
TUG2019 program
(* = presenter)

Friday
August 9

8:15 am registration

8:55 am Boris Veytsman, TEX Users Group Welcome

9:00 am Erik Braun, CTAN Current state of CTAN

9:30 am Arthur Reutenauer, Uppsala, Sweden The state of X

E

TEX

10:00 am Frank Mittelbach, LATEX3 Project The LATEX “dev” format

10:30 am break

10:45 am Frank Mittelbach Taming UTF-8 in pdfTEX

11:15 am Uwe Ziegenhagen, Cologne, Germany Combining LATEX with Python

11:45 am Henri Menke, University of Otago Parsing complex data formats in LuaTEX with LPEG

12:15 pm lunch

1:30 pm Dick Koch, University of Oregon Big changes in MacTEX, and why users should never notice

1:45 pm Nate Stemen, Overleaf, Inc. A few words about Overleaf

2:00 pm Aravind Rajendran*, Rishikesan Nair T,
Rajagopal C.V., STM Doc. Eng. Pvt Ltd

Neptune — a proofing framework for LATEX authors

2:30 pm Pavneet Arora, Bolton, ON Rain Rain Go Away: Some thoughts on rain protection, and its uses

3:00 pm break

3:15 pm Shreevatsa R, Sunnyvale, CA What I learned from trying to read the TEX program

3:45 pm Petr Sojka, Masaryk University & CSTUG TEX in Schools? Just Say Yes, given that . . .

4:15 pm Shakthi Kannan, Chennai, India X

E

TEX Book Template

4:45 pm Jim Hefferon, St Michael’s College What do today’s newcomers want?

5:15 pm TUG Annual General Meeting

Saturday
August 10

8:55 am announcements

9:00 am Petr Sojka, Ondřej Sojka The unreasonable effectiveness of pattern generation

9:30 am Arthur Reutenauer Hyphenation patterns in TEX Live and beyond

10:00 am David Fuchs What six orders of magnitude of space-time buys you

10:30 am break

10:45 am Tomas Rokicki, Palo Alto, CA Searchable PDFs with Type 3 bitmap fonts

11:15 am Martin Ruckert, Hochschule Muenchen The design of the HINT file format

11:45 am Doug McKenna, Mathemaesthetics, Inc. An interactive iOS math book using a new TEX interpreter library

12:15 pm lunch

1:15 pm group photo

1:30 pm Jennifer Claudio, Sally Ha, Oak Grove H.S. A brief exploration of artistic elements in lettering

2:30 pm William Adams, Mechanicsburg, PA Design into 3D: A system for customizable project designs

3:00 pm break

3:15 pm Boris Veytsman, Sch. Systems Biology, GMU Creating commented editions with TEX

3:45 pm Behrooz Parhami, UC Santa Barbara Evolutionary changes in Persian and Arabic scripts to accommodate
the printing press, typewriting, and computerized word processing

4:15 pm Amine Anane, Montréal, QC Arabic typesetting using a Metafont-based dynamic font

4:45 pm Takuto Asakura, National Institute of
Informatics, Japan

A TEX-oriented research topic: Synthetic analysis on mathematical
expressions and natural language

5:15 pm Herb Schulz, Naperville, IL Optional workshop: TeXShop tips & tricks

6:30 pm banquet Sheraton Palo Alto

Sunday
August 11

8:55 am announcements

9:00 am Antoine Bossard, Kanagawa University A glance at CJK support with X

E

TEX and LuaTEX

9:30 am Jaeyoung Choi, Saima Majeed, Ammar
Ul Hassan, Geunho Jeon, Soongsil Univ.

FreeType MF Module 2: Integration of METAFONT and TEX-oriented
bitmap fonts inside FreeType

10:00 am Jennifer Claudio, Emily Park, Oak Grove H.S. Improving Hangul to English translation

10:30 am break

10:45 pm Rishikesan Nair T*, Rajagopal C.V.,
Radhakrishnan C.V.

TEXFolio — a framework to typeset XML documents using TEX

11:15 pm Sree Harsha Ramesh, Dung Thai, Boris
Veytsman*, Andrew McCallum, UMass-
Amherst, (*) Chan Zuckerberg Initiative

BibTEX-based dataset generation for training citation parsers

11:15 pm Didier Verna, EPITA Quickref: A stress test for Texinfo

12:15 am lunch

1:30 pm Uwe Ziegenhagen Creating and automating exams with LATEX & friends

2:00 pm Yusuke Terada, Tokyo Educational Institute Construction of a digital exam grading system using TEX

2:30 pm Chris Rowley*, Ulrike Fischer, LATEX3 Project Accessibility in the LATEX kernel — experiments in tagged PDF

3:00 pm break

3:15pm Ross Moore, Macquarie Univ. LATEX 508 — creating accessible PDFs
≈ 3:45 pm end

William Adams

Design into 3D: A system for customizable project
designs

Design into 3D is a system for modeling parametric
projects for manufacture using CNC machines. It
documents using OpenSCAD to allow a user to instantly
see a 3D rendering of the result of adjusting a parameter
in the Customizer interface, parameters are then saved
as JSON files which are then read into a LuaLATEX file
which creates a PDF as a cut list/setup sheet/assembly
instructions and MetaPost to create SVG files which may
be loaded into a CAM tool. A further possibility is using
a tool such as TPL (Tool Path Language) to make files
which are ready to cut.

This was initially a (funded) Kickstarter
https://kickstarter.com/projects/designinto3d/

design-into-3d-a-book-of-customizable-project-

desi and is being developed as a wiki page on the
Shapeoko project
(https://wiki.shapeoko.com/index.php/Design_
into_3D) with code on GitHub
(https://github.com/WillAdams/Design_Into_3D and
a number of sample files and project have already been
made: https://cutrocket.com/p/5c9fb998c0b69/,
https://cutrocket.com/p/5cb536396c281/,
https://cutrocket.com/p/5cba77918bb4b/;
and this is tied into a Thingiverse project
(https://www.thingiverse.com/thing:3575705
and an on-line box generator
(http://chaunax.github.io/projects/
twhl-box/twhl.html).

Amine Anane

Arabic typesetting using a Metafont-based dynamic font

Arabic script is a cursive script where the shape and
width of letters are not fixed but vary depending on the
context and the justification needs. A typesetter must
consider those dynamic properties of letters to achieve a
high-quality text comparable to Arabic calligraphy.

In this talk I will present a parametric font that
has been designed as a first step towards such high-
quality typesetter. The font is based on Metafont
language which can generate a glyph with a given width
dynamically and respecting the curvilinear nature of
Arabic letters. It uses an extended version of OpenType
to support the varying width of the glyphs. I will
demonstrate a graphical tool which has been developed
specifically to facilitate the design of such dynamic fonts.
As a case study, I will compare a handwritten Quranic
text with a one generated with this dynamic font and I
will conclude by highlighting some future works towards
a complete high-quality Arabic typesetter.

Takuto Asakura

A TEX-oriented research topic: Synthetic analysis on
mathematical expressions and natural language

Since mathematical expressions play fundamental roles
in Science, Technology, Engineering and Mathematics
(STEM) documents, it is beneficial to extract meanings
from formulae. Such extraction enables us to construct
databases of mathematical knowledge, search for for-
mulae, and develop a system that generates executable
codes automatically.

TEX is widely used to write STEM documents
and provides us with a way to represent meanings of
elements in formulae in TEX by macros. As a simple
example, we can define a macro
\def\inverse#1{#1^{-1}},
and use it as \inverse{A} in documents to make
it clear that the expression means “the inverse of
matrix A” rather than “value A to the power of −1”.
Using such meaningful representations is useful in
practice for maintaining document sources, as well as
converting TEX sources to other formal formats such
as first-order logic and content markup in MathML.
However, this manner is optional and not forced by TEX.
As a result, many authors neglect it and write messy
formulae in TEX documents (even with wrong markup).

To make it possible to associate elements in
formulae and their meanings automatically instead
of requiring it of authors, recently I began research
on detecting or disambiguating the meaning for each
element in formulae by conducting synthetic analyses on
mathematical expressions and natural language text. In
this presentation, I will show the goal of my research,
the approach I’m taking, and the current status of the
work.

Antoine Bossard

A glance at CJK support with X

E

TEX and LuaTEX

From a typesetting point of view, the Chinese and
Japanese writing systems are peculiar in that their
characters are concatenated without ever using spaces
to separate them or the meaning units (i.e., “words”
in our occidental linguistic terminology) they form.
And this is also true for sentences: although they are
usually separated with punctuation marks such as
periods, spaces remain unused. Conventional typesetting
approaches, TEX in our case, thus need to be revised
in order to support the languages of the CJK group:
Chinese, Japanese and, to a lesser extent, Korean. While
more or less complete solutions to this issue can be
found, in this article we give and pedagogically discuss
a minimalistic implementation of CJK support with
the Unicode-capable X ETEX and LuaTEX typesetting
systems.

TUG 2019 j 2

Erik Braun

Current state of CTAN

The “Comprehensive TEX Archive Network” is the
authoritative place where TEX-related material is
collected.

Developers can upload their packages, and the
distributions use it to pick up their packages. The TEX
Catalogue’s entries can be accessed via the website, and
all the data can be accessed from mirror servers all over
the world.

The talk will give an overview of the current state
of CTAN, recent developments, and most common
problems. In further discussion, feedback from users and
developers is very welcome.

Jaeyoung Choi, Saima Majeed, Ammar
Ul Hassan, Geunho Jeon

FreeType MF Module 2: Integration of METAFONT and
TEX-oriented bitmap fonts inside FreeType

METAFONT is the structured font definition language
that can generate variants of different font styles by
changing parameter values. It doesn’t require creat-
ing a new font file for every distinct font design. It
generates as output a Generic Font file (GF) bitmap
and (if requested) its corresponding TEX Font Metric
file (TFM). These fonts can be utilized on devices of
any resolution without creating new font files, accord-
ing to the preferred size. These benefits can also be
applied to complex characters such as CJK (Chinese-
Japanese-Korean) glyphs rather than only applying to
alphanumeric characters. However, METAFONT, GF, and
Packed Fonts (PK compressed form of GF) cannot be
utilized beyond the TEX environment as they require ad-
ditional conversion overhead. Furthermore, existing font
engines, notably FreeType, do not support such fonts.

In this paper, FreeTypeMFModule2 is proposed for
the FreeType font engine. The proposed module can
directly support METAFONT, GF, and PK fonts inside
FreeType in a GNU/Linux environment. To utilize
such fonts, users are not required to preconvert bitmaps
into outlines: the proposed module automatically
performs such conversions without relying on other
libraries. By using the proposed module, users can
generate variants of font styles (via METAFONT) and
use it on the desired resolution devices (via GF). The
proposed font module reduces the creation time and cost
for creating the distinct fonts styles. Furthermore, it
reduces the conversion and configuration overhead for
TEX-oriented fonts.

Jennifer Claudio, Sally Ha

A brief exploration of artistic elements in lettering

This non-technical talk explores the stylistic elements
of letter forms as used in arts and culture through an
examination of elongations and decorations with a focus
on the letter E. Samples discussed are derived from the
calligraphy of Don Knuth’s 3 : 16, in samples of street
art, and in typographic branding.

Jennifer Claudio, Emily Park

Improving Hangul to English translation

Real time translation of languages using camera input
occasionally results in awkward failures. As a proposed
method of assisting such tools for Korean (Hangul)
to English translation, an optical method is proposed
to help translation algorithms first assess whether the
Korean text has been written as English syllables in
Korean or in true Korean vocabulary before producing
translated phrases.

David Fuchs

What six orders of magnitude of space-time buys you

TEX and METAFONT were designed to run acceptably
fast on computers with less than 1/1000th the memory
and 1/1000th the processing power of modern devices.
Many of the design trade-offs that were made are no
longer required or even appropriate.

Federico Garcia-De Castro

An algorithm for music slurs in METAFONT

This paper describes an algorithm that draws beautiful
slurs around given notes (or other points to avoid).
I have been working on such an algorithm on and off
since around 2004 — when commercial music typesetting
software did not provide for automatic, let alone
beautiful, slurs. Along the way I tried many kinds
of approaches, some of them inspired by METAFONT

routines such as superellipse, the flex macro, and the
transform infrastructure (which, for example, is what
slants the \textsc font out of a vertical design). The
usual fate of these attempts was one of promise followed
by interesting development leading to collapse — there
usually were too many independent and variables
interacting chaotically. Earlier this year I finally found
a robust, elegant algorithm. I will present all of the
attempts and describe what makes the final algorithm
unique, and compare it to the way commercial software
does slurs today. This is a graphic presentation, rather
than musical.

Jim Hefferon

What do today’s newcomers want?

The reddit LATEX subgroup gets questions from many
beginners. Whereas StackExchange edits the questions,
here you see a less filtered version of what people
are working on. We will examine an archive of past
postings to get some data about what it is that today’s
newcomers are trying to do, how they are trying to do it,
and where they are struggling.

TUG 2019 j 3

Shakthi Kannan

X

E

TEX Book Template

The X ETEX Book Template is a free software framework
for authors to publish multilingual books using X ETEX.
You can write the content in GNU Emacs Org-mode files
along with TEX, and the build scripts will generate the
book in PDF. The Org-mode files are exported to TEX
files, and Emacs Lisp post-processing is done prior to
PDF generation. Babel support with Org-mode TEX
blocks allows one to selectively export content as needed.
The framework separates content from presentation.

A style file exists for specifying customized
page titles, setting margins, font specification,
chapter title and text formatting, page style, spac-
ing etc. The framework has been used to publish
books containing Tamil, Sanskrit and English. It
is released under the MIT license and available at
https://gitlab.com/shakthimaan/xetex-book-

template. In this talk, I will explain the salient features
of the X ETEX Book Template, and also share my
experience in creating and publishing books using the
framework.

Dick Koch

Big changes in MacTEX, and why users should never
notice

Just before the TEX Live 2019 release, Apple developers
received a notice about changes coming in macOS 10.15
for install packages and the programs they contain.
After some panic, experiments convinced us that we can
accommodate the changes. But if you wrote one of the
binaries in TEX Live, we could use your help, even if you
never use a Mac.

Doug McKenna

An interactive iOS math book using a new TEX
interpreter library

The current TEX ecosystem is geared towards creating
only static PDF or other output files. Using a re-
implementation of a TEX language interpreter as a
library linked into an iOS client program that simulates
a document on a device with a touch screen, the author
will demonstrate a new PDF-free ebook, Hilbert Curves,
that typesets itself each time the application launches.
The library maintains all TEX data structures for all
pages in memory after the typesetting job is done,
exporting pages as needed while the user reads the book
and interacts with its dynamic illustrations. This design
also allows text-searching the document’s TEX data
structures while the ebook is “running”.

Henri Menke

Parsing complex data formats in LuaTEX with LPEG

Although it is possible to read external files in TEX,
extracting information from them is rather difficult.
Ad-hoc solutions tend to use nested if statement or
regular expressions provided by several macro packages.
However, these quick hacks don’t scale well and quickly
become unmaintainable.

LuaTEX comes to the rescue with its embedded
LPEG library for Lua. LPEG provides a Domain Specific
Embedded Language (DSEL) that allows to write
grammars in a natural way. In this talk I will give a
quick introducing to Parsing Expression Grammars
(PEG) and then show how to write simple parsers in
Lua with LPEG. Finally we will build a JSON parser to
demonstrate how easy it is to even parse complex data
formats.

Frank Mittelbach

The LATEX “dev” format

What prevents banana software (gets ripe at the cus-
tomer site)? Proper testing! But this is anything
but easy.

The talk will give an overview about the efforts made
by the LATEX Project Team over the years to provide
high-quality software and explains the changes that we
intend to make this summer to improve the situation
further.

Frank Mittelbach

Taming UTF-8 in pdfTEX

To understand the concepts in pdflatex for processing
UTF-8 encoded files it is helpful to understand the
models used by the TEX engine and earlier models
used by LATEX on top of TEX. This talk gives a short
historical review of that area and explains
— how it is possible in a TEX system that only

understands 8-bit input to nevertheless interpret and
process UTF-8 files successfully;

— what the obstacles are that can be and have been
overcome;

— what restrictions remain if one doesn’t switch to a
Unicode-aware engine such as LuaTEX or X ETEX.

The talk will finish with an overview about the
improvements with respect to UTF-8 that will be
activated in LATEX within 2019 and how they can
already be tested right now.

TUG 2019 j 4

Ross Moore

LATEX 508 – creating accessible PDFs

Authoring documents that are accessible to people
with disabilities is not only the morally correct thing to
be doing, but is now required by law, at least for U.S.

Government offices and agencies, through the revised
Section 508 of the U.S. Disabilities Act (2017). It is
likely to eventually become so also for any affiliated
institutions, such as universities, colleges and many
schools.

For mathematics and related scientific fields, it
thus becomes imperative that we be able to produce
documents using LATEX that conform to the accessible
standard ANSI/AIIM/ISO 14289-1:2016 (PDF/UA-1).
This is far more rigorous than standard PDF, in terms
of capturing document structure, as well as all content
associated with each particular structural element.

In this talk we show an example of a research
report produced as PDF/UA for the U.S. National Parks
Service. We illustrate several of the difficulties involved
with creating such documents. This is due partly to
the special handling required to encode the structure of
the technical information such as appears on the title
page, and inside-cover pages, as well as tabular material
and images throughout the body of the document. But
there are also difficulties that are due to the nature
of TEX itself, and the intricacy of LATEX’s internal
programming.

Behrooz Parhami

Evolutionary changes in Persian and Arabic scripts
to accommodate the printing press, typewriting, and
computerized word processing

The Persian script has presented difficulties for printing
ever since printing presses were introduced in Iran
in the 1600s. The appearance of typewriters created
additional problems and the introduction of digital
computers added to the design challenges. The Arabic
script presented nearly identical complications. These
difficulties persisted until high-resolution dot-matrix
printers and display devices offered greater flexibility to
font designers and the expansion of the computer market
in the Middle East attracted investments to help solve
the problems.

Nevertheless, certain peculiarities of Persian and
Arabic scripts have led to legibility and aesthetic quality
issues to persist in many cases. In this presentation, I
will enumerate some of the features of modern Persian
and Arabic scripts that made implementation on modern
technologies quite challenging and review the issues pre-
sented by, and some of the solutions proposed for, each
new generation of computer printers and display devices.

Interestingly, the same features that make legible
and pleasant printing/displaying difficult also lead to
challenges in automatic text recognition. I will conclude
with an overview of current state of the art and areas
that still need further work.

Aravind Rajendran (presenter),
Rishikesan Nair T, Rajagopal C.V.

Neptune — a proofing framework for LATEX authors

In academic publishing, LATEX authors may be con-
sidered problem mongers since they insist on better
typography, adherence to conventions (particularly in
math equations), usage of their finely crafted LATEX
sources for final output and other myriad benefits offered
by LATEX. In recent times, galley proofs are provided
to authors as editable sources rendered as a web page
in XML or HTML format. Authors who have submitted
their articles in LATEX format are seldom comfortable
viewing and editing the output as a web page since math
equations do not provide the original LATEX sources to
edit, TikZ graphics, XY-pic and commutative diagrams,
prooftree math, and the like have been replaced with
their respective graphics, thus precluding the opportu-
nity to edit in case a mistake is found; source listing with
packages like listings suffer a similar fate, the woes are
many and much more.

Hence, LATEX authors are not without cause when
they complain of publishers’ lack of academic and
semantic sensibilities. Our program Neptune is an
answer for all these problems, wherein a LATEX author
can be provided with copy-edited LATEX sources and
corresponding PDF output in the final print format
side by side with enough facilities to navigate between
source and PDF, a navigable list of track changes
showing copy edits that can be accepted/rejected, a
navigable list of author edits during the proofing session,
comparison of pre- and post-proof LATEX sources side by
side with ability to discard any edit, comparison of pre-
and post-PDF versions, navigable query lists, multiple
sessions for proofing, standard editor features, etc. This
presentation will show all these features with the help of
a live demonstration.

Sree Harsha Ramesh, Dung Thai,
Boris Veytsman (presenter), Andrew McCallum

BibTEX-based dataset generation for training citation
parsers

A human can relatively easily read a bibliography list
and parse each entry, i.e., recognize authors’ names, item
title, venue, year and volume information, pagination,
urls and doi numbers, etc., using such cues as punctu-
ation and font changes. This is even more impressive
since there is no universal standard of bibliography
typesetting; virtually all publishers and journals use
their own “house styles”.

It has been a challenge to make a machine to do this
task, which is important for digitization of the scientific
literature. One of the problems is the lack of labeled
data: parsed bibliography items, suitable to train the
algorithms. It is cumbersome and expensive to translate
a large number of bibliographies into a machine readable
format. Thus the largest dataset published so far has
2479 entries.

TUG 2019 j 5

In this work (it has been partially presented at
AKBC 2019) we describe a way to overcome the problem.
We start with a bibliography already in machine
readable format, and typeset it using BibTEX and
LATEX. The resulting labeled dataset is suitable for
training algorithms. We used Nelson Beebe’s archive
of 1.41 million BibTEX entries and typeset it with 275
bibliography styles from the recent TEX Live collection.
After deleting some problematic entry-style combinations
that did not compile (mostly due to non-standard fields),
we obtained 185 million labeled samples, improving the
state of the art by five orders of magnitude.

Arthur Reutenauer

Hyphenation patterns in TEX Live and beyond

Hyphenation has always been one of the strengths of
TEX, which since its TEX82 version has had an efficient
algorithm to describe how words should be divided
across linebreaks. This algorithm was successfully used
to produce hyphenation patterns for many languages,
as testified to by the many pattern sets present in TEX
distributions.

In 2008 Mojca Miklavec and myself overhauled all
the pattern sets in the TEX Live distribution in order to
rationalise them and prepare them for LuaTEX, which
expects Unicode input, while keeping them usable by
earlier TEX engines. The result of this effort was the
somewhat misleadingly named package hyph-utf8, and
was soon adopted by the MiKTEX distribution also.

We have since then been maintaining the package,
which now supports about 80 languages and language
variants. We also initiated many collaborations with
other actors in the free software world, as TEX’s hyphen-
ation algorithm is used in some form by OpenOffice,
LibreOffice, and Firefox, as well as lesser-known pro-
grams such as Apache FOP.

I will discuss some of the challenges we encounter-
ered, and our future plans.

Arthur Reutenauer

The state of X

E

TEX

I will present the current state of X ETEX and describe
our plans for the future.

Rishikesan Nair T (presenter), Rajagopal C.V.,
Radhakrishnan C.V.

TEXFolio — a framework to typeset XML documents
using TEX

XML is now accepted as the de facto archival standard
in the world of academic publishing. As a consequence,
publishers insist on XML as one of the deliverable output
formats when typesetters are contracted. The primary
aim is to archive the content so that future use of the
same without surprises is ensured.

However, some publishers want a bit more than
this, insisting on generating PDF output, both for print
and web delivery, directly from XML sources which is
considered to be the definitive version of the content,
instead of from author-provided sources. The key
objective is to keep the fidelity between the printed
and archived versions of content. This is termed as
“XML-first” workflow. There are many typesetting
systems available to undertake the job for text, but not
for sources with heavy math content.

TEXFolio is a web-based framework on the cloud
that will fill this gap to generate standards-compliant,
hyperlinked, bookmarked PDF output directly from
XML sources with heavy math content using TEX.
TEXFolio is a complete journal production system as
well. It can produce strip-ins which are alternate GIF/
SVG images of MathML content. In addition, DOI

look-up, HTML rendering of XML/MathML, and the
whole dataset generation according to the customer’s
specification; running customer-specific validation tools
is also possible. This presentation will demonstrate this
and various other features of TEXFolio.

Tomas Rokicki

Searchable PDFs with Type 3 bitmap fonts

Searching and copying text in PDF documents generated
by TEX works well when Type 1 versions of the fonts are
used, but works poorly, if at all, when Type 3 (bitmap)
fonts are used. This is due to decisions made in 1986
by your author. We improve this situation with some
relatively small changes to dvips.

Martin Ruckert

The design of the HINT file format

The HINT file format is intended as a replacement of
the DVI or PDF file format for on-screen reading of TEX
output. Its design should therefore support the following
features: reflow of text to fill a window of variable size,
convenient navigating of text with links in addition to
paging forward and backward, efficient rendering on
mobile devices, simple generation from existing TEX
input files, and an exact match of traditional TEX output
if the window size matches the paper size.

In this talk, I will present the key elements of
the design, discuss past and future design decissions,
and demonstrate the new file format using a working
prototype.

TUG 2019 j 6

Shreevatsa R

What I learned from trying to read the TEX program

As we know, TEX is written in a system called WEB

that exemplifies the idea of literate programming (or
programs as literature), and has been published as a
book. Indeed, many good and experienced programmers
have read the program with interest. But what if the
reader is neither good nor experienced? Here we discuss
some (more or less superficial) obstacles that stymie the
novice modern programmer trying to make sense of the
TEX program, and how they can be overcome.

Petr Sojka, Ondřej Sojka

The unreasonable effectiveness of pattern generation

Languages are constantly evolving organisms and so
are the hyphenation rules and needs. The effectiveness
and utility of TEX’s hyphenation has been proven by
its usage in almost all typesetting systems in use today.
The current Czech hyphenation patterns were generated
in 1995 and no hyphenated word database is freely
available.

We have developed a new Czech word database
and have used patgen to efficiently generate new
effective Czech hyphenation patterns and evaluated its
generalization qualities.

We have achieved almost full coverage on the
training dataset of 3,000,000 words and validated the
patterns on the testing database of 100,000 words
approved by Czech Academy of Science linguists.

Our pattern generation case study serves as an
example of an effective solution of widespread dictionary
problem. The study has shown the versatility of Liang’s
approach. The unreasonable effectiveness of TEX’s
pattern technology has lead to applications that are
and will be used even more widely 40 years after its
inception.

Petr Sojka

TEX in Schools? Just Say Yes, given that . . .

TEX is used in schools, such as my own Masaryk
University, for many purposes: for writing theses,
essays and papers by students, for teaching electronic
publishing, literate programming, writing scientific
papers, quizzes, slides by faculty, and generating
documents and web pages from university databases
by university information systems and staff. TEX and
related technologies are systematically supported and
deployed at the Faculty of Informatics for more than
a quarter century. In the talk we recall the support
and projects we have realized in the past, evaluate the
outcomes, and discuss possible future deployment of
TEX-related technologies.

Yusuke Terada

Construction of a digital exam grading system using TEX

At our school in Japan, large-scale paper exams are
held on a regular basis. The number of examinees is
enormous, and the grading must be finished within a
short period of time. Improving efficiency was strongly
needed. So I developed a digital exam grading system
using TEX. TEX and related software play a core role in
the system, co-operating with iPad and Apple Pencil.

In this presentation, I would like to present how
TEX can be effectively applied to constructing the
digital exam grading system. I will also mention
the unexpected difficulties that I faced in the actual
large-scale operations and the way I have overcome
them.

Didier Verna

Quickref: A stress test for Texinfo

Quickref is a global documentation project for the
Common Lisp ecosystem. It creates reference manuals
automatically by introspecting libraries and generating
a corresponding documentation in Texinfo format.
The Texinfo files may subsequently be converted into
PDF or HTML. Quickref is non-intrusive: software
developers do not have anything to do to get their
libraries documented by the system.

Quickref may be used to create a local website
documenting your current, partial, working environment,
but it is also able to document the whole Common Lisp
ecosystem at once. The result is a website containing
almost two thousand reference manuals. Quickref
provides a Docker image for an easy recreation of this
website, but a public version is also available and kept
up to date at quickref.common-lisp.net.

Quickref constitutes an enormous (and successful)
stress test for Texinfo, and not only because of the
number of files generated and processed. The Texinfo
file sizes range from 7K to 15M (double that for the
generated HTML). The number of lines of Texinfo code
in those files extend from 364 to 285,020, the indexes
may contain between 14 and 44500 entries, and the
processing times vary from .3s to 1m 38s per file.

In this talk, I will make a real-time demonstration
of the system, give an overview of its design and
architecture, describe the challenges and difficulties in
generating valid Texinfo code automatically, and finally
put some emphasis on the currently remaining problems
and deficiencies.

TUG 2019 j 7

Boris Veytsman

Creating commented editions with TEX

There are many ways to create critical editions,
more general “commented” editions, with layers of
commentary accompanying the main text. Packages
like bigfoot, manyfoot, *edmac and others help to
typeset different variants of them. Recently Instituto
Nacional de Matemática Pura e Aplicada, Brazil
(IMPA) requested yet another version for its series of
mathematics textbooks for Brazilian schools. This series
is designed as combinations of students’ textbooks and
the teacher’s book. The teacher’s book reproduces pages
from the students’ book, and adds a layer of comments
around them. The package commedit, commissioned by
IMPA, hacks the output routine for the production of
students’ and teachers’ version from a single source.

