
Markdown Themes
 in Practice

 Vít Starý Novotný
 TUG 2024, Praha
 July 19, 2024

Introduction
 (La)TeX is moderately easy to write, but difficult to read and think about:

Markdown is a lightweight
markup language that is
easy to both read and write:

First Level Header
Second Level Header
Now is the time for _all_ good men
to come to the aid of their country.

Markdown Themes in Practice

> It is strangely difficult to get people to see the point, but
the defects of LaTeX for concentration, writing and

thought, are at least as great as those of Word, for the
simple reason that it gives the writer too much power;

there is always another package to call in the preamble,
as there is always another drop down menu in Word. [...]

> In markdown – not to put too fine a point on it – the
writer is only ever faced with one question, and it is the

right one: what the next sentence should be.

[@thompson2010]

https://www.google.com/url?q=https://groups.google.com/g/pandoc-discuss/c/tKB4E7y6H2E/m/OiieKAuWsl4J&sa=D&source=editors&ust=1721050126150441&usg=AOvVaw3eKk8Vte_w1maEOVgcBn7H

Introduction
Markdown package allows TeXperts to style Markdown elements with TeX macros:

\def\markdownRendererEmphasis{\emph}
\markinline{Hello _world_} → Hello \markdownRendererEmphasis{world}
 → Hello \emph{world}
 → Hello world

[Themes][1] allow TeXperts to express large stylesheets as program modules.

 [1]: https://doi.org/10.47397/tb/42-2/tb131novotny-markdown
 (V. Novotný. Markdown 2.10.0: LaTeX themes & snippets, two flavors of comments, and
 LuaMetaTeX. TUGboat 42(2):186–193, 2021.)

Markdown _Themes_ in Practice

https://www.google.com/url?q=https://doi.org/10.47397/tb/42-2/tb131novotny-markdown&sa=D&source=editors&ust=1721050126169292&usg=AOvVaw3mhrjlYpzGn3EhdPV4HTfy
https://www.google.com/url?q=https://doi.org/10.47397/tb/42-2/tb131novotny-markdown&sa=D&source=editors&ust=1721050126169521&usg=AOvVaw1TMCq_3wEz2LpEPNI4myGF

Introduction
In my previous work, I spoke about themes in abstract using simple examples.
Since July 2023, I have been developing complex themes for ISTQB.
This talk is a case study of the ISTQB themes.

After the talk, you will:
1. Understand the purpose of Markdown themes.
2. Know how to create themes for LaTeX.
3. Want a wolf plushie.

Markdown Themes _in Practice_

 Contents
 ~~ Introduction (14:00) ~~
 Project Overview (14:05)
 1. Question Definitions (14:08)
 2. User Interface (14:12)
 3. Implementation (14:15)
 Conclusion (14:25)

Project Overview
In [my project][2], I developed a LaTeX document class and six Markdown themes.
Document class is called `istqb` and it implements design and LaTeX markup.
Themes are called `istqb/*`, they are written in the expl3 programming language,
and they process YAML and Markdown documents, see next slide.

 [2]: https://github.com/istqborg/istqb_product_base (Code of the LaTeX+Markdown template)

https://www.google.com/url?q=https://github.com/istqborg/istqb_product_base&sa=D&source=editors&ust=1721050126813052&usg=AOvVaw2N9JB0ku7kFgtpE1SBhLdt
https://www.google.com/url?q=https://github.com/istqborg/istqb_product_base&sa=D&source=editors&ust=1721050126813310&usg=AOvVaw10AQV5rt580dgoHGi4XOlc

1. Question Definitions
Here is an example file `questions.yml` with definitions for three questions:

[…]
questions:
 1:
 learning-objective: 1.2.3
 k-level: K1
 number-of-points: 1
 question: What is the answer to life, the universe, and everything?
 answers: {a: 24, b: 42, c: 64, d: 84}
 correct: [b]
 explanation: >
 The answer to life, the universe, and everything is a concept from Douglas Adams’
 science fiction series “The Hitchhiker’s Guide to the Galaxy”, where the supercomputer
 Deep Thought gives the answer 42.
 […]

 […]
 5:
 learning-objective: 4.5.6
 k-level: K2
 number-of-points: 1
 question: What’s France’s capital?
 answers: {a: Berlin, b: Madrid, c: Paris, d: Rome}
 correct: [c]
 explanation: The capital of France is Paris, known for art, fashion, and culture.
 6:
 learning-objective: 7.8.9
 k-level: K3
 number-of-points: 2
 question: Which two of the following animals are classified as mammals?
 answers: {a: Shark, b: Dolphin, c: Eagle, d: Whale, e: Crocodile}
 correct: [b, d]
 explanation: >
 Dolphins and whales are classified as mammals because they are warm-blooded,
 breathe with lungs, and feed their young milk.

