions and 12 tables. Not to mention all those taunt-
ing “Undefined control sequence” messages due to
typos — often uncannily consistent. These are not
cautions which anyone passed on to me — this is di-
rect experience talking.

So, to repeat myself: What is TEX? For me
TEX is the software that has allowed me to earn my
living typesetting books and journals, since 1983.
That’s 22 years of TEX —and counting.

Christina Thiele

What is TEX?

Computer programming languages, such as C, Java
or Fortran, all require writing source code using a
text editor, and then converting this code into a
binary executable. TEX is also a type of computer
language, however it is a typesetting language, so
the source code is converted into a typeset docu-
ment, rather than an executable.

As with other languages, TEX has its own syntax
and set of predefined commands, however there are
many different formats of TEX, which can extend
the language and provide a more comprehensive set
of commands. Just as some programmers prefer to
use low-level languages, some TEX users prefer to
use plain TEX, and just as some programmers prefer
to use high-level languages, some TEX users prefer
to use one of the TEX formats. One such format is
LATEX, and it is this format that I prefer to use.

I teach LATEX as part of the IT courses run by
the University of East Anglia. The participants
are staff and postgraduate students from across the
university, with diverse backgrounds ranging from
mathematics to linguistics. Their motives in learn-
ing LATEX tend to reflect their backgrounds. Those
from a mathematics background want a system
that will typeset complicated mathematical equa-
tions, others may want a system that can produce
professional looking typeset documents.

Generating a basic document in LATEX is quite
straight-forward. You first need to specify what
type of document you want to create (is it an arti-
cle, a book etc?) This is called the document class,
and it is the document class that defines the doc-
ument layout (what the section headings look like
and so on). For example, you might use the com-
mand \documentclass{report} if you wanted to
write a technical report. The text that makes up
the document is placed inside the document en-
vironment, delimited by \begin{document} and
\end{document}. Within this document envi-
ronment, commands are provided to start chap-
ters (e.g. \chapter{Introduction}) and sections
(e.g. \section{Results}), so you don’t need
to worry about consistent formatting or keeping
track of the section numbers, as it’s all dealt
with automatically, as is generating a table of
contents (\tableofcontents) or list of figures
(\listoffigures). If at a later date you decide
to change the style of your document, it can be

done simply by changing the document class.
Unlike word processors, TEX follows certain ty-

pographical rules which give a professional look
to your document with very little effort from the
user. You rarely need to worry about minor things
such as remembering to put two spaces between
sentences and only one space between words, as
LATEX will do this automatically, and floating ob-
jects, such as figures and tables, will be positioned
according to certain rules, so you do not have to
keep repositioning them every time you add in an
extra paragraph. TEX also encourages users to con-
sider the structure of the document—am I referring
to some mathematics yo − yo ($yo-yo$ note the
minus sign and the correct spacing) or am I merely
emphasizing the word yo-yo (\emph{yo-yo} note
the hyphen and no spacing)? Some of these points
may perhaps seem minor to someone outside the
publishing industry, but they all contribute towards
the impact of the entire document. When writing
technical documents, the presentation as well as the
content is important. All too often examiners or re-
viewers are put off reading a document because it
is badly formatted. This provokes an immediate
negative reaction and provides little desire to look
favourably upon your work.

Suppose you have written a numerical program
in C or Matlab. You can save the results in a table,
e.g. values and variables separated by commas or
spaces, but you can also modify your program to
produce a file of TEX commands interleaved with
your numeric results so that the TEX program will
format your results in a beautiful typeset table. In
fact, some applications allow you to save your work
in TEX format, for example, the symbolic maths
toolbox in Matlab has the function latex which
will convert a piece of symbolic maths into the ap-
propriate LATEX code, which can then be written to
a file using the Matlab fprintf command.

For me, as both a mathematician and computer
programmer, TEX is an invaluable tool not only
for typesetting complicated equations, but also for
assisting with the complex task of generating a
technical manual with cross-references, bibliogra-
phy, index and glossaries. Also, TEX can easily be
instructed to produce output as Postscript (which
some publishers prefer), PDF (which looks nice on
a printer or the web), or HTML (which is good for
browsing on the web).
Nicola Talbot (nlct@cmp.uea.ac.uk)

1

1

What is TEX? . . .
. . . by Hans Hagen

Here I reflect on some of the remarks made in the other answers. It’s not so much meant as
critique, but more as a trigger for further discussion. If you only want to know my answer, you
can skip to the last paragraph.

All TEXs are equal . . .
. . . but some are more equal than others.

The answer to this question is not always easy to give. Peter Flom for instance starts his
description with “LATEX is . . . ” and thereby makes TEX the program equivalent to LATEX the
macro-package.