Uwe Ziegenhagen

Creating and automating exams with LATEX & friends

LATEX offers sophisticated document classes and packages
to create exam materials. In this talk we show how to
create exams using the exam class and how the document
creation can be fine-tuned to allow individualized
exams.

Uwe Ziegenhagen

Combining LATEX with Python

Even older than Java, Python has achieved a lot of
popularity especially in recent years. It is an easy-to-
learn general purpose programming language, with
strong abilities not only in fancy topics such as machine
learning and artificial intelligence.

In this talk we want to present scenarios where
LATEX documents can be enhanced by Python scripts.
We will show examples where LATEX documents are
automatically generated by Python or receive content
from Python scripts.

TUG 2019 j 8

TUGboat, Volume 0 (9999), No. 0 draft: December 25, 2018 16:39 ? 1

A glance at CJK support with XƎTEX and
LuaTEX

Antoine Bossard

Abstract
From a typesetting point of view, the Chinese
and Japanese writing systems are peculiar in that
their characters are concatenated without ever us-
ing spaces to separate them or the meaning units
(i.e., “words” in our occidental linguistic terminol-
ogy) they form. And this is also true for sentences:
although they are usually separated with punctua-
tion marks such as periods, spaces remain unused.
Conventional typesetting approaches, TEX in our
case, thus need to be revised in order to support the
languages of the CJK group: Chinese, Japanese and,
to a lesser extent, Korean. While more or less com-
plete solutions to this issue can be found, in this arti-
cle we give and pedagogically discuss a minimalistic
implementation of CJK support with the Unicode-
capable XƎTEX and LuaTEX typesetting systems.

1 Introduction
The Chinese, Japanese and Korean writing systems
are conventionally gathered under the CJK appel-
lation. The Chinese writing system consists of the
Chinese characters, which can be in simplified or
traditional form, amongst other character variants
[1]. The (modern) Japanese writing system is made
of the Chinese characters and the kana characters.
The Chinese and Japanese writing systems concate-
nate characters without ever separating them with
spaces. The Korean writing system consists mainly
of hangul characters, with in addition the Chinese
characters, which are however rarely used nowa-
days. Although modern Korean separates words
with spaces, traditionally, the Korean writing sys-
tem does not (as an illustration, see for instance Se-
jong the Great’s 15th century manuscript Hunmin-
jeongeum1).

Notwithstanding other critical issues such as
fonts, by not relying on spaces between characters
or words, the CJK scripts are a challenge to conven-
tional typesetting solutions such as TEX. In fact, the
algorithms for word-breaking, which conventionally
occurs at spaces (plus hyphenation), become inap-
plicable.

On a side note, even though we consider here-
inafter the CJK writing systems, this discussion can
be extended to related scripts such as Tangut and
Vietnam’s Chữ Nôm.

1 King Sejong (世宗) introduced hangul in the Hunmin-
jeongeum (訓⺠正音) manuscript (1443–1446).

In this paper, we provide a glance at CJK sup-
port with XƎTEX and LuaTEX by giving a minimal-
istic implementation for these oriental scripts. This
work is both a proof of concept and a pedagogical
discussion on how to achieve CJK support as simply
as possible with the aforementioned typesetting so-
lutions. Both XƎTEX and LuaTEX support Unicode,
which enables us to focus on typesetting issues, leav-
ing encoding and font considerations aside.

The rest of this paper is organised as follows.
Technical discussion of the proposed implementation
is conducted in Section 2. The state of the art and
paper contribution are summarised in Section 3. Fi-
nally, this paper is concluded in Section 4.

2 A minimalistic implementation
We describe here the proposed minimalistic imple-
mentation of CJK support with XƎTEX and LuaTEX
step by step in a pedagogical manner: paragraph
management (Step 1) is addressed in Section 2.1,
Latin text mingling (Step 2) in Section 2.2, Latin
text paragraph (Step 3) in Section 2.3, Korean text
paragraph (Step 4) in Section 2.4 and sophisticated
line-breaking (Step 5) in Section 2.5. “Latin text”
here designates text written with the Latin alphabet,
or similar; for instance English and French text.

A handful of TEX commands are used here-
inafter without being detailed; see [4] for those
that are not self-explanatory. The document pream-
ble specifies nothing particular. The fontspec
package [10] is loaded for facilitated font manip-
ulation, and, as detailed in the rest of this sec-
tion, since it is considered without loss of gen-
erality that the document consists of Chinese
or Japanese paragraphs by default, the main
font of the document is set accordingly (e.g.,
\setmainfont{Noto Serif CJK JP} [3]).

2.1 Paragraph management
A conventional approach to break long character se-
quences (i.e., Chinese or Japanese characters in our
case) is to insert between each two glyphs a small
amount of horizontal space so that TEX can split the
sequence across multiple lines (see for instance [13]).
Without such extra space, line breaks could still oc-
cur thanks to hyphenation, but this is not applica-
ble in the CJK case. We rely on a “scanner” macro
to transform a paragraph by interleaving space be-
tween its characters. In practice, according to the
TEX terminology, this extra space will be a horizon-
tal skip of 0pt width and ±1pt stretch.

TUG 2019 j 9

? 2 draft: December 25, 2018 16:39 TUGboat, Volume 0 (9999), No. 0

The scanner macro is a recursive process that
takes one token (e.g., a character) as single param-
eter and outputs it with on its right extra horizon-
tal space. The recursion stops when the parame-
ter token is the stop signal (more on this later); in
this case, the macro outputs \par, thus materialis-
ing the end of the paragraph. The scanner macro
\cjk@scan is defined as follows.

\def\cjk@scan#1{% #1: single token
\ifx#1\cjk@stop% stop signal detected
\par% so, complete the paragraph

\else
#1% display the current character
\hskip 0pt plus 1pt minus 1pt\relax% space
\expandafter\cjk@scan% recursive call

\fi
}

The above
scanner is started by the \cjk@scanstart macro
whose primary objective is to append the stop sig-
nal \cjk@stop at the end of the paragraph that is
about to be transformed. This initial macro takes
one parameter: the paragraph to transform. In a
pattern matching fashion, a paragraph is taken as a
whole by setting \par as delimiter for the parame-
ter of the \cjk@scanstart macro. This will require
inserting \par once the paragraph has been trans-
formed though, since the \par command that ends
the paragraph is treated as a delimiter by the macro
and thus skipped. In addition, each paragraph needs
to be ended by a blank line (i.e., \par) to content
this pattern matching. The scanner starting macro
is given below.

\def\cjk@scanstart#1\par{% #1: paragraph
\cjk@scan#1\cjk@stop% append \cjk@stop

}

In this work, paragraphs are considered to be
written in Chinese or Japanese by default. Hence,
paragraph typesetting mode selection by means of a
command such as \CHJP{text} is not suitable. We
rely on the \everypar token parameter so as to trig-
ger the transformation of each paragraph with the
scanner previously described. This is simply done
as follows:

\everypar={\cjk@scanstart}

or, in a safer manner [2]:

\everypar=\expandafter{\the\everypar
\cjk@scanstart}

人民身體之自由應予保障。除現行犯之逮捕由法律另定外，非經司法或警察機關依法定程序，不得逮捕拘禁。非由法院依法定程序，不得審問處罰。非依法定程序之逮捕、拘禁、審問、處罰，得拒絕之。
人民因犯罪嫌疑被逮捕拘禁時，其逮捕拘禁機關應將逮捕拘禁原因，以書面告知本人及其本人指定之親友，並至遲於二十四小時內移送該管法院審問。本人或他人亦得聲請該管法院，於二十四小時內向逮捕之機關提審。

1

(a)

人民身體之自由應予保障。除現行犯之逮捕
由法律另定外，非經司法或警察機關依法定程
序，不得逮捕拘禁。非由法院依法定程序，不
得審問處罰。非依法定程序之逮捕、拘禁、審
問、處罰，得拒絕之。
人民因犯罪嫌疑被逮捕拘禁時，其逮捕拘禁

機關應將逮捕拘禁原因，以書面告知本人及其
本人指定之親友，並至遲於二十四小時內移送
該管法院審問。本人或他人亦得聲請該管法院
，於二十四小時內向逮捕之機關提審。

1

(b)

Figure 1: Before (a) and after (b) paragraph
transformation: line breaking now enabled (traditional
Chinese text example).

An illustration of the result of this paragraph
transformation is given in Figure 1 (Chinese and
Japanese paragraphs).

2.2 Latin text mingling
It is often the case that Latin text such as English
words, expressions or sentences is mingled within
Chinese or Japanese paragraphs. In the previously
described paragraph transformation method, spaces,
if any, are “gobbled” and never passed as parameter
for the scanner macro \cjk@scan. This is not re-
ally a problem for Chinese and Japanese text since
as explained they do not rely on spaces. But now
that we are considering Latin text mingling in such
paragraphs, spaces need to be retained since Latin
text, such as English, rely on spaces for instance to
separate words.

Without going too much into details, to force
TEX to also pass spaces as parameters to the scan-
ner macro, spaces need to be made active, as per
the TEX terminology. Hence, it suffices to call the
\obeyspaces macro, whose purpose is exactly to
make spaces active, at the beginning of the docu-
ment. In addition, the scanner macro is refined to
avoid adding extra space when the current character
is a space; see below.
\def\cjk@scan#1{%
\ifx#1\cjk@stop
\par

\else
#1%
\if#1\space% no extra space if #1 is a space
\else
\hskip 0pt plus 1pt minus 1pt\relax

\fi
\expandafter\cjk@scan

\fi
}

Two remarks are made next. First, it should
be noted that Latin text mingled within Chinese
or Japanese paragraphs is treated just as Chinese

TUG 2019 j 10

TUGboat, Volume 0 (9999), No. 0 draft: December 25, 2018 16:39 ? 3

日本国⺠は、正当に選挙された国会におけ
る代表者を通じて行動し、われらとわれらの
子孫のために、諸国⺠との協和による成果と
、わが国全土にわたつて自由のもたらす恵沢
を確保し、政府の行為によつて再び戦争の惨
禍が起ることのないやうにすることを決意し
、ここに主権が国⺠に存することを宣言し、
この憲法を確定する。そもそも国政は、国⺠
の厳粛な信託によるものであつて、その権威
は国⺠に由来し、その権力は国⺠の代表者が
これを行使し、その福利は国⺠がこれを享受
する。これは人類普遍の原理であり、この憲
法は、かかる原理に基くものである。われら
は、これに反する一切の憲法、法令及び詔勅
を排除する。We,theJapanesepeople

(a)

日本国⺠は、正当に選挙された国会におけ
る代表者を通じて行動し、われらとわれらの
子孫のために、諸国⺠との協和による成果と
、わが国全土にわたつて自由のもたらす恵沢
を確保し、政府の行為によつて再び戦争の惨
禍が起ることのないやうにすることを決意し
、ここに主権が国⺠に存することを宣言し、
この憲法を確定する。そもそも国政は、国⺠
の厳粛な信託によるものであつて、その権威
は国⺠に由来し、その権力は国⺠の代表者が
これを行使し、その福利は国⺠がこれを享受
する。これは人類普遍の原理であり、この憲
法は、かかる原理に基くものである。われら
は、これに反する一切の憲法、法令及び詔勅
を排除する。We, the Japanese people

(b)

Figure 2: Before (a) and after (b) making spaces
active: Latin text mingling now retains spaces
(Japanese text example).

or Japanese text: extra space is inserted between
glyphs. Therefore, line and word breaking for
mingled Latin text can occur anywhere, and thus
no word-breaking by hyphenation will ever happen
since never necessary due to the extra space added
between glyphs. Second, even though no extra space
is added after a space character, extra space is still
added before a space character. This issue will be
tackled in a subsequent section.

An illustration of the result of this refined para-
graph transformation is given in Figure 2.

2.3 Latin text paragraph
Because the \obeyspaces macro has been called
so as to typeset Chinese and Japanese paragraphs,
Latin text paragraphs would be typeset just as those,
that is, with extra space added between consecutive
glyphs (except after spaces). As a result, and as ex-
plained above, line and word breaking would not be
satisfactory.

Hence, we next enable the proper typesetting
of Latin text paragraphs, that is, paragraphs that
include spaces between words. To this end, we de-
fine the \iflatin conditional statement that will
be used to distinguish Latin text paragraphs from
others. The flag command \latinfalse is called
at the beginning of the document to reflect that
Chinese and Japanese paragraphs are by default.
Latin text paragraphs are marked as such by call-
ing the flag command \latintrue at the begin-
ning of the paragraph. The scanner starting macro
\cjk@scanstart is adjusted so as to not start the
scanner in case the Latin flag is set.

As the \obeyspaces macro has been previously
called, spaces are active characters; this setting
needs to be reverted in the case of Latin text para-
graph in order to have proper line and word break-
ing. Hence, the scanner starting macro in addition
reverts spaces from the active state back to their

日本国⺠は、正当に選挙された国会におけ
る代表者を通じて行動し、われらとわれらの
子孫のために、諸国⺠との協和による成果と
、わが国全土にわたつて自由のもたらす恵沢
を確保し、政府の行為によつて再び戦争の惨
禍が起ることのないやうにすることを決意し
、ここに主権が国⺠に存することを宣言し、
この憲法を確定する。
We, the Japanese people, acting throug

h our duly elected representatives in the N
ational Diet, determined that we shall secu
re for ourselves and our posterity the fruits
of peaceful cooperation with all nations an
d the blessings of liberty throughout this la
nd, and resolved that never again shall we
be visited with the horrors of war through
the action of government, do proclaim tha
t sovereign power resides with the people
and do firmly establish this Constitution.

(a)

日本国⺠は、正当に選挙された国会におけ
る代表者を通じて行動し、われらとわれらの
子孫のために、諸国⺠との協和による成果と
、わが国全土にわたつて自由のもたらす恵沢
を確保し、政府の行為によつて再び戦争の惨
禍が起ることのないやうにすることを決意し
、ここに主権が国⺠に存することを宣言し、
この憲法を確定する。
We, the Japanese people, acting

through our duly elected representatives
in the National Diet, determined that
we shall secure for ourselves and our
posterity the fruits of peaceful coopera-
tion with all nations and the blessings of
liberty throughout this land, and resolved
that never again shall we be visited with
the horrors of war through the action of
government, do proclaim that sovereign
power resides with the people and do
firmly establish this Constitution.

(b)

Figure 3: Before (a) and after (b) Latin mode
enabling: Latin text now properly typeset (Japanese
and English text example).

default state in the case of a Latin text paragraph.
The refined code is given below.

\newif\iflatin % flag to detect whether to scan
\latinfalse % flag initially set to false

\def\cjk@scanstart#1\par{
\iflatin% if Latin text paragraph, don’t scan
\catcode‘\ =10% revert \obeyspaces
#1\par% display the paragraph normally
\latinfalse

\else
\cjk@scan#1\cjk@stop

\fi
}

An illustration of the result of this refined para-
graph transformation is given in Figure 3.

2.4 Korean text paragraph
Let us now discuss the case of Korean text para-
graph typesetting. As mentioned in introduction,
modern Korean relies on spaces to separate words.
Hence, such paragraphs are treated as a Latin
text paragraph, concretely being marked with the
\latintrue flag. Yet, because Korean glyphs (i.e.,
hangul or hanja) are wider than Latin ones, the
width of spaces is adjusted. In addition, a font
switch is also used to select a Korean font since it
is frequent that Korean glyphs are not included in-
side the default font used for Chinese and Japanese
paragraph typesetting.

Such settings are applied at the beginning
of the paragraph, thus embedding the paragraph
into a group for font selection and the adjusted
space setting. Hence, the paragraph starts with

TUG 2019 j 11

? 4 draft: December 25, 2018 16:39 TUGboat, Volume 0 (9999), No. 0

日本国⺠は、正当に選挙された国会における代表者を通じて行動し、
われらとわれらの子孫のために、諸国⺠との協和による成果と、わが国全
土にわたつて自由のもたらす恵沢を確保し、政府の行為によつて再び戦争
の惨禍が起ることのないやうにすることを決意し、ここに主権が国⺠に存
することを宣言し、この憲法を確定する。

대통령은 내우·외환·천재·지변 또는 중대한 재정·경제상의 위기에 있어서
국가의 안전보장 또는 공공의 안녕질서를 유지하기 위하여 긴급한 조치가
필요하고 국회의 집회를 기다릴 여유가 없을 때에 한하여 최소한으로 필요한
재정·경제상의 처분을 하거나 이에 관하여 법률의 효력을 가지는 명령을
발할 수 있다.

(a)

日本国⺠は、正当に選挙された国会における代表者を通じて行動し、
われらとわれらの子孫のために、諸国⺠との協和による成果と、わが国全
土にわたつて自由のもたらす恵沢を確保し、政府の行為によつて再び戦争
の惨禍が起ることのないやうにすることを決意し、ここに主権が国⺠に存
することを宣言し、この憲法を確定する。

대통령은 내우·외환·천재·지변 또는 중대한 재정·경제상의 위기에 있어서
국가의 안전보장 또는 공공의 안녕질서를 유지하기 위하여 긴급한 조치가
필요하고 국회의 집회를 기다릴 여유가 없을 때에 한하여 최소한으로 필요한
재정·경제상의 처분을 하거나 이에 관하여 법률의 효력을 가지는 명령을 발할
수 있다.

(b)

Figure 4: Before (a) and after (b) space width
adjustment for Korean text: no more overfull hboxes
(Japanese and Korean text example).

a ‘{’ token and it is required to leave the verti-
cal mode for proper parsing of the paragraph when
used as parameter of the scanner starting macro
\cjk@scanstart. Precisely, the problem with start-
ing the paragraph with a command like {\malgun
(e.g., font switch) is that TEX is still in vertical mode
when it processes it. Switching to horizontal mode
starts a new paragraph and thus triggers \everypar,
but then with an unmatched ‘}’ remaining (i.e., the
one corresponding to, say, the font switch) at the
end of the paragraph, and thus the parsing error.

For convenience, these Korean text paragraph
settings are gathered under the \korean{} macro as
defined below.

\def\korean#1{
\latintrue% activate the Latin mode
\leavevmode% leave the vertical mode
{% Adjust the space size:
\spaceskip=\fontdimen2\font plus
3\fontdimen3\font minus
3\fontdimen4\font% ×3 stretch and shrink

\malgun #1% Korean font switch
}

}

It should be noted that this redefinition of
\spaceskip for the current paragraph would also
be applied for Latin text mingled within a Korean
paragraph. Furthermore, this font selection process
– yet without activating the Latin mode and adjust-
ing the space width – could also be used in the case
where distinct fonts for Chinese and Japanese text
are required.

An illustration of the result of this paragraph
typesetting is given in Figure 4. Before space width
adjustment, the overfull hboxes materialised by the
two black boxes should be noticed.

2.5 Sophisticated line-breaking
Just as, say, in French, where line breaks are not
allowed before the punctuation marks ‘:’, ‘;’, ‘!’ and
so on – even though these need to be preceded by a
space and are thus typical usages of non-breaking
spaces – CJK typesetting expectedly forbids line

日本国⺠は、正当に選挙された国会におけ
る代表者を通じて行動し、われらとわれらの
子孫のために、諸国⺠との協和による成果と
、わが国全土にわたつて自由のもたらす恵沢
を確保し、政府の行為によつて再び戦争の惨
禍が起ることのないやうにすることを決意し
、ここに主権が国⺠に存することを宣言し、
この憲法を確定する。

(a)

日本国⺠は、正当に選挙された国会におけ
る代表者を通じて行動し、われらとわれらの子
孫のために、諸国⺠との協和による成果と、
わが国全土にわたつて自由のもたらす恵沢を
確保し、政府の行為によつて再び戦争の惨禍
が起ることのないやうにすることを決意し、
ここに主権が国⺠に存することを宣言し、こ
の憲法を確定する。

(b)

Figure 5: Paragraph transformation by the original (a)
and new (b) scanner macro: no more line break before
a comma (Japanese text example).

breaks before punctuation marks such as commas
and periods.

We derive in this section a new scanner macro,
\cjk@scanbis, to tackle this remaining problem.
The approach is simple: refrain from adding extra
space after the current character when the next one
is a punctuation mark. And at the same time, this
new scanner allows us to solve the aforementioned in-
congruity of extra space being added before a space
character in Latin text paragraphs.

In practice, the new scanner takes two tokens
as parameters instead of one: the first parameter is
the currently processed token and the second one is
the next token in line. The recursive call is also up-
dated since now expecting two tokens as parameters
instead of one; see below.
\def\cjk@scanbis#1#2{% two tokens passed
#1%
\ifx#2\cjk@stop
\par

\else
\if#2、% no extra space before character ‘、’
\else\if#2。% idem before character ‘。’
\else\if#2\space% idem before a space
\else\if#1\space% idem after a space
\else\hskip 0pt plus 1pt minus 1pt\relax
\fi\fi\fi\fi
\expandafter\cjk@scanbis\expandafter#2%

\fi
}

Note that
similar additional conditions for other CJK punc-
tuation marks can be appended if needed. Besides,
in the scanner macro \cjk@scanstart, the expres-
sion \cjk@scan#1\cjk@stop is naturally changed to
\cjk@scanbis#1\cjk@stop.

An illustration of the effect of this new scanner
is shown in Figure 5.

3 State of the art and contribution
Early solutions for CJK support within the TEX
ecosystem include the CJK package [5] and the

TUG 2019 j 12

TUGboat, Volume 0 (9999), No. 0 draft: December 25, 2018 16:39 ? 5

Japanese TEX system pTEX [7]. While the former
provides some support for Unicode, the latter does
not. Notably, the CJK package has partial support
for vertical typesetting. Regarding Korean, the hla-
tex package [12] enables the processing by LATEX of
KS X 1001 encoded files, and of UTF-8 files via the
obsolete TEX extension Omega [9]. Omega also has
some support for multi-directional CJK typesetting.

More recent alternatives include the xeCJK
package [6], which is dedicated to XƎTEX (i.e., no
LuaTEX support). This package is very large as it
consists of more than 14,000 lines of macro code.
As of 2018, it is only documented in Chinese. An-
other extensive package, LuaTEX-ja [11], is available,
this time restricted to the support for Japanese with
LuaTEX. Finally, upLATEX [8], another system ded-
icated to Japanese can also be cited; it is based on
pLATEX, which is in turn based on pTEX.

Even if the above are more or less complete
solutions to the CJK typesetting issue with TEX,
we have presented in this paper a very simple solu-
tion, which neither requires a separate TEX system
such as pTEX nor advanced TEX capacities such as
xtemplate, LATEX3, etc., unlike, for instance, xeCJK.
With only a few lines of macro code, we have de-
scribed how to add basic yet arguably competent
support for CJK to both XƎTEX and LuaTEX, indis-
tinctly. The XƎTEX, LuaTEX flexibility has been re-
tained: no extra layer has been piled as, for instance,
with xeCJK (e.g., the \setCJKmainfont command).
Moreover, the complexity induced by packages such
as xeCJK is likely to be a threat to the compatibility
with other packages, as well as with online compila-
tion systems such as those employed by scientific
publishers.

4 Conclusions
It is well known that the Chinese, Japanese and Ko-
rean writing systems are challenging for the type-
setting solutions such as TEX that were originally
designed for Latin text. Various extensions and
packages were proposed to support CJK in TEX,
with uneven success. Such solutions are in most
cases, if not all, extensive – not to say invasive –
additions to the TEX ecosystem. In this paper, re-
lying on the Unicode-capable XƎTEX and LuaTEX
systems, we have presented and pedagogically dis-
cussed a minimalistic solution to this CJK typeset-
ting issue. With only a few lines of macro code, we
have shown that satisfactory CJK support can be
achieved: paragraph management, Latin text min-
gling and sophisticated line-breaking are examples
of the addressed typesetting issues.

Regarding future works, given its still rather
frequent usage, right-to-left horizontal typesetting
would be a useful addition to this pedagogical discus-
sion on CJK typesetting. Furthermore, even though
a complex issue for TEX, right-to-left vertical type-
setting is a meaningful objective as it is ubiquitous
for the CJK writing systems.

Acknowledgements
The author is thankful towards Keiichi Kaneko
(Tokyo University of Agriculture and Technology,
Japan) and Takeyuki Nagao (Chiba University of
Commerce, Japan) for their insightful advices.

References
[1] A. Bossard. Chinese Characters, Deciphered.

Kanagawa University Press, Yokohama, Japan,
2018.

[2] S. Checkoway. The everyhook package, 11 2014.
Package documentation. https://ctan.org/
pkg/everyhook (last accessed November 2018).

[3] Google. Google Noto fonts, 2017. https:
//google.com/get/noto (last accessed Decem-
ber 2018).

[4] D. E. Knuth. The TEXbook. Addison-Wesley,
Boston, MA, USA, 1986.

[5] W. Lemberg. CJK, 4 2015. Package doc-
umentation. https://ctan.org/pkg/cjk (last
accessed November 2018).

[6] L. Liu and Q. Lee. xeCJK 宏包 (in Chinese), 4
2018. Package documentation. https://ctan.
org/pkg/xecjk (last accessed November 2018).

[7] K. Nakano, Japanese TEX Development Com-
munity, and TTK. About pLATEX 2ε, 9 2018.
Package documentation. https://ctan.org/
pkg/platex (last accessed November 2018).

[8] K. Nakano, Japanese TEX Development Com-
munity, and TTK. About upLATEX 2ε, 4 2018.
Package documentation. https://ctan.org/
pkg/uplatex (last accessed November 2018).

[9] J. Plaice and Y. Haralambous. The latest devel-
opments in Ω. TUGboat 17(2):181–183, 6 1996.

[10] W. Robertson. The fontspec package – Font
selection for XƎLATEXand LuaLATEX, 7 2018.
Package documentation. https://ctan.org/
pkg/fontspec (last accessed December 2018).

[11] The LuaTEX-ja project team. The LuaTEX-
ja package, 11 2018. Package documenta-
tion. https://ctan.org/pkg/luatexja (last
accessed November 2018).

[12] K. Un. 한글라텍 길참이 (in Korean), 4 2005.
Package documentation. https://ctan.org/
pkg/hlatex (last accessed December 2018).

TUG 2019 j 13

? 6 draft: December 25, 2018 16:39 TUGboat, Volume 0 (9999), No. 0

[13] B. Veytsman. Splitting Long Sequences of Let-
ters (DNA, RNA, Proteins, Etc.), 8 2006. Pack-
age documentation. https://ctan.org/pkg/
seqsplit (last accessed November 2018).

Appendix
The placeholder text used in the various illustrations
of this article is in the public domain as detailed be-
low. Figure 1: the placeholder text is the two first
paragraphs of Article 8 of the Chinese constitution
(1947), written with traditional Chinese. Figure 2:
the placeholder text is the first paragraph of the
Japanese constitution (1946), followed by the first
few words of the corresponding official English trans-
lation. Figure 3: the placeholder text is the first sen-
tence of the first paragraph of the Japanese consti-
tution (1946), followed by the corresponding official
English translation. Figure 4: the placeholder text
is the first sentence of the first paragraph of the
Japanese constitution (1946), followed by the first
paragraph of Article 76 of the South Korean consti-
tution (1988). Figure 5: the placeholder text is the
first sentence of the first paragraph of the Japanese
constitution (1946).

⋄ Antoine Bossard
Graduate School of Science
Kanagawa University
2946 Tsuchiya, Hiratsuka,

Kanagawa 259-1293, Japan
abossard@kanagawa-u.ac.jp

TUG 2019 j 14

TUGboat, Volume 0 (9999), No. 0 draft: May 24, 2019 11:21 ? 1

FreeTypeMFModule2: Integration of
METAFONT, GF, and PK inside FreeType

Jaeyoung Choi, Saima Majeed, Ammar Ul
Hassan and Geunho Jeong

Abstract

METAFONT is the structured font definition that has
the ability to generate variants of different font styles
by changing its parameter values. It doesn’t require
to create a new font file for every distinct font de-
sign. It generates the output fonts such as Generic
Font (GF) and its relevant TeX Font Metric (TFM)
file on demand. These fonts can be utilized on any
size of the resolution devices without creating new
font file according to the preferred size. However,
METAFONT (MF), Generic Fonts (GF), and Packed
Fonts (PK compressed form of GF) cannot be uti-
lized beyond the TeX environment as it requires the
additional conversion overhead. Furthermore, exist-
ing font engine such as FreeType doesn’t support
such fonts.

In this paper, we have proposed a module for
FreeType which not only adds the support of META-
FONT, but also adds the support of GF and PK
font under Linux environment. The proposed mod-
ule automatically perform such conversions without
relying on other libraries. By using the proposed
module, users can generate variants of font styles
(by MF) and use it on the desired resolution devices
(by GF). The proposed font module reduces the cre-
ation time and cost for creating the distinct fonts
styles. Furthermore, it reduces the conversion and
configuration overhead for TeX-oriented fonts.