2. User Interface Typesetting Questions
Here is an example ISTQB Sample Exam Questions document in LaTeX:

\documentclass{istqb}
\usepackage{markdown}
\markdownSetup { import = {
 istqb/sample-exam/questions =
 questions as qst } }
\begin{document}
\istqbunnumberedsection{Questions}
\markdownInput[snippet=qst]{questions.yml}
\end{document}

The document imports snippet `questions` from theme `istqb/sample-exam/questions`
and uses it to 1. process file `questions.yml` and 2. typeset the list of questions from
Figure 2a on next slide.

2. User Interface
Here is an example ISTQB Sample Exam Answers document in LaTeX:

\documentclass{istqb}
\usepackage{markdown}
\markdownSetup { import = {
 istqb/sample-exam/answers =
 answer-key as key,
 answers as ans } }
\begin{document}

The document imports snippets `answers` and `answer-key` from theme `istqb/sample-
-exam/questions` and uses it to 1. process file `questions.yml`, 2. typeset the answer
key from Figure 2b on next slide, and 3. typeset the list of answers from Figure 2c on next slide.

Typesetting Answer Key and Answers

\istqblandscapebegin
\istqbunnumberedsection{Answer key}
\markdownInput[snippet=key]{questions.yml}
\istqbunnumberedsection{Answers}
\markdownInput[snippet=ans]{questions.yml}
\istqblandscapeend
\end{document}

 Contents
 ~~ Introduction (14:00) ~~
 ~~ Project Overview (14:05) ~~
 ~~ 1. Question Definitions (14:08) ~~
 ~~ 2. User Interface (14:12) ~~
 3. Implementation (14:15)
 Conclusion (14:25)

3. Implementation
Snippet `questions` from `istqb/sample-exam` processes question definitions:

\markdownSetupSnippet
 { questions }
 { jekyllData, expectJekyllData,
 renderers = {
 jekyllData(Mapping|Sequence)Begin = {
 \str_case:nn
 { #1 } { { questions } {
 \markdownSetup
 { code = \group_begin:,
 renderers = { jekyllData(Mapping|Sequence)End = },
 snippet = istqb / sample-exam / questions / list,
 renderers = { jekyllData(Mapping|Sequence)End += \group_end: }}}}}}}

The snippet reads the field `questions` and calls snippet `questions/list`.

Processing Question Definitions

[…]
questions:
 1:
 learning-objective: […]
 k-level: K1
 number-of-points: 1
 […]

3. Implementation
Snippet `questions/list` processes individual questions:

\seq_new:N \g_istqb_questions_seq
\markdownSetupSnippet
 { questions / list }
 { renderers = {
 jekyllData(Mapping|Sequence)Begin = {
 \group_begin:
 \tl_set:Nn \l_istqb_current_question_tl { #1 }
 \seq_gput_right:Nn \g_istqb_questions_seq { #1 }
 \markdownSetup
 { renderers = { jekyllDataMappingEnd = },
 snippet = istqb / sample-exam / questions / *,
 renderers = { jekyllDataMappingEnd += \group_end: }}}}}}}

The snippet stores question numbers and calls snippet `questions/*`.

Processing Question Definitions

[…]
questions:
 1:
 learning-objective: […]
 k-level: K1
 number-of-points: 1
 […]

3. Implementation
Snippet `questions/*` processes question fields:

\markdownSetupSnippet
 { questions / * }
 { renderers = {
 jekyllData(String|Number) = {
 \keys_set:nn { istqb / questions / * }
 { { #1 } = { #2 } }},
 },
 jekyllDataMappingBegin = { [call `questions/*/answers`] },
 jekyllDataSequenceBegin = { [〃 `questions/*/correct`] }}}

The snippet 1. passes unstructured fields to key–value `istqb/questions/*`,
2. passes field `answers` to snippet `questions/*/answers`, and 3. passes field
`correct` to snippet `questions/*/correct`.

Processing Question Definitions

[…]
 learning-objective: […]
 k-level: K1
 number-of-points: 1
 question: What is the […]
 answers: {a: 24, …}
 correct: [b]
 explanation: The […]
 […]

3. Implementation
Key–value `istqb/questions/*` processes unstructured question fields:

\prop_new:N \g_istqb_question_learning_objective_prop
\prop_new:N \g_istqb_question_k_level_prop
\prop_new:N \g_istqb_question_number_of_points_prop
\prop_new:N \g_istqb_question_text_prop
\prop_new:N \g_istqb_question_explanation_prop
\keys_define:nn
 { istqb / questions / * }
 { learning-objective .code:n = {
 \prop_gput:NVn \g_istqb_question_number_of_points_prop
 \l_istqb_current_question_tl { #1 } },
 k-level […], number-of-points […], question […], explanation […] }

The key–value stores the values in dicts keyed by current question number.