This kind of equivalents are rather common, and many users don’t know the difference between
PDFTEX (the program) and PDFLATEX (the macro package). This is made even more confusing
by the fact that on many systems invoking PDFTEX without explicit macro package mentioned,
will load the plain TEX format.

Yet another confusing factor is that TEX is used to describe both a language and its associated
interpreter/typesetter. And then there is the TEXbook, which not only describes these two,
but also the plain TEX format that ships with the system. So, in the case of TEX we need to
distinguish:

language primitive commands combined with macro definitions
program interpreter and typesetting engine
package collection of macros loaded on top of the built in language

If we translate that to commands and files, we end up with:

language TEX, program specific extensions
program TEX, PDFTEX, XETEX, ALEPH (OMEGA)
package plain,AMS-TEX, LATEX, LAMS-TEX, CONTEXT, . . .

LATEX users have several options to invoke TEX:

latex the (pdf)TEXengine with the LATEX macro package preloaded
pdflatex idem, but this time the output will be a pdf file
xelatex the LATEX macro package loaded into the XETEX engine
lambda the LATEX macro package loaded into the ALEPH or OMEGA

For ConTEXt users life is different. They use a wrapper and thereby use calls like

2

texexec –pdf somefile.tex the CONTEXT macro package loaded in PDFTEX
texexec –xtx somefile.tex idem but this time loaded in XETEX

For a long time TEX produced DVI output only and one had to postprocess this into a format
suitable for a printing engine and for quite a while POSTSCRIPT output was quite popular.
Nowadays PDF is the format of choice and PDFTEX can produce this directly. There is no
need for a backend like DVIPS (to produce POSTSCRIPT which itself can be converted in PDF) or
DVIPDFMX (which converts DVI into PDF).

No matter how you use TEX, you need to keep in mind that when you talk of in terms of what
you invoke on the command line, this may not be what others experience. Think of this: by
default PDFTEX produces DVI output and unless told explicitly to behave differently, it is just
like good old TEX, and in DVI mode still needs backend. Confusing eh?

TEX can produce beautiful documents . . .
. . . but does not give you guarantees.

When people advocate TEX they tend to praise the output of this program as being of high
quality and beautiful. In a way this is wishful thinking. There is no doubt that TEX can produce
documents that qualify as such, but in practice many documents look just as ‘texy’ as MSWORD
documents look ‘wordy’ and QUARK output looks ‘quarky’. The variations in style (design),
font usage and formatting is not that large and a direct result of using the same predefined
layout over and over again. For instance, texies make jokes about POWERPOINT presentations
(since they can be recognized by the features used) but don’t realize that most of their own
work stands out in a similar way. They rightfully claim that TEX does a good job on breaking
lines into paragraphs but are more tolerant to funny vertical spacing resulting from handcrafted
commands that interfere with what the macro package tries to accomplish. Because TEX can do
such a good job on justifying text, words sticking into the right margin (overfull boxes) stand
out pretty noticeable. I don’t want to count the documents posted on the web that demonstrate
this ‘feature’.

TEX is easy to use . . .
. . . but not everything is easy.

TEX can do clever things with graphics and fonts, but the fact that there are so many questions
posted to mailing lists demonstrates that this is less trivial than long time users suggest when
they praise TEX to new users. TEX can be an easy system to use, but also a painful experience
when one wants to do real clever things. Some things are simply tricky, no matter what system
is used.

An important property of TEX usage is that on the average the audience is quite willing to help

3

newcomers. Nearly always users themselves choose to use TEX. Therefore they are willing to
spend time on learning the system.

A strength of TEX and its packages is that one can find resources on usage in bookshop as well
as on the web (manuals, faqs, wikis, mailing lists, new groups, etc).

TEX output is always good . . .
. . . it’s only you who can mess up things.

In most computer languages, one has to explicitly tell the machinery that some text should
be output. Not with TEX. Anything that expands to text will become visible somehow. One
can make fun of the fact that those who use word processors may end up with inconsistent
spacing, i.e., duplicate spaces in the result. With TEX, you should not be surprised when spacing
becomes messed up too due to funny spaces in macros. Be careful of making false claims and
dangerous jokes.

In his answer David mentions the visual separation of paragraphs as a characteristic of TEX.
He also explains the difference between changing fonts in TEX and for instance MSWORD. In
discussions about the the differences between word processors and TEX, one may argue that
in a word processor one never knows where exactly a change of fonts takes place: is the space
preceding a bold word bold as well or not. But in a way TEX’s ways of dealing with font changes
or changes in attributes is not less confusing than e.g. MSWORD’s.

Say that we want to narrow a paragraph of text.

\def\StartNarrow{\bgroup\leftskip1em\rightskip1em\relax}
\def\StopNarrow {\egroup}
\StartNarrow some lines of text \StopNarrow

In such cases grouping is used to make sure that we limit the scope of the feature change.
However, in this case, you will not get an narrowed paragraph, unless you provide an explicit
paragraph end.