1 Introduction

In the recent era, development in technology is in-
creasing rapidly. In such environments, there is al-
ways a need of better and reliable medium for com-
munication. Traditionally, fonts were used as means
of communication. A font was collection of small
pieces of metal which has particular size and style of
the typeface. With the enhancement, modern fonts
were introduced which were expected to sum up both
the letter shape as it is presented on the metal and
the ability of the typesetter by providing information
that how to set position and replace the character as
appropriate. Such technique was not reliable as the
concept of pen and paper was considered the slow
and inefficient way of communication. This tradi-
tional technique was replaced by the modern fonts.
A new concept of digital systems aroused where these
modern fonts are utilized which replaced the pen and
paper usage. Therefore, modern font is implemented

as digital data file which contains set of graphically
related characters, symbols or glyphs.

The ability of science and technology to improve
human life is known to us. With the rapid increase in
development of science and technology, world is be-
coming “smart”. People will automatically be served
by smart devices. In such smart devices, digital fonts
are commonly used than analog fonts. As font is
the representation of text in a specific style and size,
therefore, designers can use various font setting to
give meaning to their ideas in text. Text is still con-
sidered the most appropriate and an elective source
to communicate and gather information, respectively.
Although a different styles of digital fonts have been
created but still they do not meet the requirements
of all the users and users cannot alter digital font
styles easily [1]. A perfect application for the satis-
faction of users’ diversified requirements concerning
font styles does not exist [2].

Currently, popular digital fonts, either bitmap
or outline, have limits on changing font style [3].
These limitations are removed by another type of
fonts such as parameterized fonts e.g. METAFONT
which will be discussed later in depth. METAFONT
provides the opportunity to the font designers to
create a different font styles by just changing some of
its parameter values. It generates the TeX-oriented
bitmap font such as Generic Font (GF) and its equiva-
lent TeX Font Metric (TFM) file. However, the usage
of METAFONT directly in the digital environment
is not easy as its specific to TeX oriented environ-
ment and the current font engines, the FreeType
rasterizer doesn’t support the METAFONT, Generic
Font (GF), and Packed Font (PK). In order to use
the METAFONT, GF, and PK font, users have to
specifically convert them into its equivalent outline
font. When METAFONT was created, the hard-
ware of the PCs was not fast enough to perform
the runtime conversion of METAFONT into outline
font. Therefore, users are not able to get advantage
from the METAFONT to get different font styles.
Currently, the hardware which are being utilized
in system are fast enough to perform such conver-
sions on runtime. If such fonts will be supported
by the current font engines, then the workload of
the font designers will be reduced. As the font de-
signers have to create a separate font file for every
distinct style. Such recreation task is time taken
especially in case of designing the CJK (Chinese-
Japanese-Korean) characters due to its complex let-
ters and shape. Therefore, such benefits given by
METAFONT can be applied to the CJK font to pro-
duce high quality font in an efficient manner. Our
previous work, FreeType MF Module[10] have been

TUG 2019 j 15

? 2 draft: May 24, 2019 11:21 TUGboat, Volume 0 (9999), No. 0

accomplished for the direct usage of METAFONT
excluding TeX-based bitmap fonts, inside FreeType
rasterizer. But the work was somehow based on the
external library such as mftrace during the internal
conversion. Therefore, such library has disadvantages
related to the performance and quality. Hence, the
purpose of this research is to present a module inside
the FreeType that will directly use the METAFONT,
GF, and PK font in Linux environment.

In Section 2, the primary objective of this work
is discussed. In Section 3, the METAFONT process-
ing with its compiler/interpreter such as mf program
are explained. In Section 4, the related research re-
garding the conversion of METAFONT is discussed
along with their drawbacks. The implementation
of the proposed module is discussed in Section 5.
The experiments on the proposed module and per-
formance evaluation along with other modules of
FreeType rasterizer is presented in Section 6. Sec-
tion 7, describes the concluding remarks.

2 Objective of the Research

With the enhancement in development and technol-
ogy, typography also get the fame. The primary
focus of this work is to understand the digital fonts,
TeX-oriented bitmap fonts and find out the ways how
to utilize it in Linux environment using the current
font engines. Hence, the objective of this research is:

1. To save time of the designer to study the details
of each font design from scratch and then create
font file for every distinct design

2. To generate variants of different font styles using
parametrized font such as METAFONT

3. To utilize the TeX-based bitmap fonts such as
GF which is specific to TeX environment inside
Freetype font engine

4. To increase the performance by using compact
form of GF such as Packed Font (PK)

5. To set the automatic magnification and resolu-
tion according to the display in case of Generic
Font

3 METAFONT processing with mf
program

METAFONT, a TEX font system, had been intro-
duced by D. E. Knuth [4] is an organized font defi-
nition which allows the font designers to change the
style of font as per their requirements by changing
values of parameters. METAFONT benefits the user
in a way that they don’t need to write the different
font file for every unique style. It is considered as pro-
gramming language which contain lines and curves
drawing guidelines which are later interpreted by

the interpreter/compiler of METAFONT such as mf
program to draw the glyphs into a bitmaps and keep-
ing the bitmaps into a file when done. Mf program
determines the exact shapes by solving mathematical
equations imposed by METAFONT. To process the
METAFONT using mf program, users must have the
knowledge of mf invocations [5]. Figure 1 shows the
proper way of processing the METAFONT using mf
program. It can accept plenty of other commands.
Therefore, in order to get the correct GF file, these
commands are provided e.g. mode, mag, and META-
FONT file to process. The mode command specify
the printed mode, if leave this out the default will
be used such as proof mode where METAFONT will
outputs at a resolution of 2602dpi; this is not usually
required without TFM. The mag command takes
the font resolution in pixels per inch along with the
METAFONT file. In result, mf program generates
the TeX-oriented bitmap font file such as GF, its
relevant Font metric file named: TFM, and log file.

Figure 1: mf invocations

For example, if the device is 600dpi and specify
the magnification 3 along with mode then mf pro-
gram will perform calculations internally and will
generate the output in the form of GF at 1800dpi,
along with its corresponding tfm and log file.

Generic Font (GF) is TeX-oriented bitmap font
generated by the mf program by taking METAFONT
as an input along with other information related to
the output device. GF font files are generated for
each output device with specific scaled sizes. Such
font files contain the character shapes in a bitmap
form. However, the information relevant to the char-
acters shape are stored in the TeX font metric (TFM)
file. To give meaning to the GF font, its correspond-
ing TFM is required as TeX only reads the font
metric file instead of GF. These fonts are utilized
in TeX typesetting systems. To view or print, these
fonts are converted into device-independent (.dvi)
files. Later, DVI drivers are required to interpret the
data given in device independent files as .dvi files

TUG 2019 j 16

TUGboat, Volume 0 (9999), No. 0 draft: May 24, 2019 11:21 ? 3

cannot be read directly by the TeX. Such conversions
are performed by the utility named; gftodvi. It reads
binary generic font and convert them into device-
independent files. In order to preview, utility named
xdvi is being utilized. As GF files are unreadable,
therefore, such conversions are required in order to
view.

The Packed Font (PK) is bitmap font format
utilized in the TeX typesetting systems. It can be
obtained by compressing the GF font. As GF files are
larger in size, therefore, the size of the PK is half of
their GF counterparts. The content stored in PK files
are same as GF. Such file format is intended to be
easy to read and interpreted by the device drivers. It
reduces the overhead of loading the font on memory.
Due to its compression nature, it reduces the memory
requirements for those drivers that loads and stores
the each font file on memory. They are also easier
to convert into a raster representation. (This also
makes it possible for a driver to skip a particular
character quickly if it knows that the character is
unused).

4 Related Works

4.1 Existing Font Systems

VFlib [6] is a virtual font system that can handle the
variety of font formats e.g. TrueType, Type1, and
TeX-bitmap fonts. It handles the library itself and
the database font file where it defines the implicit
and explicit fonts. Although it supports different
font formats but for some fonts it make use of the
external libraries, as shown in Figure 2. Furthermore,
it doesn’t support the METAFONT but it has the
ability to handle the TeX-bitmap fonts. The font
searching mechanism utilized in VFlib is time con-
suming, if the font doesn’t appear in the database.
Therefore, to handle such fonts, various font drivers
will be called to check whether the requested font can
be opened or not. Hence, such font systems are not
suitable to add the METAFONT support because of
reliance and taking care of database.

Figure 2: VFlib Reliance

An alternative to such font engines is FreeType
[7] font rasterizer. It has the ability to handle dif-
ferent font styles regardless of platform dependency

unlike T1lib [8] font rasterizer. However, it doesn’t
support the TeX-oriented bitmap fonts and META-
FONT. But it provides the intuitive interfaces which
allows the end-users to add the new font module to
enhance the functionality of the engine. Therefore, se-
lection of the FreeType font engine is the best choice
for adding the TeX-oriented bitmap fonts because
it has no dependency and database issues. If there
is a module inside Freetype which will support the
TeX-oriented bitmap fonts such as GF and PK, then,
users can get advantage of such fonts that are only
specific to TeX-environment. No pre-conversion by
utilizing the DVI drivers will be required to preview
TeX-oriented fonts.

4.2 Researches on adding METAFONT
support in existing font systems

As mentioned in Section 4.1, FreeType font engine
provides the capability to add the new font mod-
ule. MFCONFIG [2] added an indirect support of
METAFONT inside FreeType. It provides an intu-
itive way to use METAFONT on Linux environment.
As shown in Figure 3, it allows the users to utilize
the METAFONT but it has some dependency prob-
lem as it is built on high-level font libraries such
as FONTCONFIG [9] and Xft. Due to such de-
pendencies it affects the performance of the module
compared to font driver modules of FreeType. It is
unable to handle the TeX-oriented bitmap fonts such
as GF and PK. Therefore, adding the functionality
of TeX-bitmap fonts is inadequate as it’s not directly
implemented inside Freetype.

FreeType MF Module [10], a METAFONT mod-
ule inside the FreeType font engine resolves the de-
pendency and performance issues which were stimu-
lated in MFCONFIG. Its performance is relatively
faster than MFCONFIG as it is implemented inside
the FreeType. In order to use the METAFONT, it
requires to transform it into outline font. Hence,
FreeType MF Module performs such conversions but
relying on mftrace. Although, it generates a high-
quality output but during conversion font file in-
formation is vanished due to reliance on mftrace.
As shown in Figure 4, when the request of META-
FONT is received by the FreeType, it sends it to
FreeType MF Module. When it comes to its sub-
module named: Transformation Module, it utilizes
mftrace. Mftrace has its own drawbacks. It was
specifically designed for translating METAFONT
fonts to Type1 or TrueType formats by internally
utilizing the autotrace and potrace libraries for vec-
torization purpose. Approximate conversion gives ap-
proximate outline and lost information about nodes
and other control points [11]. Although, it processes

TUG 2019 j 17

? 4 draft: May 24, 2019 11:21 TUGboat, Volume 0 (9999), No. 0

Figure 3: MFCONFIG Internal Architecture

the METAFONT but is unable to process TeX-based
bitmap fonts such as Packed Font (PK) and Generic
Fonts (GF). Therefore, to add a support of GF or
PK inside FreeType MF Module is inconvenient due
to dependency on external library which slower down
the performance of the module.

The proposed FreeType MF Module2 intends to
resolve the problems of FreeType MF Module, and is
able to support TeX-bitmap fonts along with META-
FONT. The module can process METAFONT and
GF independently without relying on external library
e.g. mftrace. It can be easily installed and removed,
as it is implemented just like the default FreeType
driver module. Therefore, METAFONT and TeX-
oriented bitmap fonts can be used as the existing
digital font formats using the proposed module.

5 Implementation of the Module

To use the digital fonts, FreeType is a powerful li-
brary to render the text on screen. It is capable
of producing the high quality glyph images of the
bitmap and outline font formats. When FreeType
receives a request of font from the client application,
it sends the font file to the responsible module driver
for the manipulation. Otherwise, it displays an error
message to the client if the requested font file is not
supported. Similarly, the proposed module is directly
installed inside the FreeType to process the request of
METAFONT and TeX bitmap font such as Generic
Font (GF) and Packed Font (PK). As shown in Fig-
ure 5, when FreeType receives the METAFONT or
GF request it directs into FreeType MF Module2.

5.1 METAFONT (MF) Request

When FreeType sends the METAFONT request to
FreeType MF Module2, its submodule Request An-
alyzer API analyzes the font file. It analyzes that
the requested font file is the exact METAFONT file
or the wrong one by analyzing its style parameters.
After analyzing, it checks whether the requested font
is already manipulated by the font driver or the new
request is arrived via Cache. If the requested font is
found in the Cache, it sends directly to the engine
for manipulation. But if the font is not found in
the Cache, it sends the METAFONT request to the
Conversion Module. After receiving the request, it
utilizes its submodule named: Script Handler. The
core functionality of the module is performed in this
module. It calls the scripting module based on the
request. On METAFONT request, it calls the MF
Script module by passing the METAFONT file.

As shown in Figure 6, MF Script Module calls
its submodule named: Font Style Extractor Module.
It extract the font style parameters from the META-
FONT file. For example, the METAFONT request
given to the module with the italic style, this will
extract the italic style parameters from the META-
FONT file and apply into it. Once it extracts the
font style parameters, its corresponding outline will
be generated with the requested style by utilizing
Vectorization Module. After extracting the charac-
ters outline, it is necessary to remove the redundant
nodes from the characters shapes to make the bet-
ter quality. Therefore, Node Redundancy Analysis
will receive the transformed METAFONT and ana-
lyze the outline contours and remove the redundant
nodes from the font to create the simplified outline.
Once simplification task is done, auto-hinting will be

TUG 2019 j 18

TUGboat, Volume 0 (9999), No. 0 draft: May 24, 2019 11:21 ? 5

Figure 4: FreeType MF Module Architecture

Figure 5: FreeType MF Module2 Architecture

performed on the font using Hinting Module. After
hinting, the corresponding outline font will be gener-
ated with the Outline Converter module and sends
the outline font file to the module named: Response
API. It updates the Cache with the newly generated
outline font for reusability and high performance.
After updating, FreeType renders this outline font
that was created from the METAFONT with the
requested style parameter values.

5.2 Generic Font (GF) Request

When FreeType sends the GF request to the pro-
posed module, it sends the requested font to the
Request Analyzer API module. It checks whether
the requested GF font is converted with correct use
of mf compiler or not by analyzing the device specific
information. If the requested GF file is not gener-
ated by the correct use of mf compiler, then Request
Analyzer API module will not proceed as it has to

TUG 2019 j 19

? 6 draft: May 24, 2019 11:21 TUGboat, Volume 0 (9999), No. 0

Figure 6: MF Script Internal Architecture

compute file name by using font parameters such as
device resolution and magnification. But if the GF
font is generated by the correct use of mf compiler,
then its TeX font metric file must exist.

On GF request, its TFM must be provided for
internal computation related to character shapes.
Furthermore, TeX only reads the TFM instead of
GF as all the font relevant information is provided
by the TFM. Once Request Analyzer API module
analyzes the GF request, then it checks in the Cache
to get the manipulated font if exist. If requested
font doesn’t exist in the Cache, then the request will
be forwarded to the Conversion Module where its
submodule named: Script Handler handles the GF
request along with its relevant tfm file.As shown in
Figure 7, when GF Script receives the GF file, its
submodule Extractor Module plays the main func-
tionality. Its internal module of Font Info Extractor
extracts the font related information from the TeX
font metric file and extracts a sequence of bitmaps
at a specified resolution from GF file.

After extraction, it merges the extracted infor-
mation and gives meaning to the unreadable gf file in
the form of characters images via Merge Extracted
Info Module. From such bitmap relevant font, it
makes character images. After merging and creating
the vectorize kind of images, it extracts the outline of
the characters via Outline Extractor Module. After
extracting the outline, it sends the extracted out-
lined characters to the Simplify Module, which is
capable of analyzing the font and removes the re-
dundant nodes from the font in order to make the
good quality outline. As a result, it outputs the sim-
plified outline using the Outline Converter module
internally. The newly created outline font is sent to
the Response API, which updates the Cache with

the generated outline font for later reusability. Once
Cache updated, it sends back the response to the
core FreeType module for further processing. Lastly,
FreeType renders this outline font that was made
from the requested GF with the styled parameter
values at a specified resolution.

Figure 7: GF Script Internal Architecture

5.3 Packed Font (PK) Request

On PK font request, FreeType performs the same
functionality till Conversion Module as it performs
in Sections 5.1 and 5.2. Once Script Handler receives
the requested PK font, it utilizes PK Script. As
shown in Figure 8, Extractor Module extracts the
raster information from the packed file. It internally
utilizes the GF Script for extracting the font infor-
mation from the relevant tfm file using it submodule
Font Info Extractor. After extraction, it performs
the autotracing on the merged font via Autotracing
Module, which outputs the character images. Once
done, it sends the transformed output to the Outline
Extractor Module where it obtains the outline of
the characters. After getting the outlined character
images, it performs the outline contour analysis and
remove the nodes redundancy from the outlines us-
ing the submodule named: Outline Contour Analysis
Module. It sends the simplified output to the Outline
Converter which creates the good quality outline font

TUG 2019 j 20

TUGboat, Volume 0 (9999), No. 0 draft: May 24, 2019 11:21 ? 7

file. The generated outline font file is send to the
Response API which updates the Cache and sends to
the corresponding FreeType module for rendering.

Figure 8: PK Script Internal Architecture

The proposed module provides the direct sup-
port of METAFONT, GF, and PK. It is perfectly
compatible with the default module drivers of the
FreeType. It can manipulate the request with the
desired style parameters and scale size. In result,
it provides the better quality outline font without
utilizing the external libraries.

6 Experiments and Performance
Evaluation

In order to test the proposed module, an application
server is being utilized. The application server is
responsible for rendering the text on the screen by
taking the font file from the FreeType along with
the requested text to be printed. FreeType can only
process those fonts which are supported by it. When
the client application sends the METAFONT, GF, or
PK request to the FreeType, it internally processes
the requested font using the proposed module and
sends the newly generated outline font file along with
the input text to the application server to display it
on screen.

For testing purpose, the METAFONT font Com-
puter Modern is used. The Computer Modern fonts
are examined with the four unique styles: Normal,
Italic, Bold, and Bold+Italic. These styles are gener-
ated by tweaking the METAFONT parameters. In
order to verify the quality of the proposed module
results, authors used the same four styles of another
font family named: FreeSerif. The sample text com-
prises of words and characters, including the space
characters.

The same font family is utilized to test the
FreeType MF Module with the same four font styles.
Changing the parameter values and generating new
styles are explained in [10]. The same concept is ap-
plied on the proposed module for experiments. The
only difference comes in case of GF and PK fonts.
In order to manipulate such fonts, information of
the printer device and font resolutions of the specific
device is required. Furthermore, such TeX-oriented
bitmap fonts cannot be directly viewed on the screen,
it requires DVI drivers which makes proof sheets from
a GF bitmap file where characters from the gf appear
one per page in the form of .dvi file. Therefore, in the
proposed module the GF and PK fonts are directly
manipulated by the module without requiring the
DVI drivers and previewers. It accepts the input text
by the client application and internally calculates
the font resolution in pixels per inch. Afterwards, it
internally processes the GF and PK file as described
in Sections 5.2 and 5.3, and generates the resultant
output with the desired style.

When FreeType sends the METAFONT request
to the proposed module, it internally manipulates
the request by extracting the styled parameters from
the source file. Default style of Computer Modern
METAFONT is generated by extracting the default
parameters. The four font styles such as Normal,
Bold, Italic, and Bold+Italic are generated by the
module, and it generates the similar output in Figure.
9(a), (b), (c), (d). Using one Computer Modern
METAFONT file, user can generate different font
styles based on the desire and requirement.

When FreeType receives the Generic Font re-
quest by the client application server, it sends it
to the proposed module along with the input text,
where it extracts the font related information from
the TFM file and resolution information from the
GF file. After that it internally calculates the font
resolution in pixels per inch by referring to a de-
vice definition. Later, it generates the output on
the resulted font resolution, as similar to as shown
in Figure 9. The default style of Generic Font is
generated by extracting the default style parame-
ters at 1200dpi. The remaining font styles such as
Bold, Italic, and Bold+Italic are generated by the
module at the calculated resolution similar to the
results in Figure 9(b), (c), (d). The GF results dif-
fer slightly due to the variations in resolution than
METAFONT. The authors tested the GF font with
different magnifications at the time of manipulation.

Once GF font is obtained by the METAFONT,
it has a larger size which takes a lot of memory dur-
ing the manipulation. In order to reduce the memory
consumption, it’s converted into packed form using

TUG 2019 j 21

? 8 draft: May 24, 2019 11:21 TUGboat, Volume 0 (9999), No. 0

(a) Normal Style Packed Font (b) Bold Style Packed Font

(c) Italic Style Packed Font (d) Bold-Italic Style Packed Font

Figure 9: Text printed with Packed Font (PK)

Table 1: Average time of Rendering (in milliseconds)

the utility gftopk. It contains the same information
and style parameters which were utilized at the time
of GF experiment. Therefore, their resultant out-
put only differs at the performance level rather than
quality. The resultant output for the PK request
is similar like GF at the same font resolution. As
shown in Figure 9,font styles such as Normal, Bold,
Italic, and Bold+Italic are generated by the mod-
ule. The authors compared the obtained results with
the FreeType MF Module. Therefore, it is concluded
that the results are quite similar and proposed mod-
ule handles the TeX-oriented bitmaps fonts along
with the METAFONT inside the FreeType without
reliance related to the conversions.

The authors have not only considered the quality
factor of the generated font using the proposed mod-
ule, but also the performance factor. As shown in Ta-
ble 1, the performance of FreeType MF Module is rel-
atively slower on processing the Bold and Bold+Italic
font style of METAFONT. It takes time due to the
dependency on the external library such as mftrace.
Therefore, the proposed module overcomes such per-
formance and dependency issues and added the dual
functionality by integrating the TeX-oriented fonts.
The GF font takes a little more time compared to
PK font but less time than METAFONT font as it
is already in the compiled form. The PK font takes
a less time than METAFONT and GF, as it is the
compressed and compiled form of GF.

TUG 2019 j 22

TUGboat, Volume 0 (9999), No. 0 draft: May 24, 2019 11:21 ? 9

The proposed FreeType MF Module2 provides
the parameterized font support to the users. The
proposed module doesn’t require the preconversion
before giving it to the FreeType rasterizer. The client
applications which utilizes the FreeType internally
can utilize the METAFONT and TeX-oriented bit-
map fonts such as GF and PK using the proposed
module. Users can utilize such fonts as it utilizes the
TrueType fonts using the FreeType. The proposed
module can be utilized in the FreeType font engine
as a default driver module. The proposed module
will work the same as the other driver modules works
in the FreeType. It is able to support the real time
conversions on a modern Linux environment.

7 Conclusion

In this paper, a module is proposed for the FreeType
font rasterizer which enhanced its functionality by
adding the parameterized and TeX-oriented bitmap
fonts. FreeType supports many different font for-
mats but doesn’t support the fonts which are utilized
only in the TeX environment such as GF and PK. It
is unable to support the parametrized font such as
METAFONT. Although the recent studies provided
a way to utilize the METAFONT inside FreeType,
however, it has the dependency issues which effects
the performance of the module. Furthermore, it can
only handle the METAFONT request. Therefore, the
proposed module overcome these issues and added
the TeX-oriented bitmap support as well. Using the
proposed module, users can use the METAFONT,
GF, and PK fonts without using other drivers for con-
version purpose. Such fonts are specific to the TeX
environment, therefore, using the proposed module
users can utilize these fonts outside the TeX environ-
ment.

Furthermore, the proposed module overcome
the disadvantages of the outline fonts which limits
the users to change the font style using the existing
font file. It requires to create the different font file
for every distinct font style with the different sizes
as well. Therefore, for creating a new font style in
outline fonts for the CJK fonts consumes time and
cost, as these are complicated in shapes as compared
to the alphabet-based fonts. A various studies have
been conducted to implement the CJK fonts, such
as Hongzi[14], including the use of a structural font
generator using METAFONT for Korean and Chi-
nese[15]. It might take a longer time to process CJK
METAFONT fonts, which have complicated shapes
and have more than several thousands of phonemes.
The proposed module optimization and utilization
for the CJK fonts will be considered in future.

References

[1] Donald E. Knuth, S. Song. Development of Ko-
rea Typography Industry, Appreciating Korean
Language, 2013.

[2] Jaeyoung Choi, Sungmin Kim, Hojin Lee, Ge-
unho Jeong, MFCONFIG: METAFONT plug-
in module for Freetype rasterizer TUG 2016
(TUGboat, 2016): 163170.

[3] Y. Park., Current status of Hangeul in 21th
century. Type and Typography magazine The
T, 7th.

[4] Donald E.Knuth, Computers and typesetting.
Volume c: The Metafontbook. TUGboat, 1986.

[5] Web2c: A TeX implementation.
http://tug.org/texinfohtml/web2c.html

[6] H. Kakugawa, M. Nishikimi, N. Taka-
hashi, S. Tomura, and K. Handa. A
general purpose font module for multilin-
gual application programs. Software: Prac-
tice and Experience, 31(15):1487–1508, 2001.
dx.doi.org/10.1002/spe.424

[7] David Turner, Robert Wilhelm, Werner Lem-
berg, FreeType, www.freetype.org.

[8] Rainer Menzner, A library for generat-
ing character bitmaps from Adobe Type
1 fonts. http://www.fifi.org/doc/t1lib-
dev/t1lib doc.pdf.gz

[9] Donald E.Knuth Metafont: The Program.
Addison-Wesley, 1986.K. Packard, Fontconfig,
Gnome User’s and Developers European 2002.

[10] Jaeyoung Choi, Ammar Ul Hassan, Ge-
unho Jeong, FreeType MF Module, 2016.
https://tug.org/tug2018/preprints/choi-
freetype.pdf

[11] Scalable Fonts for MetaFont, mftrace
http://lilypond.org/mftrace/

[12] Autotrace library.
http://lilypond.org/mftrace/

[13] Karel Piska, Creating Type 1 Fonts from
METAFONT Sources, Comparison of Tools,
Techniques and Results, 2004.

[14] Javier Rodr’ıguez Laguna: Hong-Zi: A Chinese
METAFONT, Communications of the TEX
Users Group, TUGboat, Vol 26, No.2 pp.125-
141,2005.

[15] Jaeyoung Choi, Gyeongjae Gwon, Minju Son,
Geunho Jeong, ”Next Generation CJK Font
Technology Using the Metafont”, LetterSeed
15, pp.87-101, Korea Society of Typography,
2017. 6.

TUG 2019 j 23

TUGboat, Volume 40 (2019), No. 2 draft: August 4, 2019 0:16 901

MacTEX-2019, notification, and
hardened runtimes

Richard Koch

Abstract

MacTEX installs everything needed to run TEX on
a Macintosh, including TEX Live, Ghostscript, and
four GUI applications: TeXShop, TEX Live Utility,
LATEXiT, and BibDesk. In macOS 10.15, Catalina,
Apple requires that install packages be notarized,
and all command line and GUI applications in such
a package must be signed and adopt a hardened
runtime. I’ll explain what this means and how it was
accomplished.

MacTEX 2019

1 Recent changes

For many years, MacTEX supported macOS 10.5
(Leopard) and higher, on both PowerPC and Intel
processors. Starting in 2017, we decided to limit
support to those systems for which Apple still pro-
vides security updates. Consequently, we support
the three latest systems; in 2019 we support Sierra,
High Sierra, and Mojave (that is, 10.12 and higher).
Each fall, Apple introduces a new system and we
also support that. Thus MacTEX-2019 will support
Catalina when that is released this fall.

Mojca Miklavec compiles Mac binaries for older
systems; in 2019 she supports Snow Leopard (10.6)
and higher. TEX Live contains both our binaries
and Miklavec’s binaries. Our web pages (tug.org/
mactex) explain how to install TEX Live using either
the MacTEX installer or the standard Unix install
script (install-tl), so users with older systems can
update using the Unix install script. Both methods
produce exactly the same TEX Live in the end.

2 Security

I retired from the University of Oregon in 2002. In
that year, freshmen arriving at the University dis-
covered a CD and instruction sheet taped over the
ethernet jacks in their dorm rooms. The sheet said

Warning: You must install the virus checker on

this CD before connecting your computer to the

ethernet. If you fail to follow this instruction,

you will lose ethernet privileges in this room.

The note ended with one more sentence:

Macintosh users can ignore this message.

But that was 2002. This April, I got the following:

From: koch@math.uoregon.edu

Date: April 4, 2019

To: koch@math.uoregon.edu

Hey! I compromised your account and gained full

access to it. I just sent this email from your

account. You visited an adult website and got

infected. This gave me access to all of your

contacts, browsing history, your passwords,

your webcam, and even your microphone.

I noticed you were trying to please yourself by

watching one of those nasty videos, well my son,

I recorded your actions ... (thanks to your

webcam) and even recorded your screen (the video

you were watching). Now, if you do nothing, then

I will send this video to all of your email,

social media and messenger contacts. You have

the option to prevent me from doing all of this.

