
Templates:
Prototype document elements

Joseph Wright
The LATEX Project

joseph@texdev.net



Templates?

– Many documents have similar features: elements

– Copying code every time is error prone
– But there are both smaller and larger variations
– Templates: mechanism to swap out how elements are implemented



Templates?

– Many documents have similar features: elements
– Copying code every time is error prone

– But there are both smaller and larger variations
– Templates: mechanism to swap out how elements are implemented



Templates?

– Many documents have similar features: elements
– Copying code every time is error prone
– But there are both smaller and larger variations

– Templates: mechanism to swap out how elements are implemented



Templates?

– Many documents have similar features: elements
– Copying code every time is error prone
– But there are both smaller and larger variations
– Templates: mechanism to swap out how elements are implemented



Template steps

1. Declare a template type: the ‘thing’

2. Create one or more interfaces to flesh out the type
3. Define the implementation for the interface
4. Use what you’ve made: see later



Template steps

1. Declare a template type: the ‘thing’
2. Create one or more interfaces to flesh out the type

3. Define the implementation for the interface
4. Use what you’ve made: see later



Template steps

1. Declare a template type: the ‘thing’
2. Create one or more interfaces to flesh out the type
3. Define the implementation for the interface

4. Use what you’ve made: see later



Template steps

1. Declare a template type: the ‘thing’
2. Create one or more interfaces to flesh out the type
3. Define the implementation for the interface
4. Use what you’ve made: see later



Template types

– There are only really a small number of template types
– As such, it’s likely most will be provided by the kernel
– Little code here: it’s about defining semantics



Template interfaces

\DeclareTemplateInterface{type}{template}{no.~of args}
{key list}

– This step is to help designers/users: no code
– Keys will flexibility of this template
– Different templates for the same type can have different keys …

– …but in practice likely to see common ones



Template interfaces

\DeclareTemplateInterface{type}{template}{no.~of args}
{key list}

– This step is to help designers/users: no code
– Keys will flexibility of this template
– Different templates for the same type can have different keys …
– …but in practice likely to see common ones



Template code

\DeclareTemplateImplementation{type}{template}{no. of args}
{key bindings}{code}

– The business end: define the code
– Can be given separate from the interfaces in the sources



Using templates

– We can directly \UseTemplate

– But that means we always parsing the key list
– Instead, most templates are used by making instances
– In an instance, the key list is parsed into a set of (fast) assignments
– We can change one template/instance for another and it should still work



Using templates

– We can directly \UseTemplate
– But that means we always parsing the key list

– Instead, most templates are used by making instances
– In an instance, the key list is parsed into a set of (fast) assignments
– We can change one template/instance for another and it should still work



Using templates

– We can directly \UseTemplate
– But that means we always parsing the key list
– Instead, most templates are used by making instances

– In an instance, the key list is parsed into a set of (fast) assignments
– We can change one template/instance for another and it should still work



Using templates

– We can directly \UseTemplate
– But that means we always parsing the key list
– Instead, most templates are used by making instances
– In an instance, the key list is parsed into a set of (fast) assignments

– We can change one template/instance for another and it should still work



Using templates

– We can directly \UseTemplate
– But that means we always parsing the key list
– Instead, most templates are used by making instances
– In an instance, the key list is parsed into a set of (fast) assignments
– We can change one template/instance for another and it should still work



User control

– Document-wide changes can be made:
edit instance defaults

– One-off changes also allowed using established key names
– Can also make copies of instances and edit these ‘child’ templates