\StartNarrow some lines of text \par \StopNarrow

The solution is to change the definition to:

\def\StartNarrow{\bgroup\leftskip1em\rightskip1em\relax}
\def\StopNarrow {\par\egroup}

There are many spacing related features that work this way and the effects are not always clear
source code. What is true for one document style may be false for another. It all depends on
how your TEX is set up and how well macro writers coordinate their work.

4

TEX is stable and does not change . . .
. . . but do we really want that to be true?

Don Knuth’s wishful thinking that TEX the program would be extended for whatever intended
purpose has not been fulfilled. In good old TEX there are two examples of extansions: specials
and writes. Specials provide a way to control the backend and are used to achieve special
effects like color or to insert additional material like graphics. Without specials, we would have
been in big trouble and still manually have to cut and paste copies of graphics. Writes are a
neccessity for tables of contents, cross references and other features that demand a feedback
loop into a successive run. Normally their usage is hidden by macro packages. By providing
these examples of extending TEX Don actually made TEX much more future proof.

There are some non-Knuthian extensions, but not that many. For instance, nobody bothered to
write a subsystem for typesetting chemistry as companion to the math typesetting subsystem.
It has to be done in macros. So far nobody came up with real robust extensions for numbering
lines, parallel output streams and other goodies for the humanities and linguistics. Again, one
has to revert to macro writing, in this case of a particularly nasty kind. You may call yourself
lucky that publishers are not that demanding.

Nevertheless, one may expect extensions and currently the most prominent ones are ε-TEX,
which provided some extra programming features, PDFTEX, which kick-started TEX into the 21th
century by providing marginal kerning and optical scaling aka hz (Hermann Zapf) optimization
as well as a full featured PDF backend, and XETEX which boosted TEX towards unicode and
opentype fonts. It’s only by efforts like this that TEX is still alive and kicking.

Of course, macro packages play their role as well, and as long as we can find people who feel
challenged by beating a language and feature set that does not really match today’s program-
ming techniques, we’re safe. The competition is not doing much better, simply because the
problems that we’re facing haven’t changed much.

Christina mentions that one of the nice things about TEX is that it’s virtually bug free. But,
Christina, I have to disappoint you: if your 23 year old document depends on \leaders
behaving like they did at that time, you may have to find yourself an old copy. Among the
most recent bug fixes was a fix to this mechanism and it may make a difference, although the
changes are small. (Actually, it does make a difference for the TEXbook.) But . . . in general
your claim is true, unless of course you forgot to save your old pattern files, along with an old
copy of your macro package. And, are you sure that the metrics or appearance of the fonts that
you use didn’t change? Btw, there are other examples of stable programs: computer language
compilers and interpreters, and this is exactly what TEX is.

5

What is TEX . . .
. . . and why do I like it?

TEX is a system which permits you to create your own typesetting environment. In its 25+ year
existence various environments evolved, for instance LATEX and CONTEXT so users can start
right away. Both can be used comfortably in editing programs and previewing your document
is no problem. You can extend their functionality or decide to stick to what is offered. You are
in control. Okay, some aspects are difficult to deal with, but that is a direct result of the rich
functionality.

If you stick to the paradigm of the particular environment you are using, i.e., keep your
document code clean, your documents are stable over a long period of time. You edit in a
structured way, you define your layout in an abstract manner, and can produce the final result
on any platform you want. You can distribute your source code and let others work with it,
thanks to the availability of distributions, support mailing lists, a friendly community, user
groups, books and manuals. If you want to use their full power, it will take a while to learn
such systems, but for most users TEX is a tool that they will use their whole life. Don Knuth gave
us the ability to “go out and create beautiful documents” but you need to pay some attention to
get it done. He also formulated the important boundary condition that in 100 years from now,
the documents should still be valid input for a TEX processor. Such life long validation gives a
comfortable feeling.

Beware: in the process, you can get hooked. And: you need to keep an open mind for the
shortcomings, myths and somewhat strange solutions that come with TEX.

What is TEX ?

When I was invited to write a brief article entitled
“What is TEX ?”, I was delighted : the possibili-
ties seemed endless. But when I tried to formu-
late all the ideas that were bubbling through my
head, I found it considerably harder to encapsu-
late them in a single pithy phrase. In the end,
I decided to use an analogy, and one with which
I hope some readers at least will be familiar : TEX
is like a Meccano set, but with one very impor-
tance difference.