All you need to do is to make the transfer of

\$958 to my bitcoin address ...

3 Lessons

• The Macintosh is built on top of Unix. Unix
has strong protection against other irresponsible
users. Like most companies, Apple has security
engineers patching kernel and system bugs as
they are found.

• But Macs are generally used by one person,
and the remaining problem is to protect that
person against himself or herself. If my Mac is
attacked, I’m not worried that the criminal will
become root. I’m worried that he will activate
my camera, read my mail, find my contact list,
or turn on my microphone.

• For several years, Apple has provided a (manda-
tory) solution for applications in the App Store.
It is known as sandboxing. A sandboxed appli-
cation cannot interact with other programs; it
runs in its own sandbox.

• In Catalina (and also to some extent in Mojave)
Apple provides a different kind of security pro-
tection for other programs. Unlike sandboxing,
the new security is carefully tuned to allow any
program to run as usual. Here’s how it works.

4 Signing

This step was introduced in 2012. Apple Developers
can sign their applications and their install packages.
When software is downloaded from the Internet, the
system checks that the software has not been mod-
ified since it was signed, and that the signature is
from a known developer. It refuses to run software
that doesn’t pass. Otherwise it sets a Finder bit
to disable future checks and runs the software. A

MacTEX-2019, notification, and hardened runtimes

TUG 2019 j 24

902 draft: August 4, 2019 0:16 TUGboat, Volume 40 (2019), No. 2

control panel in Apple’s System Preferences controls
this behavior:

Signing requires developer status from Apple,
which costs $100 a year. TeXShop and MacTEX have
always been signed.

Apple issues two developer signing certificates,
one for applications and one for install packages.
Signing applications is done in XCode as part of the
build process. A command line binary signs install
packages.

Tricks explained on the Internet allow users
to disable the signing requirement and install any
program. At this year’s WWDC, Apple said that
such tricks would always be available.

5 Notarization

This spring, Apple added notarization. This works
like signing; both applications and install packages
can be notarized. Once software is signed and just
before release, it is sent to Apple. There it is checked
for viruses (no human hands touch the software).
Checking takes around 15 minutes. If the software
passes the test, a “certificate” is mailed back and
“stapled” to the software. In Catalina, software down-
loaded from the Internet must be both signed and
notarized before it can run.

Previously, software was only tested once to
make sure it was not modified. Now these tests
will be rerun periodically. The details are somewhat
vague (to me), so don’t ask.

6 Hardened runtimes

Signing and notarization are small potatoes. The
big security step in Catalina is the requirement that
all applications and command line programs in a
notarized install package must be signed and time-
stamped, and must adopt a Hardened Runtime. All
of this is new. The MacTEX install package has been
signed since 2012, but the individual TEX binaries
are not signed. And while TeXShop is signed, the
remaining applications TEX Live Utility, LATEXiT,
and BibDesk are not signed. The kicker, however, is
that these applications and all command line apps
must adopt a hardened runtime. What is that?

Apple has a list of 13 dangerous operations a
program might try to perform. I’ll give the full list
later, but among the items are these: accessing the
camera, accessing the microphone, accessing location
information, accessing the address book, accessing

the user’s calendars, accessing photos, sending Apple
events to other applications, executing JIT-compiled
code, loading third party libraries not by Apple. If
an application adopts a hardened runtime, it is not
allowed to perform any of these operations.

However, for each of the 13 dangerous opera-
tions, a developer can claim an entitlement. I have
always dreamed of a TEX editor attached to a cam-
era; to make a commutative diagram, draw it and
take a picture and the editor converts the drawing
into TEX. The author of such an editor would file
an entitlement for the camera operation.

Nobody at Apple checks the entitlement list;
there is no “approval process”. A developer can
claim all 13 entitlements and then the hardened
runtime has no effect.

So calm down that case of paranoia. Apple isn’t
restricting developers. It is providing a tool to help
open source developers improve security.

6.1 Dealing with command line programs

Command line programs can adopt a hardened run-
time without recompiling. The command below does
this for the xz binary used by tlmgr. The --force

option says to replace any previous signing by the
new one, and --options=runtime says to adopt a
hardened runtime with no exceptions.

codesign \

-s "Developer ID Application: Richard Koch" \

--force --timestamp --options=runtime xz

To claim exceptions for a command line program,
add a flag --entitlements=TUG.entitlement to
the previous call, where TUG.entitlement can be
any name and is a short XML file. The exam-
ple TUG.entitlement here allows linking with third
party libraries. (One long line has been broken for
TUGboat with a \; it should not be broken in a real
file.)

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC

"-//Apple//DTD PLIST 1.0//EN"

"http://www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

<dict>

<key>com.apple.security.cs.\

disable-library-validation</key>

<true/>

</dict>

</plist>

By embedding the codesign call in a shell script,
it is easy to construct scripts which sign, timestamp,
and adopt hardened runtimes for all command line
binaries in an install package.

Richard Koch

TUG 2019 j 25

TUGboat, Volume 40 (2019), No. 2 draft: August 4, 2019 0:16 903

6.2 Case 1: BasicTEX

In addition to the full MacTEX, we provide a smaller
install package called BasicTeX, which installs the
distribution obtained by using install-tl with the
“small” scheme. To test the above ideas, I submitted
this package unmodified to Apple for notarization.
Apple refused to notarize it, but they sent back a de-
tailed and easy-to-read error sheet. The bin directory
of BasicTEX has 88 items. Apple ignored symbolic
links, scripts, and other files, but had problems with
30 commands. These were exactly the commands
which the Unix command file listed as “Mach-O
64-bit executable x86 64”.

In addition, Apple found three other such bina-
ries in tlpkg/installer: lz4, wget, xz.

I used the codesign script on these 33 binaries
and submitted BasicTEX again to Apple for nota-
rization. Approved!

6.3 Case 2: Ghostscript

Ghostscript only has two binaries, gs-X11 with X11
support and gs-noX11 without X. We install a sym-
bolic link named gs to the appropriate binary.

I ran codesign on gs-X11 and gs-noX11 and
submitted to Apple. Apple notarized the install
package. But when the package was used to install
Ghostscript, gs refused to run. Why?

Originally, Apple supplied an optional install
package for X11. But their package was often out
of date, so a mutual decision was made for a third
party to supply X11 for the Macintosh as open source.
Consequently, gs-X11 links in a third party library,
which is not allowed for hardened runtimes. Re-
signing gs-X11 and claiming an entitlement for such
linking solved the problem.

6.4 Case 3: biber

The biber binary is so complicated that TEX Live
builders do not compile it. Instead the author sub-
mits binaries. The codesign script didn’t work with
this binary. I contacted the author, Philip Kime. A
month later he sent a binary which worked. I suspect
Kime knows a lot more about notarization than I do
now.

6.5 Case 4: The big enchilada

Finally it was time to notarize the full TEX Live.
I hardened xz, wget, lz4, and all the binaries in
bin/x86_64-darwin which were not links and re-
ported to be “Mach-0 64-bit executables’ by file.
Tests revealed that two of these binaries needed an
exception for X11: mf and xdvi-xaw. I submitted
the package to Apple. It was rejected.

A big difference between BasicTEX and the full
TEX Live is that the second package has documen-
tation provided by package makers. This documen-
tation comes in a wide variety of formats: source
files for illustrations, zip files, and so forth. When
Apple tests an install package for viruses, does it
unzip files and look inside? Yes, it does. Does it
examine illustration source files? Yes, it does that
too. So lots of things could go wrong.

Luckily, Apple provided clear explanations for
rejection, and it turned out that MacTEX had only
three problems:

• In texmf-dist/doc/support/ctan-o-mat, one
file is given an extension .pkg. Apple believes
that a file with extension .pkg is an install pack-
age, and this package was not signed. It turned
out to be an ordinary text file.

• In texmf-dist/doc/latex/codepage, Apple
could not unzip the file demo.zip.

• In texmf-dist/source/latex/stellenbosch,
there is a zip file named USlogos-4.0-src.zip

containing two CorelDraw source files for illus-
trations. Apple did not recognize these source
files and flagged them.

The three problems were easy to work around. Bug
reports were also sent to Apple so they can improve
the notarization machinery.

7 Status of notarization for MacTEX-2019

Fully notarized install packages for MacTEX-2019,
BasicTEX-2019, and Ghostscript-9.27 are available
on the web for testing. Indeed, the Ghostscript-
9.27 package on CTAN is already notarized. The
MacTEX-2019 and BasicTEX-2019 packages will be
moved to CTAN, replacing the original packages, in
late summer just before Catalina is released.

TEX Live Utility, LATEXiT, and BibDesk are
not in the notarized MacTEX-2019 because they are
applications rather than command line programs,
so their authors must sign and notarize them. This
has not yet happened. If these authors used the
XCode which comes with Mojave, these steps would
be trivial, but they use an older XCode. We are
working with the authors but have nothing to report.

8 Technical details

I end with some technical details for others who
may need to deal with these issues on the Macintosh.
I’ll explain how to sign install packages and how to
notarize such packages. Then I’ll list the six runtime
entitlements and seven resource access entitlements
from an official Apple document.

MacTEX-2019, notification, and hardened runtimes

TUG 2019 j 26

904 draft: August 4, 2019 0:16 TUGboat, Volume 40 (2019), No. 2

8.1 Signing an install package

Signing requires developer status from Apple, which
costs $100 a year. Certificate information and se-
curity codes are kept on Apple’s KeyChain, and
automatically retrieved by the signing software when
needed. If you buy a new machine or install a new
system, you must transfer this information to the
new system. XCode makes this easy if you know
what mysterious icon to click.

Signing applications happens automatically in
XCode as part of the build process. Signing install
packages is done on the command line. The command
here signs Temp.pkg and writes the signed package
Basic.pkg.

productsign \

--sign "Developer ID Installer: Richard Koch" \

Temp.pkg Basic.pkg

8.2 Notarizing an install package

Notarization of install packages is done on the com-
mand line, and is somewhat trickier. Below are the
crucial commands. The first command sends an in-
stall package to Apple to be notarized. If uploading
succeeds, this command returns an identifier which
I symbolize with YYYY; it is actually much longer.

xcrun altool --notarize-app \

--primary-bundle-id \

"org.tug.mactex.basictex" \

--username "koch@uoregon.edu" \

--password "XXXX" \

--file BasicTeX.pkg

When Apple is finished, it sends a brief email
stating whether notarization was successful. If there
were errors, this second command asks for a detailed
list of errors. The command returns a url, and the
error list will then appear in a browser pointed to
this url.

xcrun altool --notarization-info YYYY \

--username "koch@uoregon.edu" \

--password "XXXX"

If notarization was successful, this third com-
mand staples the certificate to the install package,
producing a notarized package:

xcrun stapler staple "BasicTeX.pkg"

In these commands, altool is a command line
tool which communicates with Apple. This com-
munication is normally protected using two-factor
authentication, but that is not convenient for com-
mand line work. So before using altool, Apple asks
developers to log into their account and give altool

a temporary password. The symbol XXXX in the first
and second commands represents this password.

The value org.tug.mactex.basictex in the
first command identifies the install package for the
notification process, but need not correspond to any
similar string in the package. So the identifier can
be selected randomly.

8.3 Runtime entitlements

All entitlements are boolean values; all keys start with
com.apple.security, not shown here for brevity.

Allow Execution of JIT-compiled Code: whether the app
may create writable and executable memory using
the MAP_JIT flag. Key: .cs.allow-jit

Allow Unsigned Executable Memory: whether the
app may create writable and executable
memory without using the MAP_JIT flag.
Key: .cs.allow-unsigned-executable-memory

Allow DYLD Environment Variables: whether the app
may be impacted by DYLD environment variables,
which can be used to inject code into the process.
Key: .cs.allow-dyld-environment-variables

Disable Library Validation: whether the app may load
plug-ins or frameworks signed by other developers.
Key: .cs.disable-library-validation

Disable Executable Memory Protection: whether to
disable code signing protections while launching
the app.
Key: .cs.disable-executable-page-protection

Debugging Tool: whether the app is a debugger and
may attach to other processes or get task ports.
Key: .cs.debugger

8.4 Resource access entitlements

Audio Input: whether the app may record audio using
the built-in microphone and access audio input
using Core Audio. Key: .device.audio-input

Camera: whether the app may capture movies
and still images using the built-in camera.
Key: .device.camera

Location: whether the app may access location
information from Location Services.
Key: .personal-information.location

Address Book: whether the app may have read-write
access to contacts in the user’s address book.
Key: .personal-information.addressbook

Calendars: whether the app may have read-write access
to the user’s calendar.
Key: .personal-information.calendars

Photos Library: whether the app may have
read-write access to the user’s Photos library.
Key: .personal-information.photos-library

Apple Events: whether the app may send Apple Events
to other apps. Key: .automation.apple-events

� Richard Koch
koch (at) math dot uoregon dot edu

http://math.uoregon.edu/koch/

Richard Koch

TUG 2019 j 27

TUGboat, Volume 0 (1900), No. 0 900

Parsing complex data formats in LuaTeX with
LPEG

Henri Menke

Abstract
Even though it is possible to read external files in
TEX, extracing information from them is rather dif-
ficult. Ad-hoc solutions tend to use nested if state-
ments or regular expressions provided by several
macro packages. However, these quick hacks don’t
scale well and quickly become unmaintainable.
LuaTEX comes to the rescue with its embedded
LPEG library for Lua. LPEG provides a Domain
Specific Embedded Language (DSEL) that allows to
write grammars in a natural way. In this article I
will give a quick introducing to Parsing Expression
Grammars (PEG) and then show how to write sim-
ple parsers in Lua with LPEG. Finally we will build
a JSON parser to demonstrate how easy it is to even
parse complex data formats.

1 Quick introduction to LPEG and Lua
The LPEG library [1] is an implementation of Parsing
Expression Grammars for the Lua language. It pro-
vides a Domain Specific Embedded Language for this
task. Its domain is obviously parsing. It is embed-
ded in Lua using overloading of arithmetic operators
to give it a natural syntax. The language it imple-
ments is PEG. The LPEG library has been included
in LuaTEX since the beginning [2]. The examples in
this article are based on the talk “Using Spirit X3 to
Write Parsers” which was given by Michael Caisse
at CppCon 2015 [3], where the speaker introduces
the Spirit X3 library for C++ to write parsers using
PEG. The Spirit library is not too dissimilar from
LPEG and if you are looking for a parser generator
for C++, I recommend it.

To make sure that we are all on the same page
and the reader can easily understand the syntactic
constructions used throughout this manuscript, we
review some aspects of the Lua language. First of all,
it is to note that all variables are global by default,
whereas local variables have to be preceded by the
local keyword.

local x = 1

Most of the time we want definitions to be scoped
so this pattern will show up very often. Another im-
portant thing to note about the Lua language is that
in contrast to many other programming languages,

functions are first class variables. That means that
when we declare a function, what we actually do is
assign a value of type function to a variable. That
is to say, that these two statements are equivalent.

function f(...) end f = function(...) end

Lua implements only a single complex datastructure,
the table. Tables in Lua act as arrays and key-value
storage at the same time, in fact it is possible to mix
both forms of access within a single instance as in
the following example.

local t = { 11, 22, 33, foo = "bar" }
print(t[2], t["foo"], t.foo) -- 22 bar bar

Note that array indexing in Lua starts at 1. For
tables and strings Lua offers a useful shortcut. When
calling a function with a single literal string or table,
parentheses can be omitted. In the following snippet
the statements on the left are equivalent to the ones
on the right.

f("foo") f"foo"
f({ 11, 22, 33 }) f{ 11, 22, 33 }

Especially when programming with LPEG this short-
cut can save a lot of typing and, when used to it,
makes the code a lot more readable. I will make
extensive use of this technique.

2 Why use PEG?
Before we delve into the inner workings of LPEG, let
me first give some motivation as to why we would
like to build parsers using PEG. Imagine trying to
verify that input has a certain format, e.g. a date
in the form day-month-year: 09-08-2019. One ap-
proach might be to split the input at the hyphens and
verify that each field only contains numbers, which
is simple enough to implement using TEX macro
code. However, the task quickly becomes more com-
plicated when further requirements come into play.
Only because something is made up of three groups
of numbers doesn’t make it a valid date. In situations
like these, regular expressions (regex) sound like a
good solution and in fact, the regex to parse a “valid”
date looks faily innocent.

[0-3][0-9]-[0-1][0-9]-[0-9]{4}

I put “valid” in quotation marks, because obviously
this regex misses several cases, such as different num-
ber of days in different months or leap years. I en-
courage the reader to look up a regular expression
which covers these special cases, to get an impression
as to how quickly regex gets out of hand. To top it
off, neither a pure TEX solution nor regex implemen-

TUG 2019 j 28

901 TUGboat, Volume 0 (1900), No. 0

tations in TEX are fully expandable which is often
desirable. Maybe they can be made fully expandable
but not without tremendous effort.

3 What is PEG?
The question remains, how does PEG help us here?
Let’s first look at a more or less formal definition of
PEG, adapted from Wikipedia [4]. A parsing expres-
sion grammar consists of:

• A finite set 𝑁 of non-terminal symbols.
• A finite set Σ of terminal symbols that is dis-
joint from 𝑁.

• A finite set 𝑃 of parsing rules.
• An expression 𝑒𝑆 termed the starting expres-
sion.

Each parsing rule in 𝑃 has the form 𝐴 ← 𝑒, where 𝐴
is a nonterminal symbol and 𝑒 is a parsing expression.

To illustrate this, we have a look at the following
imaginary PEG for an email address.

⟨name⟩ ← [𝚊 − 𝚣]+ ("." [𝚊 − 𝚣]+)∗

⟨host⟩ ← [𝚊 − 𝚣]+ "." ("𝚌𝚘𝚖"/"𝚘𝚛𝚐"/"𝚗𝚎𝚝")
⟨email⟩ ← ⟨name⟩ "@" ⟨host⟩

The symbols in angle brackets are the non-terminal
symbols. The quoted strings and expressions in
square brackets are terminal symbols. The entry
point 𝑒𝑆 is the rule named email (although the entry
point is not specially marked). The present grammar
translates into natural language rather nicely. We
start at the entry point, the email rule. The email
rule tells us that an email is a name, followed by a
literal @, followed by a host. The symbols name and
host are non-terminal, so they can’t be parsed with-
out furhter information so we have to resolve them.
A name is specified as one or more characters in the
range a to z, followed by zero or more groups of a
literal dot, followed by one or more characters a to z.
A host is one or more characters a to z, followed by
a literal dot, followed by one of the literals com, org,
or net. Here the range of characters and the string
literals are terminal symbols, because they can be
parsed from the input without further information.

As a little teaser, we will have a look how the
above grammar translated into LPEG.

local name = R"az"^1 * (P"." * R"az"^1)^0
local host = R"az"^1 * P"."

* (P"com" + P"org" + P"net")
local email = name * P"@" * host

We can already see that there is sort of a mapping to
translate PEG into LPEG, but at first sight it seems
like this translation is almost 1:1. We will learn what
the symbols mean in the next section.

4 Basic parsers
LPEG provides some basic parsers to make our life a
little easier. These map the terminal symbols in the
grammer. Here they are with examples:

• lpeg.P(string) Matches the provided
string exactly. This matches “hello” but not
“world”:

lpeg.P("hello")

• lpeg.P(n) Matches exactly n characters.
To match any single character we could use

lpeg.P(1)

There is a special character which is not
mapped by any encoding which is the end
of input. In LPEG there is a special rule for it:

lpeg.P(-1)

• lpeg.S(string) Matches any character in
string (Set). To match any whitespace we
use:

lpeg.S(" \t\r\n")

• lpeg.R("xy") Matches any character be-
tween x and y (Range). Matching any digit is
done using

lpeg.R("09")

To match any character in the ASCII range we
can combine lowercase and uppercase letters:

lpeg.R("az", "AZ")

It is tedious to constantly type the lpeg. prefix which
is why we omit it from now on. This can be achieved
by assigning the members of the lpeg table to the
corresponding variables.

local lpeg = require"lpeg"
local P, R = lpeg.P, lpeg.R -- etc.

5 Parsing expressions
By themselves these basic parsers are rather use-
less. The real power of LPEG comes from the ability
to arbitrarily combine parsers. This is achieved by
means of parsing expressions. The available parsing
expressions are listed in table 1. Below I show some
examples where the quoted strings in the comments

TUG 2019 j 29

TUGboat, Volume 0 (1900), No. 0 902

represent input that is parsed successfully by the
associated parser unless stated otherwise.

Description PEG LPEG
Sequence 𝑒1𝑒2 patt1 * patt2
Ordered choice 𝑒1|𝑒2 patt1 + patt2
Zero or more 𝑒∗ patt^0
One or more 𝑒+ patt^1
Optional 𝑒? patt^-1
And predicate &𝑒 #patt
Not predicate !𝑒 -patt
Difference patt1 - patt2

Table 1 Available parsing expressions in
LPEG with their name and corresponding
symbol in PEG. Note that the difference op-
eration is an extension by LPEG and not
available in PEG.

• Sequence: This implements the “followed by”
operation, i.e. the parser matches only if the
first pattern is followed directly by the second
pattern.

P"pizza" * R"09" -- "pizza4"
P(1) * P":" * R"09" -- "a:9"

•Ordered choice: The ordered choice parses the
first operand first and only if it fails continues
to the next operand. So the ordering is indeed
important.

R"az" + R"09" + R".,;:?!"
-- "a", "9", ";"
-- "+" fails to parse

• Zero or more, one or more, and optional:
These are all captured by the same contruct
in LPEG, the exponentiation operator. A posi-
tive exponent 𝑛 parses at least 𝑛 occurences of
the pattern, a negative exponent −𝑛 parses at
most 𝑛 occurences of the pattern.

R"az"^0 + R"09"^1
-- "z86", "abcde99", "99"
R"az"^1 + R"09"^1
-- "z86", "abcde99"
-- "99" fails to parse
R"az"^-1 + R"09"^1
-- "z86", "99"
-- "abcde99" fails to parse

•And predicate and not predicate: These two
expressions are special in that they don’t con-
sume any input. For the not predicate this is

obvious because it only matches if the parser it
negates does not match.

R"09"^1 * #P";"
-- "86;"
-- "99" fails to parse
P"for" * -(R"az"^1)
-- "for()"
-- "forty" fails to parse

•Difference: The difference expression will
match the first operand only if the second
operand does not match. This can be useful to
match C style comments which collect every-
thing between the first /* and the first */.
However, care must be taken that the second
operand cannot successfully parse parts of the
first operand. If that is the case, the resulting
rule will never match.

P"/*" * (1 - P"*/")^0 * P"*/"
-- "/* comment */"
P"helloworld" - P"hell"
-- will never match!

6 Simple examples
Let us study a simple example which parses two
words separated by a space. The LPEG grammar is
stored in the variable rule. The rest of the example
shows the boilerplate that is necessary.

local lpeg = require"lpeg"
local P, R = lpeg.P, lpeg.R

local input = "cosmic pizza"

local rule = R"az"^1 * P" " * R"az"^1
print(rule:match(input) .. " of " .. #input)

This will print on the terminal “13 of 12” because all
the input has been consumed and the parser stopped
at the end of input which is the 13th “character” in
this string. As we can see the function rule:match
parses a given input string using a given parser and
returns the number of characters parsed. Another
way to invoke a parse is using lpeg.match(rule,
input), which is equivalent to rule:match(input).

The next example will be slightly more com-
plicated. We will parse a comma-separated list of
colon-separated key-value pairs.

local input = [[foo : bar ,
gorp : smart ,
falcou : "crazy frenchman" ,
name : sam]]

The double square brackets denote one of Lua’s long

TUG 2019 j 30

903 TUGboat, Volume 0 (1900), No. 0

strings, which can have embedded newlines. The
colons and commas that separate keys and values,
and entries, respectively, are surrounded by white-
space. To match all possible optional whitespace we
use the set parser and the optional expression.

local ws = S" \t\r\n"^0

With this the specification for the key field is simply
one or more letters or digits surrounded by optional
whitespace.

local name = ws * R("az", "AZ", "09")^1 * ws

The value field on the other hand can have either the
same specification as the key field, which does not
allow embedded whitespaces, or it can be a quoted
string, which allows anything between the quotes. To
this end we specify the grammar for a quoted string,
which is simply the double quotes character, followed
by anything that is not double quotes, followed by
double quotes. The whole thing may be surrounded
by optional whitespace.

local quote =
ws * P'"' * (1 - P'"')^0 * P'"' * ws

Therefore an entry in the key-value list is a name,
followed by a colon, followed by either a quote or a
name, followed by at most one comma. The whole
key-value list is of course just any number of entries,
so we apply the zero or more expression to the afore-
mentioned rule.

local keyval =
(name * P":" * (quote + name) * P","^-1)^0

Matching the rule against the input in the same way
as the previous example gives “67 of 66”.

7 Grammars
The literal parser P has a second function. If its argu-
ment is a table, the table is processed as a grammar.
The table has the following layout:

P{"<entry point>",
<non-terminal> = <parsing expression>
...

}

The string “entry point” is the name of the rule to be
processed first. Afterwards the rules are listed in the
same manner as they were assigned to variables in the
previous example. To refer to non-terminal symbols
from within the grammar, the lpeg.V funtion is used.
Collecting the aforementioned rules into a grammar
could look like this:

local rule = P{"keyval",
keyval =
(V"name" * P":" * (V"quote" + V"name")
* P","^-1)^0,

name =
V"ws" * R("az", "AZ", "09")^1 * V"ws",

quote =
V"ws" * P'"' * (1 - P'"')^0 * P'"'
* V"ws",

ws = S" \t\r\n"^0,
}

It becomes a little more verbose because names of
non-terminal symbols have to be wrapped in V"...".
That is why I personally do not normally include
general-purpose rules like the ws rule in the example
into the grammar, because chances are high I want to
use it elsewhere again. The level of verbosity might
seem like a disadvantage but the encapsulation is
much better that way. It also makes it much easier
to define recursive rules, as we will see later.

8 Attributes
In the previous section we have parsed some inputs
and confirmed their vailidity by a successful parse
and we received the length of the parsed input. An
important question remains, how do we extract infor-
mation from the input? When a parse is successful,
the basic parsers synthesize the value they encoun-
tered which I am going to call their attribute. These
attributes can be extracted using LPEG’s capture
operations.

The simplest capture operation is lpeg.C(patt)
which simply returns the match of patt. Here we
parse a strip of only lowercase letters and print the
result.

local rule = C(R"az"^1)
print(rule:match"pizza") -- pizza

Another, very powerful capture is the table cap-
ture lpeg.Ct(patt) which returns a table with all
captures from patt. This allows us to write a very
simple parser for comma separated values (CSV) in
only three lines.

local cell = C((1 - P"," - P"\n")^0)
local row = Ct(cell * (P"," * cell)^0)
local csv = Ct(row * (P"\n" * row)^0)

local t = csv:match[[a,b,c
d,e,f
g,,h]]

The variable t now holds the table representing

TUG 2019 j 31

TUGboat, Volume 0 (1900), No. 0 904

the CSV file and we can access the elements by
t[<row>][<column>], e.g. to access the “e” in the
middle of the table we can use t[2][2].

There are two more captures which I think are
worth mentioning, the grouping capture and the fold-
ing capture. The grouping capture lpeg.Cg(patt
[, name]) groups the values produced by patt, op-
tionally tagged with name. The grouping capture
is mostly used in conjunction with the folding cap-
ture lpeg.Cf(patt, func) which folds the captures
from patt with the functions func. The most com-
mon application is parsing of key-value lists. The key
and the value are captured independently at first but
are then grouped together. Finally they are folded
together with an empty table capture.

local key = C(R"az"^1)
local val = C(R"09"^1)

local kv = Cg(key * P":" * val) * P","^-1
local kvlist = Cf(Ct"" * kv^0, rawset)

kvlist:match"foo:1,bar:2"

9 Actually useful parsers
Now that we know how to parse input and extract
data, we can go ahead and start constructing parsers
that are acutally useful. We will now construct a
parser for floating point numbers. The parser pre-
sented here has some limitations. It doesn’t handle
an integer part that only contains a sign, i.e. -.1 will
not parse. It also doesn’t handle hexadecimal, octal,
or binary literals. This is left as an exercise to the
reader. To construct a possible grammar for floating
point numbers, let’s take a look at what they look
like.

integer part

+123⏞
fractional part

.45678⏞⏞⏞⏞⏞
⏟⏟⏟⏟⏟⏟⏟⏟⏟

mantissa
e-90⏟
exponent

With that we formulate the first rule in our grammar,
namely

number = (V"int" * V"frac"^-1 * V"exp"^-1)
/ tonumber,

i.e. a number has an integer part, followed by an
optional fractional part, followed by an optional ex-
ponent. The division by number that we see here
is called a semantic action. A semantic action is
applied to the result of the parser ad-hoc. In general
it is a bad idea to use semantic actions, because they

don’t fit into the concept of recursive parsing and
introduce additional state to keep track of. Neverthe-
less there are some cases when semantic actions are
useful, like in this case, where we know that what we
just parsed is a number and we merely convert the
resulting string into Lua’s number type.

