MetaPlot: A multiple-program approach
to creating graphics

Potential Funetion ¢ (uniform How + point source)

iy (spanwise direction)
=

|
=
o

—1 —0.5 0 0.5 1
a (streamwise direction)

Brooks Moses

What do we want in a data plot?

Potential Function o {(uniform flow + point source)

|y (spanwise direction)
=

=
kg |

—1 —0.5 0 (.5 1

& (streamwise direction)

 The data should be shown 1n the manner we desire.

* The presentation should be print-quality.

Why not use an off-the-shelf solution?

* We may not be able to find a program that produces
exactly the type of plot we want.

* Many programs cannot produce plots that use the
same fonts as our TeX documents.

* In many programs, it 1s difficult to produce a plot of
a desired on-page size without rescaling the fonts and
line widths.

* Most high-quality plot programs are commercial, and
tend to be relatively expensive.

* Conclusion: If we want 1t done right, we may have to
write (at least part of) 1t ourselves.

Pros and Cons of Language Choices.

* MetaPost:
 uses TeX directly for label formatting.

 has a simple and very powerful interface for creating
graphic elements, and the output process 1s built-in.

 but 1s not well-suited to complicated math.

* Programs in “traditional” languages (such as C++):
* can deal with complicated math or algorithms easily.
* may be able to use existing code libraries.

* but do not come with a built-in interface for creating
graphic elements or labels, and require the user to
consider the details of creating Postscript output.

Proposal: Combine the strengths of both.

* Instead of doing all of the work of creating a plot in
one language, we can divide the process up into
parts, and do each part in the language that works
best for it.

* Thus, the key 1dea of MetaPlot:

* Generate the “core plot” in a C++ program (or a
Fortran program, or something similar).

* Scale the plot to the desired size, adjust the line
widths, and add annotations in MetaPost.

What constitutes the “core plot™?

* The C++ program 1s responsible for creating the
“core plot”: an abstract representation of the plot that
1s independent of 1ts realization on the page.

Potential Funetion ¢ (uniform How + point souree)

* In the contour-plot example, -
the core plot consists of the 11
shapes and colors of the
contours and the shape of
the grid, but not the line
widths or the annotations. -0

—
—

i (spanwise direction)

-1 —M.5 0 0.5 1
x (stresmwise direction)

Conceptual design of the core plot.

» Data transfer 1s via a partial MetaPost file containing
variable definitions.

* The plot components are stored in separate picture
variables.

Scaling of core-plot elements

» Each plot element 1s defined to fit within the unit
square.

» Actual data dimensions are stored separately, where
they are less subject to MetaPost’s number size

limitations.
(0.1)

contplotA.xleft = -1.0;
contplotA.xright = 1.0;
contplotA.ybot = -0.75;
contplotA.ytop = 0.75;

Structure of a core-plot file.

* As a more extended example, this 1s what a core-plot
file looks like:

contplotA.xleft = -1.0;
contplotA.xright = 1.0;
contplotA.ybot = -0.75;
contplotA.ytop = 0.75;

picture contplotA.grid; contplotA.grid := nullpicture;
addto contplotA.grid doublepath (0.48,0.5)--(0.47,0.5);
addto contplotA.grid doublepath (0.47,0.5)--(0.46,0.5);
[...]

picture contplotA.fillplot;

contplotA.fillplot := nullpicture;

addto contplotA.fillplot contour (0.48,0.5)--(0.47,0.5)
--(0.47,0.51)--(0.48,0.51)--cycle;

[...]

Types of data structures in MetaPlot

* Core-plot data structure

* The core-plot data structure contains the abstracted
plot information, as just described.

* Plot-instance data structure.

* The plot-instance data structure 1s created in MetaPlot
from a core-plot data structure, and contains the
information required to create a plot on the page:

* Locations of the corners of the plot in the figure
coordinates.

 Copies of the plot’s data scale information.

* A macro that references the plot details from a core-
plot data structure.

Some comments on plot scaling

* The plot-instance’s page locations are stored as
ordinary MetaPost variables, and can be used in
linear equations.