Processing Question Definitions

[…]
 learning-objective: […]
 k-level: K1
 number-of-points: 1
 question: What is the […]
 answers: {a: 24, …}
 correct: [b]
 explanation: The […]
 […]

3. Implementation
Snippet `questions/*/correct` processes field `correct`:
\prop_new:N \g_istqb_answer_correct_keys_prop
 \seq_new:N \l_istqb_current_answer_correct_keys_seq
\markdownSetupSnippet
 { questions / * / correct }
 { renderers = {
 jekyllData(String|Number) = {
 \seq_put_right:Nn
 \l_istqb_current_answer_correct_keys_seq { #2 } },
 jekyllDataSequenceEnd += {
 \clist_set_from_seq:NN \l_tmpa_clist
 \l_istqb_current_answer_correct_keys_seq
 \prop_gput:NVV \l_istqb_current_answer_correct_keys_seq
 \l_istqb_current_question_tl \l_tmpa_clist }}}

The snippet stores correct answer letters in a dict keyed by current question number.

Processing Question Definitions

[…]
 learning-objective: […]
 k-level: K1
 number-of-points: 1
 question: What is the […]
 answers: {a: 24, …}
 correct: [b]
 explanation: The […]
 […]

3. Implementation
Snippet `questions/*/answers` processes field `answers`:
\prop_new:N \g_istqb_answer_keys_prop
\prop_new:N \g_istqb_answers_prop
 \seq_new:N \l_istqb_current_answer_keys_seq
\markdownSetupSnippet
 { questions / * / answers }
 { renderers = {
 jekyllData(String|Number) = {
 \seq_put_right:Nn \l_istqb_current_answer_keys_seq { #1 }
 \tl_set:NV \l_tmpa_tl \l_istqb_current_question_tl
 \tl_put_right:Nn \l_tmpa_tl { / #1 }
 \prop_gput:NVn \g_istqb_answers_prop \l_tmpa_tl { #2 } },
 jekyllDataMappingEnd += {
 \clist_set_from_seq:NN \l_tmpa_clist \l_istqb_current_answer_keys_seq
 \prop_gput:NVV \g_istqb_answer_keys_prop \l_istqb_current_question_tl \l_tmpa_clist }}}

The snippet 1. stores answer texts in a dict keyed by current question number `/`
answer letter and 2. stores answer letters in a dict keyed by current question number.

Processing Question Definitions

[…]
 learning-objective: […]
 k-level: K1
 number-of-points: 1
 question: What is the […]
 answers: {a: 24, …}
 correct: [b]
 explanation: The […]
 […]

3. Implementation
Snippet `istqb/questions` has recursively produced the following data structures:
1. Sequence `\g_istqb_questions_seq` with all question numbers.
2. Dicts `\g_istqb_question_*_prop` with unstructured values.
3. Dicts `\g_istqb_answer*_keys_prop` with answer keys.
4. Dict `\g_istqb_answers_prop` with answer texts.

We can use these data structures to typeset questions,
answer keys, and answers in subsequent themes:

Processing Question Definitions

[…]
 1:
 learning-objective: […]
 k-level: K1
 number-of-points: 1
 question: What is the […]
 answers: {a: 24, …}
 correct: [b]
 explanation: The […]
 […]

For more information, see the [preprint][3].
 [3]: https://tug.org/tug2024/preprints/starynovotny-markdown-themes.pdf

https://www.google.com/url?q=https://tug.org/tug2024/preprints/starynovotny-markdown-themes.pdf&sa=D&source=editors&ust=1721050128098490&usg=AOvVaw3j3ZhxjHJ6RypqQnSZYyrT
https://www.google.com/url?q=https://tug.org/tug2024/preprints/starynovotny-markdown-themes.pdf&sa=D&source=editors&ust=1721050128098614&usg=AOvVaw0a51QJKcXWL8T9KiuXstF2

Conclusion
Although TeX has beautiful output, its input macro
language is an acquired taste for many authors.

With the Markdown package, authors can type
familiar Markdown and YAML and TeXperts
can tailor the presentation with TeX.

In this talk, I showed how TeXperts can
use _themes_ to write large stylesheets
for Markdown and YAML documents.

Many thanks to ISTQB! Questions?