Now let’s parse the integer part. Here I show all
the rules that go into it at once.

int = V"sign"^-1 * (R"19" * V"digits"
+ V"digit"),

sign = S"+-",
digit = R"09",
digits = V"digit" * V"digits" + V"digit",

So the integer part is an optional sign, followed by a
number between 1 and 9, followed by more digits or
just a single digit. A sign is of course just the char-
acter + or -. A single digit is just a number between
0 and 9. The digits rule is recursive, because many
digits are either a single digit followed by more digits,
or just that single digit.

Next is the fractional part, which is very easy.
It is just a period followed by digits.

frac = P"." * V"digits",

Last the exponential part, which is also simple.
It is either a lower- or uppercase E, followed by an
optional sign, followed by digits.

exp = S"eE" * V"sign"^-1 * V"digits",

Now let’s check this parser with some test input.
We expect the result to be the same number that we
input and we expect it to be of Lua type number.

local x = number:match("+123.45678e-90")
print(x .. " " .. type(x))

Output: 1.2345678e-88 number
The full code of the number parser is given as

part of the JSON parser in the Appendix in lines
5–14.

10 Complex Data Formats: JSON
JSON is short for JavaScript Object Notation and is
a lightweight data format that is easy to read and
write for both humans and machines. JSON knows
six different data types of which two are collections.
These are null, bool, string, number, array, and
object. This maps nicely to Lua where null maps
to nil, bool maps to boolean, string and number
map to their eponymous counterparts, and array
and object both map to Lua’s table type.

On the top level there is always an object, i.e. a
JSON file looks roughly like this [5]

TUG 2019 j 32

905 TUGboat, Volume 0 (1900), No. 0

{"menu": {
"id": "file",
"value": "File",
"popup": {
"menuitem": [
{"value": "New",
"onclick": "CreateNewDoc()"},
{"value": "Open",
"onclick": "OpenDoc()"},
{"value": "Close",
"onclick": "CloseDoc()"}

]
}

}}

Before we begin writing a parser for this, we
introduce a few general purpose parsers first, which
are also not part of the grammar.

local ws = S" \t\n\r"^0

This rule matches zero or more whitespace characters,
where whitespace characters are space, tab, newline
and carrige return.

local lit = function(str)
return ws * P(str) * ws

end

This function returns a rule that matches a literal
string surrounded by optional whitespace. This is
useful to match keywords.

local attr = function(str,attr)
return ws * P(str) / function()

return attr
end * ws

end

This function returns an extension of the previous
rule, in that it matches a literal string and if it
matched returns an attribute using a semantic ac-
tion. This is very useful for parsing a string but
returning something unrelated, e.g. the null value
of JSON will be represented by Lua’s nil.

As mentioned before, at the top level a JSON
file expects an object, so this will be the entry point.

local json = P{"object",

As discussed before JSON supports different kinds
of values, so we want to map these in our parsing
grammar.

value =
V"null_value" +
V"bool_value" +
V"string_value" +
V"number_value" +

V"array" +
V"object",

So a value is any of the value types defined by the
JSON format. That was easy, but now we have to
define what these values are and how to parse them.
We begin with the easiest ones, the null and bool
values:

null_value = attr("null", nil),
bool_value = attr("true", true)

+ attr("false", false),

These two types are defined entirely by keyword
matching. We use the attr function to return a
suitable Lua value. Next we define how to parse
strings:

string_value = ws * P'"'
* C((P'\\"' + 1 - P'"')^0)
* P'"' * ws,

A string may be surrounded by whitespace and is
enclosed in double quotes. Inside the double quotes
we can use any character that is not the double quote,
unless we escape it \". The value of the string with-
out surrounding quotes is captured. To parse number
values, we will reuse the number parser defined in
the previous section

number_value = ws * number * ws,

This concludes the parsing of all the simple datatypes
and we move on to the aggregate types, starting with
the array.

array = lit"["
* Ct((V"value" * lit","^-1)^0)
* lit"]",

An array is simply a comma-separated list of values
that is enclosed in square brackets. The list is cap-
tured as a Lua table. The final and most complicated
type to parse is the object.

member_pair = Cg(V"string_value" * lit":"
* V"value") * lit","^-1,

object = lit"{"
* Cf(Ct"" * V"member_pair"^0, rawset)
* lit"}"

An object is a comma-separated list of key-value pairs
enclosed in curly braces, where a key-value pair is
a string, followed by a colon, followed by a value.
To pack this into a Lua table, we use the grouping
and folding captures that we discussed before. This
concludes the JSON grammar.

}

TUG 2019 j 33

TUGboat, Volume 0 (1900), No. 0 906

The full code of the parser is given in the Appendix
with a little nicer formatting. Now we can go ahead
an parse JSON files.

local result = json:match(input)

The variable result will hold a Lua table which can
be indexed in a natural way. For example, if we had
parsed the JSON example given in the beginning of
this section, we could use

print(result.menu.popup.menuitem[2].onclick)
-- OpenDoc()

This way we could write configuration files for our
document, parse them on-the-fly when firing up Lua-
TEX, and configure the style and content according
to the specifications.

11 Summary and Outlook
Parsing even complex data formats like JSON is
relatively easy using LPEG. A possible next step
would be to parsing the LuaTEX input file in the
process_input_buffer callback and replace tem-
plates in the file with values from JSON.

References
[1] R. Ierusalimschy, A text pattern-matching

tool based on Parsing Expression Grammars,
Software: Practice and Experience 39(3),
221–258 (2009).

[2] T. Hoekwater, LuaTEX, TUGboat 28(3),
312–313 (2007).

[3] M. Caisse, Using Spirit X3 to Write Parsers,
https://www.youtube.com/watch?v=xSB-
WklPLRvw (2015). (CppCon)

[4] Wikipedia, Parsing expression grammar,
https://en.wikipedia.org/wiki/Parsing_ex-
pression_grammar (online). (Accessed on
July 15, 2019)

[5] D. Crockford, JSON Example, https://json.org/ex-
ample.html (online). (Accessed on July 15,
2019)

Henri Menke
9016 Dunedin
New Zealand
henrimenke@gmail.com

TUG 2019 j 34

907 TUGboat, Volume 0 (1900), No. 0

12 Appendix: Full code listing of the JSON parser

1 local lpeg = require"lpeg"
2 local C, Cf, Cg, Ct, P, R, S, V =
3 lpeg.C, lpeg.Cf, lpeg.Cg, lpeg.Ct, lpeg.P, lpeg.R, lpeg.S, lpeg.V
4
5 -- number parsing
6 local number = P{"number",
7 number = (V"int" * V"frac"^-1 * V"exp"^-1) / tonumber,
8 int = V"sign"^-1 * (R"19" * V"digits" + V"digit"),
9 sign = S"+-",
10 digit = R"09",
11 digits = V"digit" * V"digits" + V"digit",
12 frac = P"." * V"digits",
13 exp = S"eE" * V"sign"^-1 * V"digits",
14 }
15
16 -- optional whitespace
17 local ws = S" \t\n\r"^0
18
19 -- match a literal string surrounded by whitespace
20 local lit = function(str)
21 return ws * P(str) * ws
22 end
23
24 -- match a literal string and synthesize an attribute
25 local attr = function(str,attr)
26 return ws * P(str) / function() return attr end * ws
27 end
28
29 -- JSON grammar
30 local json = P{
31 "object",
32
33 value =
34 V"null_value" +
35 V"bool_value" +
36 V"string_value" +
37 V"number_value" +
38 V"array" +
39 V"object",
40
41 null_value =
42 attr("null", nil),
43
44 bool_value =
45 attr("true", true) + attr("false", false),
46
47 string_value =
48 ws * P'"' * C((P'\\"' + 1 - P'"')^0) * P'"' * ws,
49
50 number_value =
51 ws * number * ws,
52
53 array =

TUG 2019 j 35

TUGboat, Volume 0 (1900), No. 0 908

54 lit"[" * Ct((V"value" * lit","^-1)^0) * lit"]",
55
56 member_pair =
57 Cg(V"string_value" * lit":" * V"value") * lit","^-1,
58
59 object =
60 lit"{" * Cf(Ct"" * V"member_pair"^0, rawset) * lit"}"
61 }

TUG 2019 j 36

Evolutionary Changes in Persian & Arabic Scripts 1 Proc. TeX Users Group Conf., Palo Alto, CA, USA
B. Parhami, UCSB August 9-11, 2019

parh19-tug-evolution-persian-arabic-scripts.docx

Evolutionary Changes in Persian and Arabic Scripts to Accommodate
the Printing Press, Typewriting, and Computerized Word Processing

Behrooz Parhami

Department of Electrical and Computer Engineering
University of California

Santa Barbara, CA 93106-9560, USA

parhami@ece.ucsb.edu

1. Introduction

I have been involved in Iran’s computing scene for five
decades, first as an engineering student and instructor for
five years, then as a faculty member at Tehran’s Sharif
(formerly Arya-Mehr) University of Technology for 14
years (1974-1988), and finally, as an interested observer
and occasional consultant since joining University of
California, Santa Barbara, in 1988. Recently, I put
together a personal history of efforts to adapt computer
technology to the demands and peculiarities of the Persian
language, in English [1] and Persian [2], in an effort to
update my earlier surveys and histories [3-6] for posterity,
archiving, and educational purposes.

In this paper, I focus on a subset of topics from the just-
cited publications, that is, the three key transition periods
in the interaction of Persian script with new technology.
The three transitions pertain to the arrivals in Iran of
printing presses, typewriters, and computer-based word
processors. Specifically, I will discuss how the Persian
script was adapted to, and in turn shaped, the three
technologies. In each adaptation stage, changes were
made to the script to make its production feasible within
technological limitations. Each adaptation inherited
features from the previous stage(s); for example, computer
fonts evolved from typewriter fonts.

2. The Persian Script

Throughout this paper, my use of the term “Persian script”
is a shorthand for scripts of a variety of Persian forms
(Farsi/Parsi, Dari, Pashto, Urdu), as well of Arabic, which
shares much of its alphabet with Persian. Work on
adapting the Arabic script to modern technology has
progressed in parallel with the work on Persian script,
with little interaction between the two R&D communities,
until fairly recently, thanks to the Internet.

The Persian language has a 2600-year history, but the
current Persian script was adapted from Arabic some 1200
years ago [7]. For much of this period, texts were
handwritten and books were copied manually, or
reproduced via primitive printing techniques involving
etching of the text on stone or wood, covering it with a
layer of ink, and pressing paper or parchment against it.

Given the importance attached by Persians to aesthetics in
writing, decorative scripts were developed by artists
adorning monuments and other public spaces with scripts
formed by painting or tilework (Fig. 1). Unlike in printing,
typewriting, and computer-based word processing,
decorative writing is primarily focused on the proportions
and interactions of textual elements and the color scheme,
with script legibility being a secondary concern

TUG 2019 j 37

Evolutionary Changes in Persian & Arabic Scripts 2 Proc. TeX Users Group Conf., Palo Alto, CA, USA
B. Parhami, UCSB August 9-11, 2019

Fig. 1. Calligraphic writing as art (left; credit: Farrokh Mahjoubi)
and tile-based writing at Isfahan’s Jāmeh Mosque, which is very

similar to modern dot-matrix printing (uncredited photo).

Prior to the arrival of modern technology, Persian was
commonly written in two primary scripts: Nastaliq and
Naskh. Rules for the scripts were passed on by word of
mouth from masters to students. Thus, there were many
styles of writing, whose popularity rested on the
reputation of the practicing master. Among the rules were
proper ways of generating combinations of letter (much
like the “fi” & “ffi” combinations in English calligraphy).
Because the Naskh script is more readily adaptable to
modern technology, including to computer printers and
displays, it has become more popular and has pronged
into many varieties in recent decades.

Nevertheless, Nastaliq holds a special place in the hearts
and minds of Persian-speaking communities. The fanciest
books of poetry are still produced in Nastaliq, and some

printed flyers use Nastaliq for main headings to embellish
and attract attention. Some progress has been made in
producing the Nastaliq script automatically, and the

results are encouraging. The Web site NastaliqOnline.ir
allows its users to produce Nastaliq and a variety of other
decorative scripts by entering their desired text within an

input box. An image of the generated text can then be
copy-pasted into other documents.

One final point about the Persian script, before entering
the discussion of the three transition periods: On and off,
over the past several centuries, reformation of the Persian
script, to “fix” its perceived shortcomings in connection
with modernity, has been the subject of heated debates.
My personal view is that technology must be adapted to
cultural, environmental, and linguistic needs, and not the
other way around. Fortunately, success in producing high-
quality print and display output has quelled sporadic
attempts at reforming the Persian script or changing the
alphabet [8], in a manner similar to what was done in
Turkey, to save the society from “backwardness.”

3. The Transition to Printing Press

The printing press arrived in Iran some 400 years ago (see
the timeline in Fig. 2). Shah Abbas I was introduced to
Persian and Arabic fonts and decided that he wanted them
for his country [9]. A printing press and associated fonts
were sent to Isfahan in 1629, but there is no evidence that
they were ever put to use. Over the following decades,
printing was limited mostly to a few religious tomes.

Broader use of printing technology dates back to 300
years ago. The invention of Stanhope hand-press in 1800
revolutionized the printing industry, because it was
relatively small and easy to use. This device was brought
to Tabriz, by those who traveled to Europe and Russia,
around 1816 [10] and to Isfahan and Tehran a few years
later, leading to a flurry of activities in publishing a large
variety of books.

A key challenge in Persian printing was the making of the
blocks that held the letters and other symbols (Fig. 3).
English, with its comparably sized letters and the space
between them, was much easier for printing than Persian,
which features letters of widely different widths/heights,
connectivity of adjacent letters, minor variations in letter
shapes involving small dots (imagine having the letter “i,”
with 1, 2, or 3 dots), and more curvy letters.

Year Events Affecting the Development of Persian Script
1600
 - Printing press arrives in Iran; little/no use early on
 - Armenian press established in Jolfa, Isfahan
 -
 -
1700
 - |
 - | Limited print runs; mostly on poetry and religion
 - |
 - Persian books published in Calcutta
1800
 - First Stanhope hand-press arrives; printing spreads
 - Presses open in multiple cities; use of lithography
 - Technical books appear; newspapers flourish
 -
1900 First typewriter arrives in Iran
 -
 - Typewriters begin to be used widely
 - Electric typewriters, Linotype, and computers arrive
 - Standards for information code and keyboard layout
2000 Use of personal computers broadens
 - Computer-software and mobile-app industries thrive

Fig. 2. Rough timeline of key events and transitions in the history

of adapting the Persian script to modern technology [9].

TUG 2019 j 38

Evolutionary Changes in Persian & Arabic Scripts 3 Proc. TeX Users Group Conf., Palo Alto, CA, USA
B. Parhami, UCSB August 9-11, 2019

Fig. 3. Re-creation of Gutenberg’s press at the International

Printing Museum in Carson, California, USA (image: Wikipedia)
and the Stanhope hand-press, introduced in 1800 [10].

The first order of business was to make the Persian script
horizontally partitionable into letters that could then be
juxtaposed to form the desired text. Pre-printing-press
Persian script was not horizontally decomposable, as
letters tended to mount each other vertically and overlap
horizontally (bottom of Fig. 4). The modified form
required some compromises in aesthetics, according to the
prevailing tastes at the time (top-right of Fig. 4), which
proved rather insignificant in retrospect.

Once conceptual changes were made, typographers got
busy producing letters, letter combinations, and symbols
for Persian printing (Fig. 5). We are now so used to the
print-friendly Persian script that the pre-printing-press
variants may look quaint to us!

Fig. 4. For printing with movable type, the Persian script had to
be made horizontally decomposable (uncredited Web images).

Fig. 5. Early Persian or Arabic metal fonts in the compartments of

a typesetter’s tray (uncredited Web image)

Fig. 6. Features of Persian script that make its printing difficult

also create challenges in automatic text recognition [11].

The variable sizes and spacings of Persian letters also
created manufacturing headaches for the font and
difficulties for typesetters, who needed to handle blocks of
widely different sizes. Interestingly, the features that make
typesetting of Persian texts difficult are the same ones that
make their automatic recognition challenging (Fig. 6).
These include connectivity (a), error-causing minor
differences (b), significant width variations (c), horizontal
overlaps (d), and vertical overlaps (e).

Eventually, font designers succeeded in rendering the
Persian alphabet with four shapes for each letter, in lieu of
the nearly unlimited variations in calligraphic writing,
where letters morph in shape, depending on the preceding
and following letters (and sometimes, according to an
even broader context). Still, with 4 variations for each
letter, the number of different blocks needed was more
than twice that of Latin-based scripts, the latter requiring a
total of only 52 lowercase/uppercase letters. This made
the utilization of typeface variations (boldface, italics, and
the like) a lot more challenging.

Linotype, a hot-metal typesetting system invented by
Ottmar Mergenthaler for casting an entire line of text via
keyboard data entry, arrived in Iran in the 1950s,
transforming and somewhat easing the typesetting
problem for daily newspapers [12]. Contemporary Persian
print output is now vastly improved (Fig. 7).

Fig. 7. Contemporary Persian newspaper print scripts. (Credit:

The Atlantic Web site; Atta Kenare / Getty Images).

TUG 2019 j 39

Evolutionary Changes in Persian & Arabic Scripts 4 Proc. TeX Users Group Conf., Palo Alto, CA, USA
B. Parhami, UCSB August 9-11, 2019

4. The Transition to Typewriting

Typewriters arrived in Iran around 120 years ago (Fig. 8),
but much like the printing press, their use did not catch on
right away. By the 1950s, many Western office-machine
companies had entered Iran’s market. Again, peculiarities
of the Persian script created adaptation challenges.

Direct adoption of print fonts was impossible, given that
with 32 letters, each of which having four variants, too
many keys would be required. For most Persian letters,
however, the initial and middle forms, and the solo and
end forms, are sufficiently similar to allow combining,
with no great harm to the resulting script’s readability and
aesthetic quality. Of course, early typewriters all using
fixed-width symbols, were ill-suited to the Persian script,
with its highly-variable letter widths. It would be many
years before variable-width symbols improved the Persian
typewritten script quality substantially.

For example, the letters “meem” (م) and “beh” (ب) aren’t
too damaged by having two forms in lieu of four (Fig. 9).
The same holds for “heh” (ه), at the left edge of Fig. 9,
with slightly more distortion. The letters “ein” (ع) and
“ghein” (غ) are the only exceptions needing all four
variations (see the top-left of Fig. 9).

One of the highest-quality fonts for typewriters was
offered by IBM in its Selectric line, which used a golf-ball
print mechanism (right panels of Figs. 8 and 9). The golf-
ball was easily removable for replacement with another
golf-ball bearing a different font or alphabet (italic,
symbol, etc.), making is easy to compose technical
manuscripts involving multiple typefaces and equations.
Even multiple languages could be easily incorporated in
the same document. I used such a typewriter to produce
my first textbook, Computer Appreciation [13], sample
pages of which appear in Fig. 10.

Fig. 8. Mozaffar al-Din Shah’s custom-made typewriter, ca. 1900

(Golestan Palace Museum, Tehran) and a later-model IBM
Selectric with golf-ball printing mechanism, ca. 1975 (IBM).

Fig. 9. The four shapes of Persian letters and their reduction to

two shapes in most cases (left; uncredited Web image) and
IBM’s Persian golf-ball print mechanism (personal photo).

Fig. 10. Pages of the author’s book Computer Appreciation [13]
which he personally created on an IBM Selectric (Fig. 8, right)

with a Persian golf-ball print mechanism (Fig. 9, right).

A common approach to building a Persian keyboard was
to take an existing Arabic keyboard and add to it the four
Persian-specific letters at arbitrary spots, giving rise to a
multiplicity of layouts and making it difficult for typists to
move between different typewriters. A standard Persian
typewriter keyboard layout was thus devised [14]. Years
later, standardization was taken up in connection with
computer keyboards, creating the “Zood-Gozar” (שذر زود)
layout [15], so named because of the sequence of letters at
the very bottom row of Fig. 11, similar to the naming of
the QWERTY keyboard. However, neither the keyboard
layout nor the accompanying data interchange code [16]
was adopted, given the pre-/post-revolutionary chaos.

Fig. 11. Unified Persian keyboard layout, a proposed standard for

computers, typewriters, and other data-entry systems [15].

TUG 2019 j 40

Evolutionary Changes in Persian & Arabic Scripts 5 Proc. TeX Users Group Conf., Palo Alto, CA, USA
B. Parhami, UCSB August 9-11, 2019

Intelligent typewriters soon arrived on the scene. First
came word-processors that could store a line of text, thus
allowing back-spacing to correct errors by striking the
printing hammer on a white ribbon that would overwrite
what was previously printed in a given position. This easy
erasure mechanism is what allowed a non-professional
typist like me to consider self-producing an entire book;
cut-and-paste was, of course, still necessary for making
larger corrections or moving paragraphs around.

The ultimate in intelligent typewriters, dubbed “word
processors,” allowed the use of a single key for each
letter, with a built-in algorithm deciding which variant of
the letter to print. This required a one-symbol delay in
printing, as the shape of each letter could depend on the
letter that followed it. As an example, to print the word
“kamtar” (كمتر), first the letter “kāf” (ك) would be entered.
That letter would then be transformed from the solo/end
variant to initial-middle form (اك), once the connectable
letter “meem” (م) follows. This process continues, until a
space or line-break is encountered.

Interestingly, I cannot enter on my Microsoft Word
program the initial/middle variant of “kāf” in isolation, as
it is automatically converted to the solo/end variant. Thus,
in the preceding paragraph, I was forced to connect
something to “kāf” and then change the color of that letter
to white, in order to make it disappear!

5. The Transition to Computer Printing

True word-processing and desktop publishing arrived in
Iran in the 1980s [17], a few years after the worldwide
personal-computer revolution. Prior to that, we produced
Persian-script output on bulky line-printers and other
kinds of printer devices connected to giant mainframes
running in air-conditioned rooms of our computer centers,
and, in later years, to mini- and micro-computers in our
departmental and personal research labs.

One of the earliest computer printer technologies was the
drum printer (Fig. 12, left). The rotating drum had one
band of letters and symbols for each of the (typically 132)
print positions. With the drum rotating at high speed,
every letter/symbol would eventually be aligned with the
print position, at which time, a hammer would strike on
the paper and print ribbon, causing an impression of the
raised symbol to be formed on the paper. A complete line
was printed after one full revolution of the drum.

Fig. 12. Print mechanisms in early drum and chain printers

(credit: PC Magazine Encyclopedia).

Drum printers were bulky and noisy, but, more
importantly, were ill-suited to the production of legible
Persian script. The separation of the bands of symbols on
the drum and the spacing between adjacent hammers led
to the appearance of white space between supposedly
connected letters (Fig. 12, top-left). This space, combined
with up- and down-shifting of symbols due to imprecision
in the timing of hammer strikes, led to additional quality
problems. The Latin script remains legible if adjacent
letters are slightly up- or down-shifted, but the Persian
script is much more sensitive to mis-alignment.

The problem with the bulk of drum printers was mitigated
with chain (Fig. 12, right) and daisy-wheel printers, but
print quality did not improve much, if at all. All three
mechanisms suffered from smudging due to high-speed
hammer strikes. Thus, letters appeared to be fuzzy, which,
ironically, helped with filling the undesirable inter-symbol
gaps, but it created additional legibility problems for
similar-looking Persian letters.

Several other printing technologies came and went, until
improvements in dot-matrix printing made all other
methods obsolete. Early dot-matrix printers had a column
of 7 pins that made contact with a ribbon to form small
black dots on paper (Fig. 13, left). Then, either the
needles moved to the next print column or the paper
moved in the reverse direction, thereby forming symbols
via printing 5 or more columns and continuing on until a
complete line of text was formed.

Fig. 13. Early dot-matrix print mechanism with a column of pins

(left; credit: PC Magazine Encyclopedia) and the versatility of dot-
matrix printing for producing images, in addition to text.

TUG 2019 j 41

Evolutionary Changes in Persian & Arabic Scripts 6 Proc. TeX Users Group Conf., Palo Alto, CA, USA
B. Parhami, UCSB August 9-11, 2019

Fig. 14. Examples of Persian scripts produced by line printers

and very early dot-matrix printers in the 1970s. [13]

Early dot-matrix printers, though convenient and
economical, did not improve the quality of computer-
generated Persian scripts, due to the matrix used being too
small. In fact, there was a noticeable drop in print quality
at first (Fig. 14). As matrix sizes grew and the dots were
placed closer and closer to each other, the quality grew
accordingly. We faced two categories of R&D problems
in those days. First, given a dot-matrix size, how should
the Persian letters and digits be formed for an optimal
combination of legibility and aesthetic quality? Second,
for a desirable level of legibility and aesthetics, what is
the minimum required dot-matrix size?

To answer the first question, we would fill out matrices
with letter designs and assemble them into lines (at first
manually and later using a computer program) to check
the script quality (Fig. 15, left). We then repeated the
process with different matrix sizes to see the trade-offs.
From these studies, we drew two key conclusions in
connection with the second question.

First, for low-cost applications in which we cannot afford
to use large dot-matrices, a lower bound of 9-by-9/2 dot-
matrix size was established, below which legibility and
quality become unacceptable. The simulation results for
fonts in 7-by-5, 7-by-9/2, and 9-by-9/2 are depicted in
Fig. 15, right. A matrix dimension m/2 implies the
presence of m rows/columns of dots in skewed format, so
that the physical dimension of the matrix is roughly m/2,
despite the fact that there are m elements. This kind of
skewed arrangement helps with generating fonts of higher
quality, when the letters have curved or slanted strokes.

Second, we used the results from a Persian printed-text
automatic recognition study to conclude that a “pen-
width” of 4 is adequate for a legible and aesthetically
pleasing script output (Fig. 16, left), although, of course,
greater resolution can only help (Fig. 16, right).

Fig. 15. Illustrating the design of dot-matrix fonts and

juxtaposition of letters to check on the quality of the resulting
script (left) and results of a study to establish a lower bound on

the size of dot-matrix for producing Persian script [18].

Fig. 16. Decomposition of connected Persian text into letters and

recognizing the letters or composite forms [11].

In modern computer applications, a variety of Persian
fonts are available to us. Legibility has improved
significantly, but the aesthetic quality is still lacking in
some cases. In order to make small point sizes feasible,
certain features of Persian letters must be exaggerated, so
that details are not lost when font sizes are adjusted
downward or when images are resized (as in fitting a map
on the small screen of a mobile device). Some examples
based on the Arial font appear in Fig. 17.

For actual modern computer-generated Persian scripts, I
have chosen samples from Microsoft Word (Fig. 18). The
samples show both high legibility/quality and problem
areas (such as inordinately small dots for Tahoma).

Fig. 17. Illustrating the quality of Persian script using the Arial

font of different sizes (top) and the effects of font-size adjustment
and image resizing on readability of the resulting text.

TUG 2019 j 42

Evolutionary Changes in Persian & Arabic Scripts 7 Proc. TeX Users Group Conf., Palo Alto, CA, USA
B. Parhami, UCSB August 9-11, 2019

Fig. 18. Examples of modern Persian text output produced by

Microsoft Word and the resulting script quality [1-2].

It appears that Calibri and Dubai fonts provide the best
combination of legibility and aesthetic quality. The fixed-
width Courier sample near the middle of Fig. 18
highlights the fact that fixed-width fonts produce even
poorer-quality Persian text than is the case for Latin.

6. Digital Display Technologies

Displays used the dot-matrix approach much earlier than
printers. CRT displays, in which an electron beam scans
various “rows” on the screen, turning the beam on and off
to produce a light or dark point on the screen’s coating,
constitute a form of dot-matrix scheme. Before modern
LCD or LED displays made the use of dot-matrix method
for display universal, stadium scoreboards and airport
announcement boards used a primitive form of dot-matrix
display formed by an array of light bulbs.

For completeness of this historical perspective, I present a
brief account of efforts to build Persian line-segment
displays for calculators and other low-cost devices. The
designs and simulated outputs are depicted in Fig. 19.
Peculiarities of the Persian script made the designs of such
displays a major challenge. We established that 7
segments would be barely enough for displaying Persian
digits and that a minimum of 18 segments would be
required for a Persian script that is readable (with some
effort). Such displays became obsolete before the project
moved to the production stage.

Fig. 19. Line-segment displays for Latin-based alphabets (left)

and corresponding designs for Persian digits (top) and letters [1].

Fig. 20. Persian text displayed on Jam-e Jam news site of the
government-run Islamic Republic of Iran Broadcasting system
(top; laptop screen capture on July 16, 2019, 10:30 AM PDT)

along with the BBC Persian news site and Digikala e-commerce
site on a smartphone (bottom; captured the same afternoon).