* For example, consider the definitions of pagewidth
Enuipageheight,andthe plot_setequalaxes Macro.

inst.pagewidth = inst.pageright - inst.pageleft;
inst.pageheight = inst.pagetop - inst.pagebottom;

def plot_setequalaxes(suffix inst) =
inst.pagewidth = inst.pageheight
* (inst.scalewidth/inst.scaleheight);
enddef;

Example: Creation of the title image, step 0.

» Before we start, we need to have a plot-object file.
This one was created with a very early version of
MetaContour, which 1s a general-purpose contour-
plot program that I’'m writing.

* The mput files will look something like this:

TITLE="Potential-Flow Contour Plot"
VARIABLES:"X” llyn "phi"
ZONE I=32 J=16

0.11750
0.21500
0.29750
0.36500
0.41750

[...]

0.50000
0.50000
0.50000
0.50000
0.50000

0.61235
0.44262
0.25754
0.35465
0.44829

Example: Creation of the title image, step 1.

» To start with, a fairly basic preamble defining some
line sizes and creating the plot instance.

prologues:=0;
input metaplot %» metaplot macros
input mc-color % plot-object file

pen thickline; thickline := pencircle scaled 2pt;
pen thinline; thinline := pencircle scaled 1pt;
pen hairline; hairline := pencircle scaled 0.2bpt;

plot_instantiate(cplotA, contplotA);
cplotA.pagewidth = 4.0in;

plot_setequalaxes(cplotA);
cplotA.11ft = (0,0);

Example: Creation of the title image, step 2.

 Start with the basic filled plot:

draw cplotA.plot(FillPlot);

Example: Creation of the title image, step 3.

* Next, add the lineplot lines in light gray to delineate
the edges of the contours more clearly.

draw cplotA.plot(LinePlot) withpen hairline
withcolor 0.75white;

Example: Creation of the title image, step 4.

* Add the grid lines, 1n a dark gray.

draw cplotA.plot(Grid) withpen hairline withcolor 0.25white;

Example: Creation of the title image, step 3.

* Draw a border around the plot area.

linejoin:=mitered;
draw cplotA.llft--cplotA.lrt--cplotA.urt--cplotA.ulft--cycle
withpen thickline;

Example: Creation of the title image, step 6.

 Put the numbered major grid ticks on the x-axis.

—1 —0.5 0 (.5 1

draw plot_xtickscale(cplotA) (cplotA.11ft, cplotA.lrt,
0.08in, 0.06in, down, 0.0, 0.5, "%3f")
withpen thinline;

Example: Creation of the title image, step 7.

 Put the unnumbered minor grid ticks on the x-axis.

—1 —0.5 0 (.5 1

draw plot_xtickscale(cplotA) (cplotA.11ft, cplotA.lrt,

0.05in, 0.06in, down, 0.0, 0.1, "")
withpen thinline;

Example: Creation of the title image, step 8.

* Put similar grid ticks on the y-axis.

—1 —0.5 0 (.5 1

draw plot_ytickscale(cplotA) (cplotA.11ft, cplotA.ulft,

0.05in, 0.06in, left, 0.0, 0.1, "")
withpen thinline;

Example: Creation of the title image, step 9.

» Define picture variables containing the axis labels
and title, using TeX for the text formatting.

picture xname;
xname := btex x (streamwise direction) etex;

picture yname;
yname := btex y (spanwise direction) etex rotated 90;

picture plottitle;
plottitle := btex Potential Function ϕ
(uniform flow $+$ point source) etex;

Example: Creation of the title image, step 10.

 Place the various labels on the plot, using the macros
for placing axis tickmarks.

i I|I i r
I

0.5

Yy (spanwise direction)
=

|
=
e

-1 0.5 0 0.5 1
@ (streamwise direction)
draw axes_ticklabeled(0.5[cplotA.11ft,cplotA.1lrt],
0.0, 0.3125in, down, xname);

draw axes_ticklabeled(0.5[cplotA.11ft,cplotA.ulft],
0.0, 0.3125in, left, yname);

Example: Creation of the title image, step 11.

 Finally, place the title at the top of the plot.

Potential Funetion ¢ (uniform How + point source)

iy (spanwise direction)
=

|
=
o

—1 —0.5 0 0.5 1
a (streamwise direction)

draw axes_ticklabeled(0.5[cplotA.ulft,cplotA.urt],
0.0, 0.1875in, up, plottitle);

