Holon Programming Regained

precursors to literate programming

Mitch Gerrard



(from 1982 draft)



tex



tex.



tex.web



tex.web

web =



tex.web

web = pascal



tex.web

web = pascal +



tex.web

web = pascal + tex?



tex.web

web = pascal + tex?

web



tex.web

web = pascal + tex?

web.



tex.web

web = pascal + tex?

web.web



P. A. de Marneffe, Holon Programming.
Univ. de Liege, Service D’Informatique
(December, 1973).












December, 1973

HOLON PROGRAMMING:

SURVEY

By Pierre-Arncul de Marneffe

Universite de Liege
Service D'Informatique
Avenue Des Tilleuls, 59
P-4000 LIEGC

Belgium.































3& 3 dri K
of wafe‘:-



“’ma/ F!na }:' }l‘lhk
H,0 cp  Cvp



s

?m& (»‘ma F “

H,0

CUF

CUP

\

drink

“It seems preferable to coin a
new term to designate these
nodes on the hierarchic tree
which behave partly as wholes
or wholly as parts, according to
the way you look at them. The
term I would propose is ‘holon’,
from the greek holos (meaning
whole), with the suffix ‘on’,
which, as in proton or neutron,
suggests a particle or a part.”






?r'in’( $iest
1008 primes



?r'in’( $iest

1008 primes
Fin/ ?mf
table table



?r'in’( $iest

1008 primes
Fin/ ?mf
table table

/AN /N
























odd inversion program
begin find first word starting character;
repeat find a word and print correctly;
until end of useful file
end

find first word etc
begin read first symbol;
while last read symbol is a space;
do read next symbol
end

read first symbol
begin declare Irs: character at
odd inversion program level;

# Irs <+ RNC ##;

end



odd inversion program begin

declare even: boolean, Irs: character, EOF: boolean;

begin find first word starting character; even ¢~ true; EOF + filse;
. Irs <~ RNC; while Irs = ’_ " do Irs +— RNC;
repeat find a word and print correctly; repeat
o begin
unt].l end Of userI ﬁle declare buffer: character(20), pointer: integer;
pointer « 0;
end repeat
if pointer > 20 then (datatest exit);
find first word etc pointer ¢ pointer + 1;
. buffer(pointer) < Irs;
begin read first symbol; Irs + RNG;
until (Irs="_")or (Irs = "");

while last read symbol is a space;

if even = true
do read next symbol - then

begin declare point2: integer; point2 « 1;
end repeat PNC(buffer(point2)); point2 < point2 + 1;
until point2 > pointer;
end
else
begin while pointer # 0 do
I'ea,d ﬁrst SymbOl begin PNC(buffer(pointer)); pointer < pointer — 1; end

end

begin declare Irs: character at g g

" B . iflrs="_"
Odd INVETsIOon, program level’ then begin repeat Irs <~ RNC until Irs # ’_’; end

# Irs «+— RNC ##; if lrs ="/
then begin PNC("."); EOF < true; end
end else PNC(".,");
end
until EOF = true;
end



odd inversion program
begin find first word starting character;
repeat find a word and print correctly;
until end of useful file
end

find first word etc
begin read first symbol;
while last read symbol is a space;
do read next symbol
end

read first symbol
begin declare Irs: character at
odd inversion program level;

# Irs <+ RNC ##;

end

1. This program is one possible solution to the
problem posed in section 16 of Dijkstra’s Notes.

program odd_inversion;
var ( Global variables 4)
begin (Find first word starting character 2);
repeat (Find a word and print correctly 3);
until (End of useful file 13)
end.

2. (Find first word starting character 2)=
begin (Read first symbol 11);
while (Last read symbol is a space 12);
do (Read next symbol 6)
end

This code is used in section 1.

10. (Global variables 4) +=
Irs: char; {last-read symbol }

This code is used in section 1.
11. (Read first symbol 11)=

begin [rs <~ RNC; {read next character }
end

This code is used in section 2.

RNC': procedure, §15



find first word etc 2. (Find first word starting character 2)=

begin read first symbol; begin (Read first symbol 11 );
while last read symbol is a space; while (Last read symbol is a space 12);
do read next symbol do (Read next symbol 6)

end end

This code is used in section 1.



odd inversion program
begin find first word starting character;
repeat find a word and print correctly;
until end of useful file
end

find first word etc
begin read first symbol;
while last read symbol is a space;
do read next symbol
end

read first symbol
begin declare Irs: character at
odd inversion program level;

# Irs <+ RNC ##;

end

1. This program is one possible solution to the
problem posed in section 16 of Dijkstra’s Notes.

program odd_inversion;
var ( Global variables 4)
begin (Find first word starting character 2);
repeat (Find a word and print correctly 3);
until (End of useful file 13)
end.

2. (Find first word starting character 2)=
begin (Read first symbol 11);
while (Last read symbol is a space 12);
do (Read next symbol 6)
end

This code is used in section 1.

10. (Global variables 4) +=
Irs: char; {last-read symbol }

This code is used in section 1.
11. (Read first symbol 11)=

begin [rs <~ RNC; {read next character }
end

This code is used in section 2.

RNC': procedure, §15












D. E. Knuth, Computer-drawn flowcharts.
Communications of the ACM, 6(9),
555-563 (1963).



A REVIEW OF "STRUCTURED PROGRAMMING"

by

Donald E. Knuth

STAN-CS-73-371
June 1973

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

2y

Donald E. Knuth.
A review of "Structured Programming'".
Tech. Report. Stanford University (1973).



Peter Naur,
Myrtle Kellington,
Derek Oppen,
Ole-Johan Dahl,
Jim Dunlap,
Edwin Towster,
Robert Snowdon,



Preliterate Programming
(an anthology)

forthcoming!



Holon Programming: A Survey

github.com/holon-scribe/holon-programming