Dot-matrix display methods are now producing Persian
scripts that are comparable in quality to those of our best
printers. The transition from CRTs to LCD, LED, and
other modern display technologies has removed the flicker
problem, the effect of low refresh rate which is
particularly significant on CRT displays. Even though
modern screens have a much larger number of dots,
increases in processing rate and clock speed has made it
less likely to have an inadequate refresh rate.

Examples of Persian scripts on modern displays, both
spacious desktop/laptop screens and smaller screens found
on personal electronic devices appear in Fig. 20. Web
sites generally format their contents differently, depending
on whether they are viewed on a big screen or a small
screen, so that legibility does not become an issue even on
the smallest device screens. It is however true that when
such screens are viewed in bright environments, such as
well-lit offices or outdoors, legibility may suffer.

TUG 2019 j 43

Evolutionary Changes in Persian & Arabic Scripts 8 Proc. TeX Users Group Conf., Palo Alto, CA, USA
B. Parhami, UCSB August 9-11, 2019

7. Conclusion and Future Work

Today, technological tools for producing legible and
aesthetically pleasing Persian script are widely available.
So, whatever problems still remain are algorithmic and
software-based in nature. Put another way, whereas until a
couple of decades ago, computer typefaces had to be
designed with an eye toward capabilities and limitations
of printing and display devices, we can now return to
typeface design by artists, with only aesthetics and
readability in mind. Any typeface can now be mapped to
suitably large dot-matrices to produce high-quality and
easily-readable Persian script.

We now have reasonably good tools for generating and
editing Persian texts. Among them are TeX systems for
Arabic [19] and Persian [20], as well as many other text-
processing systems based on Unicode [21]. Some popular
programming languages also have built-in support for
Persian text processing and I/O [22].

What remains to be done are systematic studies of trade-
offs between Persian script legibility [23] and aesthetic
quality and devising methods for taking care of formatting
issues, particularly when bilingual text is involved. Use of
crowdsourcing may help with solving the first problem.
The second problem has persisted through many
attempted solutions over several decades. It is still the
case that when, for example, a Persian word is entered
within an English text, or vice versa, the text may be
garbled depending on the location of the alien word in the
formatted line (close to a line break, e.g.). An integrated,
easy-to-use bilingual keyboard and improved optical
character recognition would be important first steps in
solving the remaining text-input problem.

References

[1] B. Parhami, “Computers and the Challenges of Writing in

Persian: A Personal History Spanning Five Decades,”
being prepared for publication. (English version of [2])

[2] B. Parhami, “Computers and Challenges of Writing in
Persian” (in Persian), Iran Namag, Vol. 4, No. 2, Summer
2019, to appear. (Persian version of [1])

[3] B. Parhami and F. Mavaddat, “Computers and the Farsi
Language: A Survey of Problem Areas,” Information
Processing 77 (Proc. IFIP World Congress), North
Holland, 1977, pp. 673-676.

[4] B. Parhami, “On the Use of Farsi and Arabic Languages
in Computer-Based Information Systems,” Proc. Symp.
Linguistic Implications of Computer-Based Information
Systems, New Delhi, India, November 1978, pp. 1-15.

[5] B. Parhami, “Impact of Farsi Language on Computing in
Iran,” Mideast Computer, Vol. 1, No. 1, pp. 6-7,
September 1978.

[6] B. Parhami, “Language-Dependent Considerations for
Computer Applications in Farsi and Arabic Speaking
Countries,” System Approach for Development (Proc.
IFAC Conf.), North-Holland, 1981, pp. 507-513.

[7] G. Lazard, “The Rise of the New Persian Language,” The
Cambridge History of Iran, Vol. 4 (Period from the Arab
Invasion to the Saljuqs), 2008, pp. 566-594.

[8] M. Borjian and H. Borjian, “Plights of Persian in the
Modernization Era,” Handbook of Language and Ethnic
Identity: The Success-Failure Continuum in Language
and Ethnic Identity Efforts, Vol. 2, pp. 254-267, 2011.

[9] W.M.Floor, “Čāp,” Encyclopedia Iranica, I/7, pp. 760-764.

[10] N. Green, “Persian Print and the Stanhope:
Industrialization, Evangelicalism, and the Birth of
Printing in Early Qajar Iran,” Comparative Studies of
South Asia, Africa, and the Middle East, Vol. 30, No. 3,
2010, pp. 473-490.

[11] B. Parhami and M. Taraghi, “Automatic Recognition of
Printed Farsi Texts,” Pattern Recognition, Vol. 14, Nos.
1-6, pp. 395-403, 1981.

[12] T. Nemeth, Arabic Type-Making in the Machine Age: The
Influence of Technology on the Form of Arabic Type,
1908-1993, Brill, Leiden, 2017, p. 288.

[13] B. Parhami, Computer Appreciation (in Persian), Tehran,
Tolou’e Azadi, 1984.

[14] Institute of Standards and Industrial Research of Iran,
Character Arrangement on Keyboards of Persian
Typewriters (in Persian), ISIRI 820, 1976.

[15] B. Parhami, “Standard Farsi Information Interchange
Code and Keyboard Layout: A Unified Proposal,” J.
Institution of Electrical and Telecommunications
Engineers, Vol. 30, No. 6, pp. 179-183, 1984.

[16] Iran Plan and Budget Organization, Final Proposal for
the Iranian National Standard Information Code
(INSIC), Persian and English versions, 1980.

[17] M. Sanati, “My Recollections of Desktop Publishing” (in
Persian), Computer Report, Vol. 40, No. 239, pp. 53-60,
Fall 2018.

[18] B. Parhami, “On Lower Bounds for the Dimensions of
Dot-Matrix Characters to Represent Farsi and Arabic
Scripts,” Proc. 1st Annual CSI Computer Conf., Tehran,
Iran, December 1995, pp. 125-130.

[19] K. Lagally, “ArabTEX, a System for Typesetting Arabic,”
Proc. 3rd Int’l Conf. Multi-lingual Computing: Arabic
and Roman Script, Vol. 9, No. 1, 1992.

[20] B. Esfahbod and R. Pournader, “FarsiTeX and the Iranian
TeX Community,” TUGboat, Vol. 23, pp. 41–45, 2002.

[21] Unicode.org, “About the Unicode Standard,” on-line
resource page with pertinent links, accessed on July 16,
2019: https://unicode.org/standard/standard.html

[22] Python.org, “Links to Python Information in
Persian/Iranian/Farsi,” On-line resource page, accessed on
July 16, 2019: https://wiki.python.org/moin/PersianLanguage

[23] N. Chahine, “Reading Arabic: Legibility Studies for the
Arabic Script,” Doctoral Thesis, Leiden University, 2012.

.

TUG 2019 j 44

TUGboat, Volume 0 (9999), No. 0 draft: July 15, 2019 14:28 ? 1

Type 3 Fonts and PDF Search

Tomas Rokicki

Abstract

PDF files generated from the output of dvips us-
ing bitmapped fonts are not properly searchable,
indexable, or accessible. While a full solution is chal-
lenging, only minimal dvips changes are required
to support English language text, changes that are
at least two decades overdue. I will describe these
changes and discuss their limitations.

1 Introduction

The Type 3 fonts generated by dvips for bitmapped
fonts lack a reasonable encoding vector, and this
prevents PDF viewers from interpreting those glyphs
as text. This in turn prevents text search, copy and
paste, screen readers, and search engine indexing
from working correctly. Fixing this is easy, at least
for English text, and comes with no significant cost.

This small change is not nearly a full solution
to create accessible PDF multilingual documents.
Modern support for eight-bit input encodings [2],
explicit font encodings [3], and direct generation of
PDF can yield better results. But if you want to use
METAFONT fonts as-generated and dvips, this is an
important change.

I describe how I generated reasonable encoding
vectors for common METAFONT fonts, how dvips

finds these encoding vectors and embeds them in the
PostScript file, and how the current implementation
allows for future experimentation and enhancement.

2 A Little History

When dvips was originally written in 1986, the lone
PostScript interpreter on hand was an Apple Laser-
writer with 170K available memory. I treated Post-
Script as just a form of compression for the page
bitmap, doing the bare minimum to satisfy the re-
quirements for Level 1 Type 3 fonts. One of those
requirements was to supply an /Encoding vector,
despite the fact that at the time, the vector was
completely unnecessary in rendering the glyphs. Not
considering that people might someday use that en-
coding vector for glyph identification, on that fateful
day in 1986 I generated a semantically nonsensical
but syntactically acceptable vector (/A0–/H3 in base
36) for all bitmapped fonts, and this vector remains
to this day, subverting any attempt to search copy,
or use screen readers.

Replacing this encoding vector with something
more reasonable allows PDF viewers to properly un-

derstand what characters are being rendered, at least
for English-language text.

3 A Sample

The following TEX file, cribbed from testfont.tex

but using only a single font, will be used for illustra-
tion.

\hsize=3in \noindent

On November 14, 1885, Senator \& Mrs.~Leland

Stanford called together at their San

Francisco mansion the 24~prominent men who

had been chosen as the first trustees of The

Leland Stanford Junior University.

?‘But aren’t Kafka’s Schlo{\ss} and {\AE}sop’s

{\OE}uvres often na{\"\i}ve vis-\‘a-vis the

d{\ae}monic ph{\oe}nix’s official r\^ole

in fluffy souffl\’es?

\bye

When you run this through TEX and dvips (giving
the -V1 option to enforce bitmapped and not Type
1 fonts), and then ps2pdf, the resulting PDF does
not support text search in most PDF viewers. In
Acrobat with copy and paste it almost works; the c’s
are dropped throughout (San Francisco becomes San
Fran is o). The c’s are dropped because the original
dvips encoding uses /CR as the name for this charac-
ter, and it is apparently interpreted as a non-marking
carriage return. Ligatures also don’t work. In OSX
Preview (the default PDF viewer for the Mac), select-
ing text appears to fail (it actually works, but the
selection boxes are too small to see that anything
has actually been selected) and no characters are
recognized as alphabetic. In Chrome PDF preview,
selecting text gives a random note appearance with
each word separately selected by its bounding box
and no alphabetic characters recognized.

Conversely, when you process the file with Type
1 fonts, all text functions perform normally, except
that accented characters are detected as two sepa-
rate characters (the accent and the base character).
The critical difference is not Type 3 (bitmaps) ver-
sus Type 1 (outline fonts), but rather the lack of a
sensible encoding vector in the Type 3 font.

4 First Attempts and Failure

If I manually copy the Encoding vector from the
output of dvips using Type 1 fonts and put that in
the font definition for the Type 3 fonts, the situation
improves; now Adobe Acrobat properly supports
text functions (including ligatures but not accented
characters). The other PDF viewers now recognize
alphabetic characters, but they still have a number
of problems.

With OSX Preview, if you use command-A (to
select all the text) and then command-C (to copy it),

TUG 2019 j 45

? 2 draft: July 15, 2019 14:28 TUGboat, Volume 0 (9999), No. 0

and you copy the result into a text editor (or a word
processing program “without formatting”), you get
the following mismash of text:

On Novemb er 14, 1885, Senator & Mrs.
Leland Stanford called mansion the 24
together at their San Francisco prominent
men who had b een cho- Stanford sen as the
first trustees of The Leland Junior Æsop’s
University. ¿But aren’t Kafka’s Schloß and
Œuvres often na”ıve vis-‘a-vis the dæmonic
phœnix’s official rˆole in fluffy souffl’es?

In addition to the broken words and split accented
characters, if you look carefully you will notice some
surprising and substantial word reordering! What
could be going on?

5 Refinements and Success

All PDF viewers use some heuristics to turn a group
of rendered glyphs into a text stream. The heuristics
differ significantly from viewer to viewer. The most
important heuristic appears to be interpreting hori-
zontal escapement into one of three categories: kerns,
word breaks, and column gutters. OSX Preview was
failing so badly because it was recognizing rivers in
the paragraph as separating columns of text. To
satisfy the PDF viewers I had access to, I made two
additional modifications to each bitmapped font.

First, I adjusted the font coordinate system.
The default Adobe font coordinate system has 1000
units to the em, while the original dvips uses a coor-
dinate system with one unit to the pixel both for the
page and for the font, and doesn’t use the PostScript
scalefont primitive. But not using scalefont ap-
parently makes some viewers think all the fonts are
just one point high, and they use spacing heuristics
appropriate for such a font. By providing a font ma-
trix more in line with conventional fonts, and using
scalefont, PDF viewers make better guesses about
the appropriate font metrics for their heuristics.

Second, I provide a real font bounding box. The
original dvips code gives all zeros for the font bound-
ing box, which is specifically allowed by PostScript,
but this confuses some PDF viewers. So I wrote code
to calculate the actual bounding box for the font
from the glyph definitions.

With these adjustments, using dvips with bit-
mapped fonts and ps2pdf generates PDF files that
can be properly searched with most PDF viewers—at
least, for English language text.

6 Other Languages: No Success

I would have liked things to work with other lan-
guages as well, but was not able to get it to work.
Clearly the PDF viewers are recognizing characters

by the glyph names, but this appears to work only
with a small set of glyph names. I hoped that those
listed in the official Adobe Glyph List [1] would work,
but in my experiments they (for the most part) did
not. I also tried Unicode code point glyph names
such as /uni1234 and /u1234 but neither of these
formats worked in the PDF viewers I tried. I also
experimented with adding a cmap to the font, with
no success, and even tried some lightly documented
GhostView hacks, but was only able to achieve dis-
tressingly partial success for most non-Roman char-
acters.

Even if the individual glyphs are recognized,
problems remain with accents, and more generally,
virtual fonts. With a standard seven-bit encoding,
accents are generally rendered as two separate char-
acters, where the PDF viewer expects to see only
a single composite character. Further, the entire
virtual font layer would need to be mapped in some
fashion, as the PDF contains the physical glyphs that
are often combined in some way to provide the seman-
tic characters. Supporting this would have required
significantly more effort and heuristics, and there are
already efforts in this direction from people much
more knowledgeable and capable than I am. The
most logical general solution is to use properly coded
input, such as UTF-8, and where transformation to
multiple glyphs is necessary, embed the appropriate
mapping information directly in the PDF file.

The lack of success for other languages dimin-
ishes these proposed changes, but the changes are
still important as they do provide reasonable support
for English-language documents. Since PDF viewers
are a moving target, as are the PostScript to PDF

converters, the implementation provides for some
future experimentation and extension.

7 Finding Font Encodings

In order to provide more than a proof of concept,
I had to locate appropriate glyph names for the
fonts provided with TEXLive, as well as provide a
mechanism for end users to add their own glyph
names for their own personal fonts.

Over the years others have translated nearly all
(if not all) of the METAFONT fonts provided with
TEXLive, and as part of that process, reasonable
encoding vectors have been created for the glyphs. I
decided to leverage this work, so I wrote a script that
located all the METAFONT sources in the TEXLive
distribution, all the corresponding Type 1 fonts, and
any encoding files used in the relevant psfonts.map
file. A big Perl script chewed on all of this, extracting
encoding vectors and creating appropriate files for
dvips. Some of the encoding vectors use glyph names

TUG 2019 j 46

TUGboat, Volume 0 (9999), No. 0 draft: July 15, 2019 14:28 ? 3

that are not particularly useful, and some use glyph
names based on Unicode code points that are not
currently recognized by the PDF viewers I tried. I
did not want to edit the names in any way; I aimed
for functional equivalence to using the Type 1 fonts.
If improvements are made to the Type 1 font glyph
names, or to the PDF viewers, I wanted to be able
to pick up those improvements.

I considered having dvips read the encoding
vectors directly from the Type 1 fonts, rather than
extracting them and storing them elsewhere, but
decided against this; I wanted dvips to use appro-
priate glyph names even if the Type 1 fonts didn’t
exist at all. This does introduce redundancy which
can potentially lead to an inconsistency in the glyph
names, but the fonts are currently mostly stable, and
the glyph name extraction process can be repeated
as needed if meaningful changes are made.

8 Storing and Distributing Encodings

After scanning all of the relevant METAFONT files
and corresponding Type 1 files, I found there were
2885 fonts; storing the encodings separately one
per font would require an additional 2,885 files in
TEXLive, occupying about 5 megabytes. I felt this
was excessive for the functionality added.

Karl Berry suggested combining all the encod-
ings into a single file, along with a list of fonts using
any particular encoding. Since there were only 138
distinct encodings, this gave tremendous compres-
sion, letting me store all of the encodings for all of
the fonts in a single file of size 183K. This also en-
abled me to distribute a simple test Perl script that
mocked the changes so people could try them out
without updating their TEX installation.

This combined file, called dvips-all.enc, pro-
vides the default encoding used by the 2885 dis-
tributed TEXLive METAFONT fonts. In every case
that dvips looks for an encoding, e.g., for cmr10,
it first searches for dvips-cmr10.enc and only falls
back to the information in the combined file if the
font-specific file is not found. This permits users to
override the provided encodings, as well as define
their own encoding for local METAFONT fonts.

The format of the encoding file is slightly differ-
ent from that of other encoding files in the TEXLive
distribution. The encoding file should be a Post-
Script fragment that pushes a single object on the
operand stack. That object should either be a le-
gitimate encoding vector consisting of an array of
256 PostScript names, or it should be a procedure
that pushes such an encoding vector. It should not
attempt to define the /Encoding name in the current
dictionary, as some other encoding file formats do.

A sample file, one that can be used for cmr10 (and
many other Computer Modern fonts) is:

[/Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon

/Phi/Psi/Omega/ff/fi/fl/ffi/ffl/dotlessi

/dotlessj/grave/acute/caron/breve/macron/ring

/cedilla/germandbls/ae/oe/oslash/AE/OE/Oslash

/suppress/exclam/quotedblright/numbersign

/dollar/percent/ampersand/quoteright/parenleft

/parenright/asterisk/plus/comma/hyphen/period

/slash/zero/one/two/three/four/five/six/seven

/eight/nine/colon/semicolon/exclamdown/equal

/questiondown/question/at/A/B/C/D/E/F/G/H/I/J

/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/bracketleft

/quotedblleft/bracketright/circumflex

/dotaccent/quoteleft/a/b/c/d/e/f/g/h/i/j/k/l

/m/n/o/p/q/r/s/t/u/v/w/x/y/z/endash/emdash

/hungarumlaut/tilde/dieresis

128{/.notdef}repeat]

9 Deduplicating Encodings

The encodings inserted in the fonts do use a certain
amount of PostScript memory, and this memory us-
age is not presently accounted for in the memory
usage calculation of dvips. The memory usage is
small and modern PostScript interpreters have sig-
nificant memory. Further, I doubt anyone actually
sets the dvips memory parameters anymore anyway.
So this is unlikely to be an issue. But to minimize
the effect, and also to minimize the impact on file
size, encodings that are used more than once are com-
bined into a single instance and reused for subsequent
fonts.

10 The dvips Changes

Almost all changes to dvips are located in the single
new file bitmapenc.c, although a tiny bit of code
was added to download.c to calculate an aggregate
font bounding box, and the font description structure
extended to store this information. I also added code
to parse command line options and configuration file
options to disable or change the behavior of the new
bitmap encoding feature.

By default this feature is turned on in the new
version of dvips. If no encoding for a bitmapped
font is found, no change is made to the generated
output for that font.

11 Testing the Changes Without Updating

You can test my proposed changes to the dvips

output files without updating your distribution or
building a new version of dvips. The Perl script
addencodings.pl [4] reads a PostScript file gener-
ated by dvips on standard input and writes the
PostScript file that would be generated by a modi-
fied dvips on standard output. No additional files

TUG 2019 j 47

? 4 draft: July 15, 2019 14:28 TUGboat, Volume 0 (9999), No. 0

are required for this testing; the default encodings
for the standard TEX Live fonts are built in to the
Perl script.

12 How to Use a Modified dvips

In general, dvips usage is unchanged. Warnings in
the functionality of the bitmap encoding are disabled
by default, so as to not disturb existing workflows;
this may change in the future.

We add a single command line and configuration
option, using the previously unused option character
J. The option -J0 disables the new bitmap encoding
functionality. The option -J or -J1 enables it but
without warnings, and is the default. The option
-J2 enables it with warnings for missing encoding
files.

13 Extension Support

Remember that the encoding file is an arbitrary Post-
Script fragment that pushes a single object on the
operand stack, and that object can be a procedure. I
permit it to be a procedure to support experimenting
with other changes to the font dictionary to improve
text support in PDF viewers. For instance, if a tech-
nique for introducing Unicode code points for glyphs
into a PostScript font dictionary is standardized and
supported by various PostScript to PDF convertors,
such a procedure can introduce the requisite struc-
tures. The procedure will not be executed until the
font dictionary for the Type 3 font is created and
open.

To test this functionality, I created a rot13.enc

file that defines a procedure that modifies the En-
coding vector to swap single alphabetic characters
much like the rot13 obfuscation common during the
Usenet days. With this modification, copying text
from a PDF copies (mostly) content that has been
obfuscated (except for ligatures). This brings us full
circle to the current unreadable text copied from the
original dvips.

References

[1] Adobe. Adobe glyph list specification.
https://github.com/adobe-type-tools/

agl-specification, August 2018.

[2] A. Jeffrey and F. Mittelbach. inputenc.sty.
https://ctan.org/pkg/inputenc, 2018.

[3] R. Moore. Include cmap resources in pdf files
from pdfTEX. https://ctan.org/pkg/mmap,
2008.

[4] T. G. Rokicki. Type 3 search code. https:

//github.com/rokicki/type3search, July
2019.

� Tomas Rokicki
Palo Alto, California
United States
rokicki@gmail.com

TUG 2019 j 48

The Design of the HINT File Format

Martin Ruckert

Abstract

The HINT file format is intended as a replacement
of the DVI or PDF file format for on-screen reading
of TEX output. Its design should therefore meet the
following requirements: reflow of text to fill a win-
dow of variable size, convenient navigating of text
with links in addition to paging forward and back-
ward, efficient rendering on mobile devices, simple
generation from existing TEX input files, and an ex-
act match of traditional TEX output if the window
size matches TeX’s paper size.

This paper describes the key elements of the
design and motivates the design decisions.

Why do we need a new file format?

The first true output file format for TEX was the
DVI format[2]. When PostScript became available,
it was soon supplemented by dvips[7], and now, most
people I know use pdftex to produce TEX output in
PDF format. There are two good reasons for that:
To begin with, the PDF format is a perfect match[4]
for the demands of the TEX typesetting engine, but
first and foremost, the PDF format is in wide spread
use. It enables us to send documents produced with
TEX to practically anybody around the globe and
be sure that the receiver will be able to open the
document and that it will print exactly as intended
by its author (unless a font is neither embedded in
the file nor available on the target device) .

But the main limitation of the PDF format is
its inherent inability to adapt to the given window
size. For reading documents on mobile devices, the
HTML format is a much more convenient format.
Part of the concept of HTML is a separation of con-
tent and presentation: the author prepares the con-
tent, the browser decides on the presentation—at
least in principle. It turns out that designers of web
pages spare no effort to control the presentation,
but often the results are poor. Different browsers
have different ideas about presentation, users’ pref-
erences and operating systems interfere with font
selection, and all that might conflict with the pre-
sentation the author had in mind. When is comes
to eBooks, the popular epub format[3] is derived
from HTML and inherits its advantages as well as
its shortcomings. As a consequence, eBooks when
compared with printed books are often of inferior
quality.

TUGboat, Volume 0 (2001), No. 0 preliminary draft, 13 Jul 2019 16:59 901

What is needed, is a document format, that
meets the demands of the TEX typesetting engine
and that gives the author as much control over the
presentation as possible but still can adapt to a given
paper format—be it real or electronic paper. These
two design objectives guided the development of the
HINT file format.

While the TEX typesetting engine, its internal
representation of data, its algorithms, and its de-
bugging output, was the driving force of the devel-
opment of the HINT file format, giving the whole
project its name (the recursive acronym for “HINT

Is Not TEX”), the result is not limited to the TEX
universe. In the contrary, it makes the best parts of
TEX available to all systems that use the HINT file
format.

Faithful Recording of TEX output

At the beginning of the design, the primary necessity
was the ability to faithfully capture the output of the
TEX typesetting engine.

To build pages, TEX adds nodes to the so called
“contribution list”. The content of a HINT file is ba-
sically a list of all these nodes from which a viewer
can reconstruct the contributions and build pages
using TEX’s original algorithms. So with few excep-
tions, TEX nodes are matched one-to-one by HINT

nodes.
Of course, we need characters, ligatures, kerns,

rules, hlists and vlists; and as in TEX, dimensions are
expressed as scaled points. But even a simple and
common construction like \hbox to \hsize {. . . }
requires new types of nodes: a horizontal list that
may contain glue nodes and has a width that de-
pends on \hsize which is not known when the HINT

file is generated. To express dimensions that de-
pend on \hsize and \vsize, HINT uses linear func-
tions w+h ·\hsize+ v ·\vsize, called extended di-
mensions. Linear functions are a good compromise
between expressiveness and simplicity. The com-
putations that most TEX programs perform with
\hsize and \vsize are linear and in the viewer,
where \hsize and \vsize are finally known, ex-
tended dimensions are easily converted to ordinary
dimensions. Necessarily, HINT adopts TEX’s con-
cepts of stretchability, shrinkability, glue, and lead-
ers.

One of the highlights of TEX is its line breaking
algorithm. And because line breaking depends on
\hsize, it must be performed in the viewer. But
wait, an expensive part of line breaking is hyphen-
ation and this can be done without knowledge of
\hsize. So HINT defines a paragraph node, its width

preliminary draft, 13 Jul 2019 16:59 preliminary draft, 13 Jul 2019 16:59

TUG 2019 j 49

is an extended dimension, and all the words in it con-
tain all possible hyphenation points in the form of
TEX’s discretionary hyphens. To maintain complete
compatibility between TEX and HINT, two types of
hyphenation points had to be introduced: explicit
and automatic. TEX uses a three pass approach for
breaking lines: In the first pass, TEX will not at-
tempt automatic hyphenation and uses only discre-
tionary hyphens that are already provided by the au-
thor. Likewise HINT will use in its first pass only the
explicit hyphenation points. Given the same value
of \hsize, TEX and HINT will produce exactly the
same line breaks. In a paragraph node, HINT also
allows vadjust nodes and a new node type for dis-
played formulas to make sure that the positioning
of displayed equations and their equation numbers
is exactly as in TEX.

The present HINT format has also an experi-
mental image node that can stretch and shrink like
a glue node. Therefore, images stretch or shrink to-
gether with the surrounding glue to fill the enclosing
box. The insertion of images in TEX-documents is
common practice. But TEX treats images as “exten-
sions” that are not standardized. In a final version
of HINT, I expect to have a more general media node.
I think it is better to have a clearly defined, limited
set of media types that is supported in all imple-
mentations than a wide variation of types with only
partial support.

One node type of TEX that is not present in
HINT is the mark node. TEX’s mark nodes contain
token lists, the “machine code” for the TEX inter-
preter, and for reasons explained next, HINT does
not implement token lists.

Efficient and Reliable Rendering

On mobile devices, rendering must be efficient and
files must be self-contained. To meet these goals,
the proper foundation is laid in the design of the file
format.

The most important decision was to ban the
TEX interpreter from the rendering application. A
HINT file is pure data. As a consequence, TEX’s out-
put routines (and with them mark nodes) were re-
placed by a template mechanism. Templates, while
not as powerful as programs, will always terminate
and can be processed efficiently. Whether they offer
sufficient flexibility has to be seen. It is a fact, how-
ever, that only very few users of TEX or LATEX write
their own output routines. So it can be expected
that a collection of good templates will serve most
authors well.

902 preliminary draft, 13 Jul 2019 16:59 TUGboat, Volume 0 (2001), No. 0

The current template mechanism of HINT is still
experimental. It is sufficient to replace the output
routines of plain TEX and LATEX.

HINT files contain all necessary resources, no-
tably fonts and images, making them completely
self-contained. Embedding the fonts will make HINT

files larger—the effect is more pronounced for short
texts and less significant for large books—and it
makes HINT files independent of local resources and
of local character encodings. Indeed, a HINT file does
not encode characters, it encodes glyphs. While
HINT files use the UTF8 encoding scheme, it is pos-
sible to assign arbitrary numbers to the glyphs as
long as the assignment in the font matches the as-
signment in the text. The only reason not to depart
from the standard UTF8 encoding is the ability to
search for user-entered strings.

Zoom and Size Changes

On mobile devices it is quite common to switch
within one application between landscape or por-
trait mode to use the screen space as efficient as
possible. Further, users usually can adjust the size
of displayed content by zooming in or out.

For rendering a HINT file, these operations sim-
ply translate into a change of hsize and vsize,
with consequences for line and page breaking. While
changing line breaks affects only individual para-
graphs, changing a page break has global implica-
tions which makes precomputing page breaks im-
practical. Consequently, the HINT file format must
support rendering either the next page or the previ-
ous page based alone on the top or bottom position
of the current page and this implies that it must
be possible to parse the content of a HINT file in
forward as well as in backward direction.