What does this mean ? Well, let me explain to
those unfamiliar with the term what a Meccano
set is. It is (was) a construction kit for “children of
all ages”, and was for many of us our first intro-
duction to mechanical engineering. The simplest
set was a “No. 1” (possibly known as an “Erector
Set #1” in North America, a name far too open
to misinterpretation for it ever to be used in the
UK !), which consisted of a few metal rods, strips,
plates, pulleys, and a hank of green cord. It also
contained some nuts and bolts, the former being
square- (rather than hex-) headed and therefore
requiring a special spanner which was also sup-
plied, as was a screwdriver since the “bolts” had
slotted heads. With just these few basic bits and
pieces, a child could build absolutely anything
that came into his (or her) head : a crane, a lorry,
a boat — the possibilities were endless but lim-
ited by the few parts (and fewer types of part) in
a No. 1 set.

With his appetite whetted, a child with a
No. 1 set was like an alcoholic at a “sip-and-spit”
wine tasting : he just couldn’t get enough. His
parents would be begged incessantly for a No. 1a
(“but then I can build a ’plane, Mummy !”), and
then a No. 2, a No. 3, and so on until finally
(and for this he would have to promise to forgo all
birthday and Christmas presents for the next five
years), he would finally acquire the Holy Grail : a
No. 10, in a solid oak case (lesser sets were sup-
plied in cardboard boxes, although I believe that
a No. 9 came in something a little special : I don’t
know for sure, because my parents’ pockets be-
came exhausted long before I was even half-way
to Nirvana ...).

OK, enough of Meccano : what has this to
do with TEX ? Well, to my mind TEX is like a
No. 10 Meccano set : there is nothing that you
can’t build with it, given enough time and pa-
tience. “Why ‘build’ ?”, I hear many of you ask.
Well, TEX is also rather like a newborn child : it
knows very little, but it has an almost infinite ca-
pacity to learn. In order to get the most out of
TEX (in fact, to get anything worthwhile out of TEX
at all), it is necessary to invest a not inconsider-
able amount of intellectual energy. You can, of
course, take the easy way out and allow others to
invest that energy for you (by using, say, LATEX or
ConTEXt), but to be honest, why would you want

to ? The greatest joy in using TEX (to my mind)
is the joy of persuading it to do exactly what you
want. This is hard enough using TEX itself, but it is
virtually impossible once you allow format writ-
ers (such as Messrs Lamport, Mittelbach, Hagen,
et al.) to act as intermediaries on your behalf.
Only by using TEX as God (oops, Knuth) intended,
with an absolute minimum of intervention at the
format level, will you ever be able to coerce it
into satisfying your every whim.

OK, so TEX is naı̈ve, and needs a fair amount
of work in order to coerce it into doing something
worthwhile. So are many other systems, yet they
don’t have the cult following of TEX. What is it
that sets TEX apart from the crowd ? And what is
it, for that matter, that makes TEX so very different
from the Meccano set analogy that I have been
using so far ? Well, imagine (if you will) a No. 10
Meccano set, taken out of its box and carefully
arranged on a very large table with each set of
identical pieces separated from every other set.
Look at it carefully, and what stands out (apart
from the uniform reds and greens in which ev-
erything that doesn’t rotate is coloured) ? Noth-
ing ! There is no one set of identical pieces that is
in some way fundamentally different to all of the
others. Each has its rôle, none is central (apart,
perhaps, from the nuts-and-bolts and maybe the
hank of string ...).

Now perform the same experiment on TEX
(it will have to be a Gedankenexperiment, I am
afraid). What do we see ? Well, one pile con-
sists of primitives : commands built into TEX itself
which have a priori meanings. We have another
pile consisting of macro-related bits and pieces
(that is, facilities for defining commands in terms
of other commands). We have a third pile re-
lated to command execution (that is, what hap-
pens when a command finally reaches TEX’s in-
nermost core). And finally we have a black box,
on the outside of which is printed “typesetting en-
gine : unauthorized opening will invalidate all
warranties, express or implied”. And it is this
black box that makes TEX unique, and to which
everything else is peripheral.

So now we can really answer the question :
“What is TEX ?”. It is a typesetting system par
excellence. It is capable of producing printed
copy which equals or excels in quality that pro-
duced by any of its peers, whether they be public
domain, shareware, or incredibly expensive be-
spoke systems. Surrounding this are a number of
peripheral units that can be changed in any way
that the user thinks fit. Let me give you just one
example. Suppose you don’t like TEX’s syntax :
you find backslashes and braces ugly and inele-
gant. You are used to writing web pages, and you
find angle brackets and CSS notation intuitive and
easy to use. Then implement it ! There is nothing

1

in TEX that says you must use Knuth’s original syn-
tax : you are free to implement any other syntax
that you choose.

To conclude, TEX is anything that you want
it to be. At its heart is a superb typesetting en-
gine, surrounded by a flexible and powerful inter-
face that you, the user, can tailor in any way that
you wish. You can use TEX to produce anything,

from a one-page letter to your bank manager to
a multi-volume work on the world’s writing sys-
tems. Ask not what TEX can do for you : ask rather
whether there is anything that you cannot do with
TEX !

Philip Taylor
07-Jul-2005

2