A HINT file encodes TEX’s contribution list in
its content section. To support bidirectional pars-
ing, each encoding of a node starts with a tag byte
and it ends with the very same tag byte. From the
tag byte, the layout of the encoding can be derived.
So decoding in backward direction is as simple as
decoding in forward direction. Changes in the pa-
rameters of TEX, for example paragraph indentation
or baseline distance, pose another problem for bidi-
rectional parsing. HINT solves this problem by us-
ing a stateless encoding of content. All parameters
are assigned a permanent default value. To specify
these defaults, HINT files have a definition section.
Any content node that needs a deviation from the
default values must specify the new values locally.
To make local changes efficient, nodes in the con-
tent section can reference suitable predefined lists

preliminary draft, 13 Jul 2019 16:59 preliminary draft, 13 Jul 2019 16:59

TUG 2019 j 50

of parameter values specified again in the definition
section.

Simple and Compact Representation

On the top level, a HINT file is a sequence of sections.
To locate each section in the file, the first section of
a HINT file is the directory section; it’s a sequence of
entries that specify location and size of each section.
The first entry in the directory section, the root en-
try, describes the directory section itself. The HINT

file format supports compressed sections according
to the zlib specification[1]. Using the directory, ac-
cess to any section is possible without reading the
entire file.

The directory section is preceded by a banner
line: It starts with the four byte word hint and the
version number; it ends with a line-feed character.
The directory section is followed by two mandatory
sections: the definition section and the content sec-
tion. All further sections, containing fonts, images,
or any other data, are optional. The size of a section
must be less or equal to 232 byte. This restriction
is strictly necessary only for the content section. It
sets a limit of about 500 000 pages and ensures that
positions inside the content section can be expressed
as 32 bit numbers.

For debugging, the specification of a HINT file
also describes a “long” file format. This long file
format is a pure ASCII format designed to be as
readable as possible. Two programs, stretch and
shrink, convert the short format to the long format
and back, and constitute—as literate programs[5]—
the format specification[8].

Since large parts of a typical content section
contain mostly character sequences, there is a spe-
cial node type, called a text node, optimized for the
representation of plain text. It breaks with two con-
ventions that otherwise are true for any other node:
The content of a text node can not be parsed in
backward direction, and it depends on a state vari-
able, the current font. To mitigate the restriction
to forward parsing, the size of a text node is stored
right before the final tag byte. This enables a parser
to move from the final tag byte directly to the be-
ginning of the text. Since text nodes can not span
multiple paragraphs, they are usually short.

Inside a text, all UTF8 codes in the range 25 + 1
to 220 encode a character in the current font; codes
from 0x00 to 0x20 and 0xF8 to 0xFF are used as con-
trol codes. Some of them are reserved as shorthand
notation for frequent nodes—for example the space
character 0x20 encodes the inter-word-glue—others

TUGboat, Volume 0 (2001), No. 0 preliminary draft, 13 Jul 2019 16:59 903

introduce font changes or mark the start of a node
given in its regular encoding.

The two forms of content encoding, as regular
nodes or inside a text node, introduce a new require-
ment: when decoding starts at a given position, it
must be possible to decide whether to decode a regu-
lar node, an UTF8 code, or a control code. Control
codes have only a limited range and the values of
tag bytes can be chosen to avoid that range. Con-
flicts between UTF8 codes and tag bytes can not be
avoided. Hence positions inside text nodes are re-
stricted to control codes. A position of an arbitrary
character inside a text node can still be encoded be-
cause there is a control code to encode characters
(with a small overhead).

Clear Syntax and Semantics

Today, there are many good formal methods to spec-
ify a file format, and the time when file formats
where implicit in the programs that would read or
write these files seems like ancient history. The spe-
cification of the HINT file format, however, is given
as two literate programs: stretch and shrink. The
first reads a HINT file and translates it to the “long”
format and the second goes the opposite direction
and writes a HINT file.

Of course, these programs use modern means
like regular expressions and grammar rules to de-
scribe input and output and are, to a large extend,
generated from the formal description using lex and
yacc. For this purpose, the cweb system[6] for lit-
erate programming had to be extended to generate
and typeset lex and yacc files. I consider this rep-
resentation an experiment. I tried to combine the
advantages of a formal syntax specification with the
less formal exposition of programs that illustrate the
reading and writing process and can serve as refer-
ence implementations. The programs stretch and
shrink can also be used to verify that HINT files
conform to the format specification.

Specifying semantics is a difficult task and a
formal specification is entirely impossible if the cor-
rectness depends partly on personal taste. Fortu-
nately the new file format is just an “intermediate”
format as part of the TEX universe. So the follow-
ing commutative diagram is an approximation to a
formal specification:

preliminary draft, 13 Jul 2019 16:59 preliminary draft, 13 Jul 2019 16:59

TUG 2019 j 51

Currently the programs HiTEX and HINTcl men-
tioned in the diagram are still under development.
HiTEX is a modified version of TEX that produces
HINT files as output; HINTcl is a command line pro-
gram, that reproduces TEX’s page descriptions as if
\tracingoutput where enabled. While it does not
actually produce a DVI file, its output can be com-
pared to the page descriptions in TEX’s .log file to
make sure the diagram above would indeed be com-
mutative. The prototypes available so far do not yet
support all the features of TEX or HINT.

Conclusion

The experimental HINT file format proves that file
formats supporting efficient, high quality rendering
of TEX output on electronic paper of variable size
are possible. The upcoming prototypes for a TEX
version (HiTEX) that produces such files and viewer
programs on Windows and Android will provide a
test environment to investigate and improve con-
cepts and performance in practice.

In the long run, I hope that a new standard for
electronic documents will emerge that enjoys wide
spread use, provides the output quality of real books,
is easy to use and powerful enough to encode TEX
output, offers the author maximum control over the
presentation of her or his work, and can cope with
the variations in screen size and screen resolution of
modern mobile devices.

References

[1] P. Deutsch and J.-L. Gailly. Zlib compressed data
format specification version 3.3. Technical report,
RFC Editor, 1996.

[2] David Fuchs. The format of TEX’s DVI files.
TUGboat, 3(2):14–19, October 1982.

[3] EPUB 3 Community Group. epub 3.
http://www.w3.org/publishing/groups/epub3-cg.

[4] Hans Hagen. Beyond the bounds of paper and
within the bounds of screens; the perfect match
of TEX and Acrobat. In Proceedings of the Ninth
European TEX Conference, volume 15a of MAPS,
pages 181–196. Elsevier Science, September 1995.

[5] Donald E. Knuth. Literate Programming. CSLI
Lecture Notes Number 27. Center for the Study of
Language and Information, Stanford, CA, 1992.

904 preliminary draft, 13 Jul 2019 16:59 TUGboat, Volume 0 (2001), No. 0

[6] Donald E. Knuth and Silvio Levy. The CWEB
System of Structured Documentation. Addison
Wesley, 1994. https://ctan.org/pkg/cweb.

[7] Tom Rokicki. Dvips: A DVI-to-PostScript
translator.

[8] Martin Ruckert. HINT: The File Format. August
2019. ISBN 978-1079481594.

� Martin Ruckert
Hochschule München
Lothstrasse 64
80336 München
Germany
ruckert (at) cs dot hm dot edu

preliminary draft, 13 Jul 2019 16:59 preliminary draft, 13 Jul 2019 16:59

TUG 2019 j 52

TUGboat, Volume 0 (9999), No. 0 901

The Unreasonable Effectiveness of Pattern
Generation

Petr Sojka and Ondřej Sojka

Abstract
Languages are constantly evolving organisms, and
so are the hyphenation rules and needs. The effec-
tiveness and utility of TEX’s hyphenation have been
proven by its usage in almost all typesetting sys-
tems in use today. The current Czech hyphenation
patterns were generated in 1995 and no hyphenated
word database is freely available.

We have developed a new Czech word database
and have used the patgen program to efficiently
generate new effective Czech hyphenation patterns
and evaluated their generalization qualities. We have
achieved almost full coverage on the training dataset
of 3,000,000 words and validated the patterns on the
testing database of 105,000 words approved by the
Czech Academy of Science linguists.

Our pattern generation case study exemplifies an
effective solution of widespread dictionary problem.
The study has proved the versatility, effectiveness
and extensibility of Liang’s approach to hyphenation
developed for TEX. The unreasonable effectiveness
of pattern technology has lead to applications that
are and will be used even more widely even 40 years
after its inception.

. . . the best approach appears to be to embrace the
complexity of the domain and address it by harnessing

the power of data: if other humans engage in the
tasks and generate large amounts of unlabeled, noisy

data, new algorithms can be used to build high-quality
models from the data. (Peter Norwig, [7])

1 Introduction
In their famous essays, Wigner [18], Hamming [1]
and Norwig [7] consider mathematics and data-
driven approaches miraculously, unreasonably effec-
tive. One of the very first mathematically founded
approaches that harnessed the power of data was
Franklin Liang’s language-independent solution for
TEX’s hyphenation algorithm [6] and his program
patgen for generation of hyphenation pattern from
a word list.
Dictionary problem The task at hand was the
dictionary problem. A dictionary can be seen as a
database of records; in each record, we distinguish the
key part (the word) and the data part (its division).
Given the already hyphenated word list of a language,
a set of patterns is magically generated. Language
hyphenated patterns are much smaller than original
word list and typically encode almost all hyphenation

points in input list without mistakes. Liang’s pattern
approach thus could be viewed as an efficient lossy or
lossless compression of hyphenated dictionary with
several orders of magnitude compression ratio.

It has been proved [14, chapter 2] that optimiza-
tion problem of exact lossless pattern minimization
is non-polynomial by reduction to the minimum set
cover problem.

Generated patterns have minimal length, e.g.,
shortest context possible, which results in their gen-
eralization properties. Patterns could hyphenate
words not seen in the learning phase by analogy: yet
another miracle of the generated patterns.
Pattern preparation During 36 years of patgen,
there were hundreds of hyphenation patterns created,
either by hand or generated by program patgen,
or by the combination of both methods [8]. The
advantage of pattern generation is that one can fine-
tune pattern qualities for specific usage. Having an
open-source and maintained word list adds another
layer of flexibility and usability to the deployment of
patterns. This approach is already set up for German
variants and spellings [5], and was an inspiration for
doing the same for the Czech language.

In this paper, we report on the development
of the new Czech word list with a free license and
complementary sets of hyphenation patterns. We
describe the iterative process of initial word list prepa-
ration, word form collection, estimation of pattern
generation parameters, and novel applications of the
technology.

Hyphenation is neither anarchy nor the sole
province of pedants and pedagogues. Used in

moderation, it can make a printed page more visually
pleasing. If used indiscriminately, it can have the

opposite effect, either putting the reader off or
causing unnecessary distraction. (Major Keary)

2 Initial word list preparation
As a rule of thumb, the development of new big
hyphenated word list starts on small data set first.
The experience and outputs from this initial phase,
e.g., hyphenation patterns, are applied to the bigger
and bigger ones.
Bootstrapping idea As word lists of a well-estab-
lished language are sizeable, and manual creation
of huge hyphenated word list is tedious work, we
used the bootstrapping technique. We illustrate the
process of initial word list preparation by the dia-
gram on Figure 1 on the following page. We have
obtained a hyphenated word list with 105,244 words
from the Czech Academy of Sciences, Institute of

The Unreasonable Effectiveness of Pattern Generation

TUG 2019 j 53

902 TUGboat, Volume 0 (9999), No. 0

cs-lemma-ujc-orig.wl
 (105 k hyphenated words)

patgen
 (as hyphenator)

cs-lemma-ujc-[1-4].wlh

patgen
 (as hyphenator)

czhyphen.pat
 (levels 1-4)

cs-sojka-cover-opt.par
 (levels 1-4)

pattmp.8
 (created by patterns from 8 levels)

cs-init-[1-3].par
 (levels 5-8)

human + vim
(fixes bad hyphens)

Figure 1: Life cycle of initial word list preparation, illustrated on the development of
105 k Czech consistently hyphenated words. czhyphen.pat represents the original
Czech hyphenation patterns from [15] and cs-sojka-cover-opt.par are correct
optimized patgen parameters from the same paper. cs-init-[1-3].par are custom
parameters that trade off bad hyphens (which have to be manually checked) for
missed hyphens. Information on which hyphenations patgen missed and where it
wrongly put a hyphen is sourced from pattmp.

the Czech Language (ÚJČ). After a closer inspec-
tion, we have discovered many problems with the
data, probably stemming from the fact that it has
been crafted by multiple linguists and over the years.
The few hyphenation rules [2] that are in the Czech
language are not getting applied consistently there.
The borderline cases were typically between syllabic
(ro-zum) and etymological variants (roz-um) of hy-
phenation, or the way how to handle words borrowed
from German or English into Czech.

It is impractical to try and manually find incon-
sistencies and systemic errors, even in a relatively
short word list like this. We slightly modified and
extended the process suggested in [13, page 242]:
We used patgen and the current Czech patterns to
hyphenate the word list and manually checked only
the 25,813 words where the proposed hyphenation
points differed from the official (were bad or missed),
creating new word list cs-lemma-ujc-1.wlh [11] in
the process.

But we are erroneous humans making mistakes.
To find these, we have used patgen to generate the
four additional levels of hyphenation patterns on
top of the current patterns from the checked word
list. We have also adjusted the parameters, see
cs-init-[1-3].par [11] used for generation of the
four additional levels to trade off bad hyphens (which
have to be manually checked) for missed ones. We
have then used these patterns, with eight levels in
total, to hyphenate the checked word list and manu-
ally rechecked the wrongly hyphenated points (dots
in patgen output), with missed hyphenation point
(implicitly marked as the hyphen sign in hyphenated
word list). We have repeated this process three times,
iterating on cs-lemma-ujc-[2-4].wlh. The word
list number four, referred to as the ’small one’, is
used for generation of bootstrapping patterns and
final pattern validation.

3 Word list preparation and design
Any live language constantly changes, and Czech is
no exception. Many new Czech words now come from

Petr Sojka and Ondřej Sojka

TUG 2019 j 54

TUGboat, Volume 0 (9999), No. 0 903

other languages, mostly from English. This presents
a challenge for the patterns; they must not only cor-
rectly hyphenate Czech words according to Czech
syllabic boundaries, but foreign words must be hy-
phenated correctly too, according to their new Czech
syllabic pronunciation. [12] To have the patterns keep
up with language evolution, we must maintain not
only the patterns, but also a hyphenation word list.
In this section, we will detail how we have built such
a word list.

csTenTen corpus We have first obtained a word
list with frequencies, generated from the Czech Web
Corpus of TenTen family (csTenTen) [3]. We then
filtered this word list to include only words that are
present more than ten times in two crawls [17] made
in years 2012 and 2017. We ended up with word
list containing 922,216 words, non-negligible part of
which are misspellings and jargon.

Word list cleanup We have then cleaned this
word list by using the Czech morphological analyzer
majka [10] to remove all words not known to it. We
removed 370,291 typos, misspellings, and similar
atypical lexemes and kept only 551,925 frequently
occurring valid words in the dataset.

Word list expansion The morphological analyzer
majka [10] also allows us to expand words into all
their flexive forms as shown on Figure 2. We chose
not to use the expansion feature of majka because the
word list would grow to 3,779,379 (almost a fourfold
increase) and csTenTen already contains most of the
commonly used forms. It would also distort which
hyphenation patgen gives most weight to. We supply
word frequencies from csTenTen to the word list, so
one can give higher weight to patterns that cover the
most common words, eventually.

We expanded the word list with majka by adding
54,569 base forms of words that were present in the
word list, but not in their base form. This increased
the size to 606,494 words.

abdominální: abdominální, abdominálních, abdom-
inálního, abdominálním, abdominálníma, abdominálními,
abdominálnímu, neabdominální, neabdominálních, neab-
dominálního, neabdominálním, neabdominálníma, neab-
dominálními, neabdominálnímu
Figure 2: One lemma, expanded into all its lexemes
by majka.

Sustainability The German wortliste [5] project
served as inspiration for our open word list format,
detailed in the README.md [11].

One must regard the hyphen as a blemish to be
avoided wherever possible. (Winston Churchill)

4 Bootstrapping — iterative development
of hyphens in the big word list

It would be very tedious to manually hyphenate
such a big word list by hand, so we train patterns
on the small one and apply them on the big word
list, as illustrated in Figure 3 on the following page.
Then, we train patterns on the (now hyphenated)
big word list and have patgen show what it would
have hyphenated differently. With this approach, we
cherry picks inconsistencies in the word list.

Since the big word list contains not only lemmas
(base forms) of words, but also common inflections,
we use regular expressions to add hyphens around
them and fix inconsistencies. We keep iterating on
this, as shown in Figure 3 on the next page, until
patterns, generated with cs-init-[1-3].par [11],
achieve nearly perfect coverage.

The resulting patterns hyphenate according to
the standard Czech hyphenation rule: hyphenation
is allowed everywhere where it does not change the
pronunciation of the word. Thanks to the effective-
ness of pattern generation, this works not only in
Czech words but also foreign (Latin, French, German,
English) ones.

Hyphens, like cats, are capable of arousing
tenderness or shudders. (Pamela Frankau)

5 Pattern generation
The last Czech hyphenation patterns were generated
in 1995 [15], and are in use not only in TEX but
also in other widespread typesetting systems. For
conservative users there is no strong incentive for
change, because the error rate is relatively low (the
first version of validation set had about 4% error
rate), and coverage is relatively high (the first version
of validation set had around 7% missed hyphenation
points).

Pattern generation from 3,000,000 words doesn’t
take hours as it did two decades ago, but seconds,
even on commodity hardware, which allows for rapid
development of “home-made” patterns.

We have developed a Python wrapper for patgen
that we use in Jupyter notebooks. It allows quick
iteration and easy sharing of results— see Table 1
on page 905 or demo.ipynb [11].1

It has also become common to use a validation
dataset to ensure generalization abilities. Our usage

1 In this preprint version we do not report final Czech
hyphenation patterns yet, because we are still iterating on
the big wordlist. We will include final statistics in the journal
version.

The Unreasonable Effectiveness of Pattern Generation

TUG 2019 j 55

904 TUGboat, Volume 0 (9999), No. 0

cs-lemma-ujc-4.wlh
(105 k correctly hyphenated word lemmata)

patgen
 (as pattern generator)

cs-sojka-boot.pat

patgen
 (as hyphenator)

cs-all-cstenten-[1-n].wlh

patgen
 (as hyphenator)

pattmp.4

 human + vim + regex
(fixes inflections)

cs-sojka-boot.par

cs-all-cstenten.wls
(606 k words with common inflections)

Figure 3: How we bootstrapped hyphenation of the big word list by training
patterns (cs-sojka-boot.pat) on the small word list and applying them on the
big one. cs-sojka-boot.par are patgen parameters that are designed to generate
many patterns but still retain their generalization properties. pattmp highlights
which hyphenation points in the source file the new pattern level missed, which were
correctly covered and where they wrongly put a hyphen.

of a validation dataset has proved useful. Table 2
shows that if we were to use the correct optimized
parameters from [16] that have been in use for Czech,
we would overfit the training dataset and perform
worse than their size optimized counterparts.

We believe that the patterns could be devel-
oped and serve as lossless compression of wordlist
dataset, thus maximize the effectiveness of pattern
technology.

Life is the hyphen between matter and spirit.
(Augustus William Hare)

6 The unreasonable effectiveness
We were able to solve the dictionary problem for
Czech hyphenation effectively.

Space effectiveness From 3,000,000+ hyphen-
ated words stored in approximately 30,000,000 bytes
we have produced patterns of size 30,000 bytes,
achieving roughly 1000× space lossless compression.

Time effectiveness Using the trie data structure
for patterns makes the time complexity of accessing
the record related to the word, e.g., hyphenation
point, in very low constant time. The constant is
adequate to the depth of the pattern trie data struc-
ture, e.g., 5 or 6 in the case of Czech. In the case,
the whole pattern trie resides in RAM, the time for
finding the patterns for a word is on the scale of
tens, at most hundreds of single processor instruc-
tions. Word hyphenation throughput is then about
1,000,000 words per second on a modern CPU.

Petr Sojka and Ondřej Sojka

TUG 2019 j 56

TUGboat, Volume 0 (9999), No. 0 905

Table 1: Outputs from running patgen in our Jupyter notebook with two different
parameter sets. The first parameter set is from the German Trennmuster project [5]
and generates 7,291 patterns, 40 kB. The second one from [16] generates shorter and
smaller patterns—4,774 patterns, 25 kB.

Level Patterns Good Bad Missed Lengths Params
1 750 1,683,529 525,670 0 1 5 1 1 1
2 3,178 1,628,874 38 54,655 2 6 1 2 1
3 2,548 1,683,528 9,931 1 3 7 1 1 1
4 1,382 1,683,287 0 242 4 8 1 4 1
5 92 1,683,528 0 1 5 9 1 1 1
6 0 1,683,528 0 1 6 10 1 6 1
7 1 1,683,529 0 0 7 11 1 4 1

Level Patterns Good Bad Missed Lengths Params
1 1,608 1,655,968 131,481 27,561 1 3 1 5 1
2 1,562 1,651,840 2,533 31,689 1 3 1 5 1
3 2,102 1,683,528 2,584 1 2 5 1 3 1
4 166 1,683,135 6 394 2 5 1 3 1

Table 2: A comparison of validation scores of patterns trained on the big (606 k
words) wordlist with different parameters.

Params Good Bad Missed Size Patterns
correctopt [16] 99.41 % 3.47 % 0.59 % 25 kB 4,774
german [5] 99.40 % 3.33 % 0.60 % 40 kB 7,291

Optimality Even though finding exact space and
time-optimal solutions is not feasible, finding an
approximate solution close to optimum is possible.
Heuristics and insight expressed above, together with
Jupyter notebook interactive fine-tuning of patgen
parameter options allows for rapid pattern develop-
ment.

Automation A close-to-optimal solution to the
dictionary problem could be useful not only for Czech
hyphenation, but for all other languages [9, 8], and
more generally, for other instances of the dictionary
problem. Developing heuristics for thresholding of
patgen pattern generation parameters, based on a
statistical analysis of big input, data could allow
the deployment of presented approaches on a much
broader problem set and scale. We believe that
parameters could be automatically approximated
from the statistics of the input data.

Pattern generation— in Wigner terms—“has
proved accurate beyond all reasonable expectations”.
Let us paraphrase another one of his quotes:

The miracle of the appropriateness of the lan-
guage of mathematics patterns for the formula-
tion of the laws of physics data is a wonderful

gift which we neither understand nor deserve.
We should be grateful for it and hope that
it will remain valid in future research and
that it will extend, for better or for worse, to
our pleasure, even though perhaps also to our
bafflement, to wide branches of learning.

“We should stop acting as if our goal is
to author extremely elegant theories, and
instead embrace complexity and make use
of the best ally we have: the unreasonable
effectiveness of data.” (Peter Norvig, [7])

7 Conclusion
We have developed a flexible open language–inde-
pendent system [11] for hyphenation pattern gener-
ation. We have demonstrated the effectiveness of
this system by updating the old Czech hyphenation
patterns [15] and achieving record accuracy. We
have also applied recent data and computer science
advancements, like the usage of interactive Jupyter
notebooks and a validation dataset to prevent over-
fitting, to the more than three decades old problem
of pattern generation.

The Unreasonable Effectiveness of Pattern Generation

TUG 2019 j 57

906 TUGboat, Volume 0 (9999), No. 0

Future work
Word lists for other languages Logical next
steps will be applying developed techniques for dif-
ferent languages: for Slovak and virtually all that
does not yet have word list based hyphenation pat-
tern generation and word list either in Sketch Engine
or elsewhere are available.
Stratification Pattern generation could be further
speed up by several techniques like stratification of
word list on the level of input or on the level of
counting pros and cons examples to include a new
pattern or not.
Pattern-encoded spellchecker We have a big
dictionary of frequent spelling errors from csTenTen
word list. Nothing prevents us from encoding them
into specific patterns or pattern layers with extra
levels and used that information during typesetting,
e.g., to typeset those words with red underlining in
LuaTEX. LuaTEX allows dynamic pattern loading
and Lua programming that will enable the imple-
mentation of this feature, which people are used to
using in editors.
Pattern-based learnable key memories Solu-
tions to versions of dictionary problem are a hot topic
of leading-edge research to design memory data ar-
chitectures like those used in a machine learning of
language [4]. Pattern-based memory network archi-
tectures could speed up language data access in big
memory neural networks considerably.

Acknowledgements
We owe our gratitude to the whole bunch of people:
to Vít Suchomel of Lexical Computing for word lists
from Sketch Engine, to Pavel Šmerk for majka and
paper proofreading, to Don Knuth and Frank Liang
for TEX and patgen, and to Vít Novotný for paper
proofreading.

References
[1] R. W. Hamming. The Unreasonable

Effectiveness of Mathematics. The American
Mathematical Monthly 87(2):81–90, 1980.
http://www.jstor.org/stable/2321982

[2] Internetová jazyková příručka (Internet
Language Reference Book). http://prirucka.
ujc.cas.cz/?id=135

[3] M. Jakubíček, A. Kilgarriff, et al. The TenTen
Corpus Family. In Proc. of 7th International
Corpus Linguistics Conference (CL), pp.
125–127, Lancaster, July 2013.

[4] G. Lample, A. Sablayrolles, et al. Large
Memory Layers with Product Keys, 2019.
https://arxiv.org/pdf/1907.05242

[5] W. Lemberg. A database of German
words with hyphenation information.
https://repo.or.cz/wortliste.git

[6] F. M. Liang. Word Hy-phen-a-tion by
Com-put-er. PhD thesis, Department of
Computer Science, Stanford University, Aug.
1983.

[7] F. Pereira, P. Norvig, and A. Halevy. The
Unreasonable Effectiveness of Data. IEEE
Intelligent Systems 24(02):8–12, Mar. 2009.
doi:10.1109/MIS.2009.36

[8] A. Reutenauer and M. Miklavec. TEX
hyphenation patterns. https://www.tug.org/
tex-hyphen/

[9] K. P. Scannell. Hyphenation patterns for
minority languages. TUGboat 24(2):236–239,
2003.

[10] P. Šmerk. Fast Morphological Analysis
of Czech. In P. Sojka and A. Horák, eds.,
Proceedings of Recent Advances in Slavonic
Natural Language Processing, RASLAN
2009, pp. 13–16, Karlova Studánka, Czech
Republic, Dec. 2009. Masaryk University.
http://nlp.fi.muni.cz/raslan/2009/

[11] O. Sojka and P. Sojka. cshyphen repository.
https://github.com/tensojka/cshyphen

[12] P. Sojka. Notes on Compound Word
Hyphenation in TEX. TUGboat 16(3):290–297,
1995.

[13] P. Sojka. Hyphenation on Demand. TUGboat
20(3):241–247, 1999. tug.org/TUGboat/
tb20-3/tb64sojka.pdf.

[14] P. Sojka. Competing Patterns in Language
Engineering and Computer Typesetting. PhD
thesis, Masaryk University, Brno, Jan. 2005.

[15] P. Sojka and P. Ševeček. Hyphenation in
TEX—Quo Vadis? TUGboat 16(3):280–289,
1995.

[16] P. Sojka and P. Ševeček. Hyphenation in
TEX—Quo Vadis? In M. Goossens, ed.,
Proceedings of the TEX Users Group 16th
Annual Meeting, St. Petersburg, 1995, pp.
280–289, Portland, Oregon, U.S.A., 1995. TEX
Users Group.

[17] V. Suchomel and J. Pomikálek. Efficient
web crawling for large text corpora. In
A. Kilgarriff and S. Sharoff, eds., Proc. of the
seventh Web as Corpus Workshop (WAC), pp.
39–43, Lyon, 2012. http://sigwac.org.uk/
raw-attachment/wiki/WAC7/wac7-proc.pdf

Petr Sojka and Ondřej Sojka

TUG 2019 j 58

TUGboat, Volume 0 (9999), No. 0 907

[18] E. P. Wigner. The Unreasonable Effectiveness
of Mathematics in the Natural Sciences.
Richard Courant Lecture in Mathematical
Sciences delivered at New York University,
May 11, 1959. Communications on Pure and
Applied Mathematics 13(1):1–14, 1960.
doi:10.1002/cpa.3160130102

� Petr Sojka
The Faculty of Informatics at

Masaryk University
Brno, Czech Republic and CSTUG
sojka (at) fi dot muni dot cz
https://www.fi.muni.cz/usr/

sojka/

� Ondřej Sojka
CSTUG
Brno, Czech Republic
ondrej.sojka (at) gmail dot com

The Unreasonable Effectiveness of Pattern Generation

TUG 2019 j 59

TUGboat, Volume 0 (9999), No. 0 draft: August 3, 2019 15:26 ? 1

Quickref: a Stress Test for Texinfo
Didier Verna

Abstract
Quickref is a global documentation project for the
Common Lisp ecosystem. It creates reference manu-
als automatically by introspecting libraries and gen-
erating a corresponding documentation in Texinfo
format. The Texinfo files may subsequently be con-
verted into PDF or HTML. Quickref is non-intrusive:
software developers do not have anything to do to
get their libraries documented by the system.

Quickref may be used to create a local website
documenting your current, partial, working environ-
ment, but it is also able to document the whole
Common Lisp ecosystem at once. The result is a
website containing almost two thousand reference
manuals. Quickref provides a Docker image for an
easy recreation of this website, but a public version
is also available and actively maintained.

Quickref constitutes an enormous and success-
ful stress test for Texinfo. In this paper, we give
an overview of the design and architecture of the
system, describe the challenges and difficulties in
generating valid Texinfo code automatically, and put
some emphasis on the currently remaining problems
and deficiencies.

1 Introduction
Lisp is a high level, general purpose, multi-paradigm
programming language created in 1958 by John Mc-
Carthy[2]. We owe to Lisp many of the programming
concepts that are still considered as fundamental
today (functional programming, garbage collection,
interactive development etc.). Over the years, Lisp
evolved as a family of dialects (including Scheme,
Racket, and Clojure, to name a few) rather than as a
single language. Another Lisp descendant of notable
importance is Common Lisp, a language targeting
the industry, which was standardized in 1994[5].

The Lisp family of languages is mostly known
for two of its most prominent (and correlated) char-
acteristics: a minimalist syntax and a very high level
of expressiveness and extensibility. The root of the
latter, right from the early days, is the fact that
code and data are represented in the same way (a
property known as homoiconicity[3, 1]). This makes
meta-programming not only possible but also trivial.
Being a Lisp, Common Lisp not only maintains this
property, but also provides an unprecedented arsenal
of paradigms making it much more expressive and
extensible than its industrial competitors such as
C++ or Java.

Interestingly enough, the technical strengths of
the language come with serious drawbacks community-
wise (a phenomenon also affecting other dialects,
such as Scheme). These problems are known and
have been discussed many times already[4, 7]. They
may explain, at least partly, why in spite of its tech-
nical potential, the Lisp family of languages never
really took over, and probably never will. The sit-
uation can be summarized as follows: Lisp usually
makes it so easy to “hack” things away that every
Lisper ends up developing his or her own solution,
inevitably leading to a paradox of choice. The result
systematically is a plethora of solutions for every
single problem that every single programmer faces.
Most of the time, these solutions work, but they are
either half-baked or targeted to the author’s specific
needs and thus not general enough, it is difficult to
assert their quality, and they are usually not (well)
documented.

Being aware of the situation, the community
has been attempting to “consolidate” itself in var-
ious ways. Several websites aggregate resources
related to the language or its usage (books, tuto-
rials, implementations, development environments,
applications, etc.). The Common Lisp Foundation
(https://cl-foundation.org/) provides technical
(sometimes even financial) support and infrastructure
for project authors. Once a year, the European Lisp
Symposium (https://www.european-lisp-symposium.
org) gathers the international community, equally
opening to researchers and practitioners, newcomers
and experts.

From a more technical standpoint, solving the
paradox of choice, that is, deciding on official solu-
tions for doing this or that is much more problematic,
mainly because there is no such thing as an official
authority in the community. On the other hand,
some libraries do impose themselves as de facto stan-
dards. Two of them are worth mentioning here. Most
non-trivial Common Lisp packages today use ASDF
for structuring themselves. ASDF allows you to de-
fine your package architecture in terms of source files
and directories, dependencies and other metadata.
It automates the process of compiling and loading
(dependencies included). The second one is Quick-
lisp (https://www.quicklisp.org). Quicklisp is
both a central repository for Common Lisp libraries
(not unlike CTAN) and a programmatic interface for
it. With Quicklisp, downloading, installing, compil-
ing and loading a specific package on your machine
(again, dependencies included) essentially becomes a
one-liner.

One remaining problem is that of documenta-
tion. Of course, it is impossible to force a library

TUG 2019 j 60

? 2 draft: August 3, 2019 15:26 TUGboat, Volume 0 (9999), No. 0

(asdf:defsystem :net.didierverna.declt
:long-name "Documentation Extractor from Common Lisp to Texinfo"
:description "A reference manual generator for Common Lisp libraries"
:author "Didier Verna"
:mailto "didier@didierverna.net"
:homepage "http://www.lrde.epita.fr/~didier/software/lisp/"
:source-control "https://github.com/didierverna/declt"
:license "BSD"
...)

Figure 1: ASDF system definition excerpt

author to properly document his or her work. One
could consider writing the manuals they miss for the
third-party libraries they use, but this never happens
in practice. There is still something that we can do to
mitigate the issue, however. Because Common Lisp
is highly reflexive, it is relatively straightforward to
retrieve the information necessary to automatically
create and typeset reference manuals (as opposed to
user manuals). Several such projects exist already
(remember the paradox of choice). In this paper
we present our own, probably the most complete
Common Lisp documentation generator to date.
Enter Quickref…

2 Overview
Quickref is a global documentation project for the
Common Lisp ecosystem. It generates reference man-
uals for libraries available in Quicklisp automatically.
Quickref is non-intrusive, in the sense that software
developers do not have anything to do to get their li-
braries documented by the system: mere availability
in Quicklisp is the only requirement. In this sec-
tion, we provide a general overview of the system’s
features, design, and implementation.

2.1 Features
Quickref may be used to create a local website docu-
menting your current, partial, working environment,
but it is also able to document the whole Quicklisp
world at once, which means that almost two thousand
reference manuals are generated. Creating a local
documentation website can be done in two different
ways: either by using the provided Docker image
(the most convenient solution for an exhaustive web-
site), or directly via the programmatic interface, from
within a running Lisp environment (when only the
documentation for the local, partial, installation is
required). If you don’t want to run Quickref yourself,
a public website is also provided and actively main-
tained at quickref.common-lisp.net. It always
contains the result of a full run of the system on the
latest Quicklisp distribution.

2.2 Documentation Items
Reference manuals generated by Quickref contain
information collected from various sources. First of
all, many libraries provide a README file of some
sort, which can make for a nice introductory chap-
ter. In addition to source files and dependencies,
ASDF offers ways to specify project-related metadata
in the so-called system definition form. Figure 1
illustrates this. Such information can be easily (pro-
grammatically) retrieved and used. Next, Lisp itself
has some built-in support for documentation, in the
form of so-called docstrings. As their name suggests,
docstrings are (optional) documentation strings that
may be attached to various language constructs such
as functions, variables, methods and so on. Figure 3
provides an example. When available, docstrings
greatly contribute to the completeness of reference
manuals, and again, may be retrieved programmati-
cally through a simple standard function call.

(defmacro @defconstant (name &body body)
"Execute BODY within a @defvr {Constant}.

NAME is escaped for Texinfo prior to rendering.
BODY should render on *standard-output*."
`(@defvr "Constant" ,name ,@body))

Figure 3: Common Lisp docstring example

As for the rest, the solution is less straightfor-
ward. We want our reference manuals to advertise
as many software components as possible (functions,
variables, classes, packages etc.). In general there
are two main strategies for collecting that kind of
information.

Code Walking The first one, known as code walk-
ing, consists in statically analyzing the source code.
A code walker is usually at least as complicated as
the syntax of the target language, because it requires
a parser for it. Because of Lisp’s minimalist syn-
tax, using a code walker is a very tempting solution.
On the other hand, Lisp is extremely dynamic in
nature, meaning that many of the final program’s

TUG 2019 j 61

TUGboat, Volume 0 (9999), No. 0 draft: August 3, 2019 15:26 ? 3

Quicklisp foo/ Declt foo.texi Makeinfo foo.html

Figure 2: Quickref pipeline (Main thread, External Process)

components may not be directly visible in the source
code. On top of that, programs making syntactic
extensions to the language would not be directly
parsable. In short, it is practically impossible to
collect all the required information by code walking
alone. Therefore, we do not use that approach.
Introspection Our preferred approach is by intro-
spection. Here, the idea is to actually compile and
load the libraries, and then collect the relevant in-
formation by inspecting the memory. As mentioned
before, the high level of reflexivity of Lisp makes
introspection rather straightforward. This approach
is not without its own drawbacks however. First,
actually compiling and loading the libraries requires
that all the necessary (possibly foreign) components
and dependencies are available. This can turn out
to be quite heavy, especially when the two thou-
sand or so Quicklisp libraries are involved. Secondly,
some libraries have platform, system, compiler, or
configuration-specific components that may or may
not be compiled and loaded, depending on the exact
conditions. If such a component is skipped by our
system, we won’t see it and hence we won’t docu-
ment it. We think that the simplicity of the approach
by introspection greatly compensates for the risk of
missing a software component here and there. That
is why introspection is our preferred approach.

2.3 Toolchain
Figure 2 depicts the typical reference manual produc-
tion pipeline used by Quickref , for a library named
foo.
1. Quicklisp is first used to make sure the library is

installed upfront, which results in the presence
of a local directory for that library.

2. Declt (https://www.lrde.epita.fr/~didier/
software/lisp/misc.php#declt) is then run
on that library to generate the documentation.
Declt is another library of ours, written 5 years
before Quickref, but with that kind of applica-
tion in mind right from the start. In particular,
it is for that reason that the documentation
generated by Declt is in Texinfo intermediate
format.

3. The Texinfo file is finally processed into HTML.
Texinfo (https://www.gnu.org/software/texinfo/)
is the GNU official documentation format. There
are three main reasons why this format was cho-
sen when Declt was originally written. First,

it is particularly well suited to technical doc-
umentation. More importantly, it is designed
as an abstract, intermediate format from which
human-readable documentation can in turn be
generated in many different forms (PDF and
HTML notably). Finally, it includes very conve-
nient built-in anchoring, cross-referencing, and
indexing capabilities.
Quickref essentially runs this pipeline on the

required libraries. Some important remarks need to
be made about this process.
1. Because Declt works by introspection, it would

be unreasonable to load almost two thousand
libraries in a single Lisp image. For that reason,
Quickref doesn’t actually run Declt directly, but
instead forks it as an external process.

2. Similarly, makeinfo (texi2any in fact), the pro-
gram used to convert the Texinfo files to HTML,
is an external program written in Perl (with
some parts in C), not a Lisp library. Thus, here
again, we fork a makeinfo process out of the
Quickref Lisp instance in order to run it.

2.4 Performance
Experimental studies have been conducted on the
performance of the system. There are different sce-
narios in which Quickref may run, depending on
the exact number of libraries involved, their current
state, and the level of required “isolation” between
them. All the details are provided in [6], but in short,
there is a compromise to be made between the execu-
tion time and the reliability of the result. We found
that for a complete sequential run of the system on
the totality of Quicklisp, the most frequent scenario
takes around 2 hours on our test machine, whereas
the safest one requires around seven hours.

In order to improve the situation, we recently
added support for parallelism to the system. The
upgraded architecture is depicted in Figure 4. In
this new processing scheme, an adjustable number
of threads is devoted to generating the Texinfo files
in parallel. In a second stage, an also adjustable
number of threads is in charge of picking the Texinfo
files as they come, and creating the corresponding
HTML versions. A specific scheduling algorithm (not
unlike that of the make program) delivers libraries in
an order, and at a time suitable to parallel processing
by the Declt threads, avoiding any concurrency prob-
lems. With this new architecture in place, we were

TUG 2019 j 62

? 4 draft: August 3, 2019 15:26 TUGboat, Volume 0 (9999), No. 0

Library Pool Declt

Declt

Declt

Texinfo Files Makeinfo

Makeinfo

Makeinfo

HTML Files

Figure 4: Quickref parallel processing (Declt thread, Makeinfo thread)

able to cut the processing time by a factor of four,
reducing the worst case scenario to 1h45 and the
most frequent one to half an hour. These numbers
make it reasonable to run Quickref on one’s local
machine again.

3 Challenges
Quickref is a challenging project in many regards.
Two thousand libraries is a lot to process. Setting up
the environment necessary to properly compile and
run those libraries is not trivial, especially because
many of them have platform or system-specific code
and require foreign dependencies. Finally, Quickref
constitutes a considerable (and successful) stress test
for Texinfo. The Texinfo file sizes range from 7Ko to
15Mo (make it double for the generated HTML ones).
The number of lines of Texinfo code in those files
extends from 364 to 285 020, the indexes may contain
between 14 and 44 500 entries, and the processing
times vary from 0.3s to 1m 38s per file.

Challenges related to the project scalability and
performance have been described previously[6]. This
section focuses on more general or typesetting /
Texinfo-oriented ones.

3.1 Metadata Format Underspecification
One difficulty in collecting metadata is that their
format is often underspecified, or not specified at
all, as is the case with ASDF system ones. To give
just a single example, Figure 5 lists several of the
possible values we found for the author metadata.
As you can see, most programmers use strings, but
the actual contents vary greatly (single or multiple
names, email addresses, middle letter, nicknames,
etc.), and so does the formatting. For the anecdote,
we found one attempt at pretty printing the contents
of the string with a history of authors, and one
developer even went as far as concealing his email
address by inserting Lisp code into the string itself…

It would be unreasonable to even just try to
understand all these formats (what others will we
discover in the future?), so we remain somewhat
strict in what we recognize — in that particular case,
strings of the form "author[<email>]", or a list

of such. The Declt user manual has a Guidelines
section with some advice for library authors that
would accept to be friendlier with our tool. We
cannot force anyone to honor our guidelines however.

"Didier Verna"
"Didier Verna <didier@lrde.epita.fr>"
"Didier Verna didier@lrde.epita.fr"
"didier@lrde.epita.fr"
"<didier@lrde.epita.fr>"
"Didier Verna and Antoine Martin"
"Didier Verna, Antoine Martin"
"Didier Verna Antoine Martin"
"D. Verna Antoine E Martin"
"D. Verna Antoine \"Joe Cool\" Martin"
("Didier Verna" "Antoine Martin")
"

Original Authors:
Salvi Péter,
Naganuma Shigeta,
Tada Masashi,
Abe Yusuke,
Jianshi Huang,
Fujii Ryo,
Abe Seika,
Kuroda Hisao

Author Post MSI CLML Contribution:
Mike Maul <maul.mike@gmail.com>"

"(let ((n \"Christoph-Simon Senjak\")) ~
(format nil \"~A <~C~C~C~C~A>\" ~
n (elt n 0) (elt n 10) (elt n 16) ~
#\\@ \"uxul.de\"))"

Figure 5: ASDF author metadata

On the other hand, Quickref has an interesting
social effect that we particularly noticed the first
time the public website was released. In general,
people don’t like our documentation for their work
to look bad, especially when it is publicly available.
In the first few days following the initial release and
announcement of Quickref, we literally got dozens of
reports related to typesetting glitches. Programmers
rushed to the website in order to see what their
library looked like. In the cases were the bugs weren’t
on our part, many of the concerned authors were
hence willing to slightly bend their own coding style,
in order for our documentation to look better. We
still count on that social effect.

TUG 2019 j 63

TUGboat, Volume 0 (9999), No. 0 draft: August 3, 2019 15:26 ? 5

3.2 Definitions Grouping
Rather than just providing a somewhat boring list
of functions, variables, and other definitions, as ref-
erence manuals do, Declt attempts to improve the
presentation in different ways. In particular, it makes
sense to group related definitions together when pos-
sible.

A typical example of this is when we need to
document accessors (readers and writers to the same
information). It makes sense to group these defini-
tions together, provided that their respective doc-
strings are either nonexistent, or exactly the same
(this is one of the incentives given to library authors
in the Declt’s user manual Guidelines section). This
is exemplified in Figure 6. Another typical example
consists in listing methods (in the Object-Oriented
sense) within the corresponding generic function’s
entry.

context-hyperlinksp CONTEXT [Function]
(setf context-hyperlinksp) BOOL CONTEXT [Function]

Access CONTEXT ’s hyperlinksp flag.

Package [net.didierverna.declt], page 29,
Source [doc.lisp], page 24, (file)

Figure 6: Accessors definitions grouping

Texinfo provides convenient macros for defin-
ing usual programming language constructs (@defun,
@defvar, etc.), and “extended” versions for adding
sub-definitions (@defunx, @defvarx, etc.). Unfortu-
nately, definitions grouping prevents us from using
them, for several reasons.
1. Nesting @def... calls would lead to undesirable

indentation.
2. Heterogeneous nesting is prohibited. For exam-

ple, it is not possible use @defvarx within a call
to @defun (as surprising as it may sound, such
kind of heterogeneous grouping makes sense in
Lisp).

On the other hand, that kind of thing is possible
with the lower-level (more generic) macros, as hetero-
geneous categories become simple macro arguments.
One can, for example use the following (which we
frequently do):
@deffn {Function} ...
@deffnx {Compiler Macro} ...
...
@end deffn
This is why we stick to those lower-level macros, at
the expense of re-inventing some of the higher-level
built-in functionality.

Even with this workaround, some remaining
limitations still get in our way.

1. There are only nine canonical categories and it
is not possible to add new ones (at least not
without hacking Texinfo’s internals).

2. Although we understand the technical reasons
for it (parsing problems, probably), some of the
canonical categories are arguable. For example,
the distinction between typed and untyped func-
tions makes little sense in Common Lisp which
has optional static typing. We would prefer
to have a single function definition entry point
handling optional types.

3. Heterogeneous mixing of the lower-level macros
is still prohibited. For example, it remains im-
possible to write the following (still making sense
in Lisp):

@deffn {Function} ...
@defvrx {Symbol Macro} ...
...
@end deffn

3.3 Pretty Printing
Pretty printing is probably the biggest challenge
in typesetting Lisp code, because of the language’s
flexibility. In particular, it is very difficult to find
the right balance between readability and precision.

Identifiers In Lisp, identifiers can be basically
anything. When identifiers contain characters that
are normally not usable (e.g. blanks or parenthesis),
the identifier must be escaped with pipes. In order
to improve the display of such identifiers, we use
several heuristics.
• A symbol containing blank characters is nor-

mally escaped like this: |my identifier|. Be-
cause the escaping syntax doesn’t look very nice
in documentation, we replace blank characters
with more explicit Unicode ones, for instance
my␣identifier. We call this technique “reveal-
ing”. Of course, if one identifier happens to
contain one of our revealing characters already,
the typesetting will be ambiguous. The case
should be extremely rare though.

• In some situations on the other hand, it is ac-
tually better to not reveal the blank characters.
The so-called setf (setter / writer) functions
are such an example. Here, the identifier is in
fact composed of several symbols, such as in
(setf this). Revealing the whitespace charac-
ter would only clutter the output, so we leave it
alone.

• Finally, some unusual identifiers that are nor-
mally escaped in Lisp, such as |argument(s)|,

TUG 2019 j 64

? 6 draft: August 3, 2019 15:26 TUGboat, Volume 0 (9999), No. 0

do not pose any readability problems in docu-
mentation, so we just typeset them without the
escaping syntax.

Qualification Another issue is that of symbol qual-
ification. With one exception, symbols in Lisp be-
long to a package (more or less the equivalent of
a namespace). Many Lispers use Java-style pack-
age names, which can be quite long. Typesetting a
fully qualified symbol would give something like that:
my.long.package.name:symbol. Lisp libraries usu-
ally come with their own very few packages, so type-
setting a reference manual with thousands of symbols
fully qualified with the same package name would
look pretty bad. Because of that, we avoid typeset-
ting the package names in general. Unfortunately, if
different packages contain eponymous symbols, this
will lead to a confusing output. Currently, we don’t
have a satisfactory answer to this problem.

Docstrings The question of how to typeset doc-
strings is also not trivial. People tend to use varying
degrees of plain-text formatting in them, with all
kinds of line lengths, etc. Currently, we use only a
very basic heuristic to determine whether an end
of line in a docstring is really wanted here, or just
a consequence of reaching the “right margin”. We
are also considering providing an option to simply
display the docstrings verbatim, and on the long
term, we plan to support markup languages such as
Markdown.

References A Texinfo-related problem we have is
that links are displayed differently, depending on the
output format, and with some rather undesirable
DWIM behavior. Table 1 shows the output of a
call to @ref{anchor, , label} in various formats
(anchor is the link’s internal name, label is the
desired output).

HTML label
PDF [label], page 12,
Info *note label: anchor.

Emacs Info mode See label.
Table 1: Texinfo links formatting in various output
formats

In PDF, the presence of the trailing comma
is context-dependent. In Info, both the label and
the actual anchor name are typeset, which is very
problematic for us (see Section 3.4). In Emacs Info
mode, the casing of “See” seems to vary. In general,
we would prefer to have more consistent output across
the different formats, or at least, more control over
it.

3.4 Anchoring
The final Texinfo challenge we want to address here
is that of anchoring. In Texinfo, anchor names have
severe limitations: dots, commas, colons, and paren-
thesis are explicitly forbidden (due to the final dis-
play syntax in Info). This is very unfortunate be-
cause those characters are extremely common in Lisp
(parenthesis of course, but also dots and colons in
the package qualification syntax).

Our original (and still current) solution is to
replace those characters by a sequence such as <dot>.
Of course, this makes anchor names particularly ugly,
but we didn’t think that was a problem because we
have nicer labels to point to them in the output (in
fact, labels have a less limited syntax, although this
is not well documented). However, we later realized
that anchor names still appear in the HTML output
and also in pure Info. Consequently, we are now
considering changing our escaping policy, perhaps by
using Unicode characters as replacements, just like
we already do on identifiers (see Section 3.3).

The second anchoring problem we have is that
of Texinfo nodes, the fundamental document struc-
turing construct. Nodes have two very strong lim-
itations: their names must be unique and there is
no control over the way they are displayed in the
output. This is a serious problem for us because
Lisp has a lot of different namespaces. A symbol
may refer to a variable, a function, a class, and many
other things at the same time. Consequently, if we
were to use one node for each definition, we would
need to mangle the node name in a way that would
make it barely human-readable. Consequently, we
originally decided not to do this, and avoid nodes
as much as possible (somewhat of a paradox, given
the importance of nodes in Texinfo). For example,
our generated reference manuals have just one node
entitled “Exported Functions”, and the library’s API
(perhaps constituted of hundreds of functions) listed
in there, with manual anchors instead of nodes for
every public function.

While this works well for PDFoutput, we later
realized that this makes indexing practically useless
in other formats. In PDF, the indexes point to pages,
which is as specific as it can get on (even virtual)
paper. In formats which don’t have page numbers
however, such as Info and HTML, the indexes point to
the menu entry containing the first node referenced.
Basically, this means for instance that all indexes for
the hundreds of public functions in a library point
to the same location in the HTML reference manual,
which is way too coarse to be usable.

TUG 2019 j 65

TUGboat, Volume 0 (9999), No. 0 draft: August 3, 2019 15:26 ? 7

Because of that, we are now considering chang-
ing our original policy with respect to nodes, and
get back to associating every definition with one
node, at the expense of having very long and ugly
node names. It is our hope that one day, the node
names uniqueness constraint in Texinfo be relaxed,
perhaps disambiguating by using their hierarchical
organization.

4 Conclusion and Perspectives
Although a relatively young project, Quickref is al-
ready quite successful. It is able to document almost
two thousand Common Lisp libraries without any
showstopper. Less than 2% of the Quicklisp libraries
still pose problems and some of the related bugs
have already been identified. The Common Lisp
community seems generally grateful for this project.

Quickref also constitutes an enormous, and suc-
cessful, stress test for Texinfo. Given the figures
involved, it was not obvious how makeinfo would
handle the workload, but it turned out to be very
reliable and scalable. Although the design of Texinfo
sometimes gets in our way, we still consider it a good
choice for this project, in particular given the diver-
sity of its output formats and its built-in indexing
capabilities.

In addition to solving the problems described
in this paper, the project also has much room for
improvement left. In particular, the following are at
the top level of our TODO list.
1. The casing problem needs to be addressed. Tra-

ditional Lisp is case-insensitive but internally
upcases every symbol name (except for escaped
ones). Several modern Lisps offer alternative
policies with respect to casing. Quickref doesn’t
currently address casing problems at all (not
even that of escaped symbols).

2. Our indexing policy could be improved. Cur-
rently, we only use the built-in Texinfo indexes
(Functions, Variables, etc.) but we also provide
one level of sub-indexing. For instance, macros
appear in the function index, but they are listed
twice: once as top level entries, and once under
a Macro sub-category. The question of which
amount of sub-indexing we want, and whether
to create and use new kinds of indexes is under
consideration.

3. Although our reference manuals are already
stuffed with cross-references, we plan to add
more. Because Declt was originally designed to
generate one reference manual at a time, only
internal cross-references are available. The exis-
tence of Quickref now raises the need for exter-

nal cross-references (that is, between different
manuals).

4. Many aspects of the pretty printing could still be
improved, notably that of so-called “unreadable”
objects and lambda lists.

5. In addition to HTML, we plan to provide PDF
as well as Info files on the website, since they
are readily available.

6. We intend to integrate Quickref with Emacs
and Slime (a de facto standard Emacs-based
development environment for Common Lisp).
In particular, we want to give Emacs the abil-
ity to browse the Info reference manuals online
or locally if possible, and provide Slime with
commands for opening the Quickref documenta-
tion directly from Lisp source code displayed in
Emacs buffers.

7. Finally, we are working on providing new in-
dex pages for the website. Currently, we have a
library index and an author index. We are work-
ing on providing keyword and category indexes
as well.

References
[1] A. C. Kay. The Reactive Engine. PhD thesis,

University of Utah, 1969.
[2] J. MacCarthy. Recursive functions of symbolic

expressions and their computation by machine,
part i. Communications of the ACM 3(4):184–195,
Apr. 1960.
doi:10.1145/367177.367199

[3] M. D. McIlroy. Macro instruction extensions of
compiler languages. Communications of the ACM
3:214–220, Apr. 1960.
doi:10.1145/367177.367223

[4] M. Tarver. http://www.marktarver.com/
bipolar.html, 2007.

[5] Ansi. American National Standard: Pro-
gramming Language – Common Lisp. ANSI
X3.226:1994 (R1999), 1994.

[6] D. Verna. Parallelizing quickref. In 12th European
Lisp Symposium, pp. 89–96, Genova, Italy, Apr.
2019.
doi:10.5281/zenodo.2632534

[7] R. Winestock. The Lisp curse. http:
//www.winestockwebdesign.com/Essays/
Lisp_Curse.html, Apr. 2011.

� Didier Verna
14-16 rue Voltaire
94276 Le Kremlin-Bicêtre
France
didier (at) lrde.epita.fr
http://www.didierverna.info

TUG 2019 j 66

Do you need on-site training for LATEX?

Contact Cheryl Ponchin at

cponchin@comcast.net

Training will be customized for your company needs.

Any level, from Beginning to Advanced.

Science is what we understand well enough to explain to a
computer. Art is everything else we do.

— Donald E. Knuth

stmdocs
the confluence of art and science of text

processing in the cloud!

◦ empowering authors to self-publish
◦ assisted authoring
◦ TEXFolio — the complete journal

production in the cloud
◦ NEPTUNE — proofing framework for

TEX authors

S T M D O C U M E N T E N G I N E E R I N G P V T LT D
Trivandrum • India 695571 • www.stmdocs.in • info@stmdocs.in

1

Find out more at www.overleaf.com

A free online LaTeX and Rich Text

collaborative writing and publishing tool

Features include:

• Cloud-based platform: all you need is a web browser. No

software to install. Prefer to work offline? No problem - stay in
sync with Github or Dropbox

• Complementary Rich Text and LaTeX modes: prefer to see
less code when writing? Or love writing in LaTeX? Easy to
switch between modes

• Sharing and collaboration: easily share and invite colleagues
& co-authors to collaborate

• 1000’s of templates: journal articles, theses, grants, posters,
CVs, books and more – simply open and start to write

• Simplified submission: directly from Overleaf into many
repositories and journals

• Automated real-time preview: project compiles in the
background, so you can see the PDF output right away

• Reference Management Linking: multiple reference tool linking
options – fast, simple and correct in-document referencing

• Real-time Track Changes & Commenting: with real-time
commenting and integrated chat - there is no need to switch to
other tools like email, just work within Overleaf

• Institutional accounts available: with custom institutional

web portals

Overleaf makes the whole process of writing, editing and
publishing scientific documents much quicker and easier.

“If you think you’re a really
good programmer… read
[Knuth’s] Art of Computer
Programming… You should
definitely send me a résumé
if you can read the whole
thing.”

—Bill Gates

Learn more and shop at
informit.com/TUG

Computers &
Typesetting,
Volumes A-E

Boxed Set

The Art of
Computer
Programming
Volumes 1-4A
Boxed Set

Congratulations to the TeX Users Group

on the occasion of its 40th annual conference

Thirteenth ConTEXt user meeting

Bassenge, Belgium

September 16–21, 2019

meeting.contextgarden.net

GuIT 2019

Turin, Italy

October 26, 2019

guitex.org/home/en/meeting

